src/share/vm/opto/graphKit.cpp

Tue, 05 Jan 2010 13:05:58 +0100

author
twisti
date
Tue, 05 Jan 2010 13:05:58 +0100
changeset 1572
97125851f396
parent 1534
c5d3d979ae27
child 1601
7b0e9cba0307
permissions
-rw-r--r--

6829187: compiler optimizations required for JSR 292
Summary: C2 implementation for invokedynamic support.
Reviewed-by: kvn, never

     1 /*
     2  * Copyright 2001-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_graphKit.cpp.incl"
    28 //----------------------------GraphKit-----------------------------------------
    29 // Main utility constructor.
    30 GraphKit::GraphKit(JVMState* jvms)
    31   : Phase(Phase::Parser),
    32     _env(C->env()),
    33     _gvn(*C->initial_gvn())
    34 {
    35   _exceptions = jvms->map()->next_exception();
    36   if (_exceptions != NULL)  jvms->map()->set_next_exception(NULL);
    37   set_jvms(jvms);
    38 }
    40 // Private constructor for parser.
    41 GraphKit::GraphKit()
    42   : Phase(Phase::Parser),
    43     _env(C->env()),
    44     _gvn(*C->initial_gvn())
    45 {
    46   _exceptions = NULL;
    47   set_map(NULL);
    48   debug_only(_sp = -99);
    49   debug_only(set_bci(-99));
    50 }
    54 //---------------------------clean_stack---------------------------------------
    55 // Clear away rubbish from the stack area of the JVM state.
    56 // This destroys any arguments that may be waiting on the stack.
    57 void GraphKit::clean_stack(int from_sp) {
    58   SafePointNode* map      = this->map();
    59   JVMState*      jvms     = this->jvms();
    60   int            stk_size = jvms->stk_size();
    61   int            stkoff   = jvms->stkoff();
    62   Node*          top      = this->top();
    63   for (int i = from_sp; i < stk_size; i++) {
    64     if (map->in(stkoff + i) != top) {
    65       map->set_req(stkoff + i, top);
    66     }
    67   }
    68 }
    71 //--------------------------------sync_jvms-----------------------------------
    72 // Make sure our current jvms agrees with our parse state.
    73 JVMState* GraphKit::sync_jvms() const {
    74   JVMState* jvms = this->jvms();
    75   jvms->set_bci(bci());       // Record the new bci in the JVMState
    76   jvms->set_sp(sp());         // Record the new sp in the JVMState
    77   assert(jvms_in_sync(), "jvms is now in sync");
    78   return jvms;
    79 }
    81 #ifdef ASSERT
    82 bool GraphKit::jvms_in_sync() const {
    83   Parse* parse = is_Parse();
    84   if (parse == NULL) {
    85     if (bci() !=      jvms()->bci())          return false;
    86     if (sp()  != (int)jvms()->sp())           return false;
    87     return true;
    88   }
    89   if (jvms()->method() != parse->method())    return false;
    90   if (jvms()->bci()    != parse->bci())       return false;
    91   int jvms_sp = jvms()->sp();
    92   if (jvms_sp          != parse->sp())        return false;
    93   int jvms_depth = jvms()->depth();
    94   if (jvms_depth       != parse->depth())     return false;
    95   return true;
    96 }
    98 // Local helper checks for special internal merge points
    99 // used to accumulate and merge exception states.
   100 // They are marked by the region's in(0) edge being the map itself.
   101 // Such merge points must never "escape" into the parser at large,
   102 // until they have been handed to gvn.transform.
   103 static bool is_hidden_merge(Node* reg) {
   104   if (reg == NULL)  return false;
   105   if (reg->is_Phi()) {
   106     reg = reg->in(0);
   107     if (reg == NULL)  return false;
   108   }
   109   return reg->is_Region() && reg->in(0) != NULL && reg->in(0)->is_Root();
   110 }
   112 void GraphKit::verify_map() const {
   113   if (map() == NULL)  return;  // null map is OK
   114   assert(map()->req() <= jvms()->endoff(), "no extra garbage on map");
   115   assert(!map()->has_exceptions(),    "call add_exception_states_from 1st");
   116   assert(!is_hidden_merge(control()), "call use_exception_state, not set_map");
   117 }
   119 void GraphKit::verify_exception_state(SafePointNode* ex_map) {
   120   assert(ex_map->next_exception() == NULL, "not already part of a chain");
   121   assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop");
   122 }
   123 #endif
   125 //---------------------------stop_and_kill_map---------------------------------
   126 // Set _map to NULL, signalling a stop to further bytecode execution.
   127 // First smash the current map's control to a constant, to mark it dead.
   128 void GraphKit::stop_and_kill_map() {
   129   SafePointNode* dead_map = stop();
   130   if (dead_map != NULL) {
   131     dead_map->disconnect_inputs(NULL); // Mark the map as killed.
   132     assert(dead_map->is_killed(), "must be so marked");
   133   }
   134 }
   137 //--------------------------------stopped--------------------------------------
   138 // Tell if _map is NULL, or control is top.
   139 bool GraphKit::stopped() {
   140   if (map() == NULL)           return true;
   141   else if (control() == top()) return true;
   142   else                         return false;
   143 }
   146 //-----------------------------has_ex_handler----------------------------------
   147 // Tell if this method or any caller method has exception handlers.
   148 bool GraphKit::has_ex_handler() {
   149   for (JVMState* jvmsp = jvms(); jvmsp != NULL; jvmsp = jvmsp->caller()) {
   150     if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) {
   151       return true;
   152     }
   153   }
   154   return false;
   155 }
   157 //------------------------------save_ex_oop------------------------------------
   158 // Save an exception without blowing stack contents or other JVM state.
   159 void GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) {
   160   assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again");
   161   ex_map->add_req(ex_oop);
   162   debug_only(verify_exception_state(ex_map));
   163 }
   165 inline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) {
   166   assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there");
   167   Node* ex_oop = ex_map->in(ex_map->req()-1);
   168   if (clear_it)  ex_map->del_req(ex_map->req()-1);
   169   return ex_oop;
   170 }
   172 //-----------------------------saved_ex_oop------------------------------------
   173 // Recover a saved exception from its map.
   174 Node* GraphKit::saved_ex_oop(SafePointNode* ex_map) {
   175   return common_saved_ex_oop(ex_map, false);
   176 }
   178 //--------------------------clear_saved_ex_oop---------------------------------
   179 // Erase a previously saved exception from its map.
   180 Node* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) {
   181   return common_saved_ex_oop(ex_map, true);
   182 }
   184 #ifdef ASSERT
   185 //---------------------------has_saved_ex_oop----------------------------------
   186 // Erase a previously saved exception from its map.
   187 bool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) {
   188   return ex_map->req() == ex_map->jvms()->endoff()+1;
   189 }
   190 #endif
   192 //-------------------------make_exception_state--------------------------------
   193 // Turn the current JVM state into an exception state, appending the ex_oop.
   194 SafePointNode* GraphKit::make_exception_state(Node* ex_oop) {
   195   sync_jvms();
   196   SafePointNode* ex_map = stop();  // do not manipulate this map any more
   197   set_saved_ex_oop(ex_map, ex_oop);
   198   return ex_map;
   199 }
   202 //--------------------------add_exception_state--------------------------------
   203 // Add an exception to my list of exceptions.
   204 void GraphKit::add_exception_state(SafePointNode* ex_map) {
   205   if (ex_map == NULL || ex_map->control() == top()) {
   206     return;
   207   }
   208 #ifdef ASSERT
   209   verify_exception_state(ex_map);
   210   if (has_exceptions()) {
   211     assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place");
   212   }
   213 #endif
   215   // If there is already an exception of exactly this type, merge with it.
   216   // In particular, null-checks and other low-level exceptions common up here.
   217   Node*       ex_oop  = saved_ex_oop(ex_map);
   218   const Type* ex_type = _gvn.type(ex_oop);
   219   if (ex_oop == top()) {
   220     // No action needed.
   221     return;
   222   }
   223   assert(ex_type->isa_instptr(), "exception must be an instance");
   224   for (SafePointNode* e2 = _exceptions; e2 != NULL; e2 = e2->next_exception()) {
   225     const Type* ex_type2 = _gvn.type(saved_ex_oop(e2));
   226     // We check sp also because call bytecodes can generate exceptions
   227     // both before and after arguments are popped!
   228     if (ex_type2 == ex_type
   229         && e2->_jvms->sp() == ex_map->_jvms->sp()) {
   230       combine_exception_states(ex_map, e2);
   231       return;
   232     }
   233   }
   235   // No pre-existing exception of the same type.  Chain it on the list.
   236   push_exception_state(ex_map);
   237 }
   239 //-----------------------add_exception_states_from-----------------------------
   240 void GraphKit::add_exception_states_from(JVMState* jvms) {
   241   SafePointNode* ex_map = jvms->map()->next_exception();
   242   if (ex_map != NULL) {
   243     jvms->map()->set_next_exception(NULL);
   244     for (SafePointNode* next_map; ex_map != NULL; ex_map = next_map) {
   245       next_map = ex_map->next_exception();
   246       ex_map->set_next_exception(NULL);
   247       add_exception_state(ex_map);
   248     }
   249   }
   250 }
   252 //-----------------------transfer_exceptions_into_jvms-------------------------
   253 JVMState* GraphKit::transfer_exceptions_into_jvms() {
   254   if (map() == NULL) {
   255     // We need a JVMS to carry the exceptions, but the map has gone away.
   256     // Create a scratch JVMS, cloned from any of the exception states...
   257     if (has_exceptions()) {
   258       _map = _exceptions;
   259       _map = clone_map();
   260       _map->set_next_exception(NULL);
   261       clear_saved_ex_oop(_map);
   262       debug_only(verify_map());
   263     } else {
   264       // ...or created from scratch
   265       JVMState* jvms = new (C) JVMState(_method, NULL);
   266       jvms->set_bci(_bci);
   267       jvms->set_sp(_sp);
   268       jvms->set_map(new (C, TypeFunc::Parms) SafePointNode(TypeFunc::Parms, jvms));
   269       set_jvms(jvms);
   270       for (uint i = 0; i < map()->req(); i++)  map()->init_req(i, top());
   271       set_all_memory(top());
   272       while (map()->req() < jvms->endoff())  map()->add_req(top());
   273     }
   274     // (This is a kludge, in case you didn't notice.)
   275     set_control(top());
   276   }
   277   JVMState* jvms = sync_jvms();
   278   assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet");
   279   jvms->map()->set_next_exception(_exceptions);
   280   _exceptions = NULL;   // done with this set of exceptions
   281   return jvms;
   282 }
   284 static inline void add_n_reqs(Node* dstphi, Node* srcphi) {
   285   assert(is_hidden_merge(dstphi), "must be a special merge node");
   286   assert(is_hidden_merge(srcphi), "must be a special merge node");
   287   uint limit = srcphi->req();
   288   for (uint i = PhiNode::Input; i < limit; i++) {
   289     dstphi->add_req(srcphi->in(i));
   290   }
   291 }
   292 static inline void add_one_req(Node* dstphi, Node* src) {
   293   assert(is_hidden_merge(dstphi), "must be a special merge node");
   294   assert(!is_hidden_merge(src), "must not be a special merge node");
   295   dstphi->add_req(src);
   296 }
   298 //-----------------------combine_exception_states------------------------------
   299 // This helper function combines exception states by building phis on a
   300 // specially marked state-merging region.  These regions and phis are
   301 // untransformed, and can build up gradually.  The region is marked by
   302 // having a control input of its exception map, rather than NULL.  Such
   303 // regions do not appear except in this function, and in use_exception_state.
   304 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
   305   if (failing())  return;  // dying anyway...
   306   JVMState* ex_jvms = ex_map->_jvms;
   307   assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
   308   assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
   309   assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");
   310   assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
   311   assert(ex_map->req() == phi_map->req(), "matching maps");
   312   uint tos = ex_jvms->stkoff() + ex_jvms->sp();
   313   Node*         hidden_merge_mark = root();
   314   Node*         region  = phi_map->control();
   315   MergeMemNode* phi_mem = phi_map->merged_memory();
   316   MergeMemNode* ex_mem  = ex_map->merged_memory();
   317   if (region->in(0) != hidden_merge_mark) {
   318     // The control input is not (yet) a specially-marked region in phi_map.
   319     // Make it so, and build some phis.
   320     region = new (C, 2) RegionNode(2);
   321     _gvn.set_type(region, Type::CONTROL);
   322     region->set_req(0, hidden_merge_mark);  // marks an internal ex-state
   323     region->init_req(1, phi_map->control());
   324     phi_map->set_control(region);
   325     Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
   326     record_for_igvn(io_phi);
   327     _gvn.set_type(io_phi, Type::ABIO);
   328     phi_map->set_i_o(io_phi);
   329     for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) {
   330       Node* m = mms.memory();
   331       Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C));
   332       record_for_igvn(m_phi);
   333       _gvn.set_type(m_phi, Type::MEMORY);
   334       mms.set_memory(m_phi);
   335     }
   336   }
   338   // Either or both of phi_map and ex_map might already be converted into phis.
   339   Node* ex_control = ex_map->control();
   340   // if there is special marking on ex_map also, we add multiple edges from src
   341   bool add_multiple = (ex_control->in(0) == hidden_merge_mark);
   342   // how wide was the destination phi_map, originally?
   343   uint orig_width = region->req();
   345   if (add_multiple) {
   346     add_n_reqs(region, ex_control);
   347     add_n_reqs(phi_map->i_o(), ex_map->i_o());
   348   } else {
   349     // ex_map has no merges, so we just add single edges everywhere
   350     add_one_req(region, ex_control);
   351     add_one_req(phi_map->i_o(), ex_map->i_o());
   352   }
   353   for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) {
   354     if (mms.is_empty()) {
   355       // get a copy of the base memory, and patch some inputs into it
   356       const TypePtr* adr_type = mms.adr_type(C);
   357       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
   358       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
   359       mms.set_memory(phi);
   360       // Prepare to append interesting stuff onto the newly sliced phi:
   361       while (phi->req() > orig_width)  phi->del_req(phi->req()-1);
   362     }
   363     // Append stuff from ex_map:
   364     if (add_multiple) {
   365       add_n_reqs(mms.memory(), mms.memory2());
   366     } else {
   367       add_one_req(mms.memory(), mms.memory2());
   368     }
   369   }
   370   uint limit = ex_map->req();
   371   for (uint i = TypeFunc::Parms; i < limit; i++) {
   372     // Skip everything in the JVMS after tos.  (The ex_oop follows.)
   373     if (i == tos)  i = ex_jvms->monoff();
   374     Node* src = ex_map->in(i);
   375     Node* dst = phi_map->in(i);
   376     if (src != dst) {
   377       PhiNode* phi;
   378       if (dst->in(0) != region) {
   379         dst = phi = PhiNode::make(region, dst, _gvn.type(dst));
   380         record_for_igvn(phi);
   381         _gvn.set_type(phi, phi->type());
   382         phi_map->set_req(i, dst);
   383         // Prepare to append interesting stuff onto the new phi:
   384         while (dst->req() > orig_width)  dst->del_req(dst->req()-1);
   385       } else {
   386         assert(dst->is_Phi(), "nobody else uses a hidden region");
   387         phi = (PhiNode*)dst;
   388       }
   389       if (add_multiple && src->in(0) == ex_control) {
   390         // Both are phis.
   391         add_n_reqs(dst, src);
   392       } else {
   393         while (dst->req() < region->req())  add_one_req(dst, src);
   394       }
   395       const Type* srctype = _gvn.type(src);
   396       if (phi->type() != srctype) {
   397         const Type* dsttype = phi->type()->meet(srctype);
   398         if (phi->type() != dsttype) {
   399           phi->set_type(dsttype);
   400           _gvn.set_type(phi, dsttype);
   401         }
   402       }
   403     }
   404   }
   405 }
   407 //--------------------------use_exception_state--------------------------------
   408 Node* GraphKit::use_exception_state(SafePointNode* phi_map) {
   409   if (failing()) { stop(); return top(); }
   410   Node* region = phi_map->control();
   411   Node* hidden_merge_mark = root();
   412   assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation");
   413   Node* ex_oop = clear_saved_ex_oop(phi_map);
   414   if (region->in(0) == hidden_merge_mark) {
   415     // Special marking for internal ex-states.  Process the phis now.
   416     region->set_req(0, region);  // now it's an ordinary region
   417     set_jvms(phi_map->jvms());   // ...so now we can use it as a map
   418     // Note: Setting the jvms also sets the bci and sp.
   419     set_control(_gvn.transform(region));
   420     uint tos = jvms()->stkoff() + sp();
   421     for (uint i = 1; i < tos; i++) {
   422       Node* x = phi_map->in(i);
   423       if (x->in(0) == region) {
   424         assert(x->is_Phi(), "expected a special phi");
   425         phi_map->set_req(i, _gvn.transform(x));
   426       }
   427     }
   428     for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
   429       Node* x = mms.memory();
   430       if (x->in(0) == region) {
   431         assert(x->is_Phi(), "nobody else uses a hidden region");
   432         mms.set_memory(_gvn.transform(x));
   433       }
   434     }
   435     if (ex_oop->in(0) == region) {
   436       assert(ex_oop->is_Phi(), "expected a special phi");
   437       ex_oop = _gvn.transform(ex_oop);
   438     }
   439   } else {
   440     set_jvms(phi_map->jvms());
   441   }
   443   assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared");
   444   assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared");
   445   return ex_oop;
   446 }
   448 //---------------------------------java_bc-------------------------------------
   449 Bytecodes::Code GraphKit::java_bc() const {
   450   ciMethod* method = this->method();
   451   int       bci    = this->bci();
   452   if (method != NULL && bci != InvocationEntryBci)
   453     return method->java_code_at_bci(bci);
   454   else
   455     return Bytecodes::_illegal;
   456 }
   458 //------------------------------builtin_throw----------------------------------
   459 void GraphKit::builtin_throw(Deoptimization::DeoptReason reason, Node* arg) {
   460   bool must_throw = true;
   462   if (env()->jvmti_can_post_exceptions()) {
   463     // Do not try anything fancy if we're notifying the VM on every throw.
   464     // Cf. case Bytecodes::_athrow in parse2.cpp.
   465     uncommon_trap(reason, Deoptimization::Action_none,
   466                   (ciKlass*)NULL, (char*)NULL, must_throw);
   467     return;
   468   }
   470   // If this particular condition has not yet happened at this
   471   // bytecode, then use the uncommon trap mechanism, and allow for
   472   // a future recompilation if several traps occur here.
