src/share/vm/opto/type.cpp

Tue, 10 Mar 2020 10:46:35 +0100

author
mdoerr
date
Tue, 10 Mar 2020 10:46:35 +0100
changeset 9912
97d09139b360
parent 9840
9efdbe72ed1d
child 9852
70aa912cebe5
child 9985
8712be1ae49a
permissions
-rw-r--r--

8146612: C2: Precedence edges specification violated
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "ci/ciMethodData.hpp"
    27 #include "ci/ciTypeFlow.hpp"
    28 #include "classfile/symbolTable.hpp"
    29 #include "classfile/systemDictionary.hpp"
    30 #include "compiler/compileLog.hpp"
    31 #include "libadt/dict.hpp"
    32 #include "memory/gcLocker.hpp"
    33 #include "memory/oopFactory.hpp"
    34 #include "memory/resourceArea.hpp"
    35 #include "oops/instanceKlass.hpp"
    36 #include "oops/instanceMirrorKlass.hpp"
    37 #include "oops/objArrayKlass.hpp"
    38 #include "oops/typeArrayKlass.hpp"
    39 #include "opto/matcher.hpp"
    40 #include "opto/node.hpp"
    41 #include "opto/opcodes.hpp"
    42 #include "opto/type.hpp"
    44 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    46 // Portions of code courtesy of Clifford Click
    48 // Optimization - Graph Style
    50 // Dictionary of types shared among compilations.
    51 Dict* Type::_shared_type_dict = NULL;
    53 // Array which maps compiler types to Basic Types
    54 const Type::TypeInfo Type::_type_info[Type::lastype] = {
    55   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
    56   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
    57   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
    58   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
    59   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
    60   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
    61   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
    62   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
    63   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
    64   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
    66 #ifdef SPARC
    67   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
    68   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
    69   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
    70   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
    71 #elif defined(PPC64)
    72   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
    73   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
    74   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
    75   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
    76 #else // all other
    77   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
    78   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
    79   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
    80   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
    81 #endif
    82   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
    83   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
    84   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
    85   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
    86   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
    87   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
    88   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
    89   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
    90   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
    91   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
    92   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
    93   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
    94   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
    95   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
    96   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
    97   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
    98   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
    99   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
   100 };
   102 // Map ideal registers (machine types) to ideal types
   103 const Type *Type::mreg2type[_last_machine_leaf];
   105 // Map basic types to canonical Type* pointers.
   106 const Type* Type::     _const_basic_type[T_CONFLICT+1];
   108 // Map basic types to constant-zero Types.
   109 const Type* Type::            _zero_type[T_CONFLICT+1];
   111 // Map basic types to array-body alias types.
   112 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
   114 //=============================================================================
   115 // Convenience common pre-built types.
   116 const Type *Type::ABIO;         // State-of-machine only
   117 const Type *Type::BOTTOM;       // All values
   118 const Type *Type::CONTROL;      // Control only
   119 const Type *Type::DOUBLE;       // All doubles
   120 const Type *Type::FLOAT;        // All floats
   121 const Type *Type::HALF;         // Placeholder half of doublewide type
   122 const Type *Type::MEMORY;       // Abstract store only
   123 const Type *Type::RETURN_ADDRESS;
   124 const Type *Type::TOP;          // No values in set
   126 //------------------------------get_const_type---------------------------
   127 const Type* Type::get_const_type(ciType* type) {
   128   if (type == NULL) {
   129     return NULL;
   130   } else if (type->is_primitive_type()) {
   131     return get_const_basic_type(type->basic_type());
   132   } else {
   133     return TypeOopPtr::make_from_klass(type->as_klass());
   134   }
   135 }
   137 //---------------------------array_element_basic_type---------------------------------
   138 // Mapping to the array element's basic type.
   139 BasicType Type::array_element_basic_type() const {
   140   BasicType bt = basic_type();
   141   if (bt == T_INT) {
   142     if (this == TypeInt::INT)   return T_INT;
   143     if (this == TypeInt::CHAR)  return T_CHAR;
   144     if (this == TypeInt::BYTE)  return T_BYTE;
   145     if (this == TypeInt::BOOL)  return T_BOOLEAN;
   146     if (this == TypeInt::SHORT) return T_SHORT;
   147     return T_VOID;
   148   }
   149   return bt;
   150 }
   152 // For two instance arrays of same dimension, return the base element types.
   153 // Otherwise or if the arrays have different dimensions, return NULL.
   154 void Type::get_arrays_base_elements(const Type *a1, const Type *a2,
   155                                     const TypeInstPtr **e1, const TypeInstPtr **e2) {
   157   if (e1) *e1 = NULL;
   158   if (e2) *e2 = NULL;
   159   const TypeAryPtr* a1tap = (a1 == NULL) ? NULL : a1->isa_aryptr();
   160   const TypeAryPtr* a2tap = (a2 == NULL) ? NULL : a2->isa_aryptr();
   162   if (a1tap != NULL && a2tap != NULL) {
   163     // Handle multidimensional arrays
   164     const TypePtr* a1tp = a1tap->elem()->make_ptr();
   165     const TypePtr* a2tp = a2tap->elem()->make_ptr();
   166     while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) {
   167       a1tap = a1tp->is_aryptr();
   168       a2tap = a2tp->is_aryptr();
   169       a1tp = a1tap->elem()->make_ptr();
   170       a2tp = a2tap->elem()->make_ptr();
   171     }
   172     if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) {
   173       if (e1) *e1 = a1tp->is_instptr();
   174       if (e2) *e2 = a2tp->is_instptr();
   175     }
   176   }
   177 }
   179 //---------------------------get_typeflow_type---------------------------------
   180 // Import a type produced by ciTypeFlow.
   181 const Type* Type::get_typeflow_type(ciType* type) {
   182   switch (type->basic_type()) {
   184   case ciTypeFlow::StateVector::T_BOTTOM:
   185     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
   186     return Type::BOTTOM;
   188   case ciTypeFlow::StateVector::T_TOP:
   189     assert(type == ciTypeFlow::StateVector::top_type(), "");
   190     return Type::TOP;
   192   case ciTypeFlow::StateVector::T_NULL:
   193     assert(type == ciTypeFlow::StateVector::null_type(), "");
   194     return TypePtr::NULL_PTR;
   196   case ciTypeFlow::StateVector::T_LONG2:
   197     // The ciTypeFlow pass pushes a long, then the half.
   198     // We do the same.
   199     assert(type == ciTypeFlow::StateVector::long2_type(), "");
   200     return TypeInt::TOP;
   202   case ciTypeFlow::StateVector::T_DOUBLE2:
   203     // The ciTypeFlow pass pushes double, then the half.
   204     // Our convention is the same.
   205     assert(type == ciTypeFlow::StateVector::double2_type(), "");
   206     return Type::TOP;
   208   case T_ADDRESS:
   209     assert(type->is_return_address(), "");
   210     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
   212   default:
   213     // make sure we did not mix up the cases:
   214     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
   215     assert(type != ciTypeFlow::StateVector::top_type(), "");
   216     assert(type != ciTypeFlow::StateVector::null_type(), "");
   217     assert(type != ciTypeFlow::StateVector::long2_type(), "");
   218     assert(type != ciTypeFlow::StateVector::double2_type(), "");
   219     assert(!type->is_return_address(), "");
   221     return Type::get_const_type(type);
   222   }
   223 }
   226 //-----------------------make_from_constant------------------------------------
   227 const Type* Type::make_from_constant(ciConstant constant,
   228                                      bool require_constant, bool is_autobox_cache) {
   229   switch (constant.basic_type()) {
   230   case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
   231   case T_CHAR:     return TypeInt::make(constant.as_char());
   232   case T_BYTE:     return TypeInt::make(constant.as_byte());
   233   case T_SHORT:    return TypeInt::make(constant.as_short());
   234   case T_INT:      return TypeInt::make(constant.as_int());
   235   case T_LONG:     return TypeLong::make(constant.as_long());
   236   case T_FLOAT:    return TypeF::make(constant.as_float());
   237   case T_DOUBLE:   return TypeD::make(constant.as_double());
   238   case T_ARRAY:
   239   case T_OBJECT:
   240     {
   241       // cases:
   242       //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
   243       //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
   244       // An oop is not scavengable if it is in the perm gen.
   245       ciObject* oop_constant = constant.as_object();
   246       if (oop_constant->is_null_object()) {
   247         return Type::get_zero_type(T_OBJECT);
   248       } else if (require_constant || oop_constant->should_be_constant()) {
   249         return TypeOopPtr::make_from_constant(oop_constant, require_constant, is_autobox_cache);
   250       }
   251     }
   252   }
   253   // Fall through to failure
   254   return NULL;
   255 }
   258 //------------------------------make-------------------------------------------
   259 // Create a simple Type, with default empty symbol sets.  Then hashcons it
   260 // and look for an existing copy in the type dictionary.
   261 const Type *Type::make( enum TYPES t ) {
   262   return (new Type(t))->hashcons();
   263 }
   265 //------------------------------cmp--------------------------------------------
   266 int Type::cmp( const Type *const t1, const Type *const t2 ) {
   267   if( t1->_base != t2->_base )
   268     return 1;                   // Missed badly
   269   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
   270   return !t1->eq(t2);           // Return ZERO if equal
   271 }
   273 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
   274   if (!include_speculative) {
   275     return remove_speculative();
   276   }
   277   return this;
   278 }
   280 //------------------------------hash-------------------------------------------
   281 int Type::uhash( const Type *const t ) {
   282   return t->hash();
   283 }
   285 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
   287 //--------------------------Initialize_shared----------------------------------
   288 void Type::Initialize_shared(Compile* current) {
   289   // This method does not need to be locked because the first system
   290   // compilations (stub compilations) occur serially.  If they are
   291   // changed to proceed in parallel, then this section will need
   292   // locking.
   294   Arena* save = current->type_arena();
   295   Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
   297   current->set_type_arena(shared_type_arena);
   298   _shared_type_dict =
   299     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
   300                                   shared_type_arena, 128 );
   301   current->set_type_dict(_shared_type_dict);
   303   // Make shared pre-built types.
   304   CONTROL = make(Control);      // Control only
   305   TOP     = make(Top);          // No values in set
   306   MEMORY  = make(Memory);       // Abstract store only
   307   ABIO    = make(Abio);         // State-of-machine only
   308   RETURN_ADDRESS=make(Return_Address);
   309   FLOAT   = make(FloatBot);     // All floats
   310   DOUBLE  = make(DoubleBot);    // All doubles
   311   BOTTOM  = make(Bottom);       // Everything
   312   HALF    = make(Half);         // Placeholder half of doublewide type
   314   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
   315   TypeF::ONE  = TypeF::make(1.0); // Float 1
   317   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
   318   TypeD::ONE  = TypeD::make(1.0); // Double 1
   320   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
   321   TypeInt::ZERO    = TypeInt::make( 0);  //  0
   322   TypeInt::ONE     = TypeInt::make( 1);  //  1
   323   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
   324   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
   325   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
   326   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
   327   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
   328   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
   329   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
   330   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
   331   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
   332   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
   333   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
   334   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
   335   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
   336   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
   337   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
   338   TypeInt::TYPE_DOMAIN  = TypeInt::INT;
   339   // CmpL is overloaded both as the bytecode computation returning
   340   // a trinary (-1,0,+1) integer result AND as an efficient long
   341   // compare returning optimizer ideal-type flags.
   342   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
   343   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
   344   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
   345   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
   346   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
   348   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
   349   TypeLong::ZERO    = TypeLong::make( 0);        //  0
   350   TypeLong::ONE     = TypeLong::make( 1);        //  1
   351   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
   352   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
   353   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
   354   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
   355   TypeLong::TYPE_DOMAIN  = TypeLong::LONG;
   357   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   358   fboth[0] = Type::CONTROL;
   359   fboth[1] = Type::CONTROL;
   360   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
   362   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   363   ffalse[0] = Type::CONTROL;
   364   ffalse[1] = Type::TOP;
   365   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
   367   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   368   fneither[0] = Type::TOP;
   369   fneither[1] = Type::TOP;
   370   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
   372   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   373   ftrue[0] = Type::TOP;
   374   ftrue[1] = Type::CONTROL;
   375   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
   377   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   378   floop[0] = Type::CONTROL;
   379   floop[1] = TypeInt::INT;
   380   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
   382   TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
   383   TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
   384   TypePtr::BOTTOM  = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
   386   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
   387   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
   389   const Type **fmembar = TypeTuple::fields(0);
   390   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
   392   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   393   fsc[0] = TypeInt::CC;
   394   fsc[1] = Type::MEMORY;
   395   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
   397   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
   398   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
   399   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
   400   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
   401                                            false, 0, oopDesc::mark_offset_in_bytes());
   402   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
   403                                            false, 0, oopDesc::klass_offset_in_bytes());
   404   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot, NULL);
   406   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
   408   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
   409   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
   411   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
   413   mreg2type[Op_Node] = Type::BOTTOM;
   414   mreg2type[Op_Set ] = 0;
   415   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
   416   mreg2type[Op_RegI] = TypeInt::INT;
   417   mreg2type[Op_RegP] = TypePtr::BOTTOM;
   418   mreg2type[Op_RegF] = Type::FLOAT;
   419   mreg2type[Op_RegD] = Type::DOUBLE;
   420   mreg2type[Op_RegL] = TypeLong::LONG;
   421   mreg2type[Op_RegFlags] = TypeInt::CC;
   423   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
   425   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
   427 #ifdef _LP64
   428   if (UseCompressedOops) {
   429     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
   430     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
   431   } else
   432 #endif
   433   {
   434     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
   435     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
   436   }
   437   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
   438   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
   439   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
   440   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
   441   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
   442   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
   443   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
   445   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
   446   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
   447   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
   448   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
   449   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
   450   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
   451   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
   452   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
   453   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
   454   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
   455   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
   456   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
   458   TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
   459   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
   461   const Type **fi2c = TypeTuple::fields(2);
   462   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
   463   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
   464   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
   466   const Type **intpair = TypeTuple::fields(2);
   467   intpair[0] = TypeInt::INT;
   468   intpair[1] = TypeInt::INT;
   469   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
   471   const Type **longpair = TypeTuple::fields(2);
   472   longpair[0] = TypeLong::LONG;
   473   longpair[1] = TypeLong::LONG;
   474   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
   476   const Type **intccpair = TypeTuple::fields(2);
   477   intccpair[0] = TypeInt::INT;
   478   intccpair[1] = TypeInt::CC;
   479   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
   481   const Type **longccpair = TypeTuple::fields(2);
   482   longccpair[0] = TypeLong::LONG;
   483   longccpair[1] = TypeInt::CC;
   484   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
   486   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
   487   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
   488   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
   489   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
   490   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
   491   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
   492   _const_basic_type[T_INT]         = TypeInt::INT;
   493   _const_basic_type[T_LONG]        = TypeLong::LONG;
   494   _const_basic_type[T_FLOAT]       = Type::FLOAT;
   495   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
   496   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
   497   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
   498   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
   499   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
   500   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
   502   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
   503   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
   504   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
   505   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
   506   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
   507   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
   508   _zero_type[T_INT]         = TypeInt::ZERO;
   509   _zero_type[T_LONG]        = TypeLong::ZERO;
   510   _zero_type[T_FLOAT]       = TypeF::ZERO;
   511   _zero_type[T_DOUBLE]      = TypeD::ZERO;
   512   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
   513   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
   514   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
   515   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
   517   // get_zero_type() should not happen for T_CONFLICT
   518   _zero_type[T_CONFLICT]= NULL;
   520   // Vector predefined types, it needs initialized _const_basic_type[].
   521   if (Matcher::vector_size_supported(T_BYTE,4)) {
   522     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
   523   }
   524   if (Matcher::vector_size_supported(T_FLOAT,2)) {
   525     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
   526   }
   527   if (Matcher::vector_size_supported(T_FLOAT,4)) {
   528     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
   529   }
   530   if (Matcher::vector_size_supported(T_FLOAT,8)) {
   531     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
   532   }
   533   mreg2type[Op_VecS] = TypeVect::VECTS;
   534   mreg2type[Op_VecD] = TypeVect::VECTD;
   535   mreg2type[Op_VecX] = TypeVect::VECTX;
   536   mreg2type[Op_VecY] = TypeVect::VECTY;
   538   // Restore working type arena.
   539   current->set_type_arena(save);
   540   current->set_type_dict(NULL);
   541 }
   543 //------------------------------Initialize-------------------------------------
   544 void Type::Initialize(Compile* current) {
   545   assert(current->type_arena() != NULL, "must have created type arena");
   547   if (_shared_type_dict == NULL) {
   548     Initialize_shared(current);
   549   }
   551   Arena* type_arena = current->type_arena();
   553   // Create the hash-cons'ing dictionary with top-level storage allocation
   554   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
   555   current->set_type_dict(tdic);
   557   // Transfer the shared types.
   558   DictI i(_shared_type_dict);
   559   for( ; i.test(); ++i ) {
   560     Type* t = (Type*)i._value;
   561     tdic->Insert(t,t);  // New Type, insert into Type table
   562   }
   563 }
   565 //------------------------------hashcons---------------------------------------
   566 // Do the hash-cons trick.  If the Type already exists in the type table,
   567 // delete the current Type and return the existing Type.  Otherwise stick the
   568 // current Type in the Type table.
   569 const Type *Type::hashcons(void) {
   570   debug_only(base());           // Check the assertion in Type::base().
   571   // Look up the Type in the Type dictionary
   572   Dict *tdic = type_dict();
   573   Type* old = (Type*)(tdic->Insert(this, this, false));
   574   if( old ) {                   // Pre-existing Type?
   575     if( old != this )           // Yes, this guy is not the pre-existing?
   576       delete this;              // Yes, Nuke this guy
   577     assert( old->_dual, "" );
   578     return old;                 // Return pre-existing
   579   }
   581   // Every type has a dual (to make my lattice symmetric).
   582   // Since we just discovered a new Type, compute its dual right now.
   583   assert( !_dual, "" );         // No dual yet
   584   _dual = xdual();              // Compute the dual
   585   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
   586     _dual = this;
   587     return this;
   588   }
   589   assert( !_dual->_dual, "" );  // No reverse dual yet
   590   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
   591   // New Type, insert into Type table
   592   tdic->Insert((void*)_dual,(void*)_dual);
   593   ((Type*)_dual)->_dual = this; // Finish up being symmetric
   594 #ifdef ASSERT
   595   Type *dual_dual = (Type*)_dual->xdual();
   596   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
   597   delete dual_dual;
   598 #endif
   599   return this;                  // Return new Type
   600 }
   602 //------------------------------eq---------------------------------------------
   603 // Structural equality check for Type representations
   604 bool Type::eq( const Type * ) const {
   605   return true;                  // Nothing else can go wrong
   606 }
   608 //------------------------------hash-------------------------------------------
   609 // Type-specific hashing function.
   610 int Type::hash(void) const {
   611   return _base;
   612 }
   614 //------------------------------is_finite--------------------------------------
   615 // Has a finite value
   616 bool Type::is_finite() const {
   617   return false;
   618 }
   620 //------------------------------is_nan-----------------------------------------
   621 // Is not a number (NaN)
   622 bool Type::is_nan()    const {
   623   return false;
   624 }
   626 //----------------------interface_vs_oop---------------------------------------
   627 #ifdef ASSERT
   628 bool Type::interface_vs_oop_helper(const Type *t) const {
   629   bool result = false;
   631   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
   632   const TypePtr*    t_ptr =    t->make_ptr();
   633   if( this_ptr == NULL || t_ptr == NULL )
   634     return result;
   636   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
   637   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
   638   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
   639     bool this_interface = this_inst->klass()->is_interface();
   640     bool    t_interface =    t_inst->klass()->is_interface();
   641     result = this_interface ^ t_interface;
   642   }
   644   return result;
   645 }
   647 bool Type::interface_vs_oop(const Type *t) const {
   648   if (interface_vs_oop_helper(t)) {
   649     return true;
   650   }
   651   // Now check the speculative parts as well
   652   const TypeOopPtr* this_spec = isa_oopptr() != NULL ? isa_oopptr()->speculative() : NULL;
   653   const TypeOopPtr* t_spec = t->isa_oopptr() != NULL ? t->isa_oopptr()->speculative() : NULL;
   654   if (this_spec != NULL && t_spec != NULL) {
   655     if (this_spec->interface_vs_oop_helper(t_spec)) {
   656       return true;
   657     }
   658     return false;
   659   }
   660   if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
   661     return true;
   662   }
   663   if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
   664     return true;
   665   }
   666   return false;
   667 }
   669 #endif
   671 //------------------------------meet-------------------------------------------
   672 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
   673 // commutative and the lattice is symmetric.
