src/share/vm/opto/postaloc.cpp

Sat, 16 Mar 2013 07:39:14 -0700

author
morris
date
Sat, 16 Mar 2013 07:39:14 -0700
changeset 4760
96ef09c26978
parent 4315
2aff40cb4703
child 4949
8373c19be854
permissions
-rw-r--r--

8009166: [parfait] Null pointer deference in hotspot/src/share/vm/opto/type.cpp
Summary: add guarantee() to as_instance_type()
Reviewed-by: kvn, twisti

     1 /*
     2  * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.inline.hpp"
    27 #include "opto/chaitin.hpp"
    28 #include "opto/machnode.hpp"
    30 // See if this register (or pairs, or vector) already contains the value.
    31 static bool register_contains_value(Node* val, OptoReg::Name reg, int n_regs,
    32                                     Node_List& value) {
    33   for (int i = 0; i < n_regs; i++) {
    34     OptoReg::Name nreg = OptoReg::add(reg,-i);
    35     if (value[nreg] != val)
    36       return false;
    37   }
    38   return true;
    39 }
    41 //---------------------------may_be_copy_of_callee-----------------------------
    42 // Check to see if we can possibly be a copy of a callee-save value.
    43 bool PhaseChaitin::may_be_copy_of_callee( Node *def ) const {
    44   // Short circuit if there are no callee save registers
    45   if (_matcher.number_of_saved_registers() == 0) return false;
    47   // Expect only a spill-down and reload on exit for callee-save spills.
    48   // Chains of copies cannot be deep.
    49   // 5008997 - This is wishful thinking. Register allocator seems to
    50   // be splitting live ranges for callee save registers to such
    51   // an extent that in large methods the chains can be very long
    52   // (50+). The conservative answer is to return true if we don't
    53   // know as this prevents optimizations from occurring.
    55   const int limit = 60;
    56   int i;
    57   for( i=0; i < limit; i++ ) {
    58     if( def->is_Proj() && def->in(0)->is_Start() &&
    59         _matcher.is_save_on_entry(lrgs(n2lidx(def)).reg()) )
    60       return true;              // Direct use of callee-save proj
    61     if( def->is_Copy() )        // Copies carry value through
    62       def = def->in(def->is_Copy());
    63     else if( def->is_Phi() )    // Phis can merge it from any direction
    64       def = def->in(1);
    65     else
    66       break;
    67     guarantee(def != NULL, "must not resurrect dead copy");
    68   }
    69   // If we reached the end and didn't find a callee save proj
    70   // then this may be a callee save proj so we return true
    71   // as the conservative answer. If we didn't reach then end
    72   // we must have discovered that it was not a callee save
    73   // else we would have returned.
    74   return i == limit;
    75 }
    77 //------------------------------yank-----------------------------------
    78 // Helper function for yank_if_dead
    79 int PhaseChaitin::yank( Node *old, Block *current_block, Node_List *value, Node_List *regnd ) {
    80   int blk_adjust=0;
    81   Block *oldb = _cfg._bbs[old->_idx];
    82   oldb->find_remove(old);
    83   // Count 1 if deleting an instruction from the current block
    84   if( oldb == current_block ) blk_adjust++;
    85   _cfg._bbs.map(old->_idx,NULL);
    86   OptoReg::Name old_reg = lrgs(n2lidx(old)).reg();
    87   if( regnd && (*regnd)[old_reg]==old ) { // Instruction is currently available?