   473   // If the throw is hot, try to use a more complicated inline mechanism
   474   // which keeps execution inside the compiled code.
   475   bool treat_throw_as_hot = false;
   476   ciMethodData* md = method()->method_data();
   478   if (ProfileTraps) {
   479     if (too_many_traps(reason)) {
   480       treat_throw_as_hot = true;
   481     }
   482     // (If there is no MDO at all, assume it is early in
   483     // execution, and that any deopts are part of the
   484     // startup transient, and don't need to be remembered.)
   486     // Also, if there is a local exception handler, treat all throws
   487     // as hot if there has been at least one in this method.
   488     if (C->trap_count(reason) != 0
   489         && method()->method_data()->trap_count(reason) != 0
   490         && has_ex_handler()) {
   491         treat_throw_as_hot = true;
   492     }
   493   }
   495   // If this throw happens frequently, an uncommon trap might cause
   496   // a performance pothole.  If there is a local exception handler,
   497   // and if this particular bytecode appears to be deoptimizing often,
   498   // let us handle the throw inline, with a preconstructed instance.
   499   // Note:   If the deopt count has blown up, the uncommon trap
   500   // runtime is going to flush this nmethod, not matter what.
   501   if (treat_throw_as_hot
   502       && (!StackTraceInThrowable || OmitStackTraceInFastThrow)) {
   503     // If the throw is local, we use a pre-existing instance and
   504     // punt on the backtrace.  This would lead to a missing backtrace
   505     // (a repeat of 4292742) if the backtrace object is ever asked
   506     // for its backtrace.
   507     // Fixing this remaining case of 4292742 requires some flavor of
   508     // escape analysis.  Leave that for the future.
   509     ciInstance* ex_obj = NULL;
   510     switch (reason) {
   511     case Deoptimization::Reason_null_check:
   512       ex_obj = env()->NullPointerException_instance();
   513       break;
   514     case Deoptimization::Reason_div0_check:
   515       ex_obj = env()->ArithmeticException_instance();
   516       break;
   517     case Deoptimization::Reason_range_check:
   518       ex_obj = env()->ArrayIndexOutOfBoundsException_instance();
   519       break;
   520     case Deoptimization::Reason_class_check:
   521       if (java_bc() == Bytecodes::_aastore) {
   522         ex_obj = env()->ArrayStoreException_instance();
   523       } else {
   524         ex_obj = env()->ClassCastException_instance();
   525       }
   526       break;
   527     }
   528     if (failing()) { stop(); return; }  // exception allocation might fail
   529     if (ex_obj != NULL) {
   530       // Cheat with a preallocated exception object.
   531       if (C->log() != NULL)
   532         C->log()->elem("hot_throw preallocated='1' reason='%s'",
   533                        Deoptimization::trap_reason_name(reason));
   534       const TypeInstPtr* ex_con  = TypeInstPtr::make(ex_obj);
   535       Node*              ex_node = _gvn.transform( ConNode::make(C, ex_con) );
   537       // Clear the detail message of the preallocated exception object.
   538       // Weblogic sometimes mutates the detail message of exceptions
   539       // using reflection.
   540       int offset = java_lang_Throwable::get_detailMessage_offset();
   541       const TypePtr* adr_typ = ex_con->add_offset(offset);
   543       Node *adr = basic_plus_adr(ex_node, ex_node, offset);
   544       Node *store = store_oop_to_object(control(), ex_node, adr, adr_typ, null(), ex_con, T_OBJECT);
   546       add_exception_state(make_exception_state(ex_node));
   547       return;
   548     }
   549   }
   551   // %%% Maybe add entry to OptoRuntime which directly throws the exc.?
   552   // It won't be much cheaper than bailing to the interp., since we'll
   553   // have to pass up all the debug-info, and the runtime will have to
   554   // create the stack trace.
   556   // Usual case:  Bail to interpreter.
   557   // Reserve the right to recompile if we haven't seen anything yet.
   559   Deoptimization::DeoptAction action = Deoptimization::Action_maybe_recompile;
   560   if (treat_throw_as_hot
   561       && (method()->method_data()->trap_recompiled_at(bci())
   562           || C->too_many_traps(reason))) {
   563     // We cannot afford to take more traps here.  Suffer in the interpreter.
   564     if (C->log() != NULL)
   565       C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'",
   566                      Deoptimization::trap_reason_name(reason),
   567                      C->trap_count(reason));
   568     action = Deoptimization::Action_none;
   569   }
   571   // "must_throw" prunes the JVM state to include only the stack, if there
   572   // are no local exception handlers.  This should cut down on register
   573   // allocation time and code size, by drastically reducing the number
   574   // of in-edges on the call to the uncommon trap.
   576   uncommon_trap(reason, action, (ciKlass*)NULL, (char*)NULL, must_throw);
   577 }
   580 //----------------------------PreserveJVMState---------------------------------
   581 PreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) {
   582   debug_only(kit->verify_map());
   583   _kit    = kit;
   584   _map    = kit->map();   // preserve the map
   585   _sp     = kit->sp();
   586   kit->set_map(clone_map ? kit->clone_map() : NULL);
   587 #ifdef ASSERT
   588   _bci    = kit->bci();
   589   Parse* parser = kit->is_Parse();
   590   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
   591   _block  = block;
   592 #endif
   593 }
   594 PreserveJVMState::~PreserveJVMState() {
   595   GraphKit* kit = _kit;
   596 #ifdef ASSERT
   597   assert(kit->bci() == _bci, "bci must not shift");
   598   Parse* parser = kit->is_Parse();
   599   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
   600   assert(block == _block,    "block must not shift");
   601 #endif
   602   kit->set_map(_map);
   603   kit->set_sp(_sp);
   604 }
   607 //-----------------------------BuildCutout-------------------------------------
   608 BuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt)
   609   : PreserveJVMState(kit)
   610 {
   611   assert(p->is_Con() || p->is_Bool(), "test must be a bool");
   612   SafePointNode* outer_map = _map;   // preserved map is caller's
   613   SafePointNode* inner_map = kit->map();
   614   IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt);
   615   outer_map->set_control(kit->gvn().transform( new (kit->C, 1) IfTrueNode(iff) ));
   616   inner_map->set_control(kit->gvn().transform( new (kit->C, 1) IfFalseNode(iff) ));
   617 }
   618 BuildCutout::~BuildCutout() {
   619   GraphKit* kit = _kit;
   620   assert(kit->stopped(), "cutout code must stop, throw, return, etc.");
   621 }
   623 //---------------------------PreserveReexecuteState----------------------------
   624 PreserveReexecuteState::PreserveReexecuteState(GraphKit* kit) {
   625   assert(!kit->stopped(), "must call stopped() before");
   626   _kit    =    kit;
   627   _sp     =    kit->sp();
   628   _reexecute = kit->jvms()->_reexecute;
   629 }
   630 PreserveReexecuteState::~PreserveReexecuteState() {
   631   if (_kit->stopped()) return;
   632   _kit->jvms()->_reexecute = _reexecute;
   633   _kit->set_sp(_sp);
   634 }
   636 //------------------------------clone_map--------------------------------------
   637 // Implementation of PreserveJVMState
   638 //
   639 // Only clone_map(...) here. If this function is only used in the
   640 // PreserveJVMState class we may want to get rid of this extra
   641 // function eventually and do it all there.
   643 SafePointNode* GraphKit::clone_map() {
   644   if (map() == NULL)  return NULL;
   646   // Clone the memory edge first
   647   Node* mem = MergeMemNode::make(C, map()->memory());
   648   gvn().set_type_bottom(mem);
   650   SafePointNode *clonemap = (SafePointNode*)map()->clone();
   651   JVMState* jvms = this->jvms();
   652   JVMState* clonejvms = jvms->clone_shallow(C);
   653   clonemap->set_memory(mem);
   654   clonemap->set_jvms(clonejvms);
   655   clonejvms->set_map(clonemap);
   656   record_for_igvn(clonemap);
   657   gvn().set_type_bottom(clonemap);
   658   return clonemap;
   659 }
   662 //-----------------------------set_map_clone-----------------------------------
   663 void GraphKit::set_map_clone(SafePointNode* m) {
   664   _map = m;
   665   _map = clone_map();
   666   _map->set_next_exception(NULL);
   667   debug_only(verify_map());
   668 }
   671 //----------------------------kill_dead_locals---------------------------------
   672 // Detect any locals which are known to be dead, and force them to top.
   673 void GraphKit::kill_dead_locals() {
   674   // Consult the liveness information for the locals.  If any
   675   // of them are unused, then they can be replaced by top().  This
   676   // should help register allocation time and cut down on the size
   677   // of the deoptimization information.
   679   // This call is made from many of the bytecode handling
   680   // subroutines called from the Big Switch in do_one_bytecode.
   681   // Every bytecode which might include a slow path is responsible
   682   // for killing its dead locals.  The more consistent we
   683   // are about killing deads, the fewer useless phis will be
   684   // constructed for them at various merge points.
   686   // bci can be -1 (InvocationEntryBci).  We return the entry
   687   // liveness for the method.
   689   if (method() == NULL || method()->code_size() == 0) {
   690     // We are building a graph for a call to a native method.
   691     // All locals are live.
   692     return;
   693   }
   695   ResourceMark rm;
   697   // Consult the liveness information for the locals.  If any
   698   // of them are unused, then they can be replaced by top().  This
   699   // should help register allocation time and cut down on the size
   700   // of the deoptimization information.
   701   MethodLivenessResult live_locals = method()->liveness_at_bci(bci());
   703   int len = (int)live_locals.size();
   704   assert(len <= jvms()->loc_size(), "too many live locals");
   705   for (int local = 0; local < len; local++) {
   706     if (!live_locals.at(local)) {
   707       set_local(local, top());
   708     }
   709   }
   710 }
   712 #ifdef ASSERT
   713 //-------------------------dead_locals_are_killed------------------------------
   714 // Return true if all dead locals are set to top in the map.
   715 // Used to assert "clean" debug info at various points.
   716 bool GraphKit::dead_locals_are_killed() {
   717   if (method() == NULL || method()->code_size() == 0) {
   718     // No locals need to be dead, so all is as it should be.
   719     return true;
   720   }
   722   // Make sure somebody called kill_dead_locals upstream.
   723   ResourceMark rm;
   724   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
   725     if (jvms->loc_size() == 0)  continue;  // no locals to consult
   726     SafePointNode* map = jvms->map();
   727     ciMethod* method = jvms->method();
   728     int       bci    = jvms->bci();
   729     if (jvms == this->jvms()) {
   730       bci = this->bci();  // it might not yet be synched
   731     }
   732     MethodLivenessResult live_locals = method->liveness_at_bci(bci);
   733     int len = (int)live_locals.size();
   734     if (!live_locals.is_valid() || len == 0)
   735       // This method is trivial, or is poisoned by a breakpoint.
   736       return true;
   737     assert(len == jvms->loc_size(), "live map consistent with locals map");
   738     for (int local = 0; local < len; local++) {
   739       if (!live_locals.at(local) && map->local(jvms, local) != top()) {
   740         if (PrintMiscellaneous && (Verbose || WizardMode)) {
   741           tty->print_cr("Zombie local %d: ", local);
   742           jvms->dump();
   743         }
   744         return false;
   745       }
   746     }
   747   }
   748   return true;
   749 }
   751 #endif //ASSERT
   753 // Helper function for enforcing certain bytecodes to reexecute if
   754 // deoptimization happens
   755 static bool should_reexecute_implied_by_bytecode(JVMState *jvms) {
   756   ciMethod* cur_method = jvms->method();
   757   int       cur_bci   = jvms->bci();
   758   if (cur_method != NULL && cur_bci != InvocationEntryBci) {
   759     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
   760     return Interpreter::bytecode_should_reexecute(code);
   761   } else
   762     return false;
   763 }
   765 // Helper function for adding JVMState and debug information to node
   766 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
   767   // Add the safepoint edges to the call (or other safepoint).
   769   // Make sure dead locals are set to top.  This
   770   // should help register allocation time and cut down on the size
   771   // of the deoptimization information.
   772   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");
   774   // Walk the inline list to fill in the correct set of JVMState's
   775   // Also fill in the associated edges for each JVMState.
   777   JVMState* youngest_jvms = sync_jvms();
   779   // Do we need debug info here?  If it is a SafePoint and this method
   780   // cannot de-opt, then we do NOT need any debug info.
   781   bool full_info = (C->deopt_happens() || call->Opcode() != Op_SafePoint);
   783   // If we are guaranteed to throw, we can prune everything but the
   784   // input to the current bytecode.
   785   bool can_prune_locals = false;
   786   uint stack_slots_not_pruned = 0;
   787   int inputs = 0, depth = 0;
   788   if (must_throw) {
   789     assert(method() == youngest_jvms->method(), "sanity");
   790     if (compute_stack_effects(inputs, depth)) {
   791       can_prune_locals = true;
   792       stack_slots_not_pruned = inputs;
   793     }
   794   }
   796   if (env()->jvmti_can_examine_or_deopt_anywhere()) {
   797     // At any safepoint, this method can get breakpointed, which would
   798     // then require an immediate deoptimization.
   799     full_info = true;
   800     can_prune_locals = false;  // do not prune locals
   801     stack_slots_not_pruned = 0;
   802   }
   804   // do not scribble on the input jvms
   805   JVMState* out_jvms = youngest_jvms->clone_deep(C);
   806   call->set_jvms(out_jvms); // Start jvms list for call node
   808   // For a known set of bytecodes, the interpreter should reexecute them if
   809   // deoptimization happens. We set the reexecute state for them here
   810   if (out_jvms->is_reexecute_undefined() && //don't change if already specified
   811       should_reexecute_implied_by_bytecode(out_jvms)) {
   812     out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed
   813   }
   815   // Presize the call:
   816   debug_only(uint non_debug_edges = call->req());
   817   call->add_req_batch(top(), youngest_jvms->debug_depth());
   818   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
   820   // Set up edges so that the call looks like this:
   821   //  Call [state:] ctl io mem fptr retadr
   822   //       [parms:] parm0 ... parmN
   823   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
   824   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
   825   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
   826   // Note that caller debug info precedes callee debug info.
   828   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
   829   uint debug_ptr = call->req();
   831   // Loop over the map input edges associated with jvms, add them
   832   // to the call node, & reset all offsets to match call node array.
   833   for (JVMState* in_jvms = youngest_jvms; in_jvms != NULL; ) {
   834     uint debug_end   = debug_ptr;
   835     uint debug_start = debug_ptr - in_jvms->debug_size();
   836     debug_ptr = debug_start;  // back up the ptr
   838     uint p = debug_start;  // walks forward in [debug_start, debug_end)
   839     uint j, k, l;
   840     SafePointNode* in_map = in_jvms->map();
   841     out_jvms->set_map(call);
   843     if (can_prune_locals) {
   844       assert(in_jvms->method() == out_jvms->method(), "sanity");
   845       // If the current throw can reach an exception handler in this JVMS,
   846       // then we must keep everything live that can reach that handler.
   847       // As a quick and dirty approximation, we look for any handlers at all.
   848       if (in_jvms->method()->has_exception_handlers()) {
   849         can_prune_locals = false;
   850       }
   851     }
   853     // Add the Locals
   854     k = in_jvms->locoff();
   855     l = in_jvms->loc_size();
   856     out_jvms->set_locoff(p);
   857     if (full_info && !can_prune_locals) {
   858       for (j = 0; j < l; j++)
   859         call->set_req(p++, in_map->in(k+j));
   860     } else {
   861       p += l;  // already set to top above by add_req_batch
   862     }
   864     // Add the Expression Stack
   865     k = in_jvms->stkoff();
   866     l = in_jvms->sp();
   867     out_jvms->set_stkoff(p);
   868     if (full_info && !can_prune_locals) {
   869       for (j = 0; j < l; j++)
   870         call->set_req(p++, in_map->in(k+j));
   871     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
   872       // Divide stack into {S0,...,S1}, where S0 is set to top.
   873       uint s1 = stack_slots_not_pruned;
   874       stack_slots_not_pruned = 0;  // for next iteration
   875       if (s1 > l)  s1 = l;
   876       uint s0 = l - s1;
   877       p += s0;  // skip the tops preinstalled by add_req_batch
   878       for (j = s0; j < l; j++)
   879         call->set_req(p++, in_map->in(k+j));
   880     } else {
   881       p += l;  // already set to top above by add_req_batch
   882     }
   884     // Add the Monitors
   885     k = in_jvms->monoff();
   886     l = in_jvms->mon_size();
   887     out_jvms->set_monoff(p);
   888     for (j = 0; j < l; j++)
   889       call->set_req(p++, in_map->in(k+j));
   891     // Copy any scalar object fields.
   892     k = in_jvms->scloff();
   893     l = in_jvms->scl_size();
   894     out_jvms->set_scloff(p);
   895     for (j = 0; j < l; j++)
   896       call->set_req(p++, in_map->in(k+j));
   898     // Finish the new jvms.
   899     out_jvms->set_endoff(p);
   901     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
   902     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
   903     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
   904     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
   905     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
   906     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
   908     // Update the two tail pointers in parallel.
