src/os/windows/vm/os_windows.cpp

Thu, 20 Jun 2013 15:02:05 +0200

author
goetz
date
Thu, 20 Jun 2013 15:02:05 +0200
changeset 5400
980532a806a5
parent 5272
1f4355cee9a2
child 5401
a74ec8831c7b
permissions
-rw-r--r--

8016697: Use stubs to implement safefetch
Summary: Implement Safefetch as stub routines. This reduces compiler and os dependencies.
Reviewed-by: twisti, kvn

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // Must be at least Windows 2000 or XP to use IsDebuggerPresent
    26 #define _WIN32_WINNT 0x500
    28 // no precompiled headers
    29 #include "classfile/classLoader.hpp"
    30 #include "classfile/systemDictionary.hpp"
    31 #include "classfile/vmSymbols.hpp"
    32 #include "code/icBuffer.hpp"
    33 #include "code/vtableStubs.hpp"
    34 #include "compiler/compileBroker.hpp"
    35 #include "compiler/disassembler.hpp"
    36 #include "interpreter/interpreter.hpp"
    37 #include "jvm_windows.h"
    38 #include "memory/allocation.inline.hpp"
    39 #include "memory/filemap.hpp"
    40 #include "mutex_windows.inline.hpp"
    41 #include "oops/oop.inline.hpp"
    42 #include "os_share_windows.hpp"
    43 #include "prims/jniFastGetField.hpp"
    44 #include "prims/jvm.h"
    45 #include "prims/jvm_misc.hpp"
    46 #include "runtime/arguments.hpp"
    47 #include "runtime/extendedPC.hpp"
    48 #include "runtime/globals.hpp"
    49 #include "runtime/interfaceSupport.hpp"
    50 #include "runtime/java.hpp"
    51 #include "runtime/javaCalls.hpp"
    52 #include "runtime/mutexLocker.hpp"
    53 #include "runtime/objectMonitor.hpp"
    54 #include "runtime/osThread.hpp"
    55 #include "runtime/perfMemory.hpp"
    56 #include "runtime/sharedRuntime.hpp"
    57 #include "runtime/statSampler.hpp"
    58 #include "runtime/stubRoutines.hpp"
    59 #include "runtime/thread.inline.hpp"
    60 #include "runtime/threadCritical.hpp"
    61 #include "runtime/timer.hpp"
    62 #include "services/attachListener.hpp"
    63 #include "services/memTracker.hpp"
    64 #include "services/runtimeService.hpp"
    65 #include "utilities/decoder.hpp"
    66 #include "utilities/defaultStream.hpp"
    67 #include "utilities/events.hpp"
    68 #include "utilities/growableArray.hpp"
    69 #include "utilities/vmError.hpp"
    71 #ifdef _DEBUG
    72 #include <crtdbg.h>
    73 #endif
    76 #include <windows.h>
    77 #include <sys/types.h>
    78 #include <sys/stat.h>
    79 #include <sys/timeb.h>
    80 #include <objidl.h>
    81 #include <shlobj.h>
    83 #include <malloc.h>
    84 #include <signal.h>
    85 #include <direct.h>
    86 #include <errno.h>
    87 #include <fcntl.h>
    88 #include <io.h>
    89 #include <process.h>              // For _beginthreadex(), _endthreadex()
    90 #include <imagehlp.h>             // For os::dll_address_to_function_name
    91 /* for enumerating dll libraries */
    92 #include <vdmdbg.h>
    94 // for timer info max values which include all bits
    95 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
    97 // For DLL loading/load error detection
    98 // Values of PE COFF
    99 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
   100 #define IMAGE_FILE_SIGNATURE_LENGTH 4
   102 static HANDLE main_process;
   103 static HANDLE main_thread;
   104 static int    main_thread_id;
   106 static FILETIME process_creation_time;
   107 static FILETIME process_exit_time;
   108 static FILETIME process_user_time;
   109 static FILETIME process_kernel_time;
   111 #ifdef _M_IA64
   112 #define __CPU__ ia64
   113 #elif _M_AMD64
   114 #define __CPU__ amd64
   115 #else
   116 #define __CPU__ i486
   117 #endif
   119 // save DLL module handle, used by GetModuleFileName
   121 HINSTANCE vm_lib_handle;
   123 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
   124   switch (reason) {
   125     case DLL_PROCESS_ATTACH:
   126       vm_lib_handle = hinst;
   127       if(ForceTimeHighResolution)
   128         timeBeginPeriod(1L);
   129       break;
   130     case DLL_PROCESS_DETACH:
   131       if(ForceTimeHighResolution)
   132         timeEndPeriod(1L);
   133       break;
   134     default:
   135       break;
   136   }
   137   return true;
   138 }
   140 static inline double fileTimeAsDouble(FILETIME* time) {
   141   const double high  = (double) ((unsigned int) ~0);
   142   const double split = 10000000.0;
   143   double result = (time->dwLowDateTime / split) +
   144                    time->dwHighDateTime * (high/split);
   145   return result;
   146 }
   148 // Implementation of os
   150 bool os::getenv(const char* name, char* buffer, int len) {
   151  int result = GetEnvironmentVariable(name, buffer, len);
   152  return result > 0 && result < len;
   153 }
   156 // No setuid programs under Windows.
   157 bool os::have_special_privileges() {
   158   return false;
   159 }
   162 // This method is  a periodic task to check for misbehaving JNI applications
   163 // under CheckJNI, we can add any periodic checks here.
   164 // For Windows at the moment does nothing
   165 void os::run_periodic_checks() {
   166   return;
   167 }
   169 #ifndef _WIN64
   170 // previous UnhandledExceptionFilter, if there is one
   171 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
   173 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
   174 #endif
   175 void os::init_system_properties_values() {
   176   /* sysclasspath, java_home, dll_dir */
   177   {
   178       char *home_path;
   179       char *dll_path;
   180       char *pslash;
   181       char *bin = "\\bin";
   182       char home_dir[MAX_PATH];
   184       if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
   185           os::jvm_path(home_dir, sizeof(home_dir));
   186           // Found the full path to jvm.dll.
   187           // Now cut the path to <java_home>/jre if we can.
   188           *(strrchr(home_dir, '\\')) = '\0';  /* get rid of \jvm.dll */
   189           pslash = strrchr(home_dir, '\\');
   190           if (pslash != NULL) {
   191               *pslash = '\0';                 /* get rid of \{client|server} */
   192               pslash = strrchr(home_dir, '\\');
   193               if (pslash != NULL)
   194                   *pslash = '\0';             /* get rid of \bin */
   195           }
   196       }
   198       home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
   199       if (home_path == NULL)
   200           return;
   201       strcpy(home_path, home_dir);
   202       Arguments::set_java_home(home_path);
   204       dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1, mtInternal);
   205       if (dll_path == NULL)
   206           return;
   207       strcpy(dll_path, home_dir);
   208       strcat(dll_path, bin);
   209       Arguments::set_dll_dir(dll_path);
   211       if (!set_boot_path('\\', ';'))
   212           return;
   213   }
   215   /* library_path */
   216   #define EXT_DIR "\\lib\\ext"
   217   #define BIN_DIR "\\bin"
   218   #define PACKAGE_DIR "\\Sun\\Java"
   219   {
   220     /* Win32 library search order (See the documentation for LoadLibrary):
   221      *
   222      * 1. The directory from which application is loaded.
   223      * 2. The system wide Java Extensions directory (Java only)
   224      * 3. System directory (GetSystemDirectory)
   225      * 4. Windows directory (GetWindowsDirectory)
   226      * 5. The PATH environment variable
   227      * 6. The current directory
   228      */
   230     char *library_path;
   231     char tmp[MAX_PATH];
   232     char *path_str = ::getenv("PATH");
   234     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
   235         sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
   237     library_path[0] = '\0';
   239     GetModuleFileName(NULL, tmp, sizeof(tmp));
   240     *(strrchr(tmp, '\\')) = '\0';
   241     strcat(library_path, tmp);
   243     GetWindowsDirectory(tmp, sizeof(tmp));
   244     strcat(library_path, ";");
   245     strcat(library_path, tmp);
   246     strcat(library_path, PACKAGE_DIR BIN_DIR);
   248     GetSystemDirectory(tmp, sizeof(tmp));
   249     strcat(library_path, ";");
   250     strcat(library_path, tmp);
   252     GetWindowsDirectory(tmp, sizeof(tmp));
   253     strcat(library_path, ";");
   254     strcat(library_path, tmp);
   256     if (path_str) {
   257         strcat(library_path, ";");
   258         strcat(library_path, path_str);
   259     }
   261     strcat(library_path, ";.");
   263     Arguments::set_library_path(library_path);
   264     FREE_C_HEAP_ARRAY(char, library_path, mtInternal);
   265   }
   267   /* Default extensions directory */
   268   {
   269     char path[MAX_PATH];
   270     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
   271     GetWindowsDirectory(path, MAX_PATH);
   272     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
   273         path, PACKAGE_DIR, EXT_DIR);
   274     Arguments::set_ext_dirs(buf);
   275   }
   276   #undef EXT_DIR
   277   #undef BIN_DIR
   278   #undef PACKAGE_DIR
   280   /* Default endorsed standards directory. */
   281   {
   282     #define ENDORSED_DIR "\\lib\\endorsed"
   283     size_t len = strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR);
   284     char * buf = NEW_C_HEAP_ARRAY(char, len, mtInternal);
   285     sprintf(buf, "%s%s", Arguments::get_java_home(), ENDORSED_DIR);
   286     Arguments::set_endorsed_dirs(buf);
   287     #undef ENDORSED_DIR
   288   }
   290 #ifndef _WIN64
   291   // set our UnhandledExceptionFilter and save any previous one
   292   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
   293 #endif
   295   // Done
   296   return;
   297 }
   299 void os::breakpoint() {
   300   DebugBreak();
   301 }
   303 // Invoked from the BREAKPOINT Macro
   304 extern "C" void breakpoint() {
   305   os::breakpoint();
   306 }
   308 /*
   309  * RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
   310  * So far, this method is only used by Native Memory Tracking, which is
   311  * only supported on Windows XP or later.
   312  */
   313 address os::get_caller_pc(int n) {
   314 #ifdef _NMT_NOINLINE_
   315   n ++;
   316 #endif
   317   address pc;
   318   if (os::Kernel32Dll::RtlCaptureStackBackTrace(n + 1, 1, (PVOID*)&pc, NULL) == 1) {
   319     return pc;
   320   }
   321   return NULL;
   322 }
   325 // os::current_stack_base()
   326 //
   327 //   Returns the base of the stack, which is the stack's
   328 //   starting address.  This function must be called
   329 //   while running on the stack of the thread being queried.
   331 address os::current_stack_base() {
   332   MEMORY_BASIC_INFORMATION minfo;
   333   address stack_bottom;
   334   size_t stack_size;
   336   VirtualQuery(&minfo, &minfo, sizeof(minfo));
   337   stack_bottom =  (address)minfo.AllocationBase;
   338   stack_size = minfo.RegionSize;
   340   // Add up the sizes of all the regions with the same
   341   // AllocationBase.
   342   while( 1 )
   343   {
   344     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
   345     if ( stack_bottom == (address)minfo.AllocationBase )
   346       stack_size += minfo.RegionSize;
   347     else
   348       break;
   349   }
   351 #ifdef _M_IA64
   352   // IA64 has memory and register stacks
   353   //
   354   // This is the stack layout you get on NT/IA64 if you specify 1MB stack limit
   355   // at thread creation (1MB backing store growing upwards, 1MB memory stack
   356   // growing downwards, 2MB summed up)
   357   //
   358   // ...
   359   // ------- top of stack (high address) -----
   360   // |
   361   // |      1MB
   362   // |      Backing Store (Register Stack)
   363   // |
   364   // |         / \
   365   // |          |
   366   // |          |
   367   // |          |
   368   // ------------------------ stack base -----
   369   // |      1MB
   370   // |      Memory Stack
   371   // |
   372   // |          |
   373   // |          |
   374   // |          |
   375   // |         \ /
   376   // |
   377   // ----- bottom of stack (low address) -----
   378   // ...
   380   stack_size = stack_size / 2;
   381 #endif
   382   return stack_bottom + stack_size;
   383 }
   385 size_t os::current_stack_size() {
   386   size_t sz;
   387   MEMORY_BASIC_INFORMATION minfo;
   388   VirtualQuery(&minfo, &minfo, sizeof(minfo));
   389   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
   390   return sz;
   391 }
   393 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
   394   const struct tm* time_struct_ptr = localtime(clock);
   395   if (time_struct_ptr != NULL) {
   396     *res = *time_struct_ptr;
   397     return res;
   398   }
   399   return NULL;
   400 }
   402 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
   404 // Thread start routine for all new Java threads
   405 static unsigned __stdcall java_start(Thread* thread) {
   406   // Try to randomize the cache line index of hot stack frames.
   407   // This helps when threads of the same stack traces evict each other's
   408   // cache lines. The threads can be either from the same JVM instance, or
   409   // from different JVM instances. The benefit is especially true for
   410   // processors with hyperthreading technology.
   411   static int counter = 0;
   412   int pid = os::current_process_id();
   413   _alloca(((pid ^ counter++) & 7) * 128);
   415   OSThread* osthr = thread->osthread();
   416   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
   418   if (UseNUMA) {
   419     int lgrp_id = os::numa_get_group_id();
   420     if (lgrp_id != -1) {
   421       thread->set_lgrp_id(lgrp_id);
   422     }
   423   }
   426   // Install a win32 structured exception handler around every thread created
   427   // by VM, so VM can genrate error dump when an exception occurred in non-
   428   // Java thread (e.g. VM thread).
   429   __try {
   430      thread->run();
   431   } __except(topLevelExceptionFilter(
   432              (_EXCEPTION_POINTERS*)_exception_info())) {
   433       // Nothing to do.
   434   }
   436   // One less thread is executing
   437   // When the VMThread gets here, the main thread may have already exited
   438   // which frees the CodeHeap containing the Atomic::add code
   439   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
   440     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
   441   }
   443   return 0;
   444 }
   446 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle, int thread_id) {
   447   // Allocate the OSThread object
   448   OSThread* osthread = new OSThread(NULL, NULL);
   449   if (osthread == NULL) return NULL;
   451   // Initialize support for Java interrupts
   452   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
   453   if (interrupt_event == NULL) {
   454     delete osthread;
   455     return NULL;
   456   }
   457   osthread->set_interrupt_event(interrupt_event);
   459   // Store info on the Win32 thread into the OSThread
   460   osthread->set_thread_handle(thread_handle);
   461   osthread->set_thread_id(thread_id);
   463   if (UseNUMA) {
   464     int lgrp_id = os::numa_get_group_id();
   465     if (lgrp_id != -1) {
   466       thread->set_lgrp_id(lgrp_id);
   467     }
   468   }
   470   // Initial thread state is INITIALIZED, not SUSPENDED
   471   osthread->set_state(INITIALIZED);
   473   return osthread;
   474 }
   477 bool os::create_attached_thread(JavaThread* thread) {
   478 #ifdef ASSERT
   479   thread->verify_not_published();
   480 #endif
   481   HANDLE thread_h;
   482   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
   483                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
   484     fatal("DuplicateHandle failed\n");
   485   }
   486   OSThread* osthread = create_os_thread(thread, thread_h,
   487                                         (int)current_thread_id());
   488   if (osthread == NULL) {
   489      return false;
   490   }
   492   // Initial thread state is RUNNABLE
   493   osthread->set_state(RUNNABLE);
   495   thread->set_osthread(osthread);
   496   return true;
   497 }
   499 bool os::create_main_thread(JavaThread* thread) {
   500 #ifdef ASSERT
   501   thread->verify_not_published();
   502 #endif
   503   if (_starting_thread == NULL) {
   504     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
   505      if (_starting_thread == NULL) {
   506         return false;
   507      }
   508   }
   510   // The primordial thread is runnable from the start)
   511   _starting_thread->set_state(RUNNABLE);
   513   thread->set_osthread(_starting_thread);
   514   return true;
   515 }
   517 // Allocate and initialize a new OSThread
   518 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
   519   unsigned thread_id;
   521   // Allocate the OSThread object
   522   OSThread* osthread = new OSThread(NULL, NULL);
   523   if (osthread == NULL) {
   524     return false;
   525   }
   527   // Initialize support for Java interrupts
   528   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
   529   if (interrupt_event == NULL) {
   530     delete osthread;
   531     return NULL;
   532   }
   533   osthread->set_interrupt_event(interrupt_event);
   534   osthread->set_interrupted(false);
   536   thread->set_osthread(osthread);
   538   if (stack_size == 0) {
   539     switch (thr_type) {
   540     case os::java_thread:
   541       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
   542       if (JavaThread::stack_size_at_create() > 0)
   543         stack_size = JavaThread::stack_size_at_create();
   544       break;
   545     case os::compiler_thread:
   546       if (CompilerThreadStackSize > 0) {
   547         stack_size = (size_t)(CompilerThreadStackSize * K);
   548         break;
   549       } // else fall through:
   550         // use VMThreadStackSize if CompilerThreadStackSize is not defined
   551     case os::vm_thread:
   552     case os::pgc_thread:
   553     case os::cgc_thread:
   554     case os::watcher_thread:
   555       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
   556       break;
   557     }
   558   }
   560   // Create the Win32 thread
   561   //
   562   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
   563   // does not specify stack size. Instead, it specifies the size of
   564   // initially committed space. The stack size is determined by
   565   // PE header in the executable. If the committed "stack_size" is larger
   566   // than default value in the PE header, the stack is rounded up to the
   567   // nearest multiple of 1MB. For example if the launcher has default
   568   // stack size of 320k, specifying any size less than 320k does not
   569   // affect the actual stack size at all, it only affects the initial
   570   // commitment. On the other hand, specifying 'stack_size' larger than
   571   // default value may cause significant increase in memory usage, because
   572   // not only the stack space will be rounded up to MB, but also the
   573   // entire space is committed upfront.
   574   //
   575   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
   576   // for CreateThread() that can treat 'stack_size' as stack size. However we
   577   // are not supposed to call CreateThread() directly according to MSDN
   578   // document because JVM uses C runtime library. The good news is that the
   579   // flag appears to work with _beginthredex() as well.
   581 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
   582 #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
   583 #endif
   585   HANDLE thread_handle =
   586     (HANDLE)_beginthreadex(NULL,
   587                            (unsigned)stack_size,
   588                            (unsigned (__stdcall *)(void*)) java_start,
   589                            thread,
   590                            CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
   591                            &thread_id);
   592   if (thread_handle == NULL) {
   593     // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
   594     // without the flag.
   595     thread_handle =
   596     (HANDLE)_beginthreadex(NULL,
   597                            (unsigned)stack_size,
   598                            (unsigned (__stdcall *)(void*)) java_start,
   599                            thread,
   600                            CREATE_SUSPENDED,
   601                            &thread_id);
   602   }
   603   if (thread_handle == NULL) {
   604     // Need to clean up stuff we've allocated so far
   605     CloseHandle(osthread->interrupt_event());
   606     thread->set_osthread(NULL);
   607     delete osthread;
   608     return NULL;
   609   }
   611   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
   613   // Store info on the Win32 thread into the OSThread
   614   osthread->set_thread_handle(thread_handle);
   615   osthread->set_thread_id(thread_id);
   617   // Initial thread state is INITIALIZED, not SUSPENDED
   618   osthread->set_state(INITIALIZED);
   620   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
   621   return true;
   622 }
   625 // Free Win32 resources related to the OSThread
   626 void os::free_thread(OSThread* osthread) {
   627   assert(osthread != NULL, "osthread not set");
   628   CloseHandle(osthread->thread_handle());
   629   CloseHandle(osthread->interrupt_event());
   630   delete osthread;
   631 }
   634 static int    has_performance_count = 0;
   635 static jlong first_filetime;
   636 static jlong initial_performance_count;
   637 static jlong performance_frequency;
   640 jlong as_long(LARGE_INTEGER x) {
   641   jlong result = 0; // initialization to avoid warning
   642   set_high(&result, x.HighPart);
   643   set_low(&result,  x.LowPart);
   644   return result;
   645 }
   648 jlong os::elapsed_counter() {
   649   LARGE_INTEGER count;
   650   if (has_performance_count) {
   651     QueryPerformanceCounter(&count);
   652     return as_long(count) - initial_performance_count;
   653   } else {
   654     FILETIME wt;
   655     GetSystemTimeAsFileTime(&wt);
   656     return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
   657   }
   658 }
   661 jlong os::elapsed_frequency() {
   662   if (has_performance_count) {
   663     return performance_frequency;
   664   } else {
   665    // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
   666    return 10000000;
   667   }
   668 }
   671 julong os::available_memory() {
   672   return win32::available_memory();
   673 }
   675 julong os::win32::available_memory() {
   676   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
   677   // value if total memory is larger than 4GB
   678   MEMORYSTATUSEX ms;
   679   ms.dwLength = sizeof(ms);
   680   GlobalMemoryStatusEx(&ms);
   682   return (julong)ms.ullAvailPhys;
   683 }
   685 julong os::physical_memory() {
   686   return win32::physical_memory();
   687 }
   689 bool os::has_allocatable_memory_limit(julong* limit) {
   690   MEMORYSTATUSEX ms;
   691   ms.dwLength = sizeof(ms);
   692   GlobalMemoryStatusEx(&ms);
   693 #ifdef _LP64
   694   *limit = (julong)ms.ullAvailVirtual;
   695   return true;
   696 #else
   697   // Limit to 1400m because of the 2gb address space wall
   698   *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
   699   return true;
   700 #endif
   701 }
   703 // VC6 lacks DWORD_PTR
   704 #if _MSC_VER < 1300
   705 typedef UINT_PTR DWORD_PTR;
   706 #endif
   708 int os::active_processor_count() {
   709   DWORD_PTR lpProcessAffinityMask = 0;
   710   DWORD_PTR lpSystemAffinityMask = 0;
   711   int proc_count = processor_count();
   712   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
   713       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
   714     // Nof active processors is number of bits in process affinity mask
   715     int bitcount = 0;
   716     while (lpProcessAffinityMask != 0) {
   717       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
   718       bitcount++;
   719     }
   720     return bitcount;
   721   } else {
   722     return proc_count;
   723   }
   724 }
   726 void os::set_native_thread_name(const char *name) {
   727   // Not yet implemented.
