src/os_cpu/linux_x86/vm/os_linux_x86.cpp

Thu, 20 Jun 2013 15:02:05 +0200

author
goetz
date
Thu, 20 Jun 2013 15:02:05 +0200
changeset 5400
980532a806a5
parent 5302
9ba41a4a71ff
child 5426
af21010d1062
permissions
-rw-r--r--

8016697: Use stubs to implement safefetch
Summary: Implement Safefetch as stub routines. This reduces compiler and os dependencies.
Reviewed-by: twisti, kvn

     1 /*
     2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // no precompiled headers
    26 #include "asm/macroAssembler.hpp"
    27 #include "classfile/classLoader.hpp"
    28 #include "classfile/systemDictionary.hpp"
    29 #include "classfile/vmSymbols.hpp"
    30 #include "code/icBuffer.hpp"
    31 #include "code/vtableStubs.hpp"
    32 #include "interpreter/interpreter.hpp"
    33 #include "jvm_linux.h"
    34 #include "memory/allocation.inline.hpp"
    35 #include "mutex_linux.inline.hpp"
    36 #include "os_share_linux.hpp"
    37 #include "prims/jniFastGetField.hpp"
    38 #include "prims/jvm.h"
    39 #include "prims/jvm_misc.hpp"
    40 #include "runtime/arguments.hpp"
    41 #include "runtime/extendedPC.hpp"
    42 #include "runtime/frame.inline.hpp"
    43 #include "runtime/interfaceSupport.hpp"
    44 #include "runtime/java.hpp"
    45 #include "runtime/javaCalls.hpp"
    46 #include "runtime/mutexLocker.hpp"
    47 #include "runtime/osThread.hpp"
    48 #include "runtime/sharedRuntime.hpp"
    49 #include "runtime/stubRoutines.hpp"
    50 #include "runtime/thread.inline.hpp"
    51 #include "runtime/timer.hpp"
    52 #include "utilities/events.hpp"
    53 #include "utilities/vmError.hpp"
    55 // put OS-includes here
    56 # include <sys/types.h>
    57 # include <sys/mman.h>
    58 # include <pthread.h>
    59 # include <signal.h>
    60 # include <errno.h>
    61 # include <dlfcn.h>
    62 # include <stdlib.h>
    63 # include <stdio.h>
    64 # include <unistd.h>
    65 # include <sys/resource.h>
    66 # include <pthread.h>
    67 # include <sys/stat.h>
    68 # include <sys/time.h>
    69 # include <sys/utsname.h>
    70 # include <sys/socket.h>
    71 # include <sys/wait.h>
    72 # include <pwd.h>
    73 # include <poll.h>
    74 # include <ucontext.h>
    75 # include <fpu_control.h>
    77 #ifdef AMD64
    78 #define REG_SP REG_RSP
    79 #define REG_PC REG_RIP
    80 #define REG_FP REG_RBP
    81 #define SPELL_REG_SP "rsp"
    82 #define SPELL_REG_FP "rbp"
    83 #else
    84 #define REG_SP REG_UESP
    85 #define REG_PC REG_EIP
    86 #define REG_FP REG_EBP
    87 #define SPELL_REG_SP "esp"
    88 #define SPELL_REG_FP "ebp"
    89 #endif // AMD64
    91 address os::current_stack_pointer() {
    92 #ifdef SPARC_WORKS
    93   register void *esp;
    94   __asm__("mov %%"SPELL_REG_SP", %0":"=r"(esp));
    95   return (address) ((char*)esp + sizeof(long)*2);
    96 #elif defined(__clang__)
    97   intptr_t* esp;
    98   __asm__ __volatile__ ("mov %%"SPELL_REG_SP", %0":"=r"(esp):);
    99   return (address) esp;
   100 #else
   101   register void *esp __asm__ (SPELL_REG_SP);
   102   return (address) esp;
   103 #endif
   104 }
   106 char* os::non_memory_address_word() {
   107   // Must never look like an address returned by reserve_memory,
   108   // even in its subfields (as defined by the CPU immediate fields,
   109   // if the CPU splits constants across multiple instructions).
