src/share/vm/opto/loopTransform.cpp

Tue, 10 Mar 2020 10:46:35 +0100

author
mdoerr
date
Tue, 10 Mar 2020 10:46:35 +0100
changeset 9912
97d09139b360
parent 9772
eee5798e1b28
child 9806
758c07667682
child 9977
e649f2136368
permissions
-rw-r--r--

8146612: C2: Precedence edges specification violated
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "compiler/compileLog.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "opto/addnode.hpp"
    29 #include "opto/callnode.hpp"
    30 #include "opto/connode.hpp"
    31 #include "opto/divnode.hpp"
    32 #include "opto/loopnode.hpp"
    33 #include "opto/mulnode.hpp"
    34 #include "opto/rootnode.hpp"
    35 #include "opto/runtime.hpp"
    36 #include "opto/subnode.hpp"
    38 //------------------------------is_loop_exit-----------------------------------
    39 // Given an IfNode, return the loop-exiting projection or NULL if both
    40 // arms remain in the loop.
    41 Node *IdealLoopTree::is_loop_exit(Node *iff) const {
    42   if( iff->outcnt() != 2 ) return NULL; // Ignore partially dead tests
    43   PhaseIdealLoop *phase = _phase;
    44   // Test is an IfNode, has 2 projections.  If BOTH are in the loop
    45   // we need loop unswitching instead of peeling.
    46   if( !is_member(phase->get_loop( iff->raw_out(0) )) )
    47     return iff->raw_out(0);
    48   if( !is_member(phase->get_loop( iff->raw_out(1) )) )
    49     return iff->raw_out(1);
    50   return NULL;
    51 }
    54 //=============================================================================
    57 //------------------------------record_for_igvn----------------------------
    58 // Put loop body on igvn work list
    59 void IdealLoopTree::record_for_igvn() {
    60   for( uint i = 0; i < _body.size(); i++ ) {
    61     Node *n = _body.at(i);
    62     _phase->_igvn._worklist.push(n);
    63   }
    64 }
    66 //------------------------------compute_exact_trip_count-----------------------
    67 // Compute loop exact trip count if possible. Do not recalculate trip count for
    68 // split loops (pre-main-post) which have their limits and inits behind Opaque node.
    69 void IdealLoopTree::compute_exact_trip_count( PhaseIdealLoop *phase ) {
    70   if (!_head->as_Loop()->is_valid_counted_loop()) {
    71     return;
    72   }
    73   CountedLoopNode* cl = _head->as_CountedLoop();
    74   // Trip count may become nonexact for iteration split loops since
    75   // RCE modifies limits. Note, _trip_count value is not reset since
    76   // it is used to limit unrolling of main loop.
    77   cl->set_nonexact_trip_count();
    79   // Loop's test should be part of loop.
    80   if (!phase->is_member(this, phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue))))
    81     return; // Infinite loop
    83 #ifdef ASSERT
    84   BoolTest::mask bt = cl->loopexit()->test_trip();
    85   assert(bt == BoolTest::lt || bt == BoolTest::gt ||
    86          bt == BoolTest::ne, "canonical test is expected");
    87 #endif
    89   Node* init_n = cl->init_trip();
    90   Node* limit_n = cl->limit();
    91   if (init_n  != NULL &&  init_n->is_Con() &&
    92       limit_n != NULL && limit_n->is_Con()) {
    93     // Use longs to avoid integer overflow.
    94     int stride_con  = cl->stride_con();
    95     jlong init_con   = cl->init_trip()->get_int();
    96     jlong limit_con  = cl->limit()->get_int();
    97     int stride_m    = stride_con - (stride_con > 0 ? 1 : -1);
    98     jlong trip_count = (limit_con - init_con + stride_m)/stride_con;
    99     if (trip_count > 0 && (julong)trip_count < (julong)max_juint) {
   100       // Set exact trip count.
   101       cl->set_exact_trip_count((uint)trip_count);
   102     }
   103   }
   104 }
   106 //------------------------------compute_profile_trip_cnt----------------------------
   107 // Compute loop trip count from profile data as
   108 //    (backedge_count + loop_exit_count) / loop_exit_count
   109 void IdealLoopTree::compute_profile_trip_cnt( PhaseIdealLoop *phase ) {
   110   if (!_head->is_CountedLoop()) {
   111     return;
   112   }
   113   CountedLoopNode* head = _head->as_CountedLoop();
   114   if (head->profile_trip_cnt() != COUNT_UNKNOWN) {
   115     return; // Already computed
   116   }
   117   float trip_cnt = (float)max_jint; // default is big
   119   Node* back = head->in(LoopNode::LoopBackControl);
   120   while (back != head) {
   121     if ((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
   122         back->in(0) &&
   123         back->in(0)->is_If() &&
   124         back->in(0)->as_If()->_fcnt != COUNT_UNKNOWN &&
   125         back->in(0)->as_If()->_prob != PROB_UNKNOWN) {
   126       break;
   127     }
   128     back = phase->idom(back);
   129   }
   130   if (back != head) {
   131     assert((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
   132            back->in(0), "if-projection exists");
   133     IfNode* back_if = back->in(0)->as_If();
   134     float loop_back_cnt = back_if->_fcnt * back_if->_prob;
   136     // Now compute a loop exit count
   137     float loop_exit_cnt = 0.0f;
   138     for( uint i = 0; i < _body.size(); i++ ) {
   139       Node *n = _body[i];
   140       if( n->is_If() ) {
   141         IfNode *iff = n->as_If();
   142         if( iff->_fcnt != COUNT_UNKNOWN && iff->_prob != PROB_UNKNOWN ) {
   143           Node *exit = is_loop_exit(iff);
   144           if( exit ) {
   145             float exit_prob = iff->_prob;
   146             if (exit->Opcode() == Op_IfFalse) exit_prob = 1.0 - exit_prob;
   147             if (exit_prob > PROB_MIN) {
   148               float exit_cnt = iff->_fcnt * exit_prob;
   149               loop_exit_cnt += exit_cnt;
   150             }
   151           }
   152         }
   153       }
   154     }
   155     if (loop_exit_cnt > 0.0f) {
   156       trip_cnt = (loop_back_cnt + loop_exit_cnt) / loop_exit_cnt;
   157     } else {
   158       // No exit count so use
   159       trip_cnt = loop_back_cnt;
   160     }
   161   }
   162 #ifndef PRODUCT
   163   if (TraceProfileTripCount) {
   164     tty->print_cr("compute_profile_trip_cnt  lp: %d cnt: %f\n", head->_idx, trip_cnt);
   165   }
   166 #endif
   167   head->set_profile_trip_cnt(trip_cnt);
   168 }
   170 //---------------------is_invariant_addition-----------------------------
   171 // Return nonzero index of invariant operand for an Add or Sub
   172 // of (nonconstant) invariant and variant values. Helper for reassociate_invariants.
   173 int IdealLoopTree::is_invariant_addition(Node* n, PhaseIdealLoop *phase) {
   174   int op = n->Opcode();
   175   if (op == Op_AddI || op == Op_SubI) {
   176     bool in1_invar = this->is_invariant(n->in(1));
   177     bool in2_invar = this->is_invariant(n->in(2));
   178     if (in1_invar && !in2_invar) return 1;
   179     if (!in1_invar && in2_invar) return 2;
   180   }
   181   return 0;
   182 }
   184 //---------------------reassociate_add_sub-----------------------------
   185 // Reassociate invariant add and subtract expressions:
   186 //
   187 // inv1 + (x + inv2)  =>  ( inv1 + inv2) + x
   188 // (x + inv2) + inv1  =>  ( inv1 + inv2) + x
   189 // inv1 + (x - inv2)  =>  ( inv1 - inv2) + x
   190 // inv1 - (inv2 - x)  =>  ( inv1 - inv2) + x
   191 // (x + inv2) - inv1  =>  (-inv1 + inv2) + x
   192 // (x - inv2) + inv1  =>  ( inv1 - inv2) + x
   193 // (x - inv2) - inv1  =>  (-inv1 - inv2) + x
   194 // inv1 + (inv2 - x)  =>  ( inv1 + inv2) - x
   195 // inv1 - (x - inv2)  =>  ( inv1 + inv2) - x
   196 // (inv2 - x) + inv1  =>  ( inv1 + inv2) - x
   197 // (inv2 - x) - inv1  =>  (-inv1 + inv2) - x
   198 // inv1 - (x + inv2)  =>  ( inv1 - inv2) - x
   199 //
   200 Node* IdealLoopTree::reassociate_add_sub(Node* n1, PhaseIdealLoop *phase) {
   201   if (!n1->is_Add() && !n1->is_Sub() || n1->outcnt() == 0) return NULL;
   202   if (is_invariant(n1)) return NULL;
   203   int inv1_idx = is_invariant_addition(n1, phase);
   204   if (!inv1_idx) return NULL;
   205   // Don't mess with add of constant (igvn moves them to expression tree root.)
   206   if (n1->is_Add() && n1->in(2)->is_Con()) return NULL;
   207   Node* inv1 = n1->in(inv1_idx);
   208   Node* n2 = n1->in(3 - inv1_idx);
   209   int inv2_idx = is_invariant_addition(n2, phase);
   210   if (!inv2_idx) return NULL;
   211   Node* x    = n2->in(3 - inv2_idx);
   212   Node* inv2 = n2->in(inv2_idx);
   214   bool neg_x    = n2->is_Sub() && inv2_idx == 1;
   215   bool neg_inv2 = n2->is_Sub() && inv2_idx == 2;
   216   bool neg_inv1 = n1->is_Sub() && inv1_idx == 2;
   217   if (n1->is_Sub() && inv1_idx == 1) {
   218     neg_x    = !neg_x;
   219     neg_inv2 = !neg_inv2;
   220   }
   221   Node* inv1_c = phase->get_ctrl(inv1);
   222   Node* inv2_c = phase->get_ctrl(inv2);
   223   Node* n_inv1;
   224   if (neg_inv1) {
   225     Node *zero = phase->_igvn.intcon(0);
   226     phase->set_ctrl(zero, phase->C->root());
   227     n_inv1 = new (phase->C) SubINode(zero, inv1);
   228     phase->register_new_node(n_inv1, inv1_c);
   229   } else {
   230     n_inv1 = inv1;
   231   }
   232   Node* inv;
   233   if (neg_inv2) {
   234     inv = new (phase->C) SubINode(n_inv1, inv2);
   235   } else {
   236     inv = new (phase->C) AddINode(n_inv1, inv2);
   237   }
   238   phase->register_new_node(inv, phase->get_early_ctrl(inv));
   240   Node* addx;
   241   if (neg_x) {
   242     addx = new (phase->C) SubINode(inv, x);
   243   } else {
   244     addx = new (phase->C) AddINode(x, inv);
   245   }
   246   phase->register_new_node(addx, phase->get_ctrl(x));
   247   phase->_igvn.replace_node(n1, addx);
   248   assert(phase->get_loop(phase->get_ctrl(n1)) == this, "");
   249   _body.yank(n1);
   250   return addx;
   251 }
   253 //---------------------reassociate_invariants-----------------------------
   254 // Reassociate invariant expressions:
   255 void IdealLoopTree::reassociate_invariants(PhaseIdealLoop *phase) {
   256   for (int i = _body.size() - 1; i >= 0; i--) {
   257     Node *n = _body.at(i);
   258     for (int j = 0; j < 5; j++) {
   259       Node* nn = reassociate_add_sub(n, phase);
   260       if (nn == NULL) break;
   261       n = nn; // again
   262     };
   263   }
   264 }
   266 //------------------------------policy_peeling---------------------------------
   267 // Return TRUE or FALSE if the loop should be peeled or not.  Peel if we can
   268 // make some loop-invariant test (usually a null-check) happen before the loop.
   269 bool IdealLoopTree::policy_peeling( PhaseIdealLoop *phase ) const {
   270   Node *test = ((IdealLoopTree*)this)->tail();
   271   int  body_size = ((IdealLoopTree*)this)->_body.size();
   272   // Peeling does loop cloning which can result in O(N^2) node construction
   273   if( body_size > 255 /* Prevent overflow for large body_size */
   274       || (body_size * body_size + phase->C->live_nodes()) > phase->C->max_node_limit() ) {
   275     return false;           // too large to safely clone
   276   }
   277   while( test != _head ) {      // Scan till run off top of loop
   278     if( test->is_If() ) {       // Test?
   279       Node *ctrl = phase->get_ctrl(test->in(1));
   280       if (ctrl->is_top())
   281         return false;           // Found dead test on live IF?  No peeling!
   282       // Standard IF only has one input value to check for loop invariance
   283       assert( test->Opcode() == Op_If || test->Opcode() == Op_CountedLoopEnd, "Check this code when new subtype is added");
   284       // Condition is not a member of this loop?
   285       if( !is_member(phase->get_loop(ctrl)) &&
   286           is_loop_exit(test) )
   287         return true;            // Found reason to peel!
   288     }
   289     // Walk up dominators to loop _head looking for test which is
   290     // executed on every path thru loop.
   291     test = phase->idom(test);
   292   }
   293   return false;
   294 }
   296 //------------------------------peeled_dom_test_elim---------------------------
   297 // If we got the effect of peeling, either by actually peeling or by making
   298 // a pre-loop which must execute at least once, we can remove all
   299 // loop-invariant dominated tests in the main body.
   300 void PhaseIdealLoop::peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new ) {
   301   bool progress = true;
   302   while( progress ) {
   303     progress = false;           // Reset for next iteration
   304     Node *prev = loop->_head->in(LoopNode::LoopBackControl);//loop->tail();
   305     Node *test = prev->in(0);
   306     while( test != loop->_head ) { // Scan till run off top of loop
   308       int p_op = prev->Opcode();
   309       if( (p_op == Op_IfFalse || p_op == Op_IfTrue) &&
   310           test->is_If() &&      // Test?
   311           !test->in(1)->is_Con() && // And not already obvious?
   312           // Condition is not a member of this loop?
   313           !loop->is_member(get_loop(get_ctrl(test->in(1))))){
   314         // Walk loop body looking for instances of this test
   315         for( uint i = 0; i < loop->_body.size(); i++ ) {
   316           Node *n = loop->_body.at(i);
   317           if( n->is_If() && n->in(1) == test->in(1) /*&& n != loop->tail()->in(0)*/ ) {
   318             // IfNode was dominated by version in peeled loop body
   319             progress = true;
   320             dominated_by( old_new[prev->_idx], n );
   321           }
   322         }
   323       }
   324       prev = test;
   325       test = idom(test);
   326     } // End of scan tests in loop
   328   } // End of while( progress )
   329 }
   331 //------------------------------do_peeling-------------------------------------
   332 // Peel the first iteration of the given loop.
   333 // Step 1: Clone the loop body.  The clone becomes the peeled iteration.
   334 //         The pre-loop illegally has 2 control users (old & new loops).
   335 // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
   336 //         Do this by making the old-loop fall-in edges act as if they came
   337 //         around the loopback from the prior iteration (follow the old-loop
   338 //         backedges) and then map to the new peeled iteration.  This leaves
   339 //         the pre-loop with only 1 user (the new peeled iteration), but the
   340 //         peeled-loop backedge has 2 users.
   341 // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
   342 //         extra backedge user.