   909     out_jvms = out_jvms->caller();
   910     in_jvms  = in_jvms->caller();
   911   }
   913   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
   915   // Test the correctness of JVMState::debug_xxx accessors:
   916   assert(call->jvms()->debug_start() == non_debug_edges, "");
   917   assert(call->jvms()->debug_end()   == call->req(), "");
   918   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
   919 }
   921 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
   922   Bytecodes::Code code = java_bc();
   923   if (code == Bytecodes::_wide) {
   924     code = method()->java_code_at_bci(bci() + 1);
   925   }
   927   BasicType rtype = T_ILLEGAL;
   928   int       rsize = 0;
   930   if (code != Bytecodes::_illegal) {
   931     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1
   932     rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V
   933     if (rtype < T_CONFLICT)
   934       rsize = type2size[rtype];
   935   }
   937   switch (code) {
   938   case Bytecodes::_illegal:
   939     return false;
   941   case Bytecodes::_ldc:
   942   case Bytecodes::_ldc_w:
   943   case Bytecodes::_ldc2_w:
   944     inputs = 0;
   945     break;
   947   case Bytecodes::_dup:         inputs = 1;  break;
   948   case Bytecodes::_dup_x1:      inputs = 2;  break;
   949   case Bytecodes::_dup_x2:      inputs = 3;  break;
   950   case Bytecodes::_dup2:        inputs = 2;  break;
   951   case Bytecodes::_dup2_x1:     inputs = 3;  break;
   952   case Bytecodes::_dup2_x2:     inputs = 4;  break;
   953   case Bytecodes::_swap:        inputs = 2;  break;
   954   case Bytecodes::_arraylength: inputs = 1;  break;
   956   case Bytecodes::_getstatic:
   957   case Bytecodes::_putstatic:
   958   case Bytecodes::_getfield:
   959   case Bytecodes::_putfield:
   960     {
   961       bool is_get = (depth >= 0), is_static = (depth & 1);
   962       bool ignore;
   963       ciBytecodeStream iter(method());
   964       iter.reset_to_bci(bci());
   965       iter.next();
   966       ciField* field = iter.get_field(ignore);
   967       int      size  = field->type()->size();
   968       inputs  = (is_static ? 0 : 1);
   969       if (is_get) {
   970         depth = size - inputs;
   971       } else {
   972         inputs += size;        // putxxx pops the value from the stack
   973         depth = - inputs;
   974       }
   975     }
   976     break;
   978   case Bytecodes::_invokevirtual:
   979   case Bytecodes::_invokespecial:
   980   case Bytecodes::_invokestatic:
   981   case Bytecodes::_invokedynamic:
   982   case Bytecodes::_invokeinterface:
   983     {
   984       bool ignore;
   985       ciBytecodeStream iter(method());
   986       iter.reset_to_bci(bci());
   987       iter.next();
   988       ciMethod* method = iter.get_method(ignore);
   989       inputs = method->arg_size_no_receiver();
   990       // Add a receiver argument, maybe:
   991       if (code != Bytecodes::_invokestatic &&
   992           code != Bytecodes::_invokedynamic)
   993         inputs += 1;
   994       // (Do not use ciMethod::arg_size(), because
   995       // it might be an unloaded method, which doesn't
   996       // know whether it is static or not.)
   997       int size = method->return_type()->size();
   998       depth = size - inputs;
   999     }
  1000     break;
  1002   case Bytecodes::_multianewarray:
  1004       ciBytecodeStream iter(method());
  1005       iter.reset_to_bci(bci());
  1006       iter.next();
  1007       inputs = iter.get_dimensions();
  1008       assert(rsize == 1, "");
  1009       depth = rsize - inputs;
  1011     break;
  1013   case Bytecodes::_ireturn:
  1014   case Bytecodes::_lreturn:
  1015   case Bytecodes::_freturn:
  1016   case Bytecodes::_dreturn:
  1017   case Bytecodes::_areturn:
  1018     assert(rsize = -depth, "");
  1019     inputs = rsize;
  1020     break;
  1022   case Bytecodes::_jsr:
  1023   case Bytecodes::_jsr_w:
  1024     inputs = 0;
  1025     depth  = 1;                  // S.B. depth=1, not zero
  1026     break;
  1028   default:
  1029     // bytecode produces a typed result
  1030     inputs = rsize - depth;
  1031     assert(inputs >= 0, "");
  1032     break;
  1035 #ifdef ASSERT
  1036   // spot check
  1037   int outputs = depth + inputs;
  1038   assert(outputs >= 0, "sanity");
  1039   switch (code) {
  1040   case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break;
  1041   case Bytecodes::_athrow:    assert(inputs == 1 && outputs == 0, ""); break;
  1042   case Bytecodes::_aload_0:   assert(inputs == 0 && outputs == 1, ""); break;
  1043   case Bytecodes::_return:    assert(inputs == 0 && outputs == 0, ""); break;
  1044   case Bytecodes::_drem:      assert(inputs == 4 && outputs == 2, ""); break;
  1046 #endif //ASSERT
  1048   return true;
  1053 //------------------------------basic_plus_adr---------------------------------
  1054 Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) {
  1055   // short-circuit a common case
  1056   if (offset == intcon(0))  return ptr;
  1057   return _gvn.transform( new (C, 4) AddPNode(base, ptr, offset) );
  1060 Node* GraphKit::ConvI2L(Node* offset) {
  1061   // short-circuit a common case
  1062   jint offset_con = find_int_con(offset, Type::OffsetBot);
  1063   if (offset_con != Type::OffsetBot) {
  1064     return longcon((long) offset_con);
  1066   return _gvn.transform( new (C, 2) ConvI2LNode(offset));
  1068 Node* GraphKit::ConvL2I(Node* offset) {
  1069   // short-circuit a common case
  1070   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
  1071   if (offset_con != (jlong)Type::OffsetBot) {
  1072     return intcon((int) offset_con);
  1074   return _gvn.transform( new (C, 2) ConvL2INode(offset));
  1077 //-------------------------load_object_klass-----------------------------------
  1078 Node* GraphKit::load_object_klass(Node* obj) {
  1079   // Special-case a fresh allocation to avoid building nodes:
  1080   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
  1081   if (akls != NULL)  return akls;
  1082   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
  1083   return _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), k_adr, TypeInstPtr::KLASS) );
  1086 //-------------------------load_array_length-----------------------------------
  1087 Node* GraphKit::load_array_length(Node* array) {
  1088   // Special-case a fresh allocation to avoid building nodes:
  1089   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array, &_gvn);
  1090   Node *alen;
  1091   if (alloc == NULL) {
  1092     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
  1093     alen = _gvn.transform( new (C, 3) LoadRangeNode(0, immutable_memory(), r_adr, TypeInt::POS));
  1094   } else {
  1095     alen = alloc->Ideal_length();
  1096     Node* ccast = alloc->make_ideal_length(_gvn.type(array)->is_oopptr(), &_gvn);
  1097     if (ccast != alen) {
  1098       alen = _gvn.transform(ccast);
  1101   return alen;
  1104 //------------------------------do_null_check----------------------------------
  1105 // Helper function to do a NULL pointer check.  Returned value is
  1106 // the incoming address with NULL casted away.  You are allowed to use the
  1107 // not-null value only if you are control dependent on the test.
  1108 extern int explicit_null_checks_inserted,
  1109            explicit_null_checks_elided;
  1110 Node* GraphKit::null_check_common(Node* value, BasicType type,
  1111                                   // optional arguments for variations:
  1112                                   bool assert_null,
  1113                                   Node* *null_control) {
  1114   assert(!assert_null || null_control == NULL, "not both at once");
  1115   if (stopped())  return top();
  1116   if (!GenerateCompilerNullChecks && !assert_null && null_control == NULL) {
  1117     // For some performance testing, we may wish to suppress null checking.
  1118     value = cast_not_null(value);   // Make it appear to be non-null (4962416).
  1119     return value;
  1121   explicit_null_checks_inserted++;
  1123   // Construct NULL check
  1124   Node *chk = NULL;
  1125   switch(type) {
  1126     case T_LONG   : chk = new (C, 3) CmpLNode(value, _gvn.zerocon(T_LONG)); break;
  1127     case T_INT    : chk = new (C, 3) CmpINode( value, _gvn.intcon(0)); break;
  1128     case T_ARRAY  : // fall through
  1129       type = T_OBJECT;  // simplify further tests
  1130     case T_OBJECT : {
  1131       const Type *t = _gvn.type( value );
  1133       const TypeOopPtr* tp = t->isa_oopptr();
  1134       if (tp != NULL && tp->klass() != NULL && !tp->klass()->is_loaded()
  1135           // Only for do_null_check, not any of its siblings:
  1136           && !assert_null && null_control == NULL) {
  1137         // Usually, any field access or invocation on an unloaded oop type
  1138         // will simply fail to link, since the statically linked class is
  1139         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
  1140         // the static class is loaded but the sharper oop type is not.
  1141         // Rather than checking for this obscure case in lots of places,
  1142         // we simply observe that a null check on an unloaded class
  1143         // will always be followed by a nonsense operation, so we
  1144         // can just issue the uncommon trap here.
  1145         // Our access to the unloaded class will only be correct
  1146         // after it has been loaded and initialized, which requires
  1147         // a trip through the interpreter.
  1148 #ifndef PRODUCT
  1149         if (WizardMode) { tty->print("Null check of unloaded "); tp->klass()->print(); tty->cr(); }
  1150 #endif
  1151         uncommon_trap(Deoptimization::Reason_unloaded,
  1152                       Deoptimization::Action_reinterpret,
  1153                       tp->klass(), "!loaded");
  1154         return top();
  1157       if (assert_null) {
  1158         // See if the type is contained in NULL_PTR.
  1159         // If so, then the value is already null.
  1160         if (t->higher_equal(TypePtr::NULL_PTR)) {
  1161           explicit_null_checks_elided++;
  1162           return value;           // Elided null assert quickly!
  1164       } else {
  1165         // See if mixing in the NULL pointer changes type.
  1166         // If so, then the NULL pointer was not allowed in the original
  1167         // type.  In other words, "value" was not-null.
  1168         if (t->meet(TypePtr::NULL_PTR) != t) {
  1169           // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ...
  1170           explicit_null_checks_elided++;
  1171           return value;           // Elided null check quickly!
  1174       chk = new (C, 3) CmpPNode( value, null() );
  1175       break;
  1178     default      : ShouldNotReachHere();
  1180   assert(chk != NULL, "sanity check");
  1181   chk = _gvn.transform(chk);
  1183   BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne;
  1184   BoolNode *btst = new (C, 2) BoolNode( chk, btest);
  1185   Node   *tst = _gvn.transform( btst );
  1187   //-----------
  1188   // if peephole optimizations occurred, a prior test existed.
  1189   // If a prior test existed, maybe it dominates as we can avoid this test.
  1190   if (tst != btst && type == T_OBJECT) {
  1191     // At this point we want to scan up the CFG to see if we can
  1192     // find an identical test (and so avoid this test altogether).
  1193     Node *cfg = control();
  1194     int depth = 0;
  1195     while( depth < 16 ) {       // Limit search depth for speed
  1196       if( cfg->Opcode() == Op_IfTrue &&
  1197           cfg->in(0)->in(1) == tst ) {
  1198         // Found prior test.  Use "cast_not_null" to construct an identical
  1199         // CastPP (and hence hash to) as already exists for the prior test.
  1200         // Return that casted value.
  1201         if (assert_null) {
  1202           replace_in_map(value, null());
  1203           return null();  // do not issue the redundant test
  1205         Node *oldcontrol = control();
  1206         set_control(cfg);
  1207         Node *res = cast_not_null(value);
  1208         set_control(oldcontrol);
  1209         explicit_null_checks_elided++;
  1210         return res;
  1212       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
  1213       if (cfg == NULL)  break;  // Quit at region nodes
  1214       depth++;
  1218   //-----------
  1219   // Branch to failure if null
  1220   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
  1221   Deoptimization::DeoptReason reason;
  1222   if (assert_null)
  1223     reason = Deoptimization::Reason_null_assert;
  1224   else if (type == T_OBJECT)
  1225     reason = Deoptimization::Reason_null_check;
  1226   else
  1227     reason = Deoptimization::Reason_div0_check;
  1229   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
  1230   // ciMethodData::has_trap_at will return a conservative -1 if any
  1231   // must-be-null assertion has failed.  This could cause performance
  1232   // problems for a method after its first do_null_assert failure.
  1233   // Consider using 'Reason_class_check' instead?
  1235   // To cause an implicit null check, we set the not-null probability
  1236   // to the maximum (PROB_MAX).  For an explicit check the probability
  1237   // is set to a smaller value.
  1238   if (null_control != NULL || too_many_traps(reason)) {
  1239     // probability is less likely
  1240     ok_prob =  PROB_LIKELY_MAG(3);
  1241   } else if (!assert_null &&
  1242              (ImplicitNullCheckThreshold > 0) &&
  1243              method() != NULL &&
  1244              (method()->method_data()->trap_count(reason)
  1245               >= (uint)ImplicitNullCheckThreshold)) {
  1246     ok_prob =  PROB_LIKELY_MAG(3);
  1249   if (null_control != NULL) {
  1250     IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN);
  1251     Node* null_true = _gvn.transform( new (C, 1) IfFalseNode(iff));
  1252     set_control(      _gvn.transform( new (C, 1) IfTrueNode(iff)));
  1253     if (null_true == top())
  1254       explicit_null_checks_elided++;
  1255     (*null_control) = null_true;
  1256   } else {
  1257     BuildCutout unless(this, tst, ok_prob);
  1258     // Check for optimizer eliding test at parse time
  1259     if (stopped()) {
  1260       // Failure not possible; do not bother making uncommon trap.
  1261       explicit_null_checks_elided++;
  1262     } else if (assert_null) {
  1263       uncommon_trap(reason,
  1264                     Deoptimization::Action_make_not_entrant,
  1265                     NULL, "assert_null");
  1266     } else {
  1267       replace_in_map(value, zerocon(type));
  1268       builtin_throw(reason);
  1272   // Must throw exception, fall-thru not possible?
  1273   if (stopped()) {
  1274     return top();               // No result
  1277   if (assert_null) {
  1278     // Cast obj to null on this path.
  1279     replace_in_map(value, zerocon(type));
  1280     return zerocon(type);
  1283   // Cast obj to not-null on this path, if there is no null_control.
  1284   // (If there is a null_control, a non-null value may come back to haunt us.)
  1285   if (type == T_OBJECT) {
  1286     Node* cast = cast_not_null(value, false);
  1287     if (null_control == NULL || (*null_control) == top())
  1288       replace_in_map(value, cast);
  1289     value = cast;
  1292   return value;
  1296 //------------------------------cast_not_null----------------------------------
  1297 // Cast obj to not-null on this path
  1298 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
  1299   const Type *t = _gvn.type(obj);
  1300   const Type *t_not_null = t->join(TypePtr::NOTNULL);
  1301   // Object is already not-null?
  1302   if( t == t_not_null ) return obj;
  1304   Node *cast = new (C, 2) CastPPNode(obj,t_not_null);
  1305   cast->init_req(0, control());
  1306   cast = _gvn.transform( cast );
  1308   // Scan for instances of 'obj' in the current JVM mapping.
  1309   // These instances are known to be not-null after the test.
  1310   if (do_replace_in_map)
  1311     replace_in_map(obj, cast);
  1313   return cast;                  // Return casted value
  1317 //--------------------------replace_in_map-------------------------------------
  1318 void GraphKit::replace_in_map(Node* old, Node* neww) {
  1319   this->map()->replace_edge(old, neww);
  1321   // Note: This operation potentially replaces any edge
  1322   // on the map.  This includes locals, stack, and monitors
  1323   // of the current (innermost) JVM state.
  1325   // We can consider replacing in caller maps.
  1326   // The idea would be that an inlined function's null checks
  1327   // can be shared with the entire inlining tree.
  1328   // The expense of doing this is that the PreserveJVMState class
  1329   // would have to preserve caller states too, with a deep copy.
  1334 //=============================================================================
  1335 //--------------------------------memory---------------------------------------
  1336 Node* GraphKit::memory(uint alias_idx) {
  1337   MergeMemNode* mem = merged_memory();
  1338   Node* p = mem->memory_at(alias_idx);
  1339   _gvn.set_type(p, Type::MEMORY);  // must be mapped
  1340   return p;
  1343 //-----------------------------reset_memory------------------------------------
  1344 Node* GraphKit::reset_memory() {
  1345   Node* mem = map()->memory();
  1346   // do not use this node for any more parsing!
  1347   debug_only( map()->set_memory((Node*)NULL) );
  1348   return _gvn.transform( mem );
  1351 //------------------------------set_all_memory---------------------------------
  1352 void GraphKit::set_all_memory(Node* newmem) {
  1353   Node* mergemem = MergeMemNode::make(C, newmem);
  1354   gvn().set_type_bottom(mergemem);
  1355   map()->set_memory(mergemem);
  1358 //------------------------------set_all_memory_call----------------------------
  1359 void GraphKit::set_all_memory_call(Node* call, bool separate_io_proj) {
  1360   Node* newmem = _gvn.transform( new (C, 1) ProjNode(call, TypeFunc::Memory, separate_io_proj) );
  1361   set_all_memory(newmem);
  1364 //=============================================================================
  1365 //
  1366 // parser factory methods for MemNodes
  1367 //
  1368 // These are layered on top of the factory methods in LoadNode and StoreNode,
  1369 // and integrate with the parser's memory state and _gvn engine.
  1370 //
  1372 // factory methods in "int adr_idx"
  1373 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
  1374                           int adr_idx,
  1375                           bool require_atomic_access) {
  1376   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
  1377   const TypePtr* adr_type = NULL; // debug-mode-only argument
  1378   debug_only(adr_type = C->get_adr_type(adr_idx));
  1379   Node* mem = memory(adr_idx);
  1380   Node* ld;
  1381   if (require_atomic_access && bt == T_LONG) {
  1382     ld = LoadLNode::make_atomic(C, ctl, mem, adr, adr_type, t);
  1383   } else {
  1384     ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt);
  1386   return _gvn.transform(ld);
  1389 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
  1390                                 int adr_idx,
  1391                                 bool require_atomic_access) {
  1392   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
  1393   const TypePtr* adr_type = NULL;
  1394   debug_only(adr_type = C->get_adr_type(adr_idx));
  1395   Node *mem = memory(adr_idx);
  1396   Node* st;
  1397   if (require_atomic_access && bt == T_LONG) {
  1398     st = StoreLNode::make_atomic(C, ctl, mem, adr, adr_type, val);
  1399   } else {
  1400     st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt);
  1402   st = _gvn.transform(st);
  1403   set_memory(st, adr_idx);
  1404   // Back-to-back stores can only remove intermediate store with DU info
  1405   // so push on worklist for optimizer.
  1406   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
  1407     record_for_igvn(st);
  1409   return st;
  1413 void GraphKit::pre_barrier(Node* ctl,
  1414                            Node* obj,
  1415                            Node* adr,
  1416                            uint  adr_idx,
  1417                            Node* val,
  1418                            const TypeOopPtr* val_type,
  1419                            BasicType bt) {
  1420   BarrierSet* bs = Universe::heap()->barrier_set();
  1421   set_control(ctl);
  1422   switch (bs->kind()) {
  1423     case BarrierSet::G1SATBCT:
  1424     case BarrierSet::G1SATBCTLogging:
  1425       g1_write_barrier_pre(obj, adr, adr_idx, val, val_type, bt);
  1426       break;
  1428     case BarrierSet::CardTableModRef:
  1429     case BarrierSet::CardTableExtension:
  1430     case BarrierSet::ModRef:
  1431       break;
  1433     case BarrierSet::Other:
  1434     default      :
  1435       ShouldNotReachHere();
  1440 void GraphKit::post_barrier(Node* ctl,
  1441                             Node* store,
  1442                             Node* obj,
  1443                             Node* adr,
  1444                             uint  adr_idx,
  1445                             Node* val,
  1446                             BasicType bt,
  1447                             bool use_precise) {
  1448   BarrierSet* bs = Universe::heap()->barrier_set();
  1449   set_control(ctl);
  1450   switch (bs->kind()) {
  1451     case BarrierSet::G1SATBCT:
  1452     case BarrierSet::G1SATBCTLogging:
  1453       g1_write_barrier_post(store, obj, adr, adr_idx, val, bt, use_precise);
  1454       break;
  1456     case BarrierSet::CardTableModRef:
  1457     case BarrierSet::CardTableExtension:
  1458       write_barrier_post(store, obj, adr, adr_idx, val, use_precise);
  1459       break;
  1461     case BarrierSet::ModRef:
  1462       break;
  1464     case BarrierSet::Other:
  1465     default      :
  1466       ShouldNotReachHere();
  1471 Node* GraphKit::store_oop(Node* ctl,
  1472                           Node* obj,
  1473                           Node* adr,
  1474                           const TypePtr* adr_type,
  1475                           Node* val,
  1476                           const TypeOopPtr* val_type,
  1477                           BasicType bt,
  1478                           bool use_precise) {
  1480   set_control(ctl);
  1481   if (stopped()) return top(); // Dead path ?