   728   return;
   729 }
   731 bool os::distribute_processes(uint length, uint* distribution) {
   732   // Not yet implemented.
   733   return false;
   734 }
   736 bool os::bind_to_processor(uint processor_id) {
   737   // Not yet implemented.
   738   return false;
   739 }
   741 static void initialize_performance_counter() {
   742   LARGE_INTEGER count;
   743   if (QueryPerformanceFrequency(&count)) {
   744     has_performance_count = 1;
   745     performance_frequency = as_long(count);
   746     QueryPerformanceCounter(&count);
   747     initial_performance_count = as_long(count);
   748   } else {
   749     has_performance_count = 0;
   750     FILETIME wt;
   751     GetSystemTimeAsFileTime(&wt);
   752     first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
   753   }
   754 }
   757 double os::elapsedTime() {
   758   return (double) elapsed_counter() / (double) elapsed_frequency();
   759 }
   762 // Windows format:
   763 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
   764 // Java format:
   765 //   Java standards require the number of milliseconds since 1/1/1970
   767 // Constant offset - calculated using offset()
   768 static jlong  _offset   = 116444736000000000;
   769 // Fake time counter for reproducible results when debugging
   770 static jlong  fake_time = 0;
   772 #ifdef ASSERT
   773 // Just to be safe, recalculate the offset in debug mode
   774 static jlong _calculated_offset = 0;
   775 static int   _has_calculated_offset = 0;
   777 jlong offset() {
   778   if (_has_calculated_offset) return _calculated_offset;
   779   SYSTEMTIME java_origin;
   780   java_origin.wYear          = 1970;
   781   java_origin.wMonth         = 1;
   782   java_origin.wDayOfWeek     = 0; // ignored
   783   java_origin.wDay           = 1;
   784   java_origin.wHour          = 0;
   785   java_origin.wMinute        = 0;
   786   java_origin.wSecond        = 0;
   787   java_origin.wMilliseconds  = 0;
   788   FILETIME jot;
   789   if (!SystemTimeToFileTime(&java_origin, &jot)) {
   790     fatal(err_msg("Error = %d\nWindows error", GetLastError()));
   791   }
   792   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
   793   _has_calculated_offset = 1;
   794   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
   795   return _calculated_offset;
   796 }
   797 #else
   798 jlong offset() {
   799   return _offset;
   800 }
   801 #endif
   803 jlong windows_to_java_time(FILETIME wt) {
   804   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
   805   return (a - offset()) / 10000;
   806 }
   808 FILETIME java_to_windows_time(jlong l) {
   809   jlong a = (l * 10000) + offset();
   810   FILETIME result;
   811   result.dwHighDateTime = high(a);
   812   result.dwLowDateTime  = low(a);
   813   return result;
   814 }
   816 bool os::supports_vtime() { return true; }
   817 bool os::enable_vtime() { return false; }
   818 bool os::vtime_enabled() { return false; }
   820 double os::elapsedVTime() {
   821   FILETIME created;
   822   FILETIME exited;
   823   FILETIME kernel;
   824   FILETIME user;
   825   if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
   826     // the resolution of windows_to_java_time() should be sufficient (ms)
   827     return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
   828   } else {
   829     return elapsedTime();
   830   }
   831 }
   833 jlong os::javaTimeMillis() {
   834   if (UseFakeTimers) {
   835     return fake_time++;
   836   } else {
   837     FILETIME wt;
   838     GetSystemTimeAsFileTime(&wt);
   839     return windows_to_java_time(wt);
   840   }
   841 }
   843 jlong os::javaTimeNanos() {
   844   if (!has_performance_count) {
   845     return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
   846   } else {
   847     LARGE_INTEGER current_count;
   848     QueryPerformanceCounter(&current_count);
   849     double current = as_long(current_count);
   850     double freq = performance_frequency;
   851     jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
   852     return time;
   853   }
   854 }
   856 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
   857   if (!has_performance_count) {
   858     // javaTimeMillis() doesn't have much percision,
   859     // but it is not going to wrap -- so all 64 bits
   860     info_ptr->max_value = ALL_64_BITS;
   862     // this is a wall clock timer, so may skip
   863     info_ptr->may_skip_backward = true;
   864     info_ptr->may_skip_forward = true;
   865   } else {
   866     jlong freq = performance_frequency;
   867     if (freq < NANOSECS_PER_SEC) {
   868       // the performance counter is 64 bits and we will
   869       // be multiplying it -- so no wrap in 64 bits
   870       info_ptr->max_value = ALL_64_BITS;
   871     } else if (freq > NANOSECS_PER_SEC) {
   872       // use the max value the counter can reach to
   873       // determine the max value which could be returned
   874       julong max_counter = (julong)ALL_64_BITS;
   875       info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
   876     } else {
   877       // the performance counter is 64 bits and we will
   878       // be using it directly -- so no wrap in 64 bits
   879       info_ptr->max_value = ALL_64_BITS;
   880     }
   882     // using a counter, so no skipping
   883     info_ptr->may_skip_backward = false;
   884     info_ptr->may_skip_forward = false;
   885   }
   886   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
   887 }
   889 char* os::local_time_string(char *buf, size_t buflen) {
   890   SYSTEMTIME st;
   891   GetLocalTime(&st);
   892   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
   893                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
   894   return buf;
   895 }
   897 bool os::getTimesSecs(double* process_real_time,
   898                      double* process_user_time,
   899                      double* process_system_time) {
   900   HANDLE h_process = GetCurrentProcess();
   901   FILETIME create_time, exit_time, kernel_time, user_time;
   902   BOOL result = GetProcessTimes(h_process,
   903                                &create_time,
   904                                &exit_time,
   905                                &kernel_time,
   906                                &user_time);
   907   if (result != 0) {
   908     FILETIME wt;
   909     GetSystemTimeAsFileTime(&wt);
   910     jlong rtc_millis = windows_to_java_time(wt);
   911     jlong user_millis = windows_to_java_time(user_time);
   912     jlong system_millis = windows_to_java_time(kernel_time);
   913     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
   914     *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
   915     *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
   916     return true;
   917   } else {
   918     return false;
   919   }
   920 }
   922 void os::shutdown() {
   924   // allow PerfMemory to attempt cleanup of any persistent resources
   925   perfMemory_exit();
   927   // flush buffered output, finish log files
   928   ostream_abort();
   930   // Check for abort hook
   931   abort_hook_t abort_hook = Arguments::abort_hook();
   932   if (abort_hook != NULL) {
   933     abort_hook();
   934   }
   935 }
   938 static BOOL  (WINAPI *_MiniDumpWriteDump)  ( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
   939                                             PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION);
   941 void os::check_or_create_dump(void* exceptionRecord, void* contextRecord, char* buffer, size_t bufferSize) {
   942   HINSTANCE dbghelp;
   943   EXCEPTION_POINTERS ep;
   944   MINIDUMP_EXCEPTION_INFORMATION mei;
   945   MINIDUMP_EXCEPTION_INFORMATION* pmei;
   947   HANDLE hProcess = GetCurrentProcess();
   948   DWORD processId = GetCurrentProcessId();
   949   HANDLE dumpFile;
   950   MINIDUMP_TYPE dumpType;
   951   static const char* cwd;
   953 // Default is to always create dump for debug builds, on product builds only dump on server versions of Windows.
   954 #ifndef ASSERT
   955   // If running on a client version of Windows and user has not explicitly enabled dumping
   956   if (!os::win32::is_windows_server() && !CreateMinidumpOnCrash) {
   957     VMError::report_coredump_status("Minidumps are not enabled by default on client versions of Windows", false);
   958     return;
   959     // If running on a server version of Windows and user has explictly disabled dumping
   960   } else if (os::win32::is_windows_server() && !FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
   961     VMError::report_coredump_status("Minidump has been disabled from the command line", false);
   962     return;
   963   }
   964 #else
   965   if (!FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
   966     VMError::report_coredump_status("Minidump has been disabled from the command line", false);
   967     return;
   968   }
   969 #endif
   971   dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
   973   if (dbghelp == NULL) {
   974     VMError::report_coredump_status("Failed to load dbghelp.dll", false);
   975     return;
   976   }
   978   _MiniDumpWriteDump = CAST_TO_FN_PTR(
   979     BOOL(WINAPI *)( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
   980     PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION),
   981     GetProcAddress(dbghelp, "MiniDumpWriteDump"));
   983   if (_MiniDumpWriteDump == NULL) {
   984     VMError::report_coredump_status("Failed to find MiniDumpWriteDump() in module dbghelp.dll", false);
   985     return;
   986   }
   988   dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
   990 // Older versions of dbghelp.h doesn't contain all the dumptypes we want, dbghelp.h with
   991 // API_VERSION_NUMBER 11 or higher contains the ones we want though
   992 #if API_VERSION_NUMBER >= 11
   993   dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
   994     MiniDumpWithUnloadedModules);
   995 #endif
   997   cwd = get_current_directory(NULL, 0);
   998   jio_snprintf(buffer, bufferSize, "%s\\hs_err_pid%u.mdmp",cwd, current_process_id());
   999   dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
  1001   if (dumpFile == INVALID_HANDLE_VALUE) {
  1002     VMError::report_coredump_status("Failed to create file for dumping", false);
  1003     return;
  1005   if (exceptionRecord != NULL && contextRecord != NULL) {
  1006     ep.ContextRecord = (PCONTEXT) contextRecord;
  1007     ep.ExceptionRecord = (PEXCEPTION_RECORD) exceptionRecord;
  1009     mei.ThreadId = GetCurrentThreadId();
  1010     mei.ExceptionPointers = &ep;
  1011     pmei = &mei;
  1012   } else {
  1013     pmei = NULL;
  1017   // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
  1018   // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
  1019   if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
  1020       _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
  1021         DWORD error = GetLastError();
  1022         LPTSTR msgbuf = NULL;
  1024         if (FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER |
  1025                       FORMAT_MESSAGE_FROM_SYSTEM |
  1026                       FORMAT_MESSAGE_IGNORE_INSERTS,
  1027                       NULL, error, 0, (LPTSTR)&msgbuf, 0, NULL) != 0) {
  1029           jio_snprintf(buffer, bufferSize, "Call to MiniDumpWriteDump() failed (Error 0x%x: %s)", error, msgbuf);
  1030           LocalFree(msgbuf);
  1031         } else {
  1032           // Call to FormatMessage failed, just include the result from GetLastError
  1033           jio_snprintf(buffer, bufferSize, "Call to MiniDumpWriteDump() failed (Error 0x%x)", error);
  1035         VMError::report_coredump_status(buffer, false);
  1036   } else {
  1037     VMError::report_coredump_status(buffer, true);
  1040   CloseHandle(dumpFile);
  1045 void os::abort(bool dump_core)
  1047   os::shutdown();
  1048   // no core dump on Windows
  1049   ::exit(1);
  1052 // Die immediately, no exit hook, no abort hook, no cleanup.
  1053 void os::die() {
  1054   _exit(-1);
  1057 // Directory routines copied from src/win32/native/java/io/dirent_md.c
  1058 //  * dirent_md.c       1.15 00/02/02
  1059 //
  1060 // The declarations for DIR and struct dirent are in jvm_win32.h.
  1062 /* Caller must have already run dirname through JVM_NativePath, which removes
  1063    duplicate slashes and converts all instances of '/' into '\\'. */
  1065 DIR *
  1066 os::opendir(const char *dirname)
  1068     assert(dirname != NULL, "just checking");   // hotspot change
  1069     DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
  1070     DWORD fattr;                                // hotspot change
  1071     char alt_dirname[4] = { 0, 0, 0, 0 };
  1073     if (dirp == 0) {
  1074         errno = ENOMEM;
  1075         return 0;
  1078     /*
  1079      * Win32 accepts "\" in its POSIX stat(), but refuses to treat it
  1080      * as a directory in FindFirstFile().  We detect this case here and
  1081      * prepend the current drive name.
  1082      */
  1083     if (dirname[1] == '\0' && dirname[0] == '\\') {
  1084         alt_dirname[0] = _getdrive() + 'A' - 1;
  1085         alt_dirname[1] = ':';
  1086         alt_dirname[2] = '\\';
  1087         alt_dirname[3] = '\0';
  1088         dirname = alt_dirname;
  1091     dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
  1092     if (dirp->path == 0) {
  1093         free(dirp, mtInternal);
  1094         errno = ENOMEM;
  1095         return 0;
  1097     strcpy(dirp->path, dirname);
  1099     fattr = GetFileAttributes(dirp->path);
  1100     if (fattr == 0xffffffff) {
  1101         free(dirp->path, mtInternal);
  1102         free(dirp, mtInternal);
  1103         errno = ENOENT;
  1104         return 0;
  1105     } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
  1106         free(dirp->path, mtInternal);
  1107         free(dirp, mtInternal);
  1108         errno = ENOTDIR;
  1109         return 0;
  1112     /* Append "*.*", or possibly "\\*.*", to path */
  1113     if (dirp->path[1] == ':'
  1114         && (dirp->path[2] == '\0'
  1115             || (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
  1116         /* No '\\' needed for cases like "Z:" or "Z:\" */
  1117         strcat(dirp->path, "*.*");
  1118     } else {
  1119         strcat(dirp->path, "\\*.*");
  1122     dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
  1123     if (dirp->handle == INVALID_HANDLE_VALUE) {
  1124         if (GetLastError() != ERROR_FILE_NOT_FOUND) {
  1125             free(dirp->path, mtInternal);
  1126             free(dirp, mtInternal);
  1127             errno = EACCES;
  1128             return 0;
  1131     return dirp;
  1134 /* parameter dbuf unused on Windows */
  1136 struct dirent *
  1137 os::readdir(DIR *dirp, dirent *dbuf)
  1139     assert(dirp != NULL, "just checking");      // hotspot change
  1140     if (dirp->handle == INVALID_HANDLE_VALUE) {
  1141         return 0;
  1144     strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
  1146     if (!FindNextFile(dirp->handle, &dirp->find_data)) {
  1147         if (GetLastError() == ERROR_INVALID_HANDLE) {
  1148             errno = EBADF;
  1149             return 0;
  1151         FindClose(dirp->handle);
  1152         dirp->handle = INVALID_HANDLE_VALUE;
  1155     return &dirp->dirent;
  1158 int
  1159 os::closedir(DIR *dirp)
  1161     assert(dirp != NULL, "just checking");      // hotspot change
  1162     if (dirp->handle != INVALID_HANDLE_VALUE) {
  1163         if (!FindClose(dirp->handle)) {
  1164             errno = EBADF;
  1165             return -1;
  1167         dirp->handle = INVALID_HANDLE_VALUE;
  1169     free(dirp->path, mtInternal);
  1170     free(dirp, mtInternal);
  1171     return 0;
  1174 // This must be hard coded because it's the system's temporary
  1175 // directory not the java application's temp directory, ala java.io.tmpdir.
  1176 const char* os::get_temp_directory() {
  1177   static char path_buf[MAX_PATH];
  1178   if (GetTempPath(MAX_PATH, path_buf)>0)
  1179     return path_buf;
  1180   else{
  1181     path_buf[0]='\0';
  1182     return path_buf;
  1186 static bool file_exists(const char* filename) {
  1187   if (filename == NULL || strlen(filename) == 0) {
  1188     return false;
  1190   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
  1193 bool os::dll_build_name(char *buffer, size_t buflen,
  1194                         const char* pname, const char* fname) {
  1195   bool retval = false;
  1196   const size_t pnamelen = pname ? strlen(pname) : 0;
  1197   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
  1199   // Return error on buffer overflow.
  1200   if (pnamelen + strlen(fname) + 10 > buflen) {
  1201     return retval;
  1204   if (pnamelen == 0) {
  1205     jio_snprintf(buffer, buflen, "%s.dll", fname);
  1206     retval = true;
  1207   } else if (c == ':' || c == '\\') {
  1208     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
  1209     retval = true;
  1210   } else if (strchr(pname, *os::path_separator()) != NULL) {
  1211     int n;
  1212     char** pelements = split_path(pname, &n);
  1213     if (pelements == NULL) {
  1214       return false;
  1216     for (int i = 0 ; i < n ; i++) {
  1217       char* path = pelements[i];
  1218       // Really shouldn't be NULL, but check can't hurt
  1219       size_t plen = (path == NULL) ? 0 : strlen(path);
  1220       if (plen == 0) {
  1221         continue; // skip the empty path values
  1223       const char lastchar = path[plen - 1];
  1224       if (lastchar == ':' || lastchar == '\\') {
  1225         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
  1226       } else {
  1227         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
  1229       if (file_exists(buffer)) {
  1230         retval = true;
  1231         break;
  1234     // release the storage
  1235     for (int i = 0 ; i < n ; i++) {
  1236       if (pelements[i] != NULL) {
  1237         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
  1240     if (pelements != NULL) {
  1241       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
  1243   } else {
  1244     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
  1245     retval = true;
  1247   return retval;
  1250 // Needs to be in os specific directory because windows requires another
  1251 // header file <direct.h>
  1252 const char* os::get_current_directory(char *buf, size_t buflen) {
  1253   int n = static_cast<int>(buflen);
  1254   if (buflen > INT_MAX)  n = INT_MAX;
  1255   return _getcwd(buf, n);
  1258 //-----------------------------------------------------------
  1259 // Helper functions for fatal error handler
  1260 #ifdef _WIN64
  1261 // Helper routine which returns true if address in
  1262 // within the NTDLL address space.
  1263 //
  1264 static bool _addr_in_ntdll( address addr )
  1266   HMODULE hmod;
  1267   MODULEINFO minfo;
  1269   hmod = GetModuleHandle("NTDLL.DLL");
  1270   if ( hmod == NULL ) return false;
  1271   if ( !os::PSApiDll::GetModuleInformation( GetCurrentProcess(), hmod,
  1272                                &minfo, sizeof(MODULEINFO)) )
  1273     return false;
  1275   if ( (addr >= minfo.lpBaseOfDll) &&
  1276        (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage)))
  1277     return true;
  1278   else
  1279     return false;
  1281 #endif
  1284 // Enumerate all modules for a given process ID
  1285 //
  1286 // Notice that Windows 95/98/Me and Windows NT/2000/XP have
  1287 // different API for doing this. We use PSAPI.DLL on NT based
  1288 // Windows and ToolHelp on 95/98/Me.
  1290 // Callback function that is called by enumerate_modules() on
  1291 // every DLL module.
  1292 // Input parameters:
  1293 //    int       pid,
  1294 //    char*     module_file_name,
  1295 //    address   module_base_addr,
  1296 //    unsigned  module_size,
  1297 //    void*     param
  1298 typedef int (*EnumModulesCallbackFunc)(int, char *, address, unsigned, void *);
  1300 // enumerate_modules for Windows NT, using PSAPI
  1301 static int _enumerate_modules_winnt( int pid, EnumModulesCallbackFunc func, void * param)
  1303   HANDLE   hProcess ;
  1305 # define MAX_NUM_MODULES 128
  1306   HMODULE     modules[MAX_NUM_MODULES];
  1307   static char filename[ MAX_PATH ];
  1308   int         result = 0;
  1310   if (!os::PSApiDll::PSApiAvailable()) {
  1311     return 0;
  1314   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
  1315                          FALSE, pid ) ;
  1316   if (hProcess == NULL) return 0;
  1318   DWORD size_needed;
  1319   if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
  1320                            sizeof(modules), &size_needed)) {
  1321       CloseHandle( hProcess );
  1322       return 0;
  1325   // number of modules that are currently loaded
  1326   int num_modules = size_needed / sizeof(HMODULE);
  1328   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
  1329     // Get Full pathname:
  1330     if(!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
  1331                              filename, sizeof(filename))) {
  1332         filename[0] = '\0';
  1335     MODULEINFO modinfo;
  1336     if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
  1337                                &modinfo, sizeof(modinfo))) {
  1338         modinfo.lpBaseOfDll = NULL;
  1339         modinfo.SizeOfImage = 0;
  1342     // Invoke callback function
  1343     result = func(pid, filename, (address)modinfo.lpBaseOfDll,
  1344                   modinfo.SizeOfImage, param);
  1345     if (result) break;
  1348   CloseHandle( hProcess ) ;
  1349   return result;
  1353 // enumerate_modules for Windows 95/98/ME, using TOOLHELP
  1354 static int _enumerate_modules_windows( int pid, EnumModulesCallbackFunc func, void *param)
  1356   HANDLE                hSnapShot ;
  1357   static MODULEENTRY32  modentry ;
  1358   int                   result = 0;
  1360   if (!os::Kernel32Dll::HelpToolsAvailable()) {
  1361     return 0;
  1364   // Get a handle to a Toolhelp snapshot of the system
  1365   hSnapShot = os::Kernel32Dll::CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid ) ;
  1366   if( hSnapShot == INVALID_HANDLE_VALUE ) {
  1367       return FALSE ;
  1370   // iterate through all modules
  1371   modentry.dwSize = sizeof(MODULEENTRY32) ;
  1372   bool not_done = os::Kernel32Dll::Module32First( hSnapShot, &modentry ) != 0;
  1374   while( not_done ) {
  1375     // invoke the callback
  1376     result=func(pid, modentry.szExePath, (address)modentry.modBaseAddr,
  1377                 modentry.modBaseSize, param);
  1378     if (result) break;
  1380     modentry.dwSize = sizeof(MODULEENTRY32) ;
  1381     not_done = os::Kernel32Dll::Module32Next( hSnapShot, &modentry ) != 0;
  1384   CloseHandle(hSnapShot);
  1385   return result;
  1388 int enumerate_modules( int pid, EnumModulesCallbackFunc func, void * param )
  1390   // Get current process ID if caller doesn't provide it.
  1391   if (!pid) pid = os::current_process_id();
  1393   if (os::win32::is_nt()) return _enumerate_modules_winnt  (pid, func, param);
  1394   else                    return _enumerate_modules_windows(pid, func, param);
  1397 struct _modinfo {
  1398    address addr;
  1399    char*   full_path;   // point to a char buffer
  1400    int     buflen;      // size of the buffer
  1401    address base_addr;
  1402 };
  1404 static int _locate_module_by_addr(int pid, char * mod_fname, address base_addr,
  1405                                   unsigned size, void * param) {
  1406    struct _modinfo *pmod = (struct _modinfo *)param;
  1407    if (!pmod) return -1;
  1409    if (base_addr     <= pmod->addr &&
  1410        base_addr+size > pmod->addr) {
  1411      // if a buffer is provided, copy path name to the buffer
  1412      if (pmod->full_path) {
  1413        jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
  1415      pmod->base_addr = base_addr;
  1416      return 1;
  1418    return 0;
  1421 bool os::dll_address_to_library_name(address addr, char* buf,
  1422                                      int buflen, int* offset) {
  1423 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
  1424 //       return the full path to the DLL file, sometimes it returns path
  1425 //       to the corresponding PDB file (debug info); sometimes it only
  1426 //       returns partial path, which makes life painful.
