src/os/linux/vm/os_linux.cpp

Tue, 01 Dec 2009 22:29:02 -0500

author
dholmes
date
Tue, 01 Dec 2009 22:29:02 -0500
changeset 1552
95e9083cf4a7
parent 1445
354d3184f6b2
child 1558
167c2986d91b
permissions
-rw-r--r--

6822370: ReentrantReadWriteLock: threads hung when there are no threads holding onto the lock (Netra x4450)
Summary: This day one bug is caused by missing memory barriers in various Parker::park() paths that can result in lost wakeups and hangs.
Reviewed-by: dice, acorn

     1 /*
     2  * Copyright 1999-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // do not include  precompiled  header file
    26 # include "incls/_os_linux.cpp.incl"
    28 // put OS-includes here
    29 # include <sys/types.h>
    30 # include <sys/mman.h>
    31 # include <pthread.h>
    32 # include <signal.h>
    33 # include <errno.h>
    34 # include <dlfcn.h>
    35 # include <stdio.h>
    36 # include <unistd.h>
    37 # include <sys/resource.h>
    38 # include <pthread.h>
    39 # include <sys/stat.h>
    40 # include <sys/time.h>
    41 # include <sys/times.h>
    42 # include <sys/utsname.h>
    43 # include <sys/socket.h>
    44 # include <sys/wait.h>
    45 # include <pwd.h>
    46 # include <poll.h>
    47 # include <semaphore.h>
    48 # include <fcntl.h>
    49 # include <string.h>
    50 # include <syscall.h>
    51 # include <sys/sysinfo.h>
    52 # include <gnu/libc-version.h>
    53 # include <sys/ipc.h>
    54 # include <sys/shm.h>
    55 # include <link.h>
    57 #define MAX_PATH    (2 * K)
    59 // for timer info max values which include all bits
    60 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
    61 #define SEC_IN_NANOSECS  1000000000LL
    63 ////////////////////////////////////////////////////////////////////////////////
    64 // global variables
    65 julong os::Linux::_physical_memory = 0;
    67 address   os::Linux::_initial_thread_stack_bottom = NULL;
    68 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
    70 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
    71 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
    72 Mutex* os::Linux::_createThread_lock = NULL;
    73 pthread_t os::Linux::_main_thread;
    74 int os::Linux::_page_size = -1;
    75 bool os::Linux::_is_floating_stack = false;
    76 bool os::Linux::_is_NPTL = false;
    77 bool os::Linux::_supports_fast_thread_cpu_time = false;
    78 const char * os::Linux::_glibc_version = NULL;
    79 const char * os::Linux::_libpthread_version = NULL;
    81 static jlong initial_time_count=0;
    83 static int clock_tics_per_sec = 100;
    85 // For diagnostics to print a message once. see run_periodic_checks
    86 static sigset_t check_signal_done;
    87 static bool check_signals = true;;
    89 static pid_t _initial_pid = 0;
    91 /* Signal number used to suspend/resume a thread */
    93 /* do not use any signal number less than SIGSEGV, see 4355769 */
    94 static int SR_signum = SIGUSR2;
    95 sigset_t SR_sigset;
    97 /* Used to protect dlsym() calls */
    98 static pthread_mutex_t dl_mutex;
   100 ////////////////////////////////////////////////////////////////////////////////
   101 // utility functions
   103 static int SR_initialize();
   104 static int SR_finalize();
   106 julong os::available_memory() {
   107   return Linux::available_memory();
   108 }
   110 julong os::Linux::available_memory() {
   111   // values in struct sysinfo are "unsigned long"
   112   struct sysinfo si;
   113   sysinfo(&si);
   115   return (julong)si.freeram * si.mem_unit;
   116 }
   118 julong os::physical_memory() {
   119   return Linux::physical_memory();
   120 }
   122 julong os::allocatable_physical_memory(julong size) {
   123 #ifdef _LP64
   124   return size;
   125 #else
   126   julong result = MIN2(size, (julong)3800*M);
   127    if (!is_allocatable(result)) {
   128      // See comments under solaris for alignment considerations
   129      julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
   130      result =  MIN2(size, reasonable_size);
   131    }
   132    return result;
   133 #endif // _LP64
   134 }
   136 ////////////////////////////////////////////////////////////////////////////////
   137 // environment support
   139 bool os::getenv(const char* name, char* buf, int len) {
   140   const char* val = ::getenv(name);
   141   if (val != NULL && strlen(val) < (size_t)len) {
   142     strcpy(buf, val);
   143     return true;
   144   }
   145   if (len > 0) buf[0] = 0;  // return a null string
   146   return false;
   147 }
   150 // Return true if user is running as root.
   152 bool os::have_special_privileges() {
   153   static bool init = false;
   154   static bool privileges = false;
   155   if (!init) {
   156     privileges = (getuid() != geteuid()) || (getgid() != getegid());
   157     init = true;
   158   }
   159   return privileges;
   160 }
   163 #ifndef SYS_gettid
   164 // i386: 224, ia64: 1105, amd64: 186, sparc 143
   165 #ifdef __ia64__
   166 #define SYS_gettid 1105
   167 #elif __i386__
   168 #define SYS_gettid 224
   169 #elif __amd64__
   170 #define SYS_gettid 186
   171 #elif __sparc__
   172 #define SYS_gettid 143
   173 #else
   174 #error define gettid for the arch
   175 #endif
   176 #endif
   178 // Cpu architecture string
   179 #if   defined(ZERO)
   180 static char cpu_arch[] = ZERO_LIBARCH;
   181 #elif defined(IA64)
   182 static char cpu_arch[] = "ia64";
   183 #elif defined(IA32)
   184 static char cpu_arch[] = "i386";
   185 #elif defined(AMD64)
   186 static char cpu_arch[] = "amd64";
   187 #elif defined(SPARC)
   188 #  ifdef _LP64
   189 static char cpu_arch[] = "sparcv9";
   190 #  else
   191 static char cpu_arch[] = "sparc";
   192 #  endif
   193 #else
   194 #error Add appropriate cpu_arch setting
   195 #endif
   198 // pid_t gettid()
   199 //
   200 // Returns the kernel thread id of the currently running thread. Kernel
   201 // thread id is used to access /proc.
   202 //
   203 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
   204 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
   205 //
   206 pid_t os::Linux::gettid() {
   207   int rslt = syscall(SYS_gettid);
   208   if (rslt == -1) {
   209      // old kernel, no NPTL support
   210      return getpid();
   211   } else {
   212      return (pid_t)rslt;
   213   }
   214 }
   216 // Most versions of linux have a bug where the number of processors are
   217 // determined by looking at the /proc file system.  In a chroot environment,
   218 // the system call returns 1.  This causes the VM to act as if it is
   219 // a single processor and elide locking (see is_MP() call).