  1483   assert(bt == T_OBJECT, "sanity");
  1484   assert(val != NULL, "not dead path");
  1485   uint adr_idx = C->get_alias_index(adr_type);
  1486   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
  1488   pre_barrier(control(), obj, adr, adr_idx, val, val_type, bt);
  1489   Node* store = store_to_memory(control(), adr, val, bt, adr_idx);
  1490   post_barrier(control(), store, obj, adr, adr_idx, val, bt, use_precise);
  1491   return store;
  1494 // Could be an array or object we don't know at compile time (unsafe ref.)
  1495 Node* GraphKit::store_oop_to_unknown(Node* ctl,
  1496                              Node* obj,   // containing obj
  1497                              Node* adr,  // actual adress to store val at
  1498                              const TypePtr* adr_type,
  1499                              Node* val,
  1500                              BasicType bt) {
  1501   Compile::AliasType* at = C->alias_type(adr_type);
  1502   const TypeOopPtr* val_type = NULL;
  1503   if (adr_type->isa_instptr()) {
  1504     if (at->field() != NULL) {
  1505       // known field.  This code is a copy of the do_put_xxx logic.
  1506       ciField* field = at->field();
  1507       if (!field->type()->is_loaded()) {
  1508         val_type = TypeInstPtr::BOTTOM;
  1509       } else {
  1510         val_type = TypeOopPtr::make_from_klass(field->type()->as_klass());
  1513   } else if (adr_type->isa_aryptr()) {
  1514     val_type = adr_type->is_aryptr()->elem()->make_oopptr();
  1516   if (val_type == NULL) {
  1517     val_type = TypeInstPtr::BOTTOM;
  1519   return store_oop(ctl, obj, adr, adr_type, val, val_type, bt, true);
  1523 //-------------------------array_element_address-------------------------
  1524 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
  1525                                       const TypeInt* sizetype) {
  1526   uint shift  = exact_log2(type2aelembytes(elembt));
  1527   uint header = arrayOopDesc::base_offset_in_bytes(elembt);
  1529   // short-circuit a common case (saves lots of confusing waste motion)
  1530   jint idx_con = find_int_con(idx, -1);
  1531   if (idx_con >= 0) {
  1532     intptr_t offset = header + ((intptr_t)idx_con << shift);
  1533     return basic_plus_adr(ary, offset);
  1536   // must be correct type for alignment purposes
  1537   Node* base  = basic_plus_adr(ary, header);
  1538 #ifdef _LP64
  1539   // The scaled index operand to AddP must be a clean 64-bit value.
  1540   // Java allows a 32-bit int to be incremented to a negative
  1541   // value, which appears in a 64-bit register as a large
  1542   // positive number.  Using that large positive number as an
  1543   // operand in pointer arithmetic has bad consequences.
  1544   // On the other hand, 32-bit overflow is rare, and the possibility
  1545   // can often be excluded, if we annotate the ConvI2L node with
  1546   // a type assertion that its value is known to be a small positive
  1547   // number.  (The prior range check has ensured this.)
  1548   // This assertion is used by ConvI2LNode::Ideal.
  1549   int index_max = max_jint - 1;  // array size is max_jint, index is one less
  1550   if (sizetype != NULL)  index_max = sizetype->_hi - 1;
  1551   const TypeLong* lidxtype = TypeLong::make(CONST64(0), index_max, Type::WidenMax);
  1552   idx = _gvn.transform( new (C, 2) ConvI2LNode(idx, lidxtype) );
  1553 #endif
  1554   Node* scale = _gvn.transform( new (C, 3) LShiftXNode(idx, intcon(shift)) );
  1555   return basic_plus_adr(ary, base, scale);
  1558 //-------------------------load_array_element-------------------------
  1559 Node* GraphKit::load_array_element(Node* ctl, Node* ary, Node* idx, const TypeAryPtr* arytype) {
  1560   const Type* elemtype = arytype->elem();
  1561   BasicType elembt = elemtype->array_element_basic_type();
  1562   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
  1563   Node* ld = make_load(ctl, adr, elemtype, elembt, arytype);
  1564   return ld;
  1567 //-------------------------set_arguments_for_java_call-------------------------
  1568 // Arguments (pre-popped from the stack) are taken from the JVMS.
  1569 void GraphKit::set_arguments_for_java_call(CallJavaNode* call) {
  1570   // Add the call arguments:
  1571   uint nargs = call->method()->arg_size();
  1572   for (uint i = 0; i < nargs; i++) {
  1573     Node* arg = argument(i);
  1574     call->init_req(i + TypeFunc::Parms, arg);
  1578 //---------------------------set_edges_for_java_call---------------------------
  1579 // Connect a newly created call into the current JVMS.
  1580 // A return value node (if any) is returned from set_edges_for_java_call.
  1581 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
  1583   // Add the predefined inputs:
  1584   call->init_req( TypeFunc::Control, control() );
  1585   call->init_req( TypeFunc::I_O    , i_o() );
  1586   call->init_req( TypeFunc::Memory , reset_memory() );
  1587   call->init_req( TypeFunc::FramePtr, frameptr() );
  1588   call->init_req( TypeFunc::ReturnAdr, top() );
  1590   add_safepoint_edges(call, must_throw);
  1592   Node* xcall = _gvn.transform(call);
  1594   if (xcall == top()) {
  1595     set_control(top());
  1596     return;
  1598   assert(xcall == call, "call identity is stable");
  1600   // Re-use the current map to produce the result.
  1602   set_control(_gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Control)));
  1603   set_i_o(    _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
  1604   set_all_memory_call(xcall, separate_io_proj);
  1606   //return xcall;   // no need, caller already has it
  1609 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj) {
  1610   if (stopped())  return top();  // maybe the call folded up?
  1612   // Capture the return value, if any.
  1613   Node* ret;
  1614   if (call->method() == NULL ||
  1615       call->method()->return_type()->basic_type() == T_VOID)
  1616         ret = top();
  1617   else  ret = _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
  1619   // Note:  Since any out-of-line call can produce an exception,
  1620   // we always insert an I_O projection from the call into the result.
  1622   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj);
  1624   if (separate_io_proj) {
  1625     // The caller requested separate projections be used by the fall
  1626     // through and exceptional paths, so replace the projections for
  1627     // the fall through path.
  1628     set_i_o(_gvn.transform( new (C, 1) ProjNode(call, TypeFunc::I_O) ));
  1629     set_all_memory(_gvn.transform( new (C, 1) ProjNode(call, TypeFunc::Memory) ));
  1631   return ret;
  1634 //--------------------set_predefined_input_for_runtime_call--------------------
  1635 // Reading and setting the memory state is way conservative here.
  1636 // The real problem is that I am not doing real Type analysis on memory,
  1637 // so I cannot distinguish card mark stores from other stores.  Across a GC
  1638 // point the Store Barrier and the card mark memory has to agree.  I cannot
  1639 // have a card mark store and its barrier split across the GC point from
  1640 // either above or below.  Here I get that to happen by reading ALL of memory.
  1641 // A better answer would be to separate out card marks from other memory.
  1642 // For now, return the input memory state, so that it can be reused
  1643 // after the call, if this call has restricted memory effects.
  1644 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call) {
  1645   // Set fixed predefined input arguments
  1646   Node* memory = reset_memory();
  1647   call->init_req( TypeFunc::Control,   control()  );
  1648   call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
  1649   call->init_req( TypeFunc::Memory,    memory     ); // may gc ptrs
  1650   call->init_req( TypeFunc::FramePtr,  frameptr() );
  1651   call->init_req( TypeFunc::ReturnAdr, top()      );
  1652   return memory;
  1655 //-------------------set_predefined_output_for_runtime_call--------------------
  1656 // Set control and memory (not i_o) from the call.
  1657 // If keep_mem is not NULL, use it for the output state,
  1658 // except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM.
  1659 // If hook_mem is NULL, this call produces no memory effects at all.
  1660 // If hook_mem is a Java-visible memory slice (such as arraycopy operands),
  1661 // then only that memory slice is taken from the call.
  1662 // In the last case, we must put an appropriate memory barrier before
  1663 // the call, so as to create the correct anti-dependencies on loads
  1664 // preceding the call.
  1665 void GraphKit::set_predefined_output_for_runtime_call(Node* call,
  1666                                                       Node* keep_mem,
  1667                                                       const TypePtr* hook_mem) {
  1668   // no i/o
  1669   set_control(_gvn.transform( new (C, 1) ProjNode(call,TypeFunc::Control) ));
  1670   if (keep_mem) {
  1671     // First clone the existing memory state
  1672     set_all_memory(keep_mem);
  1673     if (hook_mem != NULL) {
  1674       // Make memory for the call
  1675       Node* mem = _gvn.transform( new (C, 1) ProjNode(call, TypeFunc::Memory) );
  1676       // Set the RawPtr memory state only.  This covers all the heap top/GC stuff
  1677       // We also use hook_mem to extract specific effects from arraycopy stubs.
  1678       set_memory(mem, hook_mem);
  1680     // ...else the call has NO memory effects.
  1682     // Make sure the call advertises its memory effects precisely.
  1683     // This lets us build accurate anti-dependences in gcm.cpp.
  1684     assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem),
  1685            "call node must be constructed correctly");
  1686   } else {
  1687     assert(hook_mem == NULL, "");
  1688     // This is not a "slow path" call; all memory comes from the call.
  1689     set_all_memory_call(call);
  1694 // Replace the call with the current state of the kit.
  1695 void GraphKit::replace_call(CallNode* call, Node* result) {
  1696   JVMState* ejvms = NULL;
  1697   if (has_exceptions()) {
  1698     ejvms = transfer_exceptions_into_jvms();
  1701   SafePointNode* final_state = stop();
  1703   // Find all the needed outputs of this call
  1704   CallProjections callprojs;
  1705   call->extract_projections(&callprojs, true);
  1707   // Replace all the old call edges with the edges from the inlining result
  1708   C->gvn_replace_by(callprojs.fallthrough_catchproj, final_state->in(TypeFunc::Control));
  1709   C->gvn_replace_by(callprojs.fallthrough_memproj,   final_state->in(TypeFunc::Memory));
  1710   C->gvn_replace_by(callprojs.fallthrough_ioproj,    final_state->in(TypeFunc::I_O));
  1712   // Replace the result with the new result if it exists and is used
  1713   if (callprojs.resproj != NULL && result != NULL) {
  1714     C->gvn_replace_by(callprojs.resproj, result);
  1717   if (ejvms == NULL) {
  1718     // No exception edges to simply kill off those paths
  1719     C->gvn_replace_by(callprojs.catchall_catchproj, C->top());
  1720     C->gvn_replace_by(callprojs.catchall_memproj,   C->top());
  1721     C->gvn_replace_by(callprojs.catchall_ioproj,    C->top());
  1723     // Replace the old exception object with top
  1724     if (callprojs.exobj != NULL) {
  1725       C->gvn_replace_by(callprojs.exobj, C->top());
  1727   } else {
  1728     GraphKit ekit(ejvms);
  1730     // Load my combined exception state into the kit, with all phis transformed:
  1731     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
  1733     Node* ex_oop = ekit.use_exception_state(ex_map);
  1735     C->gvn_replace_by(callprojs.catchall_catchproj, ekit.control());
  1736     C->gvn_replace_by(callprojs.catchall_memproj,   ekit.reset_memory());
  1737     C->gvn_replace_by(callprojs.catchall_ioproj,    ekit.i_o());
  1739     // Replace the old exception object with the newly created one
  1740     if (callprojs.exobj != NULL) {
  1741       C->gvn_replace_by(callprojs.exobj, ex_oop);
  1745   // Disconnect the call from the graph
  1746   call->disconnect_inputs(NULL);
  1747   C->gvn_replace_by(call, C->top());
  1751 //------------------------------increment_counter------------------------------
  1752 // for statistics: increment a VM counter by 1
  1754 void GraphKit::increment_counter(address counter_addr) {
  1755   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
  1756   increment_counter(adr1);
  1759 void GraphKit::increment_counter(Node* counter_addr) {
  1760   int adr_type = Compile::AliasIdxRaw;
  1761   Node* cnt  = make_load(NULL, counter_addr, TypeInt::INT, T_INT, adr_type);
  1762   Node* incr = _gvn.transform(new (C, 3) AddINode(cnt, _gvn.intcon(1)));
  1763   store_to_memory( NULL, counter_addr, incr, T_INT, adr_type );
  1767 //------------------------------uncommon_trap----------------------------------
  1768 // Bail out to the interpreter in mid-method.  Implemented by calling the
  1769 // uncommon_trap blob.  This helper function inserts a runtime call with the
  1770 // right debug info.
  1771 void GraphKit::uncommon_trap(int trap_request,
  1772                              ciKlass* klass, const char* comment,
  1773                              bool must_throw,
  1774                              bool keep_exact_action) {
  1775   if (failing())  stop();
  1776   if (stopped())  return; // trap reachable?
  1778   // Note:  If ProfileTraps is true, and if a deopt. actually
  1779   // occurs here, the runtime will make sure an MDO exists.  There is
  1780   // no need to call method()->build_method_data() at this point.
  1782 #ifdef ASSERT
  1783   if (!must_throw) {
  1784     // Make sure the stack has at least enough depth to execute
  1785     // the current bytecode.
  1786     int inputs, ignore;
  1787     if (compute_stack_effects(inputs, ignore)) {
  1788       assert(sp() >= inputs, "must have enough JVMS stack to execute");
  1789       // It is a frequent error in library_call.cpp to issue an
  1790       // uncommon trap with the _sp value already popped.
  1793 #endif
  1795   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
  1796   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
  1798   switch (action) {
  1799   case Deoptimization::Action_maybe_recompile:
  1800   case Deoptimization::Action_reinterpret:
  1801     // Temporary fix for 6529811 to allow virtual calls to be sure they
  1802     // get the chance to go from mono->bi->mega
  1803     if (!keep_exact_action &&
  1804         Deoptimization::trap_request_index(trap_request) < 0 &&
  1805         too_many_recompiles(reason)) {
  1806       // This BCI is causing too many recompilations.
  1807       action = Deoptimization::Action_none;
  1808       trap_request = Deoptimization::make_trap_request(reason, action);
  1809     } else {
  1810       C->set_trap_can_recompile(true);
  1812     break;
  1813   case Deoptimization::Action_make_not_entrant:
  1814     C->set_trap_can_recompile(true);
  1815     break;
  1816 #ifdef ASSERT
  1817   case Deoptimization::Action_none:
  1818   case Deoptimization::Action_make_not_compilable:
  1819     break;
  1820   default:
  1821     assert(false, "bad action");
  1822 #endif
  1825   if (TraceOptoParse) {
  1826     char buf[100];
  1827     tty->print_cr("Uncommon trap %s at bci:%d",
  1828                   Deoptimization::format_trap_request(buf, sizeof(buf),
  1829                                                       trap_request), bci());
  1832   CompileLog* log = C->log();
  1833   if (log != NULL) {
  1834     int kid = (klass == NULL)? -1: log->identify(klass);
  1835     log->begin_elem("uncommon_trap bci='%d'", bci());
  1836     char buf[100];
  1837     log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf),
  1838                                                           trap_request));
  1839     if (kid >= 0)         log->print(" klass='%d'", kid);
  1840     if (comment != NULL)  log->print(" comment='%s'", comment);
  1841     log->end_elem();
  1844   // Make sure any guarding test views this path as very unlikely
  1845   Node *i0 = control()->in(0);
  1846   if (i0 != NULL && i0->is_If()) {        // Found a guarding if test?
  1847     IfNode *iff = i0->as_If();
  1848     float f = iff->_prob;   // Get prob
  1849     if (control()->Opcode() == Op_IfTrue) {
  1850       if (f > PROB_UNLIKELY_MAG(4))
  1851         iff->_prob = PROB_MIN;
  1852     } else {
  1853       if (f < PROB_LIKELY_MAG(4))
  1854         iff->_prob = PROB_MAX;
  1858   // Clear out dead values from the debug info.
  1859   kill_dead_locals();
  1861   // Now insert the uncommon trap subroutine call
  1862   address call_addr = SharedRuntime::uncommon_trap_blob()->instructions_begin();
  1863   const TypePtr* no_memory_effects = NULL;
  1864   // Pass the index of the class to be loaded
  1865   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON |
  1866                                  (must_throw ? RC_MUST_THROW : 0),
  1867                                  OptoRuntime::uncommon_trap_Type(),
  1868                                  call_addr, "uncommon_trap", no_memory_effects,
  1869                                  intcon(trap_request));
  1870   assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request,
  1871          "must extract request correctly from the graph");
  1872   assert(trap_request != 0, "zero value reserved by uncommon_trap_request");
  1874   call->set_req(TypeFunc::ReturnAdr, returnadr());
  1875   // The debug info is the only real input to this call.
  1877   // Halt-and-catch fire here.  The above call should never return!
  1878   HaltNode* halt = new(C, TypeFunc::Parms) HaltNode(control(), frameptr());
  1879   _gvn.set_type_bottom(halt);
  1880   root()->add_req(halt);
  1882   stop_and_kill_map();
  1886 //--------------------------just_allocated_object------------------------------
  1887 // Report the object that was just allocated.
  1888 // It must be the case that there are no intervening safepoints.
  1889 // We use this to determine if an object is so "fresh" that
  1890 // it does not require card marks.