  1428    struct _modinfo mi;
  1429    mi.addr      = addr;
  1430    mi.full_path = buf;
  1431    mi.buflen    = buflen;
  1432    int pid = os::current_process_id();
  1433    if (enumerate_modules(pid, _locate_module_by_addr, (void *)&mi)) {
  1434       // buf already contains path name
  1435       if (offset) *offset = addr - mi.base_addr;
  1436       return true;
  1437    } else {
  1438       if (buf) buf[0] = '\0';
  1439       if (offset) *offset = -1;
  1440       return false;
  1444 bool os::dll_address_to_function_name(address addr, char *buf,
  1445                                       int buflen, int *offset) {
  1446   if (Decoder::decode(addr, buf, buflen, offset)) {
  1447     return true;
  1449   if (offset != NULL)  *offset  = -1;
  1450   if (buf != NULL) buf[0] = '\0';
  1451   return false;
  1454 // save the start and end address of jvm.dll into param[0] and param[1]
  1455 static int _locate_jvm_dll(int pid, char* mod_fname, address base_addr,
  1456                     unsigned size, void * param) {
  1457    if (!param) return -1;
  1459    if (base_addr     <= (address)_locate_jvm_dll &&
  1460        base_addr+size > (address)_locate_jvm_dll) {
  1461          ((address*)param)[0] = base_addr;
  1462          ((address*)param)[1] = base_addr + size;
  1463          return 1;
  1465    return 0;
  1468 address vm_lib_location[2];    // start and end address of jvm.dll
  1470 // check if addr is inside jvm.dll
  1471 bool os::address_is_in_vm(address addr) {
  1472   if (!vm_lib_location[0] || !vm_lib_location[1]) {
  1473     int pid = os::current_process_id();
  1474     if (!enumerate_modules(pid, _locate_jvm_dll, (void *)vm_lib_location)) {
  1475       assert(false, "Can't find jvm module.");
  1476       return false;
  1480   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
  1483 // print module info; param is outputStream*
  1484 static int _print_module(int pid, char* fname, address base,
  1485                          unsigned size, void* param) {
  1486    if (!param) return -1;
  1488    outputStream* st = (outputStream*)param;
  1490    address end_addr = base + size;
  1491    st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base, end_addr, fname);
  1492    return 0;
  1495 // Loads .dll/.so and
  1496 // in case of error it checks if .dll/.so was built for the
  1497 // same architecture as Hotspot is running on
  1498 void * os::dll_load(const char *name, char *ebuf, int ebuflen)
  1500   void * result = LoadLibrary(name);
  1501   if (result != NULL)
  1503     return result;
  1506   DWORD errcode = GetLastError();
  1507   if (errcode == ERROR_MOD_NOT_FOUND) {
  1508     strncpy(ebuf, "Can't find dependent libraries", ebuflen-1);
  1509     ebuf[ebuflen-1]='\0';
  1510     return NULL;
  1513   // Parsing dll below
  1514   // If we can read dll-info and find that dll was built
  1515   // for an architecture other than Hotspot is running in
  1516   // - then print to buffer "DLL was built for a different architecture"
  1517   // else call os::lasterror to obtain system error message
  1519   // Read system error message into ebuf
  1520   // It may or may not be overwritten below (in the for loop and just above)
  1521   lasterror(ebuf, (size_t) ebuflen);
  1522   ebuf[ebuflen-1]='\0';
  1523   int file_descriptor=::open(name, O_RDONLY | O_BINARY, 0);
  1524   if (file_descriptor<0)
  1526     return NULL;
  1529   uint32_t signature_offset;
  1530   uint16_t lib_arch=0;
  1531   bool failed_to_get_lib_arch=
  1533     //Go to position 3c in the dll
  1534     (os::seek_to_file_offset(file_descriptor,IMAGE_FILE_PTR_TO_SIGNATURE)<0)
  1535     ||
  1536     // Read loacation of signature
  1537     (sizeof(signature_offset)!=
  1538       (os::read(file_descriptor, (void*)&signature_offset,sizeof(signature_offset))))
  1539     ||
  1540     //Go to COFF File Header in dll
  1541     //that is located after"signature" (4 bytes long)
  1542     (os::seek_to_file_offset(file_descriptor,
  1543       signature_offset+IMAGE_FILE_SIGNATURE_LENGTH)<0)
  1544     ||
  1545     //Read field that contains code of architecture
  1546     // that dll was build for
  1547     (sizeof(lib_arch)!=
  1548       (os::read(file_descriptor, (void*)&lib_arch,sizeof(lib_arch))))
  1549   );
  1551   ::close(file_descriptor);
  1552   if (failed_to_get_lib_arch)
  1554     // file i/o error - report os::lasterror(...) msg
  1555     return NULL;
  1558   typedef struct
  1560     uint16_t arch_code;
  1561     char* arch_name;
  1562   } arch_t;
  1564   static const arch_t arch_array[]={
  1565     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
  1566     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
  1567     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
  1568   };
  1569   #if   (defined _M_IA64)
  1570     static const uint16_t running_arch=IMAGE_FILE_MACHINE_IA64;
  1571   #elif (defined _M_AMD64)
  1572     static const uint16_t running_arch=IMAGE_FILE_MACHINE_AMD64;
  1573   #elif (defined _M_IX86)
  1574     static const uint16_t running_arch=IMAGE_FILE_MACHINE_I386;
  1575   #else
  1576     #error Method os::dll_load requires that one of following \
  1577            is defined :_M_IA64,_M_AMD64 or _M_IX86
  1578   #endif
  1581   // Obtain a string for printf operation
  1582   // lib_arch_str shall contain string what platform this .dll was built for
  1583   // running_arch_str shall string contain what platform Hotspot was built for
  1584   char *running_arch_str=NULL,*lib_arch_str=NULL;
  1585   for (unsigned int i=0;i<ARRAY_SIZE(arch_array);i++)
  1587     if (lib_arch==arch_array[i].arch_code)
  1588       lib_arch_str=arch_array[i].arch_name;
  1589     if (running_arch==arch_array[i].arch_code)
  1590       running_arch_str=arch_array[i].arch_name;
  1593   assert(running_arch_str,
  1594     "Didn't find runing architecture code in arch_array");
  1596   // If the architure is right
  1597   // but some other error took place - report os::lasterror(...) msg
  1598   if (lib_arch == running_arch)
  1600     return NULL;
  1603   if (lib_arch_str!=NULL)
  1605     ::_snprintf(ebuf, ebuflen-1,
  1606       "Can't load %s-bit .dll on a %s-bit platform",
  1607       lib_arch_str,running_arch_str);
  1609   else
  1611     // don't know what architecture this dll was build for
  1612     ::_snprintf(ebuf, ebuflen-1,
  1613       "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
  1614       lib_arch,running_arch_str);
  1617   return NULL;
  1621 void os::print_dll_info(outputStream *st) {
  1622    int pid = os::current_process_id();
  1623    st->print_cr("Dynamic libraries:");
  1624    enumerate_modules(pid, _print_module, (void *)st);
  1627 void os::print_os_info_brief(outputStream* st) {
  1628   os::print_os_info(st);
  1631 void os::print_os_info(outputStream* st) {
  1632   st->print("OS:");
  1634   os::win32::print_windows_version(st);
  1637 void os::win32::print_windows_version(outputStream* st) {
  1638   OSVERSIONINFOEX osvi;
  1639   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
  1640   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
  1642   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
  1643     st->print_cr("N/A");
  1644     return;
  1647   int os_vers = osvi.dwMajorVersion * 1000 + osvi.dwMinorVersion;
  1648   if (osvi.dwPlatformId == VER_PLATFORM_WIN32_NT) {
  1649     switch (os_vers) {
  1650     case 3051: st->print(" Windows NT 3.51"); break;
  1651     case 4000: st->print(" Windows NT 4.0"); break;
  1652     case 5000: st->print(" Windows 2000"); break;
  1653     case 5001: st->print(" Windows XP"); break;
  1654     case 5002:
  1655     case 6000:
  1656     case 6001:
  1657     case 6002: {
  1658       // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
  1659       // find out whether we are running on 64 bit processor or not.
  1660       SYSTEM_INFO si;
  1661       ZeroMemory(&si, sizeof(SYSTEM_INFO));
  1662         if (!os::Kernel32Dll::GetNativeSystemInfoAvailable()){
  1663           GetSystemInfo(&si);
  1664       } else {
  1665         os::Kernel32Dll::GetNativeSystemInfo(&si);
  1667       if (os_vers == 5002) {
  1668         if (osvi.wProductType == VER_NT_WORKSTATION &&
  1669             si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
  1670           st->print(" Windows XP x64 Edition");
  1671         else
  1672             st->print(" Windows Server 2003 family");
  1673       } else if (os_vers == 6000) {
  1674         if (osvi.wProductType == VER_NT_WORKSTATION)
  1675             st->print(" Windows Vista");
  1676         else
  1677             st->print(" Windows Server 2008");
  1678         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
  1679             st->print(" , 64 bit");
  1680       } else if (os_vers == 6001) {
  1681         if (osvi.wProductType == VER_NT_WORKSTATION) {
  1682             st->print(" Windows 7");
  1683         } else {
  1684             // Unrecognized windows, print out its major and minor versions
  1685             st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
  1687         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
  1688             st->print(" , 64 bit");
  1689       } else if (os_vers == 6002) {
  1690         if (osvi.wProductType == VER_NT_WORKSTATION) {
  1691             st->print(" Windows 8");
  1692         } else {
  1693             st->print(" Windows Server 2012");
  1695         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
  1696             st->print(" , 64 bit");
  1697       } else { // future os
  1698         // Unrecognized windows, print out its major and minor versions
  1699         st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
  1700         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
  1701             st->print(" , 64 bit");
  1703       break;
  1705     default: // future windows, print out its major and minor versions
  1706       st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
  1708   } else {
  1709     switch (os_vers) {
  1710     case 4000: st->print(" Windows 95"); break;
  1711     case 4010: st->print(" Windows 98"); break;
  1712     case 4090: st->print(" Windows Me"); break;
  1713     default: // future windows, print out its major and minor versions
  1714       st->print(" Windows %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
  1717   st->print(" Build %d", osvi.dwBuildNumber);
  1718   st->print(" %s", osvi.szCSDVersion);           // service pack
  1719   st->cr();
  1722 void os::pd_print_cpu_info(outputStream* st) {
  1723   // Nothing to do for now.
  1726 void os::print_memory_info(outputStream* st) {
  1727   st->print("Memory:");
  1728   st->print(" %dk page", os::vm_page_size()>>10);
  1730   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
  1731   // value if total memory is larger than 4GB
  1732   MEMORYSTATUSEX ms;
  1733   ms.dwLength = sizeof(ms);
  1734   GlobalMemoryStatusEx(&ms);
  1736   st->print(", physical %uk", os::physical_memory() >> 10);
  1737   st->print("(%uk free)", os::available_memory() >> 10);
  1739   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
  1740   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
  1741   st->cr();
  1744 void os::print_siginfo(outputStream *st, void *siginfo) {
  1745   EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
  1746   st->print("siginfo:");
  1747   st->print(" ExceptionCode=0x%x", er->ExceptionCode);
  1749   if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
  1750       er->NumberParameters >= 2) {
  1751       switch (er->ExceptionInformation[0]) {
  1752       case 0: st->print(", reading address"); break;
  1753       case 1: st->print(", writing address"); break;
  1754       default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
  1755                             er->ExceptionInformation[0]);
  1757       st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
  1758   } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
  1759              er->NumberParameters >= 2 && UseSharedSpaces) {
  1760     FileMapInfo* mapinfo = FileMapInfo::current_info();
  1761     if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
  1762       st->print("\n\nError accessing class data sharing archive."       \
  1763                 " Mapped file inaccessible during execution, "          \
  1764                 " possible disk/network problem.");
  1766   } else {
  1767     int num = er->NumberParameters;
  1768     if (num > 0) {
  1769       st->print(", ExceptionInformation=");
  1770       for (int i = 0; i < num; i++) {
  1771         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
  1775   st->cr();
  1778 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  1779   // do nothing
  1782 static char saved_jvm_path[MAX_PATH] = {0};
  1784 // Find the full path to the current module, jvm.dll
  1785 void os::jvm_path(char *buf, jint buflen) {
  1786   // Error checking.
  1787   if (buflen < MAX_PATH) {
  1788     assert(false, "must use a large-enough buffer");
  1789     buf[0] = '\0';
  1790     return;
  1792   // Lazy resolve the path to current module.
  1793   if (saved_jvm_path[0] != 0) {
  1794     strcpy(buf, saved_jvm_path);
  1795     return;
  1798   buf[0] = '\0';
  1799   if (Arguments::created_by_gamma_launcher()) {
  1800      // Support for the gamma launcher. Check for an
  1801      // JAVA_HOME environment variable
  1802      // and fix up the path so it looks like
  1803      // libjvm.so is installed there (append a fake suffix
  1804      // hotspot/libjvm.so).
  1805      char* java_home_var = ::getenv("JAVA_HOME");
  1806      if (java_home_var != NULL && java_home_var[0] != 0) {
  1808         strncpy(buf, java_home_var, buflen);
  1810         // determine if this is a legacy image or modules image
  1811         // modules image doesn't have "jre" subdirectory
  1812         size_t len = strlen(buf);
  1813         char* jrebin_p = buf + len;
  1814         jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
  1815         if (0 != _access(buf, 0)) {
  1816           jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
  1818         len = strlen(buf);
  1819         jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
  1823   if(buf[0] == '\0') {
  1824   GetModuleFileName(vm_lib_handle, buf, buflen);
  1826   strcpy(saved_jvm_path, buf);
  1830 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  1831 #ifndef _WIN64
  1832   st->print("_");
  1833 #endif
  1837 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  1838 #ifndef _WIN64
  1839   st->print("@%d", args_size  * sizeof(int));
  1840 #endif
  1843 // This method is a copy of JDK's sysGetLastErrorString
  1844 // from src/windows/hpi/src/system_md.c
  1846 size_t os::lasterror(char* buf, size_t len) {
  1847   DWORD errval;
  1849   if ((errval = GetLastError()) != 0) {
  1850     // DOS error
  1851     size_t n = (size_t)FormatMessage(
  1852           FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
  1853           NULL,
  1854           errval,
  1855           0,
  1856           buf,
  1857           (DWORD)len,
  1858           NULL);
  1859     if (n > 3) {
  1860       // Drop final '.', CR, LF
  1861       if (buf[n - 1] == '\n') n--;
  1862       if (buf[n - 1] == '\r') n--;
  1863       if (buf[n - 1] == '.') n--;
  1864       buf[n] = '\0';
  1866     return n;
  1869   if (errno != 0) {
  1870     // C runtime error that has no corresponding DOS error code
  1871     const char* s = strerror(errno);
  1872     size_t n = strlen(s);
  1873     if (n >= len) n = len - 1;
  1874     strncpy(buf, s, n);
  1875     buf[n] = '\0';
  1876     return n;
  1879   return 0;
  1882 int os::get_last_error() {
  1883   DWORD error = GetLastError();
  1884   if (error == 0)
  1885     error = errno;
  1886   return (int)error;
  1889 // sun.misc.Signal
  1890 // NOTE that this is a workaround for an apparent kernel bug where if
  1891 // a signal handler for SIGBREAK is installed then that signal handler
  1892 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
  1893 // See bug 4416763.
  1894 static void (*sigbreakHandler)(int) = NULL;
  1896 static void UserHandler(int sig, void *siginfo, void *context) {
  1897   os::signal_notify(sig);
  1898   // We need to reinstate the signal handler each time...
  1899   os::signal(sig, (void*)UserHandler);
  1902 void* os::user_handler() {
  1903   return (void*) UserHandler;
  1906 void* os::signal(int signal_number, void* handler) {
  1907   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
  1908     void (*oldHandler)(int) = sigbreakHandler;
  1909     sigbreakHandler = (void (*)(int)) handler;
  1910     return (void*) oldHandler;
  1911   } else {
  1912     return (void*)::signal(signal_number, (void (*)(int))handler);
  1916 void os::signal_raise(int signal_number) {
  1917   raise(signal_number);
  1920 // The Win32 C runtime library maps all console control events other than ^C
  1921 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
  1922 // logoff, and shutdown events.  We therefore install our own console handler
  1923 // that raises SIGTERM for the latter cases.
  1924 //
  1925 static BOOL WINAPI consoleHandler(DWORD event) {
  1926   switch(event) {
  1927     case CTRL_C_EVENT:
  1928       if (is_error_reported()) {
  1929         // Ctrl-C is pressed during error reporting, likely because the error
  1930         // handler fails to abort. Let VM die immediately.
  1931         os::die();
  1934       os::signal_raise(SIGINT);
  1935       return TRUE;
  1936       break;
  1937     case CTRL_BREAK_EVENT:
  1938       if (sigbreakHandler != NULL) {
  1939         (*sigbreakHandler)(SIGBREAK);
  1941       return TRUE;
  1942       break;
  1943     case CTRL_LOGOFF_EVENT: {
  1944       // Don't terminate JVM if it is running in a non-interactive session,
  1945       // such as a service process.
  1946       USEROBJECTFLAGS flags;
  1947       HANDLE handle = GetProcessWindowStation();
  1948       if (handle != NULL &&
  1949           GetUserObjectInformation(handle, UOI_FLAGS, &flags,
  1950             sizeof( USEROBJECTFLAGS), NULL)) {
  1951         // If it is a non-interactive session, let next handler to deal
  1952         // with it.
  1953         if ((flags.dwFlags & WSF_VISIBLE) == 0) {
  1954           return FALSE;
  1958     case CTRL_CLOSE_EVENT:
  1959     case CTRL_SHUTDOWN_EVENT:
  1960       os::signal_raise(SIGTERM);
  1961       return TRUE;
  1962       break;
  1963     default:
  1964       break;
  1966   return FALSE;
  1969 /*
  1970  * The following code is moved from os.cpp for making this
  1971  * code platform specific, which it is by its very nature.
  1972  */
  1974 // Return maximum OS signal used + 1 for internal use only
  1975 // Used as exit signal for signal_thread
  1976 int os::sigexitnum_pd(){
  1977   return NSIG;
  1980 // a counter for each possible signal value, including signal_thread exit signal
  1981 static volatile jint pending_signals[NSIG+1] = { 0 };
  1982 static HANDLE sig_sem = NULL;
  1984 void os::signal_init_pd() {
  1985   // Initialize signal structures
  1986   memset((void*)pending_signals, 0, sizeof(pending_signals));
  1988   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
  1990   // Programs embedding the VM do not want it to attempt to receive
  1991   // events like CTRL_LOGOFF_EVENT, which are used to implement the
  1992   // shutdown hooks mechanism introduced in 1.3.  For example, when
  1993   // the VM is run as part of a Windows NT service (i.e., a servlet
  1994   // engine in a web server), the correct behavior is for any console
  1995   // control handler to return FALSE, not TRUE, because the OS's
  1996   // "final" handler for such events allows the process to continue if
  1997   // it is a service (while terminating it if it is not a service).
  1998   // To make this behavior uniform and the mechanism simpler, we
  1999   // completely disable the VM's usage of these console events if -Xrs
  2000   // (=ReduceSignalUsage) is specified.  This means, for example, that
  2001   // the CTRL-BREAK thread dump mechanism is also disabled in this
  2002   // case.  See bugs 4323062, 4345157, and related bugs.
  2004   if (!ReduceSignalUsage) {
  2005     // Add a CTRL-C handler
  2006     SetConsoleCtrlHandler(consoleHandler, TRUE);
  2010 void os::signal_notify(int signal_number) {
  2011   BOOL ret;
  2012   if (sig_sem != NULL) {
  2013     Atomic::inc(&pending_signals[signal_number]);
  2014     ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
  2015     assert(ret != 0, "ReleaseSemaphore() failed");
  2019 static int check_pending_signals(bool wait_for_signal) {
  2020   DWORD ret;
  2021   while (true) {
  2022     for (int i = 0; i < NSIG + 1; i++) {
  2023       jint n = pending_signals[i];
  2024       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  2025         return i;
  2028     if (!wait_for_signal) {
  2029       return -1;
  2032     JavaThread *thread = JavaThread::current();
  2034     ThreadBlockInVM tbivm(thread);
  2036     bool threadIsSuspended;
  2037     do {
  2038       thread->set_suspend_equivalent();
  2039       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  2040       ret = ::WaitForSingleObject(sig_sem, INFINITE);
  2041       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
  2043       // were we externally suspended while we were waiting?
  2044       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  2045       if (threadIsSuspended) {
  2046         //
  2047         // The semaphore has been incremented, but while we were waiting
  2048         // another thread suspended us. We don't want to continue running
  2049         // while suspended because that would surprise the thread that
  2050         // suspended us.
  2051         //
  2052         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
  2053         assert(ret != 0, "ReleaseSemaphore() failed");
  2055         thread->java_suspend_self();
  2057     } while (threadIsSuspended);
  2061 int os::signal_lookup() {
  2062   return check_pending_signals(false);
  2065 int os::signal_wait() {
  2066   return check_pending_signals(true);
  2069 // Implicit OS exception handling
  2071 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo, address handler) {
  2072   JavaThread* thread = JavaThread::current();
  2073   // Save pc in thread
  2074 #ifdef _M_IA64
  2075   // Do not blow up if no thread info available.
  2076   if (thread) {
  2077     // Saving PRECISE pc (with slot information) in thread.
  2078     uint64_t precise_pc = (uint64_t) exceptionInfo->ExceptionRecord->ExceptionAddress;
  2079     // Convert precise PC into "Unix" format
  2080     precise_pc = (precise_pc & 0xFFFFFFFFFFFFFFF0) | ((precise_pc & 0xF) >> 2);
  2081     thread->set_saved_exception_pc((address)precise_pc);
  2083   // Set pc to handler
  2084   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
  2085   // Clear out psr.ri (= Restart Instruction) in order to continue
  2086   // at the beginning of the target bundle.