   111   return (char*) -1;
   112 }
   114 void os::initialize_thread(Thread* thr) {
   115 // Nothing to do.
   116 }
   118 address os::Linux::ucontext_get_pc(ucontext_t * uc) {
   119   return (address)uc->uc_mcontext.gregs[REG_PC];
   120 }
   122 intptr_t* os::Linux::ucontext_get_sp(ucontext_t * uc) {
   123   return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
   124 }
   126 intptr_t* os::Linux::ucontext_get_fp(ucontext_t * uc) {
   127   return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
   128 }
   130 // For Forte Analyzer AsyncGetCallTrace profiling support - thread
   131 // is currently interrupted by SIGPROF.
   132 // os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal
   133 // frames. Currently we don't do that on Linux, so it's the same as
   134 // os::fetch_frame_from_context().
   135 ExtendedPC os::Linux::fetch_frame_from_ucontext(Thread* thread,
   136   ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
   138   assert(thread != NULL, "just checking");
   139   assert(ret_sp != NULL, "just checking");
   140   assert(ret_fp != NULL, "just checking");
   142   return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
   143 }
   145 ExtendedPC os::fetch_frame_from_context(void* ucVoid,
   146                     intptr_t** ret_sp, intptr_t** ret_fp) {
   148   ExtendedPC  epc;
   149   ucontext_t* uc = (ucontext_t*)ucVoid;
   151   if (uc != NULL) {
   152     epc = ExtendedPC(os::Linux::ucontext_get_pc(uc));
   153     if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc);
   154     if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc);
   155   } else {
   156     // construct empty ExtendedPC for return value checking
   157     epc = ExtendedPC(NULL);
   158     if (ret_sp) *ret_sp = (intptr_t *)NULL;
   159     if (ret_fp) *ret_fp = (intptr_t *)NULL;
   160   }
   162   return epc;
   163 }
   165 frame os::fetch_frame_from_context(void* ucVoid) {
   166   intptr_t* sp;
   167   intptr_t* fp;
   168   ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
   169   return frame(sp, fp, epc.pc());
   170 }
   172 // By default, gcc always save frame pointer (%ebp/%rbp) on stack. It may get
   173 // turned off by -fomit-frame-pointer,
   174 frame os::get_sender_for_C_frame(frame* fr) {
   175   return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
   176 }
   178 intptr_t* _get_previous_fp() {
   179 #ifdef SPARC_WORKS
   180   register intptr_t **ebp;
   181   __asm__("mov %%"SPELL_REG_FP", %0":"=r"(ebp));
   182 #elif defined(__clang__)
   183   intptr_t **ebp;
   184   __asm__ __volatile__ ("mov %%"SPELL_REG_FP", %0":"=r"(ebp):);
   185 #else
   186   register intptr_t **ebp __asm__ (SPELL_REG_FP);
   187 #endif
   188   return (intptr_t*) *ebp;   // we want what it points to.
   189 }
   192 frame os::current_frame() {
   193   intptr_t* fp = _get_previous_fp();
   194   frame myframe((intptr_t*)os::current_stack_pointer(),
   195                 (intptr_t*)fp,
   196                 CAST_FROM_FN_PTR(address, os::current_frame));
   197   if (os::is_first_C_frame(&myframe)) {
   198     // stack is not walkable
   199     return frame();
   200   } else {
   201     return os::get_sender_for_C_frame(&myframe);
   202   }
   203 }
   205 // Utility functions
   207 // From IA32 System Programming Guide
   208 enum {
   209   trap_page_fault = 0xE
   210 };
   212 extern "C" JNIEXPORT int
   213 JVM_handle_linux_signal(int sig,
   214                         siginfo_t* info,
   215                         void* ucVoid,
   216                         int abort_if_unrecognized) {
   217   ucontext_t* uc = (ucontext_t*) ucVoid;
   219   Thread* t = ThreadLocalStorage::get_thread_slow();
   221   SignalHandlerMark shm(t);
   223   // Note: it's not uncommon that JNI code uses signal/sigset to install
   224   // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
   225   // or have a SIGILL handler when detecting CPU type). When that happens,
   226   // JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To
   227   // avoid unnecessary crash when libjsig is not preloaded, try handle signals
   228   // that do not require siginfo/ucontext first.