   674 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
   675   if (isa_narrowoop() && t->isa_narrowoop()) {
   676     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
   677     return result->make_narrowoop();
   678   }
   679   if (isa_narrowklass() && t->isa_narrowklass()) {
   680     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
   681     return result->make_narrowklass();
   682   }
   684   const Type *this_t = maybe_remove_speculative(include_speculative);
   685   t = t->maybe_remove_speculative(include_speculative);
   687   const Type *mt = this_t->xmeet(t);
   688   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
   689   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
   690 #ifdef ASSERT
   691   assert(mt == t->xmeet(this_t), "meet not commutative");
   692   const Type* dual_join = mt->_dual;
   693   const Type *t2t    = dual_join->xmeet(t->_dual);
   694   const Type *t2this = dual_join->xmeet(this_t->_dual);
   696   // Interface meet Oop is Not Symmetric:
   697   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
   698   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
   700   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
   701     tty->print_cr("=== Meet Not Symmetric ===");
   702     tty->print("t   =                   ");              t->dump(); tty->cr();
   703     tty->print("this=                   ");         this_t->dump(); tty->cr();
   704     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
   706     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
   707     tty->print("this_dual=              ");  this_t->_dual->dump(); tty->cr();
   708     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
   710     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
   711     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
   713     fatal("meet not symmetric" );
   714   }
   715 #endif
   716   return mt;
   717 }
   719 //------------------------------xmeet------------------------------------------
   720 // Compute the MEET of two types.  It returns a new Type object.
   721 const Type *Type::xmeet( const Type *t ) const {
   722   // Perform a fast test for common case; meeting the same types together.
   723   if( this == t ) return this;  // Meeting same type-rep?
   725   // Meeting TOP with anything?
   726   if( _base == Top ) return t;
   728   // Meeting BOTTOM with anything?
   729   if( _base == Bottom ) return BOTTOM;
   731   // Current "this->_base" is one of: Bad, Multi, Control, Top,
   732   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
   733   switch (t->base()) {  // Switch on original type
   735   // Cut in half the number of cases I must handle.  Only need cases for when
   736   // the given enum "t->type" is less than or equal to the local enum "type".
   737   case FloatCon:
   738   case DoubleCon:
   739   case Int:
   740   case Long:
   741     return t->xmeet(this);
   743   case OopPtr:
   744     return t->xmeet(this);
   746   case InstPtr:
   747     return t->xmeet(this);
   749   case MetadataPtr:
   750   case KlassPtr:
   751     return t->xmeet(this);
   753   case AryPtr:
   754     return t->xmeet(this);
   756   case NarrowOop:
   757     return t->xmeet(this);
   759   case NarrowKlass:
   760     return t->xmeet(this);
   762   case Bad:                     // Type check
   763   default:                      // Bogus type not in lattice
   764     typerr(t);
   765     return Type::BOTTOM;
   767   case Bottom:                  // Ye Olde Default
   768     return t;
   770   case FloatTop:
   771     if( _base == FloatTop ) return this;
   772   case FloatBot:                // Float
   773     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
   774     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
   775     typerr(t);
   776     return Type::BOTTOM;
   778   case DoubleTop:
   779     if( _base == DoubleTop ) return this;
   780   case DoubleBot:               // Double
   781     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
   782     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
   783     typerr(t);
   784     return Type::BOTTOM;
   786   // These next few cases must match exactly or it is a compile-time error.
   787   case Control:                 // Control of code
   788   case Abio:                    // State of world outside of program
   789   case Memory:
   790     if( _base == t->_base )  return this;
   791     typerr(t);
   792     return Type::BOTTOM;
   794   case Top:                     // Top of the lattice
   795     return this;
   796   }
   798   // The type is unchanged
   799   return this;
   800 }
   802 //-----------------------------filter------------------------------------------
   803 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
   804   const Type* ft = join_helper(kills, include_speculative);
   805   if (ft->empty())
   806     return Type::TOP;           // Canonical empty value
   807   return ft;
   808 }
   810 //------------------------------xdual------------------------------------------
   811 // Compute dual right now.
   812 const Type::TYPES Type::dual_type[Type::lastype] = {
   813   Bad,          // Bad
   814   Control,      // Control
   815   Bottom,       // Top
   816   Bad,          // Int - handled in v-call
   817   Bad,          // Long - handled in v-call
   818   Half,         // Half
   819   Bad,          // NarrowOop - handled in v-call
   820   Bad,          // NarrowKlass - handled in v-call
   822   Bad,          // Tuple - handled in v-call
   823   Bad,          // Array - handled in v-call
   824   Bad,          // VectorS - handled in v-call
   825   Bad,          // VectorD - handled in v-call
   826   Bad,          // VectorX - handled in v-call
   827   Bad,          // VectorY - handled in v-call
   829   Bad,          // AnyPtr - handled in v-call
   830   Bad,          // RawPtr - handled in v-call
   831   Bad,          // OopPtr - handled in v-call
   832   Bad,          // InstPtr - handled in v-call
   833   Bad,          // AryPtr - handled in v-call
   835   Bad,          //  MetadataPtr - handled in v-call
   836   Bad,          // KlassPtr - handled in v-call
   838   Bad,          // Function - handled in v-call
   839   Abio,         // Abio
   840   Return_Address,// Return_Address
   841   Memory,       // Memory
   842   FloatBot,     // FloatTop
   843   FloatCon,     // FloatCon
   844   FloatTop,     // FloatBot
   845   DoubleBot,    // DoubleTop
   846   DoubleCon,    // DoubleCon
   847   DoubleTop,    // DoubleBot
   848   Top           // Bottom
   849 };
   851 const Type *Type::xdual() const {
   852   // Note: the base() accessor asserts the sanity of _base.
   853   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
   854   return new Type(_type_info[_base].dual_type);
   855 }
   857 //------------------------------has_memory-------------------------------------
   858 bool Type::has_memory() const {
   859   Type::TYPES tx = base();
   860   if (tx == Memory) return true;
   861   if (tx == Tuple) {
   862     const TypeTuple *t = is_tuple();
   863     for (uint i=0; i < t->cnt(); i++) {
   864       tx = t->field_at(i)->base();
   865       if (tx == Memory)  return true;
   866     }
   867   }
   868   return false;
   869 }
   871 #ifndef PRODUCT
   872 //------------------------------dump2------------------------------------------
   873 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
   874   st->print("%s", _type_info[_base].msg);
   875 }
   877 //------------------------------dump-------------------------------------------
   878 void Type::dump_on(outputStream *st) const {
   879   ResourceMark rm;
   880   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
   881   dump2(d,1, st);
   882   if (is_ptr_to_narrowoop()) {
   883     st->print(" [narrow]");
   884   } else if (is_ptr_to_narrowklass()) {
   885     st->print(" [narrowklass]");
   886   }
   887 }
   889 //-----------------------------------------------------------------------------
   890 const char* Type::str(const Type* t) {
   891   stringStream ss;
   892   t->dump_on(&ss);
   893   return ss.as_string();
   894 }
   895 #endif
   897 //------------------------------singleton--------------------------------------
   898 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
   899 // constants (Ldi nodes).  Singletons are integer, float or double constants.
   900 bool Type::singleton(void) const {
   901   return _base == Top || _base == Half;
   902 }
   904 //------------------------------empty------------------------------------------
   905 // TRUE if Type is a type with no values, FALSE otherwise.
   906 bool Type::empty(void) const {
   907   switch (_base) {
   908   case DoubleTop:
   909   case FloatTop:
   910   case Top:
   911     return true;
   913   case Half:
   914   case Abio:
   915   case Return_Address:
   916   case Memory:
   917   case Bottom:
   918   case FloatBot:
   919   case DoubleBot:
   920     return false;  // never a singleton, therefore never empty
   921   }
   923   ShouldNotReachHere();
   924   return false;
   925 }
   927 //------------------------------dump_stats-------------------------------------
   928 // Dump collected statistics to stderr
   929 #ifndef PRODUCT
   930 void Type::dump_stats() {
   931   tty->print("Types made: %d\n", type_dict()->Size());
   932 }
   933 #endif
   935 //------------------------------typerr-----------------------------------------
   936 void Type::typerr( const Type *t ) const {
   937 #ifndef PRODUCT
   938   tty->print("\nError mixing types: ");
   939   dump();
   940   tty->print(" and ");
   941   t->dump();
   942   tty->print("\n");
   943 #endif
   944   ShouldNotReachHere();
   945 }
   948 //=============================================================================
   949 // Convenience common pre-built types.
   950 const TypeF *TypeF::ZERO;       // Floating point zero
   951 const TypeF *TypeF::ONE;        // Floating point one
   953 //------------------------------make-------------------------------------------
   954 // Create a float constant
   955 const TypeF *TypeF::make(float f) {
   956   return (TypeF*)(new TypeF(f))->hashcons();
   957 }
   959 //------------------------------meet-------------------------------------------
   960 // Compute the MEET of two types.  It returns a new Type object.
   961 const Type *TypeF::xmeet( const Type *t ) const {
   962   // Perform a fast test for common case; meeting the same types together.
   963   if( this == t ) return this;  // Meeting same type-rep?
   965   // Current "this->_base" is FloatCon
   966   switch (t->base()) {          // Switch on original type
   967   case AnyPtr:                  // Mixing with oops happens when javac
   968   case RawPtr:                  // reuses local variables
   969   case OopPtr:
   970   case InstPtr:
   971   case AryPtr:
   972   case MetadataPtr:
   973   case KlassPtr:
   974   case NarrowOop:
   975   case NarrowKlass:
   976   case Int:
   977   case Long:
   978   case DoubleTop:
   979   case DoubleCon:
   980   case DoubleBot:
   981   case Bottom:                  // Ye Olde Default
   982     return Type::BOTTOM;
   984   case FloatBot:
   985     return t;
   987   default:                      // All else is a mistake
   988     typerr(t);
   990   case FloatCon:                // Float-constant vs Float-constant?
   991     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
   992                                 // must compare bitwise as positive zero, negative zero and NaN have
   993                                 // all the same representation in C++
   994       return FLOAT;             // Return generic float
   995                                 // Equal constants
   996   case Top:
   997   case FloatTop:
   998     break;                      // Return the float constant
   999   }
  1000   return this;                  // Return the float constant
  1003 //------------------------------xdual------------------------------------------
  1004 // Dual: symmetric
  1005 const Type *TypeF::xdual() const {
  1006   return this;
  1009 //------------------------------eq---------------------------------------------
  1010 // Structural equality check for Type representations
  1011 bool TypeF::eq(const Type *t) const {
  1012   // Bitwise comparison to distinguish between +/-0. These values must be treated
  1013   // as different to be consistent with C1 and the interpreter.
  1014   return (jint_cast(_f) == jint_cast(t->getf()));
  1017 //------------------------------hash-------------------------------------------
  1018 // Type-specific hashing function.
  1019 int TypeF::hash(void) const {
  1020   return *(int*)(&_f);
  1023 //------------------------------is_finite--------------------------------------
  1024 // Has a finite value
  1025 bool TypeF::is_finite() const {
  1026   return g_isfinite(getf()) != 0;
  1029 //------------------------------is_nan-----------------------------------------
  1030 // Is not a number (NaN)
  1031 bool TypeF::is_nan()    const {
  1032   return g_isnan(getf()) != 0;
  1035 //------------------------------dump2------------------------------------------
  1036 // Dump float constant Type
  1037 #ifndef PRODUCT
  1038 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
  1039   Type::dump2(d,depth, st);
  1040   st->print("%f", _f);
  1042 #endif
  1044 //------------------------------singleton--------------------------------------
  1045 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1046 // constants (Ldi nodes).  Singletons are integer, float or double constants
  1047 // or a single symbol.
  1048 bool TypeF::singleton(void) const {
  1049   return true;                  // Always a singleton
  1052 bool TypeF::empty(void) const {
  1053   return false;                 // always exactly a singleton
  1056 //=============================================================================
  1057 // Convenience common pre-built types.
  1058 const TypeD *TypeD::ZERO;       // Floating point zero
  1059 const TypeD *TypeD::ONE;        // Floating point one
  1061 //------------------------------make-------------------------------------------
  1062 const TypeD *TypeD::make(double d) {
  1063   return (TypeD*)(new TypeD(d))->hashcons();
  1066 //------------------------------meet-------------------------------------------
  1067 // Compute the MEET of two types.  It returns a new Type object.
  1068 const Type *TypeD::xmeet( const Type *t ) const {
  1069   // Perform a fast test for common case; meeting the same types together.
  1070   if( this == t ) return this;  // Meeting same type-rep?
  1072   // Current "this->_base" is DoubleCon
  1073   switch (t->base()) {          // Switch on original type
  1074   case AnyPtr:                  // Mixing with oops happens when javac
  1075   case RawPtr:                  // reuses local variables
  1076   case OopPtr:
  1077   case InstPtr:
  1078   case AryPtr:
  1079   case MetadataPtr:
  1080   case KlassPtr:
  1081   case NarrowOop:
  1082   case NarrowKlass:
  1083   case Int:
  1084   case Long:
  1085   case FloatTop:
  1086   case FloatCon:
  1087   case FloatBot:
  1088   case Bottom:                  // Ye Olde Default
  1089     return Type::BOTTOM;
  1091   case DoubleBot:
  1092     return t;
  1094   default:                      // All else is a mistake
  1095     typerr(t);
  1097   case DoubleCon:               // Double-constant vs Double-constant?
  1098     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
  1099       return DOUBLE;            // Return generic double
  1100   case Top:
  1101   case DoubleTop:
  1102     break;
  1104   return this;                  // Return the double constant
  1107 //------------------------------xdual------------------------------------------
  1108 // Dual: symmetric
  1109 const Type *TypeD::xdual() const {
  1110   return this;
  1113 //------------------------------eq---------------------------------------------
  1114 // Structural equality check for Type representations
  1115 bool TypeD::eq(const Type *t) const {
  1116   // Bitwise comparison to distinguish between +/-0. These values must be treated
  1117   // as different to be consistent with C1 and the interpreter.
  1118   return (jlong_cast(_d) == jlong_cast(t->getd()));
  1121 //------------------------------hash-------------------------------------------
  1122 // Type-specific hashing function.
  1123 int TypeD::hash(void) const {
  1124   return *(int*)(&_d);
  1127 //------------------------------is_finite--------------------------------------
  1128 // Has a finite value
  1129 bool TypeD::is_finite() const {
  1130   return g_isfinite(getd()) != 0;
  1133 //------------------------------is_nan-----------------------------------------
  1134 // Is not a number (NaN)
  1135 bool TypeD::is_nan()    const {
  1136   return g_isnan(getd()) != 0;
  1139 //------------------------------dump2------------------------------------------
  1140 // Dump double constant Type
  1141 #ifndef PRODUCT
  1142 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
  1143   Type::dump2(d,depth,st);
  1144   st->print("%f", _d);
  1146 #endif
  1148 //------------------------------singleton--------------------------------------
  1149 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1150 // constants (Ldi nodes).  Singletons are integer, float or double constants
  1151 // or a single symbol.
  1152 bool TypeD::singleton(void) const {
  1153   return true;                  // Always a singleton
  1156 bool TypeD::empty(void) const {
  1157   return false;                 // always exactly a singleton
  1160 //=============================================================================
  1161 // Convience common pre-built types.
  1162 const TypeInt *TypeInt::MINUS_1;// -1
  1163 const TypeInt *TypeInt::ZERO;   // 0
  1164 const TypeInt *TypeInt::ONE;    // 1
  1165 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
  1166 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
  1167 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
  1168 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
  1169 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
  1170 const TypeInt *TypeInt::CC_LE;  // [-1,0]
  1171 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
  1172 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
  1173 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
  1174 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
  1175 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
  1176 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
  1177 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
  1178 const TypeInt *TypeInt::INT;    // 32-bit integers
  1179 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
  1180 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
  1182 //------------------------------TypeInt----------------------------------------
  1183 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
  1186 //------------------------------make-------------------------------------------
  1187 const TypeInt *TypeInt::make( jint lo ) {
  1188   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
  1191 static int normalize_int_widen( jint lo, jint hi, int w ) {
  1192   // Certain normalizations keep us sane when comparing types.
  1193   // The 'SMALLINT' covers constants and also CC and its relatives.
  1194   if (lo <= hi) {
  1195     if (((juint)hi - lo) <= SMALLINT)  w = Type::WidenMin;
  1196     if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
  1197   } else {
  1198     if (((juint)lo - hi) <= SMALLINT)  w = Type::WidenMin;
  1199     if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
  1201   return w;
  1204 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
  1205   w = normalize_int_widen(lo, hi, w);
  1206   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
  1209 //------------------------------meet-------------------------------------------
  1210 // Compute the MEET of two types.  It returns a new Type representation object
  1211 // with reference count equal to the number of Types pointing at it.
  1212 // Caller should wrap a Types around it.
  1213 const Type *TypeInt::xmeet( const Type *t ) const {
  1214   // Perform a fast test for common case; meeting the same types together.
  1215   if( this == t ) return this;  // Meeting same type?
  1217   // Currently "this->_base" is a TypeInt
  1218   switch (t->base()) {          // Switch on original type
  1219   case AnyPtr:                  // Mixing with oops happens when javac
  1220   case RawPtr:                  // reuses local variables
  1221   case OopPtr:
  1222   case InstPtr:
  1223   case AryPtr:
  1224   case MetadataPtr:
  1225   case KlassPtr:
  1226   case NarrowOop:
  1227   case NarrowKlass:
  1228   case Long:
  1229   case FloatTop:
  1230   case FloatCon:
  1231   case FloatBot:
  1232   case DoubleTop:
  1233   case DoubleCon:
  1234   case DoubleBot:
  1235   case Bottom:                  // Ye Olde Default
  1236     return Type::BOTTOM;
  1237   default:                      // All else is a mistake
  1238     typerr(t);
  1239   case Top:                     // No change
  1240     return this;
  1241   case Int:                     // Int vs Int?
  1242     break;
  1245   // Expand covered set
  1246   const TypeInt *r = t->is_int();
  1247   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
  1250 //------------------------------xdual------------------------------------------
  1251 // Dual: reverse hi & lo; flip widen
  1252 const Type *TypeInt::xdual() const {
  1253   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
  1254   return new TypeInt(_hi,_lo,w);
  1257 //------------------------------widen------------------------------------------
  1258 // Only happens for optimistic top-down optimizations.
  1259 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
  1260   // Coming from TOP or such; no widening
  1261   if( old->base() != Int ) return this;
  1262   const TypeInt *ot = old->is_int();
  1264   // If new guy is equal to old guy, no widening
  1265   if( _lo == ot->_lo && _hi == ot->_hi )
  1266     return old;
  1268   // If new guy contains old, then we widened
  1269   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
  1270     // New contains old
  1271     // If new guy is already wider than old, no widening
  1272     if( _widen > ot->_widen ) return this;
  1273     // If old guy was a constant, do not bother
  1274     if (ot->_lo == ot->_hi)  return this;
  1275     // Now widen new guy.
  1276     // Check for widening too far
  1277     if (_widen == WidenMax) {
  1278       int max = max_jint;
  1279       int min = min_jint;
  1280       if (limit->isa_int()) {
  1281         max = limit->is_int()->_hi;
  1282         min = limit->is_int()->_lo;
  1284       if (min < _lo && _hi < max) {
  1285         // If neither endpoint is extremal yet, push out the endpoint
  1286         // which is closer to its respective limit.
  1287         if (_lo >= 0 ||                 // easy common case
  1288             (juint)(_lo - min) >= (juint)(max - _hi)) {
  1289           // Try to widen to an unsigned range type of 31 bits:
  1290           return make(_lo, max, WidenMax);
  1291         } else {
  1292           return make(min, _hi, WidenMax);
  1295       return TypeInt::INT;
  1297     // Returned widened new guy
  1298     return make(_lo,_hi,_widen+1);
  1301   // If old guy contains new, then we probably widened too far & dropped to
  1302   // bottom.  Return the wider fellow.
  1303   if ( ot->_lo <= _lo && ot->_hi >= _hi )
  1304     return old;
  1306   //fatal("Integer value range is not subset");
  1307   //return this;
  1308   return TypeInt::INT;
  1311 //------------------------------narrow---------------------------------------
  1312 // Only happens for pessimistic optimizations.
  1313 const Type *TypeInt::narrow( const Type *old ) const {
  1314   if (_lo >= _hi)  return this;   // already narrow enough
  1315   if (old == NULL)  return this;
  1316   const TypeInt* ot = old->isa_int();
  1317   if (ot == NULL)  return this;
  1318   jint olo = ot->_lo;
  1319   jint ohi = ot->_hi;
  1321   // If new guy is equal to old guy, no narrowing
  1322   if (_lo == olo && _hi == ohi)  return old;
  1324   // If old guy was maximum range, allow the narrowing
  1325   if (olo == min_jint && ohi == max_jint)  return this;
  1327   if (_lo < olo || _hi > ohi)
  1328     return this;                // doesn't narrow; pretty wierd
  1330   // The new type narrows the old type, so look for a "death march".