  2087   exceptionInfo->ContextRecord->StIPSR &= 0xFFFFF9FFFFFFFFFF;
  2088   assert(((DWORD64)handler & 0xF) == 0, "Target address must point to the beginning of a bundle!");
  2089 #elif _M_AMD64
  2090   // Do not blow up if no thread info available.
  2091   if (thread) {
  2092     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
  2094   // Set pc to handler
  2095   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
  2096 #else
  2097   // Do not blow up if no thread info available.
  2098   if (thread) {
  2099     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
  2101   // Set pc to handler
  2102   exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
  2103 #endif
  2105   // Continue the execution
  2106   return EXCEPTION_CONTINUE_EXECUTION;
  2110 // Used for PostMortemDump
  2111 extern "C" void safepoints();
  2112 extern "C" void find(int x);
  2113 extern "C" void events();
  2115 // According to Windows API documentation, an illegal instruction sequence should generate
  2116 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
  2117 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
  2118 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
  2120 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
  2122 // From "Execution Protection in the Windows Operating System" draft 0.35
  2123 // Once a system header becomes available, the "real" define should be
  2124 // included or copied here.
  2125 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
  2127 // Handle NAT Bit consumption on IA64.
  2128 #ifdef _M_IA64
  2129 #define EXCEPTION_REG_NAT_CONSUMPTION    STATUS_REG_NAT_CONSUMPTION
  2130 #endif
  2132 // Windows Vista/2008 heap corruption check
  2133 #define EXCEPTION_HEAP_CORRUPTION        0xC0000374
  2135 #define def_excpt(val) #val, val
  2137 struct siglabel {
  2138   char *name;
  2139   int   number;
  2140 };
  2142 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
  2143 // C++ compiler contain this error code. Because this is a compiler-generated
  2144 // error, the code is not listed in the Win32 API header files.
  2145 // The code is actually a cryptic mnemonic device, with the initial "E"
  2146 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
  2147 // ASCII values of "msc".
  2149 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
  2152 struct siglabel exceptlabels[] = {
  2153     def_excpt(EXCEPTION_ACCESS_VIOLATION),
  2154     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
  2155     def_excpt(EXCEPTION_BREAKPOINT),
  2156     def_excpt(EXCEPTION_SINGLE_STEP),
  2157     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
  2158     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
  2159     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
  2160     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
  2161     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
  2162     def_excpt(EXCEPTION_FLT_OVERFLOW),
  2163     def_excpt(EXCEPTION_FLT_STACK_CHECK),
  2164     def_excpt(EXCEPTION_FLT_UNDERFLOW),
  2165     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
  2166     def_excpt(EXCEPTION_INT_OVERFLOW),
  2167     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
  2168     def_excpt(EXCEPTION_IN_PAGE_ERROR),
  2169     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
  2170     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
  2171     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
  2172     def_excpt(EXCEPTION_STACK_OVERFLOW),
  2173     def_excpt(EXCEPTION_INVALID_DISPOSITION),
  2174     def_excpt(EXCEPTION_GUARD_PAGE),
  2175     def_excpt(EXCEPTION_INVALID_HANDLE),
  2176     def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
  2177     def_excpt(EXCEPTION_HEAP_CORRUPTION),
  2178 #ifdef _M_IA64
  2179     def_excpt(EXCEPTION_REG_NAT_CONSUMPTION),
  2180 #endif
  2181     NULL, 0
  2182 };
  2184 const char* os::exception_name(int exception_code, char *buf, size_t size) {
  2185   for (int i = 0; exceptlabels[i].name != NULL; i++) {
  2186     if (exceptlabels[i].number == exception_code) {
  2187        jio_snprintf(buf, size, "%s", exceptlabels[i].name);
  2188        return buf;
  2192   return NULL;
  2195 //-----------------------------------------------------------------------------
  2196 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
  2197   // handle exception caused by idiv; should only happen for -MinInt/-1
  2198   // (division by zero is handled explicitly)
  2199 #ifdef _M_IA64
  2200   assert(0, "Fix Handle_IDiv_Exception");
  2201 #elif _M_AMD64
  2202   PCONTEXT ctx = exceptionInfo->ContextRecord;
  2203   address pc = (address)ctx->Rip;
  2204   assert(pc[0] == 0xF7, "not an idiv opcode");
  2205   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
  2206   assert(ctx->Rax == min_jint, "unexpected idiv exception");
  2207   // set correct result values and continue after idiv instruction
  2208   ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
  2209   ctx->Rax = (DWORD)min_jint;      // result
  2210   ctx->Rdx = (DWORD)0;             // remainder
  2211   // Continue the execution
  2212 #else
  2213   PCONTEXT ctx = exceptionInfo->ContextRecord;
  2214   address pc = (address)ctx->Eip;
  2215   assert(pc[0] == 0xF7, "not an idiv opcode");
  2216   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
  2217   assert(ctx->Eax == min_jint, "unexpected idiv exception");
  2218   // set correct result values and continue after idiv instruction
  2219   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
  2220   ctx->Eax = (DWORD)min_jint;      // result
  2221   ctx->Edx = (DWORD)0;             // remainder
  2222   // Continue the execution
  2223 #endif
  2224   return EXCEPTION_CONTINUE_EXECUTION;
  2227 #ifndef  _WIN64
  2228 //-----------------------------------------------------------------------------
  2229 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
  2230   // handle exception caused by native method modifying control word
  2231   PCONTEXT ctx = exceptionInfo->ContextRecord;
  2232   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
  2234   switch (exception_code) {
  2235     case EXCEPTION_FLT_DENORMAL_OPERAND:
  2236     case EXCEPTION_FLT_DIVIDE_BY_ZERO:
  2237     case EXCEPTION_FLT_INEXACT_RESULT:
  2238     case EXCEPTION_FLT_INVALID_OPERATION:
  2239     case EXCEPTION_FLT_OVERFLOW:
  2240     case EXCEPTION_FLT_STACK_CHECK:
  2241     case EXCEPTION_FLT_UNDERFLOW:
  2242       jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
  2243       if (fp_control_word != ctx->FloatSave.ControlWord) {
  2244         // Restore FPCW and mask out FLT exceptions
  2245         ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
  2246         // Mask out pending FLT exceptions
  2247         ctx->FloatSave.StatusWord &=  0xffffff00;
  2248         return EXCEPTION_CONTINUE_EXECUTION;
  2252   if (prev_uef_handler != NULL) {
  2253     // We didn't handle this exception so pass it to the previous
  2254     // UnhandledExceptionFilter.
  2255     return (prev_uef_handler)(exceptionInfo);
  2258   return EXCEPTION_CONTINUE_SEARCH;
  2260 #else //_WIN64
  2261 /*
  2262   On Windows, the mxcsr control bits are non-volatile across calls
  2263   See also CR 6192333
  2264   If EXCEPTION_FLT_* happened after some native method modified
  2265   mxcsr - it is not a jvm fault.
  2266   However should we decide to restore of mxcsr after a faulty
  2267   native method we can uncomment following code
  2268       jint MxCsr = INITIAL_MXCSR;
  2269         // we can't use StubRoutines::addr_mxcsr_std()
  2270         // because in Win64 mxcsr is not saved there
  2271       if (MxCsr != ctx->MxCsr) {
  2272         ctx->MxCsr = MxCsr;
  2273         return EXCEPTION_CONTINUE_EXECUTION;
  2276 */
  2277 #endif //_WIN64
  2280 // Fatal error reporting is single threaded so we can make this a
  2281 // static and preallocated.  If it's more than MAX_PATH silently ignore
  2282 // it.
  2283 static char saved_error_file[MAX_PATH] = {0};
  2285 void os::set_error_file(const char *logfile) {
  2286   if (strlen(logfile) <= MAX_PATH) {
  2287     strncpy(saved_error_file, logfile, MAX_PATH);
  2291 static inline void report_error(Thread* t, DWORD exception_code,
  2292                                 address addr, void* siginfo, void* context) {
  2293   VMError err(t, exception_code, addr, siginfo, context);
  2294   err.report_and_die();
  2296   // If UseOsErrorReporting, this will return here and save the error file
  2297   // somewhere where we can find it in the minidump.
  2300 //-----------------------------------------------------------------------------
  2301 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
  2302   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
  2303   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
  2304 #ifdef _M_IA64
  2305   // On Itanium, we need the "precise pc", which has the slot number coded
  2306   // into the least 4 bits: 0000=slot0, 0100=slot1, 1000=slot2 (Windows format).
  2307   address pc = (address) exceptionInfo->ExceptionRecord->ExceptionAddress;
  2308   // Convert the pc to "Unix format", which has the slot number coded
  2309   // into the least 2 bits: 0000=slot0, 0001=slot1, 0010=slot2
  2310   // This is needed for IA64 because "relocation" / "implicit null check" / "poll instruction"
  2311   // information is saved in the Unix format.
  2312   address pc_unix_format = (address) ((((uint64_t)pc) & 0xFFFFFFFFFFFFFFF0) | ((((uint64_t)pc) & 0xF) >> 2));
  2313 #elif _M_AMD64
  2314   address pc = (address) exceptionInfo->ContextRecord->Rip;
  2315 #else
  2316   address pc = (address) exceptionInfo->ContextRecord->Eip;
  2317 #endif
  2318   Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
  2320   // Handle SafeFetch32 and SafeFetchN exceptions.
  2321   if (StubRoutines::is_safefetch_fault(pc)) {
  2322     return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
  2325 #ifndef _WIN64
  2326   // Execution protection violation - win32 running on AMD64 only
  2327   // Handled first to avoid misdiagnosis as a "normal" access violation;
  2328   // This is safe to do because we have a new/unique ExceptionInformation
  2329   // code for this condition.
  2330   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2331     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2332     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
  2333     address addr = (address) exceptionRecord->ExceptionInformation[1];
  2335     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
  2336       int page_size = os::vm_page_size();
  2338       // Make sure the pc and the faulting address are sane.
  2339       //
  2340       // If an instruction spans a page boundary, and the page containing
  2341       // the beginning of the instruction is executable but the following
  2342       // page is not, the pc and the faulting address might be slightly
  2343       // different - we still want to unguard the 2nd page in this case.
  2344       //
  2345       // 15 bytes seems to be a (very) safe value for max instruction size.
  2346       bool pc_is_near_addr =
  2347         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
  2348       bool instr_spans_page_boundary =
  2349         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
  2350                          (intptr_t) page_size) > 0);
  2352       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
  2353         static volatile address last_addr =
  2354           (address) os::non_memory_address_word();
  2356         // In conservative mode, don't unguard unless the address is in the VM
  2357         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
  2358             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
  2360           // Set memory to RWX and retry
  2361           address page_start =
  2362             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
  2363           bool res = os::protect_memory((char*) page_start, page_size,
  2364                                         os::MEM_PROT_RWX);
  2366           if (PrintMiscellaneous && Verbose) {
  2367             char buf[256];
  2368             jio_snprintf(buf, sizeof(buf), "Execution protection violation "
  2369                          "at " INTPTR_FORMAT
  2370                          ", unguarding " INTPTR_FORMAT ": %s", addr,
  2371                          page_start, (res ? "success" : strerror(errno)));
  2372             tty->print_raw_cr(buf);
  2375           // Set last_addr so if we fault again at the same address, we don't
  2376           // end up in an endless loop.
  2377           //
  2378           // There are two potential complications here.  Two threads trapping
  2379           // at the same address at the same time could cause one of the
  2380           // threads to think it already unguarded, and abort the VM.  Likely
  2381           // very rare.
  2382           //
  2383           // The other race involves two threads alternately trapping at
  2384           // different addresses and failing to unguard the page, resulting in
  2385           // an endless loop.  This condition is probably even more unlikely
  2386           // than the first.
  2387           //
  2388           // Although both cases could be avoided by using locks or thread
  2389           // local last_addr, these solutions are unnecessary complication:
  2390           // this handler is a best-effort safety net, not a complete solution.
  2391           // It is disabled by default and should only be used as a workaround
  2392           // in case we missed any no-execute-unsafe VM code.
  2394           last_addr = addr;
  2396           return EXCEPTION_CONTINUE_EXECUTION;
  2400       // Last unguard failed or not unguarding
  2401       tty->print_raw_cr("Execution protection violation");
  2402       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
  2403                    exceptionInfo->ContextRecord);
  2404       return EXCEPTION_CONTINUE_SEARCH;
  2407 #endif // _WIN64
  2409   // Check to see if we caught the safepoint code in the
  2410   // process of write protecting the memory serialization page.
  2411   // It write enables the page immediately after protecting it
  2412   // so just return.
  2413   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
  2414     JavaThread* thread = (JavaThread*) t;
  2415     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2416     address addr = (address) exceptionRecord->ExceptionInformation[1];
  2417     if ( os::is_memory_serialize_page(thread, addr) ) {
  2418       // Block current thread until the memory serialize page permission restored.
  2419       os::block_on_serialize_page_trap();
  2420       return EXCEPTION_CONTINUE_EXECUTION;
  2424   if (t != NULL && t->is_Java_thread()) {
  2425     JavaThread* thread = (JavaThread*) t;
  2426     bool in_java = thread->thread_state() == _thread_in_Java;
  2428     // Handle potential stack overflows up front.
  2429     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
  2430       if (os::uses_stack_guard_pages()) {
  2431 #ifdef _M_IA64
  2432         // Use guard page for register stack.
  2433         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2434         address addr = (address) exceptionRecord->ExceptionInformation[1];
  2435         // Check for a register stack overflow on Itanium
  2436         if (thread->addr_inside_register_stack_red_zone(addr)) {
  2437           // Fatal red zone violation happens if the Java program
  2438           // catches a StackOverflow error and does so much processing
  2439           // that it runs beyond the unprotected yellow guard zone. As
  2440           // a result, we are out of here.
  2441           fatal("ERROR: Unrecoverable stack overflow happened. JVM will exit.");
  2442         } else if(thread->addr_inside_register_stack(addr)) {
  2443           // Disable the yellow zone which sets the state that
  2444           // we've got a stack overflow problem.
  2445           if (thread->stack_yellow_zone_enabled()) {
  2446             thread->disable_stack_yellow_zone();
  2448           // Give us some room to process the exception.
  2449           thread->disable_register_stack_guard();
  2450           // Tracing with +Verbose.
  2451           if (Verbose) {
  2452             tty->print_cr("SOF Compiled Register Stack overflow at " INTPTR_FORMAT " (SIGSEGV)", pc);
  2453             tty->print_cr("Register Stack access at " INTPTR_FORMAT, addr);
  2454             tty->print_cr("Register Stack base " INTPTR_FORMAT, thread->register_stack_base());
  2455             tty->print_cr("Register Stack [" INTPTR_FORMAT "," INTPTR_FORMAT "]",
  2456                           thread->register_stack_base(),
  2457                           thread->register_stack_base() + thread->stack_size());
  2460           // Reguard the permanent register stack red zone just to be sure.
  2461           // We saw Windows silently disabling this without telling us.
  2462           thread->enable_register_stack_red_zone();
  2464           return Handle_Exception(exceptionInfo,
  2465             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
  2467 #endif
  2468         if (thread->stack_yellow_zone_enabled()) {
  2469           // Yellow zone violation.  The o/s has unprotected the first yellow
  2470           // zone page for us.  Note:  must call disable_stack_yellow_zone to
  2471           // update the enabled status, even if the zone contains only one page.
  2472           thread->disable_stack_yellow_zone();
  2473           // If not in java code, return and hope for the best.
  2474           return in_java ? Handle_Exception(exceptionInfo,
  2475             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
  2476             :  EXCEPTION_CONTINUE_EXECUTION;
  2477         } else {
  2478           // Fatal red zone violation.
  2479           thread->disable_stack_red_zone();
  2480           tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
  2481           report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2482                        exceptionInfo->ContextRecord);
  2483           return EXCEPTION_CONTINUE_SEARCH;
  2485       } else if (in_java) {
  2486         // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
  2487         // a one-time-only guard page, which it has released to us.  The next
  2488         // stack overflow on this thread will result in an ACCESS_VIOLATION.
  2489         return Handle_Exception(exceptionInfo,
  2490           SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
  2491       } else {
  2492         // Can only return and hope for the best.  Further stack growth will
  2493         // result in an ACCESS_VIOLATION.
  2494         return EXCEPTION_CONTINUE_EXECUTION;
  2496     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2497       // Either stack overflow or null pointer exception.
  2498       if (in_java) {
  2499         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2500         address addr = (address) exceptionRecord->ExceptionInformation[1];
  2501         address stack_end = thread->stack_base() - thread->stack_size();
  2502         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
  2503           // Stack overflow.
  2504           assert(!os::uses_stack_guard_pages(),
  2505             "should be caught by red zone code above.");
  2506           return Handle_Exception(exceptionInfo,
  2507             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
  2509         //
  2510         // Check for safepoint polling and implicit null
  2511         // We only expect null pointers in the stubs (vtable)
  2512         // the rest are checked explicitly now.
  2513         //
  2514         CodeBlob* cb = CodeCache::find_blob(pc);
  2515         if (cb != NULL) {
  2516           if (os::is_poll_address(addr)) {
  2517             address stub = SharedRuntime::get_poll_stub(pc);
  2518             return Handle_Exception(exceptionInfo, stub);
  2522 #ifdef _WIN64
  2523           //
  2524           // If it's a legal stack address map the entire region in
  2525           //
  2526           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2527           address addr = (address) exceptionRecord->ExceptionInformation[1];
  2528           if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() ) {
  2529                   addr = (address)((uintptr_t)addr &
  2530                          (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
  2531                   os::commit_memory((char *)addr, thread->stack_base() - addr,
  2532                                     !ExecMem);
  2533                   return EXCEPTION_CONTINUE_EXECUTION;
  2535           else
  2536 #endif
  2538             // Null pointer exception.
  2539 #ifdef _M_IA64
  2540             // Process implicit null checks in compiled code. Note: Implicit null checks
  2541             // can happen even if "ImplicitNullChecks" is disabled, e.g. in vtable stubs.
  2542             if (CodeCache::contains((void*) pc_unix_format) && !MacroAssembler::needs_explicit_null_check((intptr_t) addr)) {
  2543               CodeBlob *cb = CodeCache::find_blob_unsafe(pc_unix_format);
  2544               // Handle implicit null check in UEP method entry
  2545               if (cb && (cb->is_frame_complete_at(pc) ||
  2546                          (cb->is_nmethod() && ((nmethod *)cb)->inlinecache_check_contains(pc)))) {
  2547                 if (Verbose) {
  2548                   intptr_t *bundle_start = (intptr_t*) ((intptr_t) pc_unix_format & 0xFFFFFFFFFFFFFFF0);
  2549                   tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc_unix_format);
  2550                   tty->print_cr("      to addr " INTPTR_FORMAT, addr);
  2551                   tty->print_cr("      bundle is " INTPTR_FORMAT " (high), " INTPTR_FORMAT " (low)",
  2552                                 *(bundle_start + 1), *bundle_start);
  2554                 return Handle_Exception(exceptionInfo,
  2555                   SharedRuntime::continuation_for_implicit_exception(thread, pc_unix_format, SharedRuntime::IMPLICIT_NULL));
  2559             // Implicit null checks were processed above.  Hence, we should not reach
  2560             // here in the usual case => die!
  2561             if (Verbose) tty->print_raw_cr("Access violation, possible null pointer exception");
  2562             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2563                          exceptionInfo->ContextRecord);
  2564             return EXCEPTION_CONTINUE_SEARCH;
  2566 #else // !IA64
  2568             // Windows 98 reports faulting addresses incorrectly
  2569             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
  2570                 !os::win32::is_nt()) {
  2571               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
  2572               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
  2574             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2575                          exceptionInfo->ContextRecord);
  2576             return EXCEPTION_CONTINUE_SEARCH;
  2577 #endif
  2582 #ifdef _WIN64
  2583       // Special care for fast JNI field accessors.
  2584       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
  2585       // in and the heap gets shrunk before the field access.
  2586       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2587         address addr = JNI_FastGetField::find_slowcase_pc(pc);
  2588         if (addr != (address)-1) {
  2589           return Handle_Exception(exceptionInfo, addr);
  2592 #endif
  2594       // Stack overflow or null pointer exception in native code.
  2595       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2596                    exceptionInfo->ContextRecord);
  2597       return EXCEPTION_CONTINUE_SEARCH;
  2598     } // /EXCEPTION_ACCESS_VIOLATION
  2599     // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  2600 #if defined _M_IA64
  2601     else if ((exception_code == EXCEPTION_ILLEGAL_INSTRUCTION ||
  2602               exception_code == EXCEPTION_ILLEGAL_INSTRUCTION_2)) {
  2603       M37 handle_wrong_method_break(0, NativeJump::HANDLE_WRONG_METHOD, PR0);
  2605       // Compiled method patched to be non entrant? Following conditions must apply:
  2606       // 1. must be first instruction in bundle
  2607       // 2. must be a break instruction with appropriate code
  2608       if((((uint64_t) pc & 0x0F) == 0) &&
  2609          (((IPF_Bundle*) pc)->get_slot0() == handle_wrong_method_break.bits())) {
  2610         return Handle_Exception(exceptionInfo,
  2611                                 (address)SharedRuntime::get_handle_wrong_method_stub());
  2613     } // /EXCEPTION_ILLEGAL_INSTRUCTION
  2614 #endif
  2617     if (in_java) {
  2618       switch (exception_code) {
  2619       case EXCEPTION_INT_DIVIDE_BY_ZERO:
  2620         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
  2622       case EXCEPTION_INT_OVERFLOW:
  2623         return Handle_IDiv_Exception(exceptionInfo);
  2625       } // switch
  2627 #ifndef _WIN64
  2628     if (((thread->thread_state() == _thread_in_Java) ||
  2629         (thread->thread_state() == _thread_in_native)) &&
  2630         exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION)
  2632       LONG result=Handle_FLT_Exception(exceptionInfo);
  2633       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
  2635 #endif //_WIN64
  2638   if (exception_code != EXCEPTION_BREAKPOINT) {
  2639     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2640                  exceptionInfo->ContextRecord);
  2642   return EXCEPTION_CONTINUE_SEARCH;
  2645 #ifndef _WIN64
  2646 // Special care for fast JNI accessors.
  2647 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
  2648 // the heap gets shrunk before the field access.