   343 //
   344 //                   orig
   345 //
   346 //                  stmt1
   347 //                    |
   348 //                    v
   349 //              loop predicate
   350 //                    |
   351 //                    v
   352 //                   loop<----+
   353 //                     |      |
   354 //                   stmt2    |
   355 //                     |      |
   356 //                     v      |
   357 //                    if      ^
   358 //                   / \      |
   359 //                  /   \     |
   360 //                 v     v    |
   361 //               false true   |
   362 //               /       \    |
   363 //              /         ----+
   364 //             |
   365 //             v
   366 //           exit
   367 //
   368 //
   369 //            after clone loop
   370 //
   371 //                   stmt1
   372 //                     |
   373 //                     v
   374 //               loop predicate
   375 //                 /       \
   376 //        clone   /         \   orig
   377 //               /           \
   378 //              /             \
   379 //             v               v
   380 //   +---->loop clone          loop<----+
   381 //   |      |                    |      |
   382 //   |    stmt2 clone          stmt2    |
   383 //   |      |                    |      |
   384 //   |      v                    v      |
   385 //   ^      if clone            If      ^
   386 //   |      / \                / \      |
   387 //   |     /   \              /   \     |
   388 //   |    v     v            v     v    |
   389 //   |    true  false      false true   |
   390 //   |    /         \      /       \    |
   391 //   +----           \    /         ----+
   392 //                    \  /
   393 //                    1v v2
   394 //                  region
   395 //                     |
   396 //                     v
   397 //                   exit
   398 //
   399 //
   400 //         after peel and predicate move
   401 //
   402 //                   stmt1
   403 //                    /
   404 //                   /
   405 //        clone     /            orig
   406 //                 /
   407 //                /              +----------+
   408 //               /               |          |
   409 //              /          loop predicate   |
   410 //             /                 |          |
   411 //            v                  v          |
   412 //   TOP-->loop clone          loop<----+   |
   413 //          |                    |      |   |
   414 //        stmt2 clone          stmt2    |   |
   415 //          |                    |      |   ^
   416 //          v                    v      |   |
   417 //          if clone            If      ^   |
   418 //          / \                / \      |   |
   419 //         /   \              /   \     |   |
   420 //        v     v            v     v    |   |
   421 //      true   false      false  true   |   |
   422 //        |         \      /       \    |   |
   423 //        |          \    /         ----+   ^
   424 //        |           \  /                  |
   425 //        |           1v v2                 |
   426 //        v         region                  |
   427 //        |            |                    |
   428 //        |            v                    |
   429 //        |          exit                   |
   430 //        |                                 |
   431 //        +--------------->-----------------+
   432 //
   433 //
   434 //              final graph
   435 //
   436 //                  stmt1
   437 //                    |
   438 //                    v
   439 //                  stmt2 clone
   440 //                    |
   441 //                    v
   442 //                   if clone
   443 //                  / |
   444 //                 /  |
   445 //                v   v
   446 //            false  true
   447 //             |      |
   448 //             |      v
   449 //             | loop predicate
   450 //             |      |
   451 //             |      v
   452 //             |     loop<----+
   453 //             |      |       |
   454 //             |    stmt2     |
   455 //             |      |       |
   456 //             |      v       |
   457 //             v      if      ^
   458 //             |     /  \     |
   459 //             |    /    \    |
   460 //             |   v     v    |
   461 //             | false  true  |
   462 //             |  |        \  |
   463 //             v  v         --+
   464 //            region
   465 //              |
   466 //              v
   467 //             exit
   468 //
   469 void PhaseIdealLoop::do_peeling( IdealLoopTree *loop, Node_List &old_new ) {
   471   C->set_major_progress();
   472   // Peeling a 'main' loop in a pre/main/post situation obfuscates the
   473   // 'pre' loop from the main and the 'pre' can no longer have it's
   474   // iterations adjusted.  Therefore, we need to declare this loop as
   475   // no longer a 'main' loop; it will need new pre and post loops before
   476   // we can do further RCE.
   477 #ifndef PRODUCT
   478   if (TraceLoopOpts) {
   479     tty->print("Peel         ");
   480     loop->dump_head();
   481   }
   482 #endif
   483   Node* head = loop->_head;
   484   bool counted_loop = head->is_CountedLoop();
   485   if (counted_loop) {
   486     CountedLoopNode *cl = head->as_CountedLoop();
   487     assert(cl->trip_count() > 0, "peeling a fully unrolled loop");
   488     cl->set_trip_count(cl->trip_count() - 1);
   489     if (cl->is_main_loop()) {
   490       cl->set_normal_loop();
   491 #ifndef PRODUCT
   492       if (PrintOpto && VerifyLoopOptimizations) {
   493         tty->print("Peeling a 'main' loop; resetting to 'normal' ");
   494         loop->dump_head();
   495       }
   496 #endif
   497     }
   498   }
   499   Node* entry = head->in(LoopNode::EntryControl);
   501   // Step 1: Clone the loop body.  The clone becomes the peeled iteration.
   502   //         The pre-loop illegally has 2 control users (old & new loops).
   503   clone_loop( loop, old_new, dom_depth(head) );
   505   // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
   506   //         Do this by making the old-loop fall-in edges act as if they came
   507   //         around the loopback from the prior iteration (follow the old-loop
   508   //         backedges) and then map to the new peeled iteration.  This leaves
   509   //         the pre-loop with only 1 user (the new peeled iteration), but the
   510   //         peeled-loop backedge has 2 users.
   511   Node* new_entry = old_new[head->in(LoopNode::LoopBackControl)->_idx];
   512   _igvn.hash_delete(head);
   513   head->set_req(LoopNode::EntryControl, new_entry);
   514   for (DUIterator_Fast jmax, j = head->fast_outs(jmax); j < jmax; j++) {
   515     Node* old = head->fast_out(j);
   516     if (old->in(0) == loop->_head && old->req() == 3 && old->is_Phi()) {
   517       Node* new_exit_value = old_new[old->in(LoopNode::LoopBackControl)->_idx];
   518       if (!new_exit_value )     // Backedge value is ALSO loop invariant?
   519         // Then loop body backedge value remains the same.
   520         new_exit_value = old->in(LoopNode::LoopBackControl);
   521       _igvn.hash_delete(old);
   522       old->set_req(LoopNode::EntryControl, new_exit_value);
   523     }
   524   }
   527   // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
   528   //         extra backedge user.
   529   Node* new_head = old_new[head->_idx];
   530   _igvn.hash_delete(new_head);
   531   new_head->set_req(LoopNode::LoopBackControl, C->top());
   532   for (DUIterator_Fast j2max, j2 = new_head->fast_outs(j2max); j2 < j2max; j2++) {
   533     Node* use = new_head->fast_out(j2);
   534     if (use->in(0) == new_head && use->req() == 3 && use->is_Phi()) {
   535       _igvn.hash_delete(use);
   536       use->set_req(LoopNode::LoopBackControl, C->top());
   537     }
   538   }
   541   // Step 4: Correct dom-depth info.  Set to loop-head depth.
   542   int dd = dom_depth(head);
   543   set_idom(head, head->in(1), dd);
   544   for (uint j3 = 0; j3 < loop->_body.size(); j3++) {
   545     Node *old = loop->_body.at(j3);
   546     Node *nnn = old_new[old->_idx];
   547     if (!has_ctrl(nnn))
   548       set_idom(nnn, idom(nnn), dd-1);
   549   }
   551   // Now force out all loop-invariant dominating tests.  The optimizer
   552   // finds some, but we _know_ they are all useless.
   553   peeled_dom_test_elim(loop,old_new);
   555   loop->record_for_igvn();
   556 }
   558 #define EMPTY_LOOP_SIZE 7 // number of nodes in an empty loop
   560 //------------------------------policy_maximally_unroll------------------------
   561 // Calculate exact loop trip count and return true if loop can be maximally
   562 // unrolled.
   563 bool IdealLoopTree::policy_maximally_unroll( PhaseIdealLoop *phase ) const {
   564   CountedLoopNode *cl = _head->as_CountedLoop();
   565   assert(cl->is_normal_loop(), "");
   566   if (!cl->is_valid_counted_loop())
   567     return false; // Malformed counted loop
   569   if (!cl->has_exact_trip_count()) {
   570     // Trip count is not exact.
   571     return false;
   572   }
   574   uint trip_count = cl->trip_count();
   575   // Note, max_juint is used to indicate unknown trip count.
   576   assert(trip_count > 1, "one iteration loop should be optimized out already");
   577   assert(trip_count < max_juint, "exact trip_count should be less than max_uint.");
   579   // Real policy: if we maximally unroll, does it get too big?
   580   // Allow the unrolled mess to get larger than standard loop
   581   // size.  After all, it will no longer be a loop.
   582   uint body_size    = _body.size();
   583   uint unroll_limit = (uint)LoopUnrollLimit * 4;
   584   assert( (intx)unroll_limit == LoopUnrollLimit * 4, "LoopUnrollLimit must fit in 32bits");
   585   if (trip_count > unroll_limit || body_size > unroll_limit) {
   586     return false;
   587   }
   589   // Fully unroll a loop with few iterations regardless next
   590   // conditions since following loop optimizations will split
   591   // such loop anyway (pre-main-post).
   592   if (trip_count <= 3)
   593     return true;
   595   // Take into account that after unroll conjoined heads and tails will fold,
   596   // otherwise policy_unroll() may allow more unrolling than max unrolling.
   597   uint new_body_size = EMPTY_LOOP_SIZE + (body_size - EMPTY_LOOP_SIZE) * trip_count;
   598   uint tst_body_size = (new_body_size - EMPTY_LOOP_SIZE) / trip_count + EMPTY_LOOP_SIZE;
   599   if (body_size != tst_body_size) // Check for int overflow
   600     return false;
   601   if (new_body_size > unroll_limit ||
   602       // Unrolling can result in a large amount of node construction
   603       new_body_size >= phase->C->max_node_limit() - phase->C->live_nodes()) {
   604     return false;
   605   }
   607   // Do not unroll a loop with String intrinsics code.
   608   // String intrinsics are large and have loops.
   609   for (uint k = 0; k < _body.size(); k++) {
   610     Node* n = _body.at(k);
   611     switch (n->Opcode()) {
   612       case Op_StrComp:
   613       case Op_StrEquals:
   614       case Op_StrIndexOf:
   615       case Op_EncodeISOArray:
   616       case Op_AryEq: {
   617         return false;
   618       }
   619 #if INCLUDE_RTM_OPT
   620       case Op_FastLock:
   621       case Op_FastUnlock: {
   622         // Don't unroll RTM locking code because it is large.
   623         if (UseRTMLocking) {
   624           return false;
   625         }
   626       }
   627 #endif
   628     } // switch
   629   }
   631   return true; // Do maximally unroll
   632 }
   635 //------------------------------policy_unroll----------------------------------
   636 // Return TRUE or FALSE if the loop should be unrolled or not.  Unroll if
   637 // the loop is a CountedLoop and the body is small enough.
   638 bool IdealLoopTree::policy_unroll( PhaseIdealLoop *phase ) const {
   640   CountedLoopNode *cl = _head->as_CountedLoop();
   641   assert(cl->is_normal_loop() || cl->is_main_loop(), "");
   643   if (!cl->is_valid_counted_loop())
   644     return false; // Malformed counted loop
   646   // Protect against over-unrolling.
   647   // After split at least one iteration will be executed in pre-loop.
   648   if (cl->trip_count() <= (uint)(cl->is_normal_loop() ? 2 : 1)) return false;
   650   int future_unroll_ct = cl->unrolled_count() * 2;
   651   if (future_unroll_ct > LoopMaxUnroll) return false;
   653   // Check for initial stride being a small enough constant
   654   if (abs(cl->stride_con()) > (1<<2)*future_unroll_ct) return false;
   656   // Don't unroll if the next round of unrolling would push us
   657   // over the expected trip count of the loop.  One is subtracted
   658   // from the expected trip count because the pre-loop normally
   659   // executes 1 iteration.
   660   if (UnrollLimitForProfileCheck > 0 &&
   661       cl->profile_trip_cnt() != COUNT_UNKNOWN &&
   662       future_unroll_ct        > UnrollLimitForProfileCheck &&
   663       (float)future_unroll_ct > cl->profile_trip_cnt() - 1.0) {
   664     return false;
   665   }
   667   // When unroll count is greater than LoopUnrollMin, don't unroll if:
   668   //   the residual iterations are more than 10% of the trip count
   669   //   and rounds of "unroll,optimize" are not making significant progress
   670   //   Progress defined as current size less than 20% larger than previous size.
   671   if (UseSuperWord && cl->node_count_before_unroll() > 0 &&
   672       future_unroll_ct > LoopUnrollMin &&
   673       (future_unroll_ct - 1) * 10.0 > cl->profile_trip_cnt() &&
   674       1.2 * cl->node_count_before_unroll() < (double)_body.size()) {
   675     return false;
   676   }
   678   Node *init_n = cl->init_trip();
   679   Node *limit_n = cl->limit();
   680   int stride_con = cl->stride_con();
   681   // Non-constant bounds.
   682   // Protect against over-unrolling when init or/and limit are not constant
   683   // (so that trip_count's init value is maxint) but iv range is known.
   684   if (init_n   == NULL || !init_n->is_Con()  ||
   685       limit_n  == NULL || !limit_n->is_Con()) {
   686     Node* phi = cl->phi();
   687     if (phi != NULL) {
   688       assert(phi->is_Phi() && phi->in(0) == _head, "Counted loop should have iv phi.");
   689       const TypeInt* iv_type = phase->_igvn.type(phi)->is_int();
   690       int next_stride = stride_con * 2; // stride after this unroll
   691       if (next_stride > 0) {
   692         if (iv_type->_lo + next_stride <= iv_type->_lo || // overflow
   693             iv_type->_lo + next_stride >  iv_type->_hi) {
   694           return false;  // over-unrolling
   695         }
   696       } else if (next_stride < 0) {
   697         if (iv_type->_hi + next_stride >= iv_type->_hi || // overflow
   698             iv_type->_hi + next_stride <  iv_type->_lo) {
   699           return false;  // over-unrolling
   700         }
   701       }
   702     }
   703   }
   705   // After unroll limit will be adjusted: new_limit = limit-stride.
   706   // Bailout if adjustment overflow.
   707   const TypeInt* limit_type = phase->_igvn.type(limit_n)->is_int();
   708   if (stride_con > 0 && ((limit_type->_hi - stride_con) >= limit_type->_hi) ||
   709       stride_con < 0 && ((limit_type->_lo - stride_con) <= limit_type->_lo))
   710     return false;  // overflow
   712   // Adjust body_size to determine if we unroll or not
   713   uint body_size = _body.size();
   714   // Key test to unroll loop in CRC32 java code
   715   int xors_in_loop = 0;
   716   // Also count ModL, DivL and MulL which expand mightly
   717   for (uint k = 0; k < _body.size(); k++) {
   718     Node* n = _body.at(k);
   719     switch (n->Opcode()) {
   720       case Op_XorI: xors_in_loop++; break; // CRC32 java code
   721       case Op_ModL: body_size += 30; break;
   722       case Op_DivL: body_size += 30; break;
   723       case Op_MulL: body_size += 10; break;
   724       case Op_StrComp:
   725       case Op_StrEquals:
   726       case Op_StrIndexOf:
   727       case Op_EncodeISOArray:
   728       case Op_AryEq: {
   729         // Do not unroll a loop with String intrinsics code.
   730         // String intrinsics are large and have loops.
   731         return false;
   732       }
   733 #if INCLUDE_RTM_OPT
   734       case Op_FastLock:
   735       case Op_FastUnlock: {
   736         // Don't unroll RTM locking code because it is large.
   737         if (UseRTMLocking) {
   738           return false;
   739         }
   740       }
   741 #endif
   742     } // switch
   743   }
   745   // Check for being too big
   746   if (body_size > (uint)LoopUnrollLimit) {
   747     if (xors_in_loop >= 4 && body_size < (uint)LoopUnrollLimit*4) return true;
   748     // Normal case: loop too big
   749     return false;
   750   }
   752   // Unroll once!  (Each trip will soon do double iterations)
   753   return true;
   754 }
   756 //------------------------------policy_align-----------------------------------
   757 // Return TRUE or FALSE if the loop should be cache-line aligned.  Gather the
   758 // expression that does the alignment.  Note that only one array base can be
   759 // aligned in a loop (unless the VM guarantees mutual alignment).  Note that
   760 // if we vectorize short memory ops into longer memory ops, we may want to
   761 // increase alignment.
   762 bool IdealLoopTree::policy_align( PhaseIdealLoop *phase ) const {
   763   return false;
   764 }
   766 //------------------------------policy_range_check-----------------------------
   767 // Return TRUE or FALSE if the loop should be range-check-eliminated.