    88     value->map(old_reg,NULL);  // Yank from value/regnd maps
    89     regnd->map(old_reg,NULL);  // This register's value is now unknown
    90   }
    91   return blk_adjust;
    92 }
    94 #ifdef ASSERT
    95 static bool expected_yanked_node(Node *old, Node *orig_old) {
    96   // This code is expected only next original nodes:
    97   // - load from constant table node which may have next data input nodes:
    98   //     MachConstantBase, Phi, MachTemp, MachSpillCopy
    99   // - load constant node which may have next data input nodes:
   100   //     MachTemp, MachSpillCopy
   101   // - MachSpillCopy
   102   // - MachProj and Copy dead nodes
   103   if (old->is_MachSpillCopy()) {
   104     return true;
   105   } else if (old->is_Con()) {
   106     return true;
   107   } else if (old->is_MachProj()) { // Dead kills projection of Con node
   108     return (old == orig_old);
   109   } else if (old->is_Copy()) {     // Dead copy of a callee-save value
   110     return (old == orig_old);
   111   } else if (old->is_MachTemp()) {
   112     return orig_old->is_Con();
   113   } else if (old->is_Phi() || old->is_MachConstantBase()) {
   114     return (orig_old->is_Con() && orig_old->is_MachConstant());
   115   }
   116   return false;
   117 }
   118 #endif
   120 //------------------------------yank_if_dead-----------------------------------
   121 // Removed edges from 'old'.  Yank if dead.  Return adjustment counts to
   122 // iterators in the current block.
   123 int PhaseChaitin::yank_if_dead_recurse(Node *old, Node *orig_old, Block *current_block,
   124                                        Node_List *value, Node_List *regnd) {
   125   int blk_adjust=0;
   126   if (old->outcnt() == 0 && old != C->top()) {
   127 #ifdef ASSERT
   128     if (!expected_yanked_node(old, orig_old)) {
   129       tty->print_cr("==============================================");
   130       tty->print_cr("orig_old:");
   131       orig_old->dump();
   132       tty->print_cr("old:");
   133       old->dump();
   134       assert(false, "unexpected yanked node");
   135     }
   136     if (old->is_Con())
   137       orig_old = old; // Reset to satisfy expected nodes checks.
   138 #endif
   139     blk_adjust += yank(old, current_block, value, regnd);
   141     for (uint i = 1; i < old->req(); i++) {
   142       Node* n = old->in(i);
   143       if (n != NULL) {
   144         old->set_req(i, NULL);
   145         blk_adjust += yank_if_dead_recurse(n, orig_old, current_block, value, regnd);
   146       }
   147     }
   148     // Disconnect control and remove precedence edges if any exist
   149     old->disconnect_inputs(NULL, C);
   150   }
   151   return blk_adjust;
   152 }
   154 //------------------------------use_prior_register-----------------------------
   155 // Use the prior value instead of the current value, in an effort to make
   156 // the current value go dead.  Return block iterator adjustment, in case
   157 // we yank some instructions from this block.
   158 int PhaseChaitin::use_prior_register( Node *n, uint idx, Node *def, Block *current_block, Node_List &value, Node_List &regnd ) {
   159   // No effect?
   160   if( def == n->in(idx) ) return 0;
   161   // Def is currently dead and can be removed?  Do not resurrect
   162   if( def->outcnt() == 0 ) return 0;
   164   // Not every pair of physical registers are assignment compatible,
   165   // e.g. on sparc floating point registers are not assignable to integer
   166   // registers.
   167   const LRG &def_lrg = lrgs(n2lidx(def));
   168   OptoReg::Name def_reg = def_lrg.reg();
   169   const RegMask &use_mask = n->in_RegMask(idx);
   170   bool can_use = ( RegMask::can_represent(def_reg) ? (use_mask.Member(def_reg) != 0)
   171                                                    : (use_mask.is_AllStack() != 0));
   172   if (!RegMask::is_vector(def->ideal_reg())) {
   173     // Check for a copy to or from a misaligned pair.
   174     // It is workaround for a sparc with misaligned pairs.
   175     can_use = can_use && !use_mask.is_misaligned_pair() && !def_lrg.mask().is_misaligned_pair();
   176   }
   177   if (!can_use)
   178     return 0;
   180   // Capture the old def in case it goes dead...