  2649 // Need to install our own structured exception handler since native code may
  2650 // install its own.
  2651 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
  2652   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
  2653   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2654     address pc = (address) exceptionInfo->ContextRecord->Eip;
  2655     address addr = JNI_FastGetField::find_slowcase_pc(pc);
  2656     if (addr != (address)-1) {
  2657       return Handle_Exception(exceptionInfo, addr);
  2660   return EXCEPTION_CONTINUE_SEARCH;
  2663 #define DEFINE_FAST_GETFIELD(Return,Fieldname,Result) \
  2664 Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env, jobject obj, jfieldID fieldID) { \
  2665   __try { \
  2666     return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env, obj, fieldID); \
  2667   } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)_exception_info())) { \
  2668   } \
  2669   return 0; \
  2672 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
  2673 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
  2674 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
  2675 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
  2676 DEFINE_FAST_GETFIELD(jint,     int,    Int)
  2677 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
  2678 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
  2679 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
  2681 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
  2682   switch (type) {
  2683     case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
  2684     case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
  2685     case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
  2686     case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
  2687     case T_INT:     return (address)jni_fast_GetIntField_wrapper;
  2688     case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
  2689     case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
  2690     case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
  2691     default:        ShouldNotReachHere();
  2693   return (address)-1;
  2695 #endif
  2697 // Virtual Memory
  2699 int os::vm_page_size() { return os::win32::vm_page_size(); }
  2700 int os::vm_allocation_granularity() {
  2701   return os::win32::vm_allocation_granularity();
  2704 // Windows large page support is available on Windows 2003. In order to use
  2705 // large page memory, the administrator must first assign additional privilege
  2706 // to the user:
  2707 //   + select Control Panel -> Administrative Tools -> Local Security Policy
  2708 //   + select Local Policies -> User Rights Assignment
  2709 //   + double click "Lock pages in memory", add users and/or groups
  2710 //   + reboot
  2711 // Note the above steps are needed for administrator as well, as administrators
  2712 // by default do not have the privilege to lock pages in memory.
  2713 //
  2714 // Note about Windows 2003: although the API supports committing large page
  2715 // memory on a page-by-page basis and VirtualAlloc() returns success under this
  2716 // scenario, I found through experiment it only uses large page if the entire
  2717 // memory region is reserved and committed in a single VirtualAlloc() call.
  2718 // This makes Windows large page support more or less like Solaris ISM, in
  2719 // that the entire heap must be committed upfront. This probably will change
  2720 // in the future, if so the code below needs to be revisited.
  2722 #ifndef MEM_LARGE_PAGES
  2723 #define MEM_LARGE_PAGES 0x20000000
  2724 #endif
  2726 static HANDLE    _hProcess;
  2727 static HANDLE    _hToken;
  2729 // Container for NUMA node list info
  2730 class NUMANodeListHolder {
  2731 private:
  2732   int *_numa_used_node_list;  // allocated below
  2733   int _numa_used_node_count;
  2735   void free_node_list() {
  2736     if (_numa_used_node_list != NULL) {
  2737       FREE_C_HEAP_ARRAY(int, _numa_used_node_list, mtInternal);
  2741 public:
  2742   NUMANodeListHolder() {
  2743     _numa_used_node_count = 0;
  2744     _numa_used_node_list = NULL;
  2745     // do rest of initialization in build routine (after function pointers are set up)
  2748   ~NUMANodeListHolder() {
  2749     free_node_list();
  2752   bool build() {
  2753     DWORD_PTR proc_aff_mask;
  2754     DWORD_PTR sys_aff_mask;
  2755     if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
  2756     ULONG highest_node_number;
  2757     if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
  2758     free_node_list();
  2759     _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
  2760     for (unsigned int i = 0; i <= highest_node_number; i++) {
  2761       ULONGLONG proc_mask_numa_node;
  2762       if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
  2763       if ((proc_aff_mask & proc_mask_numa_node)!=0) {
  2764         _numa_used_node_list[_numa_used_node_count++] = i;
  2767     return (_numa_used_node_count > 1);
  2770   int get_count() {return _numa_used_node_count;}
  2771   int get_node_list_entry(int n) {
  2772     // for indexes out of range, returns -1
  2773     return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
  2776 } numa_node_list_holder;
  2780 static size_t _large_page_size = 0;
  2782 static bool resolve_functions_for_large_page_init() {
  2783   return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
  2784     os::Advapi32Dll::AdvapiAvailable();
  2787 static bool request_lock_memory_privilege() {
  2788   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
  2789                                 os::current_process_id());
  2791   LUID luid;
  2792   if (_hProcess != NULL &&
  2793       os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
  2794       os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
  2796     TOKEN_PRIVILEGES tp;
  2797     tp.PrivilegeCount = 1;
  2798     tp.Privileges[0].Luid = luid;
  2799     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
  2801     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
  2802     // privilege. Check GetLastError() too. See MSDN document.
  2803     if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
  2804         (GetLastError() == ERROR_SUCCESS)) {
  2805       return true;
  2809   return false;
  2812 static void cleanup_after_large_page_init() {
  2813   if (_hProcess) CloseHandle(_hProcess);
  2814   _hProcess = NULL;
  2815   if (_hToken) CloseHandle(_hToken);
  2816   _hToken = NULL;
  2819 static bool numa_interleaving_init() {
  2820   bool success = false;
  2821   bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
  2823   // print a warning if UseNUMAInterleaving flag is specified on command line
  2824   bool warn_on_failure = use_numa_interleaving_specified;
  2825 # define WARN(msg) if (warn_on_failure) { warning(msg); }
  2827   // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
  2828   size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
  2829   NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
  2831   if (os::Kernel32Dll::NumaCallsAvailable()) {
  2832     if (numa_node_list_holder.build()) {
  2833       if (PrintMiscellaneous && Verbose) {
  2834         tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
  2835         for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
  2836           tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
  2838         tty->print("\n");
  2840       success = true;
  2841     } else {
  2842       WARN("Process does not cover multiple NUMA nodes.");
  2844   } else {
  2845     WARN("NUMA Interleaving is not supported by the operating system.");
  2847   if (!success) {
  2848     if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
  2850   return success;
  2851 #undef WARN
  2854 // this routine is used whenever we need to reserve a contiguous VA range
  2855 // but we need to make separate VirtualAlloc calls for each piece of the range
  2856 // Reasons for doing this:
  2857 //  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
  2858 //  * UseNUMAInterleaving requires a separate node for each piece
  2859 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags, DWORD prot,
  2860                                          bool should_inject_error=false) {
  2861   char * p_buf;
  2862   // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
  2863   size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
  2864   size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
  2866   // first reserve enough address space in advance since we want to be
  2867   // able to break a single contiguous virtual address range into multiple
  2868   // large page commits but WS2003 does not allow reserving large page space
  2869   // so we just use 4K pages for reserve, this gives us a legal contiguous
  2870   // address space. then we will deallocate that reservation, and re alloc
  2871   // using large pages
  2872   const size_t size_of_reserve = bytes + chunk_size;
  2873   if (bytes > size_of_reserve) {
  2874     // Overflowed.
  2875     return NULL;
  2877   p_buf = (char *) VirtualAlloc(addr,
  2878                                 size_of_reserve,  // size of Reserve
  2879                                 MEM_RESERVE,
  2880                                 PAGE_READWRITE);
  2881   // If reservation failed, return NULL
  2882   if (p_buf == NULL) return NULL;
  2883   MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, mtNone, CALLER_PC);
  2884   os::release_memory(p_buf, bytes + chunk_size);
  2886   // we still need to round up to a page boundary (in case we are using large pages)
  2887   // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
  2888   // instead we handle this in the bytes_to_rq computation below
  2889   p_buf = (char *) align_size_up((size_t)p_buf, page_size);
  2891   // now go through and allocate one chunk at a time until all bytes are
  2892   // allocated
  2893   size_t  bytes_remaining = bytes;
  2894   // An overflow of align_size_up() would have been caught above
  2895   // in the calculation of size_of_reserve.
  2896   char * next_alloc_addr = p_buf;
  2897   HANDLE hProc = GetCurrentProcess();
  2899 #ifdef ASSERT
  2900   // Variable for the failure injection
  2901   long ran_num = os::random();
  2902   size_t fail_after = ran_num % bytes;
  2903 #endif
  2905   int count=0;
  2906   while (bytes_remaining) {
  2907     // select bytes_to_rq to get to the next chunk_size boundary
  2909     size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
  2910     // Note allocate and commit
  2911     char * p_new;
  2913 #ifdef ASSERT
  2914     bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
  2915 #else
  2916     const bool inject_error_now = false;
  2917 #endif
  2919     if (inject_error_now) {
  2920       p_new = NULL;
  2921     } else {
  2922       if (!UseNUMAInterleaving) {
  2923         p_new = (char *) VirtualAlloc(next_alloc_addr,
  2924                                       bytes_to_rq,
  2925                                       flags,
  2926                                       prot);
  2927       } else {
  2928         // get the next node to use from the used_node_list
  2929         assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
  2930         DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
  2931         p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
  2932                                                             next_alloc_addr,
  2933                                                             bytes_to_rq,
  2934                                                             flags,
  2935                                                             prot,
  2936                                                             node);
  2940     if (p_new == NULL) {
  2941       // Free any allocated pages
  2942       if (next_alloc_addr > p_buf) {
  2943         // Some memory was committed so release it.
  2944         size_t bytes_to_release = bytes - bytes_remaining;
  2945         // NMT has yet to record any individual blocks, so it
  2946         // need to create a dummy 'reserve' record to match
  2947         // the release.
  2948         MemTracker::record_virtual_memory_reserve((address)p_buf,
  2949           bytes_to_release, mtNone, CALLER_PC);
  2950         os::release_memory(p_buf, bytes_to_release);
  2952 #ifdef ASSERT
  2953       if (should_inject_error) {
  2954         if (TracePageSizes && Verbose) {
  2955           tty->print_cr("Reserving pages individually failed.");
  2958 #endif
  2959       return NULL;
  2962     bytes_remaining -= bytes_to_rq;
  2963     next_alloc_addr += bytes_to_rq;
  2964     count++;
  2966   // Although the memory is allocated individually, it is returned as one.
  2967   // NMT records it as one block.
  2968   address pc = CALLER_PC;
  2969   if ((flags & MEM_COMMIT) != 0) {
  2970     MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, mtNone, pc);
  2971   } else {
  2972     MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, mtNone, pc);
  2975   // made it this far, success
  2976   return p_buf;
  2981 void os::large_page_init() {
  2982   if (!UseLargePages) return;
  2984   // print a warning if any large page related flag is specified on command line
  2985   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
  2986                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
  2987   bool success = false;
  2989 # define WARN(msg) if (warn_on_failure) { warning(msg); }
  2990   if (resolve_functions_for_large_page_init()) {
  2991     if (request_lock_memory_privilege()) {
  2992       size_t s = os::Kernel32Dll::GetLargePageMinimum();
  2993       if (s) {
  2994 #if defined(IA32) || defined(AMD64)
  2995         if (s > 4*M || LargePageSizeInBytes > 4*M) {
  2996           WARN("JVM cannot use large pages bigger than 4mb.");
  2997         } else {
  2998 #endif
  2999           if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
  3000             _large_page_size = LargePageSizeInBytes;
  3001           } else {
  3002             _large_page_size = s;
  3004           success = true;
  3005 #if defined(IA32) || defined(AMD64)
  3007 #endif
  3008       } else {
  3009         WARN("Large page is not supported by the processor.");
  3011     } else {
  3012       WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
  3014   } else {
  3015     WARN("Large page is not supported by the operating system.");
  3017 #undef WARN
  3019   const size_t default_page_size = (size_t) vm_page_size();
  3020   if (success && _large_page_size > default_page_size) {
  3021     _page_sizes[0] = _large_page_size;
  3022     _page_sizes[1] = default_page_size;
  3023     _page_sizes[2] = 0;
  3026   cleanup_after_large_page_init();
  3027   UseLargePages = success;
  3030 // On win32, one cannot release just a part of reserved memory, it's an
  3031 // all or nothing deal.  When we split a reservation, we must break the
  3032 // reservation into two reservations.
  3033 void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
  3034                               bool realloc) {
  3035   if (size > 0) {
  3036     release_memory(base, size);
  3037     if (realloc) {
  3038       reserve_memory(split, base);
  3040     if (size != split) {
  3041       reserve_memory(size - split, base + split);
  3046 // Multiple threads can race in this code but it's not possible to unmap small sections of
  3047 // virtual space to get requested alignment, like posix-like os's.
  3048 // Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
  3049 char* os::reserve_memory_aligned(size_t size, size_t alignment) {
  3050   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
  3051       "Alignment must be a multiple of allocation granularity (page size)");
  3052   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
  3054   size_t extra_size = size + alignment;
  3055   assert(extra_size >= size, "overflow, size is too large to allow alignment");
  3057   char* aligned_base = NULL;
  3059   do {
  3060     char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
  3061     if (extra_base == NULL) {
  3062       return NULL;
  3064     // Do manual alignment
  3065     aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
  3067     os::release_memory(extra_base, extra_size);
  3069     aligned_base = os::reserve_memory(size, aligned_base);
  3071   } while (aligned_base == NULL);
  3073   return aligned_base;
  3076 char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
  3077   assert((size_t)addr % os::vm_allocation_granularity() == 0,
  3078          "reserve alignment");
  3079   assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
  3080   char* res;
  3081   // note that if UseLargePages is on, all the areas that require interleaving
  3082   // will go thru reserve_memory_special rather than thru here.
  3083   bool use_individual = (UseNUMAInterleaving && !UseLargePages);
  3084   if (!use_individual) {
  3085     res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
  3086   } else {
  3087     elapsedTimer reserveTimer;
  3088     if( Verbose && PrintMiscellaneous ) reserveTimer.start();
  3089     // in numa interleaving, we have to allocate pages individually
  3090     // (well really chunks of NUMAInterleaveGranularity size)
  3091     res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
  3092     if (res == NULL) {
  3093       warning("NUMA page allocation failed");
  3095     if( Verbose && PrintMiscellaneous ) {
  3096       reserveTimer.stop();
  3097       tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
  3098                     reserveTimer.milliseconds(), reserveTimer.ticks());
  3101   assert(res == NULL || addr == NULL || addr == res,
  3102          "Unexpected address from reserve.");
  3104   return res;
  3107 // Reserve memory at an arbitrary address, only if that area is
  3108 // available (and not reserved for something else).
  3109 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  3110   // Windows os::reserve_memory() fails of the requested address range is
  3111   // not avilable.
  3112   return reserve_memory(bytes, requested_addr);
  3115 size_t os::large_page_size() {
  3116   return _large_page_size;
  3119 bool os::can_commit_large_page_memory() {
  3120   // Windows only uses large page memory when the entire region is reserved
  3121   // and committed in a single VirtualAlloc() call. This may change in the
  3122   // future, but with Windows 2003 it's not possible to commit on demand.
  3123   return false;
  3126 bool os::can_execute_large_page_memory() {
  3127   return true;
  3130 char* os::reserve_memory_special(size_t bytes, char* addr, bool exec) {
  3132   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
  3133   const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
  3135   // with large pages, there are two cases where we need to use Individual Allocation
  3136   // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
  3137   // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
  3138   if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
  3139     if (TracePageSizes && Verbose) {
  3140        tty->print_cr("Reserving large pages individually.");
  3142     char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
  3143     if (p_buf == NULL) {
  3144       // give an appropriate warning message
  3145       if (UseNUMAInterleaving) {
  3146         warning("NUMA large page allocation failed, UseLargePages flag ignored");
  3148       if (UseLargePagesIndividualAllocation) {
  3149         warning("Individually allocated large pages failed, "
  3150                 "use -XX:-UseLargePagesIndividualAllocation to turn off");
  3152       return NULL;
  3155     return p_buf;
  3157   } else {
  3158     // normal policy just allocate it all at once
  3159     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
  3160     char * res = (char *)VirtualAlloc(NULL, bytes, flag, prot);
  3161     if (res != NULL) {
  3162       address pc = CALLER_PC;
  3163       MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, mtNone, pc);
  3166     return res;
  3170 bool os::release_memory_special(char* base, size_t bytes) {
  3171   assert(base != NULL, "Sanity check");
  3172   return release_memory(base, bytes);
  3175 void os::print_statistics() {
  3178 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
  3179   int err = os::get_last_error();
  3180   char buf[256];
  3181   size_t buf_len = os::lasterror(buf, sizeof(buf));
  3182   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
  3183           ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
  3184           exec, buf_len != 0 ? buf : "<no_error_string>", err);
  3187 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
  3188   if (bytes == 0) {
  3189     // Don't bother the OS with noops.
  3190     return true;
  3192   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
  3193   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
  3194   // Don't attempt to print anything if the OS call fails. We're
  3195   // probably low on resources, so the print itself may cause crashes.
  3197   // unless we have NUMAInterleaving enabled, the range of a commit
  3198   // is always within a reserve covered by a single VirtualAlloc
  3199   // in that case we can just do a single commit for the requested size
  3200   if (!UseNUMAInterleaving) {
  3201     if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
  3202       NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
  3203       return false;
  3205     if (exec) {
  3206       DWORD oldprot;
  3207       // Windows doc says to use VirtualProtect to get execute permissions
  3208       if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
  3209         NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
  3210         return false;
  3213     return true;
  3214   } else {
  3216     // when NUMAInterleaving is enabled, the commit might cover a range that
  3217     // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
  3218     // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
  3219     // returns represents the number of bytes that can be committed in one step.
  3220     size_t bytes_remaining = bytes;
  3221     char * next_alloc_addr = addr;
  3222     while (bytes_remaining > 0) {
  3223       MEMORY_BASIC_INFORMATION alloc_info;
  3224       VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
  3225       size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
  3226       if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
  3227                        PAGE_READWRITE) == NULL) {
  3228         NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
  3229                                             exec);)
  3230         return false;
  3232       if (exec) {
  3233         DWORD oldprot;
  3234         if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
  3235                             PAGE_EXECUTE_READWRITE, &oldprot)) {
  3236           NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
  3237                                               exec);)
  3238           return false;
  3241       bytes_remaining -= bytes_to_rq;
  3242       next_alloc_addr += bytes_to_rq;
  3245   // if we made it this far, return true
  3246   return true;
  3249 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
  3250                        bool exec) {
  3251   // alignment_hint is ignored on this OS
  3252   return pd_commit_memory(addr, size, exec);
  3255 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
  3256                                   const char* mesg) {
  3257   assert(mesg != NULL, "mesg must be specified");
  3258   if (!pd_commit_memory(addr, size, exec)) {
  3259     warn_fail_commit_memory(addr, size, exec);
  3260     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
  3264 void os::pd_commit_memory_or_exit(char* addr, size_t size,
  3265                                   size_t alignment_hint, bool exec,
  3266                                   const char* mesg) {
  3267   // alignment_hint is ignored on this OS
  3268   pd_commit_memory_or_exit(addr, size, exec, mesg);
  3271 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
  3272   if (bytes == 0) {
  3273     // Don't bother the OS with noops.
  3274     return true;
  3276   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
  3277   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
  3278   return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
  3281 bool os::pd_release_memory(char* addr, size_t bytes) {
  3282   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
  3285 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
  3286   return os::commit_memory(addr, size, !ExecMem);
  3289 bool os::remove_stack_guard_pages(char* addr, size_t size) {
  3290   return os::uncommit_memory(addr, size);
  3293 // Set protections specified
  3294 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  3295                         bool is_committed) {
  3296   unsigned int p = 0;
  3297   switch (prot) {
  3298   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
  3299   case MEM_PROT_READ: p = PAGE_READONLY; break;
  3300   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
  3301   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
  3302   default:
  3303     ShouldNotReachHere();
  3306   DWORD old_status;
  3308   // Strange enough, but on Win32 one can change protection only for committed
  3309   // memory, not a big deal anyway, as bytes less or equal than 64K
  3310   if (!is_committed) {
  3311     commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
  3312                           "cannot commit protection page");
  3314   // One cannot use os::guard_memory() here, as on Win32 guard page
  3315   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
  3316   //
  3317   // Pages in the region become guard pages. Any attempt to access a guard page
  3318   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
  3319   // the guard page status. Guard pages thus act as a one-time access alarm.
  3320   return VirtualProtect(addr, bytes, p, &old_status) != 0;
  3323 bool os::guard_memory(char* addr, size_t bytes) {
  3324   DWORD old_status;
  3325   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
  3328 bool os::unguard_memory(char* addr, size_t bytes) {
  3329   DWORD old_status;
  3330   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
  3333 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
  3334 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
  3335 void os::numa_make_global(char *addr, size_t bytes)    { }
  3336 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
  3337 bool os::numa_topology_changed()                       { return false; }
  3338 size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
  3339 int os::numa_get_group_id()                            { return 0; }
  3340 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  3341   if (numa_node_list_holder.get_count() == 0 && size > 0) {
  3342     // Provide an answer for UMA systems
  3343     ids[0] = 0;
  3344     return 1;
  3345   } else {
  3346     // check for size bigger than actual groups_num
  3347     size = MIN2(size, numa_get_groups_num());
  3348     for (int i = 0; i < (int)size; i++) {
  3349       ids[i] = numa_node_list_holder.get_node_list_entry(i);
  3351     return size;
  3355 bool os::get_page_info(char *start, page_info* info) {
  3356   return false;
  3359 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  3360   return end;
  3363 char* os::non_memory_address_word() {
  3364   // Must never look like an address returned by reserve_memory,
  3365   // even in its subfields (as defined by the CPU immediate fields,
  3366   // if the CPU splits constants across multiple instructions).
  3367   return (char*)-1;
  3370 #define MAX_ERROR_COUNT 100
  3371 #define SYS_THREAD_ERROR 0xffffffffUL
  3373 void os::pd_start_thread(Thread* thread) {
  3374   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
  3375   // Returns previous suspend state:
  3376   // 0:  Thread was not suspended
  3377   // 1:  Thread is running now
  3378   // >1: Thread is still suspended.
  3379   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
  3382 class HighResolutionInterval : public CHeapObj<mtThread> {
  3383   // The default timer resolution seems to be 10 milliseconds.
  3384   // (Where is this written down?)
  3385   // If someone wants to sleep for only a fraction of the default,
  3386   // then we set the timer resolution down to 1 millisecond for
  3387   // the duration of their interval.