   768 // Actually we do iteration-splitting, a more powerful form of RCE.
   769 bool IdealLoopTree::policy_range_check( PhaseIdealLoop *phase ) const {
   770   if (!RangeCheckElimination) return false;
   772   CountedLoopNode *cl = _head->as_CountedLoop();
   773   // If we unrolled with no intention of doing RCE and we later
   774   // changed our minds, we got no pre-loop.  Either we need to
   775   // make a new pre-loop, or we gotta disallow RCE.
   776   if (cl->is_main_no_pre_loop()) return false; // Disallowed for now.
   777   Node *trip_counter = cl->phi();
   779   // Check loop body for tests of trip-counter plus loop-invariant vs
   780   // loop-invariant.
   781   for (uint i = 0; i < _body.size(); i++) {
   782     Node *iff = _body[i];
   783     if (iff->Opcode() == Op_If) { // Test?
   785       // Comparing trip+off vs limit
   786       Node *bol = iff->in(1);
   787       if (bol->req() != 2) continue; // dead constant test
   788       if (!bol->is_Bool()) {
   789         assert(UseLoopPredicate && bol->Opcode() == Op_Conv2B, "predicate check only");
   790         continue;
   791       }
   792       if (bol->as_Bool()->_test._test == BoolTest::ne)
   793         continue; // not RC
   795       Node *cmp = bol->in(1);
   796       Node *rc_exp = cmp->in(1);
   797       Node *limit = cmp->in(2);
   799       Node *limit_c = phase->get_ctrl(limit);
   800       if( limit_c == phase->C->top() )
   801         return false;           // Found dead test on live IF?  No RCE!
   802       if( is_member(phase->get_loop(limit_c) ) ) {
   803         // Compare might have operands swapped; commute them
   804         rc_exp = cmp->in(2);
   805         limit  = cmp->in(1);
   806         limit_c = phase->get_ctrl(limit);
   807         if( is_member(phase->get_loop(limit_c) ) )
   808           continue;             // Both inputs are loop varying; cannot RCE
   809       }
   811       if (!phase->is_scaled_iv_plus_offset(rc_exp, trip_counter, NULL, NULL)) {
   812         continue;
   813       }
   814       // Yeah!  Found a test like 'trip+off vs limit'
   815       // Test is an IfNode, has 2 projections.  If BOTH are in the loop
   816       // we need loop unswitching instead of iteration splitting.
   817       if( is_loop_exit(iff) )
   818         return true;            // Found reason to split iterations
   819     } // End of is IF
   820   }
   822   return false;
   823 }
   825 //------------------------------policy_peel_only-------------------------------
   826 // Return TRUE or FALSE if the loop should NEVER be RCE'd or aligned.  Useful
   827 // for unrolling loops with NO array accesses.
   828 bool IdealLoopTree::policy_peel_only( PhaseIdealLoop *phase ) const {
   830   for( uint i = 0; i < _body.size(); i++ )
   831     if( _body[i]->is_Mem() )
   832       return false;
   834   // No memory accesses at all!
   835   return true;
   836 }
   838 //------------------------------clone_up_backedge_goo--------------------------
   839 // If Node n lives in the back_ctrl block and cannot float, we clone a private
   840 // version of n in preheader_ctrl block and return that, otherwise return n.
   841 Node *PhaseIdealLoop::clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n, VectorSet &visited, Node_Stack &clones ) {
   842   if( get_ctrl(n) != back_ctrl ) return n;
   844   // Only visit once
   845   if (visited.test_set(n->_idx)) {
   846     Node *x = clones.find(n->_idx);
   847     if (x != NULL)
   848       return x;
   849     return n;
   850   }
   852   Node *x = NULL;               // If required, a clone of 'n'
   853   // Check for 'n' being pinned in the backedge.
   854   if( n->in(0) && n->in(0) == back_ctrl ) {
   855     assert(clones.find(n->_idx) == NULL, "dead loop");
   856     x = n->clone();             // Clone a copy of 'n' to preheader
   857     clones.push(x, n->_idx);
   858     x->set_req( 0, preheader_ctrl ); // Fix x's control input to preheader
   859   }
   861   // Recursive fixup any other input edges into x.
   862   // If there are no changes we can just return 'n', otherwise
   863   // we need to clone a private copy and change it.
   864   for( uint i = 1; i < n->req(); i++ ) {
   865     Node *g = clone_up_backedge_goo( back_ctrl, preheader_ctrl, n->in(i), visited, clones );
   866     if( g != n->in(i) ) {
   867       if( !x ) {
   868         assert(clones.find(n->_idx) == NULL, "dead loop");
   869         x = n->clone();
   870         clones.push(x, n->_idx);
   871       }
   872       x->set_req(i, g);
   873     }
   874   }
   875   if( x ) {                     // x can legally float to pre-header location
   876     register_new_node( x, preheader_ctrl );
   877     return x;
   878   } else {                      // raise n to cover LCA of uses
   879     set_ctrl( n, find_non_split_ctrl(back_ctrl->in(0)) );
   880   }
   881   return n;
   882 }
   884 bool PhaseIdealLoop::cast_incr_before_loop(Node* incr, Node* ctrl, Node* loop) {
   885   Node* castii = new (C) CastIINode(incr, TypeInt::INT, true);
   886   castii->set_req(0, ctrl);
   887   register_new_node(castii, ctrl);
   888   for (DUIterator_Fast imax, i = incr->fast_outs(imax); i < imax; i++) {
   889     Node* n = incr->fast_out(i);
   890     if (n->is_Phi() && n->in(0) == loop) {
   891       int nrep = n->replace_edge(incr, castii);
   892       return true;
   893     }
   894   }
   895   return false;
   896 }
   898 //------------------------------insert_pre_post_loops--------------------------
   899 // Insert pre and post loops.  If peel_only is set, the pre-loop can not have
   900 // more iterations added.  It acts as a 'peel' only, no lower-bound RCE, no
   901 // alignment.  Useful to unroll loops that do no array accesses.
   902 void PhaseIdealLoop::insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only ) {
   904 #ifndef PRODUCT
   905   if (TraceLoopOpts) {
   906     if (peel_only)
   907       tty->print("PeelMainPost ");
   908     else
   909       tty->print("PreMainPost  ");
   910     loop->dump_head();
   911   }
   912 #endif
   913   C->set_major_progress();
   915   // Find common pieces of the loop being guarded with pre & post loops
   916   CountedLoopNode *main_head = loop->_head->as_CountedLoop();
   917   assert( main_head->is_normal_loop(), "" );
   918   CountedLoopEndNode *main_end = main_head->loopexit();
   919   guarantee(main_end != NULL, "no loop exit node");
   920   assert( main_end->outcnt() == 2, "1 true, 1 false path only" );
   921   uint dd_main_head = dom_depth(main_head);
   922   uint max = main_head->outcnt();
   924   Node *pre_header= main_head->in(LoopNode::EntryControl);
   925   Node *init      = main_head->init_trip();
   926   Node *incr      = main_end ->incr();
   927   Node *limit     = main_end ->limit();
   928   Node *stride    = main_end ->stride();
   929   Node *cmp       = main_end ->cmp_node();
   930   BoolTest::mask b_test = main_end->test_trip();
   932   // Need only 1 user of 'bol' because I will be hacking the loop bounds.
   933   Node *bol = main_end->in(CountedLoopEndNode::TestValue);
   934   if( bol->outcnt() != 1 ) {
   935     bol = bol->clone();
   936     register_new_node(bol,main_end->in(CountedLoopEndNode::TestControl));
   937     _igvn.hash_delete(main_end);
   938     main_end->set_req(CountedLoopEndNode::TestValue, bol);
   939   }
   940   // Need only 1 user of 'cmp' because I will be hacking the loop bounds.
   941   if( cmp->outcnt() != 1 ) {
   942     cmp = cmp->clone();
   943     register_new_node(cmp,main_end->in(CountedLoopEndNode::TestControl));
   944     _igvn.hash_delete(bol);
   945     bol->set_req(1, cmp);
   946   }
   948   //------------------------------
   949   // Step A: Create Post-Loop.
   950   Node* main_exit = main_end->proj_out(false);
   951   assert( main_exit->Opcode() == Op_IfFalse, "" );
   952   int dd_main_exit = dom_depth(main_exit);
   954   // Step A1: Clone the loop body.  The clone becomes the post-loop.  The main
   955   // loop pre-header illegally has 2 control users (old & new loops).
   956   clone_loop( loop, old_new, dd_main_exit );
   957   assert( old_new[main_end ->_idx]->Opcode() == Op_CountedLoopEnd, "" );
   958   CountedLoopNode *post_head = old_new[main_head->_idx]->as_CountedLoop();
   959   post_head->set_post_loop(main_head);
   961   // Reduce the post-loop trip count.
   962   CountedLoopEndNode* post_end = old_new[main_end ->_idx]->as_CountedLoopEnd();
   963   post_end->_prob = PROB_FAIR;
   965   // Build the main-loop normal exit.
   966   IfFalseNode *new_main_exit = new (C) IfFalseNode(main_end);
   967   _igvn.register_new_node_with_optimizer( new_main_exit );
   968   set_idom(new_main_exit, main_end, dd_main_exit );
   969   set_loop(new_main_exit, loop->_parent);
   971   // Step A2: Build a zero-trip guard for the post-loop.  After leaving the
   972   // main-loop, the post-loop may not execute at all.  We 'opaque' the incr
   973   // (the main-loop trip-counter exit value) because we will be changing
   974   // the exit value (via unrolling) so we cannot constant-fold away the zero
   975   // trip guard until all unrolling is done.
   976   Node *zer_opaq = new (C) Opaque1Node(C, incr);
   977   Node *zer_cmp  = new (C) CmpINode( zer_opaq, limit );
   978   Node *zer_bol  = new (C) BoolNode( zer_cmp, b_test );
   979   register_new_node( zer_opaq, new_main_exit );
   980   register_new_node( zer_cmp , new_main_exit );
   981   register_new_node( zer_bol , new_main_exit );
   983   // Build the IfNode
   984   IfNode *zer_iff = new (C) IfNode( new_main_exit, zer_bol, PROB_FAIR, COUNT_UNKNOWN );
   985   _igvn.register_new_node_with_optimizer( zer_iff );
   986   set_idom(zer_iff, new_main_exit, dd_main_exit);
   987   set_loop(zer_iff, loop->_parent);
   989   // Plug in the false-path, taken if we need to skip post-loop
   990   _igvn.replace_input_of(main_exit, 0, zer_iff);
   991   set_idom(main_exit, zer_iff, dd_main_exit);
   992   set_idom(main_exit->unique_out(), zer_iff, dd_main_exit);
   993   // Make the true-path, must enter the post loop
   994   Node *zer_taken = new (C) IfTrueNode( zer_iff );
   995   _igvn.register_new_node_with_optimizer( zer_taken );
   996   set_idom(zer_taken, zer_iff, dd_main_exit);
   997   set_loop(zer_taken, loop->_parent);
   998   // Plug in the true path
   999   _igvn.hash_delete( post_head );
  1000   post_head->set_req(LoopNode::EntryControl, zer_taken);
  1001   set_idom(post_head, zer_taken, dd_main_exit);
  1003   Arena *a = Thread::current()->resource_area();
  1004   VectorSet visited(a);
  1005   Node_Stack clones(a, main_head->back_control()->outcnt());
  1006   // Step A3: Make the fall-in values to the post-loop come from the
  1007   // fall-out values of the main-loop.
  1008   for (DUIterator_Fast imax, i = main_head->fast_outs(imax); i < imax; i++) {
  1009     Node* main_phi = main_head->fast_out(i);
  1010     if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() >0 ) {
  1011       Node *post_phi = old_new[main_phi->_idx];
  1012       Node *fallmain  = clone_up_backedge_goo(main_head->back_control(),
  1013                                               post_head->init_control(),
  1014                                               main_phi->in(LoopNode::LoopBackControl),
  1015                                               visited, clones);
  1016       _igvn.hash_delete(post_phi);
  1017       post_phi->set_req( LoopNode::EntryControl, fallmain );
  1021   // Update local caches for next stanza
  1022   main_exit = new_main_exit;
  1025   //------------------------------
  1026   // Step B: Create Pre-Loop.
  1028   // Step B1: Clone the loop body.  The clone becomes the pre-loop.  The main
  1029   // loop pre-header illegally has 2 control users (old & new loops).
  1030   clone_loop( loop, old_new, dd_main_head );
  1031   CountedLoopNode*    pre_head = old_new[main_head->_idx]->as_CountedLoop();
  1032   CountedLoopEndNode* pre_end  = old_new[main_end ->_idx]->as_CountedLoopEnd();
  1033   pre_head->set_pre_loop(main_head);
  1034   Node *pre_incr = old_new[incr->_idx];
  1036   // Reduce the pre-loop trip count.
  1037   pre_end->_prob = PROB_FAIR;
  1039   // Find the pre-loop normal exit.
  1040   Node* pre_exit = pre_end->proj_out(false);
  1041   assert( pre_exit->Opcode() == Op_IfFalse, "" );
  1042   IfFalseNode *new_pre_exit = new (C) IfFalseNode(pre_end);
  1043   _igvn.register_new_node_with_optimizer( new_pre_exit );
  1044   set_idom(new_pre_exit, pre_end, dd_main_head);
  1045   set_loop(new_pre_exit, loop->_parent);
  1047   // Step B2: Build a zero-trip guard for the main-loop.  After leaving the
  1048   // pre-loop, the main-loop may not execute at all.  Later in life this
  1049   // zero-trip guard will become the minimum-trip guard when we unroll
  1050   // the main-loop.
  1051   Node *min_opaq = new (C) Opaque1Node(C, limit);
  1052   Node *min_cmp  = new (C) CmpINode( pre_incr, min_opaq );
  1053   Node *min_bol  = new (C) BoolNode( min_cmp, b_test );
  1054   register_new_node( min_opaq, new_pre_exit );
  1055   register_new_node( min_cmp , new_pre_exit );
  1056   register_new_node( min_bol , new_pre_exit );
  1058   // Build the IfNode (assume the main-loop is executed always).
  1059   IfNode *min_iff = new (C) IfNode( new_pre_exit, min_bol, PROB_ALWAYS, COUNT_UNKNOWN );
  1060   _igvn.register_new_node_with_optimizer( min_iff );
  1061   set_idom(min_iff, new_pre_exit, dd_main_head);
  1062   set_loop(min_iff, loop->_parent);
  1064   // Plug in the false-path, taken if we need to skip main-loop
  1065   _igvn.hash_delete( pre_exit );
  1066   pre_exit->set_req(0, min_iff);
  1067   set_idom(pre_exit, min_iff, dd_main_head);
  1068   set_idom(pre_exit->unique_out(), min_iff, dd_main_head);
  1069   // Make the true-path, must enter the main loop
  1070   Node *min_taken = new (C) IfTrueNode( min_iff );
  1071   _igvn.register_new_node_with_optimizer( min_taken );
  1072   set_idom(min_taken, min_iff, dd_main_head);
  1073   set_loop(min_taken, loop->_parent);
  1074   // Plug in the true path
  1075   _igvn.hash_delete( main_head );
  1076   main_head->set_req(LoopNode::EntryControl, min_taken);
  1077   set_idom(main_head, min_taken, dd_main_head);
  1079   visited.Clear();
  1080   clones.clear();
  1081   // Step B3: Make the fall-in values to the main-loop come from the
  1082   // fall-out values of the pre-loop.