   181   Node *old = n->in(idx);
   183   // Save-on-call copies can only be elided if the entire copy chain can go
   184   // away, lest we get the same callee-save value alive in 2 locations at
   185   // once.  We check for the obvious trivial case here.  Although it can
   186   // sometimes be elided with cooperation outside our scope, here we will just
   187   // miss the opportunity.  :-(
   188   if( may_be_copy_of_callee(def) ) {
   189     if( old->outcnt() > 1 ) return 0; // We're the not last user
   190     int idx = old->is_Copy();
   191     assert( idx, "chain of copies being removed" );
   192     Node *old2 = old->in(idx);  // Chain of copies
   193     if( old2->outcnt() > 1 ) return 0; // old is not the last user
   194     int idx2 = old2->is_Copy();
   195     if( !idx2 ) return 0;       // Not a chain of 2 copies
   196     if( def != old2->in(idx2) ) return 0; // Chain of exactly 2 copies
   197   }
   199   // Use the new def
   200   n->set_req(idx,def);
   201   _post_alloc++;
   203   // Is old def now dead?  We successfully yanked a copy?
   204   return yank_if_dead(old,current_block,&value,&regnd);
   205 }
   208 //------------------------------skip_copies------------------------------------
   209 // Skip through any number of copies (that don't mod oop-i-ness)
   210 Node *PhaseChaitin::skip_copies( Node *c ) {
   211   int idx = c->is_Copy();
   212   uint is_oop = lrgs(n2lidx(c))._is_oop;
   213   while (idx != 0) {
   214     guarantee(c->in(idx) != NULL, "must not resurrect dead copy");
   215     if (lrgs(n2lidx(c->in(idx)))._is_oop != is_oop)
   216       break;  // casting copy, not the same value
   217     c = c->in(idx);
   218     idx = c->is_Copy();
   219   }
   220   return c;
   221 }
   223 //------------------------------elide_copy-------------------------------------
   224 // Remove (bypass) copies along Node n, edge k.
   225 int PhaseChaitin::elide_copy( Node *n, int k, Block *current_block, Node_List &value, Node_List &regnd, bool can_change_regs ) {
   226   int blk_adjust = 0;
   228   uint nk_idx = n2lidx(n->in(k));
   229   OptoReg::Name nk_reg = lrgs(nk_idx ).reg();
   231   // Remove obvious same-register copies
   232   Node *x = n->in(k);
   233   int idx;
   234   while( (idx=x->is_Copy()) != 0 ) {
   235     Node *copy = x->in(idx);
   236     guarantee(copy != NULL, "must not resurrect dead copy");
   237     if( lrgs(n2lidx(copy)).reg() != nk_reg ) break;
   238     blk_adjust += use_prior_register(n,k,copy,current_block,value,regnd);
   239     if( n->in(k) != copy ) break; // Failed for some cutout?
   240     x = copy;                   // Progress, try again
   241   }
   243   // Phis and 2-address instructions cannot change registers so easily - their
   244   // outputs must match their input.
   245   if( !can_change_regs )
   246     return blk_adjust;          // Only check stupid copies!
   248   // Loop backedges won't have a value-mapping yet
   249   if( &value == NULL ) return blk_adjust;
   251   // Skip through all copies to the _value_ being used.  Do not change from
   252   // int to pointer.  This attempts to jump through a chain of copies, where
   253   // intermediate copies might be illegal, i.e., value is stored down to stack
   254   // then reloaded BUT survives in a register the whole way.
   255   Node *val = skip_copies(n->in(k));
   257   if (val == x && nk_idx != 0 &&
   258       regnd[nk_reg] != NULL && regnd[nk_reg] != x &&
   259       n2lidx(x) == n2lidx(regnd[nk_reg])) {
   260     // When rematerialzing nodes and stretching lifetimes, the
   261     // allocator will reuse the original def for multidef LRG instead
   262     // of the current reaching def because it can't know it's safe to
   263     // do so.  After allocation completes if they are in the same LRG
   264     // then it should use the current reaching def instead.
   265     n->set_req(k, regnd[nk_reg]);
   266     blk_adjust += yank_if_dead(val, current_block, &value, &regnd);
   267     val = skip_copies(n->in(k));
   268   }
   270   if (val == x) return blk_adjust; // No progress?
   272   int n_regs = RegMask::num_registers(val->ideal_reg());
   273   uint val_idx = n2lidx(val);
   274   OptoReg::Name val_reg = lrgs(val_idx).reg();
   276   // See if it happens to already be in the correct register!
