src/share/vm/gc_implementation/g1/g1CollectedHeap.cpp

Mon, 09 Jan 2012 23:50:41 -0500

author
tonyp
date
Mon, 09 Jan 2012 23:50:41 -0500
changeset 3414
97c00e21fecb
parent 3413
02838862dec8
child 3416
2ace1c4ee8da
permissions
-rw-r--r--

7125281: G1: heap expansion code is replicated
Reviewed-by: brutisso, johnc

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "code/icBuffer.hpp"
    27 #include "gc_implementation/g1/bufferingOopClosure.hpp"
    28 #include "gc_implementation/g1/concurrentG1Refine.hpp"
    29 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
    30 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    31 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
    32 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    33 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    34 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
    35 #include "gc_implementation/g1/g1EvacFailure.hpp"
    36 #include "gc_implementation/g1/g1MarkSweep.hpp"
    37 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    38 #include "gc_implementation/g1/g1RemSet.inline.hpp"
    39 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    40 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
    41 #include "gc_implementation/g1/vm_operations_g1.hpp"
    42 #include "gc_implementation/shared/isGCActiveMark.hpp"
    43 #include "memory/gcLocker.inline.hpp"
    44 #include "memory/genOopClosures.inline.hpp"
    45 #include "memory/generationSpec.hpp"
    46 #include "memory/referenceProcessor.hpp"
    47 #include "oops/oop.inline.hpp"
    48 #include "oops/oop.pcgc.inline.hpp"
    49 #include "runtime/aprofiler.hpp"
    50 #include "runtime/vmThread.hpp"
    52 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
    54 // turn it on so that the contents of the young list (scan-only /
    55 // to-be-collected) are printed at "strategic" points before / during
    56 // / after the collection --- this is useful for debugging
    57 #define YOUNG_LIST_VERBOSE 0
    58 // CURRENT STATUS
    59 // This file is under construction.  Search for "FIXME".
    61 // INVARIANTS/NOTES
    62 //
    63 // All allocation activity covered by the G1CollectedHeap interface is
    64 // serialized by acquiring the HeapLock.  This happens in mem_allocate
    65 // and allocate_new_tlab, which are the "entry" points to the
    66 // allocation code from the rest of the JVM.  (Note that this does not
    67 // apply to TLAB allocation, which is not part of this interface: it
    68 // is done by clients of this interface.)
    70 // Notes on implementation of parallelism in different tasks.
    71 //
    72 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
    73 // The number of GC workers is passed to heap_region_par_iterate_chunked().
    74 // It does use run_task() which sets _n_workers in the task.
    75 // G1ParTask executes g1_process_strong_roots() ->
    76 // SharedHeap::process_strong_roots() which calls eventuall to
    77 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
    78 // SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
    79 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
    80 //
    82 // Local to this file.
    84 class RefineCardTableEntryClosure: public CardTableEntryClosure {
    85   SuspendibleThreadSet* _sts;
    86   G1RemSet* _g1rs;
    87   ConcurrentG1Refine* _cg1r;
    88   bool _concurrent;
    89 public:
    90   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
    91                               G1RemSet* g1rs,
    92                               ConcurrentG1Refine* cg1r) :
    93     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
    94   {}
    95   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    96     bool oops_into_cset = _g1rs->concurrentRefineOneCard(card_ptr, worker_i, false);
    97     // This path is executed by the concurrent refine or mutator threads,
    98     // concurrently, and so we do not care if card_ptr contains references
    99     // that point into the collection set.
   100     assert(!oops_into_cset, "should be");
   102     if (_concurrent && _sts->should_yield()) {
   103       // Caller will actually yield.
   104       return false;
   105     }
   106     // Otherwise, we finished successfully; return true.
   107     return true;
   108   }
   109   void set_concurrent(bool b) { _concurrent = b; }
   110 };
   113 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
   114   int _calls;
   115   G1CollectedHeap* _g1h;
   116   CardTableModRefBS* _ctbs;
   117   int _histo[256];
   118 public:
   119   ClearLoggedCardTableEntryClosure() :
   120     _calls(0)
   121   {
   122     _g1h = G1CollectedHeap::heap();
   123     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
   124     for (int i = 0; i < 256; i++) _histo[i] = 0;
   125   }
   126   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   127     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
   128       _calls++;
   129       unsigned char* ujb = (unsigned char*)card_ptr;
   130       int ind = (int)(*ujb);
   131       _histo[ind]++;
   132       *card_ptr = -1;
   133     }
   134     return true;
   135   }
   136   int calls() { return _calls; }
   137   void print_histo() {
   138     gclog_or_tty->print_cr("Card table value histogram:");
   139     for (int i = 0; i < 256; i++) {
   140       if (_histo[i] != 0) {
   141         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
   142       }
   143     }
   144   }
   145 };
   147 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
   148   int _calls;
   149   G1CollectedHeap* _g1h;
   150   CardTableModRefBS* _ctbs;
   151 public:
   152   RedirtyLoggedCardTableEntryClosure() :
   153     _calls(0)
   154   {
   155     _g1h = G1CollectedHeap::heap();
   156     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
   157   }
   158   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   159     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
   160       _calls++;
   161       *card_ptr = 0;
   162     }
   163     return true;
   164   }
   165   int calls() { return _calls; }
   166 };
   168 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
   169 public:
   170   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   171     *card_ptr = CardTableModRefBS::dirty_card_val();
   172     return true;
   173   }
   174 };
   176 YoungList::YoungList(G1CollectedHeap* g1h)
   177   : _g1h(g1h), _head(NULL),
   178     _length(0),
   179     _last_sampled_rs_lengths(0),
   180     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0)
   181 {
   182   guarantee( check_list_empty(false), "just making sure..." );
   183 }
   185 void YoungList::push_region(HeapRegion *hr) {
   186   assert(!hr->is_young(), "should not already be young");
   187   assert(hr->get_next_young_region() == NULL, "cause it should!");
   189   hr->set_next_young_region(_head);
   190   _head = hr;
   192   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
   193   ++_length;
   194 }
   196 void YoungList::add_survivor_region(HeapRegion* hr) {
   197   assert(hr->is_survivor(), "should be flagged as survivor region");
   198   assert(hr->get_next_young_region() == NULL, "cause it should!");
   200   hr->set_next_young_region(_survivor_head);
   201   if (_survivor_head == NULL) {
   202     _survivor_tail = hr;
   203   }
   204   _survivor_head = hr;
   205   ++_survivor_length;
   206 }
   208 void YoungList::empty_list(HeapRegion* list) {
   209   while (list != NULL) {
   210     HeapRegion* next = list->get_next_young_region();
   211     list->set_next_young_region(NULL);
   212     list->uninstall_surv_rate_group();
   213     list->set_not_young();
   214     list = next;
   215   }
   216 }
   218 void YoungList::empty_list() {
   219   assert(check_list_well_formed(), "young list should be well formed");
   221   empty_list(_head);
   222   _head = NULL;
   223   _length = 0;
   225   empty_list(_survivor_head);
   226   _survivor_head = NULL;
   227   _survivor_tail = NULL;
   228   _survivor_length = 0;
   230   _last_sampled_rs_lengths = 0;
   232   assert(check_list_empty(false), "just making sure...");
   233 }
   235 bool YoungList::check_list_well_formed() {
   236   bool ret = true;
   238   size_t length = 0;
   239   HeapRegion* curr = _head;
   240   HeapRegion* last = NULL;
   241   while (curr != NULL) {
   242     if (!curr->is_young()) {
   243       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
   244                              "incorrectly tagged (y: %d, surv: %d)",
   245                              curr->bottom(), curr->end(),
   246                              curr->is_young(), curr->is_survivor());
   247       ret = false;
   248     }
   249     ++length;
   250     last = curr;
   251     curr = curr->get_next_young_region();
   252   }
   253   ret = ret && (length == _length);
   255   if (!ret) {
   256     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
   257     gclog_or_tty->print_cr("###   list has %d entries, _length is %d",
   258                            length, _length);
   259   }
   261   return ret;
   262 }
   264 bool YoungList::check_list_empty(bool check_sample) {
   265   bool ret = true;
   267   if (_length != 0) {
   268     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %d",
   269                   _length);
   270     ret = false;
   271   }
   272   if (check_sample && _last_sampled_rs_lengths != 0) {
   273     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
   274     ret = false;
   275   }
   276   if (_head != NULL) {
   277     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
   278     ret = false;
   279   }
   280   if (!ret) {
   281     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
   282   }
   284   return ret;
   285 }
   287 void
   288 YoungList::rs_length_sampling_init() {
   289   _sampled_rs_lengths = 0;
   290   _curr               = _head;
   291 }
   293 bool
   294 YoungList::rs_length_sampling_more() {
   295   return _curr != NULL;
   296 }
   298 void
   299 YoungList::rs_length_sampling_next() {
   300   assert( _curr != NULL, "invariant" );
   301   size_t rs_length = _curr->rem_set()->occupied();
   303   _sampled_rs_lengths += rs_length;
   305   // The current region may not yet have been added to the
   306   // incremental collection set (it gets added when it is
   307   // retired as the current allocation region).
   308   if (_curr->in_collection_set()) {
   309     // Update the collection set policy information for this region
   310     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
   311   }
   313   _curr = _curr->get_next_young_region();
   314   if (_curr == NULL) {
   315     _last_sampled_rs_lengths = _sampled_rs_lengths;
   316     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
   317   }
   318 }
   320 void
   321 YoungList::reset_auxilary_lists() {
   322   guarantee( is_empty(), "young list should be empty" );
   323   assert(check_list_well_formed(), "young list should be well formed");
   325   // Add survivor regions to SurvRateGroup.
   326   _g1h->g1_policy()->note_start_adding_survivor_regions();
   327   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
   329   int young_index_in_cset = 0;
   330   for (HeapRegion* curr = _survivor_head;
   331        curr != NULL;
   332        curr = curr->get_next_young_region()) {
   333     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
   335     // The region is a non-empty survivor so let's add it to
   336     // the incremental collection set for the next evacuation
   337     // pause.
   338     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
   339     young_index_in_cset += 1;
   340   }
   341   assert((size_t) young_index_in_cset == _survivor_length,
   342          "post-condition");
   343   _g1h->g1_policy()->note_stop_adding_survivor_regions();
   345   _head   = _survivor_head;
   346   _length = _survivor_length;
   347   if (_survivor_head != NULL) {
   348     assert(_survivor_tail != NULL, "cause it shouldn't be");
   349     assert(_survivor_length > 0, "invariant");
   350     _survivor_tail->set_next_young_region(NULL);
   351   }
   353   // Don't clear the survivor list handles until the start of
   354   // the next evacuation pause - we need it in order to re-tag
   355   // the survivor regions from this evacuation pause as 'young'
   356   // at the start of the next.
   358   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
   360   assert(check_list_well_formed(), "young list should be well formed");
   361 }
   363 void YoungList::print() {
   364   HeapRegion* lists[] = {_head,   _survivor_head};
   365   const char* names[] = {"YOUNG", "SURVIVOR"};
   367   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
   368     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
   369     HeapRegion *curr = lists[list];
   370     if (curr == NULL)
   371       gclog_or_tty->print_cr("  empty");
   372     while (curr != NULL) {
   373       gclog_or_tty->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
   374                              "age: %4d, y: %d, surv: %d",
   375                              curr->bottom(), curr->end(),
   376                              curr->top(),
   377                              curr->prev_top_at_mark_start(),
   378                              curr->next_top_at_mark_start(),
   379                              curr->top_at_conc_mark_count(),
   380                              curr->age_in_surv_rate_group_cond(),
   381                              curr->is_young(),
   382                              curr->is_survivor());
   383       curr = curr->get_next_young_region();
   384     }
   385   }
   387   gclog_or_tty->print_cr("");
   388 }
   390 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
   391 {
   392   // Claim the right to put the region on the dirty cards region list
   393   // by installing a self pointer.
   394   HeapRegion* next = hr->get_next_dirty_cards_region();
   395   if (next == NULL) {
   396     HeapRegion* res = (HeapRegion*)
   397       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
   398                           NULL);
   399     if (res == NULL) {
   400       HeapRegion* head;
   401       do {
   402         // Put the region to the dirty cards region list.
   403         head = _dirty_cards_region_list;
   404         next = (HeapRegion*)
   405           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
   406         if (next == head) {
   407           assert(hr->get_next_dirty_cards_region() == hr,
   408                  "hr->get_next_dirty_cards_region() != hr");
   409           if (next == NULL) {
   410             // The last region in the list points to itself.
   411             hr->set_next_dirty_cards_region(hr);
   412           } else {
   413             hr->set_next_dirty_cards_region(next);
   414           }
   415         }
   416       } while (next != head);
   417     }
   418   }
   419 }
   421 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
   422 {
   423   HeapRegion* head;
   424   HeapRegion* hr;
   425   do {
   426     head = _dirty_cards_region_list;
   427     if (head == NULL) {
   428       return NULL;
   429     }
   430     HeapRegion* new_head = head->get_next_dirty_cards_region();
   431     if (head == new_head) {
   432       // The last region.
   433       new_head = NULL;
   434     }
   435     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
   436                                           head);
   437   } while (hr != head);
   438   assert(hr != NULL, "invariant");
   439   hr->set_next_dirty_cards_region(NULL);
   440   return hr;
   441 }
   443 void G1CollectedHeap::stop_conc_gc_threads() {
   444   _cg1r->stop();
   445   _cmThread->stop();
   446 }
   448 #ifdef ASSERT
   449 // A region is added to the collection set as it is retired
   450 // so an address p can point to a region which will be in the
   451 // collection set but has not yet been retired.  This method
   452 // therefore is only accurate during a GC pause after all
   453 // regions have been retired.  It is used for debugging
   454 // to check if an nmethod has references to objects that can
   455 // be move during a partial collection.  Though it can be
   456 // inaccurate, it is sufficient for G1 because the conservative
   457 // implementation of is_scavengable() for G1 will indicate that
   458 // all nmethods must be scanned during a partial collection.
   459 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
   460   HeapRegion* hr = heap_region_containing(p);
   461   return hr != NULL && hr->in_collection_set();
   462 }
   463 #endif
   465 // Returns true if the reference points to an object that
   466 // can move in an incremental collecction.
   467 bool G1CollectedHeap::is_scavengable(const void* p) {
   468   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   469   G1CollectorPolicy* g1p = g1h->g1_policy();
   470   HeapRegion* hr = heap_region_containing(p);
   471   if (hr == NULL) {
   472      // perm gen (or null)
   473      return false;
   474   } else {
   475     return !hr->isHumongous();
   476   }
   477 }
   479 void G1CollectedHeap::check_ct_logs_at_safepoint() {
   480   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
   481   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
   483   // Count the dirty cards at the start.
   484   CountNonCleanMemRegionClosure count1(this);
   485   ct_bs->mod_card_iterate(&count1);
   486   int orig_count = count1.n();
   488   // First clear the logged cards.
   489   ClearLoggedCardTableEntryClosure clear;
   490   dcqs.set_closure(&clear);
   491   dcqs.apply_closure_to_all_completed_buffers();
   492   dcqs.iterate_closure_all_threads(false);
   493   clear.print_histo();
   495   // Now ensure that there's no dirty cards.
   496   CountNonCleanMemRegionClosure count2(this);
   497   ct_bs->mod_card_iterate(&count2);
   498   if (count2.n() != 0) {
   499     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
   500                            count2.n(), orig_count);
   501   }
   502   guarantee(count2.n() == 0, "Card table should be clean.");
   504   RedirtyLoggedCardTableEntryClosure redirty;
   505   JavaThread::dirty_card_queue_set().set_closure(&redirty);
   506   dcqs.apply_closure_to_all_completed_buffers();
   507   dcqs.iterate_closure_all_threads(false);
   508   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
   509                          clear.calls(), orig_count);
   510   guarantee(redirty.calls() == clear.calls(),
   511             "Or else mechanism is broken.");
   513   CountNonCleanMemRegionClosure count3(this);
   514   ct_bs->mod_card_iterate(&count3);
   515   if (count3.n() != orig_count) {
   516     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
   517                            orig_count, count3.n());
   518     guarantee(count3.n() >= orig_count, "Should have restored them all.");
   519   }
   521   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
   522 }
   524 // Private class members.
   526 G1CollectedHeap* G1CollectedHeap::_g1h;
   528 // Private methods.
   530 HeapRegion*
   531 G1CollectedHeap::new_region_try_secondary_free_list() {
   532   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
   533   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
   534     if (!_secondary_free_list.is_empty()) {
   535       if (G1ConcRegionFreeingVerbose) {
   536         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   537                                "secondary_free_list has "SIZE_FORMAT" entries",
   538                                _secondary_free_list.length());
   539       }
   540       // It looks as if there are free regions available on the
   541       // secondary_free_list. Let's move them to the free_list and try
   542       // again to allocate from it.
   543       append_secondary_free_list();
   545       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
   546              "empty we should have moved at least one entry to the free_list");
   547       HeapRegion* res = _free_list.remove_head();
   548       if (G1ConcRegionFreeingVerbose) {
   549         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   550                                "allocated "HR_FORMAT" from secondary_free_list",
   551                                HR_FORMAT_PARAMS(res));
   552       }
   553       return res;
   554     }
   556     // Wait here until we get notifed either when (a) there are no
   557     // more free regions coming or (b) some regions have been moved on
   558     // the secondary_free_list.
   559     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
   560   }
   562   if (G1ConcRegionFreeingVerbose) {
   563     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   564                            "could not allocate from secondary_free_list");
   565   }
   566   return NULL;
   567 }
   569 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
   570   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
   571          "the only time we use this to allocate a humongous region is "
   572          "when we are allocating a single humongous region");
   574   HeapRegion* res;
   575   if (G1StressConcRegionFreeing) {
   576     if (!_secondary_free_list.is_empty()) {
   577       if (G1ConcRegionFreeingVerbose) {
   578         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   579                                "forced to look at the secondary_free_list");
   580       }
   581       res = new_region_try_secondary_free_list();
   582       if (res != NULL) {
   583         return res;
   584       }
   585     }
   586   }
   587   res = _free_list.remove_head_or_null();
   588   if (res == NULL) {
   589     if (G1ConcRegionFreeingVerbose) {
   590       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   591                              "res == NULL, trying the secondary_free_list");
   592     }
   593     res = new_region_try_secondary_free_list();
   594   }
   595   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
   596     // Currently, only attempts to allocate GC alloc regions set
   597     // do_expand to true. So, we should only reach here during a
   598     // safepoint. If this assumption changes we might have to
   599     // reconsider the use of _expand_heap_after_alloc_failure.
   600     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
   602     ergo_verbose1(ErgoHeapSizing,
   603                   "attempt heap expansion",
   604                   ergo_format_reason("region allocation request failed")
   605                   ergo_format_byte("allocation request"),
   606                   word_size * HeapWordSize);
   607     if (expand(word_size * HeapWordSize)) {
   608       // Given that expand() succeeded in expanding the heap, and we
   609       // always expand the heap by an amount aligned to the heap
   610       // region size, the free list should in theory not be empty. So
   611       // it would probably be OK to use remove_head(). But the extra
   612       // check for NULL is unlikely to be a performance issue here (we
   613       // just expanded the heap!) so let's just be conservative and
   614       // use remove_head_or_null().
   615       res = _free_list.remove_head_or_null();
   616     } else {
   617       _expand_heap_after_alloc_failure = false;
   618     }
   619   }
   620   return res;
   621 }
   623 size_t G1CollectedHeap::humongous_obj_allocate_find_first(size_t num_regions,
   624                                                           size_t word_size) {
   625   assert(isHumongous(word_size), "word_size should be humongous");
   626   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
   628   size_t first = G1_NULL_HRS_INDEX;
   629   if (num_regions == 1) {
   630     // Only one region to allocate, no need to go through the slower
   631     // path. The caller will attempt the expasion if this fails, so
   632     // let's not try to expand here too.
   633     HeapRegion* hr = new_region(word_size, false /* do_expand */);
   634     if (hr != NULL) {
   635       first = hr->hrs_index();
   636     } else {
   637       first = G1_NULL_HRS_INDEX;
   638     }
   639   } else {
   640     // We can't allocate humongous regions while cleanupComplete() is
   641     // running, since some of the regions we find to be empty might not
   642     // yet be added to the free list and it is not straightforward to
   643     // know which list they are on so that we can remove them. Note
   644     // that we only need to do this if we need to allocate more than
   645     // one region to satisfy the current humongous allocation
   646     // request. If we are only allocating one region we use the common
   647     // region allocation code (see above).
   648     wait_while_free_regions_coming();
   649     append_secondary_free_list_if_not_empty_with_lock();
   651     if (free_regions() >= num_regions) {
   652       first = _hrs.find_contiguous(num_regions);
   653       if (first != G1_NULL_HRS_INDEX) {
   654         for (size_t i = first; i < first + num_regions; ++i) {
   655           HeapRegion* hr = region_at(i);
   656           assert(hr->is_empty(), "sanity");
   657           assert(is_on_master_free_list(hr), "sanity");
   658           hr->set_pending_removal(true);
   659         }
   660         _free_list.remove_all_pending(num_regions);
   661       }
   662     }
   663   }
   664   return first;
   665 }
   667 HeapWord*
   668 G1CollectedHeap::humongous_obj_allocate_initialize_regions(size_t first,
   669                                                            size_t num_regions,
   670                                                            size_t word_size) {
   671   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
   672   assert(isHumongous(word_size), "word_size should be humongous");
   673   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
   675   // Index of last region in the series + 1.
   676   size_t last = first + num_regions;
   678   // We need to initialize the region(s) we just discovered. This is
   679   // a bit tricky given that it can happen concurrently with
   680   // refinement threads refining cards on these regions and
   681   // potentially wanting to refine the BOT as they are scanning
   682   // those cards (this can happen shortly after a cleanup; see CR
   683   // 6991377). So we have to set up the region(s) carefully and in
   684   // a specific order.
   686   // The word size sum of all the regions we will allocate.
   687   size_t word_size_sum = num_regions * HeapRegion::GrainWords;
   688   assert(word_size <= word_size_sum, "sanity");
   690   // This will be the "starts humongous" region.
   691   HeapRegion* first_hr = region_at(first);
   692   // The header of the new object will be placed at the bottom of
   693   // the first region.
   694   HeapWord* new_obj = first_hr->bottom();
   695   // This will be the new end of the first region in the series that
   696   // should also match the end of the last region in the seriers.
   697   HeapWord* new_end = new_obj + word_size_sum;
   698   // This will be the new top of the first region that will reflect
   699   // this allocation.
   700   HeapWord* new_top = new_obj + word_size;
   702   // First, we need to zero the header of the space that we will be
   703   // allocating. When we update top further down, some refinement
   704   // threads might try to scan the region. By zeroing the header we
   705   // ensure that any thread that will try to scan the region will
   706   // come across the zero klass word and bail out.
   707   //
   708   // NOTE: It would not have been correct to have used
   709   // CollectedHeap::fill_with_object() and make the space look like
   710   // an int array. The thread that is doing the allocation will
   711   // later update the object header to a potentially different array
   712   // type and, for a very short period of time, the klass and length
   713   // fields will be inconsistent. This could cause a refinement
   714   // thread to calculate the object size incorrectly.
   715   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
   717   // We will set up the first region as "starts humongous". This
   718   // will also update the BOT covering all the regions to reflect
   719   // that there is a single object that starts at the bottom of the
   720   // first region.
   721   first_hr->set_startsHumongous(new_top, new_end);
   723   // Then, if there are any, we will set up the "continues
   724   // humongous" regions.
   725   HeapRegion* hr = NULL;
   726   for (size_t i = first + 1; i < last; ++i) {
   727     hr = region_at(i);
   728     hr->set_continuesHumongous(first_hr);
   729   }
   730   // If we have "continues humongous" regions (hr != NULL), then the
   731   // end of the last one should match new_end.
   732   assert(hr == NULL || hr->end() == new_end, "sanity");
   734   // Up to this point no concurrent thread would have been able to
   735   // do any scanning on any region in this series. All the top
   736   // fields still point to bottom, so the intersection between
   737   // [bottom,top] and [card_start,card_end] will be empty. Before we
   738   // update the top fields, we'll do a storestore to make sure that
   739   // no thread sees the update to top before the zeroing of the
   740   // object header and the BOT initialization.
   741   OrderAccess::storestore();
   743   // Now that the BOT and the object header have been initialized,
   744   // we can update top of the "starts humongous" region.
   745   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
   746          "new_top should be in this region");
   747   first_hr->set_top(new_top);
   748   if (_hr_printer.is_active()) {
   749     HeapWord* bottom = first_hr->bottom();
   750     HeapWord* end = first_hr->orig_end();
   751     if ((first + 1) == last) {
   752       // the series has a single humongous region
   753       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
   754     } else {
   755       // the series has more than one humongous regions
   756       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
   757     }
   758   }
   760   // Now, we will update the top fields of the "continues humongous"
   761   // regions. The reason we need to do this is that, otherwise,
   762   // these regions would look empty and this will confuse parts of
   763   // G1. For example, the code that looks for a consecutive number
   764   // of empty regions will consider them empty and try to
   765   // re-allocate them. We can extend is_empty() to also include
   766   // !continuesHumongous(), but it is easier to just update the top
   767   // fields here. The way we set top for all regions (i.e., top ==
   768   // end for all regions but the last one, top == new_top for the
   769   // last one) is actually used when we will free up the humongous
   770   // region in free_humongous_region().
   771   hr = NULL;
   772   for (size_t i = first + 1; i < last; ++i) {
   773     hr = region_at(i);
   774     if ((i + 1) == last) {
   775       // last continues humongous region
   776       assert(hr->bottom() < new_top && new_top <= hr->end(),
   777              "new_top should fall on this region");
   778       hr->set_top(new_top);
   779       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
   780     } else {
   781       // not last one
   782       assert(new_top > hr->end(), "new_top should be above this region");
   783       hr->set_top(hr->end());
   784       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
   785     }
   786   }
   787   // If we have continues humongous regions (hr != NULL), then the
   788   // end of the last one should match new_end and its top should
   789   // match new_top.
   790   assert(hr == NULL ||
   791          (hr->end() == new_end && hr->top() == new_top), "sanity");
   793   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
   794   _summary_bytes_used += first_hr->used();
   795   _humongous_set.add(first_hr);
   797   return new_obj;
   798 }
   800 // If could fit into free regions w/o expansion, try.
   801 // Otherwise, if can expand, do so.
   802 // Otherwise, if using ex regions might help, try with ex given back.
   803 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
   804   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
   806   verify_region_sets_optional();
   808   size_t num_regions =
   809          round_to(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
   810   size_t x_size = expansion_regions();
   811   size_t fs = _hrs.free_suffix();
   812   size_t first = humongous_obj_allocate_find_first(num_regions, word_size);
   813   if (first == G1_NULL_HRS_INDEX) {
   814     // The only thing we can do now is attempt expansion.