  1083   for (DUIterator_Fast i2max, i2 = main_head->fast_outs(i2max); i2 < i2max; i2++) {
  1084     Node* main_phi = main_head->fast_out(i2);
  1085     if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() > 0 ) {
  1086       Node *pre_phi = old_new[main_phi->_idx];
  1087       Node *fallpre  = clone_up_backedge_goo(pre_head->back_control(),
  1088                                              main_head->init_control(),
  1089                                              pre_phi->in(LoopNode::LoopBackControl),
  1090                                              visited, clones);
  1091       _igvn.hash_delete(main_phi);
  1092       main_phi->set_req( LoopNode::EntryControl, fallpre );
  1096   // Nodes inside the loop may be control dependent on a predicate
  1097   // that was moved before the preloop. If the back branch of the main
  1098   // or post loops becomes dead, those nodes won't be dependent on the
  1099   // test that guards that loop nest anymore which could lead to an
  1100   // incorrect array access because it executes independently of the
  1101   // test that was guarding the loop nest. We add a special CastII on
  1102   // the if branch that enters the loop, between the input induction
  1103   // variable value and the induction variable Phi to preserve correct
  1104   // dependencies.
  1106   // CastII for the post loop:
  1107   bool inserted = cast_incr_before_loop(zer_opaq->in(1), zer_taken, post_head);
  1108   assert(inserted, "no castII inserted");
  1110   // CastII for the main loop:
  1111   inserted = cast_incr_before_loop(pre_incr, min_taken, main_head);
  1112   assert(inserted, "no castII inserted");
  1114   // Step B4: Shorten the pre-loop to run only 1 iteration (for now).
  1115   // RCE and alignment may change this later.
  1116   Node *cmp_end = pre_end->cmp_node();
  1117   assert( cmp_end->in(2) == limit, "" );
  1118   Node *pre_limit = new (C) AddINode( init, stride );
  1120   // Save the original loop limit in this Opaque1 node for
  1121   // use by range check elimination.
  1122   Node *pre_opaq  = new (C) Opaque1Node(C, pre_limit, limit);
  1124   register_new_node( pre_limit, pre_head->in(0) );
  1125   register_new_node( pre_opaq , pre_head->in(0) );
  1127   // Since no other users of pre-loop compare, I can hack limit directly
  1128   assert( cmp_end->outcnt() == 1, "no other users" );
  1129   _igvn.hash_delete(cmp_end);
  1130   cmp_end->set_req(2, peel_only ? pre_limit : pre_opaq);
  1132   // Special case for not-equal loop bounds:
  1133   // Change pre loop test, main loop test, and the
  1134   // main loop guard test to use lt or gt depending on stride
  1135   // direction:
  1136   // positive stride use <
  1137   // negative stride use >
  1138   //
  1139   // not-equal test is kept for post loop to handle case
  1140   // when init > limit when stride > 0 (and reverse).
  1142   if (pre_end->in(CountedLoopEndNode::TestValue)->as_Bool()->_test._test == BoolTest::ne) {
  1144     BoolTest::mask new_test = (main_end->stride_con() > 0) ? BoolTest::lt : BoolTest::gt;
  1145     // Modify pre loop end condition
  1146     Node* pre_bol = pre_end->in(CountedLoopEndNode::TestValue)->as_Bool();
  1147     BoolNode* new_bol0 = new (C) BoolNode(pre_bol->in(1), new_test);
  1148     register_new_node( new_bol0, pre_head->in(0) );
  1149     _igvn.hash_delete(pre_end);
  1150     pre_end->set_req(CountedLoopEndNode::TestValue, new_bol0);
  1151     // Modify main loop guard condition
  1152     assert(min_iff->in(CountedLoopEndNode::TestValue) == min_bol, "guard okay");
  1153     BoolNode* new_bol1 = new (C) BoolNode(min_bol->in(1), new_test);
  1154     register_new_node( new_bol1, new_pre_exit );
  1155     _igvn.hash_delete(min_iff);
  1156     min_iff->set_req(CountedLoopEndNode::TestValue, new_bol1);
  1157     // Modify main loop end condition
  1158     BoolNode* main_bol = main_end->in(CountedLoopEndNode::TestValue)->as_Bool();
  1159     BoolNode* new_bol2 = new (C) BoolNode(main_bol->in(1), new_test);
  1160     register_new_node( new_bol2, main_end->in(CountedLoopEndNode::TestControl) );
  1161     _igvn.hash_delete(main_end);
  1162     main_end->set_req(CountedLoopEndNode::TestValue, new_bol2);
  1165   // Flag main loop
  1166   main_head->set_main_loop();
  1167   if( peel_only ) main_head->set_main_no_pre_loop();
  1169   // Subtract a trip count for the pre-loop.
  1170   main_head->set_trip_count(main_head->trip_count() - 1);
  1172   // It's difficult to be precise about the trip-counts
  1173   // for the pre/post loops.  They are usually very short,
  1174   // so guess that 4 trips is a reasonable value.
  1175   post_head->set_profile_trip_cnt(4.0);
  1176   pre_head->set_profile_trip_cnt(4.0);
  1178   // Now force out all loop-invariant dominating tests.  The optimizer
  1179   // finds some, but we _know_ they are all useless.
  1180   peeled_dom_test_elim(loop,old_new);
  1181   loop->record_for_igvn();
  1184 //------------------------------is_invariant-----------------------------
  1185 // Return true if n is invariant
  1186 bool IdealLoopTree::is_invariant(Node* n) const {
  1187   Node *n_c = _phase->has_ctrl(n) ? _phase->get_ctrl(n) : n;
  1188   if (n_c->is_top()) return false;
  1189   return !is_member(_phase->get_loop(n_c));
  1193 //------------------------------do_unroll--------------------------------------
  1194 // Unroll the loop body one step - make each trip do 2 iterations.
  1195 void PhaseIdealLoop::do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip ) {
  1196   assert(LoopUnrollLimit, "");
  1197   CountedLoopNode *loop_head = loop->_head->as_CountedLoop();
  1198   CountedLoopEndNode *loop_end = loop_head->loopexit();
  1199   assert(loop_end, "");
  1200 #ifndef PRODUCT
  1201   if (PrintOpto && VerifyLoopOptimizations) {
  1202     tty->print("Unrolling ");
  1203     loop->dump_head();
  1204   } else if (TraceLoopOpts) {
  1205     if (loop_head->trip_count() < (uint)LoopUnrollLimit) {
  1206       tty->print("Unroll %d(%2d) ", loop_head->unrolled_count()*2, loop_head->trip_count());
  1207     } else {
  1208       tty->print("Unroll %d     ", loop_head->unrolled_count()*2);
  1210     loop->dump_head();
  1212 #endif
  1214   // Remember loop node count before unrolling to detect
  1215   // if rounds of unroll,optimize are making progress
  1216   loop_head->set_node_count_before_unroll(loop->_body.size());
  1218   Node *ctrl  = loop_head->in(LoopNode::EntryControl);
  1219   Node *limit = loop_head->limit();
  1220   Node *init  = loop_head->init_trip();
  1221   Node *stride = loop_head->stride();
  1223   Node *opaq = NULL;
  1224   if (adjust_min_trip) {       // If not maximally unrolling, need adjustment
  1225     // Search for zero-trip guard.
  1226     assert( loop_head->is_main_loop(), "" );
  1227     assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
  1228     Node *iff = ctrl->in(0);
  1229     assert( iff->Opcode() == Op_If, "" );
  1230     Node *bol = iff->in(1);
  1231     assert( bol->Opcode() == Op_Bool, "" );
  1232     Node *cmp = bol->in(1);
  1233     assert( cmp->Opcode() == Op_CmpI, "" );
  1234     opaq = cmp->in(2);
  1235     // Occasionally it's possible for a zero-trip guard Opaque1 node to be
  1236     // optimized away and then another round of loop opts attempted.
  1237     // We can not optimize this particular loop in that case.
  1238     if (opaq->Opcode() != Op_Opaque1)
  1239       return; // Cannot find zero-trip guard!  Bail out!
  1240     // Zero-trip test uses an 'opaque' node which is not shared.
  1241     assert(opaq->outcnt() == 1 && opaq->in(1) == limit, "");
  1244   C->set_major_progress();
  1246   Node* new_limit = NULL;
  1247   if (UnrollLimitCheck) {
  1248     int stride_con = stride->get_int();
  1249     int stride_p = (stride_con > 0) ? stride_con : -stride_con;
  1250     uint old_trip_count = loop_head->trip_count();
  1251     // Verify that unroll policy result is still valid.
  1252     assert(old_trip_count > 1 &&
  1253            (!adjust_min_trip || stride_p <= (1<<3)*loop_head->unrolled_count()), "sanity");
  1255     // Adjust loop limit to keep valid iterations number after unroll.
  1256     // Use (limit - stride) instead of (((limit - init)/stride) & (-2))*stride
  1257     // which may overflow.
  1258     if (!adjust_min_trip) {
  1259       assert(old_trip_count > 1 && (old_trip_count & 1) == 0,
  1260              "odd trip count for maximally unroll");
  1261       // Don't need to adjust limit for maximally unroll since trip count is even.
  1262     } else if (loop_head->has_exact_trip_count() && init->is_Con()) {
  1263       // Loop's limit is constant. Loop's init could be constant when pre-loop
  1264       // become peeled iteration.
  1265       jlong init_con = init->get_int();
  1266       // We can keep old loop limit if iterations count stays the same:
  1267       //   old_trip_count == new_trip_count * 2
  1268       // Note: since old_trip_count >= 2 then new_trip_count >= 1
  1269       // so we also don't need to adjust zero trip test.
  1270       jlong limit_con  = limit->get_int();
  1271       // (stride_con*2) not overflow since stride_con <= 8.
  1272       int new_stride_con = stride_con * 2;
  1273       int stride_m    = new_stride_con - (stride_con > 0 ? 1 : -1);
  1274       jlong trip_count = (limit_con - init_con + stride_m)/new_stride_con;
  1275       // New trip count should satisfy next conditions.
  1276       assert(trip_count > 0 && (julong)trip_count < (julong)max_juint/2, "sanity");
  1277       uint new_trip_count = (uint)trip_count;
  1278       adjust_min_trip = (old_trip_count != new_trip_count*2);
  1281     if (adjust_min_trip) {
  1282       // Step 2: Adjust the trip limit if it is called for.
  1283       // The adjustment amount is -stride. Need to make sure if the
  1284       // adjustment underflows or overflows, then the main loop is skipped.
  1285       Node* cmp = loop_end->cmp_node();
  1286       assert(cmp->in(2) == limit, "sanity");
  1287       assert(opaq != NULL && opaq->in(1) == limit, "sanity");
  1289       // Verify that policy_unroll result is still valid.
  1290       const TypeInt* limit_type = _igvn.type(limit)->is_int();
  1291       assert(stride_con > 0 && ((limit_type->_hi - stride_con) < limit_type->_hi) ||
  1292              stride_con < 0 && ((limit_type->_lo - stride_con) > limit_type->_lo), "sanity");
  1294       if (limit->is_Con()) {
  1295         // The check in policy_unroll and the assert above guarantee
  1296         // no underflow if limit is constant.
  1297         new_limit = _igvn.intcon(limit->get_int() - stride_con);
  1298         set_ctrl(new_limit, C->root());
  1299       } else {
  1300         // Limit is not constant.
  1301         if (loop_head->unrolled_count() == 1) { // only for first unroll
  1302           // Separate limit by Opaque node in case it is an incremented
  1303           // variable from previous loop to avoid using pre-incremented
  1304           // value which could increase register pressure.
  1305           // Otherwise reorg_offsets() optimization will create a separate
  1306           // Opaque node for each use of trip-counter and as result
  1307           // zero trip guard limit will be different from loop limit.
  1308           assert(has_ctrl(opaq), "should have it");
  1309           Node* opaq_ctrl = get_ctrl(opaq);
  1310           limit = new (C) Opaque2Node( C, limit );
  1311           register_new_node( limit, opaq_ctrl );
  1313         if (stride_con > 0 && (java_subtract(limit_type->_lo, stride_con) < limit_type->_lo) ||
  1314             stride_con < 0 && (java_subtract(limit_type->_hi, stride_con) > limit_type->_hi)) {
  1315           // No underflow.
  1316           new_limit = new (C) SubINode(limit, stride);
  1317         } else {
  1318           // (limit - stride) may underflow.
  1319           // Clamp the adjustment value with MININT or MAXINT:
  1320           //
  1321           //   new_limit = limit-stride
  1322           //   if (stride > 0)
  1323           //     new_limit = (limit < new_limit) ? MININT : new_limit;
  1324           //   else
  1325           //     new_limit = (limit > new_limit) ? MAXINT : new_limit;
  1326           //
  1327           BoolTest::mask bt = loop_end->test_trip();
  1328           assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected");
  1329           Node* adj_max = _igvn.intcon((stride_con > 0) ? min_jint : max_jint);
  1330           set_ctrl(adj_max, C->root());
  1331           Node* old_limit = NULL;
  1332           Node* adj_limit = NULL;
  1333           Node* bol = limit->is_CMove() ? limit->in(CMoveNode::Condition) : NULL;
  1334           if (loop_head->unrolled_count() > 1 &&
  1335               limit->is_CMove() && limit->Opcode() == Op_CMoveI &&
  1336               limit->in(CMoveNode::IfTrue) == adj_max &&
  1337               bol->as_Bool()->_test._test == bt &&
  1338               bol->in(1)->Opcode() == Op_CmpI &&
  1339               bol->in(1)->in(2) == limit->in(CMoveNode::IfFalse)) {
  1340             // Loop was unrolled before.
  1341             // Optimize the limit to avoid nested CMove:
  1342             // use original limit as old limit.
  1343             old_limit = bol->in(1)->in(1);
  1344             // Adjust previous adjusted limit.
  1345             adj_limit = limit->in(CMoveNode::IfFalse);
  1346             adj_limit = new (C) SubINode(adj_limit, stride);
  1347           } else {
  1348             old_limit = limit;
  1349             adj_limit = new (C) SubINode(limit, stride);
  1351           assert(old_limit != NULL && adj_limit != NULL, "");
  1352           register_new_node( adj_limit, ctrl ); // adjust amount
  1353           Node* adj_cmp = new (C) CmpINode(old_limit, adj_limit);
  1354           register_new_node( adj_cmp, ctrl );
  1355           Node* adj_bool = new (C) BoolNode(adj_cmp, bt);
  1356           register_new_node( adj_bool, ctrl );
  1357           new_limit = new (C) CMoveINode(adj_bool, adj_limit, adj_max, TypeInt::INT);
  1359         register_new_node(new_limit, ctrl);
  1361       assert(new_limit != NULL, "");
  1362       // Replace in loop test.
  1363       assert(loop_end->in(1)->in(1) == cmp, "sanity");
  1364       if (cmp->outcnt() == 1 && loop_end->in(1)->outcnt() == 1) {
  1365         // Don't need to create new test since only one user.
  1366         _igvn.hash_delete(cmp);
  1367         cmp->set_req(2, new_limit);
  1368       } else {
  1369         // Create new test since it is shared.
  1370         Node* ctrl2 = loop_end->in(0);
  1371         Node* cmp2  = cmp->clone();
  1372         cmp2->set_req(2, new_limit);
  1373         register_new_node(cmp2, ctrl2);
  1374         Node* bol2 = loop_end->in(1)->clone();
  1375         bol2->set_req(1, cmp2);
  1376         register_new_node(bol2, ctrl2);
  1377         _igvn.hash_delete(loop_end);
  1378         loop_end->set_req(1, bol2);
  1380       // Step 3: Find the min-trip test guaranteed before a 'main' loop.
  1381       // Make it a 1-trip test (means at least 2 trips).
  1383       // Guard test uses an 'opaque' node which is not shared.  Hence I
  1384       // can edit it's inputs directly.  Hammer in the new limit for the
  1385       // minimum-trip guard.
  1386       assert(opaq->outcnt() == 1, "");
  1387       _igvn.hash_delete(opaq);
  1388       opaq->set_req(1, new_limit);
  1391     // Adjust max trip count. The trip count is intentionally rounded
  1392     // down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
  1393     // the main, unrolled, part of the loop will never execute as it is protected
  1394     // by the min-trip test.  See bug 4834191 for a case where we over-unrolled
  1395     // and later determined that part of the unrolled loop was dead.
  1396     loop_head->set_trip_count(old_trip_count / 2);
  1398     // Double the count of original iterations in the unrolled loop body.