  1891 Node* GraphKit::just_allocated_object(Node* current_control) {
  1892   if (C->recent_alloc_ctl() == current_control)
  1893     return C->recent_alloc_obj();
  1894   return NULL;
  1898 void GraphKit::round_double_arguments(ciMethod* dest_method) {
  1899   // (Note:  TypeFunc::make has a cache that makes this fast.)
  1900   const TypeFunc* tf    = TypeFunc::make(dest_method);
  1901   int             nargs = tf->_domain->_cnt - TypeFunc::Parms;
  1902   for (int j = 0; j < nargs; j++) {
  1903     const Type *targ = tf->_domain->field_at(j + TypeFunc::Parms);
  1904     if( targ->basic_type() == T_DOUBLE ) {
  1905       // If any parameters are doubles, they must be rounded before
  1906       // the call, dstore_rounding does gvn.transform
  1907       Node *arg = argument(j);
  1908       arg = dstore_rounding(arg);
  1909       set_argument(j, arg);
  1914 void GraphKit::round_double_result(ciMethod* dest_method) {
  1915   // A non-strict method may return a double value which has an extended
  1916   // exponent, but this must not be visible in a caller which is 'strict'
  1917   // If a strict caller invokes a non-strict callee, round a double result
  1919   BasicType result_type = dest_method->return_type()->basic_type();
  1920   assert( method() != NULL, "must have caller context");
  1921   if( result_type == T_DOUBLE && method()->is_strict() && !dest_method->is_strict() ) {
  1922     // Destination method's return value is on top of stack
  1923     // dstore_rounding() does gvn.transform
  1924     Node *result = pop_pair();
  1925     result = dstore_rounding(result);
  1926     push_pair(result);
  1930 // rounding for strict float precision conformance
  1931 Node* GraphKit::precision_rounding(Node* n) {
  1932   return UseStrictFP && _method->flags().is_strict()
  1933     && UseSSE == 0 && Matcher::strict_fp_requires_explicit_rounding
  1934     ? _gvn.transform( new (C, 2) RoundFloatNode(0, n) )
  1935     : n;
  1938 // rounding for strict double precision conformance
  1939 Node* GraphKit::dprecision_rounding(Node *n) {
  1940   return UseStrictFP && _method->flags().is_strict()
  1941     && UseSSE <= 1 && Matcher::strict_fp_requires_explicit_rounding
  1942     ? _gvn.transform( new (C, 2) RoundDoubleNode(0, n) )
  1943     : n;
  1946 // rounding for non-strict double stores
  1947 Node* GraphKit::dstore_rounding(Node* n) {
  1948   return Matcher::strict_fp_requires_explicit_rounding
  1949     && UseSSE <= 1
  1950     ? _gvn.transform( new (C, 2) RoundDoubleNode(0, n) )
  1951     : n;
  1954 //=============================================================================
  1955 // Generate a fast path/slow path idiom.  Graph looks like:
  1956 // [foo] indicates that 'foo' is a parameter
  1957 //
  1958 //              [in]     NULL
  1959 //                 \    /
  1960 //                  CmpP
  1961 //                  Bool ne
  1962 //                   If
  1963 //                  /  \
  1964 //              True    False-<2>
  1965 //              / |
  1966 //             /  cast_not_null
  1967 //           Load  |    |   ^
  1968 //        [fast_test]   |   |
  1969 // gvn to   opt_test    |   |
  1970 //          /    \      |  <1>
  1971 //      True     False  |
  1972 //        |         \\  |
  1973 //   [slow_call]     \[fast_result]
  1974 //    Ctl   Val       \      \
  1975 //     |               \      \
  1976 //    Catch       <1>   \      \
  1977 //   /    \        ^     \      \
  1978 //  Ex    No_Ex    |      \      \
  1979 //  |       \   \  |       \ <2>  \
  1980 //  ...      \  [slow_res] |  |    \   [null_result]
  1981 //            \         \--+--+---  |  |
  1982 //             \           | /    \ | /
  1983 //              --------Region     Phi
  1984 //
  1985 //=============================================================================
  1986 // Code is structured as a series of driver functions all called 'do_XXX' that
  1987 // call a set of helper functions.  Helper functions first, then drivers.
  1989 //------------------------------null_check_oop---------------------------------
  1990 // Null check oop.  Set null-path control into Region in slot 3.
  1991 // Make a cast-not-nullness use the other not-null control.  Return cast.
  1992 Node* GraphKit::null_check_oop(Node* value, Node* *null_control,
  1993                                bool never_see_null) {
  1994   // Initial NULL check taken path
  1995   (*null_control) = top();
  1996   Node* cast = null_check_common(value, T_OBJECT, false, null_control);
  1998   // Generate uncommon_trap:
  1999   if (never_see_null && (*null_control) != top()) {
  2000     // If we see an unexpected null at a check-cast we record it and force a
  2001     // recompile; the offending check-cast will be compiled to handle NULLs.
  2002     // If we see more than one offending BCI, then all checkcasts in the
  2003     // method will be compiled to handle NULLs.
  2004     PreserveJVMState pjvms(this);
  2005     set_control(*null_control);
  2006     replace_in_map(value, null());
  2007     uncommon_trap(Deoptimization::Reason_null_check,
  2008                   Deoptimization::Action_make_not_entrant);
  2009     (*null_control) = top();    // NULL path is dead
  2012   // Cast away null-ness on the result
  2013   return cast;
  2016 //------------------------------opt_iff----------------------------------------
  2017 // Optimize the fast-check IfNode.  Set the fast-path region slot 2.
  2018 // Return slow-path control.
  2019 Node* GraphKit::opt_iff(Node* region, Node* iff) {
  2020   IfNode *opt_iff = _gvn.transform(iff)->as_If();
  2022   // Fast path taken; set region slot 2
  2023   Node *fast_taken = _gvn.transform( new (C, 1) IfFalseNode(opt_iff) );
  2024   region->init_req(2,fast_taken); // Capture fast-control
  2026   // Fast path not-taken, i.e. slow path
  2027   Node *slow_taken = _gvn.transform( new (C, 1) IfTrueNode(opt_iff) );
  2028   return slow_taken;
  2031 //-----------------------------make_runtime_call-------------------------------
  2032 Node* GraphKit::make_runtime_call(int flags,
  2033                                   const TypeFunc* call_type, address call_addr,
  2034                                   const char* call_name,
  2035                                   const TypePtr* adr_type,
  2036                                   // The following parms are all optional.
  2037                                   // The first NULL ends the list.
  2038                                   Node* parm0, Node* parm1,
  2039                                   Node* parm2, Node* parm3,
  2040                                   Node* parm4, Node* parm5,
  2041                                   Node* parm6, Node* parm7) {
  2042   // Slow-path call
  2043   int size = call_type->domain()->cnt();
  2044   bool is_leaf = !(flags & RC_NO_LEAF);
  2045   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
  2046   if (call_name == NULL) {
  2047     assert(!is_leaf, "must supply name for leaf");
  2048     call_name = OptoRuntime::stub_name(call_addr);
  2050   CallNode* call;
  2051   if (!is_leaf) {
  2052     call = new(C, size) CallStaticJavaNode(call_type, call_addr, call_name,
  2053                                            bci(), adr_type);
  2054   } else if (flags & RC_NO_FP) {
  2055     call = new(C, size) CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
  2056   } else {
  2057     call = new(C, size) CallLeafNode(call_type, call_addr, call_name, adr_type);
  2060   // The following is similar to set_edges_for_java_call,
  2061   // except that the memory effects of the call are restricted to AliasIdxRaw.
  2063   // Slow path call has no side-effects, uses few values
  2064   bool wide_in  = !(flags & RC_NARROW_MEM);
  2065   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
  2067   Node* prev_mem = NULL;
  2068   if (wide_in) {
  2069     prev_mem = set_predefined_input_for_runtime_call(call);
  2070   } else {
  2071     assert(!wide_out, "narrow in => narrow out");
  2072     Node* narrow_mem = memory(adr_type);
  2073     prev_mem = reset_memory();
  2074     map()->set_memory(narrow_mem);
  2075     set_predefined_input_for_runtime_call(call);
  2078   // Hook each parm in order.  Stop looking at the first NULL.
  2079   if (parm0 != NULL) { call->init_req(TypeFunc::Parms+0, parm0);
  2080   if (parm1 != NULL) { call->init_req(TypeFunc::Parms+1, parm1);
  2081   if (parm2 != NULL) { call->init_req(TypeFunc::Parms+2, parm2);
  2082   if (parm3 != NULL) { call->init_req(TypeFunc::Parms+3, parm3);
  2083   if (parm4 != NULL) { call->init_req(TypeFunc::Parms+4, parm4);
  2084   if (parm5 != NULL) { call->init_req(TypeFunc::Parms+5, parm5);
  2085   if (parm6 != NULL) { call->init_req(TypeFunc::Parms+6, parm6);
  2086   if (parm7 != NULL) { call->init_req(TypeFunc::Parms+7, parm7);
  2087     /* close each nested if ===> */  } } } } } } } }
  2088   assert(call->in(call->req()-1) != NULL, "must initialize all parms");
  2090   if (!is_leaf) {
  2091     // Non-leaves can block and take safepoints:
  2092     add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0));
  2094   // Non-leaves can throw exceptions:
  2095   if (has_io) {
  2096     call->set_req(TypeFunc::I_O, i_o());
  2099   if (flags & RC_UNCOMMON) {
  2100     // Set the count to a tiny probability.  Cf. Estimate_Block_Frequency.
  2101     // (An "if" probability corresponds roughly to an unconditional count.
  2102     // Sort of.)
  2103     call->set_cnt(PROB_UNLIKELY_MAG(4));
  2106   Node* c = _gvn.transform(call);
  2107   assert(c == call, "cannot disappear");
  2109   if (wide_out) {
  2110     // Slow path call has full side-effects.
  2111     set_predefined_output_for_runtime_call(call);
  2112   } else {
  2113     // Slow path call has few side-effects, and/or sets few values.
  2114     set_predefined_output_for_runtime_call(call, prev_mem, adr_type);
  2117   if (has_io) {
  2118     set_i_o(_gvn.transform(new (C, 1) ProjNode(call, TypeFunc::I_O)));
  2120   return call;
  2124 //------------------------------merge_memory-----------------------------------
  2125 // Merge memory from one path into the current memory state.
  2126 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
  2127   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
  2128     Node* old_slice = mms.force_memory();
  2129     Node* new_slice = mms.memory2();
  2130     if (old_slice != new_slice) {
  2131       PhiNode* phi;
  2132       if (new_slice->is_Phi() && new_slice->as_Phi()->region() == region) {
  2133         phi = new_slice->as_Phi();
  2134         #ifdef ASSERT
  2135         if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region)
  2136           old_slice = old_slice->in(new_path);
  2137         // Caller is responsible for ensuring that any pre-existing
  2138         // phis are already aware of old memory.
  2139         int old_path = (new_path > 1) ? 1 : 2;  // choose old_path != new_path
  2140         assert(phi->in(old_path) == old_slice, "pre-existing phis OK");
  2141         #endif
  2142         mms.set_memory(phi);
  2143       } else {
  2144         phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C));
  2145         _gvn.set_type(phi, Type::MEMORY);
  2146         phi->set_req(new_path, new_slice);
  2147         mms.set_memory(_gvn.transform(phi));  // assume it is complete
  2153 //------------------------------make_slow_call_ex------------------------------
  2154 // Make the exception handler hookups for the slow call
  2155 void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj) {
  2156   if (stopped())  return;
  2158   // Make a catch node with just two handlers:  fall-through and catch-all
  2159   Node* i_o  = _gvn.transform( new (C, 1) ProjNode(call, TypeFunc::I_O, separate_io_proj) );
  2160   Node* catc = _gvn.transform( new (C, 2) CatchNode(control(), i_o, 2) );
  2161   Node* norm = _gvn.transform( new (C, 1) CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci) );
  2162   Node* excp = _gvn.transform( new (C, 1) CatchProjNode(catc, CatchProjNode::catch_all_index,    CatchProjNode::no_handler_bci) );
  2164   { PreserveJVMState pjvms(this);
  2165     set_control(excp);
  2166     set_i_o(i_o);
  2168     if (excp != top()) {
  2169       // Create an exception state also.
  2170       // Use an exact type if the caller has specified a specific exception.
  2171       const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull);
  2172       Node*       ex_oop  = new (C, 2) CreateExNode(ex_type, control(), i_o);
  2173       add_exception_state(make_exception_state(_gvn.transform(ex_oop)));
  2177   // Get the no-exception control from the CatchNode.
  2178   set_control(norm);
  2182 //-------------------------------gen_subtype_check-----------------------------
  2183 // Generate a subtyping check.  Takes as input the subtype and supertype.
  2184 // Returns 2 values: sets the default control() to the true path and returns
  2185 // the false path.  Only reads invariant memory; sets no (visible) memory.
  2186 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding
  2187 // but that's not exposed to the optimizer.  This call also doesn't take in an
  2188 // Object; if you wish to check an Object you need to load the Object's class
  2189 // prior to coming here.
  2190 Node* GraphKit::gen_subtype_check(Node* subklass, Node* superklass) {
  2191   // Fast check for identical types, perhaps identical constants.
  2192   // The types can even be identical non-constants, in cases
  2193   // involving Array.newInstance, Object.clone, etc.
  2194   if (subklass == superklass)
  2195     return top();             // false path is dead; no test needed.
  2197   if (_gvn.type(superklass)->singleton()) {
  2198     ciKlass* superk = _gvn.type(superklass)->is_klassptr()->klass();
  2199     ciKlass* subk   = _gvn.type(subklass)->is_klassptr()->klass();
  2201     // In the common case of an exact superklass, try to fold up the
  2202     // test before generating code.  You may ask, why not just generate
  2203     // the code and then let it fold up?  The answer is that the generated
  2204     // code will necessarily include null checks, which do not always
  2205     // completely fold away.  If they are also needless, then they turn
  2206     // into a performance loss.  Example:
  2207     //    Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
  2208     // Here, the type of 'fa' is often exact, so the store check
  2209     // of fa[1]=x will fold up, without testing the nullness of x.
  2210     switch (static_subtype_check(superk, subk)) {
  2211     case SSC_always_false:
  2213         Node* always_fail = control();
  2214         set_control(top());
  2215         return always_fail;
  2217     case SSC_always_true:
  2218       return top();
  2219     case SSC_easy_test:
  2221         // Just do a direct pointer compare and be done.
  2222         Node* cmp = _gvn.transform( new(C, 3) CmpPNode(subklass, superklass) );
  2223         Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
  2224         IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  2225         set_control( _gvn.transform( new(C, 1) IfTrueNode (iff) ) );
  2226         return       _gvn.transform( new(C, 1) IfFalseNode(iff) );
  2228     case SSC_full_test:
  2229       break;
  2230     default:
  2231       ShouldNotReachHere();
  2235   // %%% Possible further optimization:  Even if the superklass is not exact,
  2236   // if the subklass is the unique subtype of the superklass, the check
  2237   // will always succeed.  We could leave a dependency behind to ensure this.
  2239   // First load the super-klass's check-offset
  2240   Node *p1 = basic_plus_adr( superklass, superklass, sizeof(oopDesc) + Klass::super_check_offset_offset_in_bytes() );
  2241   Node *chk_off = _gvn.transform( new (C, 3) LoadINode( NULL, memory(p1), p1, _gvn.type(p1)->is_ptr() ) );
  2242   int cacheoff_con = sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes();
  2243   bool might_be_cache = (find_int_con(chk_off, cacheoff_con) == cacheoff_con);
  2245   // Load from the sub-klass's super-class display list, or a 1-word cache of
  2246   // the secondary superclass list, or a failing value with a sentinel offset
  2247   // if the super-klass is an interface or exceptionally deep in the Java
  2248   // hierarchy and we have to scan the secondary superclass list the hard way.
  2249   // Worst-case type is a little odd: NULL is allowed as a result (usually
  2250   // klass loads can never produce a NULL).
  2251   Node *chk_off_X = ConvI2X(chk_off);
  2252   Node *p2 = _gvn.transform( new (C, 4) AddPNode(subklass,subklass,chk_off_X) );
  2253   // For some types like interfaces the following loadKlass is from a 1-word
  2254   // cache which is mutable so can't use immutable memory.  Other
  2255   // types load from the super-class display table which is immutable.
  2256   Node *kmem = might_be_cache ? memory(p2) : immutable_memory();
  2257   Node *nkls = _gvn.transform( LoadKlassNode::make( _gvn, kmem, p2, _gvn.type(p2)->is_ptr(), TypeKlassPtr::OBJECT_OR_NULL ) );
  2259   // Compile speed common case: ARE a subtype and we canNOT fail
  2260   if( superklass == nkls )
  2261     return top();             // false path is dead; no test needed.
  2263   // See if we get an immediate positive hit.  Happens roughly 83% of the
  2264   // time.  Test to see if the value loaded just previously from the subklass
  2265   // is exactly the superklass.
  2266   Node *cmp1 = _gvn.transform( new (C, 3) CmpPNode( superklass, nkls ) );
  2267   Node *bol1 = _gvn.transform( new (C, 2) BoolNode( cmp1, BoolTest::eq ) );
  2268   IfNode *iff1 = create_and_xform_if( control(), bol1, PROB_LIKELY(0.83f), COUNT_UNKNOWN );
  2269   Node *iftrue1 = _gvn.transform( new (C, 1) IfTrueNode ( iff1 ) );
  2270   set_control(    _gvn.transform( new (C, 1) IfFalseNode( iff1 ) ) );
  2272   // Compile speed common case: Check for being deterministic right now.  If
  2273   // chk_off is a constant and not equal to cacheoff then we are NOT a
  2274   // subklass.  In this case we need exactly the 1 test above and we can
  2275   // return those results immediately.
  2276   if (!might_be_cache) {
  2277     Node* not_subtype_ctrl = control();
  2278     set_control(iftrue1); // We need exactly the 1 test above
  2279     return not_subtype_ctrl;
  2282   // Gather the various success & failures here
  2283   RegionNode *r_ok_subtype = new (C, 4) RegionNode(4);
  2284   record_for_igvn(r_ok_subtype);
  2285   RegionNode *r_not_subtype = new (C, 3) RegionNode(3);
  2286   record_for_igvn(r_not_subtype);
  2288   r_ok_subtype->init_req(1, iftrue1);
  2290   // Check for immediate negative hit.  Happens roughly 11% of the time (which
  2291   // is roughly 63% of the remaining cases).  Test to see if the loaded
  2292   // check-offset points into the subklass display list or the 1-element
  2293   // cache.  If it points to the display (and NOT the cache) and the display
  2294   // missed then it's not a subtype.