   815     if (fs + x_size >= num_regions) {
   816       // If the number of regions we're trying to allocate for this
   817       // object is at most the number of regions in the free suffix,
   818       // then the call to humongous_obj_allocate_find_first() above
   819       // should have succeeded and we wouldn't be here.
   820       //
   821       // We should only be trying to expand when the free suffix is
   822       // not sufficient for the object _and_ we have some expansion
   823       // room available.
   824       assert(num_regions > fs, "earlier allocation should have succeeded");
   826       ergo_verbose1(ErgoHeapSizing,
   827                     "attempt heap expansion",
   828                     ergo_format_reason("humongous allocation request failed")
   829                     ergo_format_byte("allocation request"),
   830                     word_size * HeapWordSize);
   831       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
   832         // Even though the heap was expanded, it might not have
   833         // reached the desired size. So, we cannot assume that the
   834         // allocation will succeed.
   835         first = humongous_obj_allocate_find_first(num_regions, word_size);
   836       }
   837     }
   838   }
   840   HeapWord* result = NULL;
   841   if (first != G1_NULL_HRS_INDEX) {
   842     result =
   843       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
   844     assert(result != NULL, "it should always return a valid result");
   846     // A successful humongous object allocation changes the used space
   847     // information of the old generation so we need to recalculate the
   848     // sizes and update the jstat counters here.
   849     g1mm()->update_sizes();
   850   }
   852   verify_region_sets_optional();
   854   return result;
   855 }
   857 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
   858   assert_heap_not_locked_and_not_at_safepoint();
   859   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
   861   unsigned int dummy_gc_count_before;
   862   return attempt_allocation(word_size, &dummy_gc_count_before);
   863 }
   865 HeapWord*
   866 G1CollectedHeap::mem_allocate(size_t word_size,
   867                               bool*  gc_overhead_limit_was_exceeded) {
   868   assert_heap_not_locked_and_not_at_safepoint();
   870   // Loop until the allocation is satisified, or unsatisfied after GC.
   871   for (int try_count = 1; /* we'll return */; try_count += 1) {
   872     unsigned int gc_count_before;
   874     HeapWord* result = NULL;
   875     if (!isHumongous(word_size)) {
   876       result = attempt_allocation(word_size, &gc_count_before);
   877     } else {
   878       result = attempt_allocation_humongous(word_size, &gc_count_before);
   879     }
   880     if (result != NULL) {
   881       return result;
   882     }
   884     // Create the garbage collection operation...
   885     VM_G1CollectForAllocation op(gc_count_before, word_size);
   886     // ...and get the VM thread to execute it.
   887     VMThread::execute(&op);
   889     if (op.prologue_succeeded() && op.pause_succeeded()) {
   890       // If the operation was successful we'll return the result even
   891       // if it is NULL. If the allocation attempt failed immediately
   892       // after a Full GC, it's unlikely we'll be able to allocate now.
   893       HeapWord* result = op.result();
   894       if (result != NULL && !isHumongous(word_size)) {
   895         // Allocations that take place on VM operations do not do any
   896         // card dirtying and we have to do it here. We only have to do
   897         // this for non-humongous allocations, though.
   898         dirty_young_block(result, word_size);
   899       }
   900       return result;
   901     } else {
   902       assert(op.result() == NULL,
   903              "the result should be NULL if the VM op did not succeed");
   904     }
   906     // Give a warning if we seem to be looping forever.
   907     if ((QueuedAllocationWarningCount > 0) &&
   908         (try_count % QueuedAllocationWarningCount == 0)) {
   909       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
   910     }
   911   }
   913   ShouldNotReachHere();
   914   return NULL;
   915 }
   917 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
   918                                            unsigned int *gc_count_before_ret) {
   919   // Make sure you read the note in attempt_allocation_humongous().
   921   assert_heap_not_locked_and_not_at_safepoint();
   922   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
   923          "be called for humongous allocation requests");
   925   // We should only get here after the first-level allocation attempt
   926   // (attempt_allocation()) failed to allocate.
   928   // We will loop until a) we manage to successfully perform the
   929   // allocation or b) we successfully schedule a collection which
   930   // fails to perform the allocation. b) is the only case when we'll
   931   // return NULL.
   932   HeapWord* result = NULL;
   933   for (int try_count = 1; /* we'll return */; try_count += 1) {
   934     bool should_try_gc;
   935     unsigned int gc_count_before;
   937     {
   938       MutexLockerEx x(Heap_lock);
   940       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
   941                                                       false /* bot_updates */);
   942       if (result != NULL) {
   943         return result;
   944       }
   946       // If we reach here, attempt_allocation_locked() above failed to
   947       // allocate a new region. So the mutator alloc region should be NULL.
   948       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
   950       if (GC_locker::is_active_and_needs_gc()) {
   951         if (g1_policy()->can_expand_young_list()) {
   952           // No need for an ergo verbose message here,
   953           // can_expand_young_list() does this when it returns true.
   954           result = _mutator_alloc_region.attempt_allocation_force(word_size,
   955                                                       false /* bot_updates */);
   956           if (result != NULL) {
   957             return result;
   958           }
   959         }
   960         should_try_gc = false;
   961       } else {
   962         // Read the GC count while still holding the Heap_lock.
   963         gc_count_before = SharedHeap::heap()->total_collections();
   964         should_try_gc = true;
   965       }
   966     }
   968     if (should_try_gc) {
   969       bool succeeded;
   970       result = do_collection_pause(word_size, gc_count_before, &succeeded);
   971       if (result != NULL) {
   972         assert(succeeded, "only way to get back a non-NULL result");
   973         return result;
   974       }
   976       if (succeeded) {
   977         // If we get here we successfully scheduled a collection which
   978         // failed to allocate. No point in trying to allocate
   979         // further. We'll just return NULL.
   980         MutexLockerEx x(Heap_lock);
   981         *gc_count_before_ret = SharedHeap::heap()->total_collections();
   982         return NULL;
   983       }
   984     } else {
   985       GC_locker::stall_until_clear();
   986     }
   988     // We can reach here if we were unsuccessul in scheduling a
   989     // collection (because another thread beat us to it) or if we were
   990     // stalled due to the GC locker. In either can we should retry the
   991     // allocation attempt in case another thread successfully
   992     // performed a collection and reclaimed enough space. We do the
   993     // first attempt (without holding the Heap_lock) here and the
   994     // follow-on attempt will be at the start of the next loop
   995     // iteration (after taking the Heap_lock).
   996     result = _mutator_alloc_region.attempt_allocation(word_size,
   997                                                       false /* bot_updates */);
   998     if (result != NULL ){
   999       return result;
  1002     // Give a warning if we seem to be looping forever.
  1003     if ((QueuedAllocationWarningCount > 0) &&
  1004         (try_count % QueuedAllocationWarningCount == 0)) {
  1005       warning("G1CollectedHeap::attempt_allocation_slow() "
  1006               "retries %d times", try_count);
  1010   ShouldNotReachHere();
  1011   return NULL;
  1014 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
  1015                                           unsigned int * gc_count_before_ret) {
  1016   // The structure of this method has a lot of similarities to
  1017   // attempt_allocation_slow(). The reason these two were not merged
  1018   // into a single one is that such a method would require several "if
  1019   // allocation is not humongous do this, otherwise do that"
  1020   // conditional paths which would obscure its flow. In fact, an early
  1021   // version of this code did use a unified method which was harder to
  1022   // follow and, as a result, it had subtle bugs that were hard to
  1023   // track down. So keeping these two methods separate allows each to
  1024   // be more readable. It will be good to keep these two in sync as
  1025   // much as possible.
  1027   assert_heap_not_locked_and_not_at_safepoint();
  1028   assert(isHumongous(word_size), "attempt_allocation_humongous() "
  1029          "should only be called for humongous allocations");
  1031   // We will loop until a) we manage to successfully perform the
  1032   // allocation or b) we successfully schedule a collection which
  1033   // fails to perform the allocation. b) is the only case when we'll
  1034   // return NULL.
  1035   HeapWord* result = NULL;
  1036   for (int try_count = 1; /* we'll return */; try_count += 1) {
  1037     bool should_try_gc;
  1038     unsigned int gc_count_before;
  1041       MutexLockerEx x(Heap_lock);
  1043       // Given that humongous objects are not allocated in young
  1044       // regions, we'll first try to do the allocation without doing a
  1045       // collection hoping that there's enough space in the heap.
  1046       result = humongous_obj_allocate(word_size);
  1047       if (result != NULL) {
  1048         return result;
  1051       if (GC_locker::is_active_and_needs_gc()) {
  1052         should_try_gc = false;
  1053       } else {
  1054         // Read the GC count while still holding the Heap_lock.
  1055         gc_count_before = SharedHeap::heap()->total_collections();
  1056         should_try_gc = true;
  1060     if (should_try_gc) {
  1061       // If we failed to allocate the humongous object, we should try to
  1062       // do a collection pause (if we're allowed) in case it reclaims
  1063       // enough space for the allocation to succeed after the pause.
  1065       bool succeeded;
  1066       result = do_collection_pause(word_size, gc_count_before, &succeeded);
  1067       if (result != NULL) {
  1068         assert(succeeded, "only way to get back a non-NULL result");
  1069         return result;
  1072       if (succeeded) {
  1073         // If we get here we successfully scheduled a collection which
  1074         // failed to allocate. No point in trying to allocate
  1075         // further. We'll just return NULL.
  1076         MutexLockerEx x(Heap_lock);
  1077         *gc_count_before_ret = SharedHeap::heap()->total_collections();
  1078         return NULL;
  1080     } else {
  1081       GC_locker::stall_until_clear();
  1084     // We can reach here if we were unsuccessul in scheduling a
  1085     // collection (because another thread beat us to it) or if we were
  1086     // stalled due to the GC locker. In either can we should retry the
  1087     // allocation attempt in case another thread successfully
  1088     // performed a collection and reclaimed enough space.  Give a
  1089     // warning if we seem to be looping forever.
  1091     if ((QueuedAllocationWarningCount > 0) &&
  1092         (try_count % QueuedAllocationWarningCount == 0)) {
  1093       warning("G1CollectedHeap::attempt_allocation_humongous() "
  1094               "retries %d times", try_count);
  1098   ShouldNotReachHere();
  1099   return NULL;
  1102 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
  1103                                        bool expect_null_mutator_alloc_region) {
  1104   assert_at_safepoint(true /* should_be_vm_thread */);
  1105   assert(_mutator_alloc_region.get() == NULL ||
  1106                                              !expect_null_mutator_alloc_region,
  1107          "the current alloc region was unexpectedly found to be non-NULL");
  1109   if (!isHumongous(word_size)) {
  1110     return _mutator_alloc_region.attempt_allocation_locked(word_size,
  1111                                                       false /* bot_updates */);
  1112   } else {
  1113     return humongous_obj_allocate(word_size);
  1116   ShouldNotReachHere();
  1119 class PostMCRemSetClearClosure: public HeapRegionClosure {
  1120   ModRefBarrierSet* _mr_bs;
  1121 public:
  1122   PostMCRemSetClearClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
  1123   bool doHeapRegion(HeapRegion* r) {
  1124     r->reset_gc_time_stamp();
  1125     if (r->continuesHumongous())
  1126       return false;
  1127     HeapRegionRemSet* hrrs = r->rem_set();
  1128     if (hrrs != NULL) hrrs->clear();
  1129     // You might think here that we could clear just the cards
  1130     // corresponding to the used region.  But no: if we leave a dirty card
  1131     // in a region we might allocate into, then it would prevent that card
  1132     // from being enqueued, and cause it to be missed.
  1133     // Re: the performance cost: we shouldn't be doing full GC anyway!
  1134     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
  1135     return false;
  1137 };
  1140 class PostMCRemSetInvalidateClosure: public HeapRegionClosure {
  1141   ModRefBarrierSet* _mr_bs;
  1142 public:
  1143   PostMCRemSetInvalidateClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
  1144   bool doHeapRegion(HeapRegion* r) {
  1145     if (r->continuesHumongous()) return false;
  1146     if (r->used_region().word_size() != 0) {
  1147       _mr_bs->invalidate(r->used_region(), true /*whole heap*/);
  1149     return false;
  1151 };
  1153 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
  1154   G1CollectedHeap*   _g1h;
  1155   UpdateRSOopClosure _cl;
  1156   int                _worker_i;
  1157 public:
  1158   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
  1159     _cl(g1->g1_rem_set(), worker_i),
  1160     _worker_i(worker_i),
  1161     _g1h(g1)
  1162   { }
  1164   bool doHeapRegion(HeapRegion* r) {
  1165     if (!r->continuesHumongous()) {
  1166       _cl.set_from(r);
  1167       r->oop_iterate(&_cl);
  1169     return false;
  1171 };
  1173 class ParRebuildRSTask: public AbstractGangTask {
  1174   G1CollectedHeap* _g1;
  1175 public:
  1176   ParRebuildRSTask(G1CollectedHeap* g1)
  1177     : AbstractGangTask("ParRebuildRSTask"),
  1178       _g1(g1)
  1179   { }
  1181   void work(uint worker_id) {
  1182     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
  1183     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
  1184                                           _g1->workers()->active_workers(),
  1185                                          HeapRegion::RebuildRSClaimValue);
  1187 };
  1189 class PostCompactionPrinterClosure: public HeapRegionClosure {
  1190 private:
  1191   G1HRPrinter* _hr_printer;
  1192 public:
  1193   bool doHeapRegion(HeapRegion* hr) {
  1194     assert(!hr->is_young(), "not expecting to find young regions");
  1195     // We only generate output for non-empty regions.
  1196     if (!hr->is_empty()) {
  1197       if (!hr->isHumongous()) {
  1198         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
  1199       } else if (hr->startsHumongous()) {
  1200         if (hr->capacity() == HeapRegion::GrainBytes) {
  1201           // single humongous region
  1202           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
  1203         } else {
  1204           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
  1206       } else {
  1207         assert(hr->continuesHumongous(), "only way to get here");
  1208         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
  1211     return false;
  1214   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
  1215     : _hr_printer(hr_printer) { }
  1216 };
  1218 bool G1CollectedHeap::do_collection(bool explicit_gc,
  1219                                     bool clear_all_soft_refs,
  1220                                     size_t word_size) {
  1221   assert_at_safepoint(true /* should_be_vm_thread */);
  1223   if (GC_locker::check_active_before_gc()) {
  1224     return false;
  1227   SvcGCMarker sgcm(SvcGCMarker::FULL);
  1228   ResourceMark rm;
  1230   if (PrintHeapAtGC) {
  1231     Universe::print_heap_before_gc();
  1234   HRSPhaseSetter x(HRSPhaseFullGC);
  1235   verify_region_sets_optional();
  1237   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
  1238                            collector_policy()->should_clear_all_soft_refs();
  1240   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
  1243     IsGCActiveMark x;
  1245     // Timing
  1246     bool system_gc = (gc_cause() == GCCause::_java_lang_system_gc);
  1247     assert(!system_gc || explicit_gc, "invariant");
  1248     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
  1249     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  1250     TraceTime t(system_gc ? "Full GC (System.gc())" : "Full GC",
  1251                 PrintGC, true, gclog_or_tty);
  1253     TraceCollectorStats tcs(g1mm()->full_collection_counters());
  1254     TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
  1256     double start = os::elapsedTime();
  1257     g1_policy()->record_full_collection_start();
  1259     wait_while_free_regions_coming();
  1260     append_secondary_free_list_if_not_empty_with_lock();
  1262     gc_prologue(true);
  1263     increment_total_collections(true /* full gc */);
  1265     size_t g1h_prev_used = used();
  1266     assert(used() == recalculate_used(), "Should be equal");
  1268     if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
  1269       HandleMark hm;  // Discard invalid handles created during verification
  1270       gclog_or_tty->print(" VerifyBeforeGC:");
  1271       prepare_for_verify();
  1272       Universe::verify(/* allow dirty */ true,
  1273                        /* silent      */ false,
  1274                        /* option      */ VerifyOption_G1UsePrevMarking);
  1277     pre_full_gc_dump();
  1279     COMPILER2_PRESENT(DerivedPointerTable::clear());
  1281     // Disable discovery and empty the discovered lists
  1282     // for the CM ref processor.
  1283     ref_processor_cm()->disable_discovery();
  1284     ref_processor_cm()->abandon_partial_discovery();
  1285     ref_processor_cm()->verify_no_references_recorded();
  1287     // Abandon current iterations of concurrent marking and concurrent
  1288     // refinement, if any are in progress.
  1289     concurrent_mark()->abort();
  1291     // Make sure we'll choose a new allocation region afterwards.
  1292     release_mutator_alloc_region();
  1293     abandon_gc_alloc_regions();
  1294     g1_rem_set()->cleanupHRRS();
  1296     // We should call this after we retire any currently active alloc
  1297     // regions so that all the ALLOC / RETIRE events are generated
  1298     // before the start GC event.
  1299     _hr_printer.start_gc(true /* full */, (size_t) total_collections());
  1301     // We may have added regions to the current incremental collection
  1302     // set between the last GC or pause and now. We need to clear the
  1303     // incremental collection set and then start rebuilding it afresh
  1304     // after this full GC.
  1305     abandon_collection_set(g1_policy()->inc_cset_head());
  1306     g1_policy()->clear_incremental_cset();
  1307     g1_policy()->stop_incremental_cset_building();
  1309     tear_down_region_sets(false /* free_list_only */);
  1310     g1_policy()->set_gcs_are_young(true);
  1312     // See the comments in g1CollectedHeap.hpp and
  1313     // G1CollectedHeap::ref_processing_init() about
  1314     // how reference processing currently works in G1.
  1316     // Temporarily make discovery by the STW ref processor single threaded (non-MT).
  1317     ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
  1319     // Temporarily clear the STW ref processor's _is_alive_non_header field.
  1320     ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
  1322     ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
  1323     ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
  1325     // Do collection work
  1327       HandleMark hm;  // Discard invalid handles created during gc
  1328       G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
  1331     assert(free_regions() == 0, "we should not have added any free regions");
  1332     rebuild_region_sets(false /* free_list_only */);
  1334     // Enqueue any discovered reference objects that have
  1335     // not been removed from the discovered lists.
  1336     ref_processor_stw()->enqueue_discovered_references();
  1338     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  1340     MemoryService::track_memory_usage();
  1342     if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
  1343       HandleMark hm;  // Discard invalid handles created during verification
  1344       gclog_or_tty->print(" VerifyAfterGC:");
  1345       prepare_for_verify();
  1346       Universe::verify(/* allow dirty */ false,
  1347                        /* silent      */ false,
  1348                        /* option      */ VerifyOption_G1UsePrevMarking);
  1352     assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
  1353     ref_processor_stw()->verify_no_references_recorded();
  1355     // Note: since we've just done a full GC, concurrent
  1356     // marking is no longer active. Therefore we need not
  1357     // re-enable reference discovery for the CM ref processor.
  1358     // That will be done at the start of the next marking cycle.
  1359     assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
  1360     ref_processor_cm()->verify_no_references_recorded();
  1362     reset_gc_time_stamp();
  1363     // Since everything potentially moved, we will clear all remembered
  1364     // sets, and clear all cards.  Later we will rebuild remebered
  1365     // sets. We will also reset the GC time stamps of the regions.
  1366     PostMCRemSetClearClosure rs_clear(mr_bs());
  1367     heap_region_iterate(&rs_clear);
  1369     // Resize the heap if necessary.
  1370     resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
  1372     if (_hr_printer.is_active()) {
  1373       // We should do this after we potentially resize the heap so
  1374       // that all the COMMIT / UNCOMMIT events are generated before
  1375       // the end GC event.
  1377       PostCompactionPrinterClosure cl(hr_printer());
  1378       heap_region_iterate(&cl);
  1380       _hr_printer.end_gc(true /* full */, (size_t) total_collections());
  1383     if (_cg1r->use_cache()) {
  1384       _cg1r->clear_and_record_card_counts();
  1385       _cg1r->clear_hot_cache();
  1388     // Rebuild remembered sets of all regions.
  1389     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1390       uint n_workers =
  1391         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
  1392                                        workers()->active_workers(),
  1393                                        Threads::number_of_non_daemon_threads());
  1394       assert(UseDynamicNumberOfGCThreads ||
  1395              n_workers == workers()->total_workers(),
  1396              "If not dynamic should be using all the  workers");
  1397       workers()->set_active_workers(n_workers);
  1398       // Set parallel threads in the heap (_n_par_threads) only
  1399       // before a parallel phase and always reset it to 0 after
  1400       // the phase so that the number of parallel threads does
  1401       // no get carried forward to a serial phase where there
  1402       // may be code that is "possibly_parallel".
  1403       set_par_threads(n_workers);
  1405       ParRebuildRSTask rebuild_rs_task(this);
  1406       assert(check_heap_region_claim_values(
  1407              HeapRegion::InitialClaimValue), "sanity check");
  1408       assert(UseDynamicNumberOfGCThreads ||
  1409              workers()->active_workers() == workers()->total_workers(),
  1410         "Unless dynamic should use total workers");
  1411       // Use the most recent number of  active workers
  1412       assert(workers()->active_workers() > 0,
  1413         "Active workers not properly set");
  1414       set_par_threads(workers()->active_workers());
  1415       workers()->run_task(&rebuild_rs_task);
  1416       set_par_threads(0);
  1417       assert(check_heap_region_claim_values(
  1418              HeapRegion::RebuildRSClaimValue), "sanity check");
  1419       reset_heap_region_claim_values();
  1420     } else {
  1421       RebuildRSOutOfRegionClosure rebuild_rs(this);
  1422       heap_region_iterate(&rebuild_rs);
  1425     if (PrintGC) {
  1426       print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
  1429     if (true) { // FIXME
  1430       // Ask the permanent generation to adjust size for full collections
  1431       perm()->compute_new_size();
  1434     // Start a new incremental collection set for the next pause
  1435     assert(g1_policy()->collection_set() == NULL, "must be");
  1436     g1_policy()->start_incremental_cset_building();
  1438     // Clear the _cset_fast_test bitmap in anticipation of adding
  1439     // regions to the incremental collection set for the next
  1440     // evacuation pause.
  1441     clear_cset_fast_test();
  1443     init_mutator_alloc_region();
  1445     double end = os::elapsedTime();
  1446     g1_policy()->record_full_collection_end();
  1448 #ifdef TRACESPINNING
  1449     ParallelTaskTerminator::print_termination_counts();
  1450 #endif
  1452     gc_epilogue(true);
  1454     // Discard all rset updates
  1455     JavaThread::dirty_card_queue_set().abandon_logs();
  1456     assert(!G1DeferredRSUpdate
  1457            || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
  1460   _young_list->reset_sampled_info();
  1461   // At this point there should be no regions in the
  1462   // entire heap tagged as young.
  1463   assert( check_young_list_empty(true /* check_heap */),
  1464     "young list should be empty at this point");
  1466   // Update the number of full collections that have been completed.
  1467   increment_full_collections_completed(false /* concurrent */);
  1469   _hrs.verify_optional();
  1470   verify_region_sets_optional();
  1472   if (PrintHeapAtGC) {
  1473     Universe::print_heap_after_gc();
  1475   g1mm()->update_sizes();
  1476   post_full_gc_dump();
  1478   return true;
  1481 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
  1482   // do_collection() will return whether it succeeded in performing
  1483   // the GC. Currently, there is no facility on the
  1484   // do_full_collection() API to notify the caller than the collection
  1485   // did not succeed (e.g., because it was locked out by the GC
  1486   // locker). So, right now, we'll ignore the return value.
  1487   bool dummy = do_collection(true,                /* explicit_gc */
  1488                              clear_all_soft_refs,
  1489                              0                    /* word_size */);
  1492 // This code is mostly copied from TenuredGeneration.
  1493 void
  1494 G1CollectedHeap::
  1495 resize_if_necessary_after_full_collection(size_t word_size) {
  1496   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
  1498   // Include the current allocation, if any, and bytes that will be
  1499   // pre-allocated to support collections, as "used".
  1500   const size_t used_after_gc = used();
  1501   const size_t capacity_after_gc = capacity();
  1502   const size_t free_after_gc = capacity_after_gc - used_after_gc;
  1504   // This is enforced in arguments.cpp.
  1505   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
  1506          "otherwise the code below doesn't make sense");
  1508   // We don't have floating point command-line arguments
  1509   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
  1510   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
  1511   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
  1512   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
  1514   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
  1515   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
  1517   // We have to be careful here as these two calculations can overflow
  1518   // 32-bit size_t's.
  1519   double used_after_gc_d = (double) used_after_gc;
  1520   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
  1521   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
  1523   // Let's make sure that they are both under the max heap size, which
  1524   // by default will make them fit into a size_t.
  1525   double desired_capacity_upper_bound = (double) max_heap_size;
  1526   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
  1527                                     desired_capacity_upper_bound);
  1528   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
  1529                                     desired_capacity_upper_bound);
  1531   // We can now safely turn them into size_t's.
  1532   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
  1533   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
  1535   // This assert only makes sense here, before we adjust them
  1536   // with respect to the min and max heap size.
  1537   assert(minimum_desired_capacity <= maximum_desired_capacity,
  1538          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
  1539                  "maximum_desired_capacity = "SIZE_FORMAT,
  1540                  minimum_desired_capacity, maximum_desired_capacity));
  1542   // Should not be greater than the heap max size. No need to adjust
  1543   // it with respect to the heap min size as it's a lower bound (i.e.,
  1544   // we'll try to make the capacity larger than it, not smaller).
  1545   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
  1546   // Should not be less than the heap min size. No need to adjust it
  1547   // with respect to the heap max size as it's an upper bound (i.e.,
  1548   // we'll try to make the capacity smaller than it, not greater).
  1549   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
  1551   if (capacity_after_gc < minimum_desired_capacity) {
  1552     // Don't expand unless it's significant
  1553     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
  1554     ergo_verbose4(ErgoHeapSizing,
  1555                   "attempt heap expansion",
  1556                   ergo_format_reason("capacity lower than "
  1557                                      "min desired capacity after Full GC")
  1558                   ergo_format_byte("capacity")
  1559                   ergo_format_byte("occupancy")
  1560                   ergo_format_byte_perc("min desired capacity"),
  1561                   capacity_after_gc, used_after_gc,
  1562                   minimum_desired_capacity, (double) MinHeapFreeRatio);
  1563     expand(expand_bytes);
  1565     // No expansion, now see if we want to shrink
  1566   } else if (capacity_after_gc > maximum_desired_capacity) {
  1567     // Capacity too large, compute shrinking size
  1568     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
  1569     ergo_verbose4(ErgoHeapSizing,
  1570                   "attempt heap shrinking",
  1571                   ergo_format_reason("capacity higher than "
  1572                                      "max desired capacity after Full GC")
  1573                   ergo_format_byte("capacity")
  1574                   ergo_format_byte("occupancy")
  1575                   ergo_format_byte_perc("max desired capacity"),
  1576                   capacity_after_gc, used_after_gc,
  1577                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
  1578     shrink(shrink_bytes);
  1583 HeapWord*
  1584 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
  1585                                            bool* succeeded) {
  1586   assert_at_safepoint(true /* should_be_vm_thread */);
  1588   *succeeded = true;
  1589   // Let's attempt the allocation first.