   230   if (sig == SIGPIPE || sig == SIGXFSZ) {
   231     // allow chained handler to go first
   232     if (os::Linux::chained_handler(sig, info, ucVoid)) {
   233       return true;
   234     } else {
   235       if (PrintMiscellaneous && (WizardMode || Verbose)) {
   236         char buf[64];
   237         warning("Ignoring %s - see bugs 4229104 or 646499219",
   238                 os::exception_name(sig, buf, sizeof(buf)));
   239       }
   240       return true;
   241     }
   242   }
   244   JavaThread* thread = NULL;
   245   VMThread* vmthread = NULL;
   246   if (os::Linux::signal_handlers_are_installed) {
   247     if (t != NULL ){
   248       if(t->is_Java_thread()) {
   249         thread = (JavaThread*)t;
   250       }
   251       else if(t->is_VM_thread()){
   252         vmthread = (VMThread *)t;
   253       }
   254     }
   255   }
   256 /*
   257   NOTE: does not seem to work on linux.
   258   if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
   259     // can't decode this kind of signal
   260     info = NULL;
   261   } else {
   262     assert(sig == info->si_signo, "bad siginfo");
   263   }
   264 */
   265   // decide if this trap can be handled by a stub
   266   address stub = NULL;
   268   address pc          = NULL;
   270   //%note os_trap_1
   271   if (info != NULL && uc != NULL && thread != NULL) {
   272     pc = (address) os::Linux::ucontext_get_pc(uc);
   274     if (StubRoutines::is_safefetch_fault(pc)) {
   275       uc->uc_mcontext.gregs[REG_PC] = intptr_t(StubRoutines::continuation_for_safefetch_fault(pc));
   276       return 1;
   277     }
   279 #ifndef AMD64
   280     // Halt if SI_KERNEL before more crashes get misdiagnosed as Java bugs
   281     // This can happen in any running code (currently more frequently in
   282     // interpreter code but has been seen in compiled code)
   283     if (sig == SIGSEGV && info->si_addr == 0 && info->si_code == SI_KERNEL) {
   284       fatal("An irrecoverable SI_KERNEL SIGSEGV has occurred due "
   285             "to unstable signal handling in this distribution.");
   286     }
   287 #endif // AMD64
   289     // Handle ALL stack overflow variations here
   290     if (sig == SIGSEGV) {
   291       address addr = (address) info->si_addr;
   293       // check if fault address is within thread stack
   294       if (addr < thread->stack_base() &&
   295           addr >= thread->stack_base() - thread->stack_size()) {
   296         // stack overflow
   297         if (thread->in_stack_yellow_zone(addr)) {
   298           thread->disable_stack_yellow_zone();
   299           if (thread->thread_state() == _thread_in_Java) {
   300             // Throw a stack overflow exception.  Guard pages will be reenabled
   301             // while unwinding the stack.
   302             stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
   303           } else {
   304             // Thread was in the vm or native code.  Return and try to finish.
   305             return 1;
   306           }
   307         } else if (thread->in_stack_red_zone(addr)) {
   308           // Fatal red zone violation.  Disable the guard pages and fall through
   309           // to handle_unexpected_exception way down below.
   310           thread->disable_stack_red_zone();
   311           tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
   313           // This is a likely cause, but hard to verify. Let's just print
   314           // it as a hint.