  2295   Node *cacheoff = _gvn.intcon(cacheoff_con);
  2296   Node *cmp2 = _gvn.transform( new (C, 3) CmpINode( chk_off, cacheoff ) );
  2297   Node *bol2 = _gvn.transform( new (C, 2) BoolNode( cmp2, BoolTest::ne ) );
  2298   IfNode *iff2 = create_and_xform_if( control(), bol2, PROB_LIKELY(0.63f), COUNT_UNKNOWN );
  2299   r_not_subtype->init_req(1, _gvn.transform( new (C, 1) IfTrueNode (iff2) ) );
  2300   set_control(                _gvn.transform( new (C, 1) IfFalseNode(iff2) ) );
  2302   // Check for self.  Very rare to get here, but it is taken 1/3 the time.
  2303   // No performance impact (too rare) but allows sharing of secondary arrays
  2304   // which has some footprint reduction.
  2305   Node *cmp3 = _gvn.transform( new (C, 3) CmpPNode( subklass, superklass ) );
  2306   Node *bol3 = _gvn.transform( new (C, 2) BoolNode( cmp3, BoolTest::eq ) );
  2307   IfNode *iff3 = create_and_xform_if( control(), bol3, PROB_LIKELY(0.36f), COUNT_UNKNOWN );
  2308   r_ok_subtype->init_req(2, _gvn.transform( new (C, 1) IfTrueNode ( iff3 ) ) );
  2309   set_control(               _gvn.transform( new (C, 1) IfFalseNode( iff3 ) ) );
  2311   // -- Roads not taken here: --
  2312   // We could also have chosen to perform the self-check at the beginning
  2313   // of this code sequence, as the assembler does.  This would not pay off
  2314   // the same way, since the optimizer, unlike the assembler, can perform
  2315   // static type analysis to fold away many successful self-checks.
  2316   // Non-foldable self checks work better here in second position, because
  2317   // the initial primary superclass check subsumes a self-check for most
  2318   // types.  An exception would be a secondary type like array-of-interface,
  2319   // which does not appear in its own primary supertype display.
  2320   // Finally, we could have chosen to move the self-check into the
  2321   // PartialSubtypeCheckNode, and from there out-of-line in a platform
  2322   // dependent manner.  But it is worthwhile to have the check here,
  2323   // where it can be perhaps be optimized.  The cost in code space is
  2324   // small (register compare, branch).
  2326   // Now do a linear scan of the secondary super-klass array.  Again, no real
  2327   // performance impact (too rare) but it's gotta be done.
  2328   // Since the code is rarely used, there is no penalty for moving it
  2329   // out of line, and it can only improve I-cache density.
  2330   // The decision to inline or out-of-line this final check is platform
  2331   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
  2332   Node* psc = _gvn.transform(
  2333     new (C, 3) PartialSubtypeCheckNode(control(), subklass, superklass) );
  2335   Node *cmp4 = _gvn.transform( new (C, 3) CmpPNode( psc, null() ) );
  2336   Node *bol4 = _gvn.transform( new (C, 2) BoolNode( cmp4, BoolTest::ne ) );
  2337   IfNode *iff4 = create_and_xform_if( control(), bol4, PROB_FAIR, COUNT_UNKNOWN );
  2338   r_not_subtype->init_req(2, _gvn.transform( new (C, 1) IfTrueNode (iff4) ) );
  2339   r_ok_subtype ->init_req(3, _gvn.transform( new (C, 1) IfFalseNode(iff4) ) );
  2341   // Return false path; set default control to true path.
  2342   set_control( _gvn.transform(r_ok_subtype) );
  2343   return _gvn.transform(r_not_subtype);
  2346 //----------------------------static_subtype_check-----------------------------
  2347 // Shortcut important common cases when superklass is exact:
  2348 // (0) superklass is java.lang.Object (can occur in reflective code)
  2349 // (1) subklass is already limited to a subtype of superklass => always ok
  2350 // (2) subklass does not overlap with superklass => always fail
  2351 // (3) superklass has NO subtypes and we can check with a simple compare.
  2352 int GraphKit::static_subtype_check(ciKlass* superk, ciKlass* subk) {
  2353   if (StressReflectiveCode) {
  2354     return SSC_full_test;       // Let caller generate the general case.
  2357   if (superk == env()->Object_klass()) {
  2358     return SSC_always_true;     // (0) this test cannot fail
  2361   ciType* superelem = superk;
  2362   if (superelem->is_array_klass())
  2363     superelem = superelem->as_array_klass()->base_element_type();
  2365   if (!subk->is_interface()) {  // cannot trust static interface types yet
  2366     if (subk->is_subtype_of(superk)) {
  2367       return SSC_always_true;   // (1) false path dead; no dynamic test needed
  2369     if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
  2370         !superk->is_subtype_of(subk)) {
  2371       return SSC_always_false;
  2375   // If casting to an instance klass, it must have no subtypes
  2376   if (superk->is_interface()) {
  2377     // Cannot trust interfaces yet.
  2378     // %%% S.B. superk->nof_implementors() == 1
  2379   } else if (superelem->is_instance_klass()) {
  2380     ciInstanceKlass* ik = superelem->as_instance_klass();
  2381     if (!ik->has_subklass() && !ik->is_interface()) {
  2382       if (!ik->is_final()) {
  2383         // Add a dependency if there is a chance of a later subclass.
  2384         C->dependencies()->assert_leaf_type(ik);
  2386       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
  2388   } else {
  2389     // A primitive array type has no subtypes.
  2390     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
  2393   return SSC_full_test;
  2396 // Profile-driven exact type check:
  2397 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
  2398                                     float prob,
  2399                                     Node* *casted_receiver) {
  2400   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass);
  2401   Node* recv_klass = load_object_klass(receiver);
  2402   Node* want_klass = makecon(tklass);
  2403   Node* cmp = _gvn.transform( new(C, 3) CmpPNode(recv_klass, want_klass) );
  2404   Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
  2405   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
  2406   set_control( _gvn.transform( new(C, 1) IfTrueNode (iff) ));
  2407   Node* fail = _gvn.transform( new(C, 1) IfFalseNode(iff) );
  2409   const TypeOopPtr* recv_xtype = tklass->as_instance_type();
  2410   assert(recv_xtype->klass_is_exact(), "");
  2412   // Subsume downstream occurrences of receiver with a cast to
  2413   // recv_xtype, since now we know what the type will be.
  2414   Node* cast = new(C, 2) CheckCastPPNode(control(), receiver, recv_xtype);
  2415   (*casted_receiver) = _gvn.transform(cast);
  2416   // (User must make the replace_in_map call.)
  2418   return fail;
  2422 //-------------------------------gen_instanceof--------------------------------
  2423 // Generate an instance-of idiom.  Used by both the instance-of bytecode
  2424 // and the reflective instance-of call.
  2425 Node* GraphKit::gen_instanceof( Node *subobj, Node* superklass ) {
  2426   C->set_has_split_ifs(true); // Has chance for split-if optimization
  2427   assert( !stopped(), "dead parse path should be checked in callers" );
  2428   assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()),
  2429          "must check for not-null not-dead klass in callers");
  2431   // Make the merge point
  2432   enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT };
  2433   RegionNode* region = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  2434   Node*       phi    = new(C, PATH_LIMIT) PhiNode(region, TypeInt::BOOL);
  2435   C->set_has_split_ifs(true); // Has chance for split-if optimization
  2437   // Null check; get casted pointer; set region slot 3
  2438   Node* null_ctl = top();
  2439   Node* not_null_obj = null_check_oop(subobj, &null_ctl);
  2441   // If not_null_obj is dead, only null-path is taken
  2442   if (stopped()) {              // Doing instance-of on a NULL?
  2443     set_control(null_ctl);
  2444     return intcon(0);
  2446   region->init_req(_null_path, null_ctl);
  2447   phi   ->init_req(_null_path, intcon(0)); // Set null path value
  2449   // Load the object's klass
  2450   Node* obj_klass = load_object_klass(not_null_obj);
  2452   // Generate the subtype check
  2453   Node* not_subtype_ctrl = gen_subtype_check(obj_klass, superklass);
  2455   // Plug in the success path to the general merge in slot 1.
  2456   region->init_req(_obj_path, control());
  2457   phi   ->init_req(_obj_path, intcon(1));
  2459   // Plug in the failing path to the general merge in slot 2.
  2460   region->init_req(_fail_path, not_subtype_ctrl);
  2461   phi   ->init_req(_fail_path, intcon(0));
  2463   // Return final merged results
  2464   set_control( _gvn.transform(region) );
  2465   record_for_igvn(region);
  2466   return _gvn.transform(phi);
  2469 //-------------------------------gen_checkcast---------------------------------
  2470 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
  2471 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
  2472 // uncommon-trap paths work.  Adjust stack after this call.
  2473 // If failure_control is supplied and not null, it is filled in with
  2474 // the control edge for the cast failure.  Otherwise, an appropriate
  2475 // uncommon trap or exception is thrown.
  2476 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass,
  2477                               Node* *failure_control) {
  2478   kill_dead_locals();           // Benefit all the uncommon traps
  2479   const TypeKlassPtr *tk = _gvn.type(superklass)->is_klassptr();
  2480   const Type *toop = TypeOopPtr::make_from_klass(tk->klass());
  2482   // Fast cutout:  Check the case that the cast is vacuously true.
  2483   // This detects the common cases where the test will short-circuit
  2484   // away completely.  We do this before we perform the null check,
  2485   // because if the test is going to turn into zero code, we don't
  2486   // want a residual null check left around.  (Causes a slowdown,
  2487   // for example, in some objArray manipulations, such as a[i]=a[j].)
  2488   if (tk->singleton()) {
  2489     const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr();
  2490     if (objtp != NULL && objtp->klass() != NULL) {
  2491       switch (static_subtype_check(tk->klass(), objtp->klass())) {
  2492       case SSC_always_true:
  2493         return obj;
  2494       case SSC_always_false:
  2495         // It needs a null check because a null will *pass* the cast check.
  2496         // A non-null value will always produce an exception.
  2497         return do_null_assert(obj, T_OBJECT);
  2502   ciProfileData* data = NULL;
  2503   if (failure_control == NULL) {        // use MDO in regular case only
  2504     assert(java_bc() == Bytecodes::_aastore ||
  2505            java_bc() == Bytecodes::_checkcast,
  2506            "interpreter profiles type checks only for these BCs");
  2507     data = method()->method_data()->bci_to_data(bci());
  2510   // Make the merge point
  2511   enum { _obj_path = 1, _null_path, PATH_LIMIT };
  2512   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  2513   Node*       phi    = new (C, PATH_LIMIT) PhiNode(region, toop);
  2514   C->set_has_split_ifs(true); // Has chance for split-if optimization
  2516   // Use null-cast information if it is available
  2517   bool never_see_null = false;
  2518   // If we see an unexpected null at a check-cast we record it and force a
  2519   // recompile; the offending check-cast will be compiled to handle NULLs.
  2520   // If we see several offending BCIs, then all checkcasts in the
  2521   // method will be compiled to handle NULLs.
  2522   if (UncommonNullCast            // Cutout for this technique
  2523       && failure_control == NULL  // regular case
  2524       && obj != null()            // And not the -Xcomp stupid case?
  2525       && !too_many_traps(Deoptimization::Reason_null_check)) {
  2526     // Finally, check the "null_seen" bit from the interpreter.
  2527     if (data == NULL || !data->as_BitData()->null_seen()) {
  2528       never_see_null = true;
  2532   // Null check; get casted pointer; set region slot 3
  2533   Node* null_ctl = top();
  2534   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null);
  2536   // If not_null_obj is dead, only null-path is taken
  2537   if (stopped()) {              // Doing instance-of on a NULL?
  2538     set_control(null_ctl);
  2539     return null();
  2541   region->init_req(_null_path, null_ctl);
  2542   phi   ->init_req(_null_path, null());  // Set null path value
  2544   Node* cast_obj = NULL;        // the casted version of the object
  2546   // If the profile has seen exactly one type, narrow to that type.
  2547   // (The subsequent subtype check will always fold up.)
  2548   if (UseTypeProfile && TypeProfileCasts && data != NULL &&
  2549       // Counter has never been decremented (due to cast failure).
  2550       // ...This is a reasonable thing to expect.  It is true of
  2551       // all casts inserted by javac to implement generic types.
  2552       data->as_CounterData()->count() >= 0 &&
  2553       !too_many_traps(Deoptimization::Reason_class_check)) {
  2554     // (No, this isn't a call, but it's enough like a virtual call
  2555     // to use the same ciMethod accessor to get the profile info...)
  2556     ciCallProfile profile = method()->call_profile_at_bci(bci());
  2557     if (profile.count() >= 0 &&         // no cast failures here
  2558         profile.has_receiver(0) &&
  2559         profile.morphism() == 1) {
  2560       ciKlass* exact_kls = profile.receiver(0);
  2561       int ssc = static_subtype_check(tk->klass(), exact_kls);
  2562       if (ssc == SSC_always_true) {
  2563         // If we narrow the type to match what the type profile sees,
  2564         // we can then remove the rest of the cast.
  2565         // This is a win, even if the exact_kls is very specific,
  2566         // because downstream operations, such as method calls,
  2567         // will often benefit from the sharper type.
  2568         Node* exact_obj = not_null_obj; // will get updated in place...
  2569         Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
  2570                                               &exact_obj);
  2571         { PreserveJVMState pjvms(this);
  2572           set_control(slow_ctl);
  2573           uncommon_trap(Deoptimization::Reason_class_check,
  2574                         Deoptimization::Action_maybe_recompile);
  2576         if (failure_control != NULL) // failure is now impossible
  2577           (*failure_control) = top();
  2578         replace_in_map(not_null_obj, exact_obj);
  2579         // adjust the type of the phi to the exact klass:
  2580         phi->raise_bottom_type(_gvn.type(exact_obj)->meet(TypePtr::NULL_PTR));
  2581         cast_obj = exact_obj;
  2583       // assert(cast_obj != NULL)... except maybe the profile lied to us.
  2587   if (cast_obj == NULL) {
  2588     // Load the object's klass
  2589     Node* obj_klass = load_object_klass(not_null_obj);
  2591     // Generate the subtype check
  2592     Node* not_subtype_ctrl = gen_subtype_check( obj_klass, superklass );
  2594     // Plug in success path into the merge
  2595     cast_obj = _gvn.transform(new (C, 2) CheckCastPPNode(control(),
  2596                                                          not_null_obj, toop));
  2597     // Failure path ends in uncommon trap (or may be dead - failure impossible)
  2598     if (failure_control == NULL) {
  2599       if (not_subtype_ctrl != top()) { // If failure is possible
  2600         PreserveJVMState pjvms(this);
  2601         set_control(not_subtype_ctrl);
  2602         builtin_throw(Deoptimization::Reason_class_check, obj_klass);
  2604     } else {
  2605       (*failure_control) = not_subtype_ctrl;
  2609   region->init_req(_obj_path, control());
  2610   phi   ->init_req(_obj_path, cast_obj);
  2612   // A merge of NULL or Casted-NotNull obj
  2613   Node* res = _gvn.transform(phi);
  2615   // Note I do NOT always 'replace_in_map(obj,result)' here.
  2616   //  if( tk->klass()->can_be_primary_super()  )
  2617     // This means that if I successfully store an Object into an array-of-String
  2618     // I 'forget' that the Object is really now known to be a String.  I have to
  2619     // do this because we don't have true union types for interfaces - if I store
  2620     // a Baz into an array-of-Interface and then tell the optimizer it's an
  2621     // Interface, I forget that it's also a Baz and cannot do Baz-like field
  2622     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
  2623   //  replace_in_map( obj, res );
  2625   // Return final merged results
  2626   set_control( _gvn.transform(region) );
  2627   record_for_igvn(region);
  2628   return res;
  2631 //------------------------------next_monitor-----------------------------------
  2632 // What number should be given to the next monitor?
  2633 int GraphKit::next_monitor() {
  2634   int current = jvms()->monitor_depth()* C->sync_stack_slots();
  2635   int next = current + C->sync_stack_slots();
  2636   // Keep the toplevel high water mark current:
  2637   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
  2638   return current;
  2641 //------------------------------insert_mem_bar---------------------------------
  2642 // Memory barrier to avoid floating things around
  2643 // The membar serves as a pinch point between both control and all memory slices.
  2644 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
  2645   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
  2646   mb->init_req(TypeFunc::Control, control());
  2647   mb->init_req(TypeFunc::Memory,  reset_memory());
  2648   Node* membar = _gvn.transform(mb);
  2649   set_control(_gvn.transform(new (C, 1) ProjNode(membar,TypeFunc::Control) ));
  2650   set_all_memory_call(membar);
  2651   return membar;
  2654 //-------------------------insert_mem_bar_volatile----------------------------
  2655 // Memory barrier to avoid floating things around
  2656 // The membar serves as a pinch point between both control and memory(alias_idx).
  2657 // If you want to make a pinch point on all memory slices, do not use this
  2658 // function (even with AliasIdxBot); use insert_mem_bar() instead.
  2659 Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) {
  2660   // When Parse::do_put_xxx updates a volatile field, it appends a series
  2661   // of MemBarVolatile nodes, one for *each* volatile field alias category.
  2662   // The first membar is on the same memory slice as the field store opcode.
  2663   // This forces the membar to follow the store.  (Bug 6500685 broke this.)
  2664   // All the other membars (for other volatile slices, including AliasIdxBot,
  2665   // which stands for all unknown volatile slices) are control-dependent
  2666   // on the first membar.  This prevents later volatile loads or stores
  2667   // from sliding up past the just-emitted store.
  2669   MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent);
  2670   mb->set_req(TypeFunc::Control,control());
  2671   if (alias_idx == Compile::AliasIdxBot) {
  2672     mb->set_req(TypeFunc::Memory, merged_memory()->base_memory());
  2673   } else {
  2674     assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller");
  2675     mb->set_req(TypeFunc::Memory, memory(alias_idx));
  2677   Node* membar = _gvn.transform(mb);
  2678   set_control(_gvn.transform(new (C, 1) ProjNode(membar, TypeFunc::Control)));
  2679   if (alias_idx == Compile::AliasIdxBot) {
  2680     merged_memory()->set_base_memory(_gvn.transform(new (C, 1) ProjNode(membar, TypeFunc::Memory)));
  2681   } else {
  2682     set_memory(_gvn.transform(new (C, 1) ProjNode(membar, TypeFunc::Memory)),alias_idx);
  2684   return membar;
  2687 //------------------------------shared_lock------------------------------------
  2688 // Emit locking code.