   220 static bool unsafe_chroot_detected = false;
   221 static const char *unstable_chroot_error = "/proc file system not found.\n"
   222                      "Java may be unstable running multithreaded in a chroot "
   223                      "environment on Linux when /proc filesystem is not mounted.";
   225 void os::Linux::initialize_system_info() {
   226   _processor_count = sysconf(_SC_NPROCESSORS_CONF);
   227   if (_processor_count == 1) {
   228     pid_t pid = os::Linux::gettid();
   229     char fname[32];
   230     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
   231     FILE *fp = fopen(fname, "r");
   232     if (fp == NULL) {
   233       unsafe_chroot_detected = true;
   234     } else {
   235       fclose(fp);
   236     }
   237   }
   238   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
   239   assert(_processor_count > 0, "linux error");
   240 }
   242 void os::init_system_properties_values() {
   243 //  char arch[12];
   244 //  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
   246   // The next steps are taken in the product version:
   247   //
   248   // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
   249   // This library should be located at:
   250   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
   251   //
   252   // If "/jre/lib/" appears at the right place in the path, then we
   253   // assume libjvm[_g].so is installed in a JDK and we use this path.
   254   //
   255   // Otherwise exit with message: "Could not create the Java virtual machine."
   256   //
   257   // The following extra steps are taken in the debugging version:
   258   //
   259   // If "/jre/lib/" does NOT appear at the right place in the path
   260   // instead of exit check for $JAVA_HOME environment variable.
   261   //
   262   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
   263   // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
   264   // it looks like libjvm[_g].so is installed there
   265   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
   266   //
   267   // Otherwise exit.
   268   //
   269   // Important note: if the location of libjvm.so changes this
   270   // code needs to be changed accordingly.
   272   // The next few definitions allow the code to be verbatim:
   273 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n))
   274 #define getenv(n) ::getenv(n)
   276 /*
   277  * See ld(1):
   278  *      The linker uses the following search paths to locate required
   279  *      shared libraries:
   280  *        1: ...
   281  *        ...
   282  *        7: The default directories, normally /lib and /usr/lib.
   283  */
   284 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
   285 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
   286 #else
   287 #define DEFAULT_LIBPATH "/lib:/usr/lib"
   288 #endif
   290 #define EXTENSIONS_DIR  "/lib/ext"
   291 #define ENDORSED_DIR    "/lib/endorsed"
   292 #define REG_DIR         "/usr/java/packages"
   294   {
   295     /* sysclasspath, java_home, dll_dir */
   296     {
   297         char *home_path;
   298         char *dll_path;
   299         char *pslash;
   300         char buf[MAXPATHLEN];
   301         os::jvm_path(buf, sizeof(buf));
   303         // Found the full path to libjvm.so.
   304         // Now cut the path to <java_home>/jre if we can.
   305         *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
   306         pslash = strrchr(buf, '/');
   307         if (pslash != NULL)
   308             *pslash = '\0';           /* get rid of /{client|server|hotspot} */
   309         dll_path = malloc(strlen(buf) + 1);
   310         if (dll_path == NULL)
   311             return;
   312         strcpy(dll_path, buf);
   313         Arguments::set_dll_dir(dll_path);
   315         if (pslash != NULL) {
   316             pslash = strrchr(buf, '/');
   317             if (pslash != NULL) {
   318                 *pslash = '\0';       /* get rid of /<arch> */
   319                 pslash = strrchr(buf, '/');
   320                 if (pslash != NULL)
   321                     *pslash = '\0';   /* get rid of /lib */
   322             }
   323         }
   325         home_path = malloc(strlen(buf) + 1);
   326         if (home_path == NULL)
   327             return;
   328         strcpy(home_path, buf);
   329         Arguments::set_java_home(home_path);
   331         if (!set_boot_path('/', ':'))
   332             return;
   333     }
   335     /*
   336      * Where to look for native libraries
   337      *
   338      * Note: Due to a legacy implementation, most of the library path
   339      * is set in the launcher.  This was to accomodate linking restrictions
   340      * on legacy Linux implementations (which are no longer supported).
   341      * Eventually, all the library path setting will be done here.
   342      *
   343      * However, to prevent the proliferation of improperly built native
   344      * libraries, the new path component /usr/java/packages is added here.
   345      * Eventually, all the library path setting will be done here.
   346      */
   347     {
   348         char *ld_library_path;
   350         /*
   351          * Construct the invariant part of ld_library_path. Note that the
   352          * space for the colon and the trailing null are provided by the
   353          * nulls included by the sizeof operator (so actually we allocate
   354          * a byte more than necessary).
   355          */
   356         ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
   357             strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
   358         sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
   360         /*
   361          * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
   362          * should always exist (until the legacy problem cited above is
   363          * addressed).
   364          */
   365         char *v = getenv("LD_LIBRARY_PATH");
   366         if (v != NULL) {
   367             char *t = ld_library_path;
   368             /* That's +1 for the colon and +1 for the trailing '\0' */
   369             ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
   370             sprintf(ld_library_path, "%s:%s", v, t);
   371         }
   372         Arguments::set_library_path(ld_library_path);
   373     }
   375     /*
   376      * Extensions directories.
   377      *
   378      * Note that the space for the colon and the trailing null are provided
   379      * by the nulls included by the sizeof operator (so actually one byte more
   380      * than necessary is allocated).
   381      */
   382     {
   383         char *buf = malloc(strlen(Arguments::get_java_home()) +
   384             sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
   385         sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
   386             Arguments::get_java_home());
   387         Arguments::set_ext_dirs(buf);
   388     }
   390     /* Endorsed standards default directory. */
   391     {
   392         char * buf;
   393         buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
   394         sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
   395         Arguments::set_endorsed_dirs(buf);
   396     }
   397   }
   399 #undef malloc
   400 #undef getenv
   401 #undef EXTENSIONS_DIR
   402 #undef ENDORSED_DIR
   404   // Done
   405   return;
   406 }
   408 ////////////////////////////////////////////////////////////////////////////////
   409 // breakpoint support
   411 void os::breakpoint() {
   412   BREAKPOINT;
   413 }
   415 extern "C" void breakpoint() {
   416   // use debugger to set breakpoint here
   417 }
   419 ////////////////////////////////////////////////////////////////////////////////
   420 // signal support
   422 debug_only(static bool signal_sets_initialized = false);
   423 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
   425 bool os::Linux::is_sig_ignored(int sig) {
   426       struct sigaction oact;
   427       sigaction(sig, (struct sigaction*)NULL, &oact);
   428       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
   429                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
   430       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
   431            return true;
   432       else
   433            return false;
   434 }
   436 void os::Linux::signal_sets_init() {
   437   // Should also have an assertion stating we are still single-threaded.
   438   assert(!signal_sets_initialized, "Already initialized");
   439   // Fill in signals that are necessarily unblocked for all threads in
   440   // the VM. Currently, we unblock the following signals:
   441   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
   442   //                         by -Xrs (=ReduceSignalUsage));
   443   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
   444   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
   445   // the dispositions or masks wrt these signals.
   446   // Programs embedding the VM that want to use the above signals for their
   447   // own purposes must, at this time, use the "-Xrs" option to prevent
   448   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
   449   // (See bug 4345157, and other related bugs).
   450   // In reality, though, unblocking these signals is really a nop, since
   451   // these signals are not blocked by default.