   315           tty->print_raw_cr("Please check if any of your loaded .so files has "
   316                             "enabled executable stack (see man page execstack(8))");
   317         } else {
   318           // Accessing stack address below sp may cause SEGV if current
   319           // thread has MAP_GROWSDOWN stack. This should only happen when
   320           // current thread was created by user code with MAP_GROWSDOWN flag
   321           // and then attached to VM. See notes in os_linux.cpp.
   322           if (thread->osthread()->expanding_stack() == 0) {
   323              thread->osthread()->set_expanding_stack();
   324              if (os::Linux::manually_expand_stack(thread, addr)) {
   325                thread->osthread()->clear_expanding_stack();
   326                return 1;
   327              }
   328              thread->osthread()->clear_expanding_stack();
   329           } else {
   330              fatal("recursive segv. expanding stack.");
   331           }
   332         }
   333       }
   334     }
   336     if (thread->thread_state() == _thread_in_Java) {
   337       // Java thread running in Java code => find exception handler if any
   338       // a fault inside compiled code, the interpreter, or a stub
   340       if (sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
   341         stub = SharedRuntime::get_poll_stub(pc);
   342       } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
   343         // BugId 4454115: A read from a MappedByteBuffer can fault
   344         // here if the underlying file has been truncated.
   345         // Do not crash the VM in such a case.
   346         CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
   347         nmethod* nm = (cb != NULL && cb->is_nmethod()) ? (nmethod*)cb : NULL;
   348         if (nm != NULL && nm->has_unsafe_access()) {
   349           stub = StubRoutines::handler_for_unsafe_access();
   350         }
   351       }
   352       else
   354 #ifdef AMD64
   355       if (sig == SIGFPE  &&
   356           (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) {
   357         stub =
   358           SharedRuntime::
   359           continuation_for_implicit_exception(thread,
   360                                               pc,
   361                                               SharedRuntime::
   362                                               IMPLICIT_DIVIDE_BY_ZERO);
   363 #else
   364       if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) {
   365         // HACK: si_code does not work on linux 2.2.12-20!!!
   366         int op = pc[0];
   367         if (op == 0xDB) {
   368           // FIST
   369           // TODO: The encoding of D2I in i486.ad can cause an exception
   370           // prior to the fist instruction if there was an invalid operation
   371           // pending. We want to dismiss that exception. From the win_32
   372           // side it also seems that if it really was the fist causing
   373           // the exception that we do the d2i by hand with different
   374           // rounding. Seems kind of weird.
   375           // NOTE: that we take the exception at the NEXT floating point instruction.
   376           assert(pc[0] == 0xDB, "not a FIST opcode");
   377           assert(pc[1] == 0x14, "not a FIST opcode");
   378           assert(pc[2] == 0x24, "not a FIST opcode");
   379           return true;
   380         } else if (op == 0xF7) {
   381           // IDIV
   382           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
   383         } else {
   384           // TODO: handle more cases if we are using other x86 instructions
   385           //   that can generate SIGFPE signal on linux.
   386           tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
   387           fatal("please update this code.");
   388         }
   389 #endif // AMD64
   390       } else if (sig == SIGSEGV &&
   391                !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
   392           // Determination of interpreter/vtable stub/compiled code null exception
   393           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
   394       }
   395     } else if (thread->thread_state() == _thread_in_vm &&
   396                sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
   397                thread->doing_unsafe_access()) {
   398         stub = StubRoutines::handler_for_unsafe_access();
   399     }
   401     // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
   402     // and the heap gets shrunk before the field access.
   403     if ((sig == SIGSEGV) || (sig == SIGBUS)) {
   404       address addr = JNI_FastGetField::find_slowcase_pc(pc);
   405       if (addr != (address)-1) {
   406         stub = addr;
   407       }
   408     }
   410     // Check to see if we caught the safepoint code in the
   411     // process of write protecting the memory serialization page.