  2689 FastLockNode* GraphKit::shared_lock(Node* obj) {
  2690   // bci is either a monitorenter bc or InvocationEntryBci
  2691   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
  2692   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
  2694   if( !GenerateSynchronizationCode )
  2695     return NULL;                // Not locking things?
  2696   if (stopped())                // Dead monitor?
  2697     return NULL;
  2699   assert(dead_locals_are_killed(), "should kill locals before sync. point");
  2701   // Box the stack location
  2702   Node* box = _gvn.transform(new (C, 1) BoxLockNode(next_monitor()));
  2703   Node* mem = reset_memory();
  2705   FastLockNode * flock = _gvn.transform(new (C, 3) FastLockNode(0, obj, box) )->as_FastLock();
  2706   if (PrintPreciseBiasedLockingStatistics) {
  2707     // Create the counters for this fast lock.
  2708     flock->create_lock_counter(sync_jvms()); // sync_jvms used to get current bci
  2710   // Add monitor to debug info for the slow path.  If we block inside the
  2711   // slow path and de-opt, we need the monitor hanging around
  2712   map()->push_monitor( flock );
  2714   const TypeFunc *tf = LockNode::lock_type();
  2715   LockNode *lock = new (C, tf->domain()->cnt()) LockNode(C, tf);
  2717   lock->init_req( TypeFunc::Control, control() );
  2718   lock->init_req( TypeFunc::Memory , mem );
  2719   lock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
  2720   lock->init_req( TypeFunc::FramePtr, frameptr() );
  2721   lock->init_req( TypeFunc::ReturnAdr, top() );
  2723   lock->init_req(TypeFunc::Parms + 0, obj);
  2724   lock->init_req(TypeFunc::Parms + 1, box);
  2725   lock->init_req(TypeFunc::Parms + 2, flock);
  2726   add_safepoint_edges(lock);
  2728   lock = _gvn.transform( lock )->as_Lock();
  2730   // lock has no side-effects, sets few values
  2731   set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM);
  2733   insert_mem_bar(Op_MemBarAcquire);
  2735   // Add this to the worklist so that the lock can be eliminated
  2736   record_for_igvn(lock);
  2738 #ifndef PRODUCT
  2739   if (PrintLockStatistics) {
  2740     // Update the counter for this lock.  Don't bother using an atomic
  2741     // operation since we don't require absolute accuracy.
  2742     lock->create_lock_counter(map()->jvms());
  2743     int adr_type = Compile::AliasIdxRaw;
  2744     Node* counter_addr = makecon(TypeRawPtr::make(lock->counter()->addr()));
  2745     Node* cnt  = make_load(NULL, counter_addr, TypeInt::INT, T_INT, adr_type);
  2746     Node* incr = _gvn.transform(new (C, 3) AddINode(cnt, _gvn.intcon(1)));
  2747     store_to_memory(control(), counter_addr, incr, T_INT, adr_type);
  2749 #endif
  2751   return flock;
  2755 //------------------------------shared_unlock----------------------------------
  2756 // Emit unlocking code.
  2757 void GraphKit::shared_unlock(Node* box, Node* obj) {
  2758   // bci is either a monitorenter bc or InvocationEntryBci
  2759   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
  2760   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
  2762   if( !GenerateSynchronizationCode )
  2763     return;
  2764   if (stopped()) {               // Dead monitor?
  2765     map()->pop_monitor();        // Kill monitor from debug info
  2766     return;
  2769   // Memory barrier to avoid floating things down past the locked region
  2770   insert_mem_bar(Op_MemBarRelease);
  2772   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
  2773   UnlockNode *unlock = new (C, tf->domain()->cnt()) UnlockNode(C, tf);
  2774   uint raw_idx = Compile::AliasIdxRaw;
  2775   unlock->init_req( TypeFunc::Control, control() );
  2776   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
  2777   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
  2778   unlock->init_req( TypeFunc::FramePtr, frameptr() );
  2779   unlock->init_req( TypeFunc::ReturnAdr, top() );
  2781   unlock->init_req(TypeFunc::Parms + 0, obj);
  2782   unlock->init_req(TypeFunc::Parms + 1, box);
  2783   unlock = _gvn.transform(unlock)->as_Unlock();
  2785   Node* mem = reset_memory();
  2787   // unlock has no side-effects, sets few values
  2788   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
  2790   // Kill monitor from debug info
  2791   map()->pop_monitor( );
  2794 //-------------------------------get_layout_helper-----------------------------
  2795 // If the given klass is a constant or known to be an array,
  2796 // fetch the constant layout helper value into constant_value
  2797 // and return (Node*)NULL.  Otherwise, load the non-constant
  2798 // layout helper value, and return the node which represents it.
  2799 // This two-faced routine is useful because allocation sites
  2800 // almost always feature constant types.
  2801 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
  2802   const TypeKlassPtr* inst_klass = _gvn.type(klass_node)->isa_klassptr();
  2803   if (!StressReflectiveCode && inst_klass != NULL) {
  2804     ciKlass* klass = inst_klass->klass();
  2805     bool    xklass = inst_klass->klass_is_exact();
  2806     if (xklass || klass->is_array_klass()) {
  2807       jint lhelper = klass->layout_helper();
  2808       if (lhelper != Klass::_lh_neutral_value) {
  2809         constant_value = lhelper;
  2810         return (Node*) NULL;
  2814   constant_value = Klass::_lh_neutral_value;  // put in a known value
  2815   Node* lhp = basic_plus_adr(klass_node, klass_node, Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc));
  2816   return make_load(NULL, lhp, TypeInt::INT, T_INT);
  2819 // We just put in an allocate/initialize with a big raw-memory effect.
  2820 // Hook selected additional alias categories on the initialization.
  2821 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
  2822                                 MergeMemNode* init_in_merge,
  2823                                 Node* init_out_raw) {
  2824   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
  2825   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
  2827   Node* prevmem = kit.memory(alias_idx);
  2828   init_in_merge->set_memory_at(alias_idx, prevmem);
  2829   kit.set_memory(init_out_raw, alias_idx);
  2832 //---------------------------set_output_for_allocation-------------------------
  2833 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
  2834                                           const TypeOopPtr* oop_type,
  2835                                           bool raw_mem_only) {
  2836   int rawidx = Compile::AliasIdxRaw;
  2837   alloc->set_req( TypeFunc::FramePtr, frameptr() );
  2838   add_safepoint_edges(alloc);
  2839   Node* allocx = _gvn.transform(alloc);
  2840   set_control( _gvn.transform(new (C, 1) ProjNode(allocx, TypeFunc::Control) ) );
  2841   // create memory projection for i_o
  2842   set_memory ( _gvn.transform( new (C, 1) ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
  2843   make_slow_call_ex(allocx, env()->OutOfMemoryError_klass(), true);
  2845   // create a memory projection as for the normal control path
  2846   Node* malloc = _gvn.transform(new (C, 1) ProjNode(allocx, TypeFunc::Memory));
  2847   set_memory(malloc, rawidx);
  2849   // a normal slow-call doesn't change i_o, but an allocation does
  2850   // we create a separate i_o projection for the normal control path
  2851   set_i_o(_gvn.transform( new (C, 1) ProjNode(allocx, TypeFunc::I_O, false) ) );
  2852   Node* rawoop = _gvn.transform( new (C, 1) ProjNode(allocx, TypeFunc::Parms) );
  2854   // put in an initialization barrier
  2855   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
  2856                                                  rawoop)->as_Initialize();
  2857   assert(alloc->initialization() == init,  "2-way macro link must work");
  2858   assert(init ->allocation()     == alloc, "2-way macro link must work");
  2859   if (ReduceFieldZeroing && !raw_mem_only) {
  2860     // Extract memory strands which may participate in the new object's
  2861     // initialization, and source them from the new InitializeNode.
  2862     // This will allow us to observe initializations when they occur,
  2863     // and link them properly (as a group) to the InitializeNode.
  2864     assert(init->in(InitializeNode::Memory) == malloc, "");
  2865     MergeMemNode* minit_in = MergeMemNode::make(C, malloc);
  2866     init->set_req(InitializeNode::Memory, minit_in);
  2867     record_for_igvn(minit_in); // fold it up later, if possible
  2868     Node* minit_out = memory(rawidx);
  2869     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
  2870     if (oop_type->isa_aryptr()) {
  2871       const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
  2872       int            elemidx  = C->get_alias_index(telemref);
  2873       hook_memory_on_init(*this, elemidx, minit_in, minit_out);
  2874     } else if (oop_type->isa_instptr()) {
  2875       ciInstanceKlass* ik = oop_type->klass()->as_instance_klass();
  2876       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
  2877         ciField* field = ik->nonstatic_field_at(i);
  2878         if (field->offset() >= TrackedInitializationLimit * HeapWordSize)
  2879           continue;  // do not bother to track really large numbers of fields
  2880         // Find (or create) the alias category for this field:
  2881         int fieldidx = C->alias_type(field)->index();
  2882         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
  2887   // Cast raw oop to the real thing...
  2888   Node* javaoop = new (C, 2) CheckCastPPNode(control(), rawoop, oop_type);
  2889   javaoop = _gvn.transform(javaoop);
  2890   C->set_recent_alloc(control(), javaoop);
  2891   assert(just_allocated_object(control()) == javaoop, "just allocated");
  2893 #ifdef ASSERT
  2894   { // Verify that the AllocateNode::Ideal_allocation recognizers work:
  2895     assert(AllocateNode::Ideal_allocation(rawoop, &_gvn) == alloc,
  2896            "Ideal_allocation works");
  2897     assert(AllocateNode::Ideal_allocation(javaoop, &_gvn) == alloc,
  2898            "Ideal_allocation works");
  2899     if (alloc->is_AllocateArray()) {
  2900       assert(AllocateArrayNode::Ideal_array_allocation(rawoop, &_gvn) == alloc->as_AllocateArray(),
  2901              "Ideal_allocation works");
  2902       assert(AllocateArrayNode::Ideal_array_allocation(javaoop, &_gvn) == alloc->as_AllocateArray(),
  2903              "Ideal_allocation works");
  2904     } else {
  2905       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
  2908 #endif //ASSERT
  2910   return javaoop;
  2913 //---------------------------new_instance--------------------------------------
  2914 // This routine takes a klass_node which may be constant (for a static type)
  2915 // or may be non-constant (for reflective code).  It will work equally well
  2916 // for either, and the graph will fold nicely if the optimizer later reduces
  2917 // the type to a constant.
  2918 // The optional arguments are for specialized use by intrinsics:
  2919 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
  2920 //  - If 'raw_mem_only', do not cast the result to an oop.
  2921 //  - If 'return_size_val', report the the total object size to the caller.
  2922 Node* GraphKit::new_instance(Node* klass_node,
  2923                              Node* extra_slow_test,
  2924                              bool raw_mem_only, // affect only raw memory
  2925                              Node* *return_size_val) {
  2926   // Compute size in doublewords
  2927   // The size is always an integral number of doublewords, represented
  2928   // as a positive bytewise size stored in the klass's layout_helper.
  2929   // The layout_helper also encodes (in a low bit) the need for a slow path.
  2930   jint  layout_con = Klass::_lh_neutral_value;
  2931   Node* layout_val = get_layout_helper(klass_node, layout_con);
  2932   int   layout_is_con = (layout_val == NULL);
  2934   if (extra_slow_test == NULL)  extra_slow_test = intcon(0);
  2935   // Generate the initial go-slow test.  It's either ALWAYS (return a
  2936   // Node for 1) or NEVER (return a NULL) or perhaps (in the reflective
  2937   // case) a computed value derived from the layout_helper.
  2938   Node* initial_slow_test = NULL;
  2939   if (layout_is_con) {
  2940     assert(!StressReflectiveCode, "stress mode does not use these paths");
  2941     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
  2942     initial_slow_test = must_go_slow? intcon(1): extra_slow_test;
  2944   } else {   // reflective case
  2945     // This reflective path is used by Unsafe.allocateInstance.
  2946     // (It may be stress-tested by specifying StressReflectiveCode.)
  2947     // Basically, we want to get into the VM is there's an illegal argument.
  2948     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
  2949     initial_slow_test = _gvn.transform( new (C, 3) AndINode(layout_val, bit) );
  2950     if (extra_slow_test != intcon(0)) {
  2951       initial_slow_test = _gvn.transform( new (C, 3) OrINode(initial_slow_test, extra_slow_test) );
  2953     // (Macro-expander will further convert this to a Bool, if necessary.)
  2956   // Find the size in bytes.  This is easy; it's the layout_helper.
  2957   // The size value must be valid even if the slow path is taken.
  2958   Node* size = NULL;
  2959   if (layout_is_con) {
  2960     size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con));
  2961   } else {   // reflective case
  2962     // This reflective path is used by clone and Unsafe.allocateInstance.
  2963     size = ConvI2X(layout_val);
  2965     // Clear the low bits to extract layout_helper_size_in_bytes:
  2966     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
  2967     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
  2968     size = _gvn.transform( new (C, 3) AndXNode(size, mask) );
  2970   if (return_size_val != NULL) {
  2971     (*return_size_val) = size;
  2974   // This is a precise notnull oop of the klass.
  2975   // (Actually, it need not be precise if this is a reflective allocation.)
  2976   // It's what we cast the result to.
  2977   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
  2978   if (!tklass)  tklass = TypeKlassPtr::OBJECT;
  2979   const TypeOopPtr* oop_type = tklass->as_instance_type();
  2981   // Now generate allocation code
  2983   // The entire memory state is needed for slow path of the allocation
  2984   // since GC and deoptimization can happened.
  2985   Node *mem = reset_memory();
  2986   set_all_memory(mem); // Create new memory state
  2988   AllocateNode* alloc
  2989     = new (C, AllocateNode::ParmLimit)
  2990         AllocateNode(C, AllocateNode::alloc_type(),
  2991                      control(), mem, i_o(),
  2992                      size, klass_node,
  2993                      initial_slow_test);
  2995   return set_output_for_allocation(alloc, oop_type, raw_mem_only);
  2998 //-------------------------------new_array-------------------------------------
  2999 // helper for both newarray and anewarray
  3000 // The 'length' parameter is (obviously) the length of the array.
  3001 // See comments on new_instance for the meaning of the other arguments.
  3002 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
  3003                           Node* length,         // number of array elements
  3004                           int   nargs,          // number of arguments to push back for uncommon trap
  3005                           bool raw_mem_only,    // affect only raw memory
  3006                           Node* *return_size_val) {
  3007   jint  layout_con = Klass::_lh_neutral_value;
  3008   Node* layout_val = get_layout_helper(klass_node, layout_con);
  3009   int   layout_is_con = (layout_val == NULL);
  3011   if (!layout_is_con && !StressReflectiveCode &&
  3012       !too_many_traps(Deoptimization::Reason_class_check)) {
  3013     // This is a reflective array creation site.
  3014     // Optimistically assume that it is a subtype of Object[],
  3015     // so that we can fold up all the address arithmetic.
  3016     layout_con = Klass::array_layout_helper(T_OBJECT);
  3017     Node* cmp_lh = _gvn.transform( new(C, 3) CmpINode(layout_val, intcon(layout_con)) );
  3018     Node* bol_lh = _gvn.transform( new(C, 2) BoolNode(cmp_lh, BoolTest::eq) );
  3019     { BuildCutout unless(this, bol_lh, PROB_MAX);
  3020       _sp += nargs;
  3021       uncommon_trap(Deoptimization::Reason_class_check,
  3022                     Deoptimization::Action_maybe_recompile);
  3024     layout_val = NULL;
  3025     layout_is_con = true;
  3028   // Generate the initial go-slow test.  Make sure we do not overflow
  3029   // if length is huge (near 2Gig) or negative!  We do not need
  3030   // exact double-words here, just a close approximation of needed
  3031   // double-words.  We can't add any offset or rounding bits, lest we
  3032   // take a size -1 of bytes and make it positive.  Use an unsigned
  3033   // compare, so negative sizes look hugely positive.
  3034   int fast_size_limit = FastAllocateSizeLimit;
  3035   if (layout_is_con) {
  3036     assert(!StressReflectiveCode, "stress mode does not use these paths");
  3037     // Increase the size limit if we have exact knowledge of array type.
  3038     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
  3039     fast_size_limit <<= (LogBytesPerLong - log2_esize);
  3042   Node* initial_slow_cmp  = _gvn.transform( new (C, 3) CmpUNode( length, intcon( fast_size_limit ) ) );
  3043   Node* initial_slow_test = _gvn.transform( new (C, 2) BoolNode( initial_slow_cmp, BoolTest::gt ) );
  3044   if (initial_slow_test->is_Bool()) {
  3045     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
  3046     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
  3049   // --- Size Computation ---
  3050   // array_size = round_to_heap(array_header + (length << elem_shift));
  3051   // where round_to_heap(x) == round_to(x, MinObjAlignmentInBytes)
  3052   // and round_to(x, y) == ((x + y-1) & ~(y-1))
  3053   // The rounding mask is strength-reduced, if possible.
  3054   int round_mask = MinObjAlignmentInBytes - 1;
  3055   Node* header_size = NULL;
  3056   int   header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
  3057   // (T_BYTE has the weakest alignment and size restrictions...)
  3058   if (layout_is_con) {
  3059     int       hsize  = Klass::layout_helper_header_size(layout_con);
  3060     int       eshift = Klass::layout_helper_log2_element_size(layout_con);
  3061     BasicType etype  = Klass::layout_helper_element_type(layout_con);
  3062     if ((round_mask & ~right_n_bits(eshift)) == 0)
  3063       round_mask = 0;  // strength-reduce it if it goes away completely
  3064     assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
  3065     assert(header_size_min <= hsize, "generic minimum is smallest");
  3066     header_size_min = hsize;
  3067     header_size = intcon(hsize + round_mask);
  3068   } else {
  3069     Node* hss   = intcon(Klass::_lh_header_size_shift);
  3070     Node* hsm   = intcon(Klass::_lh_header_size_mask);
  3071     Node* hsize = _gvn.transform( new(C, 3) URShiftINode(layout_val, hss) );
  3072     hsize       = _gvn.transform( new(C, 3) AndINode(hsize, hsm) );
  3073     Node* mask  = intcon(round_mask);
  3074     header_size = _gvn.transform( new(C, 3) AddINode(hsize, mask) );
  3077   Node* elem_shift = NULL;
  3078   if (layout_is_con) {
  3079     int eshift = Klass::layout_helper_log2_element_size(layout_con);
  3080     if (eshift != 0)
  3081       elem_shift = intcon(eshift);
  3082   } else {
  3083     // There is no need to mask or shift this value.