  1331   // See comments on PhaseTransform::saturate.
  1332   juint nrange = (juint)_hi - _lo;
  1333   juint orange = (juint)ohi - olo;
  1334   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
  1335     // Use the new type only if the range shrinks a lot.
  1336     // We do not want the optimizer computing 2^31 point by point.
  1337     return old;
  1340   return this;
  1343 //-----------------------------filter------------------------------------------
  1344 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
  1345   const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
  1346   if (ft == NULL || ft->empty())
  1347     return Type::TOP;           // Canonical empty value
  1348   if (ft->_widen < this->_widen) {
  1349     // Do not allow the value of kill->_widen to affect the outcome.
  1350     // The widen bits must be allowed to run freely through the graph.
  1351     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
  1353   return ft;
  1356 //------------------------------eq---------------------------------------------
  1357 // Structural equality check for Type representations
  1358 bool TypeInt::eq( const Type *t ) const {
  1359   const TypeInt *r = t->is_int(); // Handy access
  1360   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
  1363 //------------------------------hash-------------------------------------------
  1364 // Type-specific hashing function.
  1365 int TypeInt::hash(void) const {
  1366   return java_add(java_add(_lo, _hi), java_add(_widen, (int)Type::Int));
  1369 //------------------------------is_finite--------------------------------------
  1370 // Has a finite value
  1371 bool TypeInt::is_finite() const {
  1372   return true;
  1375 //------------------------------dump2------------------------------------------
  1376 // Dump TypeInt
  1377 #ifndef PRODUCT
  1378 static const char* intname(char* buf, jint n) {
  1379   if (n == min_jint)
  1380     return "min";
  1381   else if (n < min_jint + 10000)
  1382     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
  1383   else if (n == max_jint)
  1384     return "max";
  1385   else if (n > max_jint - 10000)
  1386     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
  1387   else
  1388     sprintf(buf, INT32_FORMAT, n);
  1389   return buf;
  1392 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
  1393   char buf[40], buf2[40];
  1394   if (_lo == min_jint && _hi == max_jint)
  1395     st->print("int");
  1396   else if (is_con())
  1397     st->print("int:%s", intname(buf, get_con()));
  1398   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
  1399     st->print("bool");
  1400   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
  1401     st->print("byte");
  1402   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
  1403     st->print("char");
  1404   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
  1405     st->print("short");
  1406   else if (_hi == max_jint)
  1407     st->print("int:>=%s", intname(buf, _lo));
  1408   else if (_lo == min_jint)
  1409     st->print("int:<=%s", intname(buf, _hi));
  1410   else
  1411     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
  1413   if (_widen != 0 && this != TypeInt::INT)
  1414     st->print(":%.*s", _widen, "wwww");
  1416 #endif
  1418 //------------------------------singleton--------------------------------------
  1419 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1420 // constants.
  1421 bool TypeInt::singleton(void) const {
  1422   return _lo >= _hi;
  1425 bool TypeInt::empty(void) const {
  1426   return _lo > _hi;
  1429 //=============================================================================
  1430 // Convenience common pre-built types.
  1431 const TypeLong *TypeLong::MINUS_1;// -1
  1432 const TypeLong *TypeLong::ZERO; // 0
  1433 const TypeLong *TypeLong::ONE;  // 1
  1434 const TypeLong *TypeLong::POS;  // >=0
  1435 const TypeLong *TypeLong::LONG; // 64-bit integers
  1436 const TypeLong *TypeLong::INT;  // 32-bit subrange
  1437 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
  1438 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
  1440 //------------------------------TypeLong---------------------------------------
  1441 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
  1444 //------------------------------make-------------------------------------------
  1445 const TypeLong *TypeLong::make( jlong lo ) {
  1446   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
  1449 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
  1450   // Certain normalizations keep us sane when comparing types.
  1451   // The 'SMALLINT' covers constants.
  1452   if (lo <= hi) {
  1453     if (((julong)hi - lo) <= SMALLINT)   w = Type::WidenMin;
  1454     if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
  1455   } else {
  1456     if (((julong)lo - hi) <= SMALLINT)   w = Type::WidenMin;
  1457     if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
  1459   return w;
  1462 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
  1463   w = normalize_long_widen(lo, hi, w);
  1464   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
  1468 //------------------------------meet-------------------------------------------
  1469 // Compute the MEET of two types.  It returns a new Type representation object
  1470 // with reference count equal to the number of Types pointing at it.
  1471 // Caller should wrap a Types around it.
  1472 const Type *TypeLong::xmeet( const Type *t ) const {
  1473   // Perform a fast test for common case; meeting the same types together.
  1474   if( this == t ) return this;  // Meeting same type?
  1476   // Currently "this->_base" is a TypeLong
  1477   switch (t->base()) {          // Switch on original type
  1478   case AnyPtr:                  // Mixing with oops happens when javac
  1479   case RawPtr:                  // reuses local variables
  1480   case OopPtr:
  1481   case InstPtr:
  1482   case AryPtr:
  1483   case MetadataPtr:
  1484   case KlassPtr:
  1485   case NarrowOop:
  1486   case NarrowKlass:
  1487   case Int:
  1488   case FloatTop:
  1489   case FloatCon:
  1490   case FloatBot:
  1491   case DoubleTop:
  1492   case DoubleCon:
  1493   case DoubleBot:
  1494   case Bottom:                  // Ye Olde Default
  1495     return Type::BOTTOM;
  1496   default:                      // All else is a mistake
  1497     typerr(t);
  1498   case Top:                     // No change
  1499     return this;
  1500   case Long:                    // Long vs Long?
  1501     break;
  1504   // Expand covered set
  1505   const TypeLong *r = t->is_long(); // Turn into a TypeLong
  1506   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
  1509 //------------------------------xdual------------------------------------------
  1510 // Dual: reverse hi & lo; flip widen
  1511 const Type *TypeLong::xdual() const {
  1512   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
  1513   return new TypeLong(_hi,_lo,w);
  1516 //------------------------------widen------------------------------------------
  1517 // Only happens for optimistic top-down optimizations.
  1518 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
  1519   // Coming from TOP or such; no widening
  1520   if( old->base() != Long ) return this;
  1521   const TypeLong *ot = old->is_long();
  1523   // If new guy is equal to old guy, no widening
  1524   if( _lo == ot->_lo && _hi == ot->_hi )
  1525     return old;
  1527   // If new guy contains old, then we widened
  1528   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
  1529     // New contains old
  1530     // If new guy is already wider than old, no widening
  1531     if( _widen > ot->_widen ) return this;
  1532     // If old guy was a constant, do not bother
  1533     if (ot->_lo == ot->_hi)  return this;
  1534     // Now widen new guy.
  1535     // Check for widening too far
  1536     if (_widen == WidenMax) {
  1537       jlong max = max_jlong;
  1538       jlong min = min_jlong;
  1539       if (limit->isa_long()) {
  1540         max = limit->is_long()->_hi;
  1541         min = limit->is_long()->_lo;
  1543       if (min < _lo && _hi < max) {
  1544         // If neither endpoint is extremal yet, push out the endpoint
  1545         // which is closer to its respective limit.
  1546         if (_lo >= 0 ||                 // easy common case
  1547             ((julong)_lo - min) >= ((julong)max - _hi)) {
  1548           // Try to widen to an unsigned range type of 32/63 bits:
  1549           if (max >= max_juint && _hi < max_juint)
  1550             return make(_lo, max_juint, WidenMax);
  1551           else
  1552             return make(_lo, max, WidenMax);
  1553         } else {
  1554           return make(min, _hi, WidenMax);
  1557       return TypeLong::LONG;
  1559     // Returned widened new guy
  1560     return make(_lo,_hi,_widen+1);
  1563   // If old guy contains new, then we probably widened too far & dropped to
  1564   // bottom.  Return the wider fellow.
  1565   if ( ot->_lo <= _lo && ot->_hi >= _hi )
  1566     return old;
  1568   //  fatal("Long value range is not subset");
  1569   // return this;
  1570   return TypeLong::LONG;
  1573 //------------------------------narrow----------------------------------------
  1574 // Only happens for pessimistic optimizations.
  1575 const Type *TypeLong::narrow( const Type *old ) const {
  1576   if (_lo >= _hi)  return this;   // already narrow enough
  1577   if (old == NULL)  return this;
  1578   const TypeLong* ot = old->isa_long();
  1579   if (ot == NULL)  return this;
  1580   jlong olo = ot->_lo;
  1581   jlong ohi = ot->_hi;
  1583   // If new guy is equal to old guy, no narrowing
  1584   if (_lo == olo && _hi == ohi)  return old;
  1586   // If old guy was maximum range, allow the narrowing
  1587   if (olo == min_jlong && ohi == max_jlong)  return this;
  1589   if (_lo < olo || _hi > ohi)
  1590     return this;                // doesn't narrow; pretty wierd
  1592   // The new type narrows the old type, so look for a "death march".
  1593   // See comments on PhaseTransform::saturate.
  1594   julong nrange = _hi - _lo;
  1595   julong orange = ohi - olo;
  1596   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
  1597     // Use the new type only if the range shrinks a lot.
  1598     // We do not want the optimizer computing 2^31 point by point.
  1599     return old;
  1602   return this;
  1605 //-----------------------------filter------------------------------------------
  1606 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
  1607   const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
  1608   if (ft == NULL || ft->empty())
  1609     return Type::TOP;           // Canonical empty value
  1610   if (ft->_widen < this->_widen) {
  1611     // Do not allow the value of kill->_widen to affect the outcome.
  1612     // The widen bits must be allowed to run freely through the graph.
  1613     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
  1615   return ft;
  1618 //------------------------------eq---------------------------------------------
  1619 // Structural equality check for Type representations
  1620 bool TypeLong::eq( const Type *t ) const {
  1621   const TypeLong *r = t->is_long(); // Handy access
  1622   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
  1625 //------------------------------hash-------------------------------------------
  1626 // Type-specific hashing function.
  1627 int TypeLong::hash(void) const {
  1628   return (int)(_lo+_hi+_widen+(int)Type::Long);
  1631 //------------------------------is_finite--------------------------------------
  1632 // Has a finite value
  1633 bool TypeLong::is_finite() const {
  1634   return true;
  1637 //------------------------------dump2------------------------------------------
  1638 // Dump TypeLong
  1639 #ifndef PRODUCT
  1640 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
  1641   if (n > x) {
  1642     if (n >= x + 10000)  return NULL;
  1643     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
  1644   } else if (n < x) {
  1645     if (n <= x - 10000)  return NULL;
  1646     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
  1647   } else {
  1648     return xname;
  1650   return buf;
  1653 static const char* longname(char* buf, jlong n) {
  1654   const char* str;
  1655   if (n == min_jlong)
  1656     return "min";
  1657   else if (n < min_jlong + 10000)
  1658     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
  1659   else if (n == max_jlong)
  1660     return "max";
  1661   else if (n > max_jlong - 10000)
  1662     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
  1663   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
  1664     return str;
  1665   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
  1666     return str;
  1667   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
  1668     return str;
  1669   else
  1670     sprintf(buf, JLONG_FORMAT, n);
  1671   return buf;
  1674 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
  1675   char buf[80], buf2[80];
  1676   if (_lo == min_jlong && _hi == max_jlong)
  1677     st->print("long");
  1678   else if (is_con())
  1679     st->print("long:%s", longname(buf, get_con()));
  1680   else if (_hi == max_jlong)
  1681     st->print("long:>=%s", longname(buf, _lo));
  1682   else if (_lo == min_jlong)
  1683     st->print("long:<=%s", longname(buf, _hi));
  1684   else
  1685     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
  1687   if (_widen != 0 && this != TypeLong::LONG)
  1688     st->print(":%.*s", _widen, "wwww");
  1690 #endif
  1692 //------------------------------singleton--------------------------------------
  1693 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1694 // constants
  1695 bool TypeLong::singleton(void) const {
  1696   return _lo >= _hi;
  1699 bool TypeLong::empty(void) const {
  1700   return _lo > _hi;
  1703 //=============================================================================
  1704 // Convenience common pre-built types.
  1705 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
  1706 const TypeTuple *TypeTuple::IFFALSE;
  1707 const TypeTuple *TypeTuple::IFTRUE;
  1708 const TypeTuple *TypeTuple::IFNEITHER;
  1709 const TypeTuple *TypeTuple::LOOPBODY;
  1710 const TypeTuple *TypeTuple::MEMBAR;
  1711 const TypeTuple *TypeTuple::STORECONDITIONAL;
  1712 const TypeTuple *TypeTuple::START_I2C;
  1713 const TypeTuple *TypeTuple::INT_PAIR;
  1714 const TypeTuple *TypeTuple::LONG_PAIR;
  1715 const TypeTuple *TypeTuple::INT_CC_PAIR;
  1716 const TypeTuple *TypeTuple::LONG_CC_PAIR;
  1719 //------------------------------make-------------------------------------------
  1720 // Make a TypeTuple from the range of a method signature
  1721 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
  1722   ciType* return_type = sig->return_type();
  1723   uint total_fields = TypeFunc::Parms + return_type->size();
  1724   const Type **field_array = fields(total_fields);
  1725   switch (return_type->basic_type()) {
  1726   case T_LONG:
  1727     field_array[TypeFunc::Parms]   = TypeLong::LONG;
  1728     field_array[TypeFunc::Parms+1] = Type::HALF;
  1729     break;
  1730   case T_DOUBLE:
  1731     field_array[TypeFunc::Parms]   = Type::DOUBLE;
  1732     field_array[TypeFunc::Parms+1] = Type::HALF;
  1733     break;
  1734   case T_OBJECT:
  1735   case T_ARRAY:
  1736   case T_BOOLEAN:
  1737   case T_CHAR:
  1738   case T_FLOAT:
  1739   case T_BYTE:
  1740   case T_SHORT:
  1741   case T_INT:
  1742     field_array[TypeFunc::Parms] = get_const_type(return_type);
  1743     break;
  1744   case T_VOID:
  1745     break;
  1746   default:
  1747     ShouldNotReachHere();
  1749   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
  1752 // Make a TypeTuple from the domain of a method signature
  1753 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
  1754   uint total_fields = TypeFunc::Parms + sig->size();
  1756   uint pos = TypeFunc::Parms;
  1757   const Type **field_array;
  1758   if (recv != NULL) {
  1759     total_fields++;
  1760     field_array = fields(total_fields);
  1761     // Use get_const_type here because it respects UseUniqueSubclasses:
  1762     field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
  1763   } else {
  1764     field_array = fields(total_fields);
  1767   int i = 0;
  1768   while (pos < total_fields) {
  1769     ciType* type = sig->type_at(i);
  1771     switch (type->basic_type()) {
  1772     case T_LONG:
  1773       field_array[pos++] = TypeLong::LONG;
  1774       field_array[pos++] = Type::HALF;
  1775       break;
  1776     case T_DOUBLE:
  1777       field_array[pos++] = Type::DOUBLE;
  1778       field_array[pos++] = Type::HALF;
  1779       break;
  1780     case T_OBJECT:
  1781     case T_ARRAY:
  1782     case T_FLOAT:
  1783     case T_INT:
  1784       field_array[pos++] = get_const_type(type);
  1785       break;
  1786     case T_BOOLEAN:
  1787     case T_CHAR:
  1788     case T_BYTE:
  1789     case T_SHORT:
  1790       field_array[pos++] = TypeInt::INT;
  1791       break;
  1792     default:
  1793       ShouldNotReachHere();
  1795     i++;
  1797   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
  1800 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
  1801   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
  1804 //------------------------------fields-----------------------------------------
  1805 // Subroutine call type with space allocated for argument types
  1806 const Type **TypeTuple::fields( uint arg_cnt ) {
  1807   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
  1808   flds[TypeFunc::Control  ] = Type::CONTROL;
  1809   flds[TypeFunc::I_O      ] = Type::ABIO;
  1810   flds[TypeFunc::Memory   ] = Type::MEMORY;
  1811   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
  1812   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
  1814   return flds;
  1817 //------------------------------meet-------------------------------------------
  1818 // Compute the MEET of two types.  It returns a new Type object.
  1819 const Type *TypeTuple::xmeet( const Type *t ) const {
  1820   // Perform a fast test for common case; meeting the same types together.
  1821   if( this == t ) return this;  // Meeting same type-rep?
  1823   // Current "this->_base" is Tuple
  1824   switch (t->base()) {          // switch on original type
  1826   case Bottom:                  // Ye Olde Default
  1827     return t;
  1829   default:                      // All else is a mistake
  1830     typerr(t);
  1832   case Tuple: {                 // Meeting 2 signatures?
  1833     const TypeTuple *x = t->is_tuple();
  1834     assert( _cnt == x->_cnt, "" );
  1835     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
  1836     for( uint i=0; i<_cnt; i++ )
  1837       fields[i] = field_at(i)->xmeet( x->field_at(i) );
  1838     return TypeTuple::make(_cnt,fields);
  1840   case Top:
  1841     break;
  1843   return this;                  // Return the double constant
  1846 //------------------------------xdual------------------------------------------
  1847 // Dual: compute field-by-field dual
  1848 const Type *TypeTuple::xdual() const {
  1849   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
  1850   for( uint i=0; i<_cnt; i++ )
  1851     fields[i] = _fields[i]->dual();
  1852   return new TypeTuple(_cnt,fields);
  1855 //------------------------------eq---------------------------------------------
  1856 // Structural equality check for Type representations
  1857 bool TypeTuple::eq( const Type *t ) const {
  1858   const TypeTuple *s = (const TypeTuple *)t;
  1859   if (_cnt != s->_cnt)  return false;  // Unequal field counts
  1860   for (uint i = 0; i < _cnt; i++)
  1861     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
  1862       return false;             // Missed
  1863   return true;
  1866 //------------------------------hash-------------------------------------------
  1867 // Type-specific hashing function.
  1868 int TypeTuple::hash(void) const {
  1869   intptr_t sum = _cnt;
  1870   for( uint i=0; i<_cnt; i++ )
  1871     sum += (intptr_t)_fields[i];     // Hash on pointers directly
  1872   return sum;
  1875 //------------------------------dump2------------------------------------------
  1876 // Dump signature Type
  1877 #ifndef PRODUCT
  1878 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
  1879   st->print("{");
  1880   if( !depth || d[this] ) {     // Check for recursive print
  1881     st->print("...}");
  1882     return;
  1884   d.Insert((void*)this, (void*)this);   // Stop recursion
  1885   if( _cnt ) {
  1886     uint i;
  1887     for( i=0; i<_cnt-1; i++ ) {
  1888       st->print("%d:", i);
  1889       _fields[i]->dump2(d, depth-1, st);
  1890       st->print(", ");
  1892     st->print("%d:", i);
  1893     _fields[i]->dump2(d, depth-1, st);
  1895   st->print("}");
  1897 #endif
  1899 //------------------------------singleton--------------------------------------
  1900 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1901 // constants (Ldi nodes).  Singletons are integer, float or double constants
  1902 // or a single symbol.
  1903 bool TypeTuple::singleton(void) const {
  1904   return false;                 // Never a singleton
  1907 bool TypeTuple::empty(void) const {
  1908   for( uint i=0; i<_cnt; i++ ) {
  1909     if (_fields[i]->empty())  return true;
  1911   return false;
  1914 //=============================================================================
  1915 // Convenience common pre-built types.
  1917 inline const TypeInt* normalize_array_size(const TypeInt* size) {
  1918   // Certain normalizations keep us sane when comparing types.
  1919   // We do not want arrayOop variables to differ only by the wideness
  1920   // of their index types.  Pick minimum wideness, since that is the
  1921   // forced wideness of small ranges anyway.
  1922   if (size->_widen != Type::WidenMin)
  1923     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
  1924   else
  1925     return size;
  1928 //------------------------------make-------------------------------------------
  1929 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
  1930   if (UseCompressedOops && elem->isa_oopptr()) {
  1931     elem = elem->make_narrowoop();
  1933   size = normalize_array_size(size);
  1934   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
  1937 //------------------------------meet-------------------------------------------
  1938 // Compute the MEET of two types.  It returns a new Type object.
  1939 const Type *TypeAry::xmeet( const Type *t ) const {
  1940   // Perform a fast test for common case; meeting the same types together.
  1941   if( this == t ) return this;  // Meeting same type-rep?
  1943   // Current "this->_base" is Ary
  1944   switch (t->base()) {          // switch on original type
  1946   case Bottom:                  // Ye Olde Default
  1947     return t;
  1949   default:                      // All else is a mistake
  1950     typerr(t);
  1952   case Array: {                 // Meeting 2 arrays?