   412     // It write enables the page immediately after protecting it
   413     // so we can just return to retry the write.
   414     if ((sig == SIGSEGV) &&
   415         os::is_memory_serialize_page(thread, (address) info->si_addr)) {
   416       // Block current thread until the memory serialize page permission restored.
   417       os::block_on_serialize_page_trap();
   418       return true;
   419     }
   420   }
   422 #ifndef AMD64
   423   // Execution protection violation
   424   //
   425   // This should be kept as the last step in the triage.  We don't
   426   // have a dedicated trap number for a no-execute fault, so be
   427   // conservative and allow other handlers the first shot.
   428   //
   429   // Note: We don't test that info->si_code == SEGV_ACCERR here.
   430   // this si_code is so generic that it is almost meaningless; and
   431   // the si_code for this condition may change in the future.
   432   // Furthermore, a false-positive should be harmless.
   433   if (UnguardOnExecutionViolation > 0 &&
   434       (sig == SIGSEGV || sig == SIGBUS) &&
   435       uc->uc_mcontext.gregs[REG_TRAPNO] == trap_page_fault) {
   436     int page_size = os::vm_page_size();
   437     address addr = (address) info->si_addr;
   438     address pc = os::Linux::ucontext_get_pc(uc);
   439     // Make sure the pc and the faulting address are sane.
   440     //
   441     // If an instruction spans a page boundary, and the page containing
   442     // the beginning of the instruction is executable but the following
   443     // page is not, the pc and the faulting address might be slightly
   444     // different - we still want to unguard the 2nd page in this case.
   445     //
   446     // 15 bytes seems to be a (very) safe value for max instruction size.
   447     bool pc_is_near_addr =
   448       (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
   449     bool instr_spans_page_boundary =
   450       (align_size_down((intptr_t) pc ^ (intptr_t) addr,
   451                        (intptr_t) page_size) > 0);
   453     if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
   454       static volatile address last_addr =
   455         (address) os::non_memory_address_word();
   457       // In conservative mode, don't unguard unless the address is in the VM
   458       if (addr != last_addr &&
   459           (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
   461         // Set memory to RWX and retry
   462         address page_start =
   463           (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
   464         bool res = os::protect_memory((char*) page_start, page_size,
   465                                       os::MEM_PROT_RWX);
   467         if (PrintMiscellaneous && Verbose) {
   468           char buf[256];
   469           jio_snprintf(buf, sizeof(buf), "Execution protection violation "
   470                        "at " INTPTR_FORMAT
   471                        ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
   472                        page_start, (res ? "success" : "failed"), errno);
   473           tty->print_raw_cr(buf);
   474         }
   475         stub = pc;
   477         // Set last_addr so if we fault again at the same address, we don't end
   478         // up in an endless loop.
   479         //
   480         // There are two potential complications here.  Two threads trapping at
   481         // the same address at the same time could cause one of the threads to
   482         // think it already unguarded, and abort the VM.  Likely very rare.
   483         //
   484         // The other race involves two threads alternately trapping at
   485         // different addresses and failing to unguard the page, resulting in
   486         // an endless loop.  This condition is probably even more unlikely than
   487         // the first.
   488         //
   489         // Although both cases could be avoided by using locks or thread local
   490         // last_addr, these solutions are unnecessary complication: this
   491         // handler is a best-effort safety net, not a complete solution.  It is
   492         // disabled by default and should only be used as a workaround in case
   493         // we missed any no-execute-unsafe VM code.