   277   // (either Phi's direct register, or the common case of the name
   278   // never-clobbered original-def register)
   279   if (register_contains_value(val, val_reg, n_regs, value)) {
   280     blk_adjust += use_prior_register(n,k,regnd[val_reg],current_block,value,regnd);
   281     if( n->in(k) == regnd[val_reg] ) // Success!  Quit trying
   282       return blk_adjust;
   283   }
   285   // See if we can skip the copy by changing registers.  Don't change from
   286   // using a register to using the stack unless we know we can remove a
   287   // copy-load.  Otherwise we might end up making a pile of Intel cisc-spill
   288   // ops reading from memory instead of just loading once and using the
   289   // register.
   291   // Also handle duplicate copies here.
   292   const Type *t = val->is_Con() ? val->bottom_type() : NULL;
   294   // Scan all registers to see if this value is around already
   295   for( uint reg = 0; reg < (uint)_max_reg; reg++ ) {
   296     if (reg == (uint)nk_reg) {
   297       // Found ourselves so check if there is only one user of this
   298       // copy and keep on searching for a better copy if so.
   299       bool ignore_self = true;
   300       x = n->in(k);
   301       DUIterator_Fast imax, i = x->fast_outs(imax);
   302       Node* first = x->fast_out(i); i++;
   303       while (i < imax && ignore_self) {
   304         Node* use = x->fast_out(i); i++;
   305         if (use != first) ignore_self = false;
   306       }
   307       if (ignore_self) continue;
   308     }
   310     Node *vv = value[reg];
   311     if (n_regs > 1) { // Doubles and vectors check for aligned-adjacent set
   312       uint last = (n_regs-1); // Looking for the last part of a set
   313       if ((reg&last) != last) continue; // Wrong part of a set
   314       if (!register_contains_value(vv, reg, n_regs, value)) continue; // Different value
   315     }
   316     if( vv == val ||            // Got a direct hit?
   317         (t && vv && vv->bottom_type() == t && vv->is_Mach() &&
   318          vv->as_Mach()->rule() == val->as_Mach()->rule()) ) { // Or same constant?
   319       assert( !n->is_Phi(), "cannot change registers at a Phi so easily" );
   320       if( OptoReg::is_stack(nk_reg) || // CISC-loading from stack OR
   321           OptoReg::is_reg(reg) || // turning into a register use OR
   322           regnd[reg]->outcnt()==1 ) { // last use of a spill-load turns into a CISC use
   323         blk_adjust += use_prior_register(n,k,regnd[reg],current_block,value,regnd);
   324         if( n->in(k) == regnd[reg] ) // Success!  Quit trying
   325           return blk_adjust;
   326       } // End of if not degrading to a stack
   327     } // End of if found value in another register
   328   } // End of scan all machine registers
   329   return blk_adjust;
   330 }
   333 //
   334 // Check if nreg already contains the constant value val.  Normal copy
   335 // elimination doesn't doesn't work on constants because multiple
   336 // nodes can represent the same constant so the type and rule of the
   337 // MachNode must be checked to ensure equivalence.
   338 //
   339 bool PhaseChaitin::eliminate_copy_of_constant(Node* val, Node* n,
   340                                               Block *current_block,
   341                                               Node_List& value, Node_List& regnd,
   342                                               OptoReg::Name nreg, OptoReg::Name nreg2) {
   343   if (value[nreg] != val && val->is_Con() &&
   344       value[nreg] != NULL && value[nreg]->is_Con() &&
   345       (nreg2 == OptoReg::Bad || value[nreg] == value[nreg2]) &&
   346       value[nreg]->bottom_type() == val->bottom_type() &&
   347       value[nreg]->as_Mach()->rule() == val->as_Mach()->rule()) {
   348     // This code assumes that two MachNodes representing constants
   349     // which have the same rule and the same bottom type will produce
   350     // identical effects into a register.  This seems like it must be
   351     // objectively true unless there are hidden inputs to the nodes
   352     // but if that were to change this code would need to updated.
   353     // Since they are equivalent the second one if redundant and can
   354     // be removed.