  1399     loop_head->double_unrolled_count();
  1401   } else { // LoopLimitCheck
  1403     // Adjust max trip count. The trip count is intentionally rounded
  1404     // down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
  1405     // the main, unrolled, part of the loop will never execute as it is protected
  1406     // by the min-trip test.  See bug 4834191 for a case where we over-unrolled
  1407     // and later determined that part of the unrolled loop was dead.
  1408     loop_head->set_trip_count(loop_head->trip_count() / 2);
  1410     // Double the count of original iterations in the unrolled loop body.
  1411     loop_head->double_unrolled_count();
  1413     // -----------
  1414     // Step 2: Cut back the trip counter for an unroll amount of 2.
  1415     // Loop will normally trip (limit - init)/stride_con.  Since it's a
  1416     // CountedLoop this is exact (stride divides limit-init exactly).
  1417     // We are going to double the loop body, so we want to knock off any
  1418     // odd iteration: (trip_cnt & ~1).  Then back compute a new limit.
  1419     Node *span = new (C) SubINode( limit, init );
  1420     register_new_node( span, ctrl );
  1421     Node *trip = new (C) DivINode( 0, span, stride );
  1422     register_new_node( trip, ctrl );
  1423     Node *mtwo = _igvn.intcon(-2);
  1424     set_ctrl(mtwo, C->root());
  1425     Node *rond = new (C) AndINode( trip, mtwo );
  1426     register_new_node( rond, ctrl );
  1427     Node *spn2 = new (C) MulINode( rond, stride );
  1428     register_new_node( spn2, ctrl );
  1429     new_limit = new (C) AddINode( spn2, init );
  1430     register_new_node( new_limit, ctrl );
  1432     // Hammer in the new limit
  1433     Node *ctrl2 = loop_end->in(0);
  1434     Node *cmp2 = new (C) CmpINode( loop_head->incr(), new_limit );
  1435     register_new_node( cmp2, ctrl2 );
  1436     Node *bol2 = new (C) BoolNode( cmp2, loop_end->test_trip() );
  1437     register_new_node( bol2, ctrl2 );
  1438     _igvn.hash_delete(loop_end);
  1439     loop_end->set_req(CountedLoopEndNode::TestValue, bol2);
  1441     // Step 3: Find the min-trip test guaranteed before a 'main' loop.
  1442     // Make it a 1-trip test (means at least 2 trips).
  1443     if( adjust_min_trip ) {
  1444       assert( new_limit != NULL, "" );
  1445       // Guard test uses an 'opaque' node which is not shared.  Hence I
  1446       // can edit it's inputs directly.  Hammer in the new limit for the
  1447       // minimum-trip guard.
  1448       assert( opaq->outcnt() == 1, "" );
  1449       _igvn.hash_delete(opaq);
  1450       opaq->set_req(1, new_limit);
  1452   } // LoopLimitCheck
  1454   // ---------
  1455   // Step 4: Clone the loop body.  Move it inside the loop.  This loop body
  1456   // represents the odd iterations; since the loop trips an even number of
  1457   // times its backedge is never taken.  Kill the backedge.
  1458   uint dd = dom_depth(loop_head);
  1459   clone_loop( loop, old_new, dd );
  1461   // Make backedges of the clone equal to backedges of the original.
  1462   // Make the fall-in from the original come from the fall-out of the clone.
  1463   for (DUIterator_Fast jmax, j = loop_head->fast_outs(jmax); j < jmax; j++) {
  1464     Node* phi = loop_head->fast_out(j);
  1465     if( phi->is_Phi() && phi->in(0) == loop_head && phi->outcnt() > 0 ) {
  1466       Node *newphi = old_new[phi->_idx];
  1467       _igvn.hash_delete( phi );
  1468       _igvn.hash_delete( newphi );
  1470       phi   ->set_req(LoopNode::   EntryControl, newphi->in(LoopNode::LoopBackControl));
  1471       newphi->set_req(LoopNode::LoopBackControl, phi   ->in(LoopNode::LoopBackControl));
  1472       phi   ->set_req(LoopNode::LoopBackControl, C->top());
  1475   Node *clone_head = old_new[loop_head->_idx];
  1476   _igvn.hash_delete( clone_head );
  1477   loop_head ->set_req(LoopNode::   EntryControl, clone_head->in(LoopNode::LoopBackControl));
  1478   clone_head->set_req(LoopNode::LoopBackControl, loop_head ->in(LoopNode::LoopBackControl));
  1479   loop_head ->set_req(LoopNode::LoopBackControl, C->top());
  1480   loop->_head = clone_head;     // New loop header
  1482   set_idom(loop_head,  loop_head ->in(LoopNode::EntryControl), dd);
  1483   set_idom(clone_head, clone_head->in(LoopNode::EntryControl), dd);
  1485   // Kill the clone's backedge
  1486   Node *newcle = old_new[loop_end->_idx];
  1487   _igvn.hash_delete( newcle );
  1488   Node *one = _igvn.intcon(1);
  1489   set_ctrl(one, C->root());
  1490   newcle->set_req(1, one);
  1491   // Force clone into same loop body
  1492   uint max = loop->_body.size();
  1493   for( uint k = 0; k < max; k++ ) {
  1494     Node *old = loop->_body.at(k);
  1495     Node *nnn = old_new[old->_idx];
  1496     loop->_body.push(nnn);
  1497     if (!has_ctrl(old))
  1498       set_loop(nnn, loop);
  1501   loop->record_for_igvn();
  1504 //------------------------------do_maximally_unroll----------------------------
  1506 void PhaseIdealLoop::do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new ) {
  1507   CountedLoopNode *cl = loop->_head->as_CountedLoop();
  1508   assert(cl->has_exact_trip_count(), "trip count is not exact");
  1509   assert(cl->trip_count() > 0, "");
  1510 #ifndef PRODUCT
  1511   if (TraceLoopOpts) {
  1512     tty->print("MaxUnroll  %d ", cl->trip_count());
  1513     loop->dump_head();
  1515 #endif
  1517   // If loop is tripping an odd number of times, peel odd iteration
  1518   if ((cl->trip_count() & 1) == 1) {
  1519     do_peeling(loop, old_new);
  1522   // Now its tripping an even number of times remaining.  Double loop body.
  1523   // Do not adjust pre-guards; they are not needed and do not exist.
  1524   if (cl->trip_count() > 0) {
  1525     assert((cl->trip_count() & 1) == 0, "missed peeling");
  1526     do_unroll(loop, old_new, false);
  1530 //------------------------------dominates_backedge---------------------------------
  1531 // Returns true if ctrl is executed on every complete iteration
  1532 bool IdealLoopTree::dominates_backedge(Node* ctrl) {
  1533   assert(ctrl->is_CFG(), "must be control");
  1534   Node* backedge = _head->as_Loop()->in(LoopNode::LoopBackControl);
  1535   return _phase->dom_lca_internal(ctrl, backedge) == ctrl;
  1538 //------------------------------adjust_limit-----------------------------------
  1539 // Helper function for add_constraint().
  1540 Node* PhaseIdealLoop::adjust_limit(int stride_con, Node * scale, Node *offset, Node *rc_limit, Node *loop_limit, Node *pre_ctrl, bool round_up) {
  1541   // Compute "I :: (limit-offset)/scale"
  1542   Node *con = new (C) SubINode(rc_limit, offset);
  1543   register_new_node(con, pre_ctrl);
  1544   Node *X = new (C) DivINode(0, con, scale);
  1545   register_new_node(X, pre_ctrl);
  1547   // When the absolute value of scale is greater than one, the integer
  1548   // division may round limit down so add one to the limit.
  1549   if (round_up) {
  1550     X = new (C) AddINode(X, _igvn.intcon(1));
  1551     register_new_node(X, pre_ctrl);
  1554   // Adjust loop limit
  1555   loop_limit = (stride_con > 0)
  1556                ? (Node*)(new (C) MinINode(loop_limit, X))
  1557                : (Node*)(new (C) MaxINode(loop_limit, X));
  1558   register_new_node(loop_limit, pre_ctrl);
  1559   return loop_limit;
  1562 //------------------------------add_constraint---------------------------------
  1563 // Constrain the main loop iterations so the conditions:
  1564 //    low_limit <= scale_con * I + offset  <  upper_limit
  1565 // always holds true.  That is, either increase the number of iterations in
  1566 // the pre-loop or the post-loop until the condition holds true in the main
  1567 // loop.  Stride, scale, offset and limit are all loop invariant.  Further,
  1568 // stride and scale are constants (offset and limit often are).
  1569 void PhaseIdealLoop::add_constraint( int stride_con, int scale_con, Node *offset, Node *low_limit, Node *upper_limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit ) {
  1570   // For positive stride, the pre-loop limit always uses a MAX function
  1571   // and the main loop a MIN function.  For negative stride these are
  1572   // reversed.
  1574   // Also for positive stride*scale the affine function is increasing, so the
  1575   // pre-loop must check for underflow and the post-loop for overflow.
  1576   // Negative stride*scale reverses this; pre-loop checks for overflow and
  1577   // post-loop for underflow.
  1579   Node *scale = _igvn.intcon(scale_con);
  1580   set_ctrl(scale, C->root());
  1582   if ((stride_con^scale_con) >= 0) { // Use XOR to avoid overflow
  1583     // The overflow limit: scale*I+offset < upper_limit
  1584     // For main-loop compute
  1585     //   ( if (scale > 0) /* and stride > 0 */
  1586     //       I < (upper_limit-offset)/scale
  1587     //     else /* scale < 0 and stride < 0 */
  1588     //       I > (upper_limit-offset)/scale
  1589     //   )
  1590     //
  1591     // (upper_limit-offset) may overflow or underflow.
  1592     // But it is fine since main loop will either have
  1593     // less iterations or will be skipped in such case.
  1594     *main_limit = adjust_limit(stride_con, scale, offset, upper_limit, *main_limit, pre_ctrl, false);
  1596     // The underflow limit: low_limit <= scale*I+offset.
  1597     // For pre-loop compute
  1598     //   NOT(scale*I+offset >= low_limit)
  1599     //   scale*I+offset < low_limit
  1600     //   ( if (scale > 0) /* and stride > 0 */
  1601     //       I < (low_limit-offset)/scale
  1602     //     else /* scale < 0 and stride < 0 */
  1603     //       I > (low_limit-offset)/scale
  1604     //   )
  1606     if (low_limit->get_int() == -max_jint) {
  1607       if (!RangeLimitCheck) return;
  1608       // We need this guard when scale*pre_limit+offset >= limit
  1609       // due to underflow. So we need execute pre-loop until
  1610       // scale*I+offset >= min_int. But (min_int-offset) will
  1611       // underflow when offset > 0 and X will be > original_limit
  1612       // when stride > 0. To avoid it we replace positive offset with 0.
  1613       //
  1614       // Also (min_int+1 == -max_int) is used instead of min_int here
  1615       // to avoid problem with scale == -1 (min_int/(-1) == min_int).
  1616       Node* shift = _igvn.intcon(31);
  1617       set_ctrl(shift, C->root());
  1618       Node* sign = new (C) RShiftINode(offset, shift);
  1619       register_new_node(sign, pre_ctrl);
  1620       offset = new (C) AndINode(offset, sign);
  1621       register_new_node(offset, pre_ctrl);
  1622     } else {
  1623       assert(low_limit->get_int() == 0, "wrong low limit for range check");
  1624       // The only problem we have here when offset == min_int
  1625       // since (0-min_int) == min_int. It may be fine for stride > 0
  1626       // but for stride < 0 X will be < original_limit. To avoid it
  1627       // max(pre_limit, original_limit) is used in do_range_check().
  1629     // Pass (-stride) to indicate pre_loop_cond = NOT(main_loop_cond);
  1630     *pre_limit = adjust_limit((-stride_con), scale, offset, low_limit, *pre_limit, pre_ctrl,
  1631                               scale_con > 1 && stride_con > 0);
  1633   } else { // stride_con*scale_con < 0
  1634     // For negative stride*scale pre-loop checks for overflow and
  1635     // post-loop for underflow.
  1636     //
  1637     // The overflow limit: scale*I+offset < upper_limit
  1638     // For pre-loop compute
  1639     //   NOT(scale*I+offset < upper_limit)
  1640     //   scale*I+offset >= upper_limit
  1641     //   scale*I+offset+1 > upper_limit
  1642     //   ( if (scale < 0) /* and stride > 0 */
  1643     //       I < (upper_limit-(offset+1))/scale
  1644     //     else /* scale > 0 and stride < 0 */
  1645     //       I > (upper_limit-(offset+1))/scale
  1646     //   )
  1647     //
  1648     // (upper_limit-offset-1) may underflow or overflow.
  1649     // To avoid it min(pre_limit, original_limit) is used
  1650     // in do_range_check() for stride > 0 and max() for < 0.
  1651     Node *one  = _igvn.intcon(1);
  1652     set_ctrl(one, C->root());
  1654     Node *plus_one = new (C) AddINode(offset, one);
  1655     register_new_node( plus_one, pre_ctrl );
  1656     // Pass (-stride) to indicate pre_loop_cond = NOT(main_loop_cond);
  1657     *pre_limit = adjust_limit((-stride_con), scale, plus_one, upper_limit, *pre_limit, pre_ctrl,
  1658                               scale_con < -1 && stride_con > 0);
  1660     if (low_limit->get_int() == -max_jint) {
  1661       if (!RangeLimitCheck) return;
  1662       // We need this guard when scale*main_limit+offset >= limit
  1663       // due to underflow. So we need execute main-loop while
  1664       // scale*I+offset+1 > min_int. But (min_int-offset-1) will
  1665       // underflow when (offset+1) > 0 and X will be < main_limit
  1666       // when scale < 0 (and stride > 0). To avoid it we replace
  1667       // positive (offset+1) with 0.
  1668       //
  1669       // Also (min_int+1 == -max_int) is used instead of min_int here
  1670       // to avoid problem with scale == -1 (min_int/(-1) == min_int).
  1671       Node* shift = _igvn.intcon(31);
  1672       set_ctrl(shift, C->root());
  1673       Node* sign = new (C) RShiftINode(plus_one, shift);
  1674       register_new_node(sign, pre_ctrl);
  1675       plus_one = new (C) AndINode(plus_one, sign);
  1676       register_new_node(plus_one, pre_ctrl);
  1677     } else {
  1678       assert(low_limit->get_int() == 0, "wrong low limit for range check");
  1679       // The only problem we have here when offset == max_int
  1680       // since (max_int+1) == min_int and (0-min_int) == min_int.
  1681       // But it is fine since main loop will either have
  1682       // less iterations or will be skipped in such case.
  1684     // The underflow limit: low_limit <= scale*I+offset.