  1590   HeapWord* result =
  1591     attempt_allocation_at_safepoint(word_size,
  1592                                  false /* expect_null_mutator_alloc_region */);
  1593   if (result != NULL) {
  1594     assert(*succeeded, "sanity");
  1595     return result;
  1598   // In a G1 heap, we're supposed to keep allocation from failing by
  1599   // incremental pauses.  Therefore, at least for now, we'll favor
  1600   // expansion over collection.  (This might change in the future if we can
  1601   // do something smarter than full collection to satisfy a failed alloc.)
  1602   result = expand_and_allocate(word_size);
  1603   if (result != NULL) {
  1604     assert(*succeeded, "sanity");
  1605     return result;
  1608   // Expansion didn't work, we'll try to do a Full GC.
  1609   bool gc_succeeded = do_collection(false, /* explicit_gc */
  1610                                     false, /* clear_all_soft_refs */
  1611                                     word_size);
  1612   if (!gc_succeeded) {
  1613     *succeeded = false;
  1614     return NULL;
  1617   // Retry the allocation
  1618   result = attempt_allocation_at_safepoint(word_size,
  1619                                   true /* expect_null_mutator_alloc_region */);
  1620   if (result != NULL) {
  1621     assert(*succeeded, "sanity");
  1622     return result;
  1625   // Then, try a Full GC that will collect all soft references.
  1626   gc_succeeded = do_collection(false, /* explicit_gc */
  1627                                true,  /* clear_all_soft_refs */
  1628                                word_size);
  1629   if (!gc_succeeded) {
  1630     *succeeded = false;
  1631     return NULL;
  1634   // Retry the allocation once more
  1635   result = attempt_allocation_at_safepoint(word_size,
  1636                                   true /* expect_null_mutator_alloc_region */);
  1637   if (result != NULL) {
  1638     assert(*succeeded, "sanity");
  1639     return result;
  1642   assert(!collector_policy()->should_clear_all_soft_refs(),
  1643          "Flag should have been handled and cleared prior to this point");
  1645   // What else?  We might try synchronous finalization later.  If the total
  1646   // space available is large enough for the allocation, then a more
  1647   // complete compaction phase than we've tried so far might be
  1648   // appropriate.
  1649   assert(*succeeded, "sanity");
  1650   return NULL;
  1653 // Attempting to expand the heap sufficiently
  1654 // to support an allocation of the given "word_size".  If
  1655 // successful, perform the allocation and return the address of the
  1656 // allocated block, or else "NULL".
  1658 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
  1659   assert_at_safepoint(true /* should_be_vm_thread */);
  1661   verify_region_sets_optional();
  1663   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
  1664   ergo_verbose1(ErgoHeapSizing,
  1665                 "attempt heap expansion",
  1666                 ergo_format_reason("allocation request failed")
  1667                 ergo_format_byte("allocation request"),
  1668                 word_size * HeapWordSize);
  1669   if (expand(expand_bytes)) {
  1670     _hrs.verify_optional();
  1671     verify_region_sets_optional();
  1672     return attempt_allocation_at_safepoint(word_size,
  1673                                  false /* expect_null_mutator_alloc_region */);
  1675   return NULL;
  1678 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
  1679                                              HeapWord* new_end) {
  1680   assert(old_end != new_end, "don't call this otherwise");
  1681   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
  1683   // Update the committed mem region.
  1684   _g1_committed.set_end(new_end);
  1685   // Tell the card table about the update.
  1686   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  1687   // Tell the BOT about the update.
  1688   _bot_shared->resize(_g1_committed.word_size());
  1691 bool G1CollectedHeap::expand(size_t expand_bytes) {
  1692   size_t old_mem_size = _g1_storage.committed_size();
  1693   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
  1694   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
  1695                                        HeapRegion::GrainBytes);
  1696   ergo_verbose2(ErgoHeapSizing,
  1697                 "expand the heap",
  1698                 ergo_format_byte("requested expansion amount")
  1699                 ergo_format_byte("attempted expansion amount"),
  1700                 expand_bytes, aligned_expand_bytes);
  1702   // First commit the memory.
  1703   HeapWord* old_end = (HeapWord*) _g1_storage.high();
  1704   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
  1705   if (successful) {
  1706     // Then propagate this update to the necessary data structures.
  1707     HeapWord* new_end = (HeapWord*) _g1_storage.high();
  1708     update_committed_space(old_end, new_end);
  1710     FreeRegionList expansion_list("Local Expansion List");
  1711     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
  1712     assert(mr.start() == old_end, "post-condition");
  1713     // mr might be a smaller region than what was requested if
  1714     // expand_by() was unable to allocate the HeapRegion instances
  1715     assert(mr.end() <= new_end, "post-condition");
  1717     size_t actual_expand_bytes = mr.byte_size();
  1718     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
  1719     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
  1720            "post-condition");
  1721     if (actual_expand_bytes < aligned_expand_bytes) {
  1722       // We could not expand _hrs to the desired size. In this case we
  1723       // need to shrink the committed space accordingly.
  1724       assert(mr.end() < new_end, "invariant");
  1726       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
  1727       // First uncommit the memory.
  1728       _g1_storage.shrink_by(diff_bytes);
  1729       // Then propagate this update to the necessary data structures.
  1730       update_committed_space(new_end, mr.end());
  1732     _free_list.add_as_tail(&expansion_list);
  1734     if (_hr_printer.is_active()) {
  1735       HeapWord* curr = mr.start();
  1736       while (curr < mr.end()) {
  1737         HeapWord* curr_end = curr + HeapRegion::GrainWords;
  1738         _hr_printer.commit(curr, curr_end);
  1739         curr = curr_end;
  1741       assert(curr == mr.end(), "post-condition");
  1743     g1_policy()->record_new_heap_size(n_regions());
  1744   } else {
  1745     ergo_verbose0(ErgoHeapSizing,
  1746                   "did not expand the heap",
  1747                   ergo_format_reason("heap expansion operation failed"));
  1748     // The expansion of the virtual storage space was unsuccessful.
  1749     // Let's see if it was because we ran out of swap.
  1750     if (G1ExitOnExpansionFailure &&
  1751         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
  1752       // We had head room...
  1753       vm_exit_out_of_memory(aligned_expand_bytes, "G1 heap expansion");
  1756   return successful;
  1759 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
  1760   size_t old_mem_size = _g1_storage.committed_size();
  1761   size_t aligned_shrink_bytes =
  1762     ReservedSpace::page_align_size_down(shrink_bytes);
  1763   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
  1764                                          HeapRegion::GrainBytes);
  1765   size_t num_regions_deleted = 0;
  1766   MemRegion mr = _hrs.shrink_by(aligned_shrink_bytes, &num_regions_deleted);
  1767   HeapWord* old_end = (HeapWord*) _g1_storage.high();
  1768   assert(mr.end() == old_end, "post-condition");
  1770   ergo_verbose3(ErgoHeapSizing,
  1771                 "shrink the heap",
  1772                 ergo_format_byte("requested shrinking amount")
  1773                 ergo_format_byte("aligned shrinking amount")
  1774                 ergo_format_byte("attempted shrinking amount"),
  1775                 shrink_bytes, aligned_shrink_bytes, mr.byte_size());
  1776   if (mr.byte_size() > 0) {
  1777     if (_hr_printer.is_active()) {
  1778       HeapWord* curr = mr.end();
  1779       while (curr > mr.start()) {
  1780         HeapWord* curr_end = curr;
  1781         curr -= HeapRegion::GrainWords;
  1782         _hr_printer.uncommit(curr, curr_end);
  1784       assert(curr == mr.start(), "post-condition");
  1787     _g1_storage.shrink_by(mr.byte_size());
  1788     HeapWord* new_end = (HeapWord*) _g1_storage.high();
  1789     assert(mr.start() == new_end, "post-condition");
  1791     _expansion_regions += num_regions_deleted;
  1792     update_committed_space(old_end, new_end);
  1793     HeapRegionRemSet::shrink_heap(n_regions());
  1794     g1_policy()->record_new_heap_size(n_regions());
  1795   } else {
  1796     ergo_verbose0(ErgoHeapSizing,
  1797                   "did not shrink the heap",
  1798                   ergo_format_reason("heap shrinking operation failed"));
  1802 void G1CollectedHeap::shrink(size_t shrink_bytes) {
  1803   verify_region_sets_optional();
  1805   // We should only reach here at the end of a Full GC which means we
  1806   // should not not be holding to any GC alloc regions. The method
  1807   // below will make sure of that and do any remaining clean up.
  1808   abandon_gc_alloc_regions();
  1810   // Instead of tearing down / rebuilding the free lists here, we
  1811   // could instead use the remove_all_pending() method on free_list to
  1812   // remove only the ones that we need to remove.
  1813   tear_down_region_sets(true /* free_list_only */);
  1814   shrink_helper(shrink_bytes);
  1815   rebuild_region_sets(true /* free_list_only */);
  1817   _hrs.verify_optional();
  1818   verify_region_sets_optional();
  1821 // Public methods.
  1823 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
  1824 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
  1825 #endif // _MSC_VER
  1828 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  1829   SharedHeap(policy_),
  1830   _g1_policy(policy_),
  1831   _dirty_card_queue_set(false),
  1832   _into_cset_dirty_card_queue_set(false),
  1833   _is_alive_closure_cm(this),
  1834   _is_alive_closure_stw(this),
  1835   _ref_processor_cm(NULL),
  1836   _ref_processor_stw(NULL),
  1837   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  1838   _bot_shared(NULL),
  1839   _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL),
  1840   _evac_failure_scan_stack(NULL) ,
  1841   _mark_in_progress(false),
  1842   _cg1r(NULL), _summary_bytes_used(0),
  1843   _g1mm(NULL),
  1844   _refine_cte_cl(NULL),
  1845   _full_collection(false),
  1846   _free_list("Master Free List"),
  1847   _secondary_free_list("Secondary Free List"),
  1848   _old_set("Old Set"),
  1849   _humongous_set("Master Humongous Set"),
  1850   _free_regions_coming(false),
  1851   _young_list(new YoungList(this)),
  1852   _gc_time_stamp(0),
  1853   _retained_old_gc_alloc_region(NULL),
  1854   _expand_heap_after_alloc_failure(true),
  1855   _surviving_young_words(NULL),
  1856   _full_collections_completed(0),
  1857   _in_cset_fast_test(NULL),
  1858   _in_cset_fast_test_base(NULL),
  1859   _dirty_cards_region_list(NULL),
  1860   _worker_cset_start_region(NULL),
  1861   _worker_cset_start_region_time_stamp(NULL) {
  1862   _g1h = this; // To catch bugs.
  1863   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
  1864     vm_exit_during_initialization("Failed necessary allocation.");
  1867   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
  1869   int n_queues = MAX2((int)ParallelGCThreads, 1);
  1870   _task_queues = new RefToScanQueueSet(n_queues);
  1872   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
  1873   assert(n_rem_sets > 0, "Invariant.");
  1875   HeapRegionRemSetIterator** iter_arr =
  1876     NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues);
  1877   for (int i = 0; i < n_queues; i++) {
  1878     iter_arr[i] = new HeapRegionRemSetIterator();
  1880   _rem_set_iterator = iter_arr;
  1882   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues);
  1883   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues);
  1885   for (int i = 0; i < n_queues; i++) {
  1886     RefToScanQueue* q = new RefToScanQueue();
  1887     q->initialize();
  1888     _task_queues->register_queue(i, q);
  1891   clear_cset_start_regions();
  1893   guarantee(_task_queues != NULL, "task_queues allocation failure.");
  1896 jint G1CollectedHeap::initialize() {
  1897   CollectedHeap::pre_initialize();
  1898   os::enable_vtime();
  1900   // Necessary to satisfy locking discipline assertions.
  1902   MutexLocker x(Heap_lock);
  1904   // We have to initialize the printer before committing the heap, as
  1905   // it will be used then.
  1906   _hr_printer.set_active(G1PrintHeapRegions);
  1908   // While there are no constraints in the GC code that HeapWordSize
  1909   // be any particular value, there are multiple other areas in the
  1910   // system which believe this to be true (e.g. oop->object_size in some
  1911   // cases incorrectly returns the size in wordSize units rather than
  1912   // HeapWordSize).
  1913   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  1915   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  1916   size_t max_byte_size = collector_policy()->max_heap_byte_size();
  1918   // Ensure that the sizes are properly aligned.
  1919   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1920   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1922   _cg1r = new ConcurrentG1Refine();
  1924   // Reserve the maximum.
  1925   PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
  1926   // Includes the perm-gen.
  1928   // When compressed oops are enabled, the preferred heap base
  1929   // is calculated by subtracting the requested size from the
  1930   // 32Gb boundary and using the result as the base address for
  1931   // heap reservation. If the requested size is not aligned to
  1932   // HeapRegion::GrainBytes (i.e. the alignment that is passed
  1933   // into the ReservedHeapSpace constructor) then the actual
  1934   // base of the reserved heap may end up differing from the
  1935   // address that was requested (i.e. the preferred heap base).
  1936   // If this happens then we could end up using a non-optimal
  1937   // compressed oops mode.
  1939   // Since max_byte_size is aligned to the size of a heap region (checked
  1940   // above), we also need to align the perm gen size as it might not be.
  1941   const size_t total_reserved = max_byte_size +
  1942                                 align_size_up(pgs->max_size(), HeapRegion::GrainBytes);
  1943   Universe::check_alignment(total_reserved, HeapRegion::GrainBytes, "g1 heap and perm");
  1945   char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
  1947   ReservedHeapSpace heap_rs(total_reserved, HeapRegion::GrainBytes,
  1948                             UseLargePages, addr);
  1950   if (UseCompressedOops) {
  1951     if (addr != NULL && !heap_rs.is_reserved()) {
  1952       // Failed to reserve at specified address - the requested memory
  1953       // region is taken already, for example, by 'java' launcher.
  1954       // Try again to reserver heap higher.
  1955       addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
  1957       ReservedHeapSpace heap_rs0(total_reserved, HeapRegion::GrainBytes,
  1958                                  UseLargePages, addr);
  1960       if (addr != NULL && !heap_rs0.is_reserved()) {
  1961         // Failed to reserve at specified address again - give up.
  1962         addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
  1963         assert(addr == NULL, "");
  1965         ReservedHeapSpace heap_rs1(total_reserved, HeapRegion::GrainBytes,
  1966                                    UseLargePages, addr);
  1967         heap_rs = heap_rs1;
  1968       } else {
  1969         heap_rs = heap_rs0;
  1974   if (!heap_rs.is_reserved()) {
  1975     vm_exit_during_initialization("Could not reserve enough space for object heap");
  1976     return JNI_ENOMEM;
  1979   // It is important to do this in a way such that concurrent readers can't
  1980   // temporarily think somethings in the heap.  (I've actually seen this
  1981   // happen in asserts: DLD.)
  1982   _reserved.set_word_size(0);
  1983   _reserved.set_start((HeapWord*)heap_rs.base());
  1984   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
  1986   _expansion_regions = max_byte_size/HeapRegion::GrainBytes;
  1988   // Create the gen rem set (and barrier set) for the entire reserved region.
  1989   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  1990   set_barrier_set(rem_set()->bs());
  1991   if (barrier_set()->is_a(BarrierSet::ModRef)) {
  1992     _mr_bs = (ModRefBarrierSet*)_barrier_set;
  1993   } else {
  1994     vm_exit_during_initialization("G1 requires a mod ref bs.");
  1995     return JNI_ENOMEM;
  1998   // Also create a G1 rem set.
  1999   if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
  2000     _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
  2001   } else {
  2002     vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
  2003     return JNI_ENOMEM;
  2006   // Carve out the G1 part of the heap.
  2008   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
  2009   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
  2010                            g1_rs.size()/HeapWordSize);
  2011   ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);
  2013   _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());
  2015   _g1_storage.initialize(g1_rs, 0);
  2016   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
  2017   _hrs.initialize((HeapWord*) _g1_reserved.start(),
  2018                   (HeapWord*) _g1_reserved.end(),
  2019                   _expansion_regions);
  2021   // 6843694 - ensure that the maximum region index can fit
  2022   // in the remembered set structures.
  2023   const size_t max_region_idx = ((size_t)1 << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
  2024   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
  2026   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
  2027   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
  2028   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
  2029             "too many cards per region");
  2031   HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);
  2033   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
  2034                                              heap_word_size(init_byte_size));
  2036   _g1h = this;
  2038    _in_cset_fast_test_length = max_regions();
  2039    _in_cset_fast_test_base = NEW_C_HEAP_ARRAY(bool, _in_cset_fast_test_length);
  2041    // We're biasing _in_cset_fast_test to avoid subtracting the
  2042    // beginning of the heap every time we want to index; basically
  2043    // it's the same with what we do with the card table.
  2044    _in_cset_fast_test = _in_cset_fast_test_base -
  2045                 ((size_t) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
  2047    // Clear the _cset_fast_test bitmap in anticipation of adding
  2048    // regions to the incremental collection set for the first
  2049    // evacuation pause.
  2050    clear_cset_fast_test();
  2052   // Create the ConcurrentMark data structure and thread.
  2053   // (Must do this late, so that "max_regions" is defined.)
  2054   _cm       = new ConcurrentMark(heap_rs, (int) max_regions());
  2055   _cmThread = _cm->cmThread();
  2057   // Initialize the from_card cache structure of HeapRegionRemSet.
  2058   HeapRegionRemSet::init_heap(max_regions());
  2060   // Now expand into the initial heap size.
  2061   if (!expand(init_byte_size)) {
  2062     vm_exit_during_initialization("Failed to allocate initial heap.");
  2063     return JNI_ENOMEM;
  2066   // Perform any initialization actions delegated to the policy.
  2067   g1_policy()->init();
  2069   _refine_cte_cl =
  2070     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
  2071                                     g1_rem_set(),
  2072                                     concurrent_g1_refine());
  2073   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
  2075   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
  2076                                                SATB_Q_FL_lock,
  2077                                                G1SATBProcessCompletedThreshold,
  2078                                                Shared_SATB_Q_lock);
  2080   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  2081                                                 DirtyCardQ_FL_lock,
  2082                                                 concurrent_g1_refine()->yellow_zone(),
  2083                                                 concurrent_g1_refine()->red_zone(),
  2084                                                 Shared_DirtyCardQ_lock);
  2086   if (G1DeferredRSUpdate) {
  2087     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  2088                                       DirtyCardQ_FL_lock,
  2089                                       -1, // never trigger processing
  2090                                       -1, // no limit on length
  2091                                       Shared_DirtyCardQ_lock,
  2092                                       &JavaThread::dirty_card_queue_set());
  2095   // Initialize the card queue set used to hold cards containing
  2096   // references into the collection set.
  2097   _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
  2098                                              DirtyCardQ_FL_lock,
  2099                                              -1, // never trigger processing
  2100                                              -1, // no limit on length
  2101                                              Shared_DirtyCardQ_lock,
  2102                                              &JavaThread::dirty_card_queue_set());
  2104   // In case we're keeping closure specialization stats, initialize those
  2105   // counts and that mechanism.
  2106   SpecializationStats::clear();
  2108   // Do later initialization work for concurrent refinement.
  2109   _cg1r->init();
  2111   // Here we allocate the dummy full region that is required by the
  2112   // G1AllocRegion class. If we don't pass an address in the reserved
  2113   // space here, lots of asserts fire.
  2115   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
  2116                                              _g1_reserved.start());
  2117   // We'll re-use the same region whether the alloc region will
  2118   // require BOT updates or not and, if it doesn't, then a non-young
  2119   // region will complain that it cannot support allocations without
  2120   // BOT updates. So we'll tag the dummy region as young to avoid that.
  2121   dummy_region->set_young();
  2122   // Make sure it's full.
  2123   dummy_region->set_top(dummy_region->end());
  2124   G1AllocRegion::setup(this, dummy_region);
  2126   init_mutator_alloc_region();
  2128   // Do create of the monitoring and management support so that
  2129   // values in the heap have been properly initialized.
  2130   _g1mm = new G1MonitoringSupport(this);
  2132   return JNI_OK;
  2135 void G1CollectedHeap::ref_processing_init() {
  2136   // Reference processing in G1 currently works as follows:
  2137   //
  2138   // * There are two reference processor instances. One is
  2139   //   used to record and process discovered references
  2140   //   during concurrent marking; the other is used to
  2141   //   record and process references during STW pauses
  2142   //   (both full and incremental).
  2143   // * Both ref processors need to 'span' the entire heap as
  2144   //   the regions in the collection set may be dotted around.
  2145   //
  2146   // * For the concurrent marking ref processor:
  2147   //   * Reference discovery is enabled at initial marking.
  2148   //   * Reference discovery is disabled and the discovered
  2149   //     references processed etc during remarking.
  2150   //   * Reference discovery is MT (see below).
  2151   //   * Reference discovery requires a barrier (see below).
  2152   //   * Reference processing may or may not be MT
  2153   //     (depending on the value of ParallelRefProcEnabled
  2154   //     and ParallelGCThreads).
  2155   //   * A full GC disables reference discovery by the CM
  2156   //     ref processor and abandons any entries on it's
  2157   //     discovered lists.
  2158   //
  2159   // * For the STW processor:
  2160   //   * Non MT discovery is enabled at the start of a full GC.
  2161   //   * Processing and enqueueing during a full GC is non-MT.
  2162   //   * During a full GC, references are processed after marking.
  2163   //
  2164   //   * Discovery (may or may not be MT) is enabled at the start
  2165   //     of an incremental evacuation pause.
  2166   //   * References are processed near the end of a STW evacuation pause.
  2167   //   * For both types of GC:
  2168   //     * Discovery is atomic - i.e. not concurrent.
  2169   //     * Reference discovery will not need a barrier.
  2171   SharedHeap::ref_processing_init();
  2172   MemRegion mr = reserved_region();
  2174   // Concurrent Mark ref processor
  2175   _ref_processor_cm =
  2176     new ReferenceProcessor(mr,    // span
  2177                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
  2178                                 // mt processing
  2179                            (int) ParallelGCThreads,
  2180                                 // degree of mt processing
  2181                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
  2182                                 // mt discovery
  2183                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
  2184                                 // degree of mt discovery
  2185                            false,
  2186                                 // Reference discovery is not atomic
  2187                            &_is_alive_closure_cm,
  2188                                 // is alive closure
  2189                                 // (for efficiency/performance)
  2190                            true);
  2191                                 // Setting next fields of discovered
  2192                                 // lists requires a barrier.
  2194   // STW ref processor
  2195   _ref_processor_stw =
  2196     new ReferenceProcessor(mr,    // span
  2197                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
  2198                                 // mt processing
  2199                            MAX2((int)ParallelGCThreads, 1),
  2200                                 // degree of mt processing
  2201                            (ParallelGCThreads > 1),
  2202                                 // mt discovery
  2203                            MAX2((int)ParallelGCThreads, 1),
  2204                                 // degree of mt discovery
  2205                            true,
  2206                                 // Reference discovery is atomic
  2207                            &_is_alive_closure_stw,
  2208                                 // is alive closure
  2209                                 // (for efficiency/performance)
  2210                            false);
  2211                                 // Setting next fields of discovered
  2212                                 // lists requires a barrier.
  2215 size_t G1CollectedHeap::capacity() const {
  2216   return _g1_committed.byte_size();
  2219 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
  2220                                                  DirtyCardQueue* into_cset_dcq,
  2221                                                  bool concurrent,
  2222                                                  int worker_i) {
  2223   // Clean cards in the hot card cache
  2224   concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set(), into_cset_dcq);
  2226   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  2227   int n_completed_buffers = 0;
  2228   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
  2229     n_completed_buffers++;
  2231   g1_policy()->record_update_rs_processed_buffers(worker_i,
  2232                                                   (double) n_completed_buffers);
  2233   dcqs.clear_n_completed_buffers();
  2234   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
  2238 // Computes the sum of the storage used by the various regions.
  2240 size_t G1CollectedHeap::used() const {
  2241   assert(Heap_lock->owner() != NULL,
  2242          "Should be owned on this thread's behalf.");
  2243   size_t result = _summary_bytes_used;
  2244   // Read only once in case it is set to NULL concurrently
  2245   HeapRegion* hr = _mutator_alloc_region.get();
  2246   if (hr != NULL)
  2247     result += hr->used();
  2248   return result;
  2251 size_t G1CollectedHeap::used_unlocked() const {
  2252   size_t result = _summary_bytes_used;
  2253   return result;
  2256 class SumUsedClosure: public HeapRegionClosure {
  2257   size_t _used;
  2258 public:
  2259   SumUsedClosure() : _used(0) {}
  2260   bool doHeapRegion(HeapRegion* r) {
  2261     if (!r->continuesHumongous()) {
  2262       _used += r->used();
  2264     return false;
  2266   size_t result() { return _used; }
  2267 };
  2269 size_t G1CollectedHeap::recalculate_used() const {
  2270   SumUsedClosure blk;
  2271   heap_region_iterate(&blk);
  2272   return blk.result();
  2275 size_t G1CollectedHeap::unsafe_max_alloc() {
  2276   if (free_regions() > 0) return HeapRegion::GrainBytes;
  2277   // otherwise, is there space in the current allocation region?
  2279   // We need to store the current allocation region in a local variable
  2280   // here. The problem is that this method doesn't take any locks and
  2281   // there may be other threads which overwrite the current allocation
  2282   // region field. attempt_allocation(), for example, sets it to NULL
  2283   // and this can happen *after* the NULL check here but before the call
  2284   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
  2285   // to be a problem in the optimized build, since the two loads of the
  2286   // current allocation region field are optimized away.
  2287   HeapRegion* hr = _mutator_alloc_region.get();
  2288   if (hr == NULL) {
  2289     return 0;
  2291   return hr->free();
  2294 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
  2295   return
  2296     ((cause == GCCause::_gc_locker           && GCLockerInvokesConcurrent) ||
  2297      (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
  2300 #ifndef PRODUCT
  2301 void G1CollectedHeap::allocate_dummy_regions() {
  2302   // Let's fill up most of the region
  2303   size_t word_size = HeapRegion::GrainWords - 1024;
  2304   // And as a result the region we'll allocate will be humongous.