   495         last_addr = addr;
   496       }
   497     }
   498   }
   499 #endif // !AMD64
   501   if (stub != NULL) {
   502     // save all thread context in case we need to restore it
   503     if (thread != NULL) thread->set_saved_exception_pc(pc);
   505     uc->uc_mcontext.gregs[REG_PC] = (greg_t)stub;
   506     return true;
   507   }
   509   // signal-chaining
   510   if (os::Linux::chained_handler(sig, info, ucVoid)) {
   511      return true;
   512   }
   514   if (!abort_if_unrecognized) {
   515     // caller wants another chance, so give it to him
   516     return false;
   517   }
   519   if (pc == NULL && uc != NULL) {
   520     pc = os::Linux::ucontext_get_pc(uc);
   521   }
   523   // unmask current signal
   524   sigset_t newset;
   525   sigemptyset(&newset);
   526   sigaddset(&newset, sig);
   527   sigprocmask(SIG_UNBLOCK, &newset, NULL);
   529   VMError err(t, sig, pc, info, ucVoid);
   530   err.report_and_die();
   532   ShouldNotReachHere();
   533 }
   535 void os::Linux::init_thread_fpu_state(void) {
   536 #ifndef AMD64
   537   // set fpu to 53 bit precision
   538   set_fpu_control_word(0x27f);
   539 #endif // !AMD64
   540 }
   542 int os::Linux::get_fpu_control_word(void) {
   543 #ifdef AMD64
   544   return 0;
   545 #else
   546   int fpu_control;
   547   _FPU_GETCW(fpu_control);
   548   return fpu_control & 0xffff;
   549 #endif // AMD64
   550 }
   552 void os::Linux::set_fpu_control_word(int fpu_control) {
   553 #ifndef AMD64
   554   _FPU_SETCW(fpu_control);
   555 #endif // !AMD64
   556 }
   558 // Check that the linux kernel version is 2.4 or higher since earlier
   559 // versions do not support SSE without patches.
   560 bool os::supports_sse() {
   561 #ifdef AMD64
   562   return true;
   563 #else
   564   struct utsname uts;
   565   if( uname(&uts) != 0 ) return false; // uname fails?
   566   char *minor_string;
   567   int major = strtol(uts.release,&minor_string,10);
   568   int minor = strtol(minor_string+1,NULL,10);
   569   bool result = (major > 2 || (major==2 && minor >= 4));
   570 #ifndef PRODUCT
   571   if (PrintMiscellaneous && Verbose) {
   572     tty->print("OS version is %d.%d, which %s support SSE/SSE2\n",
   573                major,minor, result ? "DOES" : "does NOT");
   574   }
   575 #endif
   576   return result;
   577 #endif // AMD64
   578 }
   580 bool os::is_allocatable(size_t bytes) {
   581 #ifdef AMD64
   582   // unused on amd64?
   583   return true;
   584 #else
   586   if (bytes < 2 * G) {
   587     return true;
   588   }
   590   char* addr = reserve_memory(bytes, NULL);
   592   if (addr != NULL) {
   593     release_memory(addr, bytes);
   594   }
   596   return addr != NULL;
   597 #endif // AMD64
   598 }
   600 ////////////////////////////////////////////////////////////////////////////////
   601 // thread stack
   603 #ifdef AMD64
   604 size_t os::Linux::min_stack_allowed  = 64 * K;
   606 // amd64: pthread on amd64 is always in floating stack mode
   607 bool os::Linux::supports_variable_stack_size() {  return true; }
   608 #else
   609 size_t os::Linux::min_stack_allowed  =  (48 DEBUG_ONLY(+4))*K;
   611 #ifdef __GNUC__
   612 #define GET_GS() ({int gs; __asm__ volatile("movw %%gs, %w0":"=q"(gs)); gs&0xffff;})
   613 #endif
   615 // Test if pthread library can support variable thread stack size. LinuxThreads
   616 // in fixed stack mode allocates 2M fixed slot for each thread. LinuxThreads
   617 // in floating stack mode and NPTL support variable stack size.
   618 bool os::Linux::supports_variable_stack_size() {
   619   if (os::Linux::is_NPTL()) {
   620      // NPTL, yes
   621      return true;
   623   } else {
   624     // Note: We can't control default stack size when creating a thread.