   452   sigemptyset(&unblocked_sigs);
   453   sigemptyset(&allowdebug_blocked_sigs);
   454   sigaddset(&unblocked_sigs, SIGILL);
   455   sigaddset(&unblocked_sigs, SIGSEGV);
   456   sigaddset(&unblocked_sigs, SIGBUS);
   457   sigaddset(&unblocked_sigs, SIGFPE);
   458   sigaddset(&unblocked_sigs, SR_signum);
   460   if (!ReduceSignalUsage) {
   461    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
   462       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
   463       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
   464    }
   465    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
   466       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
   467       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
   468    }
   469    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
   470       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
   471       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
   472    }
   473   }
   474   // Fill in signals that are blocked by all but the VM thread.
   475   sigemptyset(&vm_sigs);
   476   if (!ReduceSignalUsage)
   477     sigaddset(&vm_sigs, BREAK_SIGNAL);
   478   debug_only(signal_sets_initialized = true);
   480 }
   482 // These are signals that are unblocked while a thread is running Java.
   483 // (For some reason, they get blocked by default.)
   484 sigset_t* os::Linux::unblocked_signals() {
   485   assert(signal_sets_initialized, "Not initialized");
   486   return &unblocked_sigs;
   487 }
   489 // These are the signals that are blocked while a (non-VM) thread is
   490 // running Java. Only the VM thread handles these signals.
   491 sigset_t* os::Linux::vm_signals() {
   492   assert(signal_sets_initialized, "Not initialized");
   493   return &vm_sigs;
   494 }
   496 // These are signals that are blocked during cond_wait to allow debugger in
   497 sigset_t* os::Linux::allowdebug_blocked_signals() {
   498   assert(signal_sets_initialized, "Not initialized");
   499   return &allowdebug_blocked_sigs;
   500 }
   502 void os::Linux::hotspot_sigmask(Thread* thread) {
   504   //Save caller's signal mask before setting VM signal mask
   505   sigset_t caller_sigmask;
   506   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
   508   OSThread* osthread = thread->osthread();
   509   osthread->set_caller_sigmask(caller_sigmask);
   511   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
   513   if (!ReduceSignalUsage) {
   514     if (thread->is_VM_thread()) {
   515       // Only the VM thread handles BREAK_SIGNAL ...
   516       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
   517     } else {
   518       // ... all other threads block BREAK_SIGNAL
   519       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
   520     }
   521   }
   522 }
   524 //////////////////////////////////////////////////////////////////////////////
   525 // detecting pthread library
   527 void os::Linux::libpthread_init() {
   528   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
   529   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
   530   // generic name for earlier versions.
   531   // Define macros here so we can build HotSpot on old systems.
   532 # ifndef _CS_GNU_LIBC_VERSION
   533 # define _CS_GNU_LIBC_VERSION 2
   534 # endif
   535 # ifndef _CS_GNU_LIBPTHREAD_VERSION
   536 # define _CS_GNU_LIBPTHREAD_VERSION 3
   537 # endif
   539   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
   540   if (n > 0) {
   541      char *str = (char *)malloc(n);
   542      confstr(_CS_GNU_LIBC_VERSION, str, n);
   543      os::Linux::set_glibc_version(str);
   544   } else {
   545      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
   546      static char _gnu_libc_version[32];
   547      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
   548               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
   549      os::Linux::set_glibc_version(_gnu_libc_version);
   550   }
   552   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
   553   if (n > 0) {
   554      char *str = (char *)malloc(n);
   555      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
   556      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
   557      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
   558      // is the case. LinuxThreads has a hard limit on max number of threads.
   559      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
   560      // On the other hand, NPTL does not have such a limit, sysconf()
   561      // will return -1 and errno is not changed. Check if it is really NPTL.
   562      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
   563          strstr(str, "NPTL") &&
   564          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
   565        free(str);
   566        os::Linux::set_libpthread_version("linuxthreads");
   567      } else {
   568        os::Linux::set_libpthread_version(str);
   569      }
   570   } else {
   571     // glibc before 2.3.2 only has LinuxThreads.
   572     os::Linux::set_libpthread_version("linuxthreads");
   573   }
   575   if (strstr(libpthread_version(), "NPTL")) {
   576      os::Linux::set_is_NPTL();
   577   } else {
   578      os::Linux::set_is_LinuxThreads();
   579   }
   581   // LinuxThreads have two flavors: floating-stack mode, which allows variable
   582   // stack size; and fixed-stack mode. NPTL is always floating-stack.
   583   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
   584      os::Linux::set_is_floating_stack();
   585   }
   586 }
   588 /////////////////////////////////////////////////////////////////////////////
   589 // thread stack
   591 // Force Linux kernel to expand current thread stack. If "bottom" is close
   592 // to the stack guard, caller should block all signals.
   593 //
   594 // MAP_GROWSDOWN:
   595 //   A special mmap() flag that is used to implement thread stacks. It tells
   596 //   kernel that the memory region should extend downwards when needed. This
   597 //   allows early versions of LinuxThreads to only mmap the first few pages
   598 //   when creating a new thread. Linux kernel will automatically expand thread
   599 //   stack as needed (on page faults).
   600 //
   601 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
   602 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
   603 //   region, it's hard to tell if the fault is due to a legitimate stack
   604 //   access or because of reading/writing non-exist memory (e.g. buffer
   605 //   overrun). As a rule, if the fault happens below current stack pointer,
   606 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
   607 //   application (see Linux kernel fault.c).
   608 //
   609 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
   610 //   stack overflow detection.
   611 //
   612 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
   613 //   not use this flag. However, the stack of initial thread is not created
   614 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
   615 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
   616 //   and then attach the thread to JVM.
   617 //
   618 // To get around the problem and allow stack banging on Linux, we need to
   619 // manually expand thread stack after receiving the SIGSEGV.
   620 //
   621 // There are two ways to expand thread stack to address "bottom", we used
   622 // both of them in JVM before 1.5:
   623 //   1. adjust stack pointer first so that it is below "bottom", and then
   624 //      touch "bottom"
   625 //   2. mmap() the page in question
   626 //
   627 // Now alternate signal stack is gone, it's harder to use 2. For instance,
   628 // if current sp is already near the lower end of page 101, and we need to
   629 // call mmap() to map page 100, it is possible that part of the mmap() frame
   630 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
   631 // That will destroy the mmap() frame and cause VM to crash.
   632 //
   633 // The following code works by adjusting sp first, then accessing the "bottom"
   634 // page to force a page fault. Linux kernel will then automatically expand the
   635 // stack mapping.
   636 //
   637 // _expand_stack_to() assumes its frame size is less than page size, which
   638 // should always be true if the function is not inlined.
   640 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
   641 #define NOINLINE
   642 #else
   643 #define NOINLINE __attribute__ ((noinline))
   644 #endif
   646 static void _expand_stack_to(address bottom) NOINLINE;
   648 static void _expand_stack_to(address bottom) {
   649   address sp;
   650   size_t size;
   651   volatile char *p;
   653   // Adjust bottom to point to the largest address within the same page, it
   654   // gives us a one-page buffer if alloca() allocates slightly more memory.