  3388   // We carefully set the resolution back, since otherwise we
  3389   // seem to incur an overhead (3%?) that we don't need.
  3390   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
  3391   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
  3392   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
  3393   // timeBeginPeriod() if the relative error exceeded some threshold.
  3394   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
  3395   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
  3396   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
  3397   // resolution timers running.
  3398 private:
  3399     jlong resolution;
  3400 public:
  3401   HighResolutionInterval(jlong ms) {
  3402     resolution = ms % 10L;
  3403     if (resolution != 0) {
  3404       MMRESULT result = timeBeginPeriod(1L);
  3407   ~HighResolutionInterval() {
  3408     if (resolution != 0) {
  3409       MMRESULT result = timeEndPeriod(1L);
  3411     resolution = 0L;
  3413 };
  3415 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
  3416   jlong limit = (jlong) MAXDWORD;
  3418   while(ms > limit) {
  3419     int res;
  3420     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT)
  3421       return res;
  3422     ms -= limit;
  3425   assert(thread == Thread::current(),  "thread consistency check");
  3426   OSThread* osthread = thread->osthread();
  3427   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
  3428   int result;
  3429   if (interruptable) {
  3430     assert(thread->is_Java_thread(), "must be java thread");
  3431     JavaThread *jt = (JavaThread *) thread;
  3432     ThreadBlockInVM tbivm(jt);
  3434     jt->set_suspend_equivalent();
  3435     // cleared by handle_special_suspend_equivalent_condition() or
  3436     // java_suspend_self() via check_and_wait_while_suspended()
  3438     HANDLE events[1];
  3439     events[0] = osthread->interrupt_event();
  3440     HighResolutionInterval *phri=NULL;
  3441     if(!ForceTimeHighResolution)
  3442       phri = new HighResolutionInterval( ms );
  3443     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
  3444       result = OS_TIMEOUT;
  3445     } else {
  3446       ResetEvent(osthread->interrupt_event());
  3447       osthread->set_interrupted(false);
  3448       result = OS_INTRPT;
  3450     delete phri; //if it is NULL, harmless
  3452     // were we externally suspended while we were waiting?
  3453     jt->check_and_wait_while_suspended();
  3454   } else {
  3455     assert(!thread->is_Java_thread(), "must not be java thread");
  3456     Sleep((long) ms);
  3457     result = OS_TIMEOUT;
  3459   return result;
  3462 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  3463 void os::infinite_sleep() {
  3464   while (true) {    // sleep forever ...
  3465     Sleep(100000);  // ... 100 seconds at a time
  3469 typedef BOOL (WINAPI * STTSignature)(void) ;
  3471 os::YieldResult os::NakedYield() {
  3472   // Use either SwitchToThread() or Sleep(0)
  3473   // Consider passing back the return value from SwitchToThread().
  3474   if (os::Kernel32Dll::SwitchToThreadAvailable()) {
  3475     return SwitchToThread() ? os::YIELD_SWITCHED : os::YIELD_NONEREADY ;
  3476   } else {
  3477     Sleep(0);
  3479   return os::YIELD_UNKNOWN ;
  3482 void os::yield() {  os::NakedYield(); }
  3484 void os::yield_all(int attempts) {
  3485   // Yields to all threads, including threads with lower priorities
  3486   Sleep(1);
  3489 // Win32 only gives you access to seven real priorities at a time,
  3490 // so we compress Java's ten down to seven.  It would be better
  3491 // if we dynamically adjusted relative priorities.
  3493 int os::java_to_os_priority[CriticalPriority + 1] = {
  3494   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
  3495   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
  3496   THREAD_PRIORITY_LOWEST,                       // 2
  3497   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
  3498   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
  3499   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
  3500   THREAD_PRIORITY_NORMAL,                       // 6
  3501   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
  3502   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
  3503   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
  3504   THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
  3505   THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
  3506 };
  3508 int prio_policy1[CriticalPriority + 1] = {
  3509   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
  3510   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
  3511   THREAD_PRIORITY_LOWEST,                       // 2
  3512   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
  3513   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
  3514   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
  3515   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
  3516   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
  3517   THREAD_PRIORITY_HIGHEST,                      // 8
  3518   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
  3519   THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
  3520   THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
  3521 };
  3523 static int prio_init() {
  3524   // If ThreadPriorityPolicy is 1, switch tables
  3525   if (ThreadPriorityPolicy == 1) {
  3526     int i;
  3527     for (i = 0; i < CriticalPriority + 1; i++) {
  3528       os::java_to_os_priority[i] = prio_policy1[i];
  3531   if (UseCriticalJavaThreadPriority) {
  3532     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority] ;
  3534   return 0;
  3537 OSReturn os::set_native_priority(Thread* thread, int priority) {
  3538   if (!UseThreadPriorities) return OS_OK;
  3539   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
  3540   return ret ? OS_OK : OS_ERR;
  3543 OSReturn os::get_native_priority(const Thread* const thread, int* priority_ptr) {
  3544   if ( !UseThreadPriorities ) {
  3545     *priority_ptr = java_to_os_priority[NormPriority];
  3546     return OS_OK;
  3548   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
  3549   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
  3550     assert(false, "GetThreadPriority failed");
  3551     return OS_ERR;
  3553   *priority_ptr = os_prio;
  3554   return OS_OK;
  3558 // Hint to the underlying OS that a task switch would not be good.
  3559 // Void return because it's a hint and can fail.
  3560 void os::hint_no_preempt() {}
  3562 void os::interrupt(Thread* thread) {
  3563   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
  3564          "possibility of dangling Thread pointer");
  3566   OSThread* osthread = thread->osthread();
  3567   osthread->set_interrupted(true);
  3568   // More than one thread can get here with the same value of osthread,
  3569   // resulting in multiple notifications.  We do, however, want the store
  3570   // to interrupted() to be visible to other threads before we post
  3571   // the interrupt event.
  3572   OrderAccess::release();
  3573   SetEvent(osthread->interrupt_event());
  3574   // For JSR166:  unpark after setting status
  3575   if (thread->is_Java_thread())
  3576     ((JavaThread*)thread)->parker()->unpark();
  3578   ParkEvent * ev = thread->_ParkEvent ;
  3579   if (ev != NULL) ev->unpark() ;
  3584 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  3585   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
  3586          "possibility of dangling Thread pointer");
  3588   OSThread* osthread = thread->osthread();
  3589   bool interrupted = osthread->interrupted();
  3590   // There is no synchronization between the setting of the interrupt
  3591   // and it being cleared here. It is critical - see 6535709 - that
  3592   // we only clear the interrupt state, and reset the interrupt event,
  3593   // if we are going to report that we were indeed interrupted - else
  3594   // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
  3595   // depending on the timing
  3596   if (interrupted && clear_interrupted) {
  3597     osthread->set_interrupted(false);
  3598     ResetEvent(osthread->interrupt_event());
  3599   } // Otherwise leave the interrupted state alone
  3601   return interrupted;
  3604 // Get's a pc (hint) for a running thread. Currently used only for profiling.
  3605 ExtendedPC os::get_thread_pc(Thread* thread) {
  3606   CONTEXT context;
  3607   context.ContextFlags = CONTEXT_CONTROL;
  3608   HANDLE handle = thread->osthread()->thread_handle();
  3609 #ifdef _M_IA64
  3610   assert(0, "Fix get_thread_pc");
  3611   return ExtendedPC(NULL);
  3612 #else
  3613   if (GetThreadContext(handle, &context)) {
  3614 #ifdef _M_AMD64
  3615     return ExtendedPC((address) context.Rip);
  3616 #else
  3617     return ExtendedPC((address) context.Eip);
  3618 #endif
  3619   } else {
  3620     return ExtendedPC(NULL);
  3622 #endif
  3625 // GetCurrentThreadId() returns DWORD
  3626 intx os::current_thread_id()          { return GetCurrentThreadId(); }
  3628 static int _initial_pid = 0;
  3630 int os::current_process_id()
  3632   return (_initial_pid ? _initial_pid : _getpid());
  3635 int    os::win32::_vm_page_size       = 0;
  3636 int    os::win32::_vm_allocation_granularity = 0;
  3637 int    os::win32::_processor_type     = 0;
  3638 // Processor level is not available on non-NT systems, use vm_version instead
  3639 int    os::win32::_processor_level    = 0;
  3640 julong os::win32::_physical_memory    = 0;
  3641 size_t os::win32::_default_stack_size = 0;
  3643          intx os::win32::_os_thread_limit    = 0;
  3644 volatile intx os::win32::_os_thread_count    = 0;
  3646 bool   os::win32::_is_nt              = false;
  3647 bool   os::win32::_is_windows_2003    = false;
  3648 bool   os::win32::_is_windows_server  = false;
  3650 void os::win32::initialize_system_info() {
  3651   SYSTEM_INFO si;
  3652   GetSystemInfo(&si);
  3653   _vm_page_size    = si.dwPageSize;
  3654   _vm_allocation_granularity = si.dwAllocationGranularity;
  3655   _processor_type  = si.dwProcessorType;
  3656   _processor_level = si.wProcessorLevel;
  3657   set_processor_count(si.dwNumberOfProcessors);
  3659   MEMORYSTATUSEX ms;
  3660   ms.dwLength = sizeof(ms);
  3662   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
  3663   // dwMemoryLoad (% of memory in use)
  3664   GlobalMemoryStatusEx(&ms);
  3665   _physical_memory = ms.ullTotalPhys;
  3667   OSVERSIONINFOEX oi;
  3668   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
  3669   GetVersionEx((OSVERSIONINFO*)&oi);
  3670   switch(oi.dwPlatformId) {
  3671     case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
  3672     case VER_PLATFORM_WIN32_NT:
  3673       _is_nt = true;
  3675         int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
  3676         if (os_vers == 5002) {
  3677           _is_windows_2003 = true;
  3679         if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
  3680           oi.wProductType == VER_NT_SERVER) {
  3681             _is_windows_server = true;
  3684       break;
  3685     default: fatal("Unknown platform");
  3688   _default_stack_size = os::current_stack_size();
  3689   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
  3690   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
  3691     "stack size not a multiple of page size");
  3693   initialize_performance_counter();
  3695   // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
  3696   // known to deadlock the system, if the VM issues to thread operations with
  3697   // a too high frequency, e.g., such as changing the priorities.
  3698   // The 6000 seems to work well - no deadlocks has been notices on the test
  3699   // programs that we have seen experience this problem.
  3700   if (!os::win32::is_nt()) {
  3701     StarvationMonitorInterval = 6000;
  3706 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf, int ebuflen) {
  3707   char path[MAX_PATH];
  3708   DWORD size;
  3709   DWORD pathLen = (DWORD)sizeof(path);
  3710   HINSTANCE result = NULL;
  3712   // only allow library name without path component
  3713   assert(strchr(name, '\\') == NULL, "path not allowed");
  3714   assert(strchr(name, ':') == NULL, "path not allowed");
  3715   if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
  3716     jio_snprintf(ebuf, ebuflen,
  3717       "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
  3718     return NULL;
  3721   // search system directory
  3722   if ((size = GetSystemDirectory(path, pathLen)) > 0) {
  3723     strcat(path, "\\");
  3724     strcat(path, name);
  3725     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
  3726       return result;
  3730   // try Windows directory
  3731   if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
  3732     strcat(path, "\\");
  3733     strcat(path, name);
  3734     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
  3735       return result;
  3739   jio_snprintf(ebuf, ebuflen,
  3740     "os::win32::load_windows_dll() cannot load %s from system directories.", name);
  3741   return NULL;
  3744 void os::win32::setmode_streams() {
  3745   _setmode(_fileno(stdin), _O_BINARY);
  3746   _setmode(_fileno(stdout), _O_BINARY);
  3747   _setmode(_fileno(stderr), _O_BINARY);
  3751 bool os::is_debugger_attached() {
  3752   return IsDebuggerPresent() ? true : false;
  3756 void os::wait_for_keypress_at_exit(void) {
  3757   if (PauseAtExit) {
  3758     fprintf(stderr, "Press any key to continue...\n");
  3759     fgetc(stdin);
  3764 int os::message_box(const char* title, const char* message) {
  3765   int result = MessageBox(NULL, message, title,
  3766                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
  3767   return result == IDYES;
  3770 int os::allocate_thread_local_storage() {
  3771   return TlsAlloc();
  3775 void os::free_thread_local_storage(int index) {
  3776   TlsFree(index);
  3780 void os::thread_local_storage_at_put(int index, void* value) {
  3781   TlsSetValue(index, value);
  3782   assert(thread_local_storage_at(index) == value, "Just checking");
  3786 void* os::thread_local_storage_at(int index) {
  3787   return TlsGetValue(index);
  3791 #ifndef PRODUCT
  3792 #ifndef _WIN64
  3793 // Helpers to check whether NX protection is enabled
  3794 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
  3795   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
  3796       pex->ExceptionRecord->NumberParameters > 0 &&
  3797       pex->ExceptionRecord->ExceptionInformation[0] ==
  3798       EXCEPTION_INFO_EXEC_VIOLATION) {
  3799     return EXCEPTION_EXECUTE_HANDLER;
  3801   return EXCEPTION_CONTINUE_SEARCH;
  3804 void nx_check_protection() {
  3805   // If NX is enabled we'll get an exception calling into code on the stack
  3806   char code[] = { (char)0xC3 }; // ret
  3807   void *code_ptr = (void *)code;
  3808   __try {
  3809     __asm call code_ptr
  3810   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
  3811     tty->print_raw_cr("NX protection detected.");
  3814 #endif // _WIN64
  3815 #endif // PRODUCT
  3817 // this is called _before_ the global arguments have been parsed
  3818 void os::init(void) {
  3819   _initial_pid = _getpid();
  3821   init_random(1234567);
  3823   win32::initialize_system_info();
  3824   win32::setmode_streams();
  3825   init_page_sizes((size_t) win32::vm_page_size());
  3827   // For better scalability on MP systems (must be called after initialize_system_info)
  3828 #ifndef PRODUCT
  3829   if (is_MP()) {
  3830     NoYieldsInMicrolock = true;
  3832 #endif
  3833   // This may be overridden later when argument processing is done.
  3834   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
  3835     os::win32::is_windows_2003());
  3837   // Initialize main_process and main_thread
  3838   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
  3839  if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
  3840                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
  3841     fatal("DuplicateHandle failed\n");
  3843   main_thread_id = (int) GetCurrentThreadId();
  3846 // To install functions for atexit processing
  3847 extern "C" {
  3848   static void perfMemory_exit_helper() {
  3849     perfMemory_exit();
  3853 static jint initSock();
  3855 // this is called _after_ the global arguments have been parsed
  3856 jint os::init_2(void) {
  3857   // Allocate a single page and mark it as readable for safepoint polling
  3858   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
  3859   guarantee( polling_page != NULL, "Reserve Failed for polling page");
  3861   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
  3862   guarantee( return_page != NULL, "Commit Failed for polling page");
  3864   os::set_polling_page( polling_page );
  3866 #ifndef PRODUCT
  3867   if( Verbose && PrintMiscellaneous )
  3868     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  3869 #endif
  3871   if (!UseMembar) {
  3872     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
  3873     guarantee( mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
  3875     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
  3876     guarantee( return_page != NULL, "Commit Failed for memory serialize page");
  3878     os::set_memory_serialize_page( mem_serialize_page );
  3880 #ifndef PRODUCT
  3881     if(Verbose && PrintMiscellaneous)
  3882       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  3883 #endif
  3886   os::large_page_init();
  3888   // Setup Windows Exceptions
  3890   // for debugging float code generation bugs
  3891   if (ForceFloatExceptions) {
  3892 #ifndef  _WIN64
  3893     static long fp_control_word = 0;
  3894     __asm { fstcw fp_control_word }
  3895     // see Intel PPro Manual, Vol. 2, p 7-16
  3896     const long precision = 0x20;
  3897     const long underflow = 0x10;
  3898     const long overflow  = 0x08;
  3899     const long zero_div  = 0x04;
  3900     const long denorm    = 0x02;
  3901     const long invalid   = 0x01;
  3902     fp_control_word |= invalid;
  3903     __asm { fldcw fp_control_word }
  3904 #endif
  3907   // If stack_commit_size is 0, windows will reserve the default size,
  3908   // but only commit a small portion of it.
  3909   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
  3910   size_t default_reserve_size = os::win32::default_stack_size();
  3911   size_t actual_reserve_size = stack_commit_size;
  3912   if (stack_commit_size < default_reserve_size) {
  3913     // If stack_commit_size == 0, we want this too
  3914     actual_reserve_size = default_reserve_size;
  3917   // Check minimum allowable stack size for thread creation and to initialize
  3918   // the java system classes, including StackOverflowError - depends on page
  3919   // size.  Add a page for compiler2 recursion in main thread.
  3920   // Add in 2*BytesPerWord times page size to account for VM stack during
  3921   // class initialization depending on 32 or 64 bit VM.
  3922   size_t min_stack_allowed =
  3923             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
  3924             2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
  3925   if (actual_reserve_size < min_stack_allowed) {
  3926     tty->print_cr("\nThe stack size specified is too small, "
  3927                   "Specify at least %dk",
  3928                   min_stack_allowed / K);
  3929     return JNI_ERR;
  3932   JavaThread::set_stack_size_at_create(stack_commit_size);
  3934   // Calculate theoretical max. size of Threads to guard gainst artifical
  3935   // out-of-memory situations, where all available address-space has been
  3936   // reserved by thread stacks.
  3937   assert(actual_reserve_size != 0, "Must have a stack");
  3939   // Calculate the thread limit when we should start doing Virtual Memory
  3940   // banging. Currently when the threads will have used all but 200Mb of space.
  3941   //
  3942   // TODO: consider performing a similar calculation for commit size instead
  3943   // as reserve size, since on a 64-bit platform we'll run into that more
  3944   // often than running out of virtual memory space.  We can use the
  3945   // lower value of the two calculations as the os_thread_limit.
  3946   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
  3947   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
  3949   // at exit methods are called in the reverse order of their registration.
  3950   // there is no limit to the number of functions registered. atexit does
  3951   // not set errno.
  3953   if (PerfAllowAtExitRegistration) {
  3954     // only register atexit functions if PerfAllowAtExitRegistration is set.
  3955     // atexit functions can be delayed until process exit time, which
  3956     // can be problematic for embedded VM situations. Embedded VMs should
  3957     // call DestroyJavaVM() to assure that VM resources are released.
  3959     // note: perfMemory_exit_helper atexit function may be removed in
  3960     // the future if the appropriate cleanup code can be added to the
  3961     // VM_Exit VMOperation's doit method.
  3962     if (atexit(perfMemory_exit_helper) != 0) {
  3963       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
  3967 #ifndef _WIN64
  3968   // Print something if NX is enabled (win32 on AMD64)
  3969   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
  3970 #endif
  3972   // initialize thread priority policy
  3973   prio_init();
  3975   if (UseNUMA && !ForceNUMA) {
  3976     UseNUMA = false; // We don't fully support this yet
  3979   if (UseNUMAInterleaving) {
  3980     // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
  3981     bool success = numa_interleaving_init();
  3982     if (!success) UseNUMAInterleaving = false;
  3985   if (initSock() != JNI_OK) {
  3986     return JNI_ERR;
  3989   return JNI_OK;
  3992 void os::init_3(void) {
  3993   return;
  3996 // Mark the polling page as unreadable
  3997 void os::make_polling_page_unreadable(void) {
  3998   DWORD old_status;
  3999   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_NOACCESS, &old_status) )
  4000     fatal("Could not disable polling page");
  4001 };
  4003 // Mark the polling page as readable
  4004 void os::make_polling_page_readable(void) {
  4005   DWORD old_status;
  4006   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_READONLY, &old_status) )
  4007     fatal("Could not enable polling page");
  4008 };
  4011 int os::stat(const char *path, struct stat *sbuf) {
  4012   char pathbuf[MAX_PATH];
  4013   if (strlen(path) > MAX_PATH - 1) {
  4014     errno = ENAMETOOLONG;
  4015     return -1;
  4017   os::native_path(strcpy(pathbuf, path));
  4018   int ret = ::stat(pathbuf, sbuf);
  4019   if (sbuf != NULL && UseUTCFileTimestamp) {
  4020     // Fix for 6539723.  st_mtime returned from stat() is dependent on
  4021     // the system timezone and so can return different values for the
  4022     // same file if/when daylight savings time changes.  This adjustment
  4023     // makes sure the same timestamp is returned regardless of the TZ.
  4024     //
  4025     // See:
  4026     // http://msdn.microsoft.com/library/
  4027     //   default.asp?url=/library/en-us/sysinfo/base/
  4028     //   time_zone_information_str.asp
  4029     // and
  4030     // http://msdn.microsoft.com/library/default.asp?url=
  4031     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
  4032     //
  4033     // NOTE: there is a insidious bug here:  If the timezone is changed
  4034     // after the call to stat() but before 'GetTimeZoneInformation()', then
  4035     // the adjustment we do here will be wrong and we'll return the wrong
  4036     // value (which will likely end up creating an invalid class data
  4037     // archive).  Absent a better API for this, or some time zone locking
  4038     // mechanism, we'll have to live with this risk.
  4039     TIME_ZONE_INFORMATION tz;
  4040     DWORD tzid = GetTimeZoneInformation(&tz);
  4041     int daylightBias =
  4042       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
  4043     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
  4045   return ret;
  4049 #define FT2INT64(ft) \
  4050   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
  4053 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  4054 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  4055 // of a thread.
  4056 //
  4057 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
  4058 // the fast estimate available on the platform.
  4060 // current_thread_cpu_time() is not optimized for Windows yet
  4061 jlong os::current_thread_cpu_time() {
  4062   // return user + sys since the cost is the same
  4063   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
  4066 jlong os::thread_cpu_time(Thread* thread) {
  4067   // consistent with what current_thread_cpu_time() returns.