   625     // If we use non-default stack size (pthread_attr_setstacksize), both
   626     // floating stack and non-floating stack LinuxThreads will return the
   627     // same value. This makes it impossible to implement this function by
   628     // detecting thread stack size directly.
   629     //
   630     // An alternative approach is to check %gs. Fixed-stack LinuxThreads
   631     // do not use %gs, so its value is 0. Floating-stack LinuxThreads use
   632     // %gs (either as LDT selector or GDT selector, depending on kernel)
   633     // to access thread specific data.
   634     //
   635     // Note that %gs is a reserved glibc register since early 2001, so
   636     // applications are not allowed to change its value (Ulrich Drepper from
   637     // Redhat confirmed that all known offenders have been modified to use
   638     // either %fs or TSD). In the worst case scenario, when VM is embedded in
   639     // a native application that plays with %gs, we might see non-zero %gs
   640     // even LinuxThreads is running in fixed stack mode. As the result, we'll
   641     // return true and skip _thread_safety_check(), so we may not be able to
   642     // detect stack-heap collisions. But otherwise it's harmless.
   643     //
   644 #ifdef __GNUC__
   645     return (GET_GS() != 0);
   646 #else
   647     return false;
   648 #endif
   649   }
   650 }
   651 #endif // AMD64
   653 // return default stack size for thr_type
   654 size_t os::Linux::default_stack_size(os::ThreadType thr_type) {
   655   // default stack size (compiler thread needs larger stack)
   656 #ifdef AMD64
   657   size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
   658 #else
   659   size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
   660 #endif // AMD64
   661   return s;
   662 }
   664 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
   665   // Creating guard page is very expensive. Java thread has HotSpot
   666   // guard page, only enable glibc guard page for non-Java threads.
   667   return (thr_type == java_thread ? 0 : page_size());
   668 }
   670 // Java thread:
   671 //
   672 //   Low memory addresses
   673 //    +------------------------+
   674 //    |                        |\  JavaThread created by VM does not have glibc
   675 //    |    glibc guard page    | - guard, attached Java thread usually has
   676 //    |                        |/  1 page glibc guard.
   677 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
   678 //    |                        |\
   679 //    |  HotSpot Guard Pages   | - red and yellow pages
   680 //    |                        |/
   681 //    +------------------------+ JavaThread::stack_yellow_zone_base()
   682 //    |                        |\
   683 //    |      Normal Stack      | -
   684 //    |                        |/
   685 // P2 +------------------------+ Thread::stack_base()
   686 //
   687 // Non-Java thread:
   688 //
   689 //   Low memory addresses
   690 //    +------------------------+
   691 //    |                        |\
   692 //    |  glibc guard page      | - usually 1 page
   693 //    |                        |/
   694 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
   695 //    |                        |\
   696 //    |      Normal Stack      | -
   697 //    |                        |/
   698 // P2 +------------------------+ Thread::stack_base()
   699 //
   700 // ** P1 (aka bottom) and size ( P2 = P1 - size) are the address and stack size returned from
   701 //    pthread_attr_getstack()
   703 static void current_stack_region(address * bottom, size_t * size) {
   704   if (os::Linux::is_initial_thread()) {
   705      // initial thread needs special handling because pthread_getattr_np()
   706      // may return bogus value.