   655   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
   656   bottom += os::Linux::page_size() - 1;
   658   // sp might be slightly above current stack pointer; if that's the case, we
   659   // will alloca() a little more space than necessary, which is OK. Don't use
   660   // os::current_stack_pointer(), as its result can be slightly below current
   661   // stack pointer, causing us to not alloca enough to reach "bottom".
   662   sp = (address)&sp;
   664   if (sp > bottom) {
   665     size = sp - bottom;
   666     p = (volatile char *)alloca(size);
   667     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
   668     p[0] = '\0';
   669   }
   670 }
   672 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
   673   assert(t!=NULL, "just checking");
   674   assert(t->osthread()->expanding_stack(), "expand should be set");
   675   assert(t->stack_base() != NULL, "stack_base was not initialized");
   677   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
   678     sigset_t mask_all, old_sigset;
   679     sigfillset(&mask_all);
   680     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
   681     _expand_stack_to(addr);
   682     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
   683     return true;
   684   }
   685   return false;
   686 }
   688 //////////////////////////////////////////////////////////////////////////////
   689 // create new thread
   691 static address highest_vm_reserved_address();
   693 // check if it's safe to start a new thread
   694 static bool _thread_safety_check(Thread* thread) {
   695   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
   696     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
   697     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
   698     //   allocated (MAP_FIXED) from high address space. Every thread stack
   699     //   occupies a fixed size slot (usually 2Mbytes, but user can change
   700     //   it to other values if they rebuild LinuxThreads).
   701     //
   702     // Problem with MAP_FIXED is that mmap() can still succeed even part of
   703     // the memory region has already been mmap'ed. That means if we have too
   704     // many threads and/or very large heap, eventually thread stack will
   705     // collide with heap.
   706     //
   707     // Here we try to prevent heap/stack collision by comparing current
   708     // stack bottom with the highest address that has been mmap'ed by JVM
   709     // plus a safety margin for memory maps created by native code.
   710     //
   711     // This feature can be disabled by setting ThreadSafetyMargin to 0
   712     //
   713     if (ThreadSafetyMargin > 0) {
   714       address stack_bottom = os::current_stack_base() - os::current_stack_size();
   716       // not safe if our stack extends below the safety margin
   717       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
   718     } else {
   719       return true;
   720     }
   721   } else {
   722     // Floating stack LinuxThreads or NPTL:
   723     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
   724     //   there's not enough space left, pthread_create() will fail. If we come
   725     //   here, that means enough space has been reserved for stack.
   726     return true;
   727   }
   728 }
   730 // Thread start routine for all newly created threads
   731 static void *java_start(Thread *thread) {
   732   // Try to randomize the cache line index of hot stack frames.
   733   // This helps when threads of the same stack traces evict each other's
   734   // cache lines. The threads can be either from the same JVM instance, or
   735   // from different JVM instances. The benefit is especially true for
   736   // processors with hyperthreading technology.
   737   static int counter = 0;
   738   int pid = os::current_process_id();
   739   alloca(((pid ^ counter++) & 7) * 128);
   741   ThreadLocalStorage::set_thread(thread);
   743   OSThread* osthread = thread->osthread();
   744   Monitor* sync = osthread->startThread_lock();
   746   // non floating stack LinuxThreads needs extra check, see above
   747   if (!_thread_safety_check(thread)) {
   748     // notify parent thread
   749     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   750     osthread->set_state(ZOMBIE);
   751     sync->notify_all();
   752     return NULL;
   753   }
   755   // thread_id is kernel thread id (similar to Solaris LWP id)
   756   osthread->set_thread_id(os::Linux::gettid());
   758   if (UseNUMA) {
   759     int lgrp_id = os::numa_get_group_id();
   760     if (lgrp_id != -1) {
   761       thread->set_lgrp_id(lgrp_id);
   762     }
   763   }
   764   // initialize signal mask for this thread
   765   os::Linux::hotspot_sigmask(thread);
   767   // initialize floating point control register
   768   os::Linux::init_thread_fpu_state();
   770   // handshaking with parent thread
   771   {
   772     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   774     // notify parent thread
   775     osthread->set_state(INITIALIZED);
   776     sync->notify_all();
   778     // wait until os::start_thread()
   779     while (osthread->get_state() == INITIALIZED) {
   780       sync->wait(Mutex::_no_safepoint_check_flag);
   781     }
   782   }
   784   // call one more level start routine
   785   thread->run();
   787   return 0;
   788 }
   790 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
   791   assert(thread->osthread() == NULL, "caller responsible");
   793   // Allocate the OSThread object
   794   OSThread* osthread = new OSThread(NULL, NULL);
   795   if (osthread == NULL) {
   796     return false;
   797   }
   799   // set the correct thread state
   800   osthread->set_thread_type(thr_type);
   802   // Initial state is ALLOCATED but not INITIALIZED
   803   osthread->set_state(ALLOCATED);
   805   thread->set_osthread(osthread);
   807   // init thread attributes
   808   pthread_attr_t attr;
   809   pthread_attr_init(&attr);
   810   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
   812   // stack size
   813   if (os::Linux::supports_variable_stack_size()) {
   814     // calculate stack size if it's not specified by caller
   815     if (stack_size == 0) {
   816       stack_size = os::Linux::default_stack_size(thr_type);
   818       switch (thr_type) {
   819       case os::java_thread:
   820         // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
   821         if (JavaThread::stack_size_at_create() > 0) stack_size = JavaThread::stack_size_at_create();
   822         break;
   823       case os::compiler_thread:
   824         if (CompilerThreadStackSize > 0) {
   825           stack_size = (size_t)(CompilerThreadStackSize * K);
   826           break;
   827         } // else fall through:
   828           // use VMThreadStackSize if CompilerThreadStackSize is not defined
   829       case os::vm_thread:
   830       case os::pgc_thread:
   831       case os::cgc_thread:
   832       case os::watcher_thread:
   833         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
   834         break;
   835       }
   836     }
   838     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
   839     pthread_attr_setstacksize(&attr, stack_size);
   840   } else {
   841     // let pthread_create() pick the default value.