  4068   return os::thread_cpu_time(thread, true /* user+sys */);
  4071 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  4072   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
  4075 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
  4076   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
  4077   // If this function changes, os::is_thread_cpu_time_supported() should too
  4078   if (os::win32::is_nt()) {
  4079     FILETIME CreationTime;
  4080     FILETIME ExitTime;
  4081     FILETIME KernelTime;
  4082     FILETIME UserTime;
  4084     if ( GetThreadTimes(thread->osthread()->thread_handle(),
  4085                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
  4086       return -1;
  4087     else
  4088       if (user_sys_cpu_time) {
  4089         return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
  4090       } else {
  4091         return FT2INT64(UserTime) * 100;
  4093   } else {
  4094     return (jlong) timeGetTime() * 1000000;
  4098 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  4099   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
  4100   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
  4101   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
  4102   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
  4105 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  4106   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
  4107   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
  4108   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
  4109   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
  4112 bool os::is_thread_cpu_time_supported() {
  4113   // see os::thread_cpu_time
  4114   if (os::win32::is_nt()) {
  4115     FILETIME CreationTime;
  4116     FILETIME ExitTime;
  4117     FILETIME KernelTime;
  4118     FILETIME UserTime;
  4120     if ( GetThreadTimes(GetCurrentThread(),
  4121                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
  4122       return false;
  4123     else
  4124       return true;
  4125   } else {
  4126     return false;
  4130 // Windows does't provide a loadavg primitive so this is stubbed out for now.
  4131 // It does have primitives (PDH API) to get CPU usage and run queue length.
  4132 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
  4133 // If we wanted to implement loadavg on Windows, we have a few options:
  4134 //
  4135 // a) Query CPU usage and run queue length and "fake" an answer by
  4136 //    returning the CPU usage if it's under 100%, and the run queue
  4137 //    length otherwise.  It turns out that querying is pretty slow
  4138 //    on Windows, on the order of 200 microseconds on a fast machine.
  4139 //    Note that on the Windows the CPU usage value is the % usage
  4140 //    since the last time the API was called (and the first call
  4141 //    returns 100%), so we'd have to deal with that as well.
  4142 //
  4143 // b) Sample the "fake" answer using a sampling thread and store
  4144 //    the answer in a global variable.  The call to loadavg would
  4145 //    just return the value of the global, avoiding the slow query.
  4146 //
  4147 // c) Sample a better answer using exponential decay to smooth the
  4148 //    value.  This is basically the algorithm used by UNIX kernels.
  4149 //
  4150 // Note that sampling thread starvation could affect both (b) and (c).
  4151 int os::loadavg(double loadavg[], int nelem) {
  4152   return -1;
  4156 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
  4157 bool os::dont_yield() {
  4158   return DontYieldALot;
  4161 // This method is a slightly reworked copy of JDK's sysOpen
  4162 // from src/windows/hpi/src/sys_api_md.c
  4164 int os::open(const char *path, int oflag, int mode) {
  4165   char pathbuf[MAX_PATH];
  4167   if (strlen(path) > MAX_PATH - 1) {
  4168     errno = ENAMETOOLONG;
  4169           return -1;
  4171   os::native_path(strcpy(pathbuf, path));
  4172   return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
  4175 FILE* os::open(int fd, const char* mode) {
  4176   return ::_fdopen(fd, mode);
  4179 // Is a (classpath) directory empty?
  4180 bool os::dir_is_empty(const char* path) {
  4181   WIN32_FIND_DATA fd;
  4182   HANDLE f = FindFirstFile(path, &fd);
  4183   if (f == INVALID_HANDLE_VALUE) {
  4184     return true;
  4186   FindClose(f);
  4187   return false;
  4190 // create binary file, rewriting existing file if required
  4191 int os::create_binary_file(const char* path, bool rewrite_existing) {
  4192   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
  4193   if (!rewrite_existing) {
  4194     oflags |= _O_EXCL;
  4196   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
  4199 // return current position of file pointer
  4200 jlong os::current_file_offset(int fd) {
  4201   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
  4204 // move file pointer to the specified offset
  4205 jlong os::seek_to_file_offset(int fd, jlong offset) {
  4206   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
  4210 jlong os::lseek(int fd, jlong offset, int whence) {
  4211   return (jlong) ::_lseeki64(fd, offset, whence);
  4214 // This method is a slightly reworked copy of JDK's sysNativePath
  4215 // from src/windows/hpi/src/path_md.c
  4217 /* Convert a pathname to native format.  On win32, this involves forcing all
  4218    separators to be '\\' rather than '/' (both are legal inputs, but Win95
  4219    sometimes rejects '/') and removing redundant separators.  The input path is
  4220    assumed to have been converted into the character encoding used by the local
  4221    system.  Because this might be a double-byte encoding, care is taken to
  4222    treat double-byte lead characters correctly.
  4224    This procedure modifies the given path in place, as the result is never
  4225    longer than the original.  There is no error return; this operation always
  4226    succeeds. */
  4227 char * os::native_path(char *path) {
  4228   char *src = path, *dst = path, *end = path;
  4229   char *colon = NULL;           /* If a drive specifier is found, this will
  4230                                         point to the colon following the drive
  4231                                         letter */
  4233   /* Assumption: '/', '\\', ':', and drive letters are never lead bytes */
  4234   assert(((!::IsDBCSLeadByte('/'))
  4235     && (!::IsDBCSLeadByte('\\'))
  4236     && (!::IsDBCSLeadByte(':'))),
  4237     "Illegal lead byte");
  4239   /* Check for leading separators */
  4240 #define isfilesep(c) ((c) == '/' || (c) == '\\')
  4241   while (isfilesep(*src)) {
  4242     src++;
  4245   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
  4246     /* Remove leading separators if followed by drive specifier.  This
  4247       hack is necessary to support file URLs containing drive
  4248       specifiers (e.g., "file://c:/path").  As a side effect,
  4249       "/c:/path" can be used as an alternative to "c:/path". */
  4250     *dst++ = *src++;
  4251     colon = dst;
  4252     *dst++ = ':';
  4253     src++;
  4254   } else {
  4255     src = path;
  4256     if (isfilesep(src[0]) && isfilesep(src[1])) {
  4257       /* UNC pathname: Retain first separator; leave src pointed at
  4258          second separator so that further separators will be collapsed
  4259          into the second separator.  The result will be a pathname
  4260          beginning with "\\\\" followed (most likely) by a host name. */
  4261       src = dst = path + 1;
  4262       path[0] = '\\';     /* Force first separator to '\\' */
  4266   end = dst;
  4268   /* Remove redundant separators from remainder of path, forcing all
  4269       separators to be '\\' rather than '/'. Also, single byte space
  4270       characters are removed from the end of the path because those
  4271       are not legal ending characters on this operating system.
  4272   */
  4273   while (*src != '\0') {
  4274     if (isfilesep(*src)) {
  4275       *dst++ = '\\'; src++;
  4276       while (isfilesep(*src)) src++;
  4277       if (*src == '\0') {
  4278         /* Check for trailing separator */
  4279         end = dst;
  4280         if (colon == dst - 2) break;                      /* "z:\\" */
  4281         if (dst == path + 1) break;                       /* "\\" */
  4282         if (dst == path + 2 && isfilesep(path[0])) {
  4283           /* "\\\\" is not collapsed to "\\" because "\\\\" marks the
  4284             beginning of a UNC pathname.  Even though it is not, by
  4285             itself, a valid UNC pathname, we leave it as is in order
  4286             to be consistent with the path canonicalizer as well
  4287             as the win32 APIs, which treat this case as an invalid
  4288             UNC pathname rather than as an alias for the root
  4289             directory of the current drive. */
  4290           break;
  4292         end = --dst;  /* Path does not denote a root directory, so
  4293                                     remove trailing separator */
  4294         break;
  4296       end = dst;
  4297     } else {
  4298       if (::IsDBCSLeadByte(*src)) { /* Copy a double-byte character */
  4299         *dst++ = *src++;
  4300         if (*src) *dst++ = *src++;
  4301         end = dst;
  4302       } else {         /* Copy a single-byte character */
  4303         char c = *src++;
  4304         *dst++ = c;
  4305         /* Space is not a legal ending character */
  4306         if (c != ' ') end = dst;
  4311   *end = '\0';
  4313   /* For "z:", add "." to work around a bug in the C runtime library */
  4314   if (colon == dst - 1) {
  4315           path[2] = '.';
  4316           path[3] = '\0';
  4319   return path;
  4322 // This code is a copy of JDK's sysSetLength
  4323 // from src/windows/hpi/src/sys_api_md.c
  4325 int os::ftruncate(int fd, jlong length) {
  4326   HANDLE h = (HANDLE)::_get_osfhandle(fd);
  4327   long high = (long)(length >> 32);
  4328   DWORD ret;
  4330   if (h == (HANDLE)(-1)) {
  4331     return -1;
  4334   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
  4335   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
  4336       return -1;
  4339   if (::SetEndOfFile(h) == FALSE) {
  4340     return -1;
  4343   return 0;
  4347 // This code is a copy of JDK's sysSync
  4348 // from src/windows/hpi/src/sys_api_md.c
  4349 // except for the legacy workaround for a bug in Win 98
  4351 int os::fsync(int fd) {
  4352   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
  4354   if ( (!::FlushFileBuffers(handle)) &&
  4355          (GetLastError() != ERROR_ACCESS_DENIED) ) {
  4356     /* from winerror.h */
  4357     return -1;
  4359   return 0;
  4362 static int nonSeekAvailable(int, long *);
  4363 static int stdinAvailable(int, long *);
  4365 #define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
  4366 #define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
  4368 // This code is a copy of JDK's sysAvailable
  4369 // from src/windows/hpi/src/sys_api_md.c
  4371 int os::available(int fd, jlong *bytes) {
  4372   jlong cur, end;
  4373   struct _stati64 stbuf64;
  4375   if (::_fstati64(fd, &stbuf64) >= 0) {
  4376     int mode = stbuf64.st_mode;
  4377     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
  4378       int ret;
  4379       long lpbytes;
  4380       if (fd == 0) {
  4381         ret = stdinAvailable(fd, &lpbytes);
  4382       } else {
  4383         ret = nonSeekAvailable(fd, &lpbytes);
  4385       (*bytes) = (jlong)(lpbytes);
  4386       return ret;
  4388     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
  4389       return FALSE;
  4390     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
  4391       return FALSE;
  4392     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
  4393       return FALSE;
  4395     *bytes = end - cur;
  4396     return TRUE;
  4397   } else {
  4398     return FALSE;
  4402 // This code is a copy of JDK's nonSeekAvailable
  4403 // from src/windows/hpi/src/sys_api_md.c
  4405 static int nonSeekAvailable(int fd, long *pbytes) {
  4406   /* This is used for available on non-seekable devices
  4407     * (like both named and anonymous pipes, such as pipes
  4408     *  connected to an exec'd process).
  4409     * Standard Input is a special case.
  4411     */
  4412   HANDLE han;
  4414   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
  4415     return FALSE;
  4418   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
  4419         /* PeekNamedPipe fails when at EOF.  In that case we
  4420          * simply make *pbytes = 0 which is consistent with the
  4421          * behavior we get on Solaris when an fd is at EOF.
  4422          * The only alternative is to raise an Exception,
  4423          * which isn't really warranted.
  4424          */
  4425     if (::GetLastError() != ERROR_BROKEN_PIPE) {
  4426       return FALSE;
  4428     *pbytes = 0;
  4430   return TRUE;
  4433 #define MAX_INPUT_EVENTS 2000
  4435 // This code is a copy of JDK's stdinAvailable
  4436 // from src/windows/hpi/src/sys_api_md.c
  4438 static int stdinAvailable(int fd, long *pbytes) {
  4439   HANDLE han;
  4440   DWORD numEventsRead = 0;      /* Number of events read from buffer */
  4441   DWORD numEvents = 0;  /* Number of events in buffer */
  4442   DWORD i = 0;          /* Loop index */
  4443   DWORD curLength = 0;  /* Position marker */
  4444   DWORD actualLength = 0;       /* Number of bytes readable */
  4445   BOOL error = FALSE;         /* Error holder */
  4446   INPUT_RECORD *lpBuffer;     /* Pointer to records of input events */
  4448   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
  4449         return FALSE;
  4452   /* Construct an array of input records in the console buffer */
  4453   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
  4454   if (error == 0) {
  4455     return nonSeekAvailable(fd, pbytes);
  4458   /* lpBuffer must fit into 64K or else PeekConsoleInput fails */
  4459   if (numEvents > MAX_INPUT_EVENTS) {
  4460     numEvents = MAX_INPUT_EVENTS;
  4463   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
  4464   if (lpBuffer == NULL) {
  4465     return FALSE;
  4468   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
  4469   if (error == 0) {
  4470     os::free(lpBuffer, mtInternal);
  4471     return FALSE;
  4474   /* Examine input records for the number of bytes available */
  4475   for(i=0; i<numEvents; i++) {
  4476     if (lpBuffer[i].EventType == KEY_EVENT) {
  4478       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
  4479                                       &(lpBuffer[i].Event);
  4480       if (keyRecord->bKeyDown == TRUE) {
  4481         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
  4482         curLength++;
  4483         if (*keyPressed == '\r') {
  4484           actualLength = curLength;
  4490   if(lpBuffer != NULL) {
  4491     os::free(lpBuffer, mtInternal);
  4494   *pbytes = (long) actualLength;
  4495   return TRUE;
  4498 // Map a block of memory.
  4499 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
  4500                      char *addr, size_t bytes, bool read_only,
  4501                      bool allow_exec) {
  4502   HANDLE hFile;
  4503   char* base;
  4505   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
  4506                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
  4507   if (hFile == NULL) {
  4508     if (PrintMiscellaneous && Verbose) {
  4509       DWORD err = GetLastError();
  4510       tty->print_cr("CreateFile() failed: GetLastError->%ld.", err);
  4512     return NULL;
  4515   if (allow_exec) {
  4516     // CreateFileMapping/MapViewOfFileEx can't map executable memory
  4517     // unless it comes from a PE image (which the shared archive is not.)
  4518     // Even VirtualProtect refuses to give execute access to mapped memory
  4519     // that was not previously executable.
  4520     //
  4521     // Instead, stick the executable region in anonymous memory.  Yuck.
  4522     // Penalty is that ~4 pages will not be shareable - in the future
  4523     // we might consider DLLizing the shared archive with a proper PE
  4524     // header so that mapping executable + sharing is possible.
  4526     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
  4527                                 PAGE_READWRITE);
  4528     if (base == NULL) {
  4529       if (PrintMiscellaneous && Verbose) {
  4530         DWORD err = GetLastError();
  4531         tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
  4533       CloseHandle(hFile);
  4534       return NULL;
  4537     DWORD bytes_read;
  4538     OVERLAPPED overlapped;
  4539     overlapped.Offset = (DWORD)file_offset;
  4540     overlapped.OffsetHigh = 0;
  4541     overlapped.hEvent = NULL;
  4542     // ReadFile guarantees that if the return value is true, the requested
  4543     // number of bytes were read before returning.
  4544     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
  4545     if (!res) {
  4546       if (PrintMiscellaneous && Verbose) {
  4547         DWORD err = GetLastError();
  4548         tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
  4550       release_memory(base, bytes);
  4551       CloseHandle(hFile);
  4552       return NULL;
  4554   } else {
  4555     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
  4556                                     NULL /*file_name*/);
  4557     if (hMap == NULL) {
  4558       if (PrintMiscellaneous && Verbose) {
  4559         DWORD err = GetLastError();
  4560         tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.", err);
  4562       CloseHandle(hFile);
  4563       return NULL;
  4566     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
  4567     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
  4568                                   (DWORD)bytes, addr);
  4569     if (base == NULL) {
  4570       if (PrintMiscellaneous && Verbose) {
  4571         DWORD err = GetLastError();
  4572         tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
  4574       CloseHandle(hMap);
  4575       CloseHandle(hFile);
  4576       return NULL;
  4579     if (CloseHandle(hMap) == 0) {
  4580       if (PrintMiscellaneous && Verbose) {
  4581         DWORD err = GetLastError();
  4582         tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
  4584       CloseHandle(hFile);
  4585       return base;
  4589   if (allow_exec) {
  4590     DWORD old_protect;
  4591     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
  4592     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
  4594     if (!res) {
  4595       if (PrintMiscellaneous && Verbose) {
  4596         DWORD err = GetLastError();
  4597         tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
  4599       // Don't consider this a hard error, on IA32 even if the
  4600       // VirtualProtect fails, we should still be able to execute
  4601       CloseHandle(hFile);
  4602       return base;
  4606   if (CloseHandle(hFile) == 0) {
  4607     if (PrintMiscellaneous && Verbose) {
  4608       DWORD err = GetLastError();
  4609       tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
  4611     return base;
  4614   return base;
  4618 // Remap a block of memory.
  4619 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
  4620                        char *addr, size_t bytes, bool read_only,
  4621                        bool allow_exec) {
  4622   // This OS does not allow existing memory maps to be remapped so we
  4623   // have to unmap the memory before we remap it.
  4624   if (!os::unmap_memory(addr, bytes)) {
  4625     return NULL;
  4628   // There is a very small theoretical window between the unmap_memory()
  4629   // call above and the map_memory() call below where a thread in native
  4630   // code may be able to access an address that is no longer mapped.
  4632   return os::map_memory(fd, file_name, file_offset, addr, bytes,
  4633            read_only, allow_exec);
  4637 // Unmap a block of memory.
  4638 // Returns true=success, otherwise false.
  4640 bool os::pd_unmap_memory(char* addr, size_t bytes) {
  4641   BOOL result = UnmapViewOfFile(addr);
  4642   if (result == 0) {
  4643     if (PrintMiscellaneous && Verbose) {
  4644       DWORD err = GetLastError();
  4645       tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
  4647     return false;
  4649   return true;
  4652 void os::pause() {
  4653   char filename[MAX_PATH];
  4654   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  4655     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  4656   } else {
  4657     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  4660   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  4661   if (fd != -1) {
  4662     struct stat buf;
  4663     ::close(fd);
  4664     while (::stat(filename, &buf) == 0) {
  4665       Sleep(100);
  4667   } else {
  4668     jio_fprintf(stderr,
  4669       "Could not open pause file '%s', continuing immediately.\n", filename);
  4673 // An Event wraps a win32 "CreateEvent" kernel handle.
  4674 //
  4675 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
  4676 //
  4677 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
  4678 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
  4679 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
  4680 //     In addition, an unpark() operation might fetch the handle field, but the
  4681 //     event could recycle between the fetch and the SetEvent() operation.
  4682 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
  4683 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
  4684 //     on an stale but recycled handle would be harmless, but in practice this might
  4685 //     confuse other non-Sun code, so it's not a viable approach.
  4686 //
  4687 // 2:  Once a win32 event handle is associated with an Event, it remains associated
  4688 //     with the Event.  The event handle is never closed.  This could be construed
  4689 //     as handle leakage, but only up to the maximum # of threads that have been extant
  4690 //     at any one time.  This shouldn't be an issue, as windows platforms typically
  4691 //     permit a process to have hundreds of thousands of open handles.
  4692 //
  4693 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
  4694 //     and release unused handles.
  4695 //
  4696 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
  4697 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
  4698 //
  4699 // 5.  Use an RCU-like mechanism (Read-Copy Update).
  4700 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
  4701 //
  4702 // We use (2).
  4703 //
  4704 // TODO-FIXME:
  4705 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
  4706 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
  4707 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
  4708 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
  4709 //     into a single win32 CreateEvent() handle.
  4710 //
  4711 // _Event transitions in park()
  4712 //   -1 => -1 : illegal
  4713 //    1 =>  0 : pass - return immediately
  4714 //    0 => -1 : block
  4715 //
  4716 // _Event serves as a restricted-range semaphore :
  4717 //    -1 : thread is blocked
  4718 //     0 : neutral  - thread is running or ready
  4719 //     1 : signaled - thread is running or ready
  4720 //
  4721 // Another possible encoding of _Event would be
  4722 // with explicit "PARKED" and "SIGNALED" bits.
  4724 int os::PlatformEvent::park (jlong Millis) {
  4725     guarantee (_ParkHandle != NULL , "Invariant") ;
  4726     guarantee (Millis > 0          , "Invariant") ;
  4727     int v ;
  4729     // CONSIDER: defer assigning a CreateEvent() handle to the Event until
  4730     // the initial park() operation.
  4732     for (;;) {
  4733         v = _Event ;
  4734         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  4736     guarantee ((v == 0) || (v == 1), "invariant") ;
  4737     if (v != 0) return OS_OK ;
  4739     // Do this the hard way by blocking ...
  4740     // TODO: consider a brief spin here, gated on the success of recent
  4741     // spin attempts by this thread.
  4742     //
  4743     // We decompose long timeouts into series of shorter timed waits.
  4744     // Evidently large timo values passed in WaitForSingleObject() are problematic on some
  4745     // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
  4746     // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
  4747     // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
  4748     // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
  4749     // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
  4750     // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
  4751     // for the already waited time.  This policy does not admit any new outcomes.
  4752     // In the future, however, we might want to track the accumulated wait time and
  4753     // adjust Millis accordingly if we encounter a spurious wakeup.
  4755     const int MAXTIMEOUT = 0x10000000 ;
  4756     DWORD rv = WAIT_TIMEOUT ;
  4757     while (_Event < 0 && Millis > 0) {
  4758        DWORD prd = Millis ;     // set prd = MAX (Millis, MAXTIMEOUT)
  4759        if (Millis > MAXTIMEOUT) {
  4760           prd = MAXTIMEOUT ;
  4762        rv = ::WaitForSingleObject (_ParkHandle, prd) ;
  4763        assert (rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed") ;
  4764        if (rv == WAIT_TIMEOUT) {
  4765            Millis -= prd ;
  4768     v = _Event ;
  4769     _Event = 0 ;
  4770     // see comment at end of os::PlatformEvent::park() below:
  4771     OrderAccess::fence() ;
  4772     // If we encounter a nearly simultanous timeout expiry and unpark()
  4773     // we return OS_OK indicating we awoke via unpark().
  4774     // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
  4775     return (v >= 0) ? OS_OK : OS_TIMEOUT ;
  4778 void os::PlatformEvent::park () {
  4779     guarantee (_ParkHandle != NULL, "Invariant") ;
  4780     // Invariant: Only the thread associated with the Event/PlatformEvent
  4781     // may call park().
  4782     int v ;
  4783     for (;;) {
  4784         v = _Event ;
  4785         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  4787     guarantee ((v == 0) || (v == 1), "invariant") ;
  4788     if (v != 0) return ;
  4790     // Do this the hard way by blocking ...
  4791     // TODO: consider a brief spin here, gated on the success of recent
  4792     // spin attempts by this thread.