   707      *bottom = os::Linux::initial_thread_stack_bottom();
   708      *size   = os::Linux::initial_thread_stack_size();
   709   } else {
   710      pthread_attr_t attr;
   712      int rslt = pthread_getattr_np(pthread_self(), &attr);
   714      // JVM needs to know exact stack location, abort if it fails
   715      if (rslt != 0) {
   716        if (rslt == ENOMEM) {
   717          vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
   718        } else {
   719          fatal(err_msg("pthread_getattr_np failed with errno = %d", rslt));
   720        }
   721      }
   723      if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
   724          fatal("Can not locate current stack attributes!");
   725      }
   727      pthread_attr_destroy(&attr);
   729   }
   730   assert(os::current_stack_pointer() >= *bottom &&
   731          os::current_stack_pointer() < *bottom + *size, "just checking");
   732 }
   734 address os::current_stack_base() {
   735   address bottom;
   736   size_t size;
   737   current_stack_region(&bottom, &size);
   738   return (bottom + size);
   739 }
   741 size_t os::current_stack_size() {
   742   // stack size includes normal stack and HotSpot guard pages
   743   address bottom;
   744   size_t size;
   745   current_stack_region(&bottom, &size);
   746   return size;
   747 }
   749 /////////////////////////////////////////////////////////////////////////////
   750 // helper functions for fatal error handler
   752 void os::print_context(outputStream *st, void *context) {
   753   if (context == NULL) return;
   755   ucontext_t *uc = (ucontext_t*)context;
   756   st->print_cr("Registers:");
   757 #ifdef AMD64
   758   st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
   759   st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
   760   st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
   761   st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
   762   st->cr();
   763   st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
   764   st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
   765   st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
   766   st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
   767   st->cr();
   768   st->print(  "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
   769   st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
   770   st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
   771   st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
   772   st->cr();
   773   st->print(  "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
   774   st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
   775   st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
   776   st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
   777   st->cr();
   778   st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
   779   st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
   780   st->print(", CSGSFS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_CSGSFS]);
   781   st->print(", ERR=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ERR]);
   782   st->cr();
   783   st->print("  TRAPNO=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_TRAPNO]);
   784 #else
   785   st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EAX]);
   786   st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBX]);
   787   st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ECX]);
   788   st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDX]);
   789   st->cr();
   790   st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_UESP]);
   791   st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBP]);
   792   st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ESI]);
   793   st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDI]);
   794   st->cr();
   795   st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EIP]);
   796   st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
   797   st->print(", CR2=" INTPTR_FORMAT, uc->uc_mcontext.cr2);
   798 #endif // AMD64
   799   st->cr();
   800   st->cr();
   802   intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
   803   st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
   804   print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
   805   st->cr();
   807   // Note: it may be unsafe to inspect memory near pc. For example, pc may
   808   // point to garbage if entry point in an nmethod is corrupted. Leave
   809   // this at the end, and hope for the best.
   810   address pc = os::Linux::ucontext_get_pc(uc);
   811   st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
   812   print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
   813 }
   815 void os::print_register_info(outputStream *st, void *context) {
   816   if (context == NULL) return;
   818   ucontext_t *uc = (ucontext_t*)context;
   820   st->print_cr("Register to memory mapping:");
   821   st->cr();
   823   // this is horrendously verbose but the layout of the registers in the
   824   // context does not match how we defined our abstract Register set, so
   825   // we can't just iterate through the gregs area
   827   // this is only for the "general purpose" registers
   829 #ifdef AMD64
   830   st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
   831   st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
   832   st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
   833   st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
   834   st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
   835   st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
   836   st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
   837   st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
   838   st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
   839   st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
   840   st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
   841   st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
   842   st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
   843   st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
   844   st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
   845   st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
   846 #else
   847   st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[REG_EAX]);
   848   st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[REG_EBX]);
   849   st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[REG_ECX]);
   850   st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[REG_EDX]);
   851   st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[REG_ESP]);
   852   st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[REG_EBP]);
   853   st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[REG_ESI]);
   854   st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[REG_EDI]);
   855 #endif // AMD64
   857   st->cr();
   858 }
   860 void os::setup_fpu() {
   861 #ifndef AMD64
   862   address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
   863   __asm__ volatile (  "fldcw (%0)" :
   864                       : "r" (fpu_cntrl) : "memory");
   865 #endif // !AMD64
   866 }
   868 #ifndef PRODUCT
   869 void os::verify_stack_alignment() {
   870 #ifdef AMD64
   871   assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
   872 #endif
   873 }
   874 #endif

mercurial