   842   }
   844   // glibc guard page
   845   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
   847   ThreadState state;
   849   {
   850     // Serialize thread creation if we are running with fixed stack LinuxThreads
   851     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
   852     if (lock) {
   853       os::Linux::createThread_lock()->lock_without_safepoint_check();
   854     }
   856     pthread_t tid;
   857     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
   859     pthread_attr_destroy(&attr);
   861     if (ret != 0) {
   862       if (PrintMiscellaneous && (Verbose || WizardMode)) {
   863         perror("pthread_create()");
   864       }
   865       // Need to clean up stuff we've allocated so far
   866       thread->set_osthread(NULL);
   867       delete osthread;
   868       if (lock) os::Linux::createThread_lock()->unlock();
   869       return false;
   870     }
   872     // Store pthread info into the OSThread
   873     osthread->set_pthread_id(tid);
   875     // Wait until child thread is either initialized or aborted
   876     {
   877       Monitor* sync_with_child = osthread->startThread_lock();
   878       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
   879       while ((state = osthread->get_state()) == ALLOCATED) {
   880         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
   881       }
   882     }
   884     if (lock) {
   885       os::Linux::createThread_lock()->unlock();
   886     }
   887   }
   889   // Aborted due to thread limit being reached
   890   if (state == ZOMBIE) {
   891       thread->set_osthread(NULL);
   892       delete osthread;
   893       return false;
   894   }
   896   // The thread is returned suspended (in state INITIALIZED),
   897   // and is started higher up in the call chain
   898   assert(state == INITIALIZED, "race condition");
   899   return true;
   900 }
   902 /////////////////////////////////////////////////////////////////////////////
   903 // attach existing thread
   905 // bootstrap the main thread
   906 bool os::create_main_thread(JavaThread* thread) {
   907   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
   908   return create_attached_thread(thread);
   909 }
   911 bool os::create_attached_thread(JavaThread* thread) {
   912 #ifdef ASSERT
   913     thread->verify_not_published();
   914 #endif
   916   // Allocate the OSThread object
   917   OSThread* osthread = new OSThread(NULL, NULL);
   919   if (osthread == NULL) {
   920     return false;
   921   }
   923   // Store pthread info into the OSThread
   924   osthread->set_thread_id(os::Linux::gettid());
   925   osthread->set_pthread_id(::pthread_self());
   927   // initialize floating point control register
   928   os::Linux::init_thread_fpu_state();
   930   // Initial thread state is RUNNABLE
   931   osthread->set_state(RUNNABLE);
   933   thread->set_osthread(osthread);
   935   if (UseNUMA) {
   936     int lgrp_id = os::numa_get_group_id();
   937     if (lgrp_id != -1) {
   938       thread->set_lgrp_id(lgrp_id);
   939     }
   940   }
   942   if (os::Linux::is_initial_thread()) {
   943     // If current thread is initial thread, its stack is mapped on demand,
   944     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
   945     // the entire stack region to avoid SEGV in stack banging.
   946     // It is also useful to get around the heap-stack-gap problem on SuSE
   947     // kernel (see 4821821 for details). We first expand stack to the top
   948     // of yellow zone, then enable stack yellow zone (order is significant,
   949     // enabling yellow zone first will crash JVM on SuSE Linux), so there
   950     // is no gap between the last two virtual memory regions.
   952     JavaThread *jt = (JavaThread *)thread;
   953     address addr = jt->stack_yellow_zone_base();
   954     assert(addr != NULL, "initialization problem?");
   955     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
   957     osthread->set_expanding_stack();
   958     os::Linux::manually_expand_stack(jt, addr);
   959     osthread->clear_expanding_stack();
   960   }
   962   // initialize signal mask for this thread
   963   // and save the caller's signal mask
   964   os::Linux::hotspot_sigmask(thread);
   966   return true;
   967 }
   969 void os::pd_start_thread(Thread* thread) {
   970   OSThread * osthread = thread->osthread();
   971   assert(osthread->get_state() != INITIALIZED, "just checking");
   972   Monitor* sync_with_child = osthread->startThread_lock();
   973   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
   974   sync_with_child->notify();
   975 }
   977 // Free Linux resources related to the OSThread
   978 void os::free_thread(OSThread* osthread) {
   979   assert(osthread != NULL, "osthread not set");
   981   if (Thread::current()->osthread() == osthread) {
   982     // Restore caller's signal mask
   983     sigset_t sigmask = osthread->caller_sigmask();
   984     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
   985    }
   987   delete osthread;
   988 }
   990 //////////////////////////////////////////////////////////////////////////////
   991 // thread local storage
   993 int os::allocate_thread_local_storage() {
   994   pthread_key_t key;
   995   int rslt = pthread_key_create(&key, NULL);
   996   assert(rslt == 0, "cannot allocate thread local storage");
   997   return (int)key;
   998 }
  1000 // Note: This is currently not used by VM, as we don't destroy TLS key
  1001 // on VM exit.
  1002 void os::free_thread_local_storage(int index) {
  1003   int rslt = pthread_key_delete((pthread_key_t)index);
  1004   assert(rslt == 0, "invalid index");
  1007 void os::thread_local_storage_at_put(int index, void* value) {
  1008   int rslt = pthread_setspecific((pthread_key_t)index, value);
  1009   assert(rslt == 0, "pthread_setspecific failed");
  1012 extern "C" Thread* get_thread() {
  1013   return ThreadLocalStorage::thread();
  1016 //////////////////////////////////////////////////////////////////////////////
  1017 // initial thread
  1019 // Check if current thread is the initial thread, similar to Solaris thr_main.
  1020 bool os::Linux::is_initial_thread(void) {
  1021   char dummy;
  1022   // If called before init complete, thread stack bottom will be null.
  1023   // Can be called if fatal error occurs before initialization.
  1024   if (initial_thread_stack_bottom() == NULL) return false;
  1025   assert(initial_thread_stack_bottom() != NULL &&
  1026          initial_thread_stack_size()   != 0,
  1027          "os::init did not locate initial thread's stack region");
  1028   if ((address)&dummy >= initial_thread_stack_bottom() &&
  1029       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
  1030        return true;
  1031   else return false;
  1034 // Find the virtual memory area that contains addr
  1035 static bool find_vma(address addr, address* vma_low, address* vma_high) {
  1036   FILE *fp = fopen("/proc/self/maps", "r");
  1037   if (fp) {
  1038     address low, high;
  1039     while (!feof(fp)) {
  1040       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
  1041         if (low <= addr && addr < high) {
  1042            if (vma_low)  *vma_low  = low;
  1043            if (vma_high) *vma_high = high;
  1044            fclose (fp);
  1045            return true;
  1048       for (;;) {
  1049         int ch = fgetc(fp);
  1050         if (ch == EOF || ch == (int)'\n') break;
  1053     fclose(fp);
  1055   return false;
  1058 // Locate initial thread stack. This special handling of initial thread stack
  1059 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
  1060 // bogus value for initial thread.
  1061 void os::Linux::capture_initial_stack(size_t max_size) {
  1062   // stack size is the easy part, get it from RLIMIT_STACK
  1063   size_t stack_size;
  1064   struct rlimit rlim;
  1065   getrlimit(RLIMIT_STACK, &rlim);
  1066   stack_size = rlim.rlim_cur;
  1068   // 6308388: a bug in ld.so will relocate its own .data section to the
  1069   //   lower end of primordial stack; reduce ulimit -s value a little bit
  1070   //   so we won't install guard page on ld.so's data section.
  1071   stack_size -= 2 * page_size();
  1073   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
  1074   //   7.1, in both cases we will get 2G in return value.
  1075   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
  1076   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
  1077   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
  1078   //   in case other parts in glibc still assumes 2M max stack size.
  1079   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
  1080 #ifndef IA64
  1081   if (stack_size > 2 * K * K) stack_size = 2 * K * K;
  1082 #else
  1083   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
  1084   if (stack_size > 4 * K * K) stack_size = 4 * K * K;
  1085 #endif
  1087   // Try to figure out where the stack base (top) is. This is harder.
  1088   //
  1089   // When an application is started, glibc saves the initial stack pointer in
  1090   // a global variable "__libc_stack_end", which is then used by system
  1091   // libraries. __libc_stack_end should be pretty close to stack top. The
  1092   // variable is available since the very early days. However, because it is
  1093   // a private interface, it could disappear in the future.
