src/share/vm/gc_implementation/g1/heapRegion.cpp

Mon, 24 Mar 2014 15:30:36 +0100

author
tschatzl
date
Mon, 24 Mar 2014 15:30:36 +0100
changeset 6404
96b1c2e06e25
parent 6402
191174b49bec
child 6422
8ee855b4e667
permissions
-rw-r--r--

8027295: Free CSet takes ~50% of young pause time
Summary: Improve fast card cache iteration and avoid taking locks when freeing the collection set.
Reviewed-by: brutisso

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "code/nmethod.hpp"
    27 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
    28 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    29 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    30 #include "gc_implementation/g1/heapRegion.inline.hpp"
    31 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    32 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
    33 #include "memory/genOopClosures.inline.hpp"
    34 #include "memory/iterator.hpp"
    35 #include "oops/oop.inline.hpp"
    37 int    HeapRegion::LogOfHRGrainBytes = 0;
    38 int    HeapRegion::LogOfHRGrainWords = 0;
    39 size_t HeapRegion::GrainBytes        = 0;
    40 size_t HeapRegion::GrainWords        = 0;
    41 size_t HeapRegion::CardsPerRegion    = 0;
    43 HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1,
    44                                  HeapRegion* hr, ExtendedOopClosure* cl,
    45                                  CardTableModRefBS::PrecisionStyle precision,
    46                                  FilterKind fk) :
    47   ContiguousSpaceDCTOC(hr, cl, precision, NULL),
    48   _hr(hr), _fk(fk), _g1(g1) { }
    50 FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r,
    51                                                    OopClosure* oc) :
    52   _r_bottom(r->bottom()), _r_end(r->end()), _oc(oc) { }
    54 template<class ClosureType>
    55 HeapWord* walk_mem_region_loop(ClosureType* cl, G1CollectedHeap* g1h,
    56                                HeapRegion* hr,
    57                                HeapWord* cur, HeapWord* top) {
    58   oop cur_oop = oop(cur);
    59   int oop_size = cur_oop->size();
    60   HeapWord* next_obj = cur + oop_size;
    61   while (next_obj < top) {
    62     // Keep filtering the remembered set.
    63     if (!g1h->is_obj_dead(cur_oop, hr)) {
    64       // Bottom lies entirely below top, so we can call the
    65       // non-memRegion version of oop_iterate below.
    66       cur_oop->oop_iterate(cl);
    67     }
    68     cur = next_obj;
    69     cur_oop = oop(cur);
    70     oop_size = cur_oop->size();
    71     next_obj = cur + oop_size;
    72   }
    73   return cur;
    74 }
    76 void HeapRegionDCTOC::walk_mem_region_with_cl(MemRegion mr,
    77                                               HeapWord* bottom,
    78                                               HeapWord* top,
    79                                               ExtendedOopClosure* cl) {
    80   G1CollectedHeap* g1h = _g1;
    81   int oop_size;
    82   ExtendedOopClosure* cl2 = NULL;
    84   FilterIntoCSClosure intoCSFilt(this, g1h, cl);
    85   FilterOutOfRegionClosure outOfRegionFilt(_hr, cl);
    87   switch (_fk) {
    88   case NoFilterKind:          cl2 = cl; break;
    89   case IntoCSFilterKind:      cl2 = &intoCSFilt; break;
    90   case OutOfRegionFilterKind: cl2 = &outOfRegionFilt; break;
    91   default:                    ShouldNotReachHere();
    92   }
    94   // Start filtering what we add to the remembered set. If the object is
    95   // not considered dead, either because it is marked (in the mark bitmap)
    96   // or it was allocated after marking finished, then we add it. Otherwise
    97   // we can safely ignore the object.
    98   if (!g1h->is_obj_dead(oop(bottom), _hr)) {
    99     oop_size = oop(bottom)->oop_iterate(cl2, mr);
   100   } else {
   101     oop_size = oop(bottom)->size();
   102   }
   104   bottom += oop_size;
   106   if (bottom < top) {
   107     // We replicate the loop below for several kinds of possible filters.
   108     switch (_fk) {
   109     case NoFilterKind:
   110       bottom = walk_mem_region_loop(cl, g1h, _hr, bottom, top);
   111       break;
   113     case IntoCSFilterKind: {
   114       FilterIntoCSClosure filt(this, g1h, cl);
   115       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
   116       break;
   117     }
   119     case OutOfRegionFilterKind: {
   120       FilterOutOfRegionClosure filt(_hr, cl);
   121       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
   122       break;
   123     }
   125     default:
   126       ShouldNotReachHere();
   127     }
   129     // Last object. Need to do dead-obj filtering here too.
   130     if (!g1h->is_obj_dead(oop(bottom), _hr)) {
   131       oop(bottom)->oop_iterate(cl2, mr);
   132     }
   133   }
   134 }
   136 // Minimum region size; we won't go lower than that.
   137 // We might want to decrease this in the future, to deal with small
   138 // heaps a bit more efficiently.
   139 #define MIN_REGION_SIZE  (      1024 * 1024 )
   141 // Maximum region size; we don't go higher than that. There's a good
   142 // reason for having an upper bound. We don't want regions to get too
   143 // large, otherwise cleanup's effectiveness would decrease as there
   144 // will be fewer opportunities to find totally empty regions after
   145 // marking.
   146 #define MAX_REGION_SIZE  ( 32 * 1024 * 1024 )
   148 // The automatic region size calculation will try to have around this
   149 // many regions in the heap (based on the min heap size).