   355     //
   356     // n will be replaced with the old value but n might have
   357     // kills projections associated with it so remove them now so that
   358     // yank_if_dead will be able to eliminate the copy once the uses
   359     // have been transferred to the old[value].
   360     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
   361       Node* use = n->fast_out(i);
   362       if (use->is_Proj() && use->outcnt() == 0) {
   363         // Kill projections have no users and one input
   364         use->set_req(0, C->top());
   365         yank_if_dead(use, current_block, &value, &regnd);
   366         --i; --imax;
   367       }
   368     }
   369     _post_alloc++;
   370     return true;
   371   }
   372   return false;
   373 }
   376 //------------------------------post_allocate_copy_removal---------------------
   377 // Post-Allocation peephole copy removal.  We do this in 1 pass over the
   378 // basic blocks.  We maintain a mapping of registers to Nodes (an  array of
   379 // Nodes indexed by machine register or stack slot number).  NULL means that a
   380 // register is not mapped to any Node.  We can (want to have!) have several
   381 // registers map to the same Node.  We walk forward over the instructions
   382 // updating the mapping as we go.  At merge points we force a NULL if we have
   383 // to merge 2 different Nodes into the same register.  Phi functions will give
   384 // us a new Node if there is a proper value merging.  Since the blocks are
   385 // arranged in some RPO, we will visit all parent blocks before visiting any
   386 // successor blocks (except at loops).
   387 //
   388 // If we find a Copy we look to see if the Copy's source register is a stack
   389 // slot and that value has already been loaded into some machine register; if
   390 // so we use machine register directly.  This turns a Load into a reg-reg
   391 // Move.  We also look for reloads of identical constants.
   392 //
   393 // When we see a use from a reg-reg Copy, we will attempt to use the copy's
   394 // source directly and make the copy go dead.
   395 void PhaseChaitin::post_allocate_copy_removal() {
   396   NOT_PRODUCT( Compile::TracePhase t3("postAllocCopyRemoval", &_t_postAllocCopyRemoval, TimeCompiler); )
   397   ResourceMark rm;
   399   // Need a mapping from basic block Node_Lists.  We need a Node_List to
   400   // map from register number to value-producing Node.
   401   Node_List **blk2value = NEW_RESOURCE_ARRAY( Node_List *, _cfg._num_blocks+1);
   402   memset( blk2value, 0, sizeof(Node_List*)*(_cfg._num_blocks+1) );
   403   // Need a mapping from basic block Node_Lists.  We need a Node_List to
   404   // map from register number to register-defining Node.
   405   Node_List **blk2regnd = NEW_RESOURCE_ARRAY( Node_List *, _cfg._num_blocks+1);
   406   memset( blk2regnd, 0, sizeof(Node_List*)*(_cfg._num_blocks+1) );
   408   // We keep unused Node_Lists on a free_list to avoid wasting
   409   // memory.
   410   GrowableArray<Node_List*> free_list = GrowableArray<Node_List*>(16);
   412   // For all blocks
   413   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
   414     uint j;
   415     Block *b = _cfg._blocks[i];
   417     // Count of Phis in block
   418     uint phi_dex;
   419     for( phi_dex = 1; phi_dex < b->_nodes.size(); phi_dex++ ) {
   420       Node *phi = b->_nodes[phi_dex];
   421       if( !phi->is_Phi() )
   422         break;
   423     }
   425     // If any predecessor has not been visited, we do not know the state
   426     // of registers at the start.  Check for this, while updating copies
   427     // along Phi input edges
   428     bool missing_some_inputs = false;
   429     Block *freed = NULL;
   430     for( j = 1; j < b->num_preds(); j++ ) {
   431       Block *pb = _cfg._bbs[b->pred(j)->_idx];
   432       // Remove copies along phi edges
   433       for( uint k=1; k<phi_dex; k++ )
   434         elide_copy( b->_nodes[k], j, b, *blk2value[pb->_pre_order], *blk2regnd[pb->_pre_order], false );
   435       if( blk2value[pb->_pre_order] ) { // Have a mapping on this edge?
   436         // See if this predecessor's mappings have been used by everybody
   437         // who wants them.  If so, free 'em.