  1685     // For main-loop compute
  1686     //   scale*I+offset+1 > low_limit
  1687     //   ( if (scale < 0) /* and stride > 0 */
  1688     //       I < (low_limit-(offset+1))/scale
  1689     //     else /* scale > 0 and stride < 0 */
  1690     //       I > (low_limit-(offset+1))/scale
  1691     //   )
  1693     *main_limit = adjust_limit(stride_con, scale, plus_one, low_limit, *main_limit, pre_ctrl,
  1694                                false);
  1699 //------------------------------is_scaled_iv---------------------------------
  1700 // Return true if exp is a constant times an induction var
  1701 bool PhaseIdealLoop::is_scaled_iv(Node* exp, Node* iv, int* p_scale) {
  1702   if (exp == iv) {
  1703     if (p_scale != NULL) {
  1704       *p_scale = 1;
  1706     return true;
  1708   int opc = exp->Opcode();
  1709   if (opc == Op_MulI) {
  1710     if (exp->in(1) == iv && exp->in(2)->is_Con()) {
  1711       if (p_scale != NULL) {
  1712         *p_scale = exp->in(2)->get_int();
  1714       return true;
  1716     if (exp->in(2) == iv && exp->in(1)->is_Con()) {
  1717       if (p_scale != NULL) {
  1718         *p_scale = exp->in(1)->get_int();
  1720       return true;
  1722   } else if (opc == Op_LShiftI) {
  1723     if (exp->in(1) == iv && exp->in(2)->is_Con()) {
  1724       if (p_scale != NULL) {
  1725         *p_scale = 1 << exp->in(2)->get_int();
  1727       return true;
  1730   return false;
  1733 //-----------------------------is_scaled_iv_plus_offset------------------------------
  1734 // Return true if exp is a simple induction variable expression: k1*iv + (invar + k2)
  1735 bool PhaseIdealLoop::is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth) {
  1736   if (is_scaled_iv(exp, iv, p_scale)) {
  1737     if (p_offset != NULL) {
  1738       Node *zero = _igvn.intcon(0);
  1739       set_ctrl(zero, C->root());
  1740       *p_offset = zero;
  1742     return true;
  1744   int opc = exp->Opcode();
  1745   if (opc == Op_AddI) {
  1746     if (is_scaled_iv(exp->in(1), iv, p_scale)) {
  1747       if (p_offset != NULL) {
  1748         *p_offset = exp->in(2);
  1750       return true;
  1752     if (is_scaled_iv(exp->in(2), iv, p_scale)) {
  1753       if (p_offset != NULL) {
  1754         *p_offset = exp->in(1);
  1756       return true;
  1758     if (exp->in(2)->is_Con()) {
  1759       Node* offset2 = NULL;
  1760       if (depth < 2 &&
  1761           is_scaled_iv_plus_offset(exp->in(1), iv, p_scale,
  1762                                    p_offset != NULL ? &offset2 : NULL, depth+1)) {
  1763         if (p_offset != NULL) {
  1764           Node *ctrl_off2 = get_ctrl(offset2);
  1765           Node* offset = new (C) AddINode(offset2, exp->in(2));
  1766           register_new_node(offset, ctrl_off2);
  1767           *p_offset = offset;
  1769         return true;
  1772   } else if (opc == Op_SubI) {
  1773     if (is_scaled_iv(exp->in(1), iv, p_scale)) {
  1774       if (p_offset != NULL) {
  1775         Node *zero = _igvn.intcon(0);
  1776         set_ctrl(zero, C->root());
  1777         Node *ctrl_off = get_ctrl(exp->in(2));
  1778         Node* offset = new (C) SubINode(zero, exp->in(2));
  1779         register_new_node(offset, ctrl_off);
  1780         *p_offset = offset;
  1782       return true;
  1784     if (is_scaled_iv(exp->in(2), iv, p_scale)) {
  1785       if (p_offset != NULL) {
  1786         *p_scale *= -1;
  1787         *p_offset = exp->in(1);
  1789       return true;
  1792   return false;
  1795 //------------------------------do_range_check---------------------------------
  1796 // Eliminate range-checks and other trip-counter vs loop-invariant tests.
  1797 void PhaseIdealLoop::do_range_check( IdealLoopTree *loop, Node_List &old_new ) {
  1798 #ifndef PRODUCT
  1799   if (PrintOpto && VerifyLoopOptimizations) {
  1800     tty->print("Range Check Elimination ");
  1801     loop->dump_head();
  1802   } else if (TraceLoopOpts) {
  1803     tty->print("RangeCheck   ");
  1804     loop->dump_head();
  1806 #endif
  1807   assert(RangeCheckElimination, "");
  1808   CountedLoopNode *cl = loop->_head->as_CountedLoop();
  1809   assert(cl->is_main_loop(), "");
  1811   // protect against stride not being a constant
  1812   if (!cl->stride_is_con())
  1813     return;
  1815   // Find the trip counter; we are iteration splitting based on it
  1816   Node *trip_counter = cl->phi();
  1817   // Find the main loop limit; we will trim it's iterations
  1818   // to not ever trip end tests
  1819   Node *main_limit = cl->limit();
  1821   // Need to find the main-loop zero-trip guard
  1822   Node *ctrl  = cl->in(LoopNode::EntryControl);
  1823   assert(ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "");
  1824   Node *iffm = ctrl->in(0);
  1825   assert(iffm->Opcode() == Op_If, "");
  1826   Node *bolzm = iffm->in(1);
  1827   assert(bolzm->Opcode() == Op_Bool, "");
  1828   Node *cmpzm = bolzm->in(1);
  1829   assert(cmpzm->is_Cmp(), "");
  1830   Node *opqzm = cmpzm->in(2);
  1831   // Can not optimize a loop if zero-trip Opaque1 node is optimized
  1832   // away and then another round of loop opts attempted.
  1833   if (opqzm->Opcode() != Op_Opaque1)
  1834     return;
  1835   assert(opqzm->in(1) == main_limit, "do not understand situation");
  1837   // Find the pre-loop limit; we will expand it's iterations to
  1838   // not ever trip low tests.
  1839   Node *p_f = iffm->in(0);
  1840   // pre loop may have been optimized out
  1841   if (p_f->Opcode() != Op_IfFalse) {
  1842     return;
  1844   CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
  1845   assert(pre_end->loopnode()->is_pre_loop(), "");
  1846   Node *pre_opaq1 = pre_end->limit();
  1847   // Occasionally it's possible for a pre-loop Opaque1 node to be
  1848   // optimized away and then another round of loop opts attempted.
  1849   // We can not optimize this particular loop in that case.
  1850   if (pre_opaq1->Opcode() != Op_Opaque1)
  1851     return;
  1852   Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
  1853   Node *pre_limit = pre_opaq->in(1);
  1855   // Where do we put new limit calculations
  1856   Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
  1858   // Ensure the original loop limit is available from the
  1859   // pre-loop Opaque1 node.
  1860   Node *orig_limit = pre_opaq->original_loop_limit();
  1861   if (orig_limit == NULL || _igvn.type(orig_limit) == Type::TOP)
  1862     return;
  1864   // Must know if its a count-up or count-down loop
  1866   int stride_con = cl->stride_con();
  1867   Node *zero = _igvn.intcon(0);
  1868   Node *one  = _igvn.intcon(1);
  1869   // Use symmetrical int range [-max_jint,max_jint]
  1870   Node *mini = _igvn.intcon(-max_jint);
  1871   set_ctrl(zero, C->root());
  1872   set_ctrl(one,  C->root());
  1873   set_ctrl(mini, C->root());
  1875   // Range checks that do not dominate the loop backedge (ie.
  1876   // conditionally executed) can lengthen the pre loop limit beyond
  1877   // the original loop limit. To prevent this, the pre limit is
  1878   // (for stride > 0) MINed with the original loop limit (MAXed
  1879   // stride < 0) when some range_check (rc) is conditionally
  1880   // executed.
  1881   bool conditional_rc = false;
  1883   // Check loop body for tests of trip-counter plus loop-invariant vs
  1884   // loop-invariant.
  1885   for( uint i = 0; i < loop->_body.size(); i++ ) {
  1886     Node *iff = loop->_body[i];
  1887     if( iff->Opcode() == Op_If ) { // Test?
  1889       // Test is an IfNode, has 2 projections.  If BOTH are in the loop
  1890       // we need loop unswitching instead of iteration splitting.
  1891       Node *exit = loop->is_loop_exit(iff);
  1892       if( !exit ) continue;
  1893       int flip = (exit->Opcode() == Op_IfTrue) ? 1 : 0;
  1895       // Get boolean condition to test
  1896       Node *i1 = iff->in(1);
  1897       if( !i1->is_Bool() ) continue;
  1898       BoolNode *bol = i1->as_Bool();
  1899       BoolTest b_test = bol->_test;
  1900       // Flip sense of test if exit condition is flipped
  1901       if( flip )
  1902         b_test = b_test.negate();
  1904       // Get compare
  1905       Node *cmp = bol->in(1);
  1907       // Look for trip_counter + offset vs limit
  1908       Node *rc_exp = cmp->in(1);
  1909       Node *limit  = cmp->in(2);
  1910       jint scale_con= 1;        // Assume trip counter not scaled
  1912       Node *limit_c = get_ctrl(limit);
  1913       if( loop->is_member(get_loop(limit_c) ) ) {
  1914         // Compare might have operands swapped; commute them
  1915         b_test = b_test.commute();
  1916         rc_exp = cmp->in(2);
  1917         limit  = cmp->in(1);
  1918         limit_c = get_ctrl(limit);
  1919         if( loop->is_member(get_loop(limit_c) ) )
  1920           continue;             // Both inputs are loop varying; cannot RCE
  1922       // Here we know 'limit' is loop invariant
  1924       // 'limit' maybe pinned below the zero trip test (probably from a
  1925       // previous round of rce), in which case, it can't be used in the
  1926       // zero trip test expression which must occur before the zero test's if.
  1927       if( limit_c == ctrl ) {
  1928         continue;  // Don't rce this check but continue looking for other candidates.
  1931       // Check for scaled induction variable plus an offset
  1932       Node *offset = NULL;
  1934       if (!is_scaled_iv_plus_offset(rc_exp, trip_counter, &scale_con, &offset)) {
  1935         continue;
  1938       Node *offset_c = get_ctrl(offset);
  1939       if( loop->is_member( get_loop(offset_c) ) )
  1940         continue;               // Offset is not really loop invariant
  1941       // Here we know 'offset' is loop invariant.
  1943       // As above for the 'limit', the 'offset' maybe pinned below the
  1944       // zero trip test.
  1945       if( offset_c == ctrl ) {
  1946         continue; // Don't rce this check but continue looking for other candidates.
  1948 #ifdef ASSERT
  1949       if (TraceRangeLimitCheck) {
  1950         tty->print_cr("RC bool node%s", flip ? " flipped:" : ":");
  1951         bol->dump(2);
  1953 #endif
  1954       // At this point we have the expression as:
  1955       //   scale_con * trip_counter + offset :: limit
  1956       // where scale_con, offset and limit are loop invariant.  Trip_counter
  1957       // monotonically increases by stride_con, a constant.  Both (or either)
  1958       // stride_con and scale_con can be negative which will flip about the
  1959       // sense of the test.
  1961       // Adjust pre and main loop limits to guard the correct iteration set
  1962       if( cmp->Opcode() == Op_CmpU ) {// Unsigned compare is really 2 tests
  1963         if( b_test._test == BoolTest::lt ) { // Range checks always use lt
  1964           // The underflow and overflow limits: 0 <= scale*I+offset < limit
  1965           add_constraint( stride_con, scale_con, offset, zero, limit, pre_ctrl, &pre_limit, &main_limit );
  1966           if (!conditional_rc) {
  1967             // (0-offset)/scale could be outside of loop iterations range.
  1968             conditional_rc = !loop->dominates_backedge(iff) || RangeLimitCheck;
  1970         } else {
  1971 #ifndef PRODUCT
  1972           if( PrintOpto )
  1973             tty->print_cr("missed RCE opportunity");
  1974 #endif
  1975           continue;             // In release mode, ignore it
  1977       } else {                  // Otherwise work on normal compares
  1978         switch( b_test._test ) {
  1979         case BoolTest::gt:
  1980           // Fall into GE case
  1981         case BoolTest::ge:
  1982           // Convert (I*scale+offset) >= Limit to (I*(-scale)+(-offset)) <= -Limit
  1983           scale_con = -scale_con;
  1984           offset = new (C) SubINode( zero, offset );
  1985           register_new_node( offset, pre_ctrl );
  1986           limit  = new (C) SubINode( zero, limit  );
  1987           register_new_node( limit, pre_ctrl );
  1988           // Fall into LE case
  1989         case BoolTest::le:
  1990           if (b_test._test != BoolTest::gt) {
  1991             // Convert X <= Y to X < Y+1
  1992             limit = new (C) AddINode( limit, one );
  1993             register_new_node( limit, pre_ctrl );
  1995           // Fall into LT case
  1996         case BoolTest::lt:
  1997           // The underflow and overflow limits: MIN_INT <= scale*I+offset < limit
  1998           // Note: (MIN_INT+1 == -MAX_INT) is used instead of MIN_INT here
  1999           // to avoid problem with scale == -1: MIN_INT/(-1) == MIN_INT.
  2000           add_constraint( stride_con, scale_con, offset, mini, limit, pre_ctrl, &pre_limit, &main_limit );
  2001           if (!conditional_rc) {
  2002             // ((MIN_INT+1)-offset)/scale could be outside of loop iterations range.
  2003             // Note: negative offset is replaced with 0 but (MIN_INT+1)/scale could
  2004             // still be outside of loop range.
  2005             conditional_rc = !loop->dominates_backedge(iff) || RangeLimitCheck;
  2007           break;
  2008         default:
  2009 #ifndef PRODUCT
  2010           if( PrintOpto )
  2011             tty->print_cr("missed RCE opportunity");
  2012 #endif
  2013           continue;             // Unhandled case
  2017       // Kill the eliminated test
  2018       C->set_major_progress();
  2019       Node *kill_con = _igvn.intcon( 1-flip );
  2020       set_ctrl(kill_con, C->root());
  2021       _igvn.replace_input_of(iff, 1, kill_con);
  2022       // Find surviving projection
  2023       assert(iff->is_If(), "");
  2024       ProjNode* dp = ((IfNode*)iff)->proj_out(1-flip);
  2025       // Find loads off the surviving projection; remove their control edge
  2026       for (DUIterator_Fast imax, i = dp->fast_outs(imax); i < imax; i++) {
  2027         Node* cd = dp->fast_out(i); // Control-dependent node
  2028         if (cd->is_Load() && cd->depends_only_on_test()) {   // Loads can now float around in the loop
  2029           // Allow the load to float around in the loop, or before it
  2030           // but NOT before the pre-loop.
  2031           _igvn.replace_input_of(cd, 0, ctrl); // ctrl, not NULL
  2032           --i;
  2033           --imax;
  2037     } // End of is IF
  2041   // Update loop limits
  2042   if (conditional_rc) {
  2043     pre_limit = (stride_con > 0) ? (Node*)new (C) MinINode(pre_limit, orig_limit)
  2044                                  : (Node*)new (C) MaxINode(pre_limit, orig_limit);
  2045     register_new_node(pre_limit, pre_ctrl);
  2047   _igvn.hash_delete(pre_opaq);
  2048   pre_opaq->set_req(1, pre_limit);
  2050   // Note:: we are making the main loop limit no longer precise;
  2051   // need to round up based on stride.
  2052   cl->set_nonexact_trip_count();
  2053   if (!LoopLimitCheck && stride_con != 1 && stride_con != -1) { // Cutout for common case
  2054     // "Standard" round-up logic:  ([main_limit-init+(y-1)]/y)*y+init
  2055     // Hopefully, compiler will optimize for powers of 2.
  2056     Node *ctrl = get_ctrl(main_limit);
  2057     Node *stride = cl->stride();
  2058     Node *init = cl->init_trip();
  2059     Node *span = new (C) SubINode(main_limit,init);
  2060     register_new_node(span,ctrl);
  2061     Node *rndup = _igvn.intcon(stride_con + ((stride_con>0)?-1:1));
  2062     Node *add = new (C) AddINode(span,rndup);
  2063     register_new_node(add,ctrl);
  2064     Node *div = new (C) DivINode(0,add,stride);
  2065     register_new_node(div,ctrl);
  2066     Node *mul = new (C) MulINode(div,stride);
  2067     register_new_node(mul,ctrl);
  2068     Node *newlim = new (C) AddINode(mul,init);
  2069     register_new_node(newlim,ctrl);
  2070     main_limit = newlim;
  2073   Node *main_cle = cl->loopexit();
  2074   Node *main_bol = main_cle->in(1);
  2075   // Hacking loop bounds; need private copies of exit test
  2076   if( main_bol->outcnt() > 1 ) {// BoolNode shared?
  2077     _igvn.hash_delete(main_cle);
  2078     main_bol = main_bol->clone();// Clone a private BoolNode
  2079     register_new_node( main_bol, main_cle->in(0) );
  2080     main_cle->set_req(1,main_bol);
  2082   Node *main_cmp = main_bol->in(1);
  2083   if( main_cmp->outcnt() > 1 ) { // CmpNode shared?