  2305   guarantee(isHumongous(word_size), "sanity");
  2307   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
  2308     // Let's use the existing mechanism for the allocation
  2309     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
  2310     if (dummy_obj != NULL) {
  2311       MemRegion mr(dummy_obj, word_size);
  2312       CollectedHeap::fill_with_object(mr);
  2313     } else {
  2314       // If we can't allocate once, we probably cannot allocate
  2315       // again. Let's get out of the loop.
  2316       break;
  2320 #endif // !PRODUCT
  2322 void G1CollectedHeap::increment_full_collections_completed(bool concurrent) {
  2323   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
  2325   // We assume that if concurrent == true, then the caller is a
  2326   // concurrent thread that was joined the Suspendible Thread
  2327   // Set. If there's ever a cheap way to check this, we should add an
  2328   // assert here.
  2330   // We have already incremented _total_full_collections at the start
  2331   // of the GC, so total_full_collections() represents how many full
  2332   // collections have been started.
  2333   unsigned int full_collections_started = total_full_collections();
  2335   // Given that this method is called at the end of a Full GC or of a
  2336   // concurrent cycle, and those can be nested (i.e., a Full GC can
  2337   // interrupt a concurrent cycle), the number of full collections
  2338   // completed should be either one (in the case where there was no
  2339   // nesting) or two (when a Full GC interrupted a concurrent cycle)
  2340   // behind the number of full collections started.
  2342   // This is the case for the inner caller, i.e. a Full GC.
  2343   assert(concurrent ||
  2344          (full_collections_started == _full_collections_completed + 1) ||
  2345          (full_collections_started == _full_collections_completed + 2),
  2346          err_msg("for inner caller (Full GC): full_collections_started = %u "
  2347                  "is inconsistent with _full_collections_completed = %u",
  2348                  full_collections_started, _full_collections_completed));
  2350   // This is the case for the outer caller, i.e. the concurrent cycle.
  2351   assert(!concurrent ||
  2352          (full_collections_started == _full_collections_completed + 1),
  2353          err_msg("for outer caller (concurrent cycle): "
  2354                  "full_collections_started = %u "
  2355                  "is inconsistent with _full_collections_completed = %u",
  2356                  full_collections_started, _full_collections_completed));
  2358   _full_collections_completed += 1;
  2360   // We need to clear the "in_progress" flag in the CM thread before
  2361   // we wake up any waiters (especially when ExplicitInvokesConcurrent
  2362   // is set) so that if a waiter requests another System.gc() it doesn't
  2363   // incorrectly see that a marking cyle is still in progress.
  2364   if (concurrent) {
  2365     _cmThread->clear_in_progress();
  2368   // This notify_all() will ensure that a thread that called
  2369   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
  2370   // and it's waiting for a full GC to finish will be woken up. It is
  2371   // waiting in VM_G1IncCollectionPause::doit_epilogue().
  2372   FullGCCount_lock->notify_all();
  2375 void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
  2376   assert_at_safepoint(true /* should_be_vm_thread */);
  2377   GCCauseSetter gcs(this, cause);
  2378   switch (cause) {
  2379     case GCCause::_heap_inspection:
  2380     case GCCause::_heap_dump: {
  2381       HandleMark hm;
  2382       do_full_collection(false);         // don't clear all soft refs
  2383       break;
  2385     default: // XXX FIX ME
  2386       ShouldNotReachHere(); // Unexpected use of this function
  2390 void G1CollectedHeap::collect(GCCause::Cause cause) {
  2391   // The caller doesn't have the Heap_lock
  2392   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
  2394   unsigned int gc_count_before;
  2395   unsigned int full_gc_count_before;
  2397     MutexLocker ml(Heap_lock);
  2399     // Read the GC count while holding the Heap_lock
  2400     gc_count_before = SharedHeap::heap()->total_collections();
  2401     full_gc_count_before = SharedHeap::heap()->total_full_collections();
  2404   if (should_do_concurrent_full_gc(cause)) {
  2405     // Schedule an initial-mark evacuation pause that will start a
  2406     // concurrent cycle. We're setting word_size to 0 which means that
  2407     // we are not requesting a post-GC allocation.
  2408     VM_G1IncCollectionPause op(gc_count_before,
  2409                                0,     /* word_size */
  2410                                true,  /* should_initiate_conc_mark */
  2411                                g1_policy()->max_pause_time_ms(),
  2412                                cause);
  2413     VMThread::execute(&op);
  2414   } else {
  2415     if (cause == GCCause::_gc_locker
  2416         DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
  2418       // Schedule a standard evacuation pause. We're setting word_size
  2419       // to 0 which means that we are not requesting a post-GC allocation.
  2420       VM_G1IncCollectionPause op(gc_count_before,
  2421                                  0,     /* word_size */
  2422                                  false, /* should_initiate_conc_mark */
  2423                                  g1_policy()->max_pause_time_ms(),
  2424                                  cause);
  2425       VMThread::execute(&op);
  2426     } else {
  2427       // Schedule a Full GC.
  2428       VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
  2429       VMThread::execute(&op);
  2434 bool G1CollectedHeap::is_in(const void* p) const {
  2435   if (_g1_committed.contains(p)) {
  2436     // Given that we know that p is in the committed space,
  2437     // heap_region_containing_raw() should successfully
  2438     // return the containing region.
  2439     HeapRegion* hr = heap_region_containing_raw(p);
  2440     return hr->is_in(p);
  2441   } else {
  2442     return _perm_gen->as_gen()->is_in(p);
  2446 // Iteration functions.
  2448 // Iterates an OopClosure over all ref-containing fields of objects
  2449 // within a HeapRegion.
  2451 class IterateOopClosureRegionClosure: public HeapRegionClosure {
  2452   MemRegion _mr;
  2453   OopClosure* _cl;
  2454 public:
  2455   IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
  2456     : _mr(mr), _cl(cl) {}
  2457   bool doHeapRegion(HeapRegion* r) {
  2458     if (! r->continuesHumongous()) {
  2459       r->oop_iterate(_cl);
  2461     return false;
  2463 };
  2465 void G1CollectedHeap::oop_iterate(OopClosure* cl, bool do_perm) {
  2466   IterateOopClosureRegionClosure blk(_g1_committed, cl);
  2467   heap_region_iterate(&blk);
  2468   if (do_perm) {
  2469     perm_gen()->oop_iterate(cl);
  2473 void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm) {
  2474   IterateOopClosureRegionClosure blk(mr, cl);
  2475   heap_region_iterate(&blk);
  2476   if (do_perm) {
  2477     perm_gen()->oop_iterate(cl);
  2481 // Iterates an ObjectClosure over all objects within a HeapRegion.
  2483 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  2484   ObjectClosure* _cl;
  2485 public:
  2486   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  2487   bool doHeapRegion(HeapRegion* r) {
  2488     if (! r->continuesHumongous()) {
  2489       r->object_iterate(_cl);
  2491     return false;
  2493 };
  2495 void G1CollectedHeap::object_iterate(ObjectClosure* cl, bool do_perm) {
  2496   IterateObjectClosureRegionClosure blk(cl);
  2497   heap_region_iterate(&blk);
  2498   if (do_perm) {
  2499     perm_gen()->object_iterate(cl);
  2503 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
  2504   // FIXME: is this right?
  2505   guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
  2508 // Calls a SpaceClosure on a HeapRegion.
  2510 class SpaceClosureRegionClosure: public HeapRegionClosure {
  2511   SpaceClosure* _cl;
  2512 public:
  2513   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  2514   bool doHeapRegion(HeapRegion* r) {
  2515     _cl->do_space(r);
  2516     return false;
  2518 };
  2520 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  2521   SpaceClosureRegionClosure blk(cl);
  2522   heap_region_iterate(&blk);
  2525 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
  2526   _hrs.iterate(cl);
  2529 void G1CollectedHeap::heap_region_iterate_from(HeapRegion* r,
  2530                                                HeapRegionClosure* cl) const {
  2531   _hrs.iterate_from(r, cl);
  2534 void
  2535 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
  2536                                                  uint worker,
  2537                                                  uint no_of_par_workers,
  2538                                                  jint claim_value) {
  2539   const size_t regions = n_regions();
  2540   const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  2541                              no_of_par_workers :
  2542                              1);
  2543   assert(UseDynamicNumberOfGCThreads ||
  2544          no_of_par_workers == workers()->total_workers(),
  2545          "Non dynamic should use fixed number of workers");
  2546   // try to spread out the starting points of the workers
  2547   const size_t start_index = regions / max_workers * (size_t) worker;
  2549   // each worker will actually look at all regions
  2550   for (size_t count = 0; count < regions; ++count) {
  2551     const size_t index = (start_index + count) % regions;
  2552     assert(0 <= index && index < regions, "sanity");
  2553     HeapRegion* r = region_at(index);
  2554     // we'll ignore "continues humongous" regions (we'll process them
  2555     // when we come across their corresponding "start humongous"
  2556     // region) and regions already claimed
  2557     if (r->claim_value() == claim_value || r->continuesHumongous()) {
  2558       continue;
  2560     // OK, try to claim it
  2561     if (r->claimHeapRegion(claim_value)) {
  2562       // success!
  2563       assert(!r->continuesHumongous(), "sanity");
  2564       if (r->startsHumongous()) {
  2565         // If the region is "starts humongous" we'll iterate over its
  2566         // "continues humongous" first; in fact we'll do them
  2567         // first. The order is important. In on case, calling the
  2568         // closure on the "starts humongous" region might de-allocate
  2569         // and clear all its "continues humongous" regions and, as a
  2570         // result, we might end up processing them twice. So, we'll do
  2571         // them first (notice: most closures will ignore them anyway) and
  2572         // then we'll do the "starts humongous" region.
  2573         for (size_t ch_index = index + 1; ch_index < regions; ++ch_index) {
  2574           HeapRegion* chr = region_at(ch_index);
  2576           // if the region has already been claimed or it's not
  2577           // "continues humongous" we're done
  2578           if (chr->claim_value() == claim_value ||
  2579               !chr->continuesHumongous()) {
  2580             break;
  2583           // Noone should have claimed it directly. We can given
  2584           // that we claimed its "starts humongous" region.
  2585           assert(chr->claim_value() != claim_value, "sanity");
  2586           assert(chr->humongous_start_region() == r, "sanity");
  2588           if (chr->claimHeapRegion(claim_value)) {
  2589             // we should always be able to claim it; noone else should
  2590             // be trying to claim this region
  2592             bool res2 = cl->doHeapRegion(chr);
  2593             assert(!res2, "Should not abort");
  2595             // Right now, this holds (i.e., no closure that actually
  2596             // does something with "continues humongous" regions
  2597             // clears them). We might have to weaken it in the future,
  2598             // but let's leave these two asserts here for extra safety.
  2599             assert(chr->continuesHumongous(), "should still be the case");
  2600             assert(chr->humongous_start_region() == r, "sanity");
  2601           } else {
  2602             guarantee(false, "we should not reach here");
  2607       assert(!r->continuesHumongous(), "sanity");
  2608       bool res = cl->doHeapRegion(r);
  2609       assert(!res, "Should not abort");
  2614 class ResetClaimValuesClosure: public HeapRegionClosure {
  2615 public:
  2616   bool doHeapRegion(HeapRegion* r) {
  2617     r->set_claim_value(HeapRegion::InitialClaimValue);
  2618     return false;
  2620 };
  2622 void G1CollectedHeap::reset_heap_region_claim_values() {
  2623   ResetClaimValuesClosure blk;
  2624   heap_region_iterate(&blk);
  2627 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
  2628   ResetClaimValuesClosure blk;
  2629   collection_set_iterate(&blk);
  2632 #ifdef ASSERT
  2633 // This checks whether all regions in the heap have the correct claim
  2634 // value. I also piggy-backed on this a check to ensure that the
  2635 // humongous_start_region() information on "continues humongous"
  2636 // regions is correct.
  2638 class CheckClaimValuesClosure : public HeapRegionClosure {
  2639 private:
  2640   jint _claim_value;
  2641   size_t _failures;
  2642   HeapRegion* _sh_region;
  2643 public:
  2644   CheckClaimValuesClosure(jint claim_value) :
  2645     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  2646   bool doHeapRegion(HeapRegion* r) {
  2647     if (r->claim_value() != _claim_value) {
  2648       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
  2649                              "claim value = %d, should be %d",
  2650                              HR_FORMAT_PARAMS(r),
  2651                              r->claim_value(), _claim_value);
  2652       ++_failures;
  2654     if (!r->isHumongous()) {
  2655       _sh_region = NULL;
  2656     } else if (r->startsHumongous()) {
  2657       _sh_region = r;
  2658     } else if (r->continuesHumongous()) {
  2659       if (r->humongous_start_region() != _sh_region) {
  2660         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
  2661                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
  2662                                HR_FORMAT_PARAMS(r),
  2663                                r->humongous_start_region(),
  2664                                _sh_region);
  2665         ++_failures;
  2668     return false;
  2670   size_t failures() {
  2671     return _failures;
  2673 };
  2675 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  2676   CheckClaimValuesClosure cl(claim_value);
  2677   heap_region_iterate(&cl);
  2678   return cl.failures() == 0;
  2681 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
  2682   jint   _claim_value;
  2683   size_t _failures;
  2685 public:
  2686   CheckClaimValuesInCSetHRClosure(jint claim_value) :
  2687     _claim_value(claim_value),
  2688     _failures(0) { }
  2690   size_t failures() {
  2691     return _failures;
  2694   bool doHeapRegion(HeapRegion* hr) {
  2695     assert(hr->in_collection_set(), "how?");
  2696     assert(!hr->isHumongous(), "H-region in CSet");
  2697     if (hr->claim_value() != _claim_value) {
  2698       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
  2699                              "claim value = %d, should be %d",
  2700                              HR_FORMAT_PARAMS(hr),
  2701                              hr->claim_value(), _claim_value);
  2702       _failures += 1;
  2704     return false;
  2706 };
  2708 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
  2709   CheckClaimValuesInCSetHRClosure cl(claim_value);
  2710   collection_set_iterate(&cl);
  2711   return cl.failures() == 0;
  2713 #endif // ASSERT
  2715 // Clear the cached CSet starting regions and (more importantly)
  2716 // the time stamps. Called when we reset the GC time stamp.
  2717 void G1CollectedHeap::clear_cset_start_regions() {
  2718   assert(_worker_cset_start_region != NULL, "sanity");
  2719   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
  2721   int n_queues = MAX2((int)ParallelGCThreads, 1);
  2722   for (int i = 0; i < n_queues; i++) {
  2723     _worker_cset_start_region[i] = NULL;
  2724     _worker_cset_start_region_time_stamp[i] = 0;
  2728 // Given the id of a worker, obtain or calculate a suitable
  2729 // starting region for iterating over the current collection set.
  2730 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(int worker_i) {
  2731   assert(get_gc_time_stamp() > 0, "should have been updated by now");
  2733   HeapRegion* result = NULL;
  2734   unsigned gc_time_stamp = get_gc_time_stamp();
  2736   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
  2737     // Cached starting region for current worker was set
  2738     // during the current pause - so it's valid.
  2739     // Note: the cached starting heap region may be NULL
  2740     // (when the collection set is empty).
  2741     result = _worker_cset_start_region[worker_i];
  2742     assert(result == NULL || result->in_collection_set(), "sanity");
  2743     return result;
  2746   // The cached entry was not valid so let's calculate
  2747   // a suitable starting heap region for this worker.
  2749   // We want the parallel threads to start their collection
  2750   // set iteration at different collection set regions to
  2751   // avoid contention.
  2752   // If we have:
  2753   //          n collection set regions
  2754   //          p threads
  2755   // Then thread t will start at region floor ((t * n) / p)
  2757   result = g1_policy()->collection_set();
  2758   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2759     size_t cs_size = g1_policy()->cset_region_length();
  2760     uint active_workers = workers()->active_workers();
  2761     assert(UseDynamicNumberOfGCThreads ||
  2762              active_workers == workers()->total_workers(),
  2763              "Unless dynamic should use total workers");
  2765     size_t end_ind   = (cs_size * worker_i) / active_workers;
  2766     size_t start_ind = 0;
  2768     if (worker_i > 0 &&
  2769         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
  2770       // Previous workers starting region is valid
  2771       // so let's iterate from there
  2772       start_ind = (cs_size * (worker_i - 1)) / active_workers;
  2773       result = _worker_cset_start_region[worker_i - 1];
  2776     for (size_t i = start_ind; i < end_ind; i++) {
  2777       result = result->next_in_collection_set();
  2781   // Note: the calculated starting heap region may be NULL
  2782   // (when the collection set is empty).
  2783   assert(result == NULL || result->in_collection_set(), "sanity");
  2784   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
  2785          "should be updated only once per pause");
  2786   _worker_cset_start_region[worker_i] = result;
  2787   OrderAccess::storestore();
  2788   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
  2789   return result;
  2792 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  2793   HeapRegion* r = g1_policy()->collection_set();
  2794   while (r != NULL) {
  2795     HeapRegion* next = r->next_in_collection_set();
  2796     if (cl->doHeapRegion(r)) {
  2797       cl->incomplete();
  2798       return;
  2800     r = next;
  2804 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
  2805                                                   HeapRegionClosure *cl) {
  2806   if (r == NULL) {
  2807     // The CSet is empty so there's nothing to do.
  2808     return;
  2811   assert(r->in_collection_set(),
  2812          "Start region must be a member of the collection set.");
  2813   HeapRegion* cur = r;
  2814   while (cur != NULL) {
  2815     HeapRegion* next = cur->next_in_collection_set();
  2816     if (cl->doHeapRegion(cur) && false) {
  2817       cl->incomplete();
  2818       return;
  2820     cur = next;
  2822   cur = g1_policy()->collection_set();
  2823   while (cur != r) {
  2824     HeapRegion* next = cur->next_in_collection_set();
  2825     if (cl->doHeapRegion(cur) && false) {
  2826       cl->incomplete();
  2827       return;
  2829     cur = next;
  2833 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
  2834   return n_regions() > 0 ? region_at(0) : NULL;
  2838 Space* G1CollectedHeap::space_containing(const void* addr) const {
  2839   Space* res = heap_region_containing(addr);
  2840   if (res == NULL)
  2841     res = perm_gen()->space_containing(addr);
  2842   return res;
  2845 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  2846   Space* sp = space_containing(addr);
  2847   if (sp != NULL) {
  2848     return sp->block_start(addr);
  2850   return NULL;
  2853 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  2854   Space* sp = space_containing(addr);
  2855   assert(sp != NULL, "block_size of address outside of heap");
  2856   return sp->block_size(addr);
  2859 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  2860   Space* sp = space_containing(addr);
  2861   return sp->block_is_obj(addr);
  2864 bool G1CollectedHeap::supports_tlab_allocation() const {
  2865   return true;
  2868 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
  2869   return HeapRegion::GrainBytes;
  2872 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  2873   // Return the remaining space in the cur alloc region, but not less than
  2874   // the min TLAB size.
  2876   // Also, this value can be at most the humongous object threshold,
  2877   // since we can't allow tlabs to grow big enough to accomodate
  2878   // humongous objects.
  2880   HeapRegion* hr = _mutator_alloc_region.get();
  2881   size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
  2882   if (hr == NULL) {
  2883     return max_tlab_size;
  2884   } else {
  2885     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab_size);
  2889 size_t G1CollectedHeap::max_capacity() const {
  2890   return _g1_reserved.byte_size();
  2893 jlong G1CollectedHeap::millis_since_last_gc() {
  2894   // assert(false, "NYI");
  2895   return 0;
  2898 void G1CollectedHeap::prepare_for_verify() {
  2899   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  2900     ensure_parsability(false);
  2902   g1_rem_set()->prepare_for_verify();
  2905 class VerifyLivenessOopClosure: public OopClosure {
  2906   G1CollectedHeap* _g1h;
  2907   VerifyOption _vo;
  2908 public:
  2909   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
  2910     _g1h(g1h), _vo(vo)
  2911   { }
  2912   void do_oop(narrowOop *p) { do_oop_work(p); }
  2913   void do_oop(      oop *p) { do_oop_work(p); }
  2915   template <class T> void do_oop_work(T *p) {
  2916     oop obj = oopDesc::load_decode_heap_oop(p);
  2917     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
  2918               "Dead object referenced by a not dead object");
  2920 };
  2922 class VerifyObjsInRegionClosure: public ObjectClosure {
  2923 private:
  2924   G1CollectedHeap* _g1h;
  2925   size_t _live_bytes;
  2926   HeapRegion *_hr;
  2927   VerifyOption _vo;
  2928 public:
  2929   // _vo == UsePrevMarking -> use "prev" marking information,
  2930   // _vo == UseNextMarking -> use "next" marking information,
  2931   // _vo == UseMarkWord    -> use mark word from object header.
  2932   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
  2933     : _live_bytes(0), _hr(hr), _vo(vo) {
  2934     _g1h = G1CollectedHeap::heap();
  2936   void do_object(oop o) {
  2937     VerifyLivenessOopClosure isLive(_g1h, _vo);
  2938     assert(o != NULL, "Huh?");
  2939     if (!_g1h->is_obj_dead_cond(o, _vo)) {
  2940       // If the object is alive according to the mark word,
  2941       // then verify that the marking information agrees.
  2942       // Note we can't verify the contra-positive of the
  2943       // above: if the object is dead (according to the mark
  2944       // word), it may not be marked, or may have been marked
  2945       // but has since became dead, or may have been allocated
  2946       // since the last marking.
  2947       if (_vo == VerifyOption_G1UseMarkWord) {
  2948         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
  2951       o->oop_iterate(&isLive);
  2952       if (!_hr->obj_allocated_since_prev_marking(o)) {
  2953         size_t obj_size = o->size();    // Make sure we don't overflow
  2954         _live_bytes += (obj_size * HeapWordSize);
  2958   size_t live_bytes() { return _live_bytes; }
  2959 };
  2961 class PrintObjsInRegionClosure : public ObjectClosure {
  2962   HeapRegion *_hr;
  2963   G1CollectedHeap *_g1;
  2964 public:
  2965   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
  2966     _g1 = G1CollectedHeap::heap();
  2967   };
  2969   void do_object(oop o) {
  2970     if (o != NULL) {
  2971       HeapWord *start = (HeapWord *) o;
  2972       size_t word_sz = o->size();
  2973       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
  2974                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
  2975                           (void*) o, word_sz,
  2976                           _g1->isMarkedPrev(o),
  2977                           _g1->isMarkedNext(o),
  2978                           _hr->obj_allocated_since_prev_marking(o));
  2979       HeapWord *end = start + word_sz;
  2980       HeapWord *cur;
  2981       int *val;
  2982       for (cur = start; cur < end; cur++) {
  2983         val = (int *) cur;
  2984         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
  2988 };
  2990 class VerifyRegionClosure: public HeapRegionClosure {
  2991 private:
  2992   bool         _allow_dirty;
  2993   bool         _par;
  2994   VerifyOption _vo;
  2995   bool         _failures;
  2996 public:
  2997   // _vo == UsePrevMarking -> use "prev" marking information,
  2998   // _vo == UseNextMarking -> use "next" marking information,
  2999   // _vo == UseMarkWord    -> use mark word from object header.
  3000   VerifyRegionClosure(bool allow_dirty, bool par, VerifyOption vo)
  3001     : _allow_dirty(allow_dirty),
  3002       _par(par),
  3003       _vo(vo),
  3004       _failures(false) {}
  3006   bool failures() {
  3007     return _failures;
  3010   bool doHeapRegion(HeapRegion* r) {
  3011     guarantee(_par || r->claim_value() == HeapRegion::InitialClaimValue,
  3012               "Should be unclaimed at verify points.");
  3013     if (!r->continuesHumongous()) {
  3014       bool failures = false;
  3015       r->verify(_allow_dirty, _vo, &failures);
  3016       if (failures) {
  3017         _failures = true;
  3018       } else {
  3019         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
  3020         r->object_iterate(&not_dead_yet_cl);
  3021         if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
  3022           gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
  3023                                  "max_live_bytes "SIZE_FORMAT" "
  3024                                  "< calculated "SIZE_FORMAT,
  3025                                  r->bottom(), r->end(),
  3026                                  r->max_live_bytes(),
  3027                                  not_dead_yet_cl.live_bytes());
  3028           _failures = true;
  3032     return false; // stop the region iteration if we hit a failure
  3034 };
  3036 class VerifyRootsClosure: public OopsInGenClosure {
  3037 private:
  3038   G1CollectedHeap* _g1h;
  3039   VerifyOption     _vo;
  3040   bool             _failures;
  3041 public:
  3042   // _vo == UsePrevMarking -> use "prev" marking information,
  3043   // _vo == UseNextMarking -> use "next" marking information,
  3044   // _vo == UseMarkWord    -> use mark word from object header.
  3045   VerifyRootsClosure(VerifyOption vo) :
  3046     _g1h(G1CollectedHeap::heap()),
  3047     _vo(vo),
  3048     _failures(false) { }
  3050   bool failures() { return _failures; }
  3052   template <class T> void do_oop_nv(T* p) {
  3053     T heap_oop = oopDesc::load_heap_oop(p);
  3054     if (!oopDesc::is_null(heap_oop)) {
  3055       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  3056       if (_g1h->is_obj_dead_cond(obj, _vo)) {
  3057         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
  3058                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
  3059         if (_vo == VerifyOption_G1UseMarkWord) {
  3060           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
  3062         obj->print_on(gclog_or_tty);
  3063         _failures = true;
  3068   void do_oop(oop* p)       { do_oop_nv(p); }
  3069   void do_oop(narrowOop* p) { do_oop_nv(p); }
  3070 };
  3072 // This is the task used for parallel heap verification.
  3074 class G1ParVerifyTask: public AbstractGangTask {
  3075 private:
  3076   G1CollectedHeap* _g1h;
  3077   bool             _allow_dirty;
  3078   VerifyOption     _vo;
  3079   bool             _failures;
  3081 public:
  3082   // _vo == UsePrevMarking -> use "prev" marking information,
  3083   // _vo == UseNextMarking -> use "next" marking information,
  3084   // _vo == UseMarkWord    -> use mark word from object header.