  1094   //
  1095   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
  1096   // to __libc_stack_end, it is very close to stack top, but isn't the real
  1097   // stack top. Note that /proc may not exist if VM is running as a chroot
  1098   // program, so reading /proc/<pid>/stat could fail. Also the contents of
  1099   // /proc/<pid>/stat could change in the future (though unlikely).
  1100   //
  1101   // We try __libc_stack_end first. If that doesn't work, look for
  1102   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
  1103   // as a hint, which should work well in most cases.
  1105   uintptr_t stack_start;
  1107   // try __libc_stack_end first
  1108   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
  1109   if (p && *p) {
  1110     stack_start = *p;
  1111   } else {
  1112     // see if we can get the start_stack field from /proc/self/stat
  1113     FILE *fp;
  1114     int pid;
  1115     char state;
  1116     int ppid;
  1117     int pgrp;
  1118     int session;
  1119     int nr;
  1120     int tpgrp;
  1121     unsigned long flags;
  1122     unsigned long minflt;
  1123     unsigned long cminflt;
  1124     unsigned long majflt;
  1125     unsigned long cmajflt;
  1126     unsigned long utime;
  1127     unsigned long stime;
  1128     long cutime;
  1129     long cstime;
  1130     long prio;
  1131     long nice;
  1132     long junk;
  1133     long it_real;
  1134     uintptr_t start;
  1135     uintptr_t vsize;
  1136     uintptr_t rss;
  1137     unsigned long rsslim;
  1138     uintptr_t scodes;
  1139     uintptr_t ecode;
  1140     int i;
  1142     // Figure what the primordial thread stack base is. Code is inspired
  1143     // by email from Hans Boehm. /proc/self/stat begins with current pid,
  1144     // followed by command name surrounded by parentheses, state, etc.
  1145     char stat[2048];
  1146     int statlen;
  1148     fp = fopen("/proc/self/stat", "r");
  1149     if (fp) {
  1150       statlen = fread(stat, 1, 2047, fp);
  1151       stat[statlen] = '\0';
  1152       fclose(fp);
  1154       // Skip pid and the command string. Note that we could be dealing with
  1155       // weird command names, e.g. user could decide to rename java launcher
  1156       // to "java 1.4.2 :)", then the stat file would look like
  1157       //                1234 (java 1.4.2 :)) R ... ...
  1158       // We don't really need to know the command string, just find the last
  1159       // occurrence of ")" and then start parsing from there. See bug 4726580.
  1160       char * s = strrchr(stat, ')');
  1162       i = 0;
  1163       if (s) {
  1164         // Skip blank chars
  1165         do s++; while (isspace(*s));
  1167         /*                                     1   1   1   1   1   1   1   1   1   1   2   2   2   2   2   2   2   2   2 */
  1168         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1   2   3   4   5   6   7   8 */
  1169         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld "
  1170                    UINTX_FORMAT UINTX_FORMAT UINTX_FORMAT
  1171                    " %lu "
  1172                    UINTX_FORMAT UINTX_FORMAT UINTX_FORMAT,
  1173              &state,          /* 3  %c  */
  1174              &ppid,           /* 4  %d  */
  1175              &pgrp,           /* 5  %d  */
  1176              &session,        /* 6  %d  */
  1177              &nr,             /* 7  %d  */
  1178              &tpgrp,          /* 8  %d  */
  1179              &flags,          /* 9  %lu  */
  1180              &minflt,         /* 10 %lu  */
  1181              &cminflt,        /* 11 %lu  */
  1182              &majflt,         /* 12 %lu  */
  1183              &cmajflt,        /* 13 %lu  */
  1184              &utime,          /* 14 %lu  */
  1185              &stime,          /* 15 %lu  */
  1186              &cutime,         /* 16 %ld  */
  1187              &cstime,         /* 17 %ld  */
  1188              &prio,           /* 18 %ld  */
  1189              &nice,           /* 19 %ld  */
  1190              &junk,           /* 20 %ld  */
  1191              &it_real,        /* 21 %ld  */
  1192              &start,          /* 22 UINTX_FORMAT  */
  1193              &vsize,          /* 23 UINTX_FORMAT  */
  1194              &rss,            /* 24 UINTX_FORMAT  */
  1195              &rsslim,         /* 25 %lu  */
  1196              &scodes,         /* 26 UINTX_FORMAT  */
  1197              &ecode,          /* 27 UINTX_FORMAT  */
  1198              &stack_start);   /* 28 UINTX_FORMAT  */
  1201       if (i != 28 - 2) {
  1202          assert(false, "Bad conversion from /proc/self/stat");
  1203          // product mode - assume we are the initial thread, good luck in the
  1204          // embedded case.
  1205          warning("Can't detect initial thread stack location - bad conversion");
  1206          stack_start = (uintptr_t) &rlim;
  1208     } else {
  1209       // For some reason we can't open /proc/self/stat (for example, running on
  1210       // FreeBSD with a Linux emulator, or inside chroot), this should work for
  1211       // most cases, so don't abort:
  1212       warning("Can't detect initial thread stack location - no /proc/self/stat");
  1213       stack_start = (uintptr_t) &rlim;
  1217   // Now we have a pointer (stack_start) very close to the stack top, the
  1218   // next thing to do is to figure out the exact location of stack top. We
  1219   // can find out the virtual memory area that contains stack_start by
  1220   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
  1221   // and its upper limit is the real stack top. (again, this would fail if
  1222   // running inside chroot, because /proc may not exist.)
  1224   uintptr_t stack_top;
  1225   address low, high;
  1226   if (find_vma((address)stack_start, &low, &high)) {
  1227     // success, "high" is the true stack top. (ignore "low", because initial
  1228     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
  1229     stack_top = (uintptr_t)high;
  1230   } else {
  1231     // failed, likely because /proc/self/maps does not exist
  1232     warning("Can't detect initial thread stack location - find_vma failed");
  1233     // best effort: stack_start is normally within a few pages below the real
  1234     // stack top, use it as stack top, and reduce stack size so we won't put
  1235     // guard page outside stack.
  1236     stack_top = stack_start;
  1237     stack_size -= 16 * page_size();
  1240   // stack_top could be partially down the page so align it
  1241   stack_top = align_size_up(stack_top, page_size());
  1243   if (max_size && stack_size > max_size) {
  1244      _initial_thread_stack_size = max_size;
  1245   } else {
  1246      _initial_thread_stack_size = stack_size;
  1249   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
  1250   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
  1253 ////////////////////////////////////////////////////////////////////////////////
  1254 // time support
  1256 // Time since start-up in seconds to a fine granularity.
  1257 // Used by VMSelfDestructTimer and the MemProfiler.
  1258 double os::elapsedTime() {
  1260   return (double)(os::elapsed_counter()) * 0.000001;
  1263 jlong os::elapsed_counter() {
  1264   timeval time;
  1265   int status = gettimeofday(&time, NULL);
  1266   return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
  1269 jlong os::elapsed_frequency() {
  1270   return (1000 * 1000);
  1273 // For now, we say that linux does not support vtime.  I have no idea
  1274 // whether it can actually be made to (DLD, 9/13/05).