   438         uint k;
   439         for( k=0; k<pb->_num_succs; k++ ) {
   440           Block *pbsucc = pb->_succs[k];
   441           if( !blk2value[pbsucc->_pre_order] && pbsucc != b )
   442             break;              // Found a future user
   443         }
   444         if( k >= pb->_num_succs ) { // No more uses, free!
   445           freed = pb;           // Record last block freed
   446           free_list.push(blk2value[pb->_pre_order]);
   447           free_list.push(blk2regnd[pb->_pre_order]);
   448         }
   449       } else {                  // This block has unvisited (loopback) inputs
   450         missing_some_inputs = true;
   451       }
   452     }
   455     // Extract Node_List mappings.  If 'freed' is non-zero, we just popped
   456     // 'freed's blocks off the list
   457     Node_List &regnd = *(free_list.is_empty() ? new Node_List() : free_list.pop());
   458     Node_List &value = *(free_list.is_empty() ? new Node_List() : free_list.pop());
   459     assert( !freed || blk2value[freed->_pre_order] == &value, "" );
   460     value.map(_max_reg,NULL);
   461     regnd.map(_max_reg,NULL);
   462     // Set mappings as OUR mappings
   463     blk2value[b->_pre_order] = &value;
   464     blk2regnd[b->_pre_order] = &regnd;
   466     // Initialize value & regnd for this block
   467     if( missing_some_inputs ) {
   468       // Some predecessor has not yet been visited; zap map to empty
   469       for( uint k = 0; k < (uint)_max_reg; k++ ) {
   470         value.map(k,NULL);
   471         regnd.map(k,NULL);
   472       }
   473     } else {
   474       if( !freed ) {            // Didn't get a freebie prior block
   475         // Must clone some data
   476         freed = _cfg._bbs[b->pred(1)->_idx];
   477         Node_List &f_value = *blk2value[freed->_pre_order];
   478         Node_List &f_regnd = *blk2regnd[freed->_pre_order];
   479         for( uint k = 0; k < (uint)_max_reg; k++ ) {
   480           value.map(k,f_value[k]);
   481           regnd.map(k,f_regnd[k]);
   482         }
   483       }
   484       // Merge all inputs together, setting to NULL any conflicts.
   485       for( j = 1; j < b->num_preds(); j++ ) {
   486         Block *pb = _cfg._bbs[b->pred(j)->_idx];
   487         if( pb == freed ) continue; // Did self already via freelist
   488         Node_List &p_regnd = *blk2regnd[pb->_pre_order];
   489         for( uint k = 0; k < (uint)_max_reg; k++ ) {
   490           if( regnd[k] != p_regnd[k] ) { // Conflict on reaching defs?
   491             value.map(k,NULL); // Then no value handy
   492             regnd.map(k,NULL);
   493           }
   494         }
   495       }
   496     }
   498     // For all Phi's
   499     for( j = 1; j < phi_dex; j++ ) {
   500       uint k;
   501       Node *phi = b->_nodes[j];
   502       uint pidx = n2lidx(phi);
   503       OptoReg::Name preg = lrgs(n2lidx(phi)).reg();
   505       // Remove copies remaining on edges.  Check for junk phi.
   506       Node *u = NULL;
   507       for( k=1; k<phi->req(); k++ ) {
   508         Node *x = phi->in(k);
   509         if( phi != x && u != x ) // Found a different input
   510           u = u ? NodeSentinel : x; // Capture unique input, or NodeSentinel for 2nd input
   511       }
   512       if( u != NodeSentinel ) {    // Junk Phi.  Remove
   513         b->_nodes.remove(j--); phi_dex--;
   514         _cfg._bbs.map(phi->_idx,NULL);
   515         phi->replace_by(u);
   516         phi->disconnect_inputs(NULL, C);
   517         continue;
   518       }
   519       // Note that if value[pidx] exists, then we merged no new values here
   520       // and the phi is useless.  This can happen even with the above phi
   521       // removal for complex flows.  I cannot keep the better known value here
   522       // because locally the phi appears to define a new merged value.  If I
   523       // keep the better value then a copy of the phi, being unable to use the
   524       // global flow analysis, can't "peek through" the phi to the original
   525       // reaching value and so will act like it's defining a new value.  This
   526       // can lead to situations where some uses are from the old and some from
   527       // the new values.  Not illegal by itself but throws the over-strong
   528       // assert in scheduling.