  3085   G1ParVerifyTask(G1CollectedHeap* g1h, bool allow_dirty, VerifyOption vo) :
  3086     AbstractGangTask("Parallel verify task"),
  3087     _g1h(g1h),
  3088     _allow_dirty(allow_dirty),
  3089     _vo(vo),
  3090     _failures(false) { }
  3092   bool failures() {
  3093     return _failures;
  3096   void work(uint worker_id) {
  3097     HandleMark hm;
  3098     VerifyRegionClosure blk(_allow_dirty, true, _vo);
  3099     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
  3100                                           _g1h->workers()->active_workers(),
  3101                                           HeapRegion::ParVerifyClaimValue);
  3102     if (blk.failures()) {
  3103       _failures = true;
  3106 };
  3108 void G1CollectedHeap::verify(bool allow_dirty, bool silent) {
  3109   verify(allow_dirty, silent, VerifyOption_G1UsePrevMarking);
  3112 void G1CollectedHeap::verify(bool allow_dirty,
  3113                              bool silent,
  3114                              VerifyOption vo) {
  3115   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  3116     if (!silent) { gclog_or_tty->print("Roots (excluding permgen) "); }
  3117     VerifyRootsClosure rootsCl(vo);
  3119     assert(Thread::current()->is_VM_thread(),
  3120       "Expected to be executed serially by the VM thread at this point");
  3122     CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
  3124     // We apply the relevant closures to all the oops in the
  3125     // system dictionary, the string table and the code cache.
  3126     const int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;
  3128     process_strong_roots(true,      // activate StrongRootsScope
  3129                          true,      // we set "collecting perm gen" to true,
  3130                                     // so we don't reset the dirty cards in the perm gen.
  3131                          SharedHeap::ScanningOption(so),  // roots scanning options
  3132                          &rootsCl,
  3133                          &blobsCl,
  3134                          &rootsCl);
  3136     // If we're verifying after the marking phase of a Full GC then we can't
  3137     // treat the perm gen as roots into the G1 heap. Some of the objects in
  3138     // the perm gen may be dead and hence not marked. If one of these dead
  3139     // objects is considered to be a root then we may end up with a false
  3140     // "Root location <x> points to dead ob <y>" failure.
  3141     if (vo != VerifyOption_G1UseMarkWord) {
  3142       // Since we used "collecting_perm_gen" == true above, we will not have
  3143       // checked the refs from perm into the G1-collected heap. We check those
  3144       // references explicitly below. Whether the relevant cards are dirty
  3145       // is checked further below in the rem set verification.
  3146       if (!silent) { gclog_or_tty->print("Permgen roots "); }
  3147       perm_gen()->oop_iterate(&rootsCl);
  3149     bool failures = rootsCl.failures();
  3151     if (vo != VerifyOption_G1UseMarkWord) {
  3152       // If we're verifying during a full GC then the region sets
  3153       // will have been torn down at the start of the GC. Therefore
  3154       // verifying the region sets will fail. So we only verify
  3155       // the region sets when not in a full GC.
  3156       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
  3157       verify_region_sets();
  3160     if (!silent) { gclog_or_tty->print("HeapRegions "); }
  3161     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
  3162       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3163              "sanity check");
  3165       G1ParVerifyTask task(this, allow_dirty, vo);
  3166       assert(UseDynamicNumberOfGCThreads ||
  3167         workers()->active_workers() == workers()->total_workers(),
  3168         "If not dynamic should be using all the workers");
  3169       int n_workers = workers()->active_workers();
  3170       set_par_threads(n_workers);
  3171       workers()->run_task(&task);
  3172       set_par_threads(0);
  3173       if (task.failures()) {
  3174         failures = true;
  3177       // Checks that the expected amount of parallel work was done.
  3178       // The implication is that n_workers is > 0.
  3179       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
  3180              "sanity check");
  3182       reset_heap_region_claim_values();
  3184       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3185              "sanity check");
  3186     } else {
  3187       VerifyRegionClosure blk(allow_dirty, false, vo);
  3188       heap_region_iterate(&blk);
  3189       if (blk.failures()) {
  3190         failures = true;
  3193     if (!silent) gclog_or_tty->print("RemSet ");
  3194     rem_set()->verify();
  3196     if (failures) {
  3197       gclog_or_tty->print_cr("Heap:");
  3198       // It helps to have the per-region information in the output to
  3199       // help us track down what went wrong. This is why we call
  3200       // print_extended_on() instead of print_on().
  3201       print_extended_on(gclog_or_tty);
  3202       gclog_or_tty->print_cr("");
  3203 #ifndef PRODUCT
  3204       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
  3205         concurrent_mark()->print_reachable("at-verification-failure",
  3206                                            vo, false /* all */);
  3208 #endif
  3209       gclog_or_tty->flush();
  3211     guarantee(!failures, "there should not have been any failures");
  3212   } else {
  3213     if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
  3217 class PrintRegionClosure: public HeapRegionClosure {
  3218   outputStream* _st;
  3219 public:
  3220   PrintRegionClosure(outputStream* st) : _st(st) {}
  3221   bool doHeapRegion(HeapRegion* r) {
  3222     r->print_on(_st);
  3223     return false;
  3225 };
  3227 void G1CollectedHeap::print_on(outputStream* st) const {
  3228   st->print(" %-20s", "garbage-first heap");
  3229   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
  3230             capacity()/K, used_unlocked()/K);
  3231   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
  3232             _g1_storage.low_boundary(),
  3233             _g1_storage.high(),
  3234             _g1_storage.high_boundary());
  3235   st->cr();
  3236   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
  3237   size_t young_regions = _young_list->length();
  3238   st->print(SIZE_FORMAT " young (" SIZE_FORMAT "K), ",
  3239             young_regions, young_regions * HeapRegion::GrainBytes / K);
  3240   size_t survivor_regions = g1_policy()->recorded_survivor_regions();
  3241   st->print(SIZE_FORMAT " survivors (" SIZE_FORMAT "K)",
  3242             survivor_regions, survivor_regions * HeapRegion::GrainBytes / K);
  3243   st->cr();
  3244   perm()->as_gen()->print_on(st);
  3247 void G1CollectedHeap::print_extended_on(outputStream* st) const {
  3248   print_on(st);
  3250   // Print the per-region information.
  3251   st->cr();
  3252   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), HS=humongous(starts), HC=humongous(continues), CS=collection set, F=free, TS=gc time stamp, PTAMS=previous top-at-mark-start, NTAMS=next top-at-mark-start)");
  3253   PrintRegionClosure blk(st);
  3254   heap_region_iterate(&blk);
  3257 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
  3258   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3259     workers()->print_worker_threads_on(st);
  3261   _cmThread->print_on(st);
  3262   st->cr();
  3263   _cm->print_worker_threads_on(st);
  3264   _cg1r->print_worker_threads_on(st);
  3265   st->cr();
  3268 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
  3269   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3270     workers()->threads_do(tc);
  3272   tc->do_thread(_cmThread);
  3273   _cg1r->threads_do(tc);
  3276 void G1CollectedHeap::print_tracing_info() const {
  3277   // We'll overload this to mean "trace GC pause statistics."
  3278   if (TraceGen0Time || TraceGen1Time) {
  3279     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
  3280     // to that.
  3281     g1_policy()->print_tracing_info();
  3283   if (G1SummarizeRSetStats) {
  3284     g1_rem_set()->print_summary_info();
  3286   if (G1SummarizeConcMark) {
  3287     concurrent_mark()->print_summary_info();
  3289   g1_policy()->print_yg_surv_rate_info();
  3290   SpecializationStats::print();
  3293 #ifndef PRODUCT
  3294 // Helpful for debugging RSet issues.
  3296 class PrintRSetsClosure : public HeapRegionClosure {
  3297 private:
  3298   const char* _msg;
  3299   size_t _occupied_sum;
  3301 public:
  3302   bool doHeapRegion(HeapRegion* r) {
  3303     HeapRegionRemSet* hrrs = r->rem_set();
  3304     size_t occupied = hrrs->occupied();
  3305     _occupied_sum += occupied;
  3307     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
  3308                            HR_FORMAT_PARAMS(r));
  3309     if (occupied == 0) {
  3310       gclog_or_tty->print_cr("  RSet is empty");
  3311     } else {
  3312       hrrs->print();
  3314     gclog_or_tty->print_cr("----------");
  3315     return false;
  3318   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
  3319     gclog_or_tty->cr();
  3320     gclog_or_tty->print_cr("========================================");
  3321     gclog_or_tty->print_cr(msg);
  3322     gclog_or_tty->cr();
  3325   ~PrintRSetsClosure() {
  3326     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
  3327     gclog_or_tty->print_cr("========================================");
  3328     gclog_or_tty->cr();
  3330 };
  3332 void G1CollectedHeap::print_cset_rsets() {
  3333   PrintRSetsClosure cl("Printing CSet RSets");
  3334   collection_set_iterate(&cl);
  3337 void G1CollectedHeap::print_all_rsets() {
  3338   PrintRSetsClosure cl("Printing All RSets");;
  3339   heap_region_iterate(&cl);
  3341 #endif // PRODUCT
  3343 G1CollectedHeap* G1CollectedHeap::heap() {
  3344   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
  3345          "not a garbage-first heap");
  3346   return _g1h;
  3349 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
  3350   // always_do_update_barrier = false;
  3351   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  3352   // Call allocation profiler
  3353   AllocationProfiler::iterate_since_last_gc();
  3354   // Fill TLAB's and such
  3355   ensure_parsability(true);
  3358 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
  3359   // FIXME: what is this about?
  3360   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  3361   // is set.
  3362   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
  3363                         "derived pointer present"));
  3364   // always_do_update_barrier = true;
  3366   // We have just completed a GC. Update the soft reference
  3367   // policy with the new heap occupancy
  3368   Universe::update_heap_info_at_gc();
  3371 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
  3372                                                unsigned int gc_count_before,
  3373                                                bool* succeeded) {
  3374   assert_heap_not_locked_and_not_at_safepoint();
  3375   g1_policy()->record_stop_world_start();
  3376   VM_G1IncCollectionPause op(gc_count_before,
  3377                              word_size,
  3378                              false, /* should_initiate_conc_mark */
  3379                              g1_policy()->max_pause_time_ms(),
  3380                              GCCause::_g1_inc_collection_pause);
  3381   VMThread::execute(&op);
  3383   HeapWord* result = op.result();
  3384   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
  3385   assert(result == NULL || ret_succeeded,
  3386          "the result should be NULL if the VM did not succeed");
  3387   *succeeded = ret_succeeded;
  3389   assert_heap_not_locked();
  3390   return result;
  3393 void
  3394 G1CollectedHeap::doConcurrentMark() {
  3395   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  3396   if (!_cmThread->in_progress()) {
  3397     _cmThread->set_started();
  3398     CGC_lock->notify();
  3402 double G1CollectedHeap::predict_region_elapsed_time_ms(HeapRegion *hr,
  3403                                                        bool young) {
  3404   return _g1_policy->predict_region_elapsed_time_ms(hr, young);
  3407 void G1CollectedHeap::check_if_region_is_too_expensive(double
  3408                                                            predicted_time_ms) {
  3409   _g1_policy->check_if_region_is_too_expensive(predicted_time_ms);
  3412 size_t G1CollectedHeap::pending_card_num() {
  3413   size_t extra_cards = 0;
  3414   JavaThread *curr = Threads::first();
  3415   while (curr != NULL) {
  3416     DirtyCardQueue& dcq = curr->dirty_card_queue();
  3417     extra_cards += dcq.size();
  3418     curr = curr->next();
  3420   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  3421   size_t buffer_size = dcqs.buffer_size();
  3422   size_t buffer_num = dcqs.completed_buffers_num();
  3423   return buffer_size * buffer_num + extra_cards;
  3426 size_t G1CollectedHeap::max_pending_card_num() {
  3427   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  3428   size_t buffer_size = dcqs.buffer_size();
  3429   size_t buffer_num  = dcqs.completed_buffers_num();
  3430   int thread_num  = Threads::number_of_threads();
  3431   return (buffer_num + thread_num) * buffer_size;
  3434 size_t G1CollectedHeap::cards_scanned() {
  3435   return g1_rem_set()->cardsScanned();
  3438 void
  3439 G1CollectedHeap::setup_surviving_young_words() {
  3440   guarantee( _surviving_young_words == NULL, "pre-condition" );
  3441   size_t array_length = g1_policy()->young_cset_region_length();
  3442   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, array_length);
  3443   if (_surviving_young_words == NULL) {
  3444     vm_exit_out_of_memory(sizeof(size_t) * array_length,
  3445                           "Not enough space for young surv words summary.");
  3447   memset(_surviving_young_words, 0, array_length * sizeof(size_t));
  3448 #ifdef ASSERT
  3449   for (size_t i = 0;  i < array_length; ++i) {
  3450     assert( _surviving_young_words[i] == 0, "memset above" );
  3452 #endif // !ASSERT
  3455 void
  3456 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  3457   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  3458   size_t array_length = g1_policy()->young_cset_region_length();
  3459   for (size_t i = 0; i < array_length; ++i)
  3460     _surviving_young_words[i] += surv_young_words[i];
  3463 void
  3464 G1CollectedHeap::cleanup_surviving_young_words() {
  3465   guarantee( _surviving_young_words != NULL, "pre-condition" );
  3466   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
  3467   _surviving_young_words = NULL;
  3470 #ifdef ASSERT
  3471 class VerifyCSetClosure: public HeapRegionClosure {
  3472 public:
  3473   bool doHeapRegion(HeapRegion* hr) {
  3474     // Here we check that the CSet region's RSet is ready for parallel
  3475     // iteration. The fields that we'll verify are only manipulated
  3476     // when the region is part of a CSet and is collected. Afterwards,
  3477     // we reset these fields when we clear the region's RSet (when the
  3478     // region is freed) so they are ready when the region is
  3479     // re-allocated. The only exception to this is if there's an
  3480     // evacuation failure and instead of freeing the region we leave
  3481     // it in the heap. In that case, we reset these fields during
  3482     // evacuation failure handling.
  3483     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
  3485     // Here's a good place to add any other checks we'd like to
  3486     // perform on CSet regions.
  3487     return false;
  3489 };
  3490 #endif // ASSERT
  3492 #if TASKQUEUE_STATS
  3493 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
  3494   st->print_raw_cr("GC Task Stats");
  3495   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
  3496   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
  3499 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
  3500   print_taskqueue_stats_hdr(st);
  3502   TaskQueueStats totals;
  3503   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3504   for (int i = 0; i < n; ++i) {
  3505     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
  3506     totals += task_queue(i)->stats;
  3508   st->print_raw("tot "); totals.print(st); st->cr();
  3510   DEBUG_ONLY(totals.verify());
  3513 void G1CollectedHeap::reset_taskqueue_stats() {
  3514   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3515   for (int i = 0; i < n; ++i) {
  3516     task_queue(i)->stats.reset();
  3519 #endif // TASKQUEUE_STATS
  3521 bool
  3522 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
  3523   assert_at_safepoint(true /* should_be_vm_thread */);
  3524   guarantee(!is_gc_active(), "collection is not reentrant");
  3526   if (GC_locker::check_active_before_gc()) {
  3527     return false;
  3530   SvcGCMarker sgcm(SvcGCMarker::MINOR);
  3531   ResourceMark rm;
  3533   if (PrintHeapAtGC) {
  3534     Universe::print_heap_before_gc();
  3537   HRSPhaseSetter x(HRSPhaseEvacuation);
  3538   verify_region_sets_optional();
  3539   verify_dirty_young_regions();
  3542     // This call will decide whether this pause is an initial-mark
  3543     // pause. If it is, during_initial_mark_pause() will return true
  3544     // for the duration of this pause.
  3545     g1_policy()->decide_on_conc_mark_initiation();
  3547     // We do not allow initial-mark to be piggy-backed on a mixed GC.
  3548     assert(!g1_policy()->during_initial_mark_pause() ||
  3549             g1_policy()->gcs_are_young(), "sanity");
  3551     // We also do not allow mixed GCs during marking.
  3552     assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
  3554     char verbose_str[128];
  3555     sprintf(verbose_str, "GC pause ");
  3556     if (g1_policy()->gcs_are_young()) {
  3557       strcat(verbose_str, "(young)");
  3558     } else {
  3559       strcat(verbose_str, "(mixed)");
  3561     if (g1_policy()->during_initial_mark_pause()) {
  3562       strcat(verbose_str, " (initial-mark)");
  3563       // We are about to start a marking cycle, so we increment the
  3564       // full collection counter.
  3565       increment_total_full_collections();
  3568     // if PrintGCDetails is on, we'll print long statistics information
  3569     // in the collector policy code, so let's not print this as the output
  3570     // is messy if we do.
  3571     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
  3572     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  3573     TraceTime t(verbose_str, PrintGC && !PrintGCDetails, true, gclog_or_tty);
  3575     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
  3576     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
  3578     // If the secondary_free_list is not empty, append it to the
  3579     // free_list. No need to wait for the cleanup operation to finish;
  3580     // the region allocation code will check the secondary_free_list
  3581     // and wait if necessary. If the G1StressConcRegionFreeing flag is
  3582     // set, skip this step so that the region allocation code has to
  3583     // get entries from the secondary_free_list.
  3584     if (!G1StressConcRegionFreeing) {
  3585       append_secondary_free_list_if_not_empty_with_lock();
  3588     assert(check_young_list_well_formed(),
  3589       "young list should be well formed");
  3591     // Don't dynamically change the number of GC threads this early.  A value of
  3592     // 0 is used to indicate serial work.  When parallel work is done,
  3593     // it will be set.
  3595     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
  3596       IsGCActiveMark x;
  3598       gc_prologue(false);
  3599       increment_total_collections(false /* full gc */);
  3600       increment_gc_time_stamp();
  3602       if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
  3603         HandleMark hm;  // Discard invalid handles created during verification
  3604         gclog_or_tty->print(" VerifyBeforeGC:");
  3605         prepare_for_verify();
  3606         Universe::verify(/* allow dirty */ false,
  3607                          /* silent      */ false,
  3608                          /* option      */ VerifyOption_G1UsePrevMarking);
  3612       COMPILER2_PRESENT(DerivedPointerTable::clear());
  3614       // Please see comment in g1CollectedHeap.hpp and
  3615       // G1CollectedHeap::ref_processing_init() to see how
  3616       // reference processing currently works in G1.
  3618       // Enable discovery in the STW reference processor
  3619       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
  3620                                             true /*verify_no_refs*/);
  3623         // We want to temporarily turn off discovery by the
  3624         // CM ref processor, if necessary, and turn it back on
  3625         // on again later if we do. Using a scoped
  3626         // NoRefDiscovery object will do this.
  3627         NoRefDiscovery no_cm_discovery(ref_processor_cm());
  3629         // Forget the current alloc region (we might even choose it to be part
  3630         // of the collection set!).
  3631         release_mutator_alloc_region();
  3633         // We should call this after we retire the mutator alloc
  3634         // region(s) so that all the ALLOC / RETIRE events are generated
  3635         // before the start GC event.
  3636         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
  3638         // The elapsed time induced by the start time below deliberately elides
  3639         // the possible verification above.
  3640         double start_time_sec = os::elapsedTime();
  3641         size_t start_used_bytes = used();
  3643 #if YOUNG_LIST_VERBOSE
  3644         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
  3645         _young_list->print();
  3646         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3647 #endif // YOUNG_LIST_VERBOSE
  3649         g1_policy()->record_collection_pause_start(start_time_sec,
  3650                                                    start_used_bytes);
  3652 #if YOUNG_LIST_VERBOSE
  3653         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
  3654         _young_list->print();
  3655 #endif // YOUNG_LIST_VERBOSE
  3657         if (g1_policy()->during_initial_mark_pause()) {
  3658           concurrent_mark()->checkpointRootsInitialPre();
  3660         perm_gen()->save_marks();
  3662         // We must do this before any possible evacuation that should propagate
  3663         // marks.
  3664         if (mark_in_progress()) {
  3665           double start_time_sec = os::elapsedTime();
  3667           _cm->drainAllSATBBuffers();
  3668           double finish_mark_ms = (os::elapsedTime() - start_time_sec) * 1000.0;
  3669           g1_policy()->record_satb_drain_time(finish_mark_ms);
  3671         // Record the number of elements currently on the mark stack, so we
  3672         // only iterate over these.  (Since evacuation may add to the mark
  3673         // stack, doing more exposes race conditions.)  If no mark is in
  3674         // progress, this will be zero.
  3675         _cm->set_oops_do_bound();
  3677         if (mark_in_progress()) {
  3678           concurrent_mark()->newCSet();
  3681 #if YOUNG_LIST_VERBOSE
  3682         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
  3683         _young_list->print();
  3684         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3685 #endif // YOUNG_LIST_VERBOSE
  3687         g1_policy()->choose_collection_set(target_pause_time_ms);
  3689         if (_hr_printer.is_active()) {
  3690           HeapRegion* hr = g1_policy()->collection_set();
  3691           while (hr != NULL) {
  3692             G1HRPrinter::RegionType type;
  3693             if (!hr->is_young()) {
  3694               type = G1HRPrinter::Old;
  3695             } else if (hr->is_survivor()) {
  3696               type = G1HRPrinter::Survivor;
  3697             } else {
  3698               type = G1HRPrinter::Eden;
  3700             _hr_printer.cset(hr);
  3701             hr = hr->next_in_collection_set();
  3705         // We have chosen the complete collection set. If marking is
  3706         // active then, we clear the region fields of any of the
  3707         // concurrent marking tasks whose region fields point into
  3708         // the collection set as these values will become stale. This
  3709         // will cause the owning marking threads to claim a new region
  3710         // when marking restarts.
  3711         if (mark_in_progress()) {
  3712           concurrent_mark()->reset_active_task_region_fields_in_cset();
  3715 #ifdef ASSERT
  3716         VerifyCSetClosure cl;
  3717         collection_set_iterate(&cl);
  3718 #endif // ASSERT
  3720         setup_surviving_young_words();
  3722         // Initialize the GC alloc regions.
  3723         init_gc_alloc_regions();
  3725         // Actually do the work...
  3726         evacuate_collection_set();
  3728         free_collection_set(g1_policy()->collection_set());
  3729         g1_policy()->clear_collection_set();
  3731         cleanup_surviving_young_words();
  3733         // Start a new incremental collection set for the next pause.
  3734         g1_policy()->start_incremental_cset_building();
  3736         // Clear the _cset_fast_test bitmap in anticipation of adding
  3737         // regions to the incremental collection set for the next
  3738         // evacuation pause.
  3739         clear_cset_fast_test();
  3741         _young_list->reset_sampled_info();
  3743         // Don't check the whole heap at this point as the
  3744         // GC alloc regions from this pause have been tagged
  3745         // as survivors and moved on to the survivor list.
  3746         // Survivor regions will fail the !is_young() check.
  3747         assert(check_young_list_empty(false /* check_heap */),
  3748           "young list should be empty");
  3750 #if YOUNG_LIST_VERBOSE
  3751         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
  3752         _young_list->print();
  3753 #endif // YOUNG_LIST_VERBOSE
  3755         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
  3756                                             _young_list->first_survivor_region(),
  3757                                             _young_list->last_survivor_region());
  3759         _young_list->reset_auxilary_lists();
  3761         if (evacuation_failed()) {
  3762           _summary_bytes_used = recalculate_used();
  3763         } else {
  3764           // The "used" of the the collection set have already been subtracted
  3765           // when they were freed.  Add in the bytes evacuated.
  3766           _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
  3769         if (g1_policy()->during_initial_mark_pause()) {
  3770           concurrent_mark()->checkpointRootsInitialPost();
  3771           set_marking_started();
  3772           // CAUTION: after the doConcurrentMark() call below,
  3773           // the concurrent marking thread(s) could be running
  3774           // concurrently with us. Make sure that anything after
  3775           // this point does not assume that we are the only GC thread
  3776           // running. Note: of course, the actual marking work will
  3777           // not start until the safepoint itself is released in
  3778           // ConcurrentGCThread::safepoint_desynchronize().
  3779           doConcurrentMark();
  3782         allocate_dummy_regions();
  3784 #if YOUNG_LIST_VERBOSE
  3785         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
  3786         _young_list->print();
  3787         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3788 #endif // YOUNG_LIST_VERBOSE
  3790         init_mutator_alloc_region();
  3793           size_t expand_bytes = g1_policy()->expansion_amount();
  3794           if (expand_bytes > 0) {
  3795             size_t bytes_before = capacity();
  3796             // No need for an ergo verbose message here,
  3797             // expansion_amount() does this when it returns a value > 0.
  3798             if (!expand(expand_bytes)) {
  3799               // We failed to expand the heap so let's verify that
  3800               // committed/uncommitted amount match the backing store
  3801               assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
  3802               assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
  3807         double end_time_sec = os::elapsedTime();
  3808         double pause_time_ms = (end_time_sec - start_time_sec) * MILLIUNITS;
  3809         g1_policy()->record_pause_time_ms(pause_time_ms);
  3810         int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  3811                                 workers()->active_workers() : 1);
  3812         g1_policy()->record_collection_pause_end(active_workers);
  3814         MemoryService::track_memory_usage();
  3816         // In prepare_for_verify() below we'll need to scan the deferred
  3817         // update buffers to bring the RSets up-to-date if
  3818         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
  3819         // the update buffers we'll probably need to scan cards on the
  3820         // regions we just allocated to (i.e., the GC alloc
  3821         // regions). However, during the last GC we called
  3822         // set_saved_mark() on all the GC alloc regions, so card
  3823         // scanning might skip the [saved_mark_word()...top()] area of
  3824         // those regions (i.e., the area we allocated objects into
  3825         // during the last GC). But it shouldn't. Given that
  3826         // saved_mark_word() is conditional on whether the GC time stamp
  3827         // on the region is current or not, by incrementing the GC time
  3828         // stamp here we invalidate all the GC time stamps on all the
  3829         // regions and saved_mark_word() will simply return top() for
  3830         // all the regions. This is a nicer way of ensuring this rather
  3831         // than iterating over the regions and fixing them. In fact, the
  3832         // GC time stamp increment here also ensures that
  3833         // saved_mark_word() will return top() between pauses, i.e.,
  3834         // during concurrent refinement. So we don't need the
  3835         // is_gc_active() check to decided which top to use when
  3836         // scanning cards (see CR 7039627).
  3837         increment_gc_time_stamp();
  3839         if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
  3840           HandleMark hm;  // Discard invalid handles created during verification
  3841           gclog_or_tty->print(" VerifyAfterGC:");
  3842           prepare_for_verify();
  3843           Universe::verify(/* allow dirty */ true,
  3844                            /* silent      */ false,
  3845                            /* option      */ VerifyOption_G1UsePrevMarking);
  3848         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
  3849         ref_processor_stw()->verify_no_references_recorded();
  3851         // CM reference discovery will be re-enabled if necessary.
  3854       // We should do this after we potentially expand the heap so
  3855       // that all the COMMIT events are generated before the end GC
  3856       // event, and after we retire the GC alloc regions so that all
  3857       // RETIRE events are generated before the end GC event.
  3858       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
  3860       // We have to do this after we decide whether to expand the heap or not.