   150 #define TARGET_REGION_NUMBER          2048
   152 size_t HeapRegion::max_region_size() {
   153   return (size_t)MAX_REGION_SIZE;
   154 }
   156 void HeapRegion::setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size) {
   157   uintx region_size = G1HeapRegionSize;
   158   if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
   159     size_t average_heap_size = (initial_heap_size + max_heap_size) / 2;
   160     region_size = MAX2(average_heap_size / TARGET_REGION_NUMBER,
   161                        (uintx) MIN_REGION_SIZE);
   162   }
   164   int region_size_log = log2_long((jlong) region_size);
   165   // Recalculate the region size to make sure it's a power of
   166   // 2. This means that region_size is the largest power of 2 that's
   167   // <= what we've calculated so far.
   168   region_size = ((uintx)1 << region_size_log);
   170   // Now make sure that we don't go over or under our limits.
   171   if (region_size < MIN_REGION_SIZE) {
   172     region_size = MIN_REGION_SIZE;
   173   } else if (region_size > MAX_REGION_SIZE) {
   174     region_size = MAX_REGION_SIZE;
   175   }
   177   // And recalculate the log.
   178   region_size_log = log2_long((jlong) region_size);
   180   // Now, set up the globals.
   181   guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
   182   LogOfHRGrainBytes = region_size_log;
   184   guarantee(LogOfHRGrainWords == 0, "we should only set it once");
   185   LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;
   187   guarantee(GrainBytes == 0, "we should only set it once");
   188   // The cast to int is safe, given that we've bounded region_size by
   189   // MIN_REGION_SIZE and MAX_REGION_SIZE.
   190   GrainBytes = (size_t)region_size;
   192   guarantee(GrainWords == 0, "we should only set it once");
   193   GrainWords = GrainBytes >> LogHeapWordSize;
   194   guarantee((size_t) 1 << LogOfHRGrainWords == GrainWords, "sanity");
   196   guarantee(CardsPerRegion == 0, "we should only set it once");
   197   CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift;
   198 }
   200 void HeapRegion::reset_after_compaction() {
   201   G1OffsetTableContigSpace::reset_after_compaction();
   202   // After a compaction the mark bitmap is invalid, so we must
   203   // treat all objects as being inside the unmarked area.
   204   zero_marked_bytes();
   205   init_top_at_mark_start();
   206 }
   208 void HeapRegion::hr_clear(bool par, bool clear_space, bool locked) {
   209   assert(_humongous_type == NotHumongous,
   210          "we should have already filtered out humongous regions");
   211   assert(_humongous_start_region == NULL,
   212          "we should have already filtered out humongous regions");
   213   assert(_end == _orig_end,
   214          "we should have already filtered out humongous regions");
   216   _in_collection_set = false;
   218   set_young_index_in_cset(-1);
   219   uninstall_surv_rate_group();
   220   set_young_type(NotYoung);
   221   reset_pre_dummy_top();
   223   if (!par) {
   224     // If this is parallel, this will be done later.
   225     HeapRegionRemSet* hrrs = rem_set();
   226     if (locked) {
   227       hrrs->clear_locked();
   228     } else {
   229       hrrs->clear();
   230     }
   231     _claimed = InitialClaimValue;
   232   }
   233   zero_marked_bytes();
   235   _offsets.resize(HeapRegion::GrainWords);
   236   init_top_at_mark_start();
   237   if (clear_space) clear(SpaceDecorator::Mangle);
   238 }
   240 void HeapRegion::par_clear() {
   241   assert(used() == 0, "the region should have been already cleared");
   242   assert(capacity() == HeapRegion::GrainBytes, "should be back to normal");
   243   HeapRegionRemSet* hrrs = rem_set();
   244   hrrs->clear();
   245   CardTableModRefBS* ct_bs =
   246                    (CardTableModRefBS*)G1CollectedHeap::heap()->barrier_set();
   247   ct_bs->clear(MemRegion(bottom(), end()));
   248 }
   250 void HeapRegion::calc_gc_efficiency() {
   251   // GC efficiency is the ratio of how much space would be
   252   // reclaimed over how long we predict it would take to reclaim it.
   253   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   254   G1CollectorPolicy* g1p = g1h->g1_policy();
   256   // Retrieve a prediction of the elapsed time for this region for
   257   // a mixed gc because the region will only be evacuated during a
   258   // mixed gc.