  1953     const TypeAry *a = t->is_ary();
  1954     return TypeAry::make(_elem->meet_speculative(a->_elem),
  1955                          _size->xmeet(a->_size)->is_int(),
  1956                          _stable & a->_stable);
  1958   case Top:
  1959     break;
  1961   return this;                  // Return the double constant
  1964 //------------------------------xdual------------------------------------------
  1965 // Dual: compute field-by-field dual
  1966 const Type *TypeAry::xdual() const {
  1967   const TypeInt* size_dual = _size->dual()->is_int();
  1968   size_dual = normalize_array_size(size_dual);
  1969   return new TypeAry(_elem->dual(), size_dual, !_stable);
  1972 //------------------------------eq---------------------------------------------
  1973 // Structural equality check for Type representations
  1974 bool TypeAry::eq( const Type *t ) const {
  1975   const TypeAry *a = (const TypeAry*)t;
  1976   return _elem == a->_elem &&
  1977     _stable == a->_stable &&
  1978     _size == a->_size;
  1981 //------------------------------hash-------------------------------------------
  1982 // Type-specific hashing function.
  1983 int TypeAry::hash(void) const {
  1984   return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
  1987 /**
  1988  * Return same type without a speculative part in the element
  1989  */
  1990 const Type* TypeAry::remove_speculative() const {
  1991   return make(_elem->remove_speculative(), _size, _stable);
  1994 //----------------------interface_vs_oop---------------------------------------
  1995 #ifdef ASSERT
  1996 bool TypeAry::interface_vs_oop(const Type *t) const {
  1997   const TypeAry* t_ary = t->is_ary();
  1998   if (t_ary) {
  1999     const TypePtr* this_ptr = _elem->make_ptr(); // In case we have narrow_oops
  2000     const TypePtr*    t_ptr = t_ary->_elem->make_ptr();
  2001     if(this_ptr != NULL && t_ptr != NULL) {
  2002       return this_ptr->interface_vs_oop(t_ptr);
  2005   return false;
  2007 #endif
  2009 //------------------------------dump2------------------------------------------
  2010 #ifndef PRODUCT
  2011 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
  2012   if (_stable)  st->print("stable:");
  2013   _elem->dump2(d, depth, st);
  2014   st->print("[");
  2015   _size->dump2(d, depth, st);
  2016   st->print("]");
  2018 #endif
  2020 //------------------------------singleton--------------------------------------
  2021 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  2022 // constants (Ldi nodes).  Singletons are integer, float or double constants
  2023 // or a single symbol.
  2024 bool TypeAry::singleton(void) const {
  2025   return false;                 // Never a singleton
  2028 bool TypeAry::empty(void) const {
  2029   return _elem->empty() || _size->empty();
  2032 //--------------------------ary_must_be_exact----------------------------------
  2033 bool TypeAry::ary_must_be_exact() const {
  2034   if (!UseExactTypes)       return false;
  2035   // This logic looks at the element type of an array, and returns true
  2036   // if the element type is either a primitive or a final instance class.
  2037   // In such cases, an array built on this ary must have no subclasses.
  2038   if (_elem == BOTTOM)      return false;  // general array not exact
  2039   if (_elem == TOP   )      return false;  // inverted general array not exact
  2040   const TypeOopPtr*  toop = NULL;
  2041   if (UseCompressedOops && _elem->isa_narrowoop()) {
  2042     toop = _elem->make_ptr()->isa_oopptr();
  2043   } else {
  2044     toop = _elem->isa_oopptr();
  2046   if (!toop)                return true;   // a primitive type, like int
  2047   ciKlass* tklass = toop->klass();
  2048   if (tklass == NULL)       return false;  // unloaded class
  2049   if (!tklass->is_loaded()) return false;  // unloaded class
  2050   const TypeInstPtr* tinst;
  2051   if (_elem->isa_narrowoop())
  2052     tinst = _elem->make_ptr()->isa_instptr();
  2053   else
  2054     tinst = _elem->isa_instptr();
  2055   if (tinst)
  2056     return tklass->as_instance_klass()->is_final();
  2057   const TypeAryPtr*  tap;
  2058   if (_elem->isa_narrowoop())
  2059     tap = _elem->make_ptr()->isa_aryptr();
  2060   else
  2061     tap = _elem->isa_aryptr();
  2062   if (tap)
  2063     return tap->ary()->ary_must_be_exact();
  2064   return false;
  2067 //==============================TypeVect=======================================
  2068 // Convenience common pre-built types.
  2069 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
  2070 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
  2071 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
  2072 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
  2074 //------------------------------make-------------------------------------------
  2075 const TypeVect* TypeVect::make(const Type *elem, uint length) {
  2076   BasicType elem_bt = elem->array_element_basic_type();
  2077   assert(is_java_primitive(elem_bt), "only primitive types in vector");
  2078   assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
  2079   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
  2080   int size = length * type2aelembytes(elem_bt);
  2081   switch (Matcher::vector_ideal_reg(size)) {
  2082   case Op_VecS:
  2083     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
  2084   case Op_RegL:
  2085   case Op_VecD:
  2086   case Op_RegD:
  2087     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
  2088   case Op_VecX:
  2089     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
  2090   case Op_VecY:
  2091     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
  2093  ShouldNotReachHere();
  2094   return NULL;
  2097 //------------------------------meet-------------------------------------------
  2098 // Compute the MEET of two types.  It returns a new Type object.
  2099 const Type *TypeVect::xmeet( const Type *t ) const {
  2100   // Perform a fast test for common case; meeting the same types together.
  2101   if( this == t ) return this;  // Meeting same type-rep?
  2103   // Current "this->_base" is Vector
  2104   switch (t->base()) {          // switch on original type
  2106   case Bottom:                  // Ye Olde Default
  2107     return t;
  2109   default:                      // All else is a mistake
  2110     typerr(t);
  2112   case VectorS:
  2113   case VectorD:
  2114   case VectorX:
  2115   case VectorY: {                // Meeting 2 vectors?
  2116     const TypeVect* v = t->is_vect();
  2117     assert(  base() == v->base(), "");
  2118     assert(length() == v->length(), "");
  2119     assert(element_basic_type() == v->element_basic_type(), "");
  2120     return TypeVect::make(_elem->xmeet(v->_elem), _length);
  2122   case Top:
  2123     break;
  2125   return this;
  2128 //------------------------------xdual------------------------------------------
  2129 // Dual: compute field-by-field dual
  2130 const Type *TypeVect::xdual() const {
  2131   return new TypeVect(base(), _elem->dual(), _length);
  2134 //------------------------------eq---------------------------------------------
  2135 // Structural equality check for Type representations
  2136 bool TypeVect::eq(const Type *t) const {
  2137   const TypeVect *v = t->is_vect();
  2138   return (_elem == v->_elem) && (_length == v->_length);
  2141 //------------------------------hash-------------------------------------------
  2142 // Type-specific hashing function.
  2143 int TypeVect::hash(void) const {
  2144   return (intptr_t)_elem + (intptr_t)_length;
  2147 //------------------------------singleton--------------------------------------
  2148 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  2149 // constants (Ldi nodes).  Vector is singleton if all elements are the same
  2150 // constant value (when vector is created with Replicate code).
  2151 bool TypeVect::singleton(void) const {
  2152 // There is no Con node for vectors yet.
  2153 //  return _elem->singleton();
  2154   return false;
  2157 bool TypeVect::empty(void) const {
  2158   return _elem->empty();
  2161 //------------------------------dump2------------------------------------------
  2162 #ifndef PRODUCT
  2163 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
  2164   switch (base()) {
  2165   case VectorS:
  2166     st->print("vectors["); break;
  2167   case VectorD:
  2168     st->print("vectord["); break;
  2169   case VectorX:
  2170     st->print("vectorx["); break;
  2171   case VectorY:
  2172     st->print("vectory["); break;
  2173   default:
  2174     ShouldNotReachHere();
  2176   st->print("%d]:{", _length);
  2177   _elem->dump2(d, depth, st);
  2178   st->print("}");
  2180 #endif
  2183 //=============================================================================
  2184 // Convenience common pre-built types.
  2185 const TypePtr *TypePtr::NULL_PTR;
  2186 const TypePtr *TypePtr::NOTNULL;
  2187 const TypePtr *TypePtr::BOTTOM;
  2189 //------------------------------meet-------------------------------------------
  2190 // Meet over the PTR enum
  2191 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
  2192   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
  2193   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
  2194   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
  2195   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
  2196   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
  2197   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
  2198   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
  2199 };
  2201 //------------------------------make-------------------------------------------
  2202 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
  2203   return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
  2206 //------------------------------cast_to_ptr_type-------------------------------
  2207 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
  2208   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
  2209   if( ptr == _ptr ) return this;
  2210   return make(_base, ptr, _offset);
  2213 //------------------------------get_con----------------------------------------
  2214 intptr_t TypePtr::get_con() const {
  2215   assert( _ptr == Null, "" );
  2216   return _offset;
  2219 //------------------------------meet-------------------------------------------
  2220 // Compute the MEET of two types.  It returns a new Type object.
  2221 const Type *TypePtr::xmeet( const Type *t ) const {
  2222   // Perform a fast test for common case; meeting the same types together.
  2223   if( this == t ) return this;  // Meeting same type-rep?
  2225   // Current "this->_base" is AnyPtr
  2226   switch (t->base()) {          // switch on original type
  2227   case Int:                     // Mixing ints & oops happens when javac
  2228   case Long:                    // reuses local variables
  2229   case FloatTop:
  2230   case FloatCon:
  2231   case FloatBot:
  2232   case DoubleTop:
  2233   case DoubleCon:
  2234   case DoubleBot:
  2235   case NarrowOop:
  2236   case NarrowKlass:
  2237   case Bottom:                  // Ye Olde Default
  2238     return Type::BOTTOM;
  2239   case Top:
  2240     return this;
  2242   case AnyPtr: {                // Meeting to AnyPtrs
  2243     const TypePtr *tp = t->is_ptr();
  2244     return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
  2246   case RawPtr:                  // For these, flip the call around to cut down
  2247   case OopPtr:
  2248   case InstPtr:                 // on the cases I have to handle.
  2249   case AryPtr:
  2250   case MetadataPtr:
  2251   case KlassPtr:
  2252     return t->xmeet(this);      // Call in reverse direction
  2253   default:                      // All else is a mistake
  2254     typerr(t);
  2257   return this;
  2260 //------------------------------meet_offset------------------------------------
  2261 int TypePtr::meet_offset( int offset ) const {
  2262   // Either is 'TOP' offset?  Return the other offset!
  2263   if( _offset == OffsetTop ) return offset;
  2264   if( offset == OffsetTop ) return _offset;
  2265   // If either is different, return 'BOTTOM' offset
  2266   if( _offset != offset ) return OffsetBot;
  2267   return _offset;
  2270 //------------------------------dual_offset------------------------------------
  2271 int TypePtr::dual_offset( ) const {
  2272   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
  2273   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
  2274   return _offset;               // Map everything else into self
  2277 //------------------------------xdual------------------------------------------
  2278 // Dual: compute field-by-field dual
  2279 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
  2280   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
  2281 };
  2282 const Type *TypePtr::xdual() const {
  2283   return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
  2286 //------------------------------xadd_offset------------------------------------
  2287 int TypePtr::xadd_offset( intptr_t offset ) const {
  2288   // Adding to 'TOP' offset?  Return 'TOP'!
  2289   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
  2290   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
  2291   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
  2292   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
  2293   offset += (intptr_t)_offset;
  2294   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
  2296   // assert( _offset >= 0 && _offset+offset >= 0, "" );
  2297   // It is possible to construct a negative offset during PhaseCCP
  2299   return (int)offset;        // Sum valid offsets
  2302 //------------------------------add_offset-------------------------------------
  2303 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
  2304   return make( AnyPtr, _ptr, xadd_offset(offset) );
  2307 //------------------------------eq---------------------------------------------
  2308 // Structural equality check for Type representations
  2309 bool TypePtr::eq( const Type *t ) const {
  2310   const TypePtr *a = (const TypePtr*)t;
  2311   return _ptr == a->ptr() && _offset == a->offset();
  2314 //------------------------------hash-------------------------------------------
  2315 // Type-specific hashing function.
  2316 int TypePtr::hash(void) const {
  2317   return java_add(_ptr, _offset);
  2320 //------------------------------dump2------------------------------------------
  2321 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
  2322   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
  2323 };
  2325 #ifndef PRODUCT
  2326 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  2327   if( _ptr == Null ) st->print("NULL");
  2328   else st->print("%s *", ptr_msg[_ptr]);
  2329   if( _offset == OffsetTop ) st->print("+top");
  2330   else if( _offset == OffsetBot ) st->print("+bot");
  2331   else if( _offset ) st->print("+%d", _offset);
  2333 #endif
  2335 //------------------------------singleton--------------------------------------
  2336 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  2337 // constants
  2338 bool TypePtr::singleton(void) const {
  2339   // TopPTR, Null, AnyNull, Constant are all singletons
  2340   return (_offset != OffsetBot) && !below_centerline(_ptr);
  2343 bool TypePtr::empty(void) const {
  2344   return (_offset == OffsetTop) || above_centerline(_ptr);
  2347 //=============================================================================
  2348 // Convenience common pre-built types.
  2349 const TypeRawPtr *TypeRawPtr::BOTTOM;
  2350 const TypeRawPtr *TypeRawPtr::NOTNULL;
  2352 //------------------------------make-------------------------------------------
  2353 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
  2354   assert( ptr != Constant, "what is the constant?" );
  2355   assert( ptr != Null, "Use TypePtr for NULL" );
  2356   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
  2359 const TypeRawPtr *TypeRawPtr::make( address bits ) {
  2360   assert( bits, "Use TypePtr for NULL" );
  2361   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
  2364 //------------------------------cast_to_ptr_type-------------------------------
  2365 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
  2366   assert( ptr != Constant, "what is the constant?" );
  2367   assert( ptr != Null, "Use TypePtr for NULL" );
  2368   assert( _bits==0, "Why cast a constant address?");
  2369   if( ptr == _ptr ) return this;
  2370   return make(ptr);
  2373 //------------------------------get_con----------------------------------------
  2374 intptr_t TypeRawPtr::get_con() const {
  2375   assert( _ptr == Null || _ptr == Constant, "" );
  2376   return (intptr_t)_bits;
  2379 //------------------------------meet-------------------------------------------
  2380 // Compute the MEET of two types.  It returns a new Type object.
  2381 const Type *TypeRawPtr::xmeet( const Type *t ) const {
  2382   // Perform a fast test for common case; meeting the same types together.
  2383   if( this == t ) return this;  // Meeting same type-rep?
  2385   // Current "this->_base" is RawPtr
  2386   switch( t->base() ) {         // switch on original type
  2387   case Bottom:                  // Ye Olde Default
  2388     return t;
  2389   case Top:
  2390     return this;
  2391   case AnyPtr:                  // Meeting to AnyPtrs
  2392     break;
  2393   case RawPtr: {                // might be top, bot, any/not or constant
  2394     enum PTR tptr = t->is_ptr()->ptr();
  2395     enum PTR ptr = meet_ptr( tptr );
  2396     if( ptr == Constant ) {     // Cannot be equal constants, so...
  2397       if( tptr == Constant && _ptr != Constant)  return t;
  2398       if( _ptr == Constant && tptr != Constant)  return this;
  2399       ptr = NotNull;            // Fall down in lattice
  2401     return make( ptr );
  2404   case OopPtr:
  2405   case InstPtr:
  2406   case AryPtr:
  2407   case MetadataPtr:
  2408   case KlassPtr:
  2409     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
  2410   default:                      // All else is a mistake
  2411     typerr(t);
  2414   // Found an AnyPtr type vs self-RawPtr type
  2415   const TypePtr *tp = t->is_ptr();
  2416   switch (tp->ptr()) {
  2417   case TypePtr::TopPTR:  return this;
  2418   case TypePtr::BotPTR:  return t;
  2419   case TypePtr::Null:
  2420     if( _ptr == TypePtr::TopPTR ) return t;
  2421     return TypeRawPtr::BOTTOM;
  2422   case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
  2423   case TypePtr::AnyNull:
  2424     if( _ptr == TypePtr::Constant) return this;
  2425     return make( meet_ptr(TypePtr::AnyNull) );
  2426   default: ShouldNotReachHere();
  2428   return this;
  2431 //------------------------------xdual------------------------------------------
  2432 // Dual: compute field-by-field dual
  2433 const Type *TypeRawPtr::xdual() const {
  2434   return new TypeRawPtr( dual_ptr(), _bits );
  2437 //------------------------------add_offset-------------------------------------
  2438 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
  2439   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
  2440   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
  2441   if( offset == 0 ) return this; // No change
  2442   switch (_ptr) {
  2443   case TypePtr::TopPTR:
  2444   case TypePtr::BotPTR:
  2445   case TypePtr::NotNull:
  2446     return this;
  2447   case TypePtr::Null:
  2448   case TypePtr::Constant: {
  2449     address bits = _bits+offset;
  2450     if ( bits == 0 ) return TypePtr::NULL_PTR;
  2451     return make( bits );
  2453   default:  ShouldNotReachHere();
  2455   return NULL;                  // Lint noise
  2458 //------------------------------eq---------------------------------------------
  2459 // Structural equality check for Type representations
  2460 bool TypeRawPtr::eq( const Type *t ) const {
  2461   const TypeRawPtr *a = (const TypeRawPtr*)t;
  2462   return _bits == a->_bits && TypePtr::eq(t);
  2465 //------------------------------hash-------------------------------------------
  2466 // Type-specific hashing function.
  2467 int TypeRawPtr::hash(void) const {
  2468   return (intptr_t)_bits + TypePtr::hash();
  2471 //------------------------------dump2------------------------------------------
  2472 #ifndef PRODUCT
  2473 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  2474   if( _ptr == Constant )
  2475     st->print(INTPTR_FORMAT, _bits);
  2476   else
  2477     st->print("rawptr:%s", ptr_msg[_ptr]);
  2479 #endif
  2481 //=============================================================================
  2482 // Convenience common pre-built type.
  2483 const TypeOopPtr *TypeOopPtr::BOTTOM;
  2485 //------------------------------TypeOopPtr-------------------------------------
  2486 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth)
  2487   : TypePtr(t, ptr, offset),
  2488     _const_oop(o), _klass(k),
  2489     _klass_is_exact(xk),
  2490     _is_ptr_to_narrowoop(false),
  2491     _is_ptr_to_narrowklass(false),
  2492     _is_ptr_to_boxed_value(false),
  2493     _instance_id(instance_id),
  2494     _speculative(speculative),
  2495     _inline_depth(inline_depth){
  2496   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
  2497       (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
  2498     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
  2500 #ifdef _LP64
  2501   if (_offset != 0) {
  2502     if (_offset == oopDesc::klass_offset_in_bytes()) {
  2503       _is_ptr_to_narrowklass = UseCompressedClassPointers;
  2504     } else if (klass() == NULL) {
  2505       // Array with unknown body type
  2506       assert(this->isa_aryptr(), "only arrays without klass");
  2507       _is_ptr_to_narrowoop = UseCompressedOops;
  2508     } else if (this->isa_aryptr()) {
  2509       _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
  2510                              _offset != arrayOopDesc::length_offset_in_bytes());
  2511     } else if (klass()->is_instance_klass()) {
  2512       ciInstanceKlass* ik = klass()->as_instance_klass();
  2513       ciField* field = NULL;
  2514       if (this->isa_klassptr()) {
  2515         // Perm objects don't use compressed references
  2516       } else if (_offset == OffsetBot || _offset == OffsetTop) {
  2517         // unsafe access
  2518         _is_ptr_to_narrowoop = UseCompressedOops;
  2519       } else { // exclude unsafe ops
  2520         assert(this->isa_instptr(), "must be an instance ptr.");
  2522         if (klass() == ciEnv::current()->Class_klass() &&
  2523             (_offset == java_lang_Class::klass_offset_in_bytes() ||
  2524              _offset == java_lang_Class::array_klass_offset_in_bytes())) {
  2525           // Special hidden fields from the Class.
  2526           assert(this->isa_instptr(), "must be an instance ptr.");
  2527           _is_ptr_to_narrowoop = false;
  2528         } else if (klass() == ciEnv::current()->Class_klass() &&
  2529                    _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
  2530           // Static fields
  2531           assert(o != NULL, "must be constant");
  2532           ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
  2533           ciField* field = k->get_field_by_offset(_offset, true);
  2534           assert(field != NULL, "missing field");
  2535           BasicType basic_elem_type = field->layout_type();
  2536           _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
  2537                                                        basic_elem_type == T_ARRAY);
  2538         } else {
  2539           // Instance fields which contains a compressed oop references.
  2540           field = ik->get_field_by_offset(_offset, false);
  2541           if (field != NULL) {
  2542             BasicType basic_elem_type = field->layout_type();
  2543             _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
  2544                                                          basic_elem_type == T_ARRAY);
  2545           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
  2546             // Compile::find_alias_type() cast exactness on all types to verify
  2547             // that it does not affect alias type.
  2548             _is_ptr_to_narrowoop = UseCompressedOops;
  2549           } else {
  2550             // Type for the copy start in LibraryCallKit::inline_native_clone().