  3861       g1_policy()->print_heap_transition();
  3863       if (mark_in_progress()) {
  3864         concurrent_mark()->update_g1_committed();
  3867 #ifdef TRACESPINNING
  3868       ParallelTaskTerminator::print_termination_counts();
  3869 #endif
  3871       gc_epilogue(false);
  3874     if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
  3875       gclog_or_tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
  3876       print_tracing_info();
  3877       vm_exit(-1);
  3881   _hrs.verify_optional();
  3882   verify_region_sets_optional();
  3884   TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
  3885   TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
  3887   if (PrintHeapAtGC) {
  3888     Universe::print_heap_after_gc();
  3890   g1mm()->update_sizes();
  3892   if (G1SummarizeRSetStats &&
  3893       (G1SummarizeRSetStatsPeriod > 0) &&
  3894       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
  3895     g1_rem_set()->print_summary_info();
  3898   return true;
  3901 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
  3903   size_t gclab_word_size;
  3904   switch (purpose) {
  3905     case GCAllocForSurvived:
  3906       gclab_word_size = YoungPLABSize;
  3907       break;
  3908     case GCAllocForTenured:
  3909       gclab_word_size = OldPLABSize;
  3910       break;
  3911     default:
  3912       assert(false, "unknown GCAllocPurpose");
  3913       gclab_word_size = OldPLABSize;
  3914       break;
  3916   return gclab_word_size;
  3919 void G1CollectedHeap::init_mutator_alloc_region() {
  3920   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
  3921   _mutator_alloc_region.init();
  3924 void G1CollectedHeap::release_mutator_alloc_region() {
  3925   _mutator_alloc_region.release();
  3926   assert(_mutator_alloc_region.get() == NULL, "post-condition");
  3929 void G1CollectedHeap::init_gc_alloc_regions() {
  3930   assert_at_safepoint(true /* should_be_vm_thread */);
  3932   _survivor_gc_alloc_region.init();
  3933   _old_gc_alloc_region.init();
  3934   HeapRegion* retained_region = _retained_old_gc_alloc_region;
  3935   _retained_old_gc_alloc_region = NULL;
  3937   // We will discard the current GC alloc region if:
  3938   // a) it's in the collection set (it can happen!),
  3939   // b) it's already full (no point in using it),
  3940   // c) it's empty (this means that it was emptied during
  3941   // a cleanup and it should be on the free list now), or
  3942   // d) it's humongous (this means that it was emptied
  3943   // during a cleanup and was added to the free list, but
  3944   // has been subseqently used to allocate a humongous
  3945   // object that may be less than the region size).
  3946   if (retained_region != NULL &&
  3947       !retained_region->in_collection_set() &&
  3948       !(retained_region->top() == retained_region->end()) &&
  3949       !retained_region->is_empty() &&
  3950       !retained_region->isHumongous()) {
  3951     retained_region->set_saved_mark();
  3952     // The retained region was added to the old region set when it was
  3953     // retired. We have to remove it now, since we don't allow regions
  3954     // we allocate to in the region sets. We'll re-add it later, when
  3955     // it's retired again.
  3956     _old_set.remove(retained_region);
  3957     _old_gc_alloc_region.set(retained_region);
  3958     _hr_printer.reuse(retained_region);
  3962 void G1CollectedHeap::release_gc_alloc_regions() {
  3963   _survivor_gc_alloc_region.release();
  3964   // If we have an old GC alloc region to release, we'll save it in
  3965   // _retained_old_gc_alloc_region. If we don't
  3966   // _retained_old_gc_alloc_region will become NULL. This is what we
  3967   // want either way so no reason to check explicitly for either
  3968   // condition.
  3969   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
  3972 void G1CollectedHeap::abandon_gc_alloc_regions() {
  3973   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
  3974   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
  3975   _retained_old_gc_alloc_region = NULL;
  3978 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  3979   _drain_in_progress = false;
  3980   set_evac_failure_closure(cl);
  3981   _evac_failure_scan_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
  3984 void G1CollectedHeap::finalize_for_evac_failure() {
  3985   assert(_evac_failure_scan_stack != NULL &&
  3986          _evac_failure_scan_stack->length() == 0,
  3987          "Postcondition");
  3988   assert(!_drain_in_progress, "Postcondition");
  3989   delete _evac_failure_scan_stack;
  3990   _evac_failure_scan_stack = NULL;
  3993 void G1CollectedHeap::remove_self_forwarding_pointers() {
  3994   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
  3995   assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
  3997   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
  3999   if (G1CollectedHeap::use_parallel_gc_threads()) {
  4000     set_par_threads();
  4001     workers()->run_task(&rsfp_task);
  4002     set_par_threads(0);
  4003   } else {
  4004     rsfp_task.work(0);
  4007   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
  4009   // Reset the claim values in the regions in the collection set.
  4010   reset_cset_heap_region_claim_values();
  4012   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
  4013   assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
  4015   // Now restore saved marks, if any.
  4016   if (_objs_with_preserved_marks != NULL) {
  4017     assert(_preserved_marks_of_objs != NULL, "Both or none.");
  4018     guarantee(_objs_with_preserved_marks->length() ==
  4019               _preserved_marks_of_objs->length(), "Both or none.");
  4020     for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
  4021       oop obj   = _objs_with_preserved_marks->at(i);
  4022       markOop m = _preserved_marks_of_objs->at(i);
  4023       obj->set_mark(m);
  4026     // Delete the preserved marks growable arrays (allocated on the C heap).
  4027     delete _objs_with_preserved_marks;
  4028     delete _preserved_marks_of_objs;
  4029     _objs_with_preserved_marks = NULL;
  4030     _preserved_marks_of_objs = NULL;
  4034 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  4035   _evac_failure_scan_stack->push(obj);
  4038 void G1CollectedHeap::drain_evac_failure_scan_stack() {
  4039   assert(_evac_failure_scan_stack != NULL, "precondition");
  4041   while (_evac_failure_scan_stack->length() > 0) {
  4042      oop obj = _evac_failure_scan_stack->pop();
  4043      _evac_failure_closure->set_region(heap_region_containing(obj));
  4044      obj->oop_iterate_backwards(_evac_failure_closure);
  4048 oop
  4049 G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
  4050                                                oop old,
  4051                                                bool should_mark_root) {
  4052   assert(obj_in_cs(old),
  4053          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
  4054                  (HeapWord*) old));
  4055   markOop m = old->mark();
  4056   oop forward_ptr = old->forward_to_atomic(old);
  4057   if (forward_ptr == NULL) {
  4058     // Forward-to-self succeeded.
  4060     // should_mark_root will be true when this routine is called
  4061     // from a root scanning closure during an initial mark pause.
  4062     // In this case the thread that succeeds in self-forwarding the
  4063     // object is also responsible for marking the object.
  4064     if (should_mark_root) {
  4065       assert(!oopDesc::is_null(old), "shouldn't be");
  4066       _cm->grayRoot(old);
  4069     if (_evac_failure_closure != cl) {
  4070       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
  4071       assert(!_drain_in_progress,
  4072              "Should only be true while someone holds the lock.");
  4073       // Set the global evac-failure closure to the current thread's.
  4074       assert(_evac_failure_closure == NULL, "Or locking has failed.");
  4075       set_evac_failure_closure(cl);
  4076       // Now do the common part.
  4077       handle_evacuation_failure_common(old, m);
  4078       // Reset to NULL.
  4079       set_evac_failure_closure(NULL);
  4080     } else {
  4081       // The lock is already held, and this is recursive.
  4082       assert(_drain_in_progress, "This should only be the recursive case.");
  4083       handle_evacuation_failure_common(old, m);
  4085     return old;
  4086   } else {
  4087     // Forward-to-self failed. Either someone else managed to allocate
  4088     // space for this object (old != forward_ptr) or they beat us in
  4089     // self-forwarding it (old == forward_ptr).
  4090     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
  4091            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
  4092                    "should not be in the CSet",
  4093                    (HeapWord*) old, (HeapWord*) forward_ptr));
  4094     return forward_ptr;
  4098 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  4099   set_evacuation_failed(true);
  4101   preserve_mark_if_necessary(old, m);
  4103   HeapRegion* r = heap_region_containing(old);
  4104   if (!r->evacuation_failed()) {
  4105     r->set_evacuation_failed(true);
  4106     _hr_printer.evac_failure(r);
  4109   push_on_evac_failure_scan_stack(old);
  4111   if (!_drain_in_progress) {
  4112     // prevent recursion in copy_to_survivor_space()
  4113     _drain_in_progress = true;
  4114     drain_evac_failure_scan_stack();
  4115     _drain_in_progress = false;
  4119 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
  4120   assert(evacuation_failed(), "Oversaving!");
  4121   // We want to call the "for_promotion_failure" version only in the
  4122   // case of a promotion failure.
  4123   if (m->must_be_preserved_for_promotion_failure(obj)) {
  4124     if (_objs_with_preserved_marks == NULL) {
  4125       assert(_preserved_marks_of_objs == NULL, "Both or none.");
  4126       _objs_with_preserved_marks =
  4127         new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
  4128       _preserved_marks_of_objs =
  4129         new (ResourceObj::C_HEAP) GrowableArray<markOop>(40, true);
  4131     _objs_with_preserved_marks->push(obj);
  4132     _preserved_marks_of_objs->push(m);
  4136 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
  4137                                                   size_t word_size) {
  4138   if (purpose == GCAllocForSurvived) {
  4139     HeapWord* result = survivor_attempt_allocation(word_size);
  4140     if (result != NULL) {
  4141       return result;
  4142     } else {
  4143       // Let's try to allocate in the old gen in case we can fit the
  4144       // object there.
  4145       return old_attempt_allocation(word_size);
  4147   } else {
  4148     assert(purpose ==  GCAllocForTenured, "sanity");
  4149     HeapWord* result = old_attempt_allocation(word_size);
  4150     if (result != NULL) {
  4151       return result;
  4152     } else {
  4153       // Let's try to allocate in the survivors in case we can fit the
  4154       // object there.
  4155       return survivor_attempt_allocation(word_size);
  4159   ShouldNotReachHere();
  4160   // Trying to keep some compilers happy.
  4161   return NULL;
  4164 #ifndef PRODUCT
  4165 bool GCLabBitMapClosure::do_bit(size_t offset) {
  4166   HeapWord* addr = _bitmap->offsetToHeapWord(offset);
  4167   guarantee(_cm->isMarked(oop(addr)), "it should be!");
  4168   return true;
  4170 #endif // PRODUCT
  4172 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
  4173   ParGCAllocBuffer(gclab_word_size),
  4174   _should_mark_objects(false),
  4175   _bitmap(G1CollectedHeap::heap()->reserved_region().start(), gclab_word_size),
  4176   _retired(false)
  4178   //_should_mark_objects is set to true when G1ParCopyHelper needs to
  4179   // mark the forwarded location of an evacuated object.
  4180   // We set _should_mark_objects to true if marking is active, i.e. when we
  4181   // need to propagate a mark, or during an initial mark pause, i.e. when we
  4182   // need to mark objects immediately reachable by the roots.
  4183   if (G1CollectedHeap::heap()->mark_in_progress() ||
  4184       G1CollectedHeap::heap()->g1_policy()->during_initial_mark_pause()) {
  4185     _should_mark_objects = true;
  4189 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num)
  4190   : _g1h(g1h),
  4191     _refs(g1h->task_queue(queue_num)),
  4192     _dcq(&g1h->dirty_card_queue_set()),
  4193     _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
  4194     _g1_rem(g1h->g1_rem_set()),
  4195     _hash_seed(17), _queue_num(queue_num),
  4196     _term_attempts(0),
  4197     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
  4198     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
  4199     _age_table(false),
  4200     _strong_roots_time(0), _term_time(0),
  4201     _alloc_buffer_waste(0), _undo_waste(0)
  4203   // we allocate G1YoungSurvRateNumRegions plus one entries, since
  4204   // we "sacrifice" entry 0 to keep track of surviving bytes for
  4205   // non-young regions (where the age is -1)
  4206   // We also add a few elements at the beginning and at the end in
  4207   // an attempt to eliminate cache contention
  4208   size_t real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
  4209   size_t array_length = PADDING_ELEM_NUM +
  4210                         real_length +
  4211                         PADDING_ELEM_NUM;
  4212   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length);
  4213   if (_surviving_young_words_base == NULL)
  4214     vm_exit_out_of_memory(array_length * sizeof(size_t),
  4215                           "Not enough space for young surv histo.");
  4216   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
  4217   memset(_surviving_young_words, 0, real_length * sizeof(size_t));
  4219   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
  4220   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
  4222   _start = os::elapsedTime();
  4225 void
  4226 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
  4228   st->print_raw_cr("GC Termination Stats");
  4229   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
  4230                    " ------waste (KiB)------");
  4231   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
  4232                    "  total   alloc    undo");
  4233   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
  4234                    " ------- ------- -------");
  4237 void
  4238 G1ParScanThreadState::print_termination_stats(int i,
  4239                                               outputStream* const st) const
  4241   const double elapsed_ms = elapsed_time() * 1000.0;
  4242   const double s_roots_ms = strong_roots_time() * 1000.0;
  4243   const double term_ms    = term_time() * 1000.0;
  4244   st->print_cr("%3d %9.2f %9.2f %6.2f "
  4245                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
  4246                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
  4247                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
  4248                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
  4249                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
  4250                alloc_buffer_waste() * HeapWordSize / K,
  4251                undo_waste() * HeapWordSize / K);
  4254 #ifdef ASSERT
  4255 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
  4256   assert(ref != NULL, "invariant");
  4257   assert(UseCompressedOops, "sanity");
  4258   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
  4259   oop p = oopDesc::load_decode_heap_oop(ref);
  4260   assert(_g1h->is_in_g1_reserved(p),
  4261          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  4262   return true;
  4265 bool G1ParScanThreadState::verify_ref(oop* ref) const {
  4266   assert(ref != NULL, "invariant");
  4267   if (has_partial_array_mask(ref)) {
  4268     // Must be in the collection set--it's already been copied.
  4269     oop p = clear_partial_array_mask(ref);
  4270     assert(_g1h->obj_in_cs(p),
  4271            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  4272   } else {
  4273     oop p = oopDesc::load_decode_heap_oop(ref);
  4274     assert(_g1h->is_in_g1_reserved(p),
  4275            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  4277   return true;
  4280 bool G1ParScanThreadState::verify_task(StarTask ref) const {
  4281   if (ref.is_narrow()) {
  4282     return verify_ref((narrowOop*) ref);
  4283   } else {
  4284     return verify_ref((oop*) ref);
  4287 #endif // ASSERT
  4289 void G1ParScanThreadState::trim_queue() {
  4290   assert(_evac_cl != NULL, "not set");
  4291   assert(_evac_failure_cl != NULL, "not set");
  4292   assert(_partial_scan_cl != NULL, "not set");
  4294   StarTask ref;
  4295   do {
  4296     // Drain the overflow stack first, so other threads can steal.
  4297     while (refs()->pop_overflow(ref)) {
  4298       deal_with_reference(ref);
  4301     while (refs()->pop_local(ref)) {
  4302       deal_with_reference(ref);
  4304   } while (!refs()->is_empty());
  4307 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1, G1ParScanThreadState* par_scan_state) :
  4308   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
  4309   _par_scan_state(par_scan_state),
  4310   _during_initial_mark(_g1->g1_policy()->during_initial_mark_pause()),
  4311   _mark_in_progress(_g1->mark_in_progress()) { }
  4313 template <class T> void G1ParCopyHelper::mark_object(T* p) {
  4314   // This is called from do_oop_work for objects that are not
  4315   // in the collection set. Objects in the collection set
  4316   // are marked after they have been evacuated.
  4318   T heap_oop = oopDesc::load_heap_oop(p);
  4319   if (!oopDesc::is_null(heap_oop)) {
  4320     oop obj = oopDesc::decode_heap_oop(heap_oop);
  4321     HeapWord* addr = (HeapWord*)obj;
  4322     if (_g1->is_in_g1_reserved(addr)) {
  4323       _cm->grayRoot(oop(addr));
  4328 oop G1ParCopyHelper::copy_to_survivor_space(oop old, bool should_mark_root,
  4329                                                      bool should_mark_copy) {
  4330   size_t    word_sz = old->size();
  4331   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
  4332   // +1 to make the -1 indexes valid...
  4333   int       young_index = from_region->young_index_in_cset()+1;
  4334   assert( (from_region->is_young() && young_index > 0) ||
  4335           (!from_region->is_young() && young_index == 0), "invariant" );
  4336   G1CollectorPolicy* g1p = _g1->g1_policy();
  4337   markOop m = old->mark();
  4338   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
  4339                                            : m->age();
  4340   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
  4341                                                              word_sz);
  4342   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
  4343   oop       obj     = oop(obj_ptr);
  4345   if (obj_ptr == NULL) {
  4346     // This will either forward-to-self, or detect that someone else has
  4347     // installed a forwarding pointer.
  4348     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
  4349     return _g1->handle_evacuation_failure_par(cl, old, should_mark_root);
  4352   // We're going to allocate linearly, so might as well prefetch ahead.
  4353   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
  4355   oop forward_ptr = old->forward_to_atomic(obj);
  4356   if (forward_ptr == NULL) {
  4357     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
  4358     if (g1p->track_object_age(alloc_purpose)) {
  4359       // We could simply do obj->incr_age(). However, this causes a
  4360       // performance issue. obj->incr_age() will first check whether
  4361       // the object has a displaced mark by checking its mark word;
  4362       // getting the mark word from the new location of the object
  4363       // stalls. So, given that we already have the mark word and we
  4364       // are about to install it anyway, it's better to increase the
  4365       // age on the mark word, when the object does not have a
  4366       // displaced mark word. We're not expecting many objects to have
  4367       // a displaced marked word, so that case is not optimized
  4368       // further (it could be...) and we simply call obj->incr_age().
  4370       if (m->has_displaced_mark_helper()) {
  4371         // in this case, we have to install the mark word first,
  4372         // otherwise obj looks to be forwarded (the old mark word,
  4373         // which contains the forward pointer, was copied)
  4374         obj->set_mark(m);
  4375         obj->incr_age();
  4376       } else {
  4377         m = m->incr_age();
  4378         obj->set_mark(m);
  4380       _par_scan_state->age_table()->add(obj, word_sz);
  4381     } else {
  4382       obj->set_mark(m);
  4385     // Mark the evacuated object or propagate "next" mark bit
  4386     if (should_mark_copy) {
  4387       if (!use_local_bitmaps ||
  4388           !_par_scan_state->alloc_buffer(alloc_purpose)->mark(obj_ptr)) {
  4389         // if we couldn't mark it on the local bitmap (this happens when
  4390         // the object was not allocated in the GCLab), we have to bite
  4391         // the bullet and do the standard parallel mark
  4392         _cm->markAndGrayObjectIfNecessary(obj);
  4395       if (_g1->isMarkedNext(old)) {
  4396         // Unmark the object's old location so that marking
  4397         // doesn't think the old object is alive.
  4398         _cm->nextMarkBitMap()->parClear((HeapWord*)old);
  4402     size_t* surv_young_words = _par_scan_state->surviving_young_words();
  4403     surv_young_words[young_index] += word_sz;
  4405     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
  4406       // We keep track of the next start index in the length field of
  4407       // the to-space object. The actual length can be found in the
  4408       // length field of the from-space object.
  4409       arrayOop(obj)->set_length(0);
  4410       oop* old_p = set_partial_array_mask(old);
  4411       _par_scan_state->push_on_queue(old_p);
  4412     } else {
  4413       // No point in using the slower heap_region_containing() method,
  4414       // given that we know obj is in the heap.
  4415       _scanner->set_region(_g1->heap_region_containing_raw(obj));
  4416       obj->oop_iterate_backwards(_scanner);
  4418   } else {
  4419     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
  4420     obj = forward_ptr;
  4422   return obj;
  4425 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
  4426 template <class T>
  4427 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
  4428 ::do_oop_work(T* p) {
  4429   oop obj = oopDesc::load_decode_heap_oop(p);
  4430   assert(barrier != G1BarrierRS || obj != NULL,
  4431          "Precondition: G1BarrierRS implies obj is nonNull");
  4433   // Marking:
  4434   // If the object is in the collection set, then the thread
  4435   // that copies the object should mark, or propagate the
  4436   // mark to, the evacuated object.
  4437   // If the object is not in the collection set then we
  4438   // should call the mark_object() method depending on the
  4439   // value of the template parameter do_mark_object (which will
  4440   // be true for root scanning closures during an initial mark
  4441   // pause).
  4442   // The mark_object() method first checks whether the object
  4443   // is marked and, if not, attempts to mark the object.
  4445   // here the null check is implicit in the cset_fast_test() test
  4446   if (_g1->in_cset_fast_test(obj)) {
  4447     if (obj->is_forwarded()) {
  4448       oopDesc::encode_store_heap_oop(p, obj->forwardee());
  4449       // If we are a root scanning closure during an initial
  4450       // mark pause (i.e. do_mark_object will be true) then
  4451       // we also need to handle marking of roots in the
  4452       // event of an evacuation failure. In the event of an
  4453       // evacuation failure, the object is forwarded to itself
  4454       // and not copied. For root-scanning closures, the
  4455       // object would be marked after a successful self-forward
  4456       // but an object could be pointed to by both a root and non
  4457       // root location and be self-forwarded by a non-root-scanning
  4458       // closure. Therefore we also have to attempt to mark the
  4459       // self-forwarded root object here.
  4460       if (do_mark_object && obj->forwardee() == obj) {
  4461         mark_object(p);
  4463     } else {
  4464       // During an initial mark pause, objects that are pointed to
  4465       // by the roots need to be marked - even in the event of an
  4466       // evacuation failure. We pass the template parameter
  4467       // do_mark_object (which is true for root scanning closures
  4468       // during an initial mark pause) to copy_to_survivor_space
  4469       // which will pass it on to the evacuation failure handling
  4470       // code. The thread that successfully self-forwards a root
  4471       // object to itself is responsible for marking the object.
  4472       bool should_mark_root = do_mark_object;
  4474       // We need to mark the copied object if we're a root scanning
  4475       // closure during an initial mark pause (i.e. do_mark_object
  4476       // will be true), or the object is already marked and we need
  4477       // to propagate the mark to the evacuated copy.
  4478       bool should_mark_copy = do_mark_object ||
  4479                               _during_initial_mark ||
  4480                               (_mark_in_progress && !_g1->is_obj_ill(obj));
  4482       oop copy_oop = copy_to_survivor_space(obj, should_mark_root,
  4483                                                  should_mark_copy);
  4484       oopDesc::encode_store_heap_oop(p, copy_oop);
  4486     // When scanning the RS, we only care about objs in CS.
  4487     if (barrier == G1BarrierRS) {
  4488       _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
  4490   } else {
  4491     // The object is not in collection set. If we're a root scanning
  4492     // closure during an initial mark pause (i.e. do_mark_object will
  4493     // be true) then attempt to mark the object.
  4494     if (do_mark_object) {
  4495       mark_object(p);
  4499   if (barrier == G1BarrierEvac && obj != NULL) {
  4500     _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
  4503   if (do_gen_barrier && obj != NULL) {
  4504     par_do_barrier(p);
  4508 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
  4509 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
  4511 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
  4512   assert(has_partial_array_mask(p), "invariant");
  4513   oop from_obj = clear_partial_array_mask(p);
  4515   assert(Universe::heap()->is_in_reserved(from_obj), "must be in heap.");
  4516   assert(from_obj->is_objArray(), "must be obj array");
  4517   objArrayOop from_obj_array = objArrayOop(from_obj);
  4518   // The from-space object contains the real length.
  4519   int length                 = from_obj_array->length();
  4521   assert(from_obj->is_forwarded(), "must be forwarded");
  4522   oop to_obj                 = from_obj->forwardee();
  4523   assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
  4524   objArrayOop to_obj_array   = objArrayOop(to_obj);
  4525   // We keep track of the next start index in the length field of the
  4526   // to-space object.
  4527   int next_index             = to_obj_array->length();
  4528   assert(0 <= next_index && next_index < length,
  4529          err_msg("invariant, next index: %d, length: %d", next_index, length));
  4531   int start                  = next_index;
  4532   int end                    = length;
  4533   int remainder              = end - start;
  4534   // We'll try not to push a range that's smaller than ParGCArrayScanChunk.
  4535   if (remainder > 2 * ParGCArrayScanChunk) {
  4536     end = start + ParGCArrayScanChunk;
  4537     to_obj_array->set_length(end);
  4538     // Push the remainder before we process the range in case another
  4539     // worker has run out of things to do and can steal it.
  4540     oop* from_obj_p = set_partial_array_mask(from_obj);
  4541     _par_scan_state->push_on_queue(from_obj_p);
  4542   } else {
  4543     assert(length == end, "sanity");
  4544     // We'll process the final range for this object. Restore the length
  4545     // so that the heap remains parsable in case of evacuation failure.
  4546     to_obj_array->set_length(end);
  4548   _scanner.set_region(_g1->heap_region_containing_raw(to_obj));
  4549   // Process indexes [start,end). It will also process the header
  4550   // along with the first chunk (i.e., the chunk with start == 0).
  4551   // Note that at this point the length field of to_obj_array is not
  4552   // correct given that we are using it to keep track of the next
  4553   // start index. oop_iterate_range() (thankfully!) ignores the length
  4554   // field and only relies on the start / end parameters.  It does
  4555   // however return the size of the object which will be incorrect. So
  4556   // we have to ignore it even if we wanted to use it.
  4557   to_obj_array->oop_iterate_range(&_scanner, start, end);
  4560 class G1ParEvacuateFollowersClosure : public VoidClosure {
  4561 protected:
  4562   G1CollectedHeap*              _g1h;
  4563   G1ParScanThreadState*         _par_scan_state;
  4564   RefToScanQueueSet*            _queues;
  4565   ParallelTaskTerminator*       _terminator;
  4567   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  4568   RefToScanQueueSet*      queues()         { return _queues; }
  4569   ParallelTaskTerminator* terminator()     { return _terminator; }
  4571 public:
  4572   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
  4573                                 G1ParScanThreadState* par_scan_state,
  4574                                 RefToScanQueueSet* queues,
  4575                                 ParallelTaskTerminator* terminator)
  4576     : _g1h(g1h), _par_scan_state(par_scan_state),
  4577       _queues(queues), _terminator(terminator) {}
  4579   void do_void();
  4581 private:
  4582   inline bool offer_termination();
  4583 };
  4585 bool G1ParEvacuateFollowersClosure::offer_termination() {
  4586   G1ParScanThreadState* const pss = par_scan_state();
  4587   pss->start_term_time();
  4588   const bool res = terminator()->offer_termination();
  4589   pss->end_term_time();
  4590   return res;
  4593 void G1ParEvacuateFollowersClosure::do_void() {
  4594   StarTask stolen_task;
  4595   G1ParScanThreadState* const pss = par_scan_state();
  4596   pss->trim_queue();
  4598   do {
  4599     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
  4600       assert(pss->verify_task(stolen_task), "sanity");
  4601       if (stolen_task.is_narrow()) {
  4602         pss->deal_with_reference((narrowOop*) stolen_task);
  4603       } else {
  4604         pss->deal_with_reference((oop*) stolen_task);
  4607       // We've just processed a reference and we might have made
  4608       // available new entries on the queues. So we have to make sure
  4609       // we drain the queues as necessary.