   259   double region_elapsed_time_ms =
   260     g1p->predict_region_elapsed_time_ms(this, false /* for_young_gc */);
   261   _gc_efficiency = (double) reclaimable_bytes() / region_elapsed_time_ms;
   262 }
   264 void HeapRegion::set_startsHumongous(HeapWord* new_top, HeapWord* new_end) {
   265   assert(!isHumongous(), "sanity / pre-condition");
   266   assert(end() == _orig_end,
   267          "Should be normal before the humongous object allocation");
   268   assert(top() == bottom(), "should be empty");
   269   assert(bottom() <= new_top && new_top <= new_end, "pre-condition");
   271   _humongous_type = StartsHumongous;
   272   _humongous_start_region = this;
   274   set_end(new_end);
   275   _offsets.set_for_starts_humongous(new_top);
   276 }
   278 void HeapRegion::set_continuesHumongous(HeapRegion* first_hr) {
   279   assert(!isHumongous(), "sanity / pre-condition");
   280   assert(end() == _orig_end,
   281          "Should be normal before the humongous object allocation");
   282   assert(top() == bottom(), "should be empty");
   283   assert(first_hr->startsHumongous(), "pre-condition");
   285   _humongous_type = ContinuesHumongous;
   286   _humongous_start_region = first_hr;
   287 }
   289 void HeapRegion::set_notHumongous() {
   290   assert(isHumongous(), "pre-condition");
   292   if (startsHumongous()) {
   293     assert(top() <= end(), "pre-condition");
   294     set_end(_orig_end);
   295     if (top() > end()) {
   296       // at least one "continues humongous" region after it
   297       set_top(end());
   298     }
   299   } else {
   300     // continues humongous
   301     assert(end() == _orig_end, "sanity");
   302   }
   304   assert(capacity() == HeapRegion::GrainBytes, "pre-condition");
   305   _humongous_type = NotHumongous;
   306   _humongous_start_region = NULL;
   307 }
   309 bool HeapRegion::claimHeapRegion(jint claimValue) {
   310   jint current = _claimed;
   311   if (current != claimValue) {
   312     jint res = Atomic::cmpxchg(claimValue, &_claimed, current);
   313     if (res == current) {
   314       return true;
   315     }
   316   }
   317   return false;
   318 }
   320 HeapWord* HeapRegion::next_block_start_careful(HeapWord* addr) {
   321   HeapWord* low = addr;
   322   HeapWord* high = end();
   323   while (low < high) {
   324     size_t diff = pointer_delta(high, low);
   325     // Must add one below to bias toward the high amount.  Otherwise, if
   326   // "high" were at the desired value, and "low" were one less, we
   327     // would not converge on "high".  This is not symmetric, because
   328     // we set "high" to a block start, which might be the right one,
   329     // which we don't do for "low".
   330     HeapWord* middle = low + (diff+1)/2;
   331     if (middle == high) return high;
   332     HeapWord* mid_bs = block_start_careful(middle);
   333     if (mid_bs < addr) {
   334       low = middle;
   335     } else {
   336       high = mid_bs;
   337     }
   338   }
   339   assert(low == high && low >= addr, "Didn't work.");
   340   return low;
   341 }
   343 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
   344 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   345 #endif // _MSC_VER
   348 HeapRegion::HeapRegion(uint hrs_index,
   349                        G1BlockOffsetSharedArray* sharedOffsetArray,
   350                        MemRegion mr) :
   351     G1OffsetTableContigSpace(sharedOffsetArray, mr),
   352     _hrs_index(hrs_index),
   353     _humongous_type(NotHumongous), _humongous_start_region(NULL),
   354     _in_collection_set(false),
   355     _next_in_special_set(NULL), _orig_end(NULL),
   356     _claimed(InitialClaimValue), _evacuation_failed(false),
   357     _prev_marked_bytes(0), _next_marked_bytes(0), _gc_efficiency(0.0),
   358     _young_type(NotYoung), _next_young_region(NULL),
   359     _next_dirty_cards_region(NULL), _next(NULL), _pending_removal(false),
   360 #ifdef ASSERT
   361     _containing_set(NULL),
   362 #endif // ASSERT
   363      _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
   364     _rem_set(NULL), _recorded_rs_length(0), _predicted_elapsed_time_ms(0),
   365     _predicted_bytes_to_copy(0)
   366 {
   367   _rem_set = new HeapRegionRemSet(sharedOffsetArray, this);
   368   _orig_end = mr.end();
   369   // Note that initialize() will set the start of the unmarked area of the
   370   // region.
   371   hr_clear(false /*par*/, false /*clear_space*/);
   372   set_top(bottom());
   373   set_saved_mark();
   375   assert(HeapRegionRemSet::num_par_rem_sets() > 0, "Invariant.");
   376 }
   378 CompactibleSpace* HeapRegion::next_compaction_space() const {
   379   // We're not using an iterator given that it will wrap around when
   380   // it reaches the last region and this is not what we want here.
   381   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   382   uint index = hrs_index() + 1;
   383   while (index < g1h->n_regions()) {
   384     HeapRegion* hr = g1h->region_at(index);
   385     if (!hr->isHumongous()) {
   386       return hr;
   387     }
   388     index += 1;
   389   }
   390   return NULL;
   391 }
   393 void HeapRegion::save_marks() {
   394   set_saved_mark();
   395 }
   397 void HeapRegion::oops_in_mr_iterate(MemRegion mr, ExtendedOopClosure* cl) {
   398   HeapWord* p = mr.start();
   399   HeapWord* e = mr.end();
   400   oop obj;
   401   while (p < e) {
   402     obj = oop(p);
   403     p += obj->oop_iterate(cl);
   404   }
   405   assert(p == e, "bad memregion: doesn't end on obj boundary");
   406 }
   408 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
   409 void HeapRegion::oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) { \
   410   ContiguousSpace::oop_since_save_marks_iterate##nv_suffix(cl);              \
   411 }
   412 SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DEFN)
   415 void HeapRegion::oop_before_save_marks_iterate(ExtendedOopClosure* cl) {
   416   oops_in_mr_iterate(MemRegion(bottom(), saved_mark_word()), cl);
   417 }
   419 void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark,
   420                                                     bool during_conc_mark) {
   421   // We always recreate the prev marking info and we'll explicitly
   422   // mark all objects we find to be self-forwarded on the prev
   423   // bitmap. So all objects need to be below PTAMS.
   424   _prev_top_at_mark_start = top();
   425   _prev_marked_bytes = 0;
   427   if (during_initial_mark) {
   428     // During initial-mark, we'll also explicitly mark all objects
   429     // we find to be self-forwarded on the next bitmap. So all
   430     // objects need to be below NTAMS.