  2551             _is_ptr_to_narrowoop = UseCompressedOops;
  2557 #endif
  2560 //------------------------------make-------------------------------------------
  2561 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
  2562                                    int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth) {
  2563   assert(ptr != Constant, "no constant generic pointers");
  2564   ciKlass*  k = Compile::current()->env()->Object_klass();
  2565   bool      xk = false;
  2566   ciObject* o = NULL;
  2567   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
  2571 //------------------------------cast_to_ptr_type-------------------------------
  2572 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
  2573   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
  2574   if( ptr == _ptr ) return this;
  2575   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
  2578 //-----------------------------cast_to_instance_id----------------------------
  2579 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
  2580   // There are no instances of a general oop.
  2581   // Return self unchanged.
  2582   return this;
  2585 //-----------------------------cast_to_exactness-------------------------------
  2586 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
  2587   // There is no such thing as an exact general oop.
  2588   // Return self unchanged.
  2589   return this;
  2593 //------------------------------as_klass_type----------------------------------
  2594 // Return the klass type corresponding to this instance or array type.
  2595 // It is the type that is loaded from an object of this type.
  2596 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
  2597   ciKlass* k = klass();
  2598   bool    xk = klass_is_exact();
  2599   if (k == NULL)
  2600     return TypeKlassPtr::OBJECT;
  2601   else
  2602     return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
  2605 const Type *TypeOopPtr::xmeet(const Type *t) const {
  2606   const Type* res = xmeet_helper(t);
  2607   if (res->isa_oopptr() == NULL) {
  2608     return res;
  2611   const TypeOopPtr* res_oopptr = res->is_oopptr();
  2612   if (res_oopptr->speculative() != NULL) {
  2613     // type->speculative() == NULL means that speculation is no better
  2614     // than type, i.e. type->speculative() == type. So there are 2
  2615     // ways to represent the fact that we have no useful speculative
  2616     // data and we should use a single one to be able to test for
  2617     // equality between types. Check whether type->speculative() ==
  2618     // type and set speculative to NULL if it is the case.
  2619     if (res_oopptr->remove_speculative() == res_oopptr->speculative()) {
  2620       return res_oopptr->remove_speculative();
  2624   return res;
  2627 //------------------------------meet-------------------------------------------
  2628 // Compute the MEET of two types.  It returns a new Type object.
  2629 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
  2630   // Perform a fast test for common case; meeting the same types together.
  2631   if( this == t ) return this;  // Meeting same type-rep?
  2633   // Current "this->_base" is OopPtr
  2634   switch (t->base()) {          // switch on original type
  2636   case Int:                     // Mixing ints & oops happens when javac
  2637   case Long:                    // reuses local variables
  2638   case FloatTop:
  2639   case FloatCon:
  2640   case FloatBot:
  2641   case DoubleTop:
  2642   case DoubleCon:
  2643   case DoubleBot:
  2644   case NarrowOop:
  2645   case NarrowKlass:
  2646   case Bottom:                  // Ye Olde Default
  2647     return Type::BOTTOM;
  2648   case Top:
  2649     return this;
  2651   default:                      // All else is a mistake
  2652     typerr(t);
  2654   case RawPtr:
  2655   case MetadataPtr:
  2656   case KlassPtr:
  2657     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
  2659   case AnyPtr: {
  2660     // Found an AnyPtr type vs self-OopPtr type
  2661     const TypePtr *tp = t->is_ptr();
  2662     int offset = meet_offset(tp->offset());
  2663     PTR ptr = meet_ptr(tp->ptr());
  2664     switch (tp->ptr()) {
  2665     case Null:
  2666       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
  2667       // else fall through:
  2668     case TopPTR:
  2669     case AnyNull: {
  2670       int instance_id = meet_instance_id(InstanceTop);
  2671       const TypeOopPtr* speculative = _speculative;
  2672       return make(ptr, offset, instance_id, speculative, _inline_depth);
  2674     case BotPTR:
  2675     case NotNull:
  2676       return TypePtr::make(AnyPtr, ptr, offset);
  2677     default: typerr(t);
  2681   case OopPtr: {                 // Meeting to other OopPtrs
  2682     const TypeOopPtr *tp = t->is_oopptr();
  2683     int instance_id = meet_instance_id(tp->instance_id());
  2684     const TypeOopPtr* speculative = xmeet_speculative(tp);
  2685     int depth = meet_inline_depth(tp->inline_depth());
  2686     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
  2689   case InstPtr:                  // For these, flip the call around to cut down
  2690   case AryPtr:
  2691     return t->xmeet(this);      // Call in reverse direction
  2693   } // End of switch
  2694   return this;                  // Return the double constant
  2698 //------------------------------xdual------------------------------------------
  2699 // Dual of a pure heap pointer.  No relevant klass or oop information.
  2700 const Type *TypeOopPtr::xdual() const {
  2701   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
  2702   assert(const_oop() == NULL,             "no constants here");
  2703   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
  2706 //--------------------------make_from_klass_common-----------------------------
  2707 // Computes the element-type given a klass.
  2708 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
  2709   if (klass->is_instance_klass()) {
  2710     Compile* C = Compile::current();
  2711     Dependencies* deps = C->dependencies();
  2712     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
  2713     // Element is an instance
  2714     bool klass_is_exact = false;
  2715     if (klass->is_loaded()) {
  2716       // Try to set klass_is_exact.
  2717       ciInstanceKlass* ik = klass->as_instance_klass();
  2718       klass_is_exact = ik->is_final();
  2719       if (!klass_is_exact && klass_change
  2720           && deps != NULL && UseUniqueSubclasses) {
  2721         ciInstanceKlass* sub = ik->unique_concrete_subklass();
  2722         if (sub != NULL) {
  2723           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
  2724           klass = ik = sub;
  2725           klass_is_exact = sub->is_final();
  2728       if (!klass_is_exact && try_for_exact
  2729           && deps != NULL && UseExactTypes) {
  2730         if (!ik->is_interface() && !ik->has_subklass()) {
  2731           // Add a dependence; if concrete subclass added we need to recompile
  2732           deps->assert_leaf_type(ik);
  2733           klass_is_exact = true;
  2737     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
  2738   } else if (klass->is_obj_array_klass()) {
  2739     // Element is an object array. Recursively call ourself.
  2740     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
  2741     bool xk = etype->klass_is_exact();
  2742     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
  2743     // We used to pass NotNull in here, asserting that the sub-arrays
  2744     // are all not-null.  This is not true in generally, as code can
  2745     // slam NULLs down in the subarrays.
  2746     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
  2747     return arr;
  2748   } else if (klass->is_type_array_klass()) {
  2749     // Element is an typeArray
  2750     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
  2751     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
  2752     // We used to pass NotNull in here, asserting that the array pointer
  2753     // is not-null. That was not true in general.
  2754     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
  2755     return arr;
  2756   } else {
  2757     ShouldNotReachHere();
  2758     return NULL;
  2762 //------------------------------make_from_constant-----------------------------
  2763 // Make a java pointer from an oop constant
  2764 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o,
  2765                                                  bool require_constant,
  2766                                                  bool is_autobox_cache) {
  2767   assert(!o->is_null_object(), "null object not yet handled here.");
  2768   ciKlass* klass = o->klass();
  2769   if (klass->is_instance_klass()) {
  2770     // Element is an instance
  2771     if (require_constant) {
  2772       if (!o->can_be_constant())  return NULL;
  2773     } else if (!o->should_be_constant()) {
  2774       return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
  2776     return TypeInstPtr::make(o);
  2777   } else if (klass->is_obj_array_klass()) {
  2778     // Element is an object array. Recursively call ourself.
  2779     const TypeOopPtr *etype =
  2780       TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
  2781     if (is_autobox_cache) {
  2782       // The pointers in the autobox arrays are always non-null.
  2783       etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
  2785     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
  2786     // We used to pass NotNull in here, asserting that the sub-arrays
  2787     // are all not-null.  This is not true in generally, as code can
  2788     // slam NULLs down in the subarrays.
  2789     if (require_constant) {
  2790       if (!o->can_be_constant())  return NULL;
  2791     } else if (!o->should_be_constant()) {
  2792       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
  2794     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0, InstanceBot, NULL, InlineDepthBottom, is_autobox_cache);
  2795     return arr;
  2796   } else if (klass->is_type_array_klass()) {
  2797     // Element is an typeArray
  2798     const Type* etype =
  2799       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
  2800     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
  2801     // We used to pass NotNull in here, asserting that the array pointer
  2802     // is not-null. That was not true in general.
  2803     if (require_constant) {
  2804       if (!o->can_be_constant())  return NULL;
  2805     } else if (!o->should_be_constant()) {
  2806       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
  2808     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
  2809     return arr;
  2812   fatal("unhandled object type");
  2813   return NULL;
  2816 //------------------------------get_con----------------------------------------
  2817 intptr_t TypeOopPtr::get_con() const {
  2818   assert( _ptr == Null || _ptr == Constant, "" );
  2819   assert( _offset >= 0, "" );
  2821   if (_offset != 0) {
  2822     // After being ported to the compiler interface, the compiler no longer
  2823     // directly manipulates the addresses of oops.  Rather, it only has a pointer
  2824     // to a handle at compile time.  This handle is embedded in the generated
  2825     // code and dereferenced at the time the nmethod is made.  Until that time,
  2826     // it is not reasonable to do arithmetic with the addresses of oops (we don't
  2827     // have access to the addresses!).  This does not seem to currently happen,
  2828     // but this assertion here is to help prevent its occurence.
  2829     tty->print_cr("Found oop constant with non-zero offset");
  2830     ShouldNotReachHere();
  2833   return (intptr_t)const_oop()->constant_encoding();
  2837 //-----------------------------filter------------------------------------------
  2838 // Do not allow interface-vs.-noninterface joins to collapse to top.
  2839 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
  2841   const Type* ft = join_helper(kills, include_speculative);
  2842   const TypeInstPtr* ftip = ft->isa_instptr();
  2843   const TypeInstPtr* ktip = kills->isa_instptr();
  2845   if (ft->empty()) {
  2846     // Check for evil case of 'this' being a class and 'kills' expecting an
  2847     // interface.  This can happen because the bytecodes do not contain
  2848     // enough type info to distinguish a Java-level interface variable
  2849     // from a Java-level object variable.  If we meet 2 classes which
  2850     // both implement interface I, but their meet is at 'j/l/O' which
  2851     // doesn't implement I, we have no way to tell if the result should
  2852     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
  2853     // into a Phi which "knows" it's an Interface type we'll have to
  2854     // uplift the type.
  2855     if (!empty()) {
  2856       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
  2857         return kills;           // Uplift to interface
  2859       // Also check for evil cases of 'this' being a class array
  2860       // and 'kills' expecting an array of interfaces.
  2861       Type::get_arrays_base_elements(ft, kills, NULL, &ktip);
  2862       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
  2863         return kills;           // Uplift to array of interface
  2867     return Type::TOP;           // Canonical empty value
  2870   // If we have an interface-typed Phi or cast and we narrow to a class type,
  2871   // the join should report back the class.  However, if we have a J/L/Object
  2872   // class-typed Phi and an interface flows in, it's possible that the meet &
  2873   // join report an interface back out.  This isn't possible but happens
  2874   // because the type system doesn't interact well with interfaces.
  2875   if (ftip != NULL && ktip != NULL &&
  2876       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
  2877       ktip->is_loaded() && !ktip->klass()->is_interface()) {
  2878     // Happens in a CTW of rt.jar, 320-341, no extra flags
  2879     assert(!ftip->klass_is_exact(), "interface could not be exact");
  2880     return ktip->cast_to_ptr_type(ftip->ptr());
  2883   return ft;
  2886 //------------------------------eq---------------------------------------------
  2887 // Structural equality check for Type representations
  2888 bool TypeOopPtr::eq( const Type *t ) const {
  2889   const TypeOopPtr *a = (const TypeOopPtr*)t;
  2890   if (_klass_is_exact != a->_klass_is_exact ||
  2891       _instance_id != a->_instance_id ||
  2892       !eq_speculative(a) ||
  2893       _inline_depth != a->_inline_depth)  return false;
  2894   ciObject* one = const_oop();
  2895   ciObject* two = a->const_oop();
  2896   if (one == NULL || two == NULL) {
  2897     return (one == two) && TypePtr::eq(t);
  2898   } else {
  2899     return one->equals(two) && TypePtr::eq(t);
  2903 //------------------------------hash-------------------------------------------
  2904 // Type-specific hashing function.
  2905 int TypeOopPtr::hash(void) const {
  2906   return
  2907     java_add(java_add(java_add(const_oop() ? const_oop()->hash() : 0, _klass_is_exact),
  2908                       java_add(_instance_id , hash_speculative())), java_add(_inline_depth , TypePtr::hash()));
  2911 //------------------------------dump2------------------------------------------
  2912 #ifndef PRODUCT
  2913 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  2914   st->print("oopptr:%s", ptr_msg[_ptr]);
  2915   if( _klass_is_exact ) st->print(":exact");
  2916   if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
  2917   switch( _offset ) {
  2918   case OffsetTop: st->print("+top"); break;
  2919   case OffsetBot: st->print("+any"); break;
  2920   case         0: break;
  2921   default:        st->print("+%d",_offset); break;
  2923   if (_instance_id == InstanceTop)
  2924     st->print(",iid=top");
  2925   else if (_instance_id != InstanceBot)
  2926     st->print(",iid=%d",_instance_id);
  2928   dump_inline_depth(st);
  2929   dump_speculative(st);
  2932 /**
  2933  *dump the speculative part of the type
  2934  */
  2935 void TypeOopPtr::dump_speculative(outputStream *st) const {
  2936   if (_speculative != NULL) {
  2937     st->print(" (speculative=");
  2938     _speculative->dump_on(st);
  2939     st->print(")");
  2943 void TypeOopPtr::dump_inline_depth(outputStream *st) const {
  2944   if (_inline_depth != InlineDepthBottom) {
  2945     if (_inline_depth == InlineDepthTop) {
  2946       st->print(" (inline_depth=InlineDepthTop)");
  2947     } else {
  2948       st->print(" (inline_depth=%d)", _inline_depth);
  2952 #endif
  2954 //------------------------------singleton--------------------------------------
  2955 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  2956 // constants
  2957 bool TypeOopPtr::singleton(void) const {
  2958   // detune optimizer to not generate constant oop + constant offset as a constant!
  2959   // TopPTR, Null, AnyNull, Constant are all singletons
  2960   return (_offset == 0) && !below_centerline(_ptr);
  2963 //------------------------------add_offset-------------------------------------
  2964 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
  2965   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
  2968 /**
  2969  * Return same type without a speculative part
  2970  */
  2971 const Type* TypeOopPtr::remove_speculative() const {
  2972   if (_speculative == NULL) {
  2973     return this;
  2975   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
  2976   return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
  2979 /**
  2980  * Return same type but with a different inline depth (used for speculation)
  2982  * @param depth  depth to meet with
  2983  */
  2984 const TypeOopPtr* TypeOopPtr::with_inline_depth(int depth) const {
  2985   if (!UseInlineDepthForSpeculativeTypes) {
  2986     return this;
  2988   return make(_ptr, _offset, _instance_id, _speculative, depth);
  2991 /**
  2992  * Check whether new profiling would improve speculative type
  2994  * @param   exact_kls    class from profiling
  2995  * @param   inline_depth inlining depth of profile point
  2997  * @return  true if type profile is valuable
  2998  */
  2999 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
  3000   // no way to improve an already exact type
  3001   if (klass_is_exact()) {
  3002     return false;
  3004   // no profiling?
  3005   if (exact_kls == NULL) {
  3006     return false;
  3008   // no speculative type or non exact speculative type?
  3009   if (speculative_type() == NULL) {
  3010     return true;
  3012   // If the node already has an exact speculative type keep it,
  3013   // unless it was provided by profiling that is at a deeper
  3014   // inlining level. Profiling at a higher inlining depth is
  3015   // expected to be less accurate.
  3016   if (_speculative->inline_depth() == InlineDepthBottom) {
  3017     return false;
  3019   assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
  3020   return inline_depth < _speculative->inline_depth();
  3023 //------------------------------meet_instance_id--------------------------------
  3024 int TypeOopPtr::meet_instance_id( int instance_id ) const {
  3025   // Either is 'TOP' instance?  Return the other instance!
  3026   if( _instance_id == InstanceTop ) return  instance_id;
  3027   if(  instance_id == InstanceTop ) return _instance_id;
  3028   // If either is different, return 'BOTTOM' instance
  3029   if( _instance_id != instance_id ) return InstanceBot;
  3030   return _instance_id;
  3033 //------------------------------dual_instance_id--------------------------------
  3034 int TypeOopPtr::dual_instance_id( ) const {
  3035   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
  3036   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
  3037   return _instance_id;              // Map everything else into self
  3040 /**
  3041  * meet of the speculative parts of 2 types
  3043  * @param other  type to meet with
  3044  */
  3045 const TypeOopPtr* TypeOopPtr::xmeet_speculative(const TypeOopPtr* other) const {
  3046   bool this_has_spec = (_speculative != NULL);
  3047   bool other_has_spec = (other->speculative() != NULL);
  3049   if (!this_has_spec && !other_has_spec) {
  3050     return NULL;
  3053   // If we are at a point where control flow meets and one branch has
  3054   // a speculative type and the other has not, we meet the speculative
  3055   // type of one branch with the actual type of the other. If the
  3056   // actual type is exact and the speculative is as well, then the
  3057   // result is a speculative type which is exact and we can continue
  3058   // speculation further.
  3059   const TypeOopPtr* this_spec = _speculative;
  3060   const TypeOopPtr* other_spec = other->speculative();
  3062   if (!this_has_spec) {
  3063     this_spec = this;
  3066   if (!other_has_spec) {
  3067     other_spec = other;
  3070   return this_spec->meet_speculative(other_spec)->is_oopptr();
  3073 /**
  3074  * dual of the speculative part of the type
  3075  */
  3076 const TypeOopPtr* TypeOopPtr::dual_speculative() const {
  3077   if (_speculative == NULL) {
  3078     return NULL;
  3080   return _speculative->dual()->is_oopptr();
  3083 /**
  3084  * add offset to the speculative part of the type
  3086  * @param offset  offset to add
  3087  */
  3088 const TypeOopPtr* TypeOopPtr::add_offset_speculative(intptr_t offset) const {
  3089   if (_speculative == NULL) {
  3090     return NULL;
  3092   return _speculative->add_offset(offset)->is_oopptr();
  3095 /**
  3096  * Are the speculative parts of 2 types equal?
  3098  * @param other  type to compare this one to
  3099  */
  3100 bool TypeOopPtr::eq_speculative(const TypeOopPtr* other) const {
  3101   if (_speculative == NULL || other->speculative() == NULL) {
  3102     return _speculative == other->speculative();
  3105   if (_speculative->base() != other->speculative()->base()) {
  3106     return false;
  3109   return _speculative->eq(other->speculative());
  3112 /**
  3113  * Hash of the speculative part of the type
  3114  */
  3115 int TypeOopPtr::hash_speculative() const {
  3116   if (_speculative == NULL) {
  3117     return 0;
  3120   return _speculative->hash();
  3123 /**
  3124  * dual of the inline depth for this type (used for speculation)
  3125  */
  3126 int TypeOopPtr::dual_inline_depth() const {
  3127   return -inline_depth();
  3130 /**
  3131  * meet of 2 inline depth (used for speculation)
  3133  * @param depth  depth to meet with
  3134  */
  3135 int TypeOopPtr::meet_inline_depth(int depth) const {
  3136   return MAX2(inline_depth(), depth);
  3139 //=============================================================================
  3140 // Convenience common pre-built types.
  3141 const TypeInstPtr *TypeInstPtr::NOTNULL;
  3142 const TypeInstPtr *TypeInstPtr::BOTTOM;
  3143 const TypeInstPtr *TypeInstPtr::MIRROR;
  3144 const TypeInstPtr *TypeInstPtr::MARK;
  3145 const TypeInstPtr *TypeInstPtr::KLASS;
  3147 //------------------------------TypeInstPtr-------------------------------------
  3148 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id, const TypeOopPtr* speculative, int inline_depth)
  3149   : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative, inline_depth), _name(k->name()) {
  3150    assert(k != NULL &&
  3151           (k->is_loaded() || o == NULL),
  3152           "cannot have constants with non-loaded klass");
  3153 };
  3155 //------------------------------make-------------------------------------------
  3156 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
  3157                                      ciKlass* k,
  3158                                      bool xk,
  3159                                      ciObject* o,
  3160                                      int offset,
  3161                                      int instance_id,
  3162                                      const TypeOopPtr* speculative,
  3163                                      int inline_depth) {
  3164   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
  3165   // Either const_oop() is NULL or else ptr is Constant
  3166   assert( (!o && ptr != Constant) || (o && ptr == Constant),
  3167           "constant pointers must have a value supplied" );
  3168   // Ptr is never Null
  3169   assert( ptr != Null, "NULL pointers are not typed" );
  3171   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
  3172   if (!UseExactTypes)  xk = false;
  3173   if (ptr == Constant) {
  3174     // Note:  This case includes meta-object constants, such as methods.