  4610       pss->trim_queue();
  4612   } while (!offer_termination());
  4614   pss->retire_alloc_buffers();
  4617 class G1ParTask : public AbstractGangTask {
  4618 protected:
  4619   G1CollectedHeap*       _g1h;
  4620   RefToScanQueueSet      *_queues;
  4621   ParallelTaskTerminator _terminator;
  4622   uint _n_workers;
  4624   Mutex _stats_lock;
  4625   Mutex* stats_lock() { return &_stats_lock; }
  4627   size_t getNCards() {
  4628     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
  4629       / G1BlockOffsetSharedArray::N_bytes;
  4632 public:
  4633   G1ParTask(G1CollectedHeap* g1h,
  4634             RefToScanQueueSet *task_queues)
  4635     : AbstractGangTask("G1 collection"),
  4636       _g1h(g1h),
  4637       _queues(task_queues),
  4638       _terminator(0, _queues),
  4639       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
  4640   {}
  4642   RefToScanQueueSet* queues() { return _queues; }
  4644   RefToScanQueue *work_queue(int i) {
  4645     return queues()->queue(i);
  4648   ParallelTaskTerminator* terminator() { return &_terminator; }
  4650   virtual void set_for_termination(int active_workers) {
  4651     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
  4652     // in the young space (_par_seq_tasks) in the G1 heap
  4653     // for SequentialSubTasksDone.
  4654     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
  4655     // both of which need setting by set_n_termination().
  4656     _g1h->SharedHeap::set_n_termination(active_workers);
  4657     _g1h->set_n_termination(active_workers);
  4658     terminator()->reset_for_reuse(active_workers);
  4659     _n_workers = active_workers;
  4662   void work(uint worker_id) {
  4663     if (worker_id >= _n_workers) return;  // no work needed this round
  4665     double start_time_ms = os::elapsedTime() * 1000.0;
  4666     _g1h->g1_policy()->record_gc_worker_start_time(worker_id, start_time_ms);
  4668     ResourceMark rm;
  4669     HandleMark   hm;
  4671     ReferenceProcessor*             rp = _g1h->ref_processor_stw();
  4673     G1ParScanThreadState            pss(_g1h, worker_id);
  4674     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, rp);
  4675     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
  4676     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, rp);
  4678     pss.set_evac_closure(&scan_evac_cl);
  4679     pss.set_evac_failure_closure(&evac_failure_cl);
  4680     pss.set_partial_scan_closure(&partial_scan_cl);
  4682     G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
  4683     G1ParScanPermClosure           only_scan_perm_cl(_g1h, &pss, rp);
  4685     G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
  4686     G1ParScanAndMarkPermClosure    scan_mark_perm_cl(_g1h, &pss, rp);
  4688     OopClosure*                    scan_root_cl = &only_scan_root_cl;
  4689     OopsInHeapRegionClosure*       scan_perm_cl = &only_scan_perm_cl;
  4691     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  4692       // We also need to mark copied objects.
  4693       scan_root_cl = &scan_mark_root_cl;
  4694       scan_perm_cl = &scan_mark_perm_cl;
  4697     G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
  4699     pss.start_strong_roots();
  4700     _g1h->g1_process_strong_roots(/* not collecting perm */ false,
  4701                                   SharedHeap::SO_AllClasses,
  4702                                   scan_root_cl,
  4703                                   &push_heap_rs_cl,
  4704                                   scan_perm_cl,
  4705                                   worker_id);
  4706     pss.end_strong_roots();
  4709       double start = os::elapsedTime();
  4710       G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
  4711       evac.do_void();
  4712       double elapsed_ms = (os::elapsedTime()-start)*1000.0;
  4713       double term_ms = pss.term_time()*1000.0;
  4714       _g1h->g1_policy()->record_obj_copy_time(worker_id, elapsed_ms-term_ms);
  4715       _g1h->g1_policy()->record_termination(worker_id, term_ms, pss.term_attempts());
  4717     _g1h->g1_policy()->record_thread_age_table(pss.age_table());
  4718     _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
  4720     // Clean up any par-expanded rem sets.
  4721     HeapRegionRemSet::par_cleanup();
  4723     if (ParallelGCVerbose) {
  4724       MutexLocker x(stats_lock());
  4725       pss.print_termination_stats(worker_id);
  4728     assert(pss.refs()->is_empty(), "should be empty");
  4729     double end_time_ms = os::elapsedTime() * 1000.0;
  4730     _g1h->g1_policy()->record_gc_worker_end_time(worker_id, end_time_ms);
  4732 };
  4734 // *** Common G1 Evacuation Stuff
  4736 // This method is run in a GC worker.
  4738 void
  4739 G1CollectedHeap::
  4740 g1_process_strong_roots(bool collecting_perm_gen,
  4741                         SharedHeap::ScanningOption so,
  4742                         OopClosure* scan_non_heap_roots,
  4743                         OopsInHeapRegionClosure* scan_rs,
  4744                         OopsInGenClosure* scan_perm,
  4745                         int worker_i) {
  4747   // First scan the strong roots, including the perm gen.
  4748   double ext_roots_start = os::elapsedTime();
  4749   double closure_app_time_sec = 0.0;
  4751   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
  4752   BufferingOopsInGenClosure buf_scan_perm(scan_perm);
  4753   buf_scan_perm.set_generation(perm_gen());
  4755   // Walk the code cache w/o buffering, because StarTask cannot handle
  4756   // unaligned oop locations.
  4757   CodeBlobToOopClosure eager_scan_code_roots(scan_non_heap_roots, /*do_marking=*/ true);
  4759   process_strong_roots(false, // no scoping; this is parallel code
  4760                        collecting_perm_gen, so,
  4761                        &buf_scan_non_heap_roots,
  4762                        &eager_scan_code_roots,
  4763                        &buf_scan_perm);
  4765   // Now the CM ref_processor roots.
  4766   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
  4767     // We need to treat the discovered reference lists of the
  4768     // concurrent mark ref processor as roots and keep entries
  4769     // (which are added by the marking threads) on them live
  4770     // until they can be processed at the end of marking.
  4771     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
  4774   // Finish up any enqueued closure apps (attributed as object copy time).
  4775   buf_scan_non_heap_roots.done();
  4776   buf_scan_perm.done();
  4778   double ext_roots_end = os::elapsedTime();
  4780   g1_policy()->reset_obj_copy_time(worker_i);
  4781   double obj_copy_time_sec = buf_scan_perm.closure_app_seconds() +
  4782                                 buf_scan_non_heap_roots.closure_app_seconds();
  4783   g1_policy()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
  4785   double ext_root_time_ms =
  4786     ((ext_roots_end - ext_roots_start) - obj_copy_time_sec) * 1000.0;
  4788   g1_policy()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
  4790   // Scan strong roots in mark stack.
  4791   if (!_process_strong_tasks->is_task_claimed(G1H_PS_mark_stack_oops_do)) {
  4792     concurrent_mark()->oops_do(scan_non_heap_roots);
  4794   double mark_stack_scan_ms = (os::elapsedTime() - ext_roots_end) * 1000.0;
  4795   g1_policy()->record_mark_stack_scan_time(worker_i, mark_stack_scan_ms);
  4797   // Now scan the complement of the collection set.
  4798   if (scan_rs != NULL) {
  4799     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
  4802   _process_strong_tasks->all_tasks_completed();
  4805 void
  4806 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
  4807                                        OopClosure* non_root_closure) {
  4808   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
  4809   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs, non_root_closure);
  4812 // Weak Reference Processing support
  4814 // An always "is_alive" closure that is used to preserve referents.
  4815 // If the object is non-null then it's alive.  Used in the preservation
  4816 // of referent objects that are pointed to by reference objects
  4817 // discovered by the CM ref processor.
  4818 class G1AlwaysAliveClosure: public BoolObjectClosure {
  4819   G1CollectedHeap* _g1;
  4820 public:
  4821   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  4822   void do_object(oop p) { assert(false, "Do not call."); }
  4823   bool do_object_b(oop p) {
  4824     if (p != NULL) {
  4825       return true;
  4827     return false;
  4829 };
  4831 bool G1STWIsAliveClosure::do_object_b(oop p) {
  4832   // An object is reachable if it is outside the collection set,
  4833   // or is inside and copied.
  4834   return !_g1->obj_in_cs(p) || p->is_forwarded();
  4837 // Non Copying Keep Alive closure
  4838 class G1KeepAliveClosure: public OopClosure {
  4839   G1CollectedHeap* _g1;
  4840 public:
  4841   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  4842   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
  4843   void do_oop(      oop* p) {
  4844     oop obj = *p;
  4846     if (_g1->obj_in_cs(obj)) {
  4847       assert( obj->is_forwarded(), "invariant" );
  4848       *p = obj->forwardee();
  4851 };
  4853 // Copying Keep Alive closure - can be called from both
  4854 // serial and parallel code as long as different worker
  4855 // threads utilize different G1ParScanThreadState instances
  4856 // and different queues.
  4858 class G1CopyingKeepAliveClosure: public OopClosure {
  4859   G1CollectedHeap*         _g1h;
  4860   OopClosure*              _copy_non_heap_obj_cl;
  4861   OopsInHeapRegionClosure* _copy_perm_obj_cl;
  4862   G1ParScanThreadState*    _par_scan_state;
  4864 public:
  4865   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
  4866                             OopClosure* non_heap_obj_cl,
  4867                             OopsInHeapRegionClosure* perm_obj_cl,
  4868                             G1ParScanThreadState* pss):
  4869     _g1h(g1h),
  4870     _copy_non_heap_obj_cl(non_heap_obj_cl),
  4871     _copy_perm_obj_cl(perm_obj_cl),
  4872     _par_scan_state(pss)
  4873   {}
  4875   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  4876   virtual void do_oop(      oop* p) { do_oop_work(p); }
  4878   template <class T> void do_oop_work(T* p) {
  4879     oop obj = oopDesc::load_decode_heap_oop(p);
  4881     if (_g1h->obj_in_cs(obj)) {
  4882       // If the referent object has been forwarded (either copied
  4883       // to a new location or to itself in the event of an
  4884       // evacuation failure) then we need to update the reference
  4885       // field and, if both reference and referent are in the G1
  4886       // heap, update the RSet for the referent.
  4887       //
  4888       // If the referent has not been forwarded then we have to keep
  4889       // it alive by policy. Therefore we have copy the referent.
  4890       //
  4891       // If the reference field is in the G1 heap then we can push
  4892       // on the PSS queue. When the queue is drained (after each
  4893       // phase of reference processing) the object and it's followers
  4894       // will be copied, the reference field set to point to the
  4895       // new location, and the RSet updated. Otherwise we need to
  4896       // use the the non-heap or perm closures directly to copy
  4897       // the refernt object and update the pointer, while avoiding
  4898       // updating the RSet.
  4900       if (_g1h->is_in_g1_reserved(p)) {
  4901         _par_scan_state->push_on_queue(p);
  4902       } else {
  4903         // The reference field is not in the G1 heap.
  4904         if (_g1h->perm_gen()->is_in(p)) {
  4905           _copy_perm_obj_cl->do_oop(p);
  4906         } else {
  4907           _copy_non_heap_obj_cl->do_oop(p);
  4912 };
  4914 // Serial drain queue closure. Called as the 'complete_gc'
  4915 // closure for each discovered list in some of the
  4916 // reference processing phases.
  4918 class G1STWDrainQueueClosure: public VoidClosure {
  4919 protected:
  4920   G1CollectedHeap* _g1h;
  4921   G1ParScanThreadState* _par_scan_state;
  4923   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  4925 public:
  4926   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
  4927     _g1h(g1h),
  4928     _par_scan_state(pss)
  4929   { }
  4931   void do_void() {
  4932     G1ParScanThreadState* const pss = par_scan_state();
  4933     pss->trim_queue();
  4935 };
  4937 // Parallel Reference Processing closures
  4939 // Implementation of AbstractRefProcTaskExecutor for parallel reference
  4940 // processing during G1 evacuation pauses.
  4942 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
  4943 private:
  4944   G1CollectedHeap*   _g1h;
  4945   RefToScanQueueSet* _queues;
  4946   FlexibleWorkGang*  _workers;
  4947   int                _active_workers;
  4949 public:
  4950   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
  4951                         FlexibleWorkGang* workers,
  4952                         RefToScanQueueSet *task_queues,
  4953                         int n_workers) :
  4954     _g1h(g1h),
  4955     _queues(task_queues),
  4956     _workers(workers),
  4957     _active_workers(n_workers)
  4959     assert(n_workers > 0, "shouldn't call this otherwise");
  4962   // Executes the given task using concurrent marking worker threads.
  4963   virtual void execute(ProcessTask& task);
  4964   virtual void execute(EnqueueTask& task);
  4965 };
  4967 // Gang task for possibly parallel reference processing
  4969 class G1STWRefProcTaskProxy: public AbstractGangTask {
  4970   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  4971   ProcessTask&     _proc_task;
  4972   G1CollectedHeap* _g1h;
  4973   RefToScanQueueSet *_task_queues;
  4974   ParallelTaskTerminator* _terminator;
  4976 public:
  4977   G1STWRefProcTaskProxy(ProcessTask& proc_task,
  4978                      G1CollectedHeap* g1h,
  4979                      RefToScanQueueSet *task_queues,
  4980                      ParallelTaskTerminator* terminator) :
  4981     AbstractGangTask("Process reference objects in parallel"),
  4982     _proc_task(proc_task),
  4983     _g1h(g1h),
  4984     _task_queues(task_queues),
  4985     _terminator(terminator)
  4986   {}
  4988   virtual void work(uint worker_id) {
  4989     // The reference processing task executed by a single worker.
  4990     ResourceMark rm;
  4991     HandleMark   hm;
  4993     G1STWIsAliveClosure is_alive(_g1h);
  4995     G1ParScanThreadState pss(_g1h, worker_id);
  4997     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
  4998     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
  4999     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
  5001     pss.set_evac_closure(&scan_evac_cl);
  5002     pss.set_evac_failure_closure(&evac_failure_cl);
  5003     pss.set_partial_scan_closure(&partial_scan_cl);
  5005     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
  5006     G1ParScanPermClosure           only_copy_perm_cl(_g1h, &pss, NULL);
  5008     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
  5009     G1ParScanAndMarkPermClosure    copy_mark_perm_cl(_g1h, &pss, NULL);
  5011     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5012     OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
  5014     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5015       // We also need to mark copied objects.
  5016       copy_non_heap_cl = &copy_mark_non_heap_cl;
  5017       copy_perm_cl = &copy_mark_perm_cl;
  5020     // Keep alive closure.
  5021     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_perm_cl, &pss);
  5023     // Complete GC closure
  5024     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
  5026     // Call the reference processing task's work routine.
  5027     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
  5029     // Note we cannot assert that the refs array is empty here as not all
  5030     // of the processing tasks (specifically phase2 - pp2_work) execute
  5031     // the complete_gc closure (which ordinarily would drain the queue) so
  5032     // the queue may not be empty.
  5034 };
  5036 // Driver routine for parallel reference processing.
  5037 // Creates an instance of the ref processing gang
  5038 // task and has the worker threads execute it.
  5039 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
  5040   assert(_workers != NULL, "Need parallel worker threads.");
  5042   ParallelTaskTerminator terminator(_active_workers, _queues);
  5043   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
  5045   _g1h->set_par_threads(_active_workers);
  5046   _workers->run_task(&proc_task_proxy);
  5047   _g1h->set_par_threads(0);
  5050 // Gang task for parallel reference enqueueing.
  5052 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
  5053   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  5054   EnqueueTask& _enq_task;
  5056 public:
  5057   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
  5058     AbstractGangTask("Enqueue reference objects in parallel"),
  5059     _enq_task(enq_task)
  5060   { }
  5062   virtual void work(uint worker_id) {
  5063     _enq_task.work(worker_id);
  5065 };
  5067 // Driver routine for parallel reference enqueing.
  5068 // Creates an instance of the ref enqueueing gang
  5069 // task and has the worker threads execute it.
  5071 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
  5072   assert(_workers != NULL, "Need parallel worker threads.");
  5074   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
  5076   _g1h->set_par_threads(_active_workers);
  5077   _workers->run_task(&enq_task_proxy);
  5078   _g1h->set_par_threads(0);
  5081 // End of weak reference support closures
  5083 // Abstract task used to preserve (i.e. copy) any referent objects
  5084 // that are in the collection set and are pointed to by reference
  5085 // objects discovered by the CM ref processor.
  5087 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
  5088 protected:
  5089   G1CollectedHeap* _g1h;
  5090   RefToScanQueueSet      *_queues;
  5091   ParallelTaskTerminator _terminator;
  5092   uint _n_workers;
  5094 public:
  5095   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
  5096     AbstractGangTask("ParPreserveCMReferents"),
  5097     _g1h(g1h),
  5098     _queues(task_queues),
  5099     _terminator(workers, _queues),
  5100     _n_workers(workers)
  5101   { }
  5103   void work(uint worker_id) {
  5104     ResourceMark rm;
  5105     HandleMark   hm;
  5107     G1ParScanThreadState            pss(_g1h, worker_id);
  5108     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
  5109     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
  5110     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
  5112     pss.set_evac_closure(&scan_evac_cl);
  5113     pss.set_evac_failure_closure(&evac_failure_cl);
  5114     pss.set_partial_scan_closure(&partial_scan_cl);
  5116     assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
  5119     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
  5120     G1ParScanPermClosure           only_copy_perm_cl(_g1h, &pss, NULL);
  5122     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
  5123     G1ParScanAndMarkPermClosure    copy_mark_perm_cl(_g1h, &pss, NULL);
  5125     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5126     OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
  5128     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5129       // We also need to mark copied objects.
  5130       copy_non_heap_cl = &copy_mark_non_heap_cl;
  5131       copy_perm_cl = &copy_mark_perm_cl;
  5134     // Is alive closure
  5135     G1AlwaysAliveClosure always_alive(_g1h);
  5137     // Copying keep alive closure. Applied to referent objects that need
  5138     // to be copied.
  5139     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_perm_cl, &pss);
  5141     ReferenceProcessor* rp = _g1h->ref_processor_cm();
  5143     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
  5144     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
  5146     // limit is set using max_num_q() - which was set using ParallelGCThreads.
  5147     // So this must be true - but assert just in case someone decides to
  5148     // change the worker ids.
  5149     assert(0 <= worker_id && worker_id < limit, "sanity");
  5150     assert(!rp->discovery_is_atomic(), "check this code");
  5152     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
  5153     for (uint idx = worker_id; idx < limit; idx += stride) {
  5154       DiscoveredList& ref_list = rp->discovered_refs()[idx];
  5156       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
  5157       while (iter.has_next()) {
  5158         // Since discovery is not atomic for the CM ref processor, we
  5159         // can see some null referent objects.
  5160         iter.load_ptrs(DEBUG_ONLY(true));
  5161         oop ref = iter.obj();
  5163         // This will filter nulls.
  5164         if (iter.is_referent_alive()) {
  5165           iter.make_referent_alive();
  5167         iter.move_to_next();
  5171     // Drain the queue - which may cause stealing
  5172     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
  5173     drain_queue.do_void();
  5174     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
  5175     assert(pss.refs()->is_empty(), "should be");
  5177 };
  5179 // Weak Reference processing during an evacuation pause (part 1).
  5180 void G1CollectedHeap::process_discovered_references() {
  5181   double ref_proc_start = os::elapsedTime();
  5183   ReferenceProcessor* rp = _ref_processor_stw;
  5184   assert(rp->discovery_enabled(), "should have been enabled");
  5186   // Any reference objects, in the collection set, that were 'discovered'
  5187   // by the CM ref processor should have already been copied (either by
  5188   // applying the external root copy closure to the discovered lists, or
  5189   // by following an RSet entry).
  5190   //
  5191   // But some of the referents, that are in the collection set, that these
  5192   // reference objects point to may not have been copied: the STW ref
  5193   // processor would have seen that the reference object had already
  5194   // been 'discovered' and would have skipped discovering the reference,
  5195   // but would not have treated the reference object as a regular oop.
  5196   // As a reult the copy closure would not have been applied to the
  5197   // referent object.
  5198   //
  5199   // We need to explicitly copy these referent objects - the references
  5200   // will be processed at the end of remarking.
  5201   //
  5202   // We also need to do this copying before we process the reference
  5203   // objects discovered by the STW ref processor in case one of these
  5204   // referents points to another object which is also referenced by an
  5205   // object discovered by the STW ref processor.
  5207   uint active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  5208                         workers()->active_workers() : 1);
  5210   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
  5211            active_workers == workers()->active_workers(),
  5212            "Need to reset active_workers");
  5214   set_par_threads(active_workers);
  5215   G1ParPreserveCMReferentsTask keep_cm_referents(this, active_workers, _task_queues);
  5217   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5218     workers()->run_task(&keep_cm_referents);
  5219   } else {
  5220     keep_cm_referents.work(0);
  5223   set_par_threads(0);
  5225   // Closure to test whether a referent is alive.
  5226   G1STWIsAliveClosure is_alive(this);
  5228   // Even when parallel reference processing is enabled, the processing
  5229   // of JNI refs is serial and performed serially by the current thread
  5230   // rather than by a worker. The following PSS will be used for processing
  5231   // JNI refs.
  5233   // Use only a single queue for this PSS.
  5234   G1ParScanThreadState pss(this, 0);
  5236   // We do not embed a reference processor in the copying/scanning
  5237   // closures while we're actually processing the discovered
  5238   // reference objects.
  5239   G1ParScanHeapEvacClosure        scan_evac_cl(this, &pss, NULL);
  5240   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
  5241   G1ParScanPartialArrayClosure    partial_scan_cl(this, &pss, NULL);
  5243   pss.set_evac_closure(&scan_evac_cl);
  5244   pss.set_evac_failure_closure(&evac_failure_cl);
  5245   pss.set_partial_scan_closure(&partial_scan_cl);
  5247   assert(pss.refs()->is_empty(), "pre-condition");
  5249   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
  5250   G1ParScanPermClosure           only_copy_perm_cl(this, &pss, NULL);
  5252   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
  5253   G1ParScanAndMarkPermClosure    copy_mark_perm_cl(this, &pss, NULL);
  5255   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5256   OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
  5258   if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5259     // We also need to mark copied objects.
  5260     copy_non_heap_cl = &copy_mark_non_heap_cl;
  5261     copy_perm_cl = &copy_mark_perm_cl;
  5264   // Keep alive closure.
  5265   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_perm_cl, &pss);
  5267   // Serial Complete GC closure
  5268   G1STWDrainQueueClosure drain_queue(this, &pss);
  5270   // Setup the soft refs policy...
  5271   rp->setup_policy(false);
  5273   if (!rp->processing_is_mt()) {
  5274     // Serial reference processing...
  5275     rp->process_discovered_references(&is_alive,
  5276                                       &keep_alive,
  5277                                       &drain_queue,
  5278                                       NULL);
  5279   } else {
  5280     // Parallel reference processing
  5281     assert(rp->num_q() == active_workers, "sanity");
  5282     assert(active_workers <= rp->max_num_q(), "sanity");
  5284     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, active_workers);
  5285     rp->process_discovered_references(&is_alive, &keep_alive, &drain_queue, &par_task_executor);
  5288   // We have completed copying any necessary live referent objects
  5289   // (that were not copied during the actual pause) so we can
  5290   // retire any active alloc buffers
  5291   pss.retire_alloc_buffers();
  5292   assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
  5294   double ref_proc_time = os::elapsedTime() - ref_proc_start;
  5295   g1_policy()->record_ref_proc_time(ref_proc_time * 1000.0);
  5298 // Weak Reference processing during an evacuation pause (part 2).
  5299 void G1CollectedHeap::enqueue_discovered_references() {
  5300   double ref_enq_start = os::elapsedTime();
  5302   ReferenceProcessor* rp = _ref_processor_stw;
  5303   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
  5305   // Now enqueue any remaining on the discovered lists on to
  5306   // the pending list.
  5307   if (!rp->processing_is_mt()) {
  5308     // Serial reference processing...
  5309     rp->enqueue_discovered_references();
  5310   } else {
  5311     // Parallel reference enqueuing
  5313     uint active_workers = (ParallelGCThreads > 0 ? workers()->active_workers() : 1);
  5314     assert(active_workers == workers()->active_workers(),
  5315            "Need to reset active_workers");
  5316     assert(rp->num_q() == active_workers, "sanity");
  5317     assert(active_workers <= rp->max_num_q(), "sanity");
  5319     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, active_workers);
  5320     rp->enqueue_discovered_references(&par_task_executor);
  5323   rp->verify_no_references_recorded();
  5324   assert(!rp->discovery_enabled(), "should have been disabled");
  5326   // FIXME
  5327   // CM's reference processing also cleans up the string and symbol tables.
  5328   // Should we do that here also? We could, but it is a serial operation
  5329   // and could signicantly increase the pause time.
  5331   double ref_enq_time = os::elapsedTime() - ref_enq_start;
  5332   g1_policy()->record_ref_enq_time(ref_enq_time * 1000.0);
  5335 void G1CollectedHeap::evacuate_collection_set() {
  5336   _expand_heap_after_alloc_failure = true;
  5337   set_evacuation_failed(false);
  5339   g1_rem_set()->prepare_for_oops_into_collection_set_do();
  5340   concurrent_g1_refine()->set_use_cache(false);
  5341   concurrent_g1_refine()->clear_hot_cache_claimed_index();
  5343   uint n_workers;
  5344   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5345     n_workers =
  5346       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
  5347                                      workers()->active_workers(),
  5348                                      Threads::number_of_non_daemon_threads());
  5349     assert(UseDynamicNumberOfGCThreads ||
  5350            n_workers == workers()->total_workers(),
  5351            "If not dynamic should be using all the  workers");
  5352     workers()->set_active_workers(n_workers);
  5353     set_par_threads(n_workers);
  5354   } else {
  5355     assert(n_par_threads() == 0,
  5356            "Should be the original non-parallel value");
  5357     n_workers = 1;
  5360   G1ParTask g1_par_task(this, _task_queues);
  5362   init_for_evac_failure(NULL);
  5364   rem_set()->prepare_for_younger_refs_iterate(true);
  5366   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
  5367   double start_par = os::elapsedTime();
  5369   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5370     // The individual threads will set their evac-failure closures.