   431     _next_top_at_mark_start = top();
   432     _next_marked_bytes = 0;
   433   } else if (during_conc_mark) {
   434     // During concurrent mark, all objects in the CSet (including
   435     // the ones we find to be self-forwarded) are implicitly live.
   436     // So all objects need to be above NTAMS.
   437     _next_top_at_mark_start = bottom();
   438     _next_marked_bytes = 0;
   439   }
   440 }
   442 void HeapRegion::note_self_forwarding_removal_end(bool during_initial_mark,
   443                                                   bool during_conc_mark,
   444                                                   size_t marked_bytes) {
   445   assert(0 <= marked_bytes && marked_bytes <= used(),
   446          err_msg("marked: "SIZE_FORMAT" used: "SIZE_FORMAT,
   447                  marked_bytes, used()));
   448   _prev_marked_bytes = marked_bytes;
   449 }
   451 HeapWord*
   452 HeapRegion::object_iterate_mem_careful(MemRegion mr,
   453                                                  ObjectClosure* cl) {
   454   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   455   // We used to use "block_start_careful" here.  But we're actually happy
   456   // to update the BOT while we do this...
   457   HeapWord* cur = block_start(mr.start());
   458   mr = mr.intersection(used_region());
   459   if (mr.is_empty()) return NULL;
   460   // Otherwise, find the obj that extends onto mr.start().
   462   assert(cur <= mr.start()
   463          && (oop(cur)->klass_or_null() == NULL ||
   464              cur + oop(cur)->size() > mr.start()),
   465          "postcondition of block_start");
   466   oop obj;
   467   while (cur < mr.end()) {
   468     obj = oop(cur);
   469     if (obj->klass_or_null() == NULL) {
   470       // Ran into an unparseable point.
   471       return cur;
   472     } else if (!g1h->is_obj_dead(obj)) {
   473       cl->do_object(obj);
   474     }
   475     if (cl->abort()) return cur;
   476     // The check above must occur before the operation below, since an
   477     // abort might invalidate the "size" operation.
   478     cur += obj->size();
   479   }
   480   return NULL;
   481 }
   483 HeapWord*
   484 HeapRegion::
   485 oops_on_card_seq_iterate_careful(MemRegion mr,
   486                                  FilterOutOfRegionClosure* cl,
   487                                  bool filter_young,
   488                                  jbyte* card_ptr) {
   489   // Currently, we should only have to clean the card if filter_young
   490   // is true and vice versa.
   491   if (filter_young) {
   492     assert(card_ptr != NULL, "pre-condition");
   493   } else {
   494     assert(card_ptr == NULL, "pre-condition");
   495   }
   496   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   498   // If we're within a stop-world GC, then we might look at a card in a
   499   // GC alloc region that extends onto a GC LAB, which may not be
   500   // parseable.  Stop such at the "saved_mark" of the region.
   501   if (g1h->is_gc_active()) {
   502     mr = mr.intersection(used_region_at_save_marks());
   503   } else {
   504     mr = mr.intersection(used_region());
   505   }
   506   if (mr.is_empty()) return NULL;
   507   // Otherwise, find the obj that extends onto mr.start().
   509   // The intersection of the incoming mr (for the card) and the
   510   // allocated part of the region is non-empty. This implies that
   511   // we have actually allocated into this region. The code in
   512   // G1CollectedHeap.cpp that allocates a new region sets the
   513   // is_young tag on the region before allocating. Thus we
   514   // safely know if this region is young.
   515   if (is_young() && filter_young) {
   516     return NULL;
   517   }
   519   assert(!is_young(), "check value of filter_young");
   521   // We can only clean the card here, after we make the decision that
   522   // the card is not young. And we only clean the card if we have been
   523   // asked to (i.e., card_ptr != NULL).
   524   if (card_ptr != NULL) {
   525     *card_ptr = CardTableModRefBS::clean_card_val();
   526     // We must complete this write before we do any of the reads below.
   527     OrderAccess::storeload();
   528   }
   530   // Cache the boundaries of the memory region in some const locals
   531   HeapWord* const start = mr.start();
   532   HeapWord* const end = mr.end();
   534   // We used to use "block_start_careful" here.  But we're actually happy
   535   // to update the BOT while we do this...
   536   HeapWord* cur = block_start(start);
   537   assert(cur <= start, "Postcondition");
   539   oop obj;
   541   HeapWord* next = cur;
   542   while (next <= start) {
   543     cur = next;
   544     obj = oop(cur);
   545     if (obj->klass_or_null() == NULL) {
   546       // Ran into an unparseable point.
   547       return cur;
   548     }
   549     // Otherwise...
   550     next = (cur + obj->size());
   551   }
   553   // If we finish the above loop...We have a parseable object that
   554   // begins on or before the start of the memory region, and ends
   555   // inside or spans the entire region.
   557   assert(obj == oop(cur), "sanity");
   558   assert(cur <= start &&
   559          obj->klass_or_null() != NULL &&
   560          (cur + obj->size()) > start,
   561          "Loop postcondition");
   563   if (!g1h->is_obj_dead(obj)) {
   564     obj->oop_iterate(cl, mr);
   565   }
   567   while (cur < end) {
   568     obj = oop(cur);
   569     if (obj->klass_or_null() == NULL) {
   570       // Ran into an unparseable point.