   529       if( pidx ) {
   530         value.map(preg,phi);
   531         regnd.map(preg,phi);
   532         int n_regs = RegMask::num_registers(phi->ideal_reg());
   533         for (int l = 1; l < n_regs; l++) {
   534           OptoReg::Name preg_lo = OptoReg::add(preg,-l);
   535           value.map(preg_lo,phi);
   536           regnd.map(preg_lo,phi);
   537         }
   538       }
   539     }
   541     // For all remaining instructions
   542     for( j = phi_dex; j < b->_nodes.size(); j++ ) {
   543       Node *n = b->_nodes[j];
   545       if( n->outcnt() == 0 &&   // Dead?
   546           n != C->top() &&      // (ignore TOP, it has no du info)
   547           !n->is_Proj() ) {     // fat-proj kills
   548         j -= yank_if_dead(n,b,&value,&regnd);
   549         continue;
   550       }
   552       // Improve reaching-def info.  Occasionally post-alloc's liveness gives
   553       // up (at loop backedges, because we aren't doing a full flow pass).
   554       // The presence of a live use essentially asserts that the use's def is
   555       // alive and well at the use (or else the allocator fubar'd).  Take
   556       // advantage of this info to set a reaching def for the use-reg.
   557       uint k;
   558       for( k = 1; k < n->req(); k++ ) {
   559         Node *def = n->in(k);   // n->in(k) is a USE; def is the DEF for this USE
   560         guarantee(def != NULL, "no disconnected nodes at this point");
   561         uint useidx = n2lidx(def); // useidx is the live range index for this USE
   563         if( useidx ) {
   564           OptoReg::Name ureg = lrgs(useidx).reg();
   565           if( !value[ureg] ) {
   566             int idx;            // Skip occasional useless copy
   567             while( (idx=def->is_Copy()) != 0 &&
   568                    def->in(idx) != NULL &&  // NULL should not happen
   569                    ureg == lrgs(n2lidx(def->in(idx))).reg() )
   570               def = def->in(idx);
   571             Node *valdef = skip_copies(def); // tighten up val through non-useless copies
   572             value.map(ureg,valdef); // record improved reaching-def info
   573             regnd.map(ureg,   def);
   574             // Record other half of doubles
   575             uint def_ideal_reg = def->ideal_reg();
   576             int n_regs = RegMask::num_registers(def_ideal_reg);
   577             for (int l = 1; l < n_regs; l++) {
   578               OptoReg::Name ureg_lo = OptoReg::add(ureg,-l);
   579               if (!value[ureg_lo] &&
   580                   (!RegMask::can_represent(ureg_lo) ||
   581                    lrgs(useidx).mask().Member(ureg_lo))) { // Nearly always adjacent
   582                 value.map(ureg_lo,valdef); // record improved reaching-def info
   583                 regnd.map(ureg_lo,   def);
   584               }
   585             }
   586           }
   587         }
   588       }
   590       const uint two_adr = n->is_Mach() ? n->as_Mach()->two_adr() : 0;
   592       // Remove copies along input edges
   593       for( k = 1; k < n->req(); k++ )
   594         j -= elide_copy( n, k, b, value, regnd, two_adr!=k );
   596       // Unallocated Nodes define no registers
   597       uint lidx = n2lidx(n);
   598       if( !lidx ) continue;
   600       // Update the register defined by this instruction
   601       OptoReg::Name nreg = lrgs(lidx).reg();
   602       // Skip through all copies to the _value_ being defined.
   603       // Do not change from int to pointer
   604       Node *val = skip_copies(n);
   606       // Clear out a dead definition before starting so that the
   607       // elimination code doesn't have to guard against it.  The
   608       // definition could in fact be a kill projection with a count of
   609       // 0 which is safe but since those are uninteresting for copy
   610       // elimination just delete them as well.