  2084     _igvn.hash_delete(main_bol);
  2085     main_cmp = main_cmp->clone();// Clone a private CmpNode
  2086     register_new_node( main_cmp, main_cle->in(0) );
  2087     main_bol->set_req(1,main_cmp);
  2089   // Hack the now-private loop bounds
  2090   _igvn.replace_input_of(main_cmp, 2, main_limit);
  2091   // The OpaqueNode is unshared by design
  2092   assert( opqzm->outcnt() == 1, "cannot hack shared node" );
  2093   _igvn.replace_input_of(opqzm, 1, main_limit);
  2096 //------------------------------DCE_loop_body----------------------------------
  2097 // Remove simplistic dead code from loop body
  2098 void IdealLoopTree::DCE_loop_body() {
  2099   for( uint i = 0; i < _body.size(); i++ )
  2100     if( _body.at(i)->outcnt() == 0 )
  2101       _body.map( i--, _body.pop() );
  2105 //------------------------------adjust_loop_exit_prob--------------------------
  2106 // Look for loop-exit tests with the 50/50 (or worse) guesses from the parsing stage.
  2107 // Replace with a 1-in-10 exit guess.
  2108 void IdealLoopTree::adjust_loop_exit_prob( PhaseIdealLoop *phase ) {
  2109   Node *test = tail();
  2110   while( test != _head ) {
  2111     uint top = test->Opcode();
  2112     if( top == Op_IfTrue || top == Op_IfFalse ) {
  2113       int test_con = ((ProjNode*)test)->_con;
  2114       assert(top == (uint)(test_con? Op_IfTrue: Op_IfFalse), "sanity");
  2115       IfNode *iff = test->in(0)->as_If();
  2116       if( iff->outcnt() == 2 ) {        // Ignore dead tests
  2117         Node *bol = iff->in(1);
  2118         if( bol && bol->req() > 1 && bol->in(1) &&
  2119             ((bol->in(1)->Opcode() == Op_StorePConditional ) ||
  2120              (bol->in(1)->Opcode() == Op_StoreIConditional ) ||
  2121              (bol->in(1)->Opcode() == Op_StoreLConditional ) ||
  2122              (bol->in(1)->Opcode() == Op_CompareAndSwapI ) ||
  2123              (bol->in(1)->Opcode() == Op_CompareAndSwapL ) ||
  2124              (bol->in(1)->Opcode() == Op_CompareAndSwapP ) ||
  2125              (bol->in(1)->Opcode() == Op_CompareAndSwapN )))
  2126           return;               // Allocation loops RARELY take backedge
  2127         // Find the OTHER exit path from the IF
  2128         Node* ex = iff->proj_out(1-test_con);
  2129         float p = iff->_prob;
  2130         if( !phase->is_member( this, ex ) && iff->_fcnt == COUNT_UNKNOWN ) {
  2131           if( top == Op_IfTrue ) {
  2132             if( p < (PROB_FAIR + PROB_UNLIKELY_MAG(3))) {
  2133               iff->_prob = PROB_STATIC_FREQUENT;
  2135           } else {
  2136             if( p > (PROB_FAIR - PROB_UNLIKELY_MAG(3))) {
  2137               iff->_prob = PROB_STATIC_INFREQUENT;
  2143     test = phase->idom(test);
  2148 //------------------------------policy_do_remove_empty_loop--------------------
  2149 // Micro-benchmark spamming.  Policy is to always remove empty loops.
  2150 // The 'DO' part is to replace the trip counter with the value it will
  2151 // have on the last iteration.  This will break the loop.
  2152 bool IdealLoopTree::policy_do_remove_empty_loop( PhaseIdealLoop *phase ) {
  2153   // Minimum size must be empty loop
  2154   if (_body.size() > EMPTY_LOOP_SIZE)
  2155     return false;
  2157   if (!_head->is_CountedLoop())
  2158     return false;     // Dead loop
  2159   CountedLoopNode *cl = _head->as_CountedLoop();
  2160   if (!cl->is_valid_counted_loop())
  2161     return false; // Malformed loop
  2162   if (!phase->is_member(this, phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue))))
  2163     return false;             // Infinite loop
  2165 #ifdef ASSERT
  2166   // Ensure only one phi which is the iv.
  2167   Node* iv = NULL;
  2168   for (DUIterator_Fast imax, i = cl->fast_outs(imax); i < imax; i++) {
  2169     Node* n = cl->fast_out(i);
  2170     if (n->Opcode() == Op_Phi) {
  2171       assert(iv == NULL, "Too many phis" );
  2172       iv = n;
  2175   assert(iv == cl->phi(), "Wrong phi" );
  2176 #endif
  2178   // main and post loops have explicitly created zero trip guard
  2179   bool needs_guard = !cl->is_main_loop() && !cl->is_post_loop();
  2180   if (needs_guard) {
  2181     // Skip guard if values not overlap.
  2182     const TypeInt* init_t = phase->_igvn.type(cl->init_trip())->is_int();
  2183     const TypeInt* limit_t = phase->_igvn.type(cl->limit())->is_int();
  2184     int  stride_con = cl->stride_con();
  2185     if (stride_con > 0) {
  2186       needs_guard = (init_t->_hi >= limit_t->_lo);
  2187     } else {
  2188       needs_guard = (init_t->_lo <= limit_t->_hi);
  2191   if (needs_guard) {
  2192     // Check for an obvious zero trip guard.
  2193     Node* inctrl = PhaseIdealLoop::skip_loop_predicates(cl->in(LoopNode::EntryControl));
  2194     if (inctrl->Opcode() == Op_IfTrue) {
  2195       // The test should look like just the backedge of a CountedLoop
  2196       Node* iff = inctrl->in(0);
  2197       if (iff->is_If()) {
  2198         Node* bol = iff->in(1);
  2199         if (bol->is_Bool() && bol->as_Bool()->_test._test == cl->loopexit()->test_trip()) {
  2200           Node* cmp = bol->in(1);
  2201           if (cmp->is_Cmp() && cmp->in(1) == cl->init_trip() && cmp->in(2) == cl->limit()) {
  2202             needs_guard = false;
  2209 #ifndef PRODUCT
  2210   if (PrintOpto) {
  2211     tty->print("Removing empty loop with%s zero trip guard", needs_guard ? "out" : "");
  2212     this->dump_head();
  2213   } else if (TraceLoopOpts) {
  2214     tty->print("Empty with%s zero trip guard   ", needs_guard ? "out" : "");
  2215     this->dump_head();
  2217 #endif
  2219   if (needs_guard) {
  2220     // Peel the loop to ensure there's a zero trip guard
  2221     Node_List old_new;
  2222     phase->do_peeling(this, old_new);
  2225   // Replace the phi at loop head with the final value of the last
  2226   // iteration.  Then the CountedLoopEnd will collapse (backedge never
  2227   // taken) and all loop-invariant uses of the exit values will be correct.
  2228   Node *phi = cl->phi();
  2229   Node *exact_limit = phase->exact_limit(this);
  2230   if (exact_limit != cl->limit()) {
  2231     // We also need to replace the original limit to collapse loop exit.
  2232     Node* cmp = cl->loopexit()->cmp_node();
  2233     assert(cl->limit() == cmp->in(2), "sanity");
  2234     // Duplicate cmp node if it has other users
  2235     if (cmp->outcnt() > 1) {
  2236       cmp = cmp->clone();
  2237       cmp = phase->_igvn.register_new_node_with_optimizer(cmp);
  2238       BoolNode *bol = cl->loopexit()->in(CountedLoopEndNode::TestValue)->as_Bool();
  2239       phase->_igvn.replace_input_of(bol, 1, cmp); // put bol on worklist
  2241     phase->_igvn._worklist.push(cmp->in(2)); // put limit on worklist
  2242     phase->_igvn.replace_input_of(cmp, 2, exact_limit); // put cmp on worklist
  2244   // Note: the final value after increment should not overflow since
  2245   // counted loop has limit check predicate.
  2246   Node *final = new (phase->C) SubINode( exact_limit, cl->stride() );
  2247   phase->register_new_node(final,cl->in(LoopNode::EntryControl));
  2248   phase->_igvn.replace_node(phi,final);
  2249   phase->C->set_major_progress();
  2250   return true;
  2253 //------------------------------policy_do_one_iteration_loop-------------------
  2254 // Convert one iteration loop into normal code.
  2255 bool IdealLoopTree::policy_do_one_iteration_loop( PhaseIdealLoop *phase ) {
  2256   if (!_head->as_Loop()->is_valid_counted_loop())
  2257     return false; // Only for counted loop
  2259   CountedLoopNode *cl = _head->as_CountedLoop();
  2260   if (!cl->has_exact_trip_count() || cl->trip_count() != 1) {
  2261     return false;
  2264 #ifndef PRODUCT
  2265   if(TraceLoopOpts) {
  2266     tty->print("OneIteration ");
  2267     this->dump_head();
  2269 #endif
  2271   Node *init_n = cl->init_trip();
  2272 #ifdef ASSERT
  2273   // Loop boundaries should be constant since trip count is exact.
  2274   assert(init_n->get_int() + cl->stride_con() >= cl->limit()->get_int(), "should be one iteration");
  2275 #endif
  2276   // Replace the phi at loop head with the value of the init_trip.
  2277   // Then the CountedLoopEnd will collapse (backedge will not be taken)
  2278   // and all loop-invariant uses of the exit values will be correct.
  2279   phase->_igvn.replace_node(cl->phi(), cl->init_trip());
  2280   phase->C->set_major_progress();
  2281   return true;
  2284 //=============================================================================
  2285 //------------------------------iteration_split_impl---------------------------
  2286 bool IdealLoopTree::iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new ) {
  2287   // Compute exact loop trip count if possible.
  2288   compute_exact_trip_count(phase);
  2290   // Convert one iteration loop into normal code.
  2291   if (policy_do_one_iteration_loop(phase))
  2292     return true;
  2294   // Check and remove empty loops (spam micro-benchmarks)
  2295   if (policy_do_remove_empty_loop(phase))
  2296     return true;  // Here we removed an empty loop
  2298   bool should_peel = policy_peeling(phase); // Should we peel?
  2300   bool should_unswitch = policy_unswitching(phase);
  2302   // Non-counted loops may be peeled; exactly 1 iteration is peeled.
  2303   // This removes loop-invariant tests (usually null checks).
  2304   if (!_head->is_CountedLoop()) { // Non-counted loop
  2305     if (PartialPeelLoop && phase->partial_peel(this, old_new)) {
  2306       // Partial peel succeeded so terminate this round of loop opts
  2307       return false;
  2309     if (should_peel) {            // Should we peel?
  2310 #ifndef PRODUCT
  2311       if (PrintOpto) tty->print_cr("should_peel");
  2312 #endif
  2313       phase->do_peeling(this,old_new);
  2314     } else if (should_unswitch) {
  2315       phase->do_unswitching(this, old_new);
  2317     return true;
  2319   CountedLoopNode *cl = _head->as_CountedLoop();
  2321   if (!cl->is_valid_counted_loop()) return true; // Ignore various kinds of broken loops
  2323   // Do nothing special to pre- and post- loops
  2324   if (cl->is_pre_loop() || cl->is_post_loop()) return true;
  2326   // Compute loop trip count from profile data
  2327   compute_profile_trip_cnt(phase);
  2329   // Before attempting fancy unrolling, RCE or alignment, see if we want
  2330   // to completely unroll this loop or do loop unswitching.
  2331   if (cl->is_normal_loop()) {
  2332     if (should_unswitch) {
  2333       phase->do_unswitching(this, old_new);
  2334       return true;
  2336     bool should_maximally_unroll =  policy_maximally_unroll(phase);
  2337     if (should_maximally_unroll) {
  2338       // Here we did some unrolling and peeling.  Eventually we will
  2339       // completely unroll this loop and it will no longer be a loop.
  2340       phase->do_maximally_unroll(this,old_new);
  2341       return true;
  2345   // Skip next optimizations if running low on nodes. Note that
  2346   // policy_unswitching and policy_maximally_unroll have this check.
  2347   int nodes_left = phase->C->max_node_limit() - phase->C->live_nodes();
  2348   if ((int)(2 * _body.size()) > nodes_left) {
  2349     return true;
  2352   // Counted loops may be peeled, may need some iterations run up
  2353   // front for RCE, and may want to align loop refs to a cache
  2354   // line.  Thus we clone a full loop up front whose trip count is
  2355   // at least 1 (if peeling), but may be several more.
  2357   // The main loop will start cache-line aligned with at least 1
  2358   // iteration of the unrolled body (zero-trip test required) and
  2359   // will have some range checks removed.
  2361   // A post-loop will finish any odd iterations (leftover after
  2362   // unrolling), plus any needed for RCE purposes.
  2364   bool should_unroll = policy_unroll(phase);
  2366   bool should_rce = policy_range_check(phase);
  2368   bool should_align = policy_align(phase);
  2370   // If not RCE'ing (iteration splitting) or Aligning, then we do not
  2371   // need a pre-loop.  We may still need to peel an initial iteration but
  2372   // we will not be needing an unknown number of pre-iterations.
  2373   //
  2374   // Basically, if may_rce_align reports FALSE first time through,
  2375   // we will not be able to later do RCE or Aligning on this loop.
  2376   bool may_rce_align = !policy_peel_only(phase) || should_rce || should_align;
  2378   // If we have any of these conditions (RCE, alignment, unrolling) met, then
  2379   // we switch to the pre-/main-/post-loop model.  This model also covers
  2380   // peeling.
  2381   if (should_rce || should_align || should_unroll) {
  2382     if (cl->is_normal_loop())  // Convert to 'pre/main/post' loops
  2383       phase->insert_pre_post_loops(this,old_new, !may_rce_align);
  2385     // Adjust the pre- and main-loop limits to let the pre and post loops run
  2386     // with full checks, but the main-loop with no checks.  Remove said
  2387     // checks from the main body.
  2388     if (should_rce)
  2389       phase->do_range_check(this,old_new);
  2391     // Double loop body for unrolling.  Adjust the minimum-trip test (will do
  2392     // twice as many iterations as before) and the main body limit (only do
  2393     // an even number of trips).  If we are peeling, we might enable some RCE
  2394     // and we'd rather unroll the post-RCE'd loop SO... do not unroll if
  2395     // peeling.
  2396     if (should_unroll && !should_peel)
  2397       phase->do_unroll(this,old_new, true);
  2399     // Adjust the pre-loop limits to align the main body
  2400     // iterations.
  2401     if (should_align)
  2402       Unimplemented();
  2404   } else {                      // Else we have an unchanged counted loop
  2405     if (should_peel)           // Might want to peel but do nothing else
  2406       phase->do_peeling(this,old_new);
  2408   return true;
  2412 //=============================================================================
  2413 //------------------------------iteration_split--------------------------------
  2414 bool IdealLoopTree::iteration_split( PhaseIdealLoop *phase, Node_List &old_new ) {
  2415   // Recursively iteration split nested loops
  2416   if (_child && !_child->iteration_split(phase, old_new))
  2417     return false;
  2419   // Clean out prior deadwood
  2420   DCE_loop_body();
  2423   // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
  2424   // Replace with a 1-in-10 exit guess.
  2425   if (_parent /*not the root loop*/ &&
  2426       !_irreducible &&
  2427       // Also ignore the occasional dead backedge
  2428       !tail()->is_top()) {
  2429     adjust_loop_exit_prob(phase);
  2432   // Gate unrolling, RCE and peeling efforts.
  2433   if (!_child &&                // If not an inner loop, do not split
  2434       !_irreducible &&
  2435       _allow_optimizations &&
  2436       !tail()->is_top()) {     // Also ignore the occasional dead backedge
  2437     if (!_has_call) {
  2438         if (!iteration_split_impl(phase, old_new)) {
  2439           return false;
  2441     } else if (policy_unswitching(phase)) {
  2442       phase->do_unswitching(this, old_new);
  2446   // Minor offset re-organization to remove loop-fallout uses of
  2447   // trip counter when there was no major reshaping.