  3175     xk = true;
  3176   } else if (k->is_loaded()) {
  3177     ciInstanceKlass* ik = k->as_instance_klass();
  3178     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
  3179     if (xk && ik->is_interface())  xk = false;  // no exact interface
  3182   // Now hash this baby
  3183   TypeInstPtr *result =
  3184     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
  3186   return result;
  3189 /**
  3190  *  Create constant type for a constant boxed value
  3191  */
  3192 const Type* TypeInstPtr::get_const_boxed_value() const {
  3193   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
  3194   assert((const_oop() != NULL), "should be called only for constant object");
  3195   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
  3196   BasicType bt = constant.basic_type();
  3197   switch (bt) {
  3198     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
  3199     case T_INT:      return TypeInt::make(constant.as_int());
  3200     case T_CHAR:     return TypeInt::make(constant.as_char());
  3201     case T_BYTE:     return TypeInt::make(constant.as_byte());
  3202     case T_SHORT:    return TypeInt::make(constant.as_short());
  3203     case T_FLOAT:    return TypeF::make(constant.as_float());
  3204     case T_DOUBLE:   return TypeD::make(constant.as_double());
  3205     case T_LONG:     return TypeLong::make(constant.as_long());
  3206     default:         break;
  3208   fatal(err_msg_res("Invalid boxed value type '%s'", type2name(bt)));
  3209   return NULL;
  3212 //------------------------------cast_to_ptr_type-------------------------------
  3213 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
  3214   if( ptr == _ptr ) return this;
  3215   // Reconstruct _sig info here since not a problem with later lazy
  3216   // construction, _sig will show up on demand.
  3217   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
  3221 //-----------------------------cast_to_exactness-------------------------------
  3222 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
  3223   if( klass_is_exact == _klass_is_exact ) return this;
  3224   if (!UseExactTypes)  return this;
  3225   if (!_klass->is_loaded())  return this;
  3226   ciInstanceKlass* ik = _klass->as_instance_klass();
  3227   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
  3228   if( ik->is_interface() )              return this;  // cannot set xk
  3229   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
  3232 //-----------------------------cast_to_instance_id----------------------------
  3233 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
  3234   if( instance_id == _instance_id ) return this;
  3235   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
  3238 //------------------------------xmeet_unloaded---------------------------------
  3239 // Compute the MEET of two InstPtrs when at least one is unloaded.
  3240 // Assume classes are different since called after check for same name/class-loader
  3241 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
  3242     int off = meet_offset(tinst->offset());
  3243     PTR ptr = meet_ptr(tinst->ptr());
  3244     int instance_id = meet_instance_id(tinst->instance_id());
  3245     const TypeOopPtr* speculative = xmeet_speculative(tinst);
  3246     int depth = meet_inline_depth(tinst->inline_depth());
  3248     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
  3249     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
  3250     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
  3251       //
  3252       // Meet unloaded class with java/lang/Object
  3253       //
  3254       // Meet
  3255       //          |                     Unloaded Class
  3256       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
  3257       //  ===================================================================
  3258       //   TOP    | ..........................Unloaded......................|
  3259       //  AnyNull |  U-AN    |................Unloaded......................|
  3260       // Constant | ... O-NN .................................. |   O-BOT   |
  3261       //  NotNull | ... O-NN .................................. |   O-BOT   |
  3262       //  BOTTOM  | ........................Object-BOTTOM ..................|
  3263       //
  3264       assert(loaded->ptr() != TypePtr::Null, "insanity check");
  3265       //
  3266       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
  3267       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
  3268       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
  3269       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
  3270         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
  3271         else                                      { return TypeInstPtr::NOTNULL; }
  3273       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
  3275       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
  3278     // Both are unloaded, not the same class, not Object
  3279     // Or meet unloaded with a different loaded class, not java/lang/Object
  3280     if( ptr != TypePtr::BotPTR ) {
  3281       return TypeInstPtr::NOTNULL;
  3283     return TypeInstPtr::BOTTOM;
  3287 //------------------------------meet-------------------------------------------
  3288 // Compute the MEET of two types.  It returns a new Type object.
  3289 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
  3290   // Perform a fast test for common case; meeting the same types together.
  3291   if( this == t ) return this;  // Meeting same type-rep?
  3293   // Current "this->_base" is Pointer
  3294   switch (t->base()) {          // switch on original type
  3296   case Int:                     // Mixing ints & oops happens when javac
  3297   case Long:                    // reuses local variables
  3298   case FloatTop:
  3299   case FloatCon:
  3300   case FloatBot:
  3301   case DoubleTop:
  3302   case DoubleCon:
  3303   case DoubleBot:
  3304   case NarrowOop:
  3305   case NarrowKlass:
  3306   case Bottom:                  // Ye Olde Default
  3307     return Type::BOTTOM;
  3308   case Top:
  3309     return this;
  3311   default:                      // All else is a mistake
  3312     typerr(t);
  3314   case MetadataPtr:
  3315   case KlassPtr:
  3316   case RawPtr: return TypePtr::BOTTOM;
  3318   case AryPtr: {                // All arrays inherit from Object class
  3319     const TypeAryPtr *tp = t->is_aryptr();
  3320     int offset = meet_offset(tp->offset());
  3321     PTR ptr = meet_ptr(tp->ptr());
  3322     int instance_id = meet_instance_id(tp->instance_id());
  3323     const TypeOopPtr* speculative = xmeet_speculative(tp);
  3324     int depth = meet_inline_depth(tp->inline_depth());
  3325     switch (ptr) {
  3326     case TopPTR:
  3327     case AnyNull:                // Fall 'down' to dual of object klass
  3328       // For instances when a subclass meets a superclass we fall
  3329       // below the centerline when the superclass is exact. We need to
  3330       // do the same here.
  3331       if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
  3332         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
  3333       } else {
  3334         // cannot subclass, so the meet has to fall badly below the centerline
  3335         ptr = NotNull;
  3336         instance_id = InstanceBot;
  3337         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
  3339     case Constant:
  3340     case NotNull:
  3341     case BotPTR:                // Fall down to object klass
  3342       // LCA is object_klass, but if we subclass from the top we can do better
  3343       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
  3344         // If 'this' (InstPtr) is above the centerline and it is Object class
  3345         // then we can subclass in the Java class hierarchy.
  3346         // For instances when a subclass meets a superclass we fall
  3347         // below the centerline when the superclass is exact. We need
  3348         // to do the same here.
  3349         if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
  3350           // that is, tp's array type is a subtype of my klass
  3351           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
  3352                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
  3355       // The other case cannot happen, since I cannot be a subtype of an array.
  3356       // The meet falls down to Object class below centerline.
  3357       if( ptr == Constant )
  3358          ptr = NotNull;
  3359       instance_id = InstanceBot;
  3360       return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
  3361     default: typerr(t);
  3365   case OopPtr: {                // Meeting to OopPtrs
  3366     // Found a OopPtr type vs self-InstPtr type
  3367     const TypeOopPtr *tp = t->is_oopptr();
  3368     int offset = meet_offset(tp->offset());
  3369     PTR ptr = meet_ptr(tp->ptr());
  3370     switch (tp->ptr()) {
  3371     case TopPTR:
  3372     case AnyNull: {
  3373       int instance_id = meet_instance_id(InstanceTop);
  3374       const TypeOopPtr* speculative = xmeet_speculative(tp);
  3375       int depth = meet_inline_depth(tp->inline_depth());
  3376       return make(ptr, klass(), klass_is_exact(),
  3377                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
  3379     case NotNull:
  3380     case BotPTR: {
  3381       int instance_id = meet_instance_id(tp->instance_id());
  3382       const TypeOopPtr* speculative = xmeet_speculative(tp);
  3383       int depth = meet_inline_depth(tp->inline_depth());
  3384       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
  3386     default: typerr(t);
  3390   case AnyPtr: {                // Meeting to AnyPtrs
  3391     // Found an AnyPtr type vs self-InstPtr type
  3392     const TypePtr *tp = t->is_ptr();
  3393     int offset = meet_offset(tp->offset());
  3394     PTR ptr = meet_ptr(tp->ptr());
  3395     switch (tp->ptr()) {
  3396     case Null:
  3397       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
  3398       // else fall through to AnyNull
  3399     case TopPTR:
  3400     case AnyNull: {
  3401       int instance_id = meet_instance_id(InstanceTop);
  3402       const TypeOopPtr* speculative = _speculative;
  3403       return make(ptr, klass(), klass_is_exact(),
  3404                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, _inline_depth);
  3406     case NotNull:
  3407     case BotPTR:
  3408       return TypePtr::make(AnyPtr, ptr, offset);
  3409     default: typerr(t);
  3413   /*
  3414                  A-top         }
  3415                /   |   \       }  Tops
  3416            B-top A-any C-top   }
  3417               | /  |  \ |      }  Any-nulls
  3418            B-any   |   C-any   }
  3419               |    |    |
  3420            B-con A-con C-con   } constants; not comparable across classes
  3421               |    |    |
  3422            B-not   |   C-not   }
  3423               | \  |  / |      }  not-nulls
  3424            B-bot A-not C-bot   }
  3425                \   |   /       }  Bottoms
  3426                  A-bot         }
  3427   */
  3429   case InstPtr: {                // Meeting 2 Oops?
  3430     // Found an InstPtr sub-type vs self-InstPtr type
  3431     const TypeInstPtr *tinst = t->is_instptr();
  3432     int off = meet_offset( tinst->offset() );
  3433     PTR ptr = meet_ptr( tinst->ptr() );
  3434     int instance_id = meet_instance_id(tinst->instance_id());
  3435     const TypeOopPtr* speculative = xmeet_speculative(tinst);
  3436     int depth = meet_inline_depth(tinst->inline_depth());
  3438     // Check for easy case; klasses are equal (and perhaps not loaded!)
  3439     // If we have constants, then we created oops so classes are loaded
  3440     // and we can handle the constants further down.  This case handles
  3441     // both-not-loaded or both-loaded classes
  3442     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
  3443       return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth);
  3446     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
  3447     ciKlass* tinst_klass = tinst->klass();
  3448     ciKlass* this_klass  = this->klass();
  3449     bool tinst_xk = tinst->klass_is_exact();
  3450     bool this_xk  = this->klass_is_exact();
  3451     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
  3452       // One of these classes has not been loaded
  3453       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
  3454 #ifndef PRODUCT
  3455       if( PrintOpto && Verbose ) {
  3456         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
  3457         tty->print("  this == "); this->dump(); tty->cr();
  3458         tty->print(" tinst == "); tinst->dump(); tty->cr();
  3460 #endif
  3461       return unloaded_meet;
  3464     // Handle mixing oops and interfaces first.
  3465     if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
  3466                                         tinst_klass == ciEnv::current()->Object_klass())) {
  3467       ciKlass *tmp = tinst_klass; // Swap interface around
  3468       tinst_klass = this_klass;
  3469       this_klass = tmp;
  3470       bool tmp2 = tinst_xk;
  3471       tinst_xk = this_xk;
  3472       this_xk = tmp2;
  3474     if (tinst_klass->is_interface() &&
  3475         !(this_klass->is_interface() ||
  3476           // Treat java/lang/Object as an honorary interface,
  3477           // because we need a bottom for the interface hierarchy.
  3478           this_klass == ciEnv::current()->Object_klass())) {
  3479       // Oop meets interface!
  3481       // See if the oop subtypes (implements) interface.
  3482       ciKlass *k;
  3483       bool xk;
  3484       if( this_klass->is_subtype_of( tinst_klass ) ) {
  3485         // Oop indeed subtypes.  Now keep oop or interface depending
  3486         // on whether we are both above the centerline or either is
  3487         // below the centerline.  If we are on the centerline
  3488         // (e.g., Constant vs. AnyNull interface), use the constant.
  3489         k  = below_centerline(ptr) ? tinst_klass : this_klass;
  3490         // If we are keeping this_klass, keep its exactness too.
  3491         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
  3492       } else {                  // Does not implement, fall to Object
  3493         // Oop does not implement interface, so mixing falls to Object
  3494         // just like the verifier does (if both are above the
  3495         // centerline fall to interface)
  3496         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
  3497         xk = above_centerline(ptr) ? tinst_xk : false;
  3498         // Watch out for Constant vs. AnyNull interface.
  3499         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
  3500         instance_id = InstanceBot;
  3502       ciObject* o = NULL;  // the Constant value, if any
  3503       if (ptr == Constant) {
  3504         // Find out which constant.
  3505         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
  3507       return make(ptr, k, xk, o, off, instance_id, speculative, depth);
  3510     // Either oop vs oop or interface vs interface or interface vs Object
  3512     // !!! Here's how the symmetry requirement breaks down into invariants:
  3513     // If we split one up & one down AND they subtype, take the down man.
  3514     // If we split one up & one down AND they do NOT subtype, "fall hard".
  3515     // If both are up and they subtype, take the subtype class.
  3516     // If both are up and they do NOT subtype, "fall hard".
  3517     // If both are down and they subtype, take the supertype class.
  3518     // If both are down and they do NOT subtype, "fall hard".
  3519     // Constants treated as down.
  3521     // Now, reorder the above list; observe that both-down+subtype is also
  3522     // "fall hard"; "fall hard" becomes the default case:
  3523     // If we split one up & one down AND they subtype, take the down man.
  3524     // If both are up and they subtype, take the subtype class.
  3526     // If both are down and they subtype, "fall hard".
  3527     // If both are down and they do NOT subtype, "fall hard".
  3528     // If both are up and they do NOT subtype, "fall hard".
  3529     // If we split one up & one down AND they do NOT subtype, "fall hard".
  3531     // If a proper subtype is exact, and we return it, we return it exactly.
  3532     // If a proper supertype is exact, there can be no subtyping relationship!
  3533     // If both types are equal to the subtype, exactness is and-ed below the
  3534     // centerline and or-ed above it.  (N.B. Constants are always exact.)
  3536     // Check for subtyping:
  3537     ciKlass *subtype = NULL;
  3538     bool subtype_exact = false;
  3539     if( tinst_klass->equals(this_klass) ) {
  3540       subtype = this_klass;
  3541       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
  3542     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
  3543       subtype = this_klass;     // Pick subtyping class
  3544       subtype_exact = this_xk;
  3545     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
  3546       subtype = tinst_klass;    // Pick subtyping class
  3547       subtype_exact = tinst_xk;
  3550     if( subtype ) {
  3551       if( above_centerline(ptr) ) { // both are up?
  3552         this_klass = tinst_klass = subtype;
  3553         this_xk = tinst_xk = subtype_exact;
  3554       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
  3555         this_klass = tinst_klass; // tinst is down; keep down man
  3556         this_xk = tinst_xk;
  3557       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
  3558         tinst_klass = this_klass; // this is down; keep down man
  3559         tinst_xk = this_xk;
  3560       } else {
  3561         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
  3565     // Check for classes now being equal
  3566     if (tinst_klass->equals(this_klass)) {
  3567       // If the klasses are equal, the constants may still differ.  Fall to
  3568       // NotNull if they do (neither constant is NULL; that is a special case
  3569       // handled elsewhere).
  3570       ciObject* o = NULL;             // Assume not constant when done
  3571       ciObject* this_oop  = const_oop();
  3572       ciObject* tinst_oop = tinst->const_oop();
  3573       if( ptr == Constant ) {
  3574         if (this_oop != NULL && tinst_oop != NULL &&
  3575             this_oop->equals(tinst_oop) )
  3576           o = this_oop;
  3577         else if (above_centerline(this ->_ptr))
  3578           o = tinst_oop;
  3579         else if (above_centerline(tinst ->_ptr))
  3580           o = this_oop;
  3581         else
  3582           ptr = NotNull;
  3584       return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
  3585     } // Else classes are not equal
  3587     // Since klasses are different, we require a LCA in the Java
  3588     // class hierarchy - which means we have to fall to at least NotNull.
  3589     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
  3590       ptr = NotNull;
  3591     instance_id = InstanceBot;
  3593     // Now we find the LCA of Java classes
  3594     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
  3595     return make(ptr, k, false, NULL, off, instance_id, speculative, depth);
  3596   } // End of case InstPtr
  3598   } // End of switch
  3599   return this;                  // Return the double constant
  3603 //------------------------java_mirror_type--------------------------------------
  3604 ciType* TypeInstPtr::java_mirror_type() const {
  3605   // must be a singleton type
  3606   if( const_oop() == NULL )  return NULL;
  3608   // must be of type java.lang.Class
  3609   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
  3611   return const_oop()->as_instance()->java_mirror_type();
  3615 //------------------------------xdual------------------------------------------
  3616 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
  3617 // inheritance mechanism.
  3618 const Type *TypeInstPtr::xdual() const {
  3619   return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
  3622 //------------------------------eq---------------------------------------------
  3623 // Structural equality check for Type representations
  3624 bool TypeInstPtr::eq( const Type *t ) const {
  3625   const TypeInstPtr *p = t->is_instptr();
  3626   return
  3627     klass()->equals(p->klass()) &&
  3628     TypeOopPtr::eq(p);          // Check sub-type stuff
  3631 //------------------------------hash-------------------------------------------
  3632 // Type-specific hashing function.
  3633 int TypeInstPtr::hash(void) const {
  3634   int hash = java_add(klass()->hash(), TypeOopPtr::hash());
  3635   return hash;
  3638 //------------------------------dump2------------------------------------------
  3639 // Dump oop Type
  3640 #ifndef PRODUCT
  3641 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  3642   // Print the name of the klass.
  3643   klass()->print_name_on(st);
  3645   switch( _ptr ) {
  3646   case Constant:
  3647     // TO DO: Make CI print the hex address of the underlying oop.
  3648     if (WizardMode || Verbose) {
  3649       const_oop()->print_oop(st);
  3651   case BotPTR:
  3652     if (!WizardMode && !Verbose) {
  3653       if( _klass_is_exact ) st->print(":exact");
  3654       break;
  3656   case TopPTR:
  3657   case AnyNull:
  3658   case NotNull:
  3659     st->print(":%s", ptr_msg[_ptr]);
  3660     if( _klass_is_exact ) st->print(":exact");
  3661     break;
  3664   if( _offset ) {               // Dump offset, if any
  3665     if( _offset == OffsetBot )      st->print("+any");
  3666     else if( _offset == OffsetTop ) st->print("+unknown");
  3667     else st->print("+%d", _offset);
  3670   st->print(" *");
  3671   if (_instance_id == InstanceTop)
  3672     st->print(",iid=top");
  3673   else if (_instance_id != InstanceBot)
  3674     st->print(",iid=%d",_instance_id);
  3676   dump_inline_depth(st);
  3677   dump_speculative(st);
  3679 #endif
  3681 //------------------------------add_offset-------------------------------------
  3682 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
  3683   return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id, add_offset_speculative(offset));
  3686 const Type *TypeInstPtr::remove_speculative() const {
  3687   if (_speculative == NULL) {
  3688     return this;
  3690   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
  3691   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, NULL, _inline_depth);
  3694 const TypeOopPtr *TypeInstPtr::with_inline_depth(int depth) const {
  3695   if (!UseInlineDepthForSpeculativeTypes) {
  3696     return this;
  3698   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
  3701 //=============================================================================
  3702 // Convenience common pre-built types.
  3703 const TypeAryPtr *TypeAryPtr::RANGE;
  3704 const TypeAryPtr *TypeAryPtr::OOPS;
  3705 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
  3706 const TypeAryPtr *TypeAryPtr::BYTES;
  3707 const TypeAryPtr *TypeAryPtr::SHORTS;
  3708 const TypeAryPtr *TypeAryPtr::CHARS;
  3709 const TypeAryPtr *TypeAryPtr::INTS;
  3710 const TypeAryPtr *TypeAryPtr::LONGS;
  3711 const TypeAryPtr *TypeAryPtr::FLOATS;
  3712 const TypeAryPtr *TypeAryPtr::DOUBLES;
  3714 //------------------------------make-------------------------------------------
  3715 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth) {
  3716   assert(!(k == NULL && ary->_elem->isa_int()),
  3717          "integral arrays must be pre-equipped with a class");
  3718   if (!xk)  xk = ary->ary_must_be_exact();
  3719   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
  3720   if (!UseExactTypes)  xk = (ptr == Constant);
  3721   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();
  3724 //------------------------------make-------------------------------------------
  3725 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth, bool is_autobox_cache) {
  3726   assert(!(k == NULL && ary->_elem->isa_int()),
  3727          "integral arrays must be pre-equipped with a class");
  3728   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
  3729   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
  3730   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
  3731   if (!UseExactTypes)  xk = (ptr == Constant);
  3732   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
  3735 //------------------------------cast_to_ptr_type-------------------------------
  3736 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
  3737   if( ptr == _ptr ) return this;
  3738   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
  3742 //-----------------------------cast_to_exactness-------------------------------
  3743 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
  3744   if( klass_is_exact == _klass_is_exact ) return this;
  3745   if (!UseExactTypes)  return this;
  3746   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
  3747   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
  3750 //-----------------------------cast_to_instance_id----------------------------
  3751 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
  3752   if( instance_id == _instance_id ) return this;
  3753   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
  3756 //-----------------------------max_array_length-------------------------------
  3757 // A wrapper around arrayOopDesc::max_array_length(etype) with some input normalization.