  4793     while (_Event < 0) {
  4794        DWORD rv = ::WaitForSingleObject (_ParkHandle, INFINITE) ;
  4795        assert (rv == WAIT_OBJECT_0, "WaitForSingleObject failed") ;
  4798     // Usually we'll find _Event == 0 at this point, but as
  4799     // an optional optimization we clear it, just in case can
  4800     // multiple unpark() operations drove _Event up to 1.
  4801     _Event = 0 ;
  4802     OrderAccess::fence() ;
  4803     guarantee (_Event >= 0, "invariant") ;
  4806 void os::PlatformEvent::unpark() {
  4807   guarantee (_ParkHandle != NULL, "Invariant") ;
  4809   // Transitions for _Event:
  4810   //    0 :=> 1
  4811   //    1 :=> 1
  4812   //   -1 :=> either 0 or 1; must signal target thread
  4813   //          That is, we can safely transition _Event from -1 to either
  4814   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
  4815   //          unpark() calls.
  4816   // See also: "Semaphores in Plan 9" by Mullender & Cox
  4817   //
  4818   // Note: Forcing a transition from "-1" to "1" on an unpark() means
  4819   // that it will take two back-to-back park() calls for the owning
  4820   // thread to block. This has the benefit of forcing a spurious return
  4821   // from the first park() call after an unpark() call which will help
  4822   // shake out uses of park() and unpark() without condition variables.
  4824   if (Atomic::xchg(1, &_Event) >= 0) return;
  4826   ::SetEvent(_ParkHandle);
  4830 // JSR166
  4831 // -------------------------------------------------------
  4833 /*
  4834  * The Windows implementation of Park is very straightforward: Basic
  4835  * operations on Win32 Events turn out to have the right semantics to
  4836  * use them directly. We opportunistically resuse the event inherited
  4837  * from Monitor.
  4838  */
  4841 void Parker::park(bool isAbsolute, jlong time) {
  4842   guarantee (_ParkEvent != NULL, "invariant") ;
  4843   // First, demultiplex/decode time arguments
  4844   if (time < 0) { // don't wait
  4845     return;
  4847   else if (time == 0 && !isAbsolute) {
  4848     time = INFINITE;
  4850   else if  (isAbsolute) {
  4851     time -= os::javaTimeMillis(); // convert to relative time
  4852     if (time <= 0) // already elapsed
  4853       return;
  4855   else { // relative
  4856     time /= 1000000; // Must coarsen from nanos to millis
  4857     if (time == 0)   // Wait for the minimal time unit if zero
  4858       time = 1;
  4861   JavaThread* thread = (JavaThread*)(Thread::current());
  4862   assert(thread->is_Java_thread(), "Must be JavaThread");
  4863   JavaThread *jt = (JavaThread *)thread;
  4865   // Don't wait if interrupted or already triggered
  4866   if (Thread::is_interrupted(thread, false) ||
  4867     WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
  4868     ResetEvent(_ParkEvent);
  4869     return;
  4871   else {
  4872     ThreadBlockInVM tbivm(jt);
  4873     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  4874     jt->set_suspend_equivalent();
  4876     WaitForSingleObject(_ParkEvent,  time);
  4877     ResetEvent(_ParkEvent);
  4879     // If externally suspended while waiting, re-suspend
  4880     if (jt->handle_special_suspend_equivalent_condition()) {
  4881       jt->java_suspend_self();
  4886 void Parker::unpark() {
  4887   guarantee (_ParkEvent != NULL, "invariant") ;
  4888   SetEvent(_ParkEvent);
  4891 // Run the specified command in a separate process. Return its exit value,
  4892 // or -1 on failure (e.g. can't create a new process).
  4893 int os::fork_and_exec(char* cmd) {
  4894   STARTUPINFO si;
  4895   PROCESS_INFORMATION pi;
  4897   memset(&si, 0, sizeof(si));
  4898   si.cb = sizeof(si);
  4899   memset(&pi, 0, sizeof(pi));
  4900   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
  4901                             cmd,    // command line
  4902                             NULL,   // process security attribute
  4903                             NULL,   // thread security attribute
  4904                             TRUE,   // inherits system handles
  4905                             0,      // no creation flags
  4906                             NULL,   // use parent's environment block
  4907                             NULL,   // use parent's starting directory
  4908                             &si,    // (in) startup information
  4909                             &pi);   // (out) process information
  4911   if (rslt) {
  4912     // Wait until child process exits.
  4913     WaitForSingleObject(pi.hProcess, INFINITE);
  4915     DWORD exit_code;
  4916     GetExitCodeProcess(pi.hProcess, &exit_code);
  4918     // Close process and thread handles.
  4919     CloseHandle(pi.hProcess);
  4920     CloseHandle(pi.hThread);
  4922     return (int)exit_code;
  4923   } else {
  4924     return -1;
  4928 //--------------------------------------------------------------------------------------------------
  4929 // Non-product code
  4931 static int mallocDebugIntervalCounter = 0;
  4932 static int mallocDebugCounter = 0;
  4933 bool os::check_heap(bool force) {
  4934   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
  4935   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
  4936     // Note: HeapValidate executes two hardware breakpoints when it finds something
  4937     // wrong; at these points, eax contains the address of the offending block (I think).
  4938     // To get to the exlicit error message(s) below, just continue twice.
  4939     HANDLE heap = GetProcessHeap();
  4940     { HeapLock(heap);
  4941       PROCESS_HEAP_ENTRY phe;
  4942       phe.lpData = NULL;
  4943       while (HeapWalk(heap, &phe) != 0) {
  4944         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
  4945             !HeapValidate(heap, 0, phe.lpData)) {
  4946           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
  4947           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
  4948           fatal("corrupted C heap");
  4951       DWORD err = GetLastError();
  4952       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
  4953         fatal(err_msg("heap walk aborted with error %d", err));
  4955       HeapUnlock(heap);
  4957     mallocDebugIntervalCounter = 0;
  4959   return true;
  4963 bool os::find(address addr, outputStream* st) {
  4964   // Nothing yet
  4965   return false;
  4968 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
  4969   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
  4971   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
  4972     JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
  4973     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
  4974     address addr = (address) exceptionRecord->ExceptionInformation[1];
  4976     if (os::is_memory_serialize_page(thread, addr))
  4977       return EXCEPTION_CONTINUE_EXECUTION;
  4980   return EXCEPTION_CONTINUE_SEARCH;
  4983 // We don't build a headless jre for Windows
  4984 bool os::is_headless_jre() { return false; }
  4986 static jint initSock() {
  4987   WSADATA wsadata;
  4989   if (!os::WinSock2Dll::WinSock2Available()) {
  4990     jio_fprintf(stderr, "Could not load Winsock (error: %d)\n",
  4991       ::GetLastError());
  4992     return JNI_ERR;
  4995   if (os::WinSock2Dll::WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
  4996     jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
  4997       ::GetLastError());
  4998     return JNI_ERR;
  5000   return JNI_OK;
  5003 struct hostent* os::get_host_by_name(char* name) {
  5004   return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
  5007 int os::socket_close(int fd) {
  5008   return ::closesocket(fd);
  5011 int os::socket_available(int fd, jint *pbytes) {
  5012   int ret = ::ioctlsocket(fd, FIONREAD, (u_long*)pbytes);
  5013   return (ret < 0) ? 0 : 1;
  5016 int os::socket(int domain, int type, int protocol) {
  5017   return ::socket(domain, type, protocol);
  5020 int os::listen(int fd, int count) {
  5021   return ::listen(fd, count);
  5024 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
  5025   return ::connect(fd, him, len);
  5028 int os::accept(int fd, struct sockaddr* him, socklen_t* len) {
  5029   return ::accept(fd, him, len);
  5032 int os::sendto(int fd, char* buf, size_t len, uint flags,
  5033                struct sockaddr* to, socklen_t tolen) {
  5035   return ::sendto(fd, buf, (int)len, flags, to, tolen);
  5038 int os::recvfrom(int fd, char *buf, size_t nBytes, uint flags,
  5039                  sockaddr* from, socklen_t* fromlen) {
  5041   return ::recvfrom(fd, buf, (int)nBytes, flags, from, fromlen);
  5044 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
  5045   return ::recv(fd, buf, (int)nBytes, flags);
  5048 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
  5049   return ::send(fd, buf, (int)nBytes, flags);
  5052 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
  5053   return ::send(fd, buf, (int)nBytes, flags);
  5056 int os::timeout(int fd, long timeout) {
  5057   fd_set tbl;
  5058   struct timeval t;
  5060   t.tv_sec  = timeout / 1000;
  5061   t.tv_usec = (timeout % 1000) * 1000;
  5063   tbl.fd_count    = 1;
  5064   tbl.fd_array[0] = fd;
  5066   return ::select(1, &tbl, 0, 0, &t);
  5069 int os::get_host_name(char* name, int namelen) {
  5070   return ::gethostname(name, namelen);
  5073 int os::socket_shutdown(int fd, int howto) {
  5074   return ::shutdown(fd, howto);
  5077 int os::bind(int fd, struct sockaddr* him, socklen_t len) {
  5078   return ::bind(fd, him, len);
  5081 int os::get_sock_name(int fd, struct sockaddr* him, socklen_t* len) {
  5082   return ::getsockname(fd, him, len);
  5085 int os::get_sock_opt(int fd, int level, int optname,
  5086                      char* optval, socklen_t* optlen) {
  5087   return ::getsockopt(fd, level, optname, optval, optlen);
  5090 int os::set_sock_opt(int fd, int level, int optname,
  5091                      const char* optval, socklen_t optlen) {
  5092   return ::setsockopt(fd, level, optname, optval, optlen);
  5095 // WINDOWS CONTEXT Flags for THREAD_SAMPLING
  5096 #if defined(IA32)
  5097 #  define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
  5098 #elif defined (AMD64)
  5099 #  define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
  5100 #endif
  5102 // returns true if thread could be suspended,
  5103 // false otherwise
  5104 static bool do_suspend(HANDLE* h) {
  5105   if (h != NULL) {
  5106     if (SuspendThread(*h) != ~0) {
  5107       return true;
  5110   return false;
  5113 // resume the thread
  5114 // calling resume on an active thread is a no-op
  5115 static void do_resume(HANDLE* h) {
  5116   if (h != NULL) {
  5117     ResumeThread(*h);
  5121 // retrieve a suspend/resume context capable handle
  5122 // from the tid. Caller validates handle return value.
  5123 void get_thread_handle_for_extended_context(HANDLE* h, OSThread::thread_id_t tid) {
  5124   if (h != NULL) {
  5125     *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
  5129 //
  5130 // Thread sampling implementation
  5131 //
  5132 void os::SuspendedThreadTask::internal_do_task() {
  5133   CONTEXT    ctxt;
  5134   HANDLE     h = NULL;
  5136   // get context capable handle for thread
  5137   get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
  5139   // sanity
  5140   if (h == NULL || h == INVALID_HANDLE_VALUE) {
  5141     return;
  5144   // suspend the thread
  5145   if (do_suspend(&h)) {
  5146     ctxt.ContextFlags = sampling_context_flags;
  5147     // get thread context
  5148     GetThreadContext(h, &ctxt);
  5149     SuspendedThreadTaskContext context(_thread, &ctxt);
  5150     // pass context to Thread Sampling impl
  5151     do_task(context);
  5152     // resume thread
  5153     do_resume(&h);
  5156   // close handle
  5157   CloseHandle(h);
  5161 // Kernel32 API
  5162 typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
  5163 typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn) (HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
  5164 typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn) (PULONG);
  5165 typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn) (UCHAR, PULONGLONG);
  5166 typedef USHORT (WINAPI* RtlCaptureStackBackTrace_Fn)(ULONG, ULONG, PVOID*, PULONG);
  5168 GetLargePageMinimum_Fn      os::Kernel32Dll::_GetLargePageMinimum = NULL;
  5169 VirtualAllocExNuma_Fn       os::Kernel32Dll::_VirtualAllocExNuma = NULL;
  5170 GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
  5171 GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
  5172 RtlCaptureStackBackTrace_Fn os::Kernel32Dll::_RtlCaptureStackBackTrace = NULL;
  5175 BOOL                        os::Kernel32Dll::initialized = FALSE;
  5176 SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
  5177   assert(initialized && _GetLargePageMinimum != NULL,
  5178     "GetLargePageMinimumAvailable() not yet called");
  5179   return _GetLargePageMinimum();
  5182 BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
  5183   if (!initialized) {
  5184     initialize();
  5186   return _GetLargePageMinimum != NULL;
  5189 BOOL os::Kernel32Dll::NumaCallsAvailable() {
  5190   if (!initialized) {
  5191     initialize();
  5193   return _VirtualAllocExNuma != NULL;
  5196 LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr, SIZE_T bytes, DWORD flags, DWORD prot, DWORD node) {
  5197   assert(initialized && _VirtualAllocExNuma != NULL,
  5198     "NUMACallsAvailable() not yet called");
  5200   return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
  5203 BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
  5204   assert(initialized && _GetNumaHighestNodeNumber != NULL,
  5205     "NUMACallsAvailable() not yet called");
  5207   return _GetNumaHighestNodeNumber(ptr_highest_node_number);
  5210 BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node, PULONGLONG proc_mask) {
  5211   assert(initialized && _GetNumaNodeProcessorMask != NULL,
  5212     "NUMACallsAvailable() not yet called");
  5214   return _GetNumaNodeProcessorMask(node, proc_mask);
  5217 USHORT os::Kernel32Dll::RtlCaptureStackBackTrace(ULONG FrameToSkip,
  5218   ULONG FrameToCapture, PVOID* BackTrace, PULONG BackTraceHash) {
  5219     if (!initialized) {
  5220       initialize();
  5223     if (_RtlCaptureStackBackTrace != NULL) {
  5224       return _RtlCaptureStackBackTrace(FrameToSkip, FrameToCapture,
  5225         BackTrace, BackTraceHash);
  5226     } else {
  5227       return 0;
  5231 void os::Kernel32Dll::initializeCommon() {
  5232   if (!initialized) {
  5233     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
  5234     assert(handle != NULL, "Just check");
  5235     _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
  5236     _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
  5237     _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
  5238     _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
  5239     _RtlCaptureStackBackTrace = (RtlCaptureStackBackTrace_Fn)::GetProcAddress(handle, "RtlCaptureStackBackTrace");
  5240     initialized = TRUE;
  5246 #ifndef JDK6_OR_EARLIER
  5248 void os::Kernel32Dll::initialize() {
  5249   initializeCommon();
  5253 // Kernel32 API
  5254 inline BOOL os::Kernel32Dll::SwitchToThread() {
  5255   return ::SwitchToThread();
  5258 inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
  5259   return true;
  5262   // Help tools
  5263 inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
  5264   return true;
  5267 inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
  5268   return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
  5271 inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
  5272   return ::Module32First(hSnapshot, lpme);
  5275 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
  5276   return ::Module32Next(hSnapshot, lpme);
  5280 inline BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
  5281   return true;
  5284 inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
  5285   ::GetNativeSystemInfo(lpSystemInfo);
  5288 // PSAPI API
  5289 inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
  5290   return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
  5293 inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
  5294   return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
  5297 inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
  5298   return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
  5301 inline BOOL os::PSApiDll::PSApiAvailable() {
  5302   return true;
  5306 // WinSock2 API
  5307 inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
  5308   return ::WSAStartup(wVersionRequested, lpWSAData);
  5311 inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
  5312   return ::gethostbyname(name);
  5315 inline BOOL os::WinSock2Dll::WinSock2Available() {
  5316   return true;
  5319 // Advapi API
  5320 inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
  5321    BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
  5322    PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
  5323      return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
  5324        BufferLength, PreviousState, ReturnLength);
  5327 inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
  5328   PHANDLE TokenHandle) {
  5329     return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
  5332 inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
  5333   return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
  5336 inline BOOL os::Advapi32Dll::AdvapiAvailable() {
  5337   return true;
  5340 #else
  5341 // Kernel32 API
  5342 typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
  5343 typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD,DWORD);
  5344 typedef BOOL (WINAPI* Module32First_Fn)(HANDLE,LPMODULEENTRY32);
  5345 typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE,LPMODULEENTRY32);
  5346 typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
  5348 SwitchToThread_Fn           os::Kernel32Dll::_SwitchToThread = NULL;
  5349 CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
  5350 Module32First_Fn            os::Kernel32Dll::_Module32First = NULL;
  5351 Module32Next_Fn             os::Kernel32Dll::_Module32Next = NULL;
  5352 GetNativeSystemInfo_Fn      os::Kernel32Dll::_GetNativeSystemInfo = NULL;
  5354 void os::Kernel32Dll::initialize() {
  5355   if (!initialized) {
  5356     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
  5357     assert(handle != NULL, "Just check");
  5359     _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
  5360     _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
  5361       ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
  5362     _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
  5363     _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
  5364     _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
  5365     initializeCommon();  // resolve the functions that always need resolving
  5367     initialized = TRUE;
  5371 BOOL os::Kernel32Dll::SwitchToThread() {
  5372   assert(initialized && _SwitchToThread != NULL,
  5373     "SwitchToThreadAvailable() not yet called");
  5374   return _SwitchToThread();
  5378 BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
  5379   if (!initialized) {
  5380     initialize();
  5382   return _SwitchToThread != NULL;
  5385 // Help tools
  5386 BOOL os::Kernel32Dll::HelpToolsAvailable() {
  5387   if (!initialized) {
  5388     initialize();
  5390   return _CreateToolhelp32Snapshot != NULL &&
  5391          _Module32First != NULL &&
  5392          _Module32Next != NULL;
  5395 HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
  5396   assert(initialized && _CreateToolhelp32Snapshot != NULL,
  5397     "HelpToolsAvailable() not yet called");
  5399   return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
  5402 BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
  5403   assert(initialized && _Module32First != NULL,
  5404     "HelpToolsAvailable() not yet called");
  5406   return _Module32First(hSnapshot, lpme);
  5409 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
  5410   assert(initialized && _Module32Next != NULL,
  5411     "HelpToolsAvailable() not yet called");
  5413   return _Module32Next(hSnapshot, lpme);
  5417 BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
  5418   if (!initialized) {
  5419     initialize();
  5421   return _GetNativeSystemInfo != NULL;
  5424 void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
  5425   assert(initialized && _GetNativeSystemInfo != NULL,
  5426     "GetNativeSystemInfoAvailable() not yet called");
  5428   _GetNativeSystemInfo(lpSystemInfo);
  5431 // PSAPI API
  5434 typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
  5435 typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);;
  5436 typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
  5438 EnumProcessModules_Fn   os::PSApiDll::_EnumProcessModules = NULL;
  5439 GetModuleFileNameEx_Fn  os::PSApiDll::_GetModuleFileNameEx = NULL;
  5440 GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
  5441 BOOL                    os::PSApiDll::initialized = FALSE;
  5443 void os::PSApiDll::initialize() {
  5444   if (!initialized) {
  5445     HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
  5446     if (handle != NULL) {
  5447       _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
  5448         "EnumProcessModules");
  5449       _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
  5450         "GetModuleFileNameExA");
  5451       _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
  5452         "GetModuleInformation");
  5454     initialized = TRUE;
  5460 BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
  5461   assert(initialized && _EnumProcessModules != NULL,
  5462     "PSApiAvailable() not yet called");
  5463   return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
  5466 DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
  5467   assert(initialized && _GetModuleFileNameEx != NULL,
  5468     "PSApiAvailable() not yet called");
  5469   return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
  5472 BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
  5473   assert(initialized && _GetModuleInformation != NULL,
  5474     "PSApiAvailable() not yet called");
  5475   return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
  5478 BOOL os::PSApiDll::PSApiAvailable() {
  5479   if (!initialized) {
  5480     initialize();
  5482   return _EnumProcessModules != NULL &&
  5483     _GetModuleFileNameEx != NULL &&
  5484     _GetModuleInformation != NULL;
  5488 // WinSock2 API
  5489 typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
  5490 typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
  5492 WSAStartup_Fn    os::WinSock2Dll::_WSAStartup = NULL;
  5493 gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
  5494 BOOL             os::WinSock2Dll::initialized = FALSE;
  5496 void os::WinSock2Dll::initialize() {
  5497   if (!initialized) {
  5498     HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
  5499     if (handle != NULL) {
  5500       _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
  5501       _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
  5503     initialized = TRUE;
  5508 BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
  5509   assert(initialized && _WSAStartup != NULL,
  5510     "WinSock2Available() not yet called");
  5511   return _WSAStartup(wVersionRequested, lpWSAData);
  5514 struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
  5515   assert(initialized && _gethostbyname != NULL,
  5516     "WinSock2Available() not yet called");
  5517   return _gethostbyname(name);
  5520 BOOL os::WinSock2Dll::WinSock2Available() {
  5521   if (!initialized) {
  5522     initialize();
  5524   return _WSAStartup != NULL &&
  5525     _gethostbyname != NULL;
  5528 typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
  5529 typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
  5530 typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
  5532 AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
  5533 OpenProcessToken_Fn      os::Advapi32Dll::_OpenProcessToken = NULL;
  5534 LookupPrivilegeValue_Fn  os::Advapi32Dll::_LookupPrivilegeValue = NULL;
  5535 BOOL                     os::Advapi32Dll::initialized = FALSE;
  5537 void os::Advapi32Dll::initialize() {
  5538   if (!initialized) {
  5539     HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
  5540     if (handle != NULL) {
  5541       _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
  5542         "AdjustTokenPrivileges");
  5543       _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
  5544         "OpenProcessToken");
  5545       _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
  5546         "LookupPrivilegeValueA");
  5548     initialized = TRUE;
  5552 BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
  5553    BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
  5554    PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
  5555    assert(initialized && _AdjustTokenPrivileges != NULL,
  5556      "AdvapiAvailable() not yet called");
  5557    return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
  5558        BufferLength, PreviousState, ReturnLength);
  5561 BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
  5562   PHANDLE TokenHandle) {
  5563    assert(initialized && _OpenProcessToken != NULL,
  5564      "AdvapiAvailable() not yet called");
  5565     return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
  5568 BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
  5569    assert(initialized && _LookupPrivilegeValue != NULL,
  5570      "AdvapiAvailable() not yet called");
  5571   return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
  5574 BOOL os::Advapi32Dll::AdvapiAvailable() {
  5575   if (!initialized) {
  5576     initialize();
  5578   return _AdjustTokenPrivileges != NULL &&
  5579     _OpenProcessToken != NULL &&
  5580     _LookupPrivilegeValue != NULL;
  5583 #endif

mercurial