  2448   phase->reorg_offsets(this);
  2450   if (_next && !_next->iteration_split(phase, old_new))
  2451     return false;
  2452   return true;
  2456 //=============================================================================
  2457 // Process all the loops in the loop tree and replace any fill
  2458 // patterns with an intrinsic version.
  2459 bool PhaseIdealLoop::do_intrinsify_fill() {
  2460   bool changed = false;
  2461   for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
  2462     IdealLoopTree* lpt = iter.current();
  2463     changed |= intrinsify_fill(lpt);
  2465   return changed;
  2469 // Examine an inner loop looking for a a single store of an invariant
  2470 // value in a unit stride loop,
  2471 bool PhaseIdealLoop::match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
  2472                                      Node*& shift, Node*& con) {
  2473   const char* msg = NULL;
  2474   Node* msg_node = NULL;
  2476   store_value = NULL;
  2477   con = NULL;
  2478   shift = NULL;
  2480   // Process the loop looking for stores.  If there are multiple
  2481   // stores or extra control flow give at this point.
  2482   CountedLoopNode* head = lpt->_head->as_CountedLoop();
  2483   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
  2484     Node* n = lpt->_body.at(i);
  2485     if (n->outcnt() == 0) continue; // Ignore dead
  2486     if (n->is_Store()) {
  2487       if (store != NULL) {
  2488         msg = "multiple stores";
  2489         break;
  2491       int opc = n->Opcode();
  2492       if (opc == Op_StoreP || opc == Op_StoreN || opc == Op_StoreNKlass || opc == Op_StoreCM) {
  2493         msg = "oop fills not handled";
  2494         break;
  2496       Node* value = n->in(MemNode::ValueIn);
  2497       if (!lpt->is_invariant(value)) {
  2498         msg  = "variant store value";
  2499       } else if (!_igvn.type(n->in(MemNode::Address))->isa_aryptr()) {
  2500         msg = "not array address";
  2502       store = n;
  2503       store_value = value;
  2504     } else if (n->is_If() && n != head->loopexit()) {
  2505       msg = "extra control flow";
  2506       msg_node = n;
  2510   if (store == NULL) {
  2511     // No store in loop
  2512     return false;
  2515   if (msg == NULL && head->stride_con() != 1) {
  2516     // could handle negative strides too
  2517     if (head->stride_con() < 0) {
  2518       msg = "negative stride";
  2519     } else {
  2520       msg = "non-unit stride";
  2524   if (msg == NULL && !store->in(MemNode::Address)->is_AddP()) {
  2525     msg = "can't handle store address";
  2526     msg_node = store->in(MemNode::Address);
  2529   if (msg == NULL &&
  2530       (!store->in(MemNode::Memory)->is_Phi() ||
  2531        store->in(MemNode::Memory)->in(LoopNode::LoopBackControl) != store)) {
  2532     msg = "store memory isn't proper phi";
  2533     msg_node = store->in(MemNode::Memory);
  2536   // Make sure there is an appropriate fill routine
  2537   BasicType t = store->as_Mem()->memory_type();
  2538   const char* fill_name;
  2539   if (msg == NULL &&
  2540       StubRoutines::select_fill_function(t, false, fill_name) == NULL) {
  2541     msg = "unsupported store";
  2542     msg_node = store;
  2545   if (msg != NULL) {
  2546 #ifndef PRODUCT
  2547     if (TraceOptimizeFill) {
  2548       tty->print_cr("not fill intrinsic candidate: %s", msg);
  2549       if (msg_node != NULL) msg_node->dump();
  2551 #endif
  2552     return false;
  2555   // Make sure the address expression can be handled.  It should be
  2556   // head->phi * elsize + con.  head->phi might have a ConvI2L(CastII()).
  2557   Node* elements[4];
  2558   Node* cast = NULL;
  2559   Node* conv = NULL;
  2560   bool found_index = false;
  2561   int count = store->in(MemNode::Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
  2562   for (int e = 0; e < count; e++) {
  2563     Node* n = elements[e];
  2564     if (n->is_Con() && con == NULL) {
  2565       con = n;
  2566     } else if (n->Opcode() == Op_LShiftX && shift == NULL) {
  2567       Node* value = n->in(1);
  2568 #ifdef _LP64
  2569       if (value->Opcode() == Op_ConvI2L) {
  2570         conv = value;
  2571         value = value->in(1);
  2573       if (value->Opcode() == Op_CastII &&
  2574           value->as_CastII()->has_range_check()) {
  2575         // Skip range check dependent CastII nodes
  2576         cast = value;
  2577         value = value->in(1);
  2579 #endif
  2580       if (value != head->phi()) {
  2581         msg = "unhandled shift in address";
  2582       } else {
  2583         if (type2aelembytes(store->as_Mem()->memory_type(), true) != (1 << n->in(2)->get_int())) {
  2584           msg = "scale doesn't match";
  2585         } else {
  2586           found_index = true;
  2587           shift = n;
  2590     } else if (n->Opcode() == Op_ConvI2L && conv == NULL) {
  2591       conv = n;
  2592       n = n->in(1);
  2593       if (n->Opcode() == Op_CastII &&
  2594           n->as_CastII()->has_range_check()) {
  2595         // Skip range check dependent CastII nodes
  2596         cast = n;
  2597         n = n->in(1);
  2599       if (n == head->phi()) {
  2600         found_index = true;
  2601       } else {
  2602         msg = "unhandled input to ConvI2L";
  2604     } else if (n == head->phi()) {
  2605       // no shift, check below for allowed cases
  2606       found_index = true;
  2607     } else {
  2608       msg = "unhandled node in address";
  2609       msg_node = n;
  2613   if (count == -1) {
  2614     msg = "malformed address expression";
  2615     msg_node = store;
  2618   if (!found_index) {
  2619     msg = "missing use of index";
  2622   // byte sized items won't have a shift
  2623   if (msg == NULL && shift == NULL && t != T_BYTE && t != T_BOOLEAN) {
  2624     msg = "can't find shift";
  2625     msg_node = store;
  2628   if (msg != NULL) {
  2629 #ifndef PRODUCT
  2630     if (TraceOptimizeFill) {
  2631       tty->print_cr("not fill intrinsic: %s", msg);
  2632       if (msg_node != NULL) msg_node->dump();
  2634 #endif
  2635     return false;
  2638   // No make sure all the other nodes in the loop can be handled
  2639   VectorSet ok(Thread::current()->resource_area());
  2641   // store related values are ok
  2642   ok.set(store->_idx);
  2643   ok.set(store->in(MemNode::Memory)->_idx);
  2645   CountedLoopEndNode* loop_exit = head->loopexit();
  2646   guarantee(loop_exit != NULL, "no loop exit node");
  2648   // Loop structure is ok
  2649   ok.set(head->_idx);
  2650   ok.set(loop_exit->_idx);
  2651   ok.set(head->phi()->_idx);
  2652   ok.set(head->incr()->_idx);
  2653   ok.set(loop_exit->cmp_node()->_idx);
  2654   ok.set(loop_exit->in(1)->_idx);
  2656   // Address elements are ok
  2657   if (con)   ok.set(con->_idx);
  2658   if (shift) ok.set(shift->_idx);
  2659   if (cast)  ok.set(cast->_idx);
  2660   if (conv)  ok.set(conv->_idx);
  2662   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
  2663     Node* n = lpt->_body.at(i);
  2664     if (n->outcnt() == 0) continue; // Ignore dead
  2665     if (ok.test(n->_idx)) continue;
  2666     // Backedge projection is ok
  2667     if (n->is_IfTrue() && n->in(0) == loop_exit) continue;
  2668     if (!n->is_AddP()) {
  2669       msg = "unhandled node";
  2670       msg_node = n;
  2671       break;
  2675   // Make sure no unexpected values are used outside the loop
  2676   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
  2677     Node* n = lpt->_body.at(i);
  2678     // These values can be replaced with other nodes if they are used
  2679     // outside the loop.
  2680     if (n == store || n == loop_exit || n == head->incr() || n == store->in(MemNode::Memory)) continue;
  2681     for (SimpleDUIterator iter(n); iter.has_next(); iter.next()) {
  2682       Node* use = iter.get();
  2683       if (!lpt->_body.contains(use)) {
  2684         msg = "node is used outside loop";
  2685         // lpt->_body.dump();
  2686         msg_node = n;
  2687         break;
  2692 #ifdef ASSERT
  2693   if (TraceOptimizeFill) {
  2694     if (msg != NULL) {
  2695       tty->print_cr("no fill intrinsic: %s", msg);
  2696       if (msg_node != NULL) msg_node->dump();
  2697     } else {
  2698       tty->print_cr("fill intrinsic for:");
  2700     store->dump();
  2701     if (Verbose) {
  2702       lpt->_body.dump();
  2705 #endif
  2707   return msg == NULL;
  2712 bool PhaseIdealLoop::intrinsify_fill(IdealLoopTree* lpt) {
  2713   // Only for counted inner loops
  2714   if (!lpt->is_counted() || !lpt->is_inner()) {
  2715     return false;
  2718   // Must have constant stride
  2719   CountedLoopNode* head = lpt->_head->as_CountedLoop();
  2720   if (!head->is_valid_counted_loop() || !head->is_normal_loop()) {
  2721     return false;
  2724   // Check that the body only contains a store of a loop invariant
  2725   // value that is indexed by the loop phi.
  2726   Node* store = NULL;
  2727   Node* store_value = NULL;
  2728   Node* shift = NULL;
  2729   Node* offset = NULL;
  2730   if (!match_fill_loop(lpt, store, store_value, shift, offset)) {
  2731     return false;
  2734   Node* exit = head->loopexit()->proj_out(0);
  2735   if (exit == NULL) {
  2736     return false;
  2739 #ifndef PRODUCT
  2740   if (TraceLoopOpts) {
  2741     tty->print("ArrayFill    ");
  2742     lpt->dump_head();
  2744 #endif
  2746   // Now replace the whole loop body by a call to a fill routine that
  2747   // covers the same region as the loop.
  2748   Node* base = store->in(MemNode::Address)->as_AddP()->in(AddPNode::Base);
  2750   // Build an expression for the beginning of the copy region
  2751   Node* index = head->init_trip();
  2752 #ifdef _LP64
  2753   index = new (C) ConvI2LNode(index);
  2754   _igvn.register_new_node_with_optimizer(index);
  2755 #endif
  2756   if (shift != NULL) {
  2757     // byte arrays don't require a shift but others do.
  2758     index = new (C) LShiftXNode(index, shift->in(2));
  2759     _igvn.register_new_node_with_optimizer(index);
  2761   index = new (C) AddPNode(base, base, index);
  2762   _igvn.register_new_node_with_optimizer(index);
  2763   Node* from = new (C) AddPNode(base, index, offset);
  2764   _igvn.register_new_node_with_optimizer(from);
  2765   // Compute the number of elements to copy
  2766   Node* len = new (C) SubINode(head->limit(), head->init_trip());
  2767   _igvn.register_new_node_with_optimizer(len);
  2769   BasicType t = store->as_Mem()->memory_type();
  2770   bool aligned = false;
  2771   if (offset != NULL && head->init_trip()->is_Con()) {
  2772     int element_size = type2aelembytes(t);
  2773     aligned = (offset->find_intptr_t_type()->get_con() + head->init_trip()->get_int() * element_size) % HeapWordSize == 0;
  2776   // Build a call to the fill routine
  2777   const char* fill_name;
  2778   address fill = StubRoutines::select_fill_function(t, aligned, fill_name);
  2779   assert(fill != NULL, "what?");
  2781   // Convert float/double to int/long for fill routines
  2782   if (t == T_FLOAT) {
  2783     store_value = new (C) MoveF2INode(store_value);
  2784     _igvn.register_new_node_with_optimizer(store_value);
  2785   } else if (t == T_DOUBLE) {
  2786     store_value = new (C) MoveD2LNode(store_value);
  2787     _igvn.register_new_node_with_optimizer(store_value);
  2790   if (CCallingConventionRequiresIntsAsLongs &&
  2791       // See StubRoutines::select_fill_function for types. FLOAT has been converted to INT.
  2792       (t == T_FLOAT || t == T_INT ||  is_subword_type(t))) {
  2793     store_value = new (C) ConvI2LNode(store_value);
  2794     _igvn.register_new_node_with_optimizer(store_value);
  2797   Node* mem_phi = store->in(MemNode::Memory);
  2798   Node* result_ctrl;
  2799   Node* result_mem;
  2800   const TypeFunc* call_type = OptoRuntime::array_fill_Type();
  2801   CallLeafNode *call = new (C) CallLeafNoFPNode(call_type, fill,
  2802                                                 fill_name, TypeAryPtr::get_array_body_type(t));
  2803   uint cnt = 0;
  2804   call->init_req(TypeFunc::Parms + cnt++, from);
  2805   call->init_req(TypeFunc::Parms + cnt++, store_value);
  2806   if (CCallingConventionRequiresIntsAsLongs) {
  2807     call->init_req(TypeFunc::Parms + cnt++, C->top());
  2809 #ifdef _LP64
  2810   len = new (C) ConvI2LNode(len);
  2811   _igvn.register_new_node_with_optimizer(len);
  2812 #endif
  2813   call->init_req(TypeFunc::Parms + cnt++, len);
  2814 #ifdef _LP64
  2815   call->init_req(TypeFunc::Parms + cnt++, C->top());
  2816 #endif
  2817   call->init_req(TypeFunc::Control,   head->init_control());
  2818   call->init_req(TypeFunc::I_O,       C->top());       // Does no I/O.
  2819   call->init_req(TypeFunc::Memory,    mem_phi->in(LoopNode::EntryControl));
  2820   call->init_req(TypeFunc::ReturnAdr, C->start()->proj_out(TypeFunc::ReturnAdr));
  2821   call->init_req(TypeFunc::FramePtr,  C->start()->proj_out(TypeFunc::FramePtr));
  2822   _igvn.register_new_node_with_optimizer(call);
  2823   result_ctrl = new (C) ProjNode(call,TypeFunc::Control);
  2824   _igvn.register_new_node_with_optimizer(result_ctrl);
  2825   result_mem = new (C) ProjNode(call,TypeFunc::Memory);
  2826   _igvn.register_new_node_with_optimizer(result_mem);
  2828 /* Disable following optimization until proper fix (add missing checks).
  2830   // If this fill is tightly coupled to an allocation and overwrites
  2831   // the whole body, allow it to take over the zeroing.
  2832   AllocateNode* alloc = AllocateNode::Ideal_allocation(base, this);
  2833   if (alloc != NULL && alloc->is_AllocateArray()) {
  2834     Node* length = alloc->as_AllocateArray()->Ideal_length();
  2835     if (head->limit() == length &&
  2836         head->init_trip() == _igvn.intcon(0)) {
  2837       if (TraceOptimizeFill) {
  2838         tty->print_cr("Eliminated zeroing in allocation");
  2840       alloc->maybe_set_complete(&_igvn);
  2841     } else {
  2842 #ifdef ASSERT
  2843       if (TraceOptimizeFill) {
  2844         tty->print_cr("filling array but bounds don't match");
  2845         alloc->dump();
  2846         head->init_trip()->dump();
  2847         head->limit()->dump();
  2848         length->dump();
  2850 #endif
  2853 */
  2855   // Redirect the old control and memory edges that are outside the loop.
  2856   // Sometimes the memory phi of the head is used as the outgoing
  2857   // state of the loop.  It's safe in this case to replace it with the
  2858   // result_mem.
  2859   _igvn.replace_node(store->in(MemNode::Memory), result_mem);
  2860   lazy_replace(exit, result_ctrl);
  2861   _igvn.replace_node(store, result_mem);
  2862   // Any uses the increment outside of the loop become the loop limit.
  2863   _igvn.replace_node(head->incr(), head->limit());
  2865   // Disconnect the head from the loop.
  2866   for (uint i = 0; i < lpt->_body.size(); i++) {
  2867     Node* n = lpt->_body.at(i);
  2868     _igvn.replace_node(n, C->top());
  2871   return true;

mercurial