   571       return cur;
   572     };
   574     // Otherwise:
   575     next = (cur + obj->size());
   577     if (!g1h->is_obj_dead(obj)) {
   578       if (next < end || !obj->is_objArray()) {
   579         // This object either does not span the MemRegion
   580         // boundary, or if it does it's not an array.
   581         // Apply closure to whole object.
   582         obj->oop_iterate(cl);
   583       } else {
   584         // This obj is an array that spans the boundary.
   585         // Stop at the boundary.
   586         obj->oop_iterate(cl, mr);
   587       }
   588     }
   589     cur = next;
   590   }
   591   return NULL;
   592 }
   594 // Code roots support
   596 void HeapRegion::add_strong_code_root(nmethod* nm) {
   597   HeapRegionRemSet* hrrs = rem_set();
   598   hrrs->add_strong_code_root(nm);
   599 }
   601 void HeapRegion::remove_strong_code_root(nmethod* nm) {
   602   HeapRegionRemSet* hrrs = rem_set();
   603   hrrs->remove_strong_code_root(nm);
   604 }
   606 void HeapRegion::migrate_strong_code_roots() {
   607   assert(in_collection_set(), "only collection set regions");
   608   assert(!isHumongous(),
   609           err_msg("humongous region "HR_FORMAT" should not have been added to collection set",
   610                   HR_FORMAT_PARAMS(this)));
   612   HeapRegionRemSet* hrrs = rem_set();
   613   hrrs->migrate_strong_code_roots();
   614 }
   616 void HeapRegion::strong_code_roots_do(CodeBlobClosure* blk) const {
   617   HeapRegionRemSet* hrrs = rem_set();
   618   hrrs->strong_code_roots_do(blk);
   619 }
   621 class VerifyStrongCodeRootOopClosure: public OopClosure {
   622   const HeapRegion* _hr;
   623   nmethod* _nm;
   624   bool _failures;
   625   bool _has_oops_in_region;
   627   template <class T> void do_oop_work(T* p) {
   628     T heap_oop = oopDesc::load_heap_oop(p);
   629     if (!oopDesc::is_null(heap_oop)) {
   630       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
   632       // Note: not all the oops embedded in the nmethod are in the
   633       // current region. We only look at those which are.
   634       if (_hr->is_in(obj)) {
   635         // Object is in the region. Check that its less than top
   636         if (_hr->top() <= (HeapWord*)obj) {
   637           // Object is above top
   638           gclog_or_tty->print_cr("Object "PTR_FORMAT" in region "
   639                                  "["PTR_FORMAT", "PTR_FORMAT") is above "
   640                                  "top "PTR_FORMAT,
   641                                  (void *)obj, _hr->bottom(), _hr->end(), _hr->top());
   642           _failures = true;
   643           return;
   644         }
   645         // Nmethod has at least one oop in the current region
   646         _has_oops_in_region = true;
   647       }
   648     }
   649   }
   651 public:
   652   VerifyStrongCodeRootOopClosure(const HeapRegion* hr, nmethod* nm):
   653     _hr(hr), _failures(false), _has_oops_in_region(false) {}
   655   void do_oop(narrowOop* p) { do_oop_work(p); }
   656   void do_oop(oop* p)       { do_oop_work(p); }
   658   bool failures()           { return _failures; }
   659   bool has_oops_in_region() { return _has_oops_in_region; }
   660 };
   662 class VerifyStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
   663   const HeapRegion* _hr;
   664   bool _failures;
   665 public:
   666   VerifyStrongCodeRootCodeBlobClosure(const HeapRegion* hr) :
   667     _hr(hr), _failures(false) {}
   669   void do_code_blob(CodeBlob* cb) {
   670     nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
   671     if (nm != NULL) {
   672       // Verify that the nemthod is live
   673       if (!nm->is_alive()) {
   674         gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has dead nmethod "
   675                                PTR_FORMAT" in its strong code roots",
   676                                _hr->bottom(), _hr->end(), nm);
   677         _failures = true;
   678       } else {
   679         VerifyStrongCodeRootOopClosure oop_cl(_hr, nm);
   680         nm->oops_do(&oop_cl);
   681         if (!oop_cl.has_oops_in_region()) {
   682           gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has nmethod "
   683                                  PTR_FORMAT" in its strong code roots "
   684                                  "with no pointers into region",
   685                                  _hr->bottom(), _hr->end(), nm);
   686           _failures = true;
   687         } else if (oop_cl.failures()) {
   688           gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has other "
   689                                  "failures for nmethod "PTR_FORMAT,
   690                                  _hr->bottom(), _hr->end(), nm);
   691           _failures = true;
   692         }
   693       }
   694     }
   695   }
   697   bool failures()       { return _failures; }
   698 };
   700 void HeapRegion::verify_strong_code_roots(VerifyOption vo, bool* failures) const {
   701   if (!G1VerifyHeapRegionCodeRoots) {
   702     // We're not verifying code roots.
   703     return;
   704   }
   705   if (vo == VerifyOption_G1UseMarkWord) {
   706     // Marking verification during a full GC is performed after class
   707     // unloading, code cache unloading, etc so the strong code roots
   708     // attached to each heap region are in an inconsistent state. They won't
   709     // be consistent until the strong code roots are rebuilt after the
   710     // actual GC. Skip verifying the strong code roots in this particular
   711     // time.