  3084     // The semantics of LShiftINode include an implicit mask to 0x1F.
  3085     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
  3086     elem_shift = layout_val;
  3089   // Transition to native address size for all offset calculations:
  3090   Node* lengthx = ConvI2X(length);
  3091   Node* headerx = ConvI2X(header_size);
  3092 #ifdef _LP64
  3093   { const TypeLong* tllen = _gvn.find_long_type(lengthx);
  3094     if (tllen != NULL && tllen->_lo < 0) {
  3095       // Add a manual constraint to a positive range.  Cf. array_element_address.
  3096       jlong size_max = arrayOopDesc::max_array_length(T_BYTE);
  3097       if (size_max > tllen->_hi)  size_max = tllen->_hi;
  3098       const TypeLong* tlcon = TypeLong::make(CONST64(0), size_max, Type::WidenMin);
  3099       lengthx = _gvn.transform( new (C, 2) ConvI2LNode(length, tlcon));
  3102 #endif
  3104   // Combine header size (plus rounding) and body size.  Then round down.
  3105   // This computation cannot overflow, because it is used only in two
  3106   // places, one where the length is sharply limited, and the other
  3107   // after a successful allocation.
  3108   Node* abody = lengthx;
  3109   if (elem_shift != NULL)
  3110     abody     = _gvn.transform( new(C, 3) LShiftXNode(lengthx, elem_shift) );
  3111   Node* size  = _gvn.transform( new(C, 3) AddXNode(headerx, abody) );
  3112   if (round_mask != 0) {
  3113     Node* mask = MakeConX(~round_mask);
  3114     size       = _gvn.transform( new(C, 3) AndXNode(size, mask) );
  3116   // else if round_mask == 0, the size computation is self-rounding
  3118   if (return_size_val != NULL) {
  3119     // This is the size
  3120     (*return_size_val) = size;
  3123   // Now generate allocation code
  3125   // The entire memory state is needed for slow path of the allocation
  3126   // since GC and deoptimization can happened.
  3127   Node *mem = reset_memory();
  3128   set_all_memory(mem); // Create new memory state
  3130   // Create the AllocateArrayNode and its result projections
  3131   AllocateArrayNode* alloc
  3132     = new (C, AllocateArrayNode::ParmLimit)
  3133         AllocateArrayNode(C, AllocateArrayNode::alloc_type(),
  3134                           control(), mem, i_o(),
  3135                           size, klass_node,
  3136                           initial_slow_test,
  3137                           length);
  3139   // Cast to correct type.  Note that the klass_node may be constant or not,
  3140   // and in the latter case the actual array type will be inexact also.
  3141   // (This happens via a non-constant argument to inline_native_newArray.)
  3142   // In any case, the value of klass_node provides the desired array type.
  3143   const TypeInt* length_type = _gvn.find_int_type(length);
  3144   const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type();
  3145   if (ary_type->isa_aryptr() && length_type != NULL) {
  3146     // Try to get a better type than POS for the size
  3147     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
  3150   Node* javaoop = set_output_for_allocation(alloc, ary_type, raw_mem_only);
  3152   // Cast length on remaining path to be as narrow as possible
  3153   if (map()->find_edge(length) >= 0) {
  3154     Node* ccast = alloc->make_ideal_length(ary_type, &_gvn);
  3155     if (ccast != length) {
  3156       _gvn.set_type_bottom(ccast);
  3157       record_for_igvn(ccast);
  3158       replace_in_map(length, ccast);
  3162   return javaoop;
  3165 // The following "Ideal_foo" functions are placed here because they recognize
  3166 // the graph shapes created by the functions immediately above.
  3168 //---------------------------Ideal_allocation----------------------------------
  3169 // Given an oop pointer or raw pointer, see if it feeds from an AllocateNode.
  3170 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase) {
  3171   if (ptr == NULL) {     // reduce dumb test in callers
  3172     return NULL;
  3174   if (ptr->is_CheckCastPP()) {  // strip a raw-to-oop cast
  3175     ptr = ptr->in(1);
  3176     if (ptr == NULL)  return NULL;
  3178   if (ptr->is_Proj()) {
  3179     Node* allo = ptr->in(0);
  3180     if (allo != NULL && allo->is_Allocate()) {
  3181       return allo->as_Allocate();
  3184   // Report failure to match.
  3185   return NULL;
  3188 // Fancy version which also strips off an offset (and reports it to caller).
  3189 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase,
  3190                                              intptr_t& offset) {
  3191   Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset);
  3192   if (base == NULL)  return NULL;
  3193   return Ideal_allocation(base, phase);
  3196 // Trace Initialize <- Proj[Parm] <- Allocate
  3197 AllocateNode* InitializeNode::allocation() {
  3198   Node* rawoop = in(InitializeNode::RawAddress);
  3199   if (rawoop->is_Proj()) {
  3200     Node* alloc = rawoop->in(0);
  3201     if (alloc->is_Allocate()) {
  3202       return alloc->as_Allocate();
  3205   return NULL;
  3208 // Trace Allocate -> Proj[Parm] -> Initialize
  3209 InitializeNode* AllocateNode::initialization() {
  3210   ProjNode* rawoop = proj_out(AllocateNode::RawAddress);
  3211   if (rawoop == NULL)  return NULL;
  3212   for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) {
  3213     Node* init = rawoop->fast_out(i);
  3214     if (init->is_Initialize()) {
  3215       assert(init->as_Initialize()->allocation() == this, "2-way link");
  3216       return init->as_Initialize();
  3219   return NULL;
  3222 //----------------------------- store barriers ----------------------------
  3223 #define __ ideal.
  3225 void GraphKit::sync_kit(IdealKit& ideal) {
  3226   // Final sync IdealKit and graphKit.
  3227   __ drain_delay_transform();
  3228   set_all_memory(__ merged_memory());
  3229   set_control(__ ctrl());
  3232 // vanilla/CMS post barrier
  3233 // Insert a write-barrier store.  This is to let generational GC work; we have
  3234 // to flag all oop-stores before the next GC point.
  3235 void GraphKit::write_barrier_post(Node* oop_store,
  3236                                   Node* obj,
  3237                                   Node* adr,
  3238                                   uint  adr_idx,
  3239                                   Node* val,
  3240                                   bool use_precise) {
  3241   // No store check needed if we're storing a NULL or an old object
  3242   // (latter case is probably a string constant). The concurrent
  3243   // mark sweep garbage collector, however, needs to have all nonNull
  3244   // oop updates flagged via card-marks.
  3245   if (val != NULL && val->is_Con()) {
  3246     // must be either an oop or NULL
  3247     const Type* t = val->bottom_type();
  3248     if (t == TypePtr::NULL_PTR || t == Type::TOP)
  3249       // stores of null never (?) need barriers
  3250       return;
  3251     ciObject* con = t->is_oopptr()->const_oop();
  3252     if (con != NULL
  3253         && con->is_perm()
  3254         && Universe::heap()->can_elide_permanent_oop_store_barriers())
  3255       // no store barrier needed, because no old-to-new ref created
  3256       return;
  3259   if (use_ReduceInitialCardMarks()
  3260       && obj == just_allocated_object(control())) {
  3261     // We can skip marks on a freshly-allocated object in Eden.
  3262     // Keep this code in sync with maybe_defer_card_mark() in runtime.cpp.
  3263     // That routine informs GC to take appropriate compensating steps
  3264     // so as to make this card-mark elision safe.
  3265     return;
  3268   if (!use_precise) {
  3269     // All card marks for a (non-array) instance are in one place:
  3270     adr = obj;
  3272   // (Else it's an array (or unknown), and we want more precise card marks.)
  3273   assert(adr != NULL, "");
  3275   IdealKit ideal(gvn(), control(), merged_memory(), true);
  3277   // Convert the pointer to an int prior to doing math on it
  3278   Node* cast = __ CastPX(__ ctrl(), adr);
  3280   // Divide by card size
  3281   assert(Universe::heap()->barrier_set()->kind() == BarrierSet::CardTableModRef,
  3282          "Only one we handle so far.");
  3283   Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );
  3285   // Combine card table base and card offset
  3286   Node* card_adr = __ AddP(__ top(), byte_map_base_node(), card_offset );
  3288   // Get the alias_index for raw card-mark memory
  3289   int adr_type = Compile::AliasIdxRaw;
  3290   // Smash zero into card
  3291   Node*   zero = __ ConI(0);
  3292   BasicType bt = T_BYTE;
  3293   if( !UseConcMarkSweepGC ) {
  3294     __ store(__ ctrl(), card_adr, zero, bt, adr_type);
  3295   } else {
  3296     // Specialized path for CM store barrier
  3297     __ storeCM(__ ctrl(), card_adr, zero, oop_store, adr_idx, bt, adr_type);
  3300   // Final sync IdealKit and GraphKit.
  3301   sync_kit(ideal);
  3304 // G1 pre/post barriers
  3305 void GraphKit::g1_write_barrier_pre(Node* obj,
  3306                                     Node* adr,
  3307                                     uint alias_idx,
  3308                                     Node* val,
  3309                                     const TypeOopPtr* val_type,
  3310                                     BasicType bt) {
  3311   IdealKit ideal(gvn(), control(), merged_memory(), true);
  3313   Node* tls = __ thread(); // ThreadLocalStorage
  3315   Node* no_ctrl = NULL;
  3316   Node* no_base = __ top();
  3317   Node* zero = __ ConI(0);
  3319   float likely  = PROB_LIKELY(0.999);
  3320   float unlikely  = PROB_UNLIKELY(0.999);
  3322   BasicType active_type = in_bytes(PtrQueue::byte_width_of_active()) == 4 ? T_INT : T_BYTE;
  3323   assert(in_bytes(PtrQueue::byte_width_of_active()) == 4 || in_bytes(PtrQueue::byte_width_of_active()) == 1, "flag width");
  3325   // Offsets into the thread
  3326   const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +  // 648
  3327                                           PtrQueue::byte_offset_of_active());
  3328   const int index_offset   = in_bytes(JavaThread::satb_mark_queue_offset() +  // 656
  3329                                           PtrQueue::byte_offset_of_index());
  3330   const int buffer_offset  = in_bytes(JavaThread::satb_mark_queue_offset() +  // 652
  3331                                           PtrQueue::byte_offset_of_buf());
  3332   // Now the actual pointers into the thread
  3334   // set_control( ctl);
  3336   Node* marking_adr = __ AddP(no_base, tls, __ ConX(marking_offset));
  3337   Node* buffer_adr  = __ AddP(no_base, tls, __ ConX(buffer_offset));
  3338   Node* index_adr   = __ AddP(no_base, tls, __ ConX(index_offset));
  3340   // Now some of the values
  3342   Node* marking = __ load(__ ctrl(), marking_adr, TypeInt::INT, active_type, Compile::AliasIdxRaw);
  3344   // if (!marking)
  3345   __ if_then(marking, BoolTest::ne, zero); {
  3346     Node* index   = __ load(__ ctrl(), index_adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw);
  3348     const Type* t1 = adr->bottom_type();
  3349     const Type* t2 = val->bottom_type();
  3351     Node* orig = __ load(no_ctrl, adr, val_type, bt, alias_idx);
  3352     // if (orig != NULL)
  3353     __ if_then(orig, BoolTest::ne, null()); {
  3354       Node* buffer  = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
  3356       // load original value
  3357       // alias_idx correct??
  3359       // is the queue for this thread full?
  3360       __ if_then(index, BoolTest::ne, zero, likely); {
  3362         // decrement the index
  3363         Node* next_index = __ SubI(index,  __ ConI(sizeof(intptr_t)));
  3364         Node* next_indexX = next_index;
  3365 #ifdef _LP64
  3366         // We could refine the type for what it's worth
  3367         // const TypeLong* lidxtype = TypeLong::make(CONST64(0), get_size_from_queue);
  3368         next_indexX = _gvn.transform( new (C, 2) ConvI2LNode(next_index, TypeLong::make(0, max_jlong, Type::WidenMax)) );
  3369 #endif
  3371         // Now get the buffer location we will log the original value into and store it
  3372         Node *log_addr = __ AddP(no_base, buffer, next_indexX);
  3373         __ store(__ ctrl(), log_addr, orig, T_OBJECT, Compile::AliasIdxRaw);
  3375         // update the index
  3376         __ store(__ ctrl(), index_adr, next_index, T_INT, Compile::AliasIdxRaw);
  3378       } __ else_(); {
  3380         // logging buffer is full, call the runtime
  3381         const TypeFunc *tf = OptoRuntime::g1_wb_pre_Type();
  3382         __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), "g1_wb_pre", orig, tls);
  3383       } __ end_if();  // (!index)
  3384     } __ end_if();  // (orig != NULL)
  3385   } __ end_if();  // (!marking)
  3387   // Final sync IdealKit and GraphKit.
  3388   sync_kit(ideal);
  3391 //
  3392 // Update the card table and add card address to the queue
  3393 //
  3394 void GraphKit::g1_mark_card(IdealKit& ideal,
  3395                             Node* card_adr,
  3396                             Node* oop_store,
  3397                             uint oop_alias_idx,
  3398                             Node* index,
  3399                             Node* index_adr,
  3400                             Node* buffer,
  3401                             const TypeFunc* tf) {
  3403   Node* zero = __ ConI(0);
  3404   Node* no_base = __ top();
  3405   BasicType card_bt = T_BYTE;
  3406   // Smash zero into card. MUST BE ORDERED WRT TO STORE
  3407   __ storeCM(__ ctrl(), card_adr, zero, oop_store, oop_alias_idx, card_bt, Compile::AliasIdxRaw);
  3409   //  Now do the queue work
  3410   __ if_then(index, BoolTest::ne, zero); {
  3412     Node* next_index = __ SubI(index, __ ConI(sizeof(intptr_t)));
  3413     Node* next_indexX = next_index;
  3414 #ifdef _LP64
  3415     // We could refine the type for what it's worth
  3416     // const TypeLong* lidxtype = TypeLong::make(CONST64(0), get_size_from_queue);
  3417     next_indexX = _gvn.transform( new (C, 2) ConvI2LNode(next_index, TypeLong::make(0, max_jlong, Type::WidenMax)) );
  3418 #endif // _LP64
  3419     Node* log_addr = __ AddP(no_base, buffer, next_indexX);
  3421     __ store(__ ctrl(), log_addr, card_adr, T_ADDRESS, Compile::AliasIdxRaw);
  3422     __ store(__ ctrl(), index_adr, next_index, T_INT, Compile::AliasIdxRaw);
  3424   } __ else_(); {
  3425     __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), "g1_wb_post", card_adr, __ thread());
  3426   } __ end_if();
  3430 void GraphKit::g1_write_barrier_post(Node* oop_store,
  3431                                      Node* obj,
  3432                                      Node* adr,
  3433                                      uint alias_idx,
  3434                                      Node* val,
  3435                                      BasicType bt,
  3436                                      bool use_precise) {
  3437   // If we are writing a NULL then we need no post barrier
  3439   if (val != NULL && val->is_Con() && val->bottom_type() == TypePtr::NULL_PTR) {
  3440     // Must be NULL
  3441     const Type* t = val->bottom_type();
  3442     assert(t == Type::TOP || t == TypePtr::NULL_PTR, "must be NULL");
  3443     // No post barrier if writing NULLx
  3444     return;
  3447   if (!use_precise) {
  3448     // All card marks for a (non-array) instance are in one place:
  3449     adr = obj;
  3451   // (Else it's an array (or unknown), and we want more precise card marks.)
  3452   assert(adr != NULL, "");
  3454   IdealKit ideal(gvn(), control(), merged_memory(), true);
  3456   Node* tls = __ thread(); // ThreadLocalStorage
  3458   Node* no_ctrl = NULL;
  3459   Node* no_base = __ top();
  3460   float likely  = PROB_LIKELY(0.999);
  3461   float unlikely  = PROB_UNLIKELY(0.999);
  3462   Node* zero = __ ConI(0);
  3463   Node* zeroX = __ ConX(0);
  3465   // Get the alias_index for raw card-mark memory
  3466   const TypePtr* card_type = TypeRawPtr::BOTTOM;
  3468   const TypeFunc *tf = OptoRuntime::g1_wb_post_Type();
  3470   // Offsets into the thread
  3471   const int index_offset  = in_bytes(JavaThread::dirty_card_queue_offset() +
  3472                                      PtrQueue::byte_offset_of_index());
  3473   const int buffer_offset = in_bytes(JavaThread::dirty_card_queue_offset() +
  3474                                      PtrQueue::byte_offset_of_buf());
  3476   // Pointers into the thread
  3478   Node* buffer_adr = __ AddP(no_base, tls, __ ConX(buffer_offset));
  3479   Node* index_adr =  __ AddP(no_base, tls, __ ConX(index_offset));
  3481   // Now some values
  3483   Node* index  = __ load(no_ctrl, index_adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw);
  3484   Node* buffer = __ load(no_ctrl, buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
  3487   // Convert the store obj pointer to an int prior to doing math on it
  3488   // Must use ctrl to prevent "integerized oop" existing across safepoint
  3489   Node* cast =  __ CastPX(__ ctrl(), adr);
  3491   // Divide pointer by card size
  3492   Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );
  3494   // Combine card table base and card offset
  3495   Node* card_adr = __ AddP(no_base, byte_map_base_node(), card_offset );
  3497   // If we know the value being stored does it cross regions?
  3499   if (val != NULL) {
  3500     // Does the store cause us to cross regions?
  3502     // Should be able to do an unsigned compare of region_size instead of
  3503     // and extra shift. Do we have an unsigned compare??
  3504     // Node* region_size = __ ConI(1 << HeapRegion::LogOfHRGrainBytes);
  3505     Node* xor_res =  __ URShiftX ( __ XorX( cast,  __ CastPX(__ ctrl(), val)), __ ConI(HeapRegion::LogOfHRGrainBytes));
  3507     // if (xor_res == 0) same region so skip
  3508     __ if_then(xor_res, BoolTest::ne, zeroX); {
  3510       // No barrier if we are storing a NULL
  3511       __ if_then(val, BoolTest::ne, null(), unlikely); {
  3513         // Ok must mark the card if not already dirty
  3515         // load the original value of the card
  3516         Node* card_val = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
  3518         __ if_then(card_val, BoolTest::ne, zero); {
  3519           g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
  3520         } __ end_if();
  3521       } __ end_if();
  3522     } __ end_if();
  3523   } else {
  3524     // Object.clone() instrinsic uses this path.
  3525     g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
  3528   // Final sync IdealKit and GraphKit.
  3529   sync_kit(ideal);
  3531 #undef __

mercurial