  1276 bool os::supports_vtime() { return false; }
  1277 bool os::enable_vtime()   { return false; }
  1278 bool os::vtime_enabled()  { return false; }
  1279 double os::elapsedVTime() {
  1280   // better than nothing, but not much
  1281   return elapsedTime();
  1284 jlong os::javaTimeMillis() {
  1285   timeval time;
  1286   int status = gettimeofday(&time, NULL);
  1287   assert(status != -1, "linux error");
  1288   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
  1291 #ifndef CLOCK_MONOTONIC
  1292 #define CLOCK_MONOTONIC (1)
  1293 #endif
  1295 void os::Linux::clock_init() {
  1296   // we do dlopen's in this particular order due to bug in linux
  1297   // dynamical loader (see 6348968) leading to crash on exit
  1298   void* handle = dlopen("librt.so.1", RTLD_LAZY);
  1299   if (handle == NULL) {
  1300     handle = dlopen("librt.so", RTLD_LAZY);
  1303   if (handle) {
  1304     int (*clock_getres_func)(clockid_t, struct timespec*) =
  1305            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
  1306     int (*clock_gettime_func)(clockid_t, struct timespec*) =
  1307            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
  1308     if (clock_getres_func && clock_gettime_func) {
  1309       // See if monotonic clock is supported by the kernel. Note that some
  1310       // early implementations simply return kernel jiffies (updated every
  1311       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
  1312       // for nano time (though the monotonic property is still nice to have).
  1313       // It's fixed in newer kernels, however clock_getres() still returns
  1314       // 1/HZ. We check if clock_getres() works, but will ignore its reported
  1315       // resolution for now. Hopefully as people move to new kernels, this
  1316       // won't be a problem.
  1317       struct timespec res;
  1318       struct timespec tp;
  1319       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
  1320           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
  1321         // yes, monotonic clock is supported
  1322         _clock_gettime = clock_gettime_func;
  1323       } else {
  1324         // close librt if there is no monotonic clock
  1325         dlclose(handle);
  1331 #ifndef SYS_clock_getres
  1333 #if defined(IA32) || defined(AMD64)
  1334 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
  1335 #else
  1336 #error Value of SYS_clock_getres not known on this platform
  1337 #endif
  1339 #endif
  1341 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1343 void os::Linux::fast_thread_clock_init() {
  1344   if (!UseLinuxPosixThreadCPUClocks) {
  1345     return;
  1347   clockid_t clockid;
  1348   struct timespec tp;
  1349   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
  1350       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
  1352   // Switch to using fast clocks for thread cpu time if
  1353   // the sys_clock_getres() returns 0 error code.
  1354   // Note, that some kernels may support the current thread
  1355   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
  1356   // returned by the pthread_getcpuclockid().
  1357   // If the fast Posix clocks are supported then the sys_clock_getres()
  1358   // must return at least tp.tv_sec == 0 which means a resolution
  1359   // better than 1 sec. This is extra check for reliability.
  1361   if(pthread_getcpuclockid_func &&
  1362      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
  1363      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
  1365     _supports_fast_thread_cpu_time = true;
  1366     _pthread_getcpuclockid = pthread_getcpuclockid_func;
  1370 jlong os::javaTimeNanos() {
  1371   if (Linux::supports_monotonic_clock()) {
  1372     struct timespec tp;
  1373     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
  1374     assert(status == 0, "gettime error");
  1375     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
  1376     return result;
  1377   } else {
  1378     timeval time;
  1379     int status = gettimeofday(&time, NULL);
  1380     assert(status != -1, "linux error");
  1381     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
  1382     return 1000 * usecs;
  1386 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
  1387   if (Linux::supports_monotonic_clock()) {
  1388     info_ptr->max_value = ALL_64_BITS;
  1390     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
  1391     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
  1392     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
  1393   } else {
  1394     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
  1395     info_ptr->max_value = ALL_64_BITS;
  1397     // gettimeofday is a real time clock so it skips
  1398     info_ptr->may_skip_backward = true;
  1399     info_ptr->may_skip_forward = true;
  1402   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
  1405 // Return the real, user, and system times in seconds from an
  1406 // arbitrary fixed point in the past.
  1407 bool os::getTimesSecs(double* process_real_time,
  1408                       double* process_user_time,
  1409                       double* process_system_time) {
  1410   struct tms ticks;
  1411   clock_t real_ticks = times(&ticks);
  1413   if (real_ticks == (clock_t) (-1)) {
  1414     return false;
  1415   } else {
  1416     double ticks_per_second = (double) clock_tics_per_sec;
  1417     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
  1418     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
  1419     *process_real_time = ((double) real_ticks) / ticks_per_second;
  1421     return true;
  1426 char * os::local_time_string(char *buf, size_t buflen) {
  1427   struct tm t;
  1428   time_t long_time;
  1429   time(&long_time);
  1430   localtime_r(&long_time, &t);
  1431   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
  1432                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
  1433                t.tm_hour, t.tm_min, t.tm_sec);
  1434   return buf;
  1437 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
  1438   return localtime_r(clock, res);
  1441 ////////////////////////////////////////////////////////////////////////////////
  1442 // runtime exit support
  1444 // Note: os::shutdown() might be called very early during initialization, or
  1445 // called from signal handler. Before adding something to os::shutdown(), make
  1446 // sure it is async-safe and can handle partially initialized VM.
  1447 void os::shutdown() {
  1449   // allow PerfMemory to attempt cleanup of any persistent resources
  1450   perfMemory_exit();
  1452   // needs to remove object in file system
  1453   AttachListener::abort();
  1455   // flush buffered output, finish log files
  1456   ostream_abort();
  1458   // Check for abort hook
  1459   abort_hook_t abort_hook = Arguments::abort_hook();
  1460   if (abort_hook != NULL) {
  1461     abort_hook();
  1466 // Note: os::abort() might be called very early during initialization, or
  1467 // called from signal handler. Before adding something to os::abort(), make
  1468 // sure it is async-safe and can handle partially initialized VM.
  1469 void os::abort(bool dump_core) {
  1470   os::shutdown();
  1471   if (dump_core) {
  1472 #ifndef PRODUCT
  1473     fdStream out(defaultStream::output_fd());
  1474     out.print_raw("Current thread is ");
  1475     char buf[16];
  1476     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
  1477     out.print_raw_cr(buf);
  1478     out.print_raw_cr("Dumping core ...");
  1479 #endif
  1480     ::abort(); // dump core
  1483   ::exit(1);
  1486 // Die immediately, no exit hook, no abort hook, no cleanup.
  1487 void os::die() {
  1488   // _exit() on LinuxThreads only kills current thread
  1489   ::abort();
  1492 // unused on linux for now.
  1493 void os::set_error_file(const char *logfile) {}
  1495 intx os::current_thread_id() { return (intx)pthread_self(); }
  1496 int os::current_process_id() {
  1498   // Under the old linux thread library, linux gives each thread
  1499   // its own process id. Because of this each thread will return
  1500   // a different pid if this method were to return the result
  1501   // of getpid(2). Linux provides no api that returns the pid
  1502   // of the launcher thread for the vm. This implementation
  1503   // returns a unique pid, the pid of the launcher thread
  1504   // that starts the vm 'process'.