   712     assert(VerifyDuringGC, "only way to get here");
   713     return;
   714   }
   716   HeapRegionRemSet* hrrs = rem_set();
   717   size_t strong_code_roots_length = hrrs->strong_code_roots_list_length();
   719   // if this region is empty then there should be no entries
   720   // on its strong code root list
   721   if (is_empty()) {
   722     if (strong_code_roots_length > 0) {
   723       gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is empty "
   724                              "but has "SIZE_FORMAT" code root entries",
   725                              bottom(), end(), strong_code_roots_length);
   726       *failures = true;
   727     }
   728     return;
   729   }
   731   if (continuesHumongous()) {
   732     if (strong_code_roots_length > 0) {
   733       gclog_or_tty->print_cr("region "HR_FORMAT" is a continuation of a humongous "
   734                              "region but has "SIZE_FORMAT" code root entries",
   735                              HR_FORMAT_PARAMS(this), strong_code_roots_length);
   736       *failures = true;
   737     }
   738     return;
   739   }
   741   VerifyStrongCodeRootCodeBlobClosure cb_cl(this);
   742   strong_code_roots_do(&cb_cl);
   744   if (cb_cl.failures()) {
   745     *failures = true;
   746   }
   747 }
   749 void HeapRegion::print() const { print_on(gclog_or_tty); }
   750 void HeapRegion::print_on(outputStream* st) const {
   751   if (isHumongous()) {
   752     if (startsHumongous())
   753       st->print(" HS");
   754     else
   755       st->print(" HC");
   756   } else {
   757     st->print("   ");
   758   }
   759   if (in_collection_set())
   760     st->print(" CS");
   761   else
   762     st->print("   ");
   763   if (is_young())
   764     st->print(is_survivor() ? " SU" : " Y ");
   765   else
   766     st->print("   ");
   767   if (is_empty())
   768     st->print(" F");
   769   else
   770     st->print("  ");
   771   st->print(" TS %5d", _gc_time_stamp);
   772   st->print(" PTAMS "PTR_FORMAT" NTAMS "PTR_FORMAT,
   773             prev_top_at_mark_start(), next_top_at_mark_start());
   774   G1OffsetTableContigSpace::print_on(st);
   775 }
   777 class VerifyLiveClosure: public OopClosure {
   778 private:
   779   G1CollectedHeap* _g1h;
   780   CardTableModRefBS* _bs;
   781   oop _containing_obj;
   782   bool _failures;
   783   int _n_failures;
   784   VerifyOption _vo;
   785 public:
   786   // _vo == UsePrevMarking -> use "prev" marking information,
   787   // _vo == UseNextMarking -> use "next" marking information,
   788   // _vo == UseMarkWord    -> use mark word from object header.
   789   VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) :
   790     _g1h(g1h), _bs(NULL), _containing_obj(NULL),
   791     _failures(false), _n_failures(0), _vo(vo)
   792   {
   793     BarrierSet* bs = _g1h->barrier_set();
   794     if (bs->is_a(BarrierSet::CardTableModRef))
   795       _bs = (CardTableModRefBS*)bs;
   796   }
   798   void set_containing_obj(oop obj) {
   799     _containing_obj = obj;
   800   }
   802   bool failures() { return _failures; }
   803   int n_failures() { return _n_failures; }
   805   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
   806   virtual void do_oop(      oop* p) { do_oop_work(p); }
   808   void print_object(outputStream* out, oop obj) {
   809 #ifdef PRODUCT
   810     Klass* k = obj->klass();
   811     const char* class_name = InstanceKlass::cast(k)->external_name();
   812     out->print_cr("class name %s", class_name);
   813 #else // PRODUCT
   814     obj->print_on(out);
   815 #endif // PRODUCT
   816   }
   818   template <class T>
   819   void do_oop_work(T* p) {
   820     assert(_containing_obj != NULL, "Precondition");
   821     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
   822            "Precondition");
   823     T heap_oop = oopDesc::load_heap_oop(p);
   824     if (!oopDesc::is_null(heap_oop)) {
   825       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
   826       bool failed = false;
   827       if (!_g1h->is_in_closed_subset(obj) || _g1h->is_obj_dead_cond(obj, _vo)) {
   828         MutexLockerEx x(ParGCRareEvent_lock,
   829                         Mutex::_no_safepoint_check_flag);
   831         if (!_failures) {
   832           gclog_or_tty->print_cr("");
   833           gclog_or_tty->print_cr("----------");
   834         }
   835         if (!_g1h->is_in_closed_subset(obj)) {
   836           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
   837           gclog_or_tty->print_cr("Field "PTR_FORMAT
   838                                  " of live obj "PTR_FORMAT" in region "
   839                                  "["PTR_FORMAT", "PTR_FORMAT")",
   840                                  p, (void*) _containing_obj,
   841                                  from->bottom(), from->end());
   842           print_object(gclog_or_tty, _containing_obj);
   843           gclog_or_tty->print_cr("points to obj "PTR_FORMAT" not in the heap",
   844                                  (void*) obj);
   845         } else {
   846           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
   847           HeapRegion* to   = _g1h->heap_region_containing((HeapWord*)obj);
   848           gclog_or_tty->print_cr("Field "PTR_FORMAT
   849                                  " of live obj "PTR_FORMAT" in region "
   850                                  "["PTR_FORMAT", "PTR_FORMAT")",
   851                                  p, (void*) _containing_obj,
   852                                  from->bottom(), from->end());
   853           print_object(gclog_or_tty, _containing_obj);
   854           gclog_or_tty->print_cr("points to dead obj "PTR_FORMAT" in region "
   855                                  "["PTR_FORMAT", "PTR_FORMAT")",
   856                                  (void*) obj, to->bottom(), to->end());
   857           print_object(gclog_or_tty, obj);
   858         }
   859         gclog_or_tty->print_cr("----------");
   860         gclog_or_tty->flush();
   861         _failures = true;
   862         failed = true;
   863         _n_failures++;
   864       }
   866       if (!_g1h->full_collection() || G1VerifyRSetsDuringFullGC) {
   867         HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
   868         HeapRegion* to   = _g1h->heap_region_containing(obj);
   869         if (from != NULL && to != NULL &&
   870             from != to &&
   871             !to->isHumongous()) {
   872           jbyte cv_obj = *_bs->byte_for_const(_containing_obj);
   873           jbyte cv_field = *_bs->byte_for_const(p);
   874           const jbyte dirty = CardTableModRefBS::dirty_card_val();
   876           bool is_bad = !(from->is_young()
   877                           || to->rem_set()->contains_reference(p)
   878                           || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed
   879                               (_containing_obj->is_objArray() ?