   611       if (regnd[nreg] != NULL && regnd[nreg]->outcnt() == 0) {
   612         regnd.map(nreg, NULL);
   613         value.map(nreg, NULL);
   614       }
   616       uint n_ideal_reg = n->ideal_reg();
   617       int n_regs = RegMask::num_registers(n_ideal_reg);
   618       if (n_regs == 1) {
   619         // If Node 'n' does not change the value mapped by the register,
   620         // then 'n' is a useless copy.  Do not update the register->node
   621         // mapping so 'n' will go dead.
   622         if( value[nreg] != val ) {
   623           if (eliminate_copy_of_constant(val, n, b, value, regnd, nreg, OptoReg::Bad)) {
   624             j -= replace_and_yank_if_dead(n, nreg, b, value, regnd);
   625           } else {
   626             // Update the mapping: record new Node defined by the register
   627             regnd.map(nreg,n);
   628             // Update mapping for defined *value*, which is the defined
   629             // Node after skipping all copies.
   630             value.map(nreg,val);
   631           }
   632         } else if( !may_be_copy_of_callee(n) ) {
   633           assert( n->is_Copy(), "" );
   634           j -= replace_and_yank_if_dead(n, nreg, b, value, regnd);
   635         }
   636       } else if (RegMask::is_vector(n_ideal_reg)) {
   637         // If Node 'n' does not change the value mapped by the register,
   638         // then 'n' is a useless copy.  Do not update the register->node
   639         // mapping so 'n' will go dead.
   640         if (!register_contains_value(val, nreg, n_regs, value)) {
   641           // Update the mapping: record new Node defined by the register
   642           regnd.map(nreg,n);
   643           // Update mapping for defined *value*, which is the defined
   644           // Node after skipping all copies.
   645           value.map(nreg,val);
   646           for (int l = 1; l < n_regs; l++) {
   647             OptoReg::Name nreg_lo = OptoReg::add(nreg,-l);
   648             regnd.map(nreg_lo, n );
   649             value.map(nreg_lo,val);
   650           }
   651         } else if (n->is_Copy()) {
   652           // Note: vector can't be constant and can't be copy of calee.
   653           j -= replace_and_yank_if_dead(n, nreg, b, value, regnd);
   654         }
   655       } else {
   656         // If the value occupies a register pair, record same info
   657         // in both registers.
   658         OptoReg::Name nreg_lo = OptoReg::add(nreg,-1);
   659         if( RegMask::can_represent(nreg_lo) &&     // Either a spill slot, or
   660             !lrgs(lidx).mask().Member(nreg_lo) ) { // Nearly always adjacent
   661           // Sparc occasionally has non-adjacent pairs.
   662           // Find the actual other value
   663           RegMask tmp = lrgs(lidx).mask();
   664           tmp.Remove(nreg);
   665           nreg_lo = tmp.find_first_elem();
   666         }
   667         if( value[nreg] != val || value[nreg_lo] != val ) {
   668           if (eliminate_copy_of_constant(val, n, b, value, regnd, nreg, nreg_lo)) {
   669             j -= replace_and_yank_if_dead(n, nreg, b, value, regnd);
   670           } else {
   671             regnd.map(nreg   , n );
   672             regnd.map(nreg_lo, n );
   673             value.map(nreg   ,val);
   674             value.map(nreg_lo,val);
   675           }
   676         } else if( !may_be_copy_of_callee(n) ) {
   677           assert( n->is_Copy(), "" );
   678           j -= replace_and_yank_if_dead(n, nreg, b, value, regnd);
   679         }
   680       }
   682       // Fat projections kill many registers
   683       if( n_ideal_reg == MachProjNode::fat_proj ) {
   684         RegMask rm = n->out_RegMask();
   685         // wow, what an expensive iterator...
   686         nreg = rm.find_first_elem();
   687         while( OptoReg::is_valid(nreg)) {
   688           rm.Remove(nreg);
   689           value.map(nreg,n);
   690           regnd.map(nreg,n);
   691           nreg = rm.find_first_elem();
   692         }
   693       }
   695     } // End of for all instructions in the block
   697   } // End for all blocks
   698 }

mercurial