  1506   // Under the NPTL, getpid() returns the same pid as the
  1507   // launcher thread rather than a unique pid per thread.
  1508   // Use gettid() if you want the old pre NPTL behaviour.
  1510   // if you are looking for the result of a call to getpid() that
  1511   // returns a unique pid for the calling thread, then look at the
  1512   // OSThread::thread_id() method in osThread_linux.hpp file
  1514   return (int)(_initial_pid ? _initial_pid : getpid());
  1517 // DLL functions
  1519 const char* os::dll_file_extension() { return ".so"; }
  1521 const char* os::get_temp_directory() { return "/tmp/"; }
  1523 static bool file_exists(const char* filename) {
  1524   struct stat statbuf;
  1525   if (filename == NULL || strlen(filename) == 0) {
  1526     return false;
  1528   return os::stat(filename, &statbuf) == 0;
  1531 void os::dll_build_name(char* buffer, size_t buflen,
  1532                         const char* pname, const char* fname) {
  1533   // Copied from libhpi
  1534   const size_t pnamelen = pname ? strlen(pname) : 0;
  1536   // Quietly truncate on buffer overflow.  Should be an error.
  1537   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
  1538       *buffer = '\0';
  1539       return;
  1542   if (pnamelen == 0) {
  1543     snprintf(buffer, buflen, "lib%s.so", fname);
  1544   } else if (strchr(pname, *os::path_separator()) != NULL) {
  1545     int n;
  1546     char** pelements = split_path(pname, &n);
  1547     for (int i = 0 ; i < n ; i++) {
  1548       // Really shouldn't be NULL, but check can't hurt
  1549       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
  1550         continue; // skip the empty path values
  1552       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
  1553       if (file_exists(buffer)) {
  1554         break;
  1557     // release the storage
  1558     for (int i = 0 ; i < n ; i++) {
  1559       if (pelements[i] != NULL) {
  1560         FREE_C_HEAP_ARRAY(char, pelements[i]);
  1563     if (pelements != NULL) {
  1564       FREE_C_HEAP_ARRAY(char*, pelements);
  1566   } else {
  1567     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
  1571 const char* os::get_current_directory(char *buf, int buflen) {
  1572   return getcwd(buf, buflen);
  1575 // check if addr is inside libjvm[_g].so
  1576 bool os::address_is_in_vm(address addr) {
  1577   static address libjvm_base_addr;
  1578   Dl_info dlinfo;
  1580   if (libjvm_base_addr == NULL) {
  1581     dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
  1582     libjvm_base_addr = (address)dlinfo.dli_fbase;
  1583     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
  1586   if (dladdr((void *)addr, &dlinfo)) {
  1587     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
  1590   return false;
  1593 bool os::dll_address_to_function_name(address addr, char *buf,
  1594                                       int buflen, int *offset) {
  1595   Dl_info dlinfo;
  1597   if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
  1598     if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
  1599     if (offset) *offset = addr - (address)dlinfo.dli_saddr;
  1600     return true;
  1601   } else {
  1602     if (buf) buf[0] = '\0';
  1603     if (offset) *offset = -1;
  1604     return false;
  1608 struct _address_to_library_name {
  1609   address addr;          // input : memory address
  1610   size_t  buflen;        //         size of fname
  1611   char*   fname;         // output: library name
  1612   address base;          //         library base addr
  1613 };
  1615 static int address_to_library_name_callback(struct dl_phdr_info *info,
  1616                                             size_t size, void *data) {
  1617   int i;
  1618   bool found = false;
  1619   address libbase = NULL;
  1620   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
  1622   // iterate through all loadable segments
  1623   for (i = 0; i < info->dlpi_phnum; i++) {
  1624     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
  1625     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
  1626       // base address of a library is the lowest address of its loaded
  1627       // segments.
  1628       if (libbase == NULL || libbase > segbase) {
  1629         libbase = segbase;
  1631       // see if 'addr' is within current segment
  1632       if (segbase <= d->addr &&
  1633           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
  1634         found = true;
  1639   // dlpi_name is NULL or empty if the ELF file is executable, return 0
  1640   // so dll_address_to_library_name() can fall through to use dladdr() which
  1641   // can figure out executable name from argv[0].
  1642   if (found && info->dlpi_name && info->dlpi_name[0]) {
  1643     d->base = libbase;
  1644     if (d->fname) {
  1645       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
  1647     return 1;
  1649   return 0;
  1652 bool os::dll_address_to_library_name(address addr, char* buf,
  1653                                      int buflen, int* offset) {
  1654   Dl_info dlinfo;
  1655   struct _address_to_library_name data;
  1657   // There is a bug in old glibc dladdr() implementation that it could resolve
  1658   // to wrong library name if the .so file has a base address != NULL. Here
  1659   // we iterate through the program headers of all loaded libraries to find
  1660   // out which library 'addr' really belongs to. This workaround can be
  1661   // removed once the minimum requirement for glibc is moved to 2.3.x.
  1662   data.addr = addr;
  1663   data.fname = buf;
  1664   data.buflen = buflen;
  1665   data.base = NULL;
  1666   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
  1668   if (rslt) {
  1669      // buf already contains library name
  1670      if (offset) *offset = addr - data.base;
  1671      return true;
  1672   } else if (dladdr((void*)addr, &dlinfo)){
  1673      if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
  1674      if (offset) *offset = addr - (address)dlinfo.dli_fbase;
  1675      return true;
  1676   } else {
  1677      if (buf) buf[0] = '\0';
  1678      if (offset) *offset = -1;
  1679      return false;
  1683   // Loads .dll/.so and
  1684   // in case of error it checks if .dll/.so was built for the
  1685   // same architecture as Hotspot is running on
  1687 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
  1689   void * result= ::dlopen(filename, RTLD_LAZY);
  1690   if (result != NULL) {
  1691     // Successful loading
  1692     return result;
  1695   Elf32_Ehdr elf_head;
  1697   // Read system error message into ebuf
  1698   // It may or may not be overwritten below
  1699   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
  1700   ebuf[ebuflen-1]='\0';
  1701   int diag_msg_max_length=ebuflen-strlen(ebuf);
  1702   char* diag_msg_buf=ebuf+strlen(ebuf);
  1704   if (diag_msg_max_length==0) {
  1705     // No more space in ebuf for additional diagnostics message
  1706     return NULL;
  1710   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
  1712   if (file_descriptor < 0) {
  1713     // Can't open library, report dlerror() message
  1714     return NULL;
  1717   bool failed_to_read_elf_head=
  1718     (sizeof(elf_head)!=
  1719         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
  1721   ::close(file_descriptor);
  1722   if (failed_to_read_elf_head) {
  1723     // file i/o error - report dlerror() msg
  1724     return NULL;
  1727   typedef struct {
  1728     Elf32_Half  code;         // Actual value as defined in elf.h
  1729     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
  1730     char        elf_class;    // 32 or 64 bit
  1731     char        endianess;    // MSB or LSB
  1732     char*       name;         // String representation
  1733   } arch_t;
  1