   880                                   cv_field == dirty
   881                                : cv_obj == dirty || cv_field == dirty));
   882           if (is_bad) {
   883             MutexLockerEx x(ParGCRareEvent_lock,
   884                             Mutex::_no_safepoint_check_flag);
   886             if (!_failures) {
   887               gclog_or_tty->print_cr("");
   888               gclog_or_tty->print_cr("----------");
   889             }
   890             gclog_or_tty->print_cr("Missing rem set entry:");
   891             gclog_or_tty->print_cr("Field "PTR_FORMAT" "
   892                                    "of obj "PTR_FORMAT", "
   893                                    "in region "HR_FORMAT,
   894                                    p, (void*) _containing_obj,
   895                                    HR_FORMAT_PARAMS(from));
   896             _containing_obj->print_on(gclog_or_tty);
   897             gclog_or_tty->print_cr("points to obj "PTR_FORMAT" "
   898                                    "in region "HR_FORMAT,
   899                                    (void*) obj,
   900                                    HR_FORMAT_PARAMS(to));
   901             obj->print_on(gclog_or_tty);
   902             gclog_or_tty->print_cr("Obj head CTE = %d, field CTE = %d.",
   903                           cv_obj, cv_field);
   904             gclog_or_tty->print_cr("----------");
   905             gclog_or_tty->flush();
   906             _failures = true;
   907             if (!failed) _n_failures++;
   908           }
   909         }
   910       }
   911     }
   912   }
   913 };
   915 // This really ought to be commoned up into OffsetTableContigSpace somehow.
   916 // We would need a mechanism to make that code skip dead objects.
   918 void HeapRegion::verify(VerifyOption vo,
   919                         bool* failures) const {
   920   G1CollectedHeap* g1 = G1CollectedHeap::heap();
   921   *failures = false;
   922   HeapWord* p = bottom();
   923   HeapWord* prev_p = NULL;
   924   VerifyLiveClosure vl_cl(g1, vo);
   925   bool is_humongous = isHumongous();
   926   bool do_bot_verify = !is_young();
   927   size_t object_num = 0;
   928   while (p < top()) {
   929     oop obj = oop(p);
   930     size_t obj_size = obj->size();
   931     object_num += 1;
   933     if (is_humongous != g1->isHumongous(obj_size)) {
   934       gclog_or_tty->print_cr("obj "PTR_FORMAT" is of %shumongous size ("
   935                              SIZE_FORMAT" words) in a %shumongous region",
   936                              p, g1->isHumongous(obj_size) ? "" : "non-",
   937                              obj_size, is_humongous ? "" : "non-");
   938        *failures = true;
   939        return;
   940     }
   942     // If it returns false, verify_for_object() will output the
   943     // appropriate messasge.
   944     if (do_bot_verify && !_offsets.verify_for_object(p, obj_size)) {
   945       *failures = true;
   946       return;
   947     }
   949     if (!g1->is_obj_dead_cond(obj, this, vo)) {
   950       if (obj->is_oop()) {
   951         Klass* klass = obj->klass();
   952         if (!klass->is_metaspace_object()) {
   953           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
   954                                  "not metadata", klass, (void *)obj);
   955           *failures = true;
   956           return;
   957         } else if (!klass->is_klass()) {
   958           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
   959                                  "not a klass", klass, (void *)obj);
   960           *failures = true;
   961           return;
   962         } else {
   963           vl_cl.set_containing_obj(obj);
   964           obj->oop_iterate_no_header(&vl_cl);
   965           if (vl_cl.failures()) {
   966             *failures = true;
   967           }
   968           if (G1MaxVerifyFailures >= 0 &&
   969               vl_cl.n_failures() >= G1MaxVerifyFailures) {
   970             return;
   971           }
   972         }
   973       } else {
   974         gclog_or_tty->print_cr(PTR_FORMAT" no an oop", (void *)obj);
   975         *failures = true;
   976         return;
   977       }
   978     }
   979     prev_p = p;
   980     p += obj_size;
   981   }
   983   if (p != top()) {
   984     gclog_or_tty->print_cr("end of last object "PTR_FORMAT" "
   985                            "does not match top "PTR_FORMAT, p, top());
   986     *failures = true;
   987     return;
   988   }
   990   HeapWord* the_end = end();
   991   assert(p == top(), "it should still hold");
   992   // Do some extra BOT consistency checking for addresses in the
   993   // range [top, end). BOT look-ups in this range should yield
   994   // top. No point in doing that if top == end (there's nothing there).