  3758 jint TypeAryPtr::max_array_length(BasicType etype) {
  3759   if (!is_java_primitive(etype) && !is_reference_type(etype)) {
  3760     if (etype == T_NARROWOOP) {
  3761       etype = T_OBJECT;
  3762     } else if (etype == T_ILLEGAL) { // bottom[]
  3763       etype = T_BYTE; // will produce conservatively high value
  3764     } else {
  3765       fatal(err_msg("not an element type: %s", type2name(etype)));
  3768   return arrayOopDesc::max_array_length(etype);
  3771 //-----------------------------narrow_size_type-------------------------------
  3772 // Narrow the given size type to the index range for the given array base type.
  3773 // Return NULL if the resulting int type becomes empty.
  3774 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
  3775   jint hi = size->_hi;
  3776   jint lo = size->_lo;
  3777   jint min_lo = 0;
  3778   jint max_hi = max_array_length(elem()->basic_type());
  3779   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
  3780   bool chg = false;
  3781   if (lo < min_lo) {
  3782     lo = min_lo;
  3783     if (size->is_con()) {
  3784       hi = lo;
  3786     chg = true;
  3788   if (hi > max_hi) {
  3789     hi = max_hi;
  3790     if (size->is_con()) {
  3791       lo = hi;
  3793     chg = true;
  3795   // Negative length arrays will produce weird intermediate dead fast-path code
  3796   if (lo > hi)
  3797     return TypeInt::ZERO;
  3798   if (!chg)
  3799     return size;
  3800   return TypeInt::make(lo, hi, Type::WidenMin);
  3803 //-------------------------------cast_to_size----------------------------------
  3804 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
  3805   assert(new_size != NULL, "");
  3806   new_size = narrow_size_type(new_size);
  3807   if (new_size == size())  return this;
  3808   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
  3809   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
  3813 //------------------------------cast_to_stable---------------------------------
  3814 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
  3815   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
  3816     return this;
  3818   const Type* elem = this->elem();
  3819   const TypePtr* elem_ptr = elem->make_ptr();
  3821   if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
  3822     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
  3823     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
  3826   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
  3828   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
  3831 //-----------------------------stable_dimension--------------------------------
  3832 int TypeAryPtr::stable_dimension() const {
  3833   if (!is_stable())  return 0;
  3834   int dim = 1;
  3835   const TypePtr* elem_ptr = elem()->make_ptr();
  3836   if (elem_ptr != NULL && elem_ptr->isa_aryptr())
  3837     dim += elem_ptr->is_aryptr()->stable_dimension();
  3838   return dim;
  3841 //------------------------------eq---------------------------------------------
  3842 // Structural equality check for Type representations
  3843 bool TypeAryPtr::eq( const Type *t ) const {
  3844   const TypeAryPtr *p = t->is_aryptr();
  3845   return
  3846     _ary == p->_ary &&  // Check array
  3847     TypeOopPtr::eq(p);  // Check sub-parts
  3850 //------------------------------hash-------------------------------------------
  3851 // Type-specific hashing function.
  3852 int TypeAryPtr::hash(void) const {
  3853   return (intptr_t)_ary + TypeOopPtr::hash();
  3856 //------------------------------meet-------------------------------------------
  3857 // Compute the MEET of two types.  It returns a new Type object.
  3858 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
  3859   // Perform a fast test for common case; meeting the same types together.
  3860   if( this == t ) return this;  // Meeting same type-rep?
  3861   // Current "this->_base" is Pointer
  3862   switch (t->base()) {          // switch on original type
  3864   // Mixing ints & oops happens when javac reuses local variables
  3865   case Int:
  3866   case Long:
  3867   case FloatTop:
  3868   case FloatCon:
  3869   case FloatBot:
  3870   case DoubleTop:
  3871   case DoubleCon:
  3872   case DoubleBot:
  3873   case NarrowOop:
  3874   case NarrowKlass:
  3875   case Bottom:                  // Ye Olde Default
  3876     return Type::BOTTOM;
  3877   case Top:
  3878     return this;
  3880   default:                      // All else is a mistake
  3881     typerr(t);
  3883   case OopPtr: {                // Meeting to OopPtrs
  3884     // Found a OopPtr type vs self-AryPtr type
  3885     const TypeOopPtr *tp = t->is_oopptr();
  3886     int offset = meet_offset(tp->offset());
  3887     PTR ptr = meet_ptr(tp->ptr());
  3888     int depth = meet_inline_depth(tp->inline_depth());
  3889     switch (tp->ptr()) {
  3890     case TopPTR:
  3891     case AnyNull: {
  3892       int instance_id = meet_instance_id(InstanceTop);
  3893       const TypeOopPtr* speculative = xmeet_speculative(tp);
  3894       return make(ptr, (ptr == Constant ? const_oop() : NULL),
  3895                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
  3897     case BotPTR:
  3898     case NotNull: {
  3899       int instance_id = meet_instance_id(tp->instance_id());
  3900       const TypeOopPtr* speculative = xmeet_speculative(tp);
  3901       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
  3903     default: ShouldNotReachHere();
  3907   case AnyPtr: {                // Meeting two AnyPtrs
  3908     // Found an AnyPtr type vs self-AryPtr type
  3909     const TypePtr *tp = t->is_ptr();
  3910     int offset = meet_offset(tp->offset());
  3911     PTR ptr = meet_ptr(tp->ptr());
  3912     switch (tp->ptr()) {
  3913     case TopPTR:
  3914       return this;
  3915     case BotPTR:
  3916     case NotNull:
  3917       return TypePtr::make(AnyPtr, ptr, offset);
  3918     case Null:
  3919       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
  3920       // else fall through to AnyNull
  3921     case AnyNull: {
  3922       int instance_id = meet_instance_id(InstanceTop);
  3923       const TypeOopPtr* speculative = _speculative;
  3924       return make(ptr, (ptr == Constant ? const_oop() : NULL),
  3925                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, _inline_depth);
  3927     default: ShouldNotReachHere();
  3931   case MetadataPtr:
  3932   case KlassPtr:
  3933   case RawPtr: return TypePtr::BOTTOM;
  3935   case AryPtr: {                // Meeting 2 references?
  3936     const TypeAryPtr *tap = t->is_aryptr();
  3937     int off = meet_offset(tap->offset());
  3938     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
  3939     PTR ptr = meet_ptr(tap->ptr());
  3940     int instance_id = meet_instance_id(tap->instance_id());
  3941     const TypeOopPtr* speculative = xmeet_speculative(tap);
  3942     int depth = meet_inline_depth(tap->inline_depth());
  3943     ciKlass* lazy_klass = NULL;
  3944     if (tary->_elem->isa_int()) {
  3945       // Integral array element types have irrelevant lattice relations.
  3946       // It is the klass that determines array layout, not the element type.
  3947       if (_klass == NULL)
  3948         lazy_klass = tap->_klass;
  3949       else if (tap->_klass == NULL || tap->_klass == _klass) {
  3950         lazy_klass = _klass;
  3951       } else {
  3952         // Something like byte[int+] meets char[int+].
  3953         // This must fall to bottom, not (int[-128..65535])[int+].
  3954         instance_id = InstanceBot;
  3955         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
  3957     } else // Non integral arrays.
  3958       // Must fall to bottom if exact klasses in upper lattice
  3959       // are not equal or super klass is exact.
  3960       if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
  3961           // meet with top[] and bottom[] are processed further down:
  3962           tap->_klass != NULL  && this->_klass != NULL   &&
  3963           // both are exact and not equal:
  3964           ((tap->_klass_is_exact && this->_klass_is_exact) ||
  3965            // 'tap'  is exact and super or unrelated:
  3966            (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
  3967            // 'this' is exact and super or unrelated:
  3968            (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
  3969       if (above_centerline(ptr)) {
  3970         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
  3972       return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot);
  3975     bool xk = false;
  3976     switch (tap->ptr()) {
  3977     case AnyNull:
  3978     case TopPTR:
  3979       // Compute new klass on demand, do not use tap->_klass
  3980       if (below_centerline(this->_ptr)) {
  3981         xk = this->_klass_is_exact;
  3982       } else {
  3983         xk = (tap->_klass_is_exact | this->_klass_is_exact);
  3985       return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative, depth);
  3986     case Constant: {
  3987       ciObject* o = const_oop();
  3988       if( _ptr == Constant ) {
  3989         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
  3990           xk = (klass() == tap->klass());
  3991           ptr = NotNull;
  3992           o = NULL;
  3993           instance_id = InstanceBot;
  3994         } else {
  3995           xk = true;
  3997       } else if(above_centerline(_ptr)) {
  3998         o = tap->const_oop();
  3999         xk = true;
  4000       } else {
  4001         // Only precise for identical arrays
  4002         xk = this->_klass_is_exact && (klass() == tap->klass());
  4004       return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative, depth);
  4006     case NotNull:
  4007     case BotPTR:
  4008       // Compute new klass on demand, do not use tap->_klass
  4009       if (above_centerline(this->_ptr))
  4010             xk = tap->_klass_is_exact;
  4011       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
  4012               (klass() == tap->klass()); // Only precise for identical arrays
  4013       return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, instance_id, speculative, depth);
  4014     default: ShouldNotReachHere();
  4018   // All arrays inherit from Object class
  4019   case InstPtr: {
  4020     const TypeInstPtr *tp = t->is_instptr();
  4021     int offset = meet_offset(tp->offset());
  4022     PTR ptr = meet_ptr(tp->ptr());
  4023     int instance_id = meet_instance_id(tp->instance_id());
  4024     const TypeOopPtr* speculative = xmeet_speculative(tp);
  4025     int depth = meet_inline_depth(tp->inline_depth());
  4026     switch (ptr) {
  4027     case TopPTR:
  4028     case AnyNull:                // Fall 'down' to dual of object klass
  4029       // For instances when a subclass meets a superclass we fall
  4030       // below the centerline when the superclass is exact. We need to
  4031       // do the same here.
  4032       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
  4033         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
  4034       } else {
  4035         // cannot subclass, so the meet has to fall badly below the centerline
  4036         ptr = NotNull;
  4037         instance_id = InstanceBot;
  4038         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
  4040     case Constant:
  4041     case NotNull:
  4042     case BotPTR:                // Fall down to object klass
  4043       // LCA is object_klass, but if we subclass from the top we can do better
  4044       if (above_centerline(tp->ptr())) {
  4045         // If 'tp'  is above the centerline and it is Object class
  4046         // then we can subclass in the Java class hierarchy.
  4047         // For instances when a subclass meets a superclass we fall
  4048         // below the centerline when the superclass is exact. We need
  4049         // to do the same here.
  4050         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
  4051           // that is, my array type is a subtype of 'tp' klass
  4052           return make(ptr, (ptr == Constant ? const_oop() : NULL),
  4053                       _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
  4056       // The other case cannot happen, since t cannot be a subtype of an array.
  4057       // The meet falls down to Object class below centerline.
  4058       if( ptr == Constant )
  4059          ptr = NotNull;
  4060       instance_id = InstanceBot;
  4061       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
  4062     default: typerr(t);
  4066   return this;                  // Lint noise
  4069 //------------------------------xdual------------------------------------------
  4070 // Dual: compute field-by-field dual
  4071 const Type *TypeAryPtr::xdual() const {
  4072   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
  4075 //----------------------interface_vs_oop---------------------------------------
  4076 #ifdef ASSERT
  4077 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
  4078   const TypeAryPtr* t_aryptr = t->isa_aryptr();
  4079   if (t_aryptr) {
  4080     return _ary->interface_vs_oop(t_aryptr->_ary);
  4082   return false;
  4084 #endif
  4086 //------------------------------dump2------------------------------------------
  4087 #ifndef PRODUCT
  4088 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  4089   _ary->dump2(d,depth,st);
  4090   switch( _ptr ) {
  4091   case Constant:
  4092     const_oop()->print(st);
  4093     break;
  4094   case BotPTR:
  4095     if (!WizardMode && !Verbose) {
  4096       if( _klass_is_exact ) st->print(":exact");
  4097       break;
  4099   case TopPTR:
  4100   case AnyNull:
  4101   case NotNull:
  4102     st->print(":%s", ptr_msg[_ptr]);
  4103     if( _klass_is_exact ) st->print(":exact");
  4104     break;
  4107   if( _offset != 0 ) {
  4108     int header_size = objArrayOopDesc::header_size() * wordSize;
  4109     if( _offset == OffsetTop )       st->print("+undefined");
  4110     else if( _offset == OffsetBot )  st->print("+any");
  4111     else if( _offset < header_size ) st->print("+%d", _offset);
  4112     else {
  4113       BasicType basic_elem_type = elem()->basic_type();
  4114       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  4115       int elem_size = type2aelembytes(basic_elem_type);
  4116       st->print("[%d]", (_offset - array_base)/elem_size);
  4119   st->print(" *");
  4120   if (_instance_id == InstanceTop)
  4121     st->print(",iid=top");
  4122   else if (_instance_id != InstanceBot)
  4123     st->print(",iid=%d",_instance_id);
  4125   dump_inline_depth(st);
  4126   dump_speculative(st);
  4128 #endif
  4130 bool TypeAryPtr::empty(void) const {
  4131   if (_ary->empty())       return true;
  4132   return TypeOopPtr::empty();
  4135 //------------------------------add_offset-------------------------------------
  4136 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
  4137   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
  4140 const Type *TypeAryPtr::remove_speculative() const {
  4141   if (_speculative == NULL) {
  4142     return this;
  4144   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
  4145   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL, _inline_depth);
  4148 const TypeOopPtr *TypeAryPtr::with_inline_depth(int depth) const {
  4149   if (!UseInlineDepthForSpeculativeTypes) {
  4150     return this;
  4152   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);
  4155 //=============================================================================
  4157 //------------------------------hash-------------------------------------------
  4158 // Type-specific hashing function.
  4159 int TypeNarrowPtr::hash(void) const {
  4160   return _ptrtype->hash() + 7;
  4163 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
  4164   return _ptrtype->singleton();
  4167 bool TypeNarrowPtr::empty(void) const {
  4168   return _ptrtype->empty();
  4171 intptr_t TypeNarrowPtr::get_con() const {
  4172   return _ptrtype->get_con();
  4175 bool TypeNarrowPtr::eq( const Type *t ) const {
  4176   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
  4177   if (tc != NULL) {
  4178     if (_ptrtype->base() != tc->_ptrtype->base()) {
  4179       return false;
  4181     return tc->_ptrtype->eq(_ptrtype);
  4183   return false;
  4186 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
  4187   const TypePtr* odual = _ptrtype->dual()->is_ptr();
  4188   return make_same_narrowptr(odual);
  4192 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
  4193   if (isa_same_narrowptr(kills)) {
  4194     const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
  4195     if (ft->empty())
  4196       return Type::TOP;           // Canonical empty value
  4197     if (ft->isa_ptr()) {
  4198       return make_hash_same_narrowptr(ft->isa_ptr());
  4200     return ft;
  4201   } else if (kills->isa_ptr()) {
  4202     const Type* ft = _ptrtype->join_helper(kills, include_speculative);
  4203     if (ft->empty())
  4204       return Type::TOP;           // Canonical empty value
  4205     return ft;
  4206   } else {
  4207     return Type::TOP;
  4211 //------------------------------xmeet------------------------------------------
  4212 // Compute the MEET of two types.  It returns a new Type object.
  4213 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
  4214   // Perform a fast test for common case; meeting the same types together.
  4215   if( this == t ) return this;  // Meeting same type-rep?
  4217   if (t->base() == base()) {
  4218     const Type* result = _ptrtype->xmeet(t->make_ptr());
  4219     if (result->isa_ptr()) {
  4220       return make_hash_same_narrowptr(result->is_ptr());
  4222     return result;
  4225   // Current "this->_base" is NarrowKlass or NarrowOop
  4226   switch (t->base()) {          // switch on original type
  4228   case Int:                     // Mixing ints & oops happens when javac
  4229   case Long:                    // reuses local variables
  4230   case FloatTop:
  4231   case FloatCon:
  4232   case FloatBot:
  4233   case DoubleTop:
  4234   case DoubleCon:
  4235   case DoubleBot:
  4236   case AnyPtr:
  4237   case RawPtr:
  4238   case OopPtr:
  4239   case InstPtr:
  4240   case AryPtr:
  4241   case MetadataPtr:
  4242   case KlassPtr:
  4243   case NarrowOop:
  4244   case NarrowKlass:
  4246   case Bottom:                  // Ye Olde Default
  4247     return Type::BOTTOM;
  4248   case Top:
  4249     return this;
  4251   default:                      // All else is a mistake
  4252     typerr(t);
  4254   } // End of switch
  4256   return this;
  4259 #ifndef PRODUCT
  4260 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
  4261   _ptrtype->dump2(d, depth, st);
  4263 #endif
  4265 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
  4266 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
  4269 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
  4270   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
  4274 #ifndef PRODUCT
  4275 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
  4276   st->print("narrowoop: ");
  4277   TypeNarrowPtr::dump2(d, depth, st);
  4279 #endif
  4281 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
  4283 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
  4284   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
  4287 #ifndef PRODUCT
  4288 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
  4289   st->print("narrowklass: ");
  4290   TypeNarrowPtr::dump2(d, depth, st);
  4292 #endif
  4295 //------------------------------eq---------------------------------------------
  4296 // Structural equality check for Type representations
  4297 bool TypeMetadataPtr::eq( const Type *t ) const {
  4298   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
  4299   ciMetadata* one = metadata();
  4300   ciMetadata* two = a->metadata();
  4301   if (one == NULL || two == NULL) {
  4302     return (one == two) && TypePtr::eq(t);
  4303   } else {
  4304     return one->equals(two) && TypePtr::eq(t);
  4308 //------------------------------hash-------------------------------------------
  4309 // Type-specific hashing function.
  4310 int TypeMetadataPtr::hash(void) const {
  4311   return
  4312     (metadata() ? metadata()->hash() : 0) +
  4313     TypePtr::hash();
  4316 //------------------------------singleton--------------------------------------
  4317 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  4318 // constants
  4319 bool TypeMetadataPtr::singleton(void) const {
  4320   // detune optimizer to not generate constant metadta + constant offset as a constant!
  4321   // TopPTR, Null, AnyNull, Constant are all singletons
  4322   return (_offset == 0) && !below_centerline(_ptr);
  4325 //------------------------------add_offset-------------------------------------
  4326 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
  4327   return make( _ptr, _metadata, xadd_offset(offset));
  4330 //-----------------------------filter------------------------------------------
  4331 // Do not allow interface-vs.-noninterface joins to collapse to top.
  4332 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
  4333   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
  4334   if (ft == NULL || ft->empty())
  4335     return Type::TOP;           // Canonical empty value
  4336   return ft;
  4339  //------------------------------get_con----------------------------------------
  4340 intptr_t TypeMetadataPtr::get_con() const {
  4341   assert( _ptr == Null || _ptr == Constant, "" );
  4342   assert( _offset >= 0, "" );
  4344   if (_offset != 0) {
  4345     // After being ported to the compiler interface, the compiler no longer
  4346     // directly manipulates the addresses of oops.  Rather, it only has a pointer
  4347     // to a handle at compile time.  This handle is embedded in the generated
  4348     // code and dereferenced at the time the nmethod is made.  Until that time,
  4349     // it is not reasonable to do arithmetic with the addresses of oops (we don't
  4350     // have access to the addresses!).  This does not seem to currently happen,
  4351     // but this assertion here is to help prevent its occurence.
  4352     tty->print_cr("Found oop constant with non-zero offset");
  4353     ShouldNotReachHere();
  4356   return (intptr_t)metadata()->constant_encoding();
  4359 //------------------------------cast_to_ptr_type-------------------------------
  4360 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
  4361   if( ptr == _ptr ) return this;
  4362   return make(ptr, metadata(), _offset);
  4365 //------------------------------meet-------------------------------------------
  4366 // Compute the MEET of two types.  It returns a new Type object.
  4367 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
  4368   // Perform a fast test for common case; meeting the same types together.
  4369   if( this == t ) return this;  // Meeting same type-rep?