  5371     StrongRootsScope srs(this);
  5372     if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
  5373     // These tasks use ShareHeap::_process_strong_tasks
  5374     assert(UseDynamicNumberOfGCThreads ||
  5375            workers()->active_workers() == workers()->total_workers(),
  5376            "If not dynamic should be using all the  workers");
  5377     workers()->run_task(&g1_par_task);
  5378   } else {
  5379     StrongRootsScope srs(this);
  5380     g1_par_task.set_for_termination(n_workers);
  5381     g1_par_task.work(0);
  5384   double par_time = (os::elapsedTime() - start_par) * 1000.0;
  5385   g1_policy()->record_par_time(par_time);
  5387   set_par_threads(0);
  5389   // Process any discovered reference objects - we have
  5390   // to do this _before_ we retire the GC alloc regions
  5391   // as we may have to copy some 'reachable' referent
  5392   // objects (and their reachable sub-graphs) that were
  5393   // not copied during the pause.
  5394   process_discovered_references();
  5396   // Weak root processing.
  5397   // Note: when JSR 292 is enabled and code blobs can contain
  5398   // non-perm oops then we will need to process the code blobs
  5399   // here too.
  5401     G1STWIsAliveClosure is_alive(this);
  5402     G1KeepAliveClosure keep_alive(this);
  5403     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
  5406   release_gc_alloc_regions();
  5407   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
  5409   concurrent_g1_refine()->clear_hot_cache();
  5410   concurrent_g1_refine()->set_use_cache(true);
  5412   finalize_for_evac_failure();
  5414   // Must do this before clearing the per-region evac-failure flags
  5415   // (which is currently done when we free the collection set).
  5416   // We also only do this if marking is actually in progress and so
  5417   // have to do this before we set the mark_in_progress flag at the
  5418   // end of an initial mark pause.
  5419   concurrent_mark()->complete_marking_in_collection_set();
  5421   if (evacuation_failed()) {
  5422     remove_self_forwarding_pointers();
  5423     if (PrintGCDetails) {
  5424       gclog_or_tty->print(" (to-space overflow)");
  5425     } else if (PrintGC) {
  5426       gclog_or_tty->print("--");
  5430   // Enqueue any remaining references remaining on the STW
  5431   // reference processor's discovered lists. We need to do
  5432   // this after the card table is cleaned (and verified) as
  5433   // the act of enqueuing entries on to the pending list
  5434   // will log these updates (and dirty their associated
  5435   // cards). We need these updates logged to update any
  5436   // RSets.
  5437   enqueue_discovered_references();
  5439   if (G1DeferredRSUpdate) {
  5440     RedirtyLoggedCardTableEntryFastClosure redirty;
  5441     dirty_card_queue_set().set_closure(&redirty);
  5442     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
  5444     DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
  5445     dcq.merge_bufferlists(&dirty_card_queue_set());
  5446     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
  5448   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  5451 void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
  5452                                      size_t* pre_used,
  5453                                      FreeRegionList* free_list,
  5454                                      OldRegionSet* old_proxy_set,
  5455                                      HumongousRegionSet* humongous_proxy_set,
  5456                                      HRRSCleanupTask* hrrs_cleanup_task,
  5457                                      bool par) {
  5458   if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
  5459     if (hr->isHumongous()) {
  5460       assert(hr->startsHumongous(), "we should only see starts humongous");
  5461       free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
  5462     } else {
  5463       _old_set.remove_with_proxy(hr, old_proxy_set);
  5464       free_region(hr, pre_used, free_list, par);
  5466   } else {
  5467     hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
  5471 void G1CollectedHeap::free_region(HeapRegion* hr,
  5472                                   size_t* pre_used,
  5473                                   FreeRegionList* free_list,
  5474                                   bool par) {
  5475   assert(!hr->isHumongous(), "this is only for non-humongous regions");
  5476   assert(!hr->is_empty(), "the region should not be empty");
  5477   assert(free_list != NULL, "pre-condition");
  5479   *pre_used += hr->used();
  5480   hr->hr_clear(par, true /* clear_space */);
  5481   free_list->add_as_head(hr);
  5484 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
  5485                                      size_t* pre_used,
  5486                                      FreeRegionList* free_list,
  5487                                      HumongousRegionSet* humongous_proxy_set,
  5488                                      bool par) {
  5489   assert(hr->startsHumongous(), "this is only for starts humongous regions");
  5490   assert(free_list != NULL, "pre-condition");
  5491   assert(humongous_proxy_set != NULL, "pre-condition");
  5493   size_t hr_used = hr->used();
  5494   size_t hr_capacity = hr->capacity();
  5495   size_t hr_pre_used = 0;
  5496   _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
  5497   hr->set_notHumongous();
  5498   free_region(hr, &hr_pre_used, free_list, par);
  5500   size_t i = hr->hrs_index() + 1;
  5501   size_t num = 1;
  5502   while (i < n_regions()) {
  5503     HeapRegion* curr_hr = region_at(i);
  5504     if (!curr_hr->continuesHumongous()) {
  5505       break;
  5507     curr_hr->set_notHumongous();
  5508     free_region(curr_hr, &hr_pre_used, free_list, par);
  5509     num += 1;
  5510     i += 1;
  5512   assert(hr_pre_used == hr_used,
  5513          err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
  5514                  "should be the same", hr_pre_used, hr_used));
  5515   *pre_used += hr_pre_used;
  5518 void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
  5519                                        FreeRegionList* free_list,
  5520                                        OldRegionSet* old_proxy_set,
  5521                                        HumongousRegionSet* humongous_proxy_set,
  5522                                        bool par) {
  5523   if (pre_used > 0) {
  5524     Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
  5525     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
  5526     assert(_summary_bytes_used >= pre_used,
  5527            err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
  5528                    "should be >= pre_used: "SIZE_FORMAT,
  5529                    _summary_bytes_used, pre_used));
  5530     _summary_bytes_used -= pre_used;
  5532   if (free_list != NULL && !free_list->is_empty()) {
  5533     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
  5534     _free_list.add_as_head(free_list);
  5536   if (old_proxy_set != NULL && !old_proxy_set->is_empty()) {
  5537     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
  5538     _old_set.update_from_proxy(old_proxy_set);
  5540   if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
  5541     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
  5542     _humongous_set.update_from_proxy(humongous_proxy_set);
  5546 class G1ParCleanupCTTask : public AbstractGangTask {
  5547   CardTableModRefBS* _ct_bs;
  5548   G1CollectedHeap* _g1h;
  5549   HeapRegion* volatile _su_head;
  5550 public:
  5551   G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
  5552                      G1CollectedHeap* g1h) :
  5553     AbstractGangTask("G1 Par Cleanup CT Task"),
  5554     _ct_bs(ct_bs), _g1h(g1h) { }
  5556   void work(uint worker_id) {
  5557     HeapRegion* r;
  5558     while (r = _g1h->pop_dirty_cards_region()) {
  5559       clear_cards(r);
  5563   void clear_cards(HeapRegion* r) {
  5564     // Cards of the survivors should have already been dirtied.
  5565     if (!r->is_survivor()) {
  5566       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
  5569 };
  5571 #ifndef PRODUCT
  5572 class G1VerifyCardTableCleanup: public HeapRegionClosure {
  5573   G1CollectedHeap* _g1h;
  5574   CardTableModRefBS* _ct_bs;
  5575 public:
  5576   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, CardTableModRefBS* ct_bs)
  5577     : _g1h(g1h), _ct_bs(ct_bs) { }
  5578   virtual bool doHeapRegion(HeapRegion* r) {
  5579     if (r->is_survivor()) {
  5580       _g1h->verify_dirty_region(r);
  5581     } else {
  5582       _g1h->verify_not_dirty_region(r);
  5584     return false;
  5586 };
  5588 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
  5589   // All of the region should be clean.
  5590   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
  5591   MemRegion mr(hr->bottom(), hr->end());
  5592   ct_bs->verify_not_dirty_region(mr);
  5595 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
  5596   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
  5597   // dirty allocated blocks as they allocate them. The thread that
  5598   // retires each region and replaces it with a new one will do a
  5599   // maximal allocation to fill in [pre_dummy_top(),end()] but will
  5600   // not dirty that area (one less thing to have to do while holding
  5601   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
  5602   // is dirty.
  5603   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
  5604   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
  5605   ct_bs->verify_dirty_region(mr);
  5608 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
  5609   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
  5610   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
  5611     verify_dirty_region(hr);
  5615 void G1CollectedHeap::verify_dirty_young_regions() {
  5616   verify_dirty_young_list(_young_list->first_region());
  5617   verify_dirty_young_list(_young_list->first_survivor_region());
  5619 #endif
  5621 void G1CollectedHeap::cleanUpCardTable() {
  5622   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
  5623   double start = os::elapsedTime();
  5626     // Iterate over the dirty cards region list.
  5627     G1ParCleanupCTTask cleanup_task(ct_bs, this);
  5629     if (G1CollectedHeap::use_parallel_gc_threads()) {
  5630       set_par_threads();
  5631       workers()->run_task(&cleanup_task);
  5632       set_par_threads(0);
  5633     } else {
  5634       while (_dirty_cards_region_list) {
  5635         HeapRegion* r = _dirty_cards_region_list;
  5636         cleanup_task.clear_cards(r);
  5637         _dirty_cards_region_list = r->get_next_dirty_cards_region();
  5638         if (_dirty_cards_region_list == r) {
  5639           // The last region.
  5640           _dirty_cards_region_list = NULL;
  5642         r->set_next_dirty_cards_region(NULL);
  5645 #ifndef PRODUCT
  5646     if (G1VerifyCTCleanup || VerifyAfterGC) {
  5647       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
  5648       heap_region_iterate(&cleanup_verifier);
  5650 #endif
  5653   double elapsed = os::elapsedTime() - start;
  5654   g1_policy()->record_clear_ct_time(elapsed * 1000.0);
  5657 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
  5658   size_t pre_used = 0;
  5659   FreeRegionList local_free_list("Local List for CSet Freeing");
  5661   double young_time_ms     = 0.0;
  5662   double non_young_time_ms = 0.0;
  5664   // Since the collection set is a superset of the the young list,
  5665   // all we need to do to clear the young list is clear its
  5666   // head and length, and unlink any young regions in the code below
  5667   _young_list->clear();
  5669   G1CollectorPolicy* policy = g1_policy();
  5671   double start_sec = os::elapsedTime();
  5672   bool non_young = true;
  5674   HeapRegion* cur = cs_head;
  5675   int age_bound = -1;
  5676   size_t rs_lengths = 0;
  5678   while (cur != NULL) {
  5679     assert(!is_on_master_free_list(cur), "sanity");
  5680     if (non_young) {
  5681       if (cur->is_young()) {
  5682         double end_sec = os::elapsedTime();
  5683         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  5684         non_young_time_ms += elapsed_ms;
  5686         start_sec = os::elapsedTime();
  5687         non_young = false;
  5689     } else {
  5690       if (!cur->is_young()) {
  5691         double end_sec = os::elapsedTime();
  5692         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  5693         young_time_ms += elapsed_ms;
  5695         start_sec = os::elapsedTime();
  5696         non_young = true;
  5700     rs_lengths += cur->rem_set()->occupied();
  5702     HeapRegion* next = cur->next_in_collection_set();
  5703     assert(cur->in_collection_set(), "bad CS");
  5704     cur->set_next_in_collection_set(NULL);
  5705     cur->set_in_collection_set(false);
  5707     if (cur->is_young()) {
  5708       int index = cur->young_index_in_cset();
  5709       assert(index != -1, "invariant");
  5710       assert((size_t) index < policy->young_cset_region_length(), "invariant");
  5711       size_t words_survived = _surviving_young_words[index];
  5712       cur->record_surv_words_in_group(words_survived);
  5714       // At this point the we have 'popped' cur from the collection set
  5715       // (linked via next_in_collection_set()) but it is still in the
  5716       // young list (linked via next_young_region()). Clear the
  5717       // _next_young_region field.
  5718       cur->set_next_young_region(NULL);
  5719     } else {
  5720       int index = cur->young_index_in_cset();
  5721       assert(index == -1, "invariant");
  5724     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
  5725             (!cur->is_young() && cur->young_index_in_cset() == -1),
  5726             "invariant" );
  5728     if (!cur->evacuation_failed()) {
  5729       MemRegion used_mr = cur->used_region();
  5731       // And the region is empty.
  5732       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
  5734       // If marking is in progress then clear any objects marked in
  5735       // the current region. Note mark_in_progress() returns false,
  5736       // even during an initial mark pause, until the set_marking_started()
  5737       // call which takes place later in the pause.
  5738       if (mark_in_progress()) {
  5739         assert(!g1_policy()->during_initial_mark_pause(), "sanity");
  5740         _cm->nextMarkBitMap()->clearRange(used_mr);
  5743       free_region(cur, &pre_used, &local_free_list, false /* par */);
  5744     } else {
  5745       cur->uninstall_surv_rate_group();
  5746       if (cur->is_young()) {
  5747         cur->set_young_index_in_cset(-1);
  5749       cur->set_not_young();
  5750       cur->set_evacuation_failed(false);
  5751       // The region is now considered to be old.
  5752       _old_set.add(cur);
  5754     cur = next;
  5757   policy->record_max_rs_lengths(rs_lengths);
  5758   policy->cset_regions_freed();
  5760   double end_sec = os::elapsedTime();
  5761   double elapsed_ms = (end_sec - start_sec) * 1000.0;
  5763   if (non_young) {
  5764     non_young_time_ms += elapsed_ms;
  5765   } else {
  5766     young_time_ms += elapsed_ms;
  5769   update_sets_after_freeing_regions(pre_used, &local_free_list,
  5770                                     NULL /* old_proxy_set */,
  5771                                     NULL /* humongous_proxy_set */,
  5772                                     false /* par */);
  5773   policy->record_young_free_cset_time_ms(young_time_ms);
  5774   policy->record_non_young_free_cset_time_ms(non_young_time_ms);
  5777 // This routine is similar to the above but does not record
  5778 // any policy statistics or update free lists; we are abandoning
  5779 // the current incremental collection set in preparation of a
  5780 // full collection. After the full GC we will start to build up
  5781 // the incremental collection set again.
  5782 // This is only called when we're doing a full collection
  5783 // and is immediately followed by the tearing down of the young list.
  5785 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
  5786   HeapRegion* cur = cs_head;
  5788   while (cur != NULL) {
  5789     HeapRegion* next = cur->next_in_collection_set();
  5790     assert(cur->in_collection_set(), "bad CS");
  5791     cur->set_next_in_collection_set(NULL);
  5792     cur->set_in_collection_set(false);
  5793     cur->set_young_index_in_cset(-1);
  5794     cur = next;
  5798 void G1CollectedHeap::set_free_regions_coming() {
  5799   if (G1ConcRegionFreeingVerbose) {
  5800     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  5801                            "setting free regions coming");
  5804   assert(!free_regions_coming(), "pre-condition");
  5805   _free_regions_coming = true;
  5808 void G1CollectedHeap::reset_free_regions_coming() {
  5810     assert(free_regions_coming(), "pre-condition");
  5811     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  5812     _free_regions_coming = false;
  5813     SecondaryFreeList_lock->notify_all();
  5816   if (G1ConcRegionFreeingVerbose) {
  5817     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  5818                            "reset free regions coming");
  5822 void G1CollectedHeap::wait_while_free_regions_coming() {
  5823   // Most of the time we won't have to wait, so let's do a quick test
  5824   // first before we take the lock.
  5825   if (!free_regions_coming()) {
  5826     return;
  5829   if (G1ConcRegionFreeingVerbose) {
  5830     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  5831                            "waiting for free regions");
  5835     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  5836     while (free_regions_coming()) {
  5837       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
  5841   if (G1ConcRegionFreeingVerbose) {
  5842     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  5843                            "done waiting for free regions");
  5847 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  5848   assert(heap_lock_held_for_gc(),
  5849               "the heap lock should already be held by or for this thread");
  5850   _young_list->push_region(hr);
  5853 class NoYoungRegionsClosure: public HeapRegionClosure {
  5854 private:
  5855   bool _success;
  5856 public:
  5857   NoYoungRegionsClosure() : _success(true) { }
  5858   bool doHeapRegion(HeapRegion* r) {
  5859     if (r->is_young()) {
  5860       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
  5861                              r->bottom(), r->end());
  5862       _success = false;
  5864     return false;
  5866   bool success() { return _success; }
  5867 };
  5869 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
  5870   bool ret = _young_list->check_list_empty(check_sample);
  5872   if (check_heap) {
  5873     NoYoungRegionsClosure closure;
  5874     heap_region_iterate(&closure);
  5875     ret = ret && closure.success();
  5878   return ret;
  5881 class TearDownRegionSetsClosure : public HeapRegionClosure {
  5882 private:
  5883   OldRegionSet *_old_set;
  5885 public:
  5886   TearDownRegionSetsClosure(OldRegionSet* old_set) : _old_set(old_set) { }
  5888   bool doHeapRegion(HeapRegion* r) {
  5889     if (r->is_empty()) {
  5890       // We ignore empty regions, we'll empty the free list afterwards
  5891     } else if (r->is_young()) {
  5892       // We ignore young regions, we'll empty the young list afterwards
  5893     } else if (r->isHumongous()) {
  5894       // We ignore humongous regions, we're not tearing down the
  5895       // humongous region set
  5896     } else {
  5897       // The rest should be old
  5898       _old_set->remove(r);
  5900     return false;
  5903   ~TearDownRegionSetsClosure() {
  5904     assert(_old_set->is_empty(), "post-condition");
  5906 };
  5908 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
  5909   assert_at_safepoint(true /* should_be_vm_thread */);
  5911   if (!free_list_only) {
  5912     TearDownRegionSetsClosure cl(&_old_set);
  5913     heap_region_iterate(&cl);
  5915     // Need to do this after the heap iteration to be able to
  5916     // recognize the young regions and ignore them during the iteration.
  5917     _young_list->empty_list();
  5919   _free_list.remove_all();
  5922 class RebuildRegionSetsClosure : public HeapRegionClosure {
  5923 private:
  5924   bool            _free_list_only;
  5925   OldRegionSet*   _old_set;
  5926   FreeRegionList* _free_list;
  5927   size_t          _total_used;
  5929 public:
  5930   RebuildRegionSetsClosure(bool free_list_only,
  5931                            OldRegionSet* old_set, FreeRegionList* free_list) :
  5932     _free_list_only(free_list_only),
  5933     _old_set(old_set), _free_list(free_list), _total_used(0) {
  5934     assert(_free_list->is_empty(), "pre-condition");
  5935     if (!free_list_only) {
  5936       assert(_old_set->is_empty(), "pre-condition");
  5940   bool doHeapRegion(HeapRegion* r) {
  5941     if (r->continuesHumongous()) {
  5942       return false;
  5945     if (r->is_empty()) {
  5946       // Add free regions to the free list
  5947       _free_list->add_as_tail(r);
  5948     } else if (!_free_list_only) {
  5949       assert(!r->is_young(), "we should not come across young regions");
  5951       if (r->isHumongous()) {
  5952         // We ignore humongous regions, we left the humongous set unchanged
  5953       } else {
  5954         // The rest should be old, add them to the old set
  5955         _old_set->add(r);
  5957       _total_used += r->used();
  5960     return false;
  5963   size_t total_used() {
  5964     return _total_used;
  5966 };
  5968 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
  5969   assert_at_safepoint(true /* should_be_vm_thread */);
  5971   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
  5972   heap_region_iterate(&cl);
  5974   if (!free_list_only) {
  5975     _summary_bytes_used = cl.total_used();
  5977   assert(_summary_bytes_used == recalculate_used(),
  5978          err_msg("inconsistent _summary_bytes_used, "
  5979                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
  5980                  _summary_bytes_used, recalculate_used()));
  5983 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  5984   _refine_cte_cl->set_concurrent(concurrent);
  5987 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  5988   HeapRegion* hr = heap_region_containing(p);
  5989   if (hr == NULL) {
  5990     return is_in_permanent(p);
  5991   } else {
  5992     return hr->is_in(p);
  5996 // Methods for the mutator alloc region
  5998 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
  5999                                                       bool force) {
  6000   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6001   assert(!force || g1_policy()->can_expand_young_list(),
  6002          "if force is true we should be able to expand the young list");
  6003   bool young_list_full = g1_policy()->is_young_list_full();
  6004   if (force || !young_list_full) {
  6005     HeapRegion* new_alloc_region = new_region(word_size,
  6006                                               false /* do_expand */);
  6007     if (new_alloc_region != NULL) {
  6008       set_region_short_lived_locked(new_alloc_region);
  6009       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
  6010       return new_alloc_region;
  6013   return NULL;
  6016 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
  6017                                                   size_t allocated_bytes) {
  6018   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6019   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
  6021   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
  6022   _summary_bytes_used += allocated_bytes;
  6023   _hr_printer.retire(alloc_region);
  6024   // We update the eden sizes here, when the region is retired,
  6025   // instead of when it's allocated, since this is the point that its
  6026   // used space has been recored in _summary_bytes_used.
  6027   g1mm()->update_eden_size();
  6030 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
  6031                                                     bool force) {
  6032   return _g1h->new_mutator_alloc_region(word_size, force);
  6035 void G1CollectedHeap::set_par_threads() {
  6036   // Don't change the number of workers.  Use the value previously set
  6037   // in the workgroup.
  6038   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
  6039   uint n_workers = workers()->active_workers();
  6040   assert(UseDynamicNumberOfGCThreads ||
  6041            n_workers == workers()->total_workers(),
  6042       "Otherwise should be using the total number of workers");
  6043   if (n_workers == 0) {
  6044     assert(false, "Should have been set in prior evacuation pause.");
  6045     n_workers = ParallelGCThreads;
  6046     workers()->set_active_workers(n_workers);
  6048   set_par_threads(n_workers);
  6051 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
  6052                                        size_t allocated_bytes) {
  6053   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
  6056 // Methods for the GC alloc regions
  6058 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
  6059                                                  size_t count,
  6060                                                  GCAllocPurpose ap) {
  6061   assert(FreeList_lock->owned_by_self(), "pre-condition");
  6063   if (count < g1_policy()->max_regions(ap)) {
  6064     HeapRegion* new_alloc_region = new_region(word_size,
  6065                                               true /* do_expand */);
  6066     if (new_alloc_region != NULL) {
  6067       // We really only need to do this for old regions given that we
  6068       // should never scan survivors. But it doesn't hurt to do it
  6069       // for survivors too.
  6070       new_alloc_region->set_saved_mark();
  6071       if (ap == GCAllocForSurvived) {
  6072         new_alloc_region->set_survivor();
  6073         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
  6074       } else {
  6075         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
  6077       return new_alloc_region;
  6078     } else {
  6079       g1_policy()->note_alloc_region_limit_reached(ap);
  6082   return NULL;
  6085 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
  6086                                              size_t allocated_bytes,
  6087                                              GCAllocPurpose ap) {
  6088   alloc_region->note_end_of_copying();
  6089   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
  6090   if (ap == GCAllocForSurvived) {
  6091     young_list()->add_survivor_region(alloc_region);
  6092   } else {
  6093     _old_set.add(alloc_region);
  6095   _hr_printer.retire(alloc_region);
  6098 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
  6099                                                        bool force) {
  6100   assert(!force, "not supported for GC alloc regions");
  6101   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
  6104 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
  6105                                           size_t allocated_bytes) {
  6106   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
  6107                                GCAllocForSurvived);
  6110 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
  6111                                                   bool force) {
  6112   assert(!force, "not supported for GC alloc regions");
  6113   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
  6116 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
  6117                                      size_t allocated_bytes) {
  6118   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
  6119                                GCAllocForTenured);
  6121 // Heap region set verification
  6123 class VerifyRegionListsClosure : public HeapRegionClosure {
  6124 private:
  6125   FreeRegionList*     _free_list;
  6126   OldRegionSet*       _old_set;
  6127   HumongousRegionSet* _humongous_set;
  6128   size_t              _region_count;
  6130 public:
  6131   VerifyRegionListsClosure(OldRegionSet* old_set,
  6132                            HumongousRegionSet* humongous_set,
  6133                            FreeRegionList* free_list) :
  6134     _old_set(old_set), _humongous_set(humongous_set),
  6135     _free_list(free_list), _region_count(0) { }
  6137   size_t region_count()      { return _region_count;      }
  6139   bool doHeapRegion(HeapRegion* hr) {
  6140     _region_count += 1;
  6142     if (hr->continuesHumongous()) {
  6143       return false;
  6146     if (hr->is_young()) {
  6147       // TODO
  6148     } else if (hr->startsHumongous()) {
  6149       _humongous_set->verify_next_region(hr);
  6150     } else if (hr->is_empty()) {
  6151       _free_list->verify_next_region(hr);
  6152     } else {
  6153       _old_set->verify_next_region(hr);
  6155     return false;
  6157 };
  6159 HeapRegion* G1CollectedHeap::new_heap_region(size_t hrs_index,
  6160                                              HeapWord* bottom) {
  6161   HeapWord* end = bottom + HeapRegion::GrainWords;
  6162   MemRegion mr(bottom, end);
  6163   assert(_g1_reserved.contains(mr), "invariant");
  6164   // This might return NULL if the allocation fails
  6165   return new HeapRegion(hrs_index, _bot_shared, mr, true /* is_zeroed */);
  6168 void G1CollectedHeap::verify_region_sets() {
  6169   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6171   // First, check the explicit lists.
  6172   _free_list.verify();
  6174     // Given that a concurrent operation might be adding regions to
  6175     // the secondary free list we have to take the lock before
  6176     // verifying it.
  6177     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6178     _secondary_free_list.verify();
  6180   _old_set.verify();
  6181   _humongous_set.verify();
  6183   // If a concurrent region freeing operation is in progress it will
  6184   // be difficult to correctly attributed any free regions we come
  6185   // across to the correct free list given that they might belong to
  6186   // one of several (free_list, secondary_free_list, any local lists,
  6187   // etc.). So, if that's the case we will skip the rest of the
  6188   // verification operation. Alternatively, waiting for the concurrent
  6189   // operation to complete will have a non-trivial effect on the GC's
  6190   // operation (no concurrent operation will last longer than the
  6191   // interval between two calls to verification) and it might hide
  6192   // any issues that we would like to catch during testing.
  6193   if (free_regions_coming()) {
  6194     return;
  6197   // Make sure we append the secondary_free_list on the free_list so
  6198   // that all free regions we will come across can be safely
  6199   // attributed to the free_list.
  6200   append_secondary_free_list_if_not_empty_with_lock();
  6202   // Finally, make sure that the region accounting in the lists is
  6203   // consistent with what we see in the heap.
  6204   _old_set.verify_start();
  6205   _humongous_set.verify_start();
  6206   _free_list.verify_start();
  6208   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
  6209   heap_region_iterate(&cl);
  6211   _old_set.verify_end();
  6212   _humongous_set.verify_end();
  6213   _free_list.verify_end();

mercurial