   995   if (p < the_end) {
   996     // Look up top
   997     HeapWord* addr_1 = p;
   998     HeapWord* b_start_1 = _offsets.block_start_const(addr_1);
   999     if (b_start_1 != p) {
  1000       gclog_or_tty->print_cr("BOT look up for top: "PTR_FORMAT" "
  1001                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
  1002                              addr_1, b_start_1, p);
  1003       *failures = true;
  1004       return;
  1007     // Look up top + 1
  1008     HeapWord* addr_2 = p + 1;
  1009     if (addr_2 < the_end) {
  1010       HeapWord* b_start_2 = _offsets.block_start_const(addr_2);
  1011       if (b_start_2 != p) {
  1012         gclog_or_tty->print_cr("BOT look up for top + 1: "PTR_FORMAT" "
  1013                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
  1014                                addr_2, b_start_2, p);
  1015         *failures = true;
  1016         return;
  1020     // Look up an address between top and end
  1021     size_t diff = pointer_delta(the_end, p) / 2;
  1022     HeapWord* addr_3 = p + diff;
  1023     if (addr_3 < the_end) {
  1024       HeapWord* b_start_3 = _offsets.block_start_const(addr_3);
  1025       if (b_start_3 != p) {
  1026         gclog_or_tty->print_cr("BOT look up for top + diff: "PTR_FORMAT" "
  1027                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
  1028                                addr_3, b_start_3, p);
  1029         *failures = true;
  1030         return;
  1034     // Loook up end - 1
  1035     HeapWord* addr_4 = the_end - 1;
  1036     HeapWord* b_start_4 = _offsets.block_start_const(addr_4);
  1037     if (b_start_4 != p) {
  1038       gclog_or_tty->print_cr("BOT look up for end - 1: "PTR_FORMAT" "
  1039                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
  1040                              addr_4, b_start_4, p);
  1041       *failures = true;
  1042       return;
  1046   if (is_humongous && object_num > 1) {
  1047     gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is humongous "
  1048                            "but has "SIZE_FORMAT", objects",
  1049                            bottom(), end(), object_num);
  1050     *failures = true;
  1051     return;
  1054   verify_strong_code_roots(vo, failures);
  1057 void HeapRegion::verify() const {
  1058   bool dummy = false;
  1059   verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy);
  1062 // G1OffsetTableContigSpace code; copied from space.cpp.  Hope this can go
  1063 // away eventually.
  1065 void G1OffsetTableContigSpace::clear(bool mangle_space) {
  1066   ContiguousSpace::clear(mangle_space);
  1067   _offsets.zero_bottom_entry();
  1068   _offsets.initialize_threshold();
  1071 void G1OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
  1072   Space::set_bottom(new_bottom);
  1073   _offsets.set_bottom(new_bottom);
  1076 void G1OffsetTableContigSpace::set_end(HeapWord* new_end) {
  1077   Space::set_end(new_end);
  1078   _offsets.resize(new_end - bottom());
  1081 void G1OffsetTableContigSpace::print() const {
  1082   print_short();
  1083   gclog_or_tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
  1084                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
  1085                 bottom(), top(), _offsets.threshold(), end());
  1088 HeapWord* G1OffsetTableContigSpace::initialize_threshold() {
  1089   return _offsets.initialize_threshold();
  1092 HeapWord* G1OffsetTableContigSpace::cross_threshold(HeapWord* start,
  1093                                                     HeapWord* end) {
  1094   _offsets.alloc_block(start, end);
  1095   return _offsets.threshold();
  1098 HeapWord* G1OffsetTableContigSpace::saved_mark_word() const {
  1099   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1100   assert( _gc_time_stamp <= g1h->get_gc_time_stamp(), "invariant" );
  1101   if (_gc_time_stamp < g1h->get_gc_time_stamp())
  1102     return top();
  1103   else
  1104     return ContiguousSpace::saved_mark_word();
  1107 void G1OffsetTableContigSpace::set_saved_mark() {
  1108   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1109   unsigned curr_gc_time_stamp = g1h->get_gc_time_stamp();
  1111   if (_gc_time_stamp < curr_gc_time_stamp) {
  1112     // The order of these is important, as another thread might be
  1113     // about to start scanning this region. If it does so after
  1114     // set_saved_mark and before _gc_time_stamp = ..., then the latter
  1115     // will be false, and it will pick up top() as the high water mark
  1116     // of region. If it does so after _gc_time_stamp = ..., then it
  1117     // will pick up the right saved_mark_word() as the high water mark
  1118     // of the region. Either way, the behaviour will be correct.
  1119     ContiguousSpace::set_saved_mark();
  1120     OrderAccess::storestore();
  1121     _gc_time_stamp = curr_gc_time_stamp;
  1122     // No need to do another barrier to flush the writes above. If
  1123     // this is called in parallel with other threads trying to
  1124     // allocate into the region, the caller should call this while
  1125     // holding a lock and when the lock is released the writes will be
  1126     // flushed.
  1130 G1OffsetTableContigSpace::
  1131 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
  1132                          MemRegion mr) :
  1133   _offsets(sharedOffsetArray, mr),
  1134   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true),
  1135   _gc_time_stamp(0)
  1137   _offsets.set_space(this);
  1138   // false ==> we'll do the clearing if there's clearing to be done.
  1139   ContiguousSpace::initialize(mr, false, SpaceDecorator::Mangle);
  1140   _offsets.zero_bottom_entry();
  1141   _offsets.initialize_threshold();

mercurial