  4371   // Current "this->_base" is OopPtr
  4372   switch (t->base()) {          // switch on original type
  4374   case Int:                     // Mixing ints & oops happens when javac
  4375   case Long:                    // reuses local variables
  4376   case FloatTop:
  4377   case FloatCon:
  4378   case FloatBot:
  4379   case DoubleTop:
  4380   case DoubleCon:
  4381   case DoubleBot:
  4382   case NarrowOop:
  4383   case NarrowKlass:
  4384   case Bottom:                  // Ye Olde Default
  4385     return Type::BOTTOM;
  4386   case Top:
  4387     return this;
  4389   default:                      // All else is a mistake
  4390     typerr(t);
  4392   case AnyPtr: {
  4393     // Found an AnyPtr type vs self-OopPtr type
  4394     const TypePtr *tp = t->is_ptr();
  4395     int offset = meet_offset(tp->offset());
  4396     PTR ptr = meet_ptr(tp->ptr());
  4397     switch (tp->ptr()) {
  4398     case Null:
  4399       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
  4400       // else fall through:
  4401     case TopPTR:
  4402     case AnyNull: {
  4403       return make(ptr, _metadata, offset);
  4405     case BotPTR:
  4406     case NotNull:
  4407       return TypePtr::make(AnyPtr, ptr, offset);
  4408     default: typerr(t);
  4412   case RawPtr:
  4413   case KlassPtr:
  4414   case OopPtr:
  4415   case InstPtr:
  4416   case AryPtr:
  4417     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
  4419   case MetadataPtr: {
  4420     const TypeMetadataPtr *tp = t->is_metadataptr();
  4421     int offset = meet_offset(tp->offset());
  4422     PTR tptr = tp->ptr();
  4423     PTR ptr = meet_ptr(tptr);
  4424     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
  4425     if (tptr == TopPTR || _ptr == TopPTR ||
  4426         metadata()->equals(tp->metadata())) {
  4427       return make(ptr, md, offset);
  4429     // metadata is different
  4430     if( ptr == Constant ) {  // Cannot be equal constants, so...
  4431       if( tptr == Constant && _ptr != Constant)  return t;
  4432       if( _ptr == Constant && tptr != Constant)  return this;
  4433       ptr = NotNull;            // Fall down in lattice
  4435     return make(ptr, NULL, offset);
  4436     break;
  4438   } // End of switch
  4439   return this;                  // Return the double constant
  4443 //------------------------------xdual------------------------------------------
  4444 // Dual of a pure metadata pointer.
  4445 const Type *TypeMetadataPtr::xdual() const {
  4446   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
  4449 //------------------------------dump2------------------------------------------
  4450 #ifndef PRODUCT
  4451 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  4452   st->print("metadataptr:%s", ptr_msg[_ptr]);
  4453   if( metadata() ) st->print(INTPTR_FORMAT, metadata());
  4454   switch( _offset ) {
  4455   case OffsetTop: st->print("+top"); break;
  4456   case OffsetBot: st->print("+any"); break;
  4457   case         0: break;
  4458   default:        st->print("+%d",_offset); break;
  4461 #endif
  4464 //=============================================================================
  4465 // Convenience common pre-built type.
  4466 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
  4468 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
  4469   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
  4472 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
  4473   return make(Constant, m, 0);
  4475 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
  4476   return make(Constant, m, 0);
  4479 //------------------------------make-------------------------------------------
  4480 // Create a meta data constant
  4481 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
  4482   assert(m == NULL || !m->is_klass(), "wrong type");
  4483   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
  4487 //=============================================================================
  4488 // Convenience common pre-built types.
  4490 // Not-null object klass or below
  4491 const TypeKlassPtr *TypeKlassPtr::OBJECT;
  4492 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
  4494 //------------------------------TypeKlassPtr-----------------------------------
  4495 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
  4496   : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
  4499 //------------------------------make-------------------------------------------
  4500 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
  4501 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
  4502   assert( k != NULL, "Expect a non-NULL klass");
  4503   assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
  4504   TypeKlassPtr *r =
  4505     (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
  4507   return r;
  4510 //------------------------------eq---------------------------------------------
  4511 // Structural equality check for Type representations
  4512 bool TypeKlassPtr::eq( const Type *t ) const {
  4513   const TypeKlassPtr *p = t->is_klassptr();
  4514   return
  4515     klass()->equals(p->klass()) &&
  4516     TypePtr::eq(p);
  4519 //------------------------------hash-------------------------------------------
  4520 // Type-specific hashing function.
  4521 int TypeKlassPtr::hash(void) const {
  4522   return java_add(klass()->hash(), TypePtr::hash());
  4525 //------------------------------singleton--------------------------------------
  4526 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  4527 // constants
  4528 bool TypeKlassPtr::singleton(void) const {
  4529   // detune optimizer to not generate constant klass + constant offset as a constant!
  4530   // TopPTR, Null, AnyNull, Constant are all singletons
  4531   return (_offset == 0) && !below_centerline(_ptr);
  4534 // Do not allow interface-vs.-noninterface joins to collapse to top.
  4535 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
  4536   // logic here mirrors the one from TypeOopPtr::filter. See comments
  4537   // there.
  4538   const Type* ft = join_helper(kills, include_speculative);
  4539   const TypeKlassPtr* ftkp = ft->isa_klassptr();
  4540   const TypeKlassPtr* ktkp = kills->isa_klassptr();
  4542   if (ft->empty()) {
  4543     if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
  4544       return kills;             // Uplift to interface
  4546     return Type::TOP;           // Canonical empty value
  4549   // Interface klass type could be exact in opposite to interface type,
  4550   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
  4551   if (ftkp != NULL && ktkp != NULL &&
  4552       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
  4553       !ftkp->klass_is_exact() && // Keep exact interface klass
  4554       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
  4555     return ktkp->cast_to_ptr_type(ftkp->ptr());
  4558   return ft;
  4561 //----------------------compute_klass------------------------------------------
  4562 // Compute the defining klass for this class
  4563 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
  4564   // Compute _klass based on element type.
  4565   ciKlass* k_ary = NULL;
  4566   const TypeInstPtr *tinst;
  4567   const TypeAryPtr *tary;
  4568   const Type* el = elem();
  4569   if (el->isa_narrowoop()) {
  4570     el = el->make_ptr();
  4573   // Get element klass
  4574   if ((tinst = el->isa_instptr()) != NULL) {
  4575     // Compute array klass from element klass
  4576     k_ary = ciObjArrayKlass::make(tinst->klass());
  4577   } else if ((tary = el->isa_aryptr()) != NULL) {
  4578     // Compute array klass from element klass
  4579     ciKlass* k_elem = tary->klass();
  4580     // If element type is something like bottom[], k_elem will be null.
  4581     if (k_elem != NULL)
  4582       k_ary = ciObjArrayKlass::make(k_elem);
  4583   } else if ((el->base() == Type::Top) ||
  4584              (el->base() == Type::Bottom)) {
  4585     // element type of Bottom occurs from meet of basic type
  4586     // and object; Top occurs when doing join on Bottom.
  4587     // Leave k_ary at NULL.
  4588   } else {
  4589     // Cannot compute array klass directly from basic type,
  4590     // since subtypes of TypeInt all have basic type T_INT.
  4591 #ifdef ASSERT
  4592     if (verify && el->isa_int()) {
  4593       // Check simple cases when verifying klass.
  4594       BasicType bt = T_ILLEGAL;
  4595       if (el == TypeInt::BYTE) {
  4596         bt = T_BYTE;
  4597       } else if (el == TypeInt::SHORT) {
  4598         bt = T_SHORT;
  4599       } else if (el == TypeInt::CHAR) {
  4600         bt = T_CHAR;
  4601       } else if (el == TypeInt::INT) {
  4602         bt = T_INT;
  4603       } else {
  4604         return _klass; // just return specified klass
  4606       return ciTypeArrayKlass::make(bt);
  4608 #endif
  4609     assert(!el->isa_int(),
  4610            "integral arrays must be pre-equipped with a class");
  4611     // Compute array klass directly from basic type
  4612     k_ary = ciTypeArrayKlass::make(el->basic_type());
  4614   return k_ary;
  4617 //------------------------------klass------------------------------------------
  4618 // Return the defining klass for this class
  4619 ciKlass* TypeAryPtr::klass() const {
  4620   if( _klass ) return _klass;   // Return cached value, if possible
  4622   // Oops, need to compute _klass and cache it
  4623   ciKlass* k_ary = compute_klass();
  4625   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
  4626     // The _klass field acts as a cache of the underlying
  4627     // ciKlass for this array type.  In order to set the field,
  4628     // we need to cast away const-ness.
  4629     //
  4630     // IMPORTANT NOTE: we *never* set the _klass field for the
  4631     // type TypeAryPtr::OOPS.  This Type is shared between all
  4632     // active compilations.  However, the ciKlass which represents
  4633     // this Type is *not* shared between compilations, so caching
  4634     // this value would result in fetching a dangling pointer.
  4635     //
  4636     // Recomputing the underlying ciKlass for each request is
  4637     // a bit less efficient than caching, but calls to
  4638     // TypeAryPtr::OOPS->klass() are not common enough to matter.
  4639     ((TypeAryPtr*)this)->_klass = k_ary;
  4640     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
  4641         _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
  4642       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
  4645   return k_ary;
  4649 //------------------------------add_offset-------------------------------------
  4650 // Access internals of klass object
  4651 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
  4652   return make( _ptr, klass(), xadd_offset(offset) );
  4655 //------------------------------cast_to_ptr_type-------------------------------
  4656 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
  4657   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
  4658   if( ptr == _ptr ) return this;
  4659   return make(ptr, _klass, _offset);
  4663 //-----------------------------cast_to_exactness-------------------------------
  4664 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
  4665   if( klass_is_exact == _klass_is_exact ) return this;
  4666   if (!UseExactTypes)  return this;
  4667   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
  4671 //-----------------------------as_instance_type--------------------------------
  4672 // Corresponding type for an instance of the given class.
  4673 // It will be NotNull, and exact if and only if the klass type is exact.
  4674 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
  4675   ciKlass* k = klass();
  4676   bool    xk = klass_is_exact();
  4677   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
  4678   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
  4679   guarantee(toop != NULL, "need type for given klass");
  4680   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
  4681   return toop->cast_to_exactness(xk)->is_oopptr();
  4685 //------------------------------xmeet------------------------------------------
  4686 // Compute the MEET of two types, return a new Type object.
  4687 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
  4688   // Perform a fast test for common case; meeting the same types together.
  4689   if( this == t ) return this;  // Meeting same type-rep?
  4691   // Current "this->_base" is Pointer
  4692   switch (t->base()) {          // switch on original type
  4694   case Int:                     // Mixing ints & oops happens when javac
  4695   case Long:                    // reuses local variables
  4696   case FloatTop:
  4697   case FloatCon:
  4698   case FloatBot:
  4699   case DoubleTop:
  4700   case DoubleCon:
  4701   case DoubleBot:
  4702   case NarrowOop:
  4703   case NarrowKlass:
  4704   case Bottom:                  // Ye Olde Default
  4705     return Type::BOTTOM;
  4706   case Top:
  4707     return this;
  4709   default:                      // All else is a mistake
  4710     typerr(t);
  4712   case AnyPtr: {                // Meeting to AnyPtrs
  4713     // Found an AnyPtr type vs self-KlassPtr type
  4714     const TypePtr *tp = t->is_ptr();
  4715     int offset = meet_offset(tp->offset());
  4716     PTR ptr = meet_ptr(tp->ptr());
  4717     switch (tp->ptr()) {
  4718     case TopPTR:
  4719       return this;
  4720     case Null:
  4721       if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
  4722     case AnyNull:
  4723       return make( ptr, klass(), offset );
  4724     case BotPTR:
  4725     case NotNull:
  4726       return TypePtr::make(AnyPtr, ptr, offset);
  4727     default: typerr(t);
  4731   case RawPtr:
  4732   case MetadataPtr:
  4733   case OopPtr:
  4734   case AryPtr:                  // Meet with AryPtr
  4735   case InstPtr:                 // Meet with InstPtr
  4736     return TypePtr::BOTTOM;
  4738   //
  4739   //             A-top         }
  4740   //           /   |   \       }  Tops
  4741   //       B-top A-any C-top   }
  4742   //          | /  |  \ |      }  Any-nulls
  4743   //       B-any   |   C-any   }
  4744   //          |    |    |
  4745   //       B-con A-con C-con   } constants; not comparable across classes
  4746   //          |    |    |
  4747   //       B-not   |   C-not   }
  4748   //          | \  |  / |      }  not-nulls
  4749   //       B-bot A-not C-bot   }
  4750   //           \   |   /       }  Bottoms
  4751   //             A-bot         }
  4752   //
  4754   case KlassPtr: {  // Meet two KlassPtr types
  4755     const TypeKlassPtr *tkls = t->is_klassptr();
  4756     int  off     = meet_offset(tkls->offset());
  4757     PTR  ptr     = meet_ptr(tkls->ptr());
  4759     // Check for easy case; klasses are equal (and perhaps not loaded!)
  4760     // If we have constants, then we created oops so classes are loaded
  4761     // and we can handle the constants further down.  This case handles
  4762     // not-loaded classes
  4763     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
  4764       return make( ptr, klass(), off );
  4767     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
  4768     ciKlass* tkls_klass = tkls->klass();
  4769     ciKlass* this_klass = this->klass();
  4770     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
  4771     assert( this_klass->is_loaded(), "This class should have been loaded.");
  4773     // If 'this' type is above the centerline and is a superclass of the
  4774     // other, we can treat 'this' as having the same type as the other.
  4775     if ((above_centerline(this->ptr())) &&
  4776         tkls_klass->is_subtype_of(this_klass)) {
  4777       this_klass = tkls_klass;
  4779     // If 'tinst' type is above the centerline and is a superclass of the
  4780     // other, we can treat 'tinst' as having the same type as the other.
  4781     if ((above_centerline(tkls->ptr())) &&
  4782         this_klass->is_subtype_of(tkls_klass)) {
  4783       tkls_klass = this_klass;
  4786     // Check for classes now being equal
  4787     if (tkls_klass->equals(this_klass)) {
  4788       // If the klasses are equal, the constants may still differ.  Fall to
  4789       // NotNull if they do (neither constant is NULL; that is a special case
  4790       // handled elsewhere).
  4791       if( ptr == Constant ) {
  4792         if (this->_ptr == Constant && tkls->_ptr == Constant &&
  4793             this->klass()->equals(tkls->klass()));
  4794         else if (above_centerline(this->ptr()));
  4795         else if (above_centerline(tkls->ptr()));
  4796         else
  4797           ptr = NotNull;
  4799       return make( ptr, this_klass, off );
  4800     } // Else classes are not equal
  4802     // Since klasses are different, we require the LCA in the Java
  4803     // class hierarchy - which means we have to fall to at least NotNull.
  4804     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
  4805       ptr = NotNull;
  4806     // Now we find the LCA of Java classes
  4807     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
  4808     return   make( ptr, k, off );
  4809   } // End of case KlassPtr
  4811   } // End of switch
  4812   return this;                  // Return the double constant
  4815 //------------------------------xdual------------------------------------------
  4816 // Dual: compute field-by-field dual
  4817 const Type    *TypeKlassPtr::xdual() const {
  4818   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
  4821 //------------------------------get_con----------------------------------------
  4822 intptr_t TypeKlassPtr::get_con() const {
  4823   assert( _ptr == Null || _ptr == Constant, "" );
  4824   assert( _offset >= 0, "" );
  4826   if (_offset != 0) {
  4827     // After being ported to the compiler interface, the compiler no longer
  4828     // directly manipulates the addresses of oops.  Rather, it only has a pointer
  4829     // to a handle at compile time.  This handle is embedded in the generated
  4830     // code and dereferenced at the time the nmethod is made.  Until that time,
  4831     // it is not reasonable to do arithmetic with the addresses of oops (we don't
  4832     // have access to the addresses!).  This does not seem to currently happen,
  4833     // but this assertion here is to help prevent its occurence.
  4834     tty->print_cr("Found oop constant with non-zero offset");
  4835     ShouldNotReachHere();
  4838   return (intptr_t)klass()->constant_encoding();
  4840 //------------------------------dump2------------------------------------------
  4841 // Dump Klass Type
  4842 #ifndef PRODUCT
  4843 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
  4844   switch( _ptr ) {
  4845   case Constant:
  4846     st->print("precise ");
  4847   case NotNull:
  4849       const char *name = klass()->name()->as_utf8();
  4850       if( name ) {
  4851         st->print("klass %s: " INTPTR_FORMAT, name, klass());
  4852       } else {
  4853         ShouldNotReachHere();
  4856   case BotPTR:
  4857     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
  4858   case TopPTR:
  4859   case AnyNull:
  4860     st->print(":%s", ptr_msg[_ptr]);
  4861     if( _klass_is_exact ) st->print(":exact");
  4862     break;
  4865   if( _offset ) {               // Dump offset, if any
  4866     if( _offset == OffsetBot )      { st->print("+any"); }
  4867     else if( _offset == OffsetTop ) { st->print("+unknown"); }
  4868     else                            { st->print("+%d", _offset); }
  4871   st->print(" *");
  4873 #endif
  4877 //=============================================================================
  4878 // Convenience common pre-built types.
  4880 //------------------------------make-------------------------------------------
  4881 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
  4882   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
  4885 //------------------------------make-------------------------------------------
  4886 const TypeFunc *TypeFunc::make(ciMethod* method) {
  4887   Compile* C = Compile::current();
  4888   const TypeFunc* tf = C->last_tf(method); // check cache
  4889   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
  4890   const TypeTuple *domain;
  4891   if (method->is_static()) {
  4892     domain = TypeTuple::make_domain(NULL, method->signature());
  4893   } else {
  4894     domain = TypeTuple::make_domain(method->holder(), method->signature());
  4896   const TypeTuple *range  = TypeTuple::make_range(method->signature());
  4897   tf = TypeFunc::make(domain, range);
  4898   C->set_last_tf(method, tf);  // fill cache
  4899   return tf;
  4902 //------------------------------meet-------------------------------------------
  4903 // Compute the MEET of two types.  It returns a new Type object.
  4904 const Type *TypeFunc::xmeet( const Type *t ) const {
  4905   // Perform a fast test for common case; meeting the same types together.
  4906   if( this == t ) return this;  // Meeting same type-rep?
  4908   // Current "this->_base" is Func
  4909   switch (t->base()) {          // switch on original type
  4911   case Bottom:                  // Ye Olde Default
  4912     return t;
  4914   default:                      // All else is a mistake
  4915     typerr(t);
  4917   case Top:
  4918     break;
  4920   return this;                  // Return the double constant
  4923 //------------------------------xdual------------------------------------------
  4924 // Dual: compute field-by-field dual
  4925 const Type *TypeFunc::xdual() const {
  4926   return this;
  4929 //------------------------------eq---------------------------------------------
  4930 // Structural equality check for Type representations
  4931 bool TypeFunc::eq( const Type *t ) const {
  4932   const TypeFunc *a = (const TypeFunc*)t;
  4933   return _domain == a->_domain &&
  4934     _range == a->_range;
  4937 //------------------------------hash-------------------------------------------
  4938 // Type-specific hashing function.
  4939 int TypeFunc::hash(void) const {
  4940   return (intptr_t)_domain + (intptr_t)_range;
  4943 //------------------------------dump2------------------------------------------
  4944 // Dump Function Type
  4945 #ifndef PRODUCT
  4946 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
  4947   if( _range->_cnt <= Parms )
  4948     st->print("void");
  4949   else {
  4950     uint i;
  4951     for (i = Parms; i < _range->_cnt-1; i++) {
  4952       _range->field_at(i)->dump2(d,depth,st);
  4953       st->print("/");
  4955     _range->field_at(i)->dump2(d,depth,st);
  4957   st->print(" ");
  4958   st->print("( ");
  4959   if( !depth || d[this] ) {     // Check for recursive dump
  4960     st->print("...)");
  4961     return;
  4963   d.Insert((void*)this,(void*)this);    // Stop recursion
  4964   if (Parms < _domain->_cnt)
  4965     _domain->field_at(Parms)->dump2(d,depth-1,st);
  4966   for (uint i = Parms+1; i < _domain->_cnt; i++) {
  4967     st->print(", ");
  4968     _domain->field_at(i)->dump2(d,depth-1,st);
  4970   st->print(" )");
  4972 #endif
  4974 //------------------------------singleton--------------------------------------
  4975 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  4976 // constants (Ldi nodes).  Singletons are integer, float or double constants
  4977 // or a single symbol.
  4978 bool TypeFunc::singleton(void) const {
  4979   return false;                 // Never a singleton
  4982 bool TypeFunc::empty(void) const {
  4983   return false;                 // Never empty
  4987 BasicType TypeFunc::return_type() const{
  4988   if (range()->cnt() == TypeFunc::Parms) {
  4989     return T_VOID;
  4991   return range()->field_at(TypeFunc::Parms)->basic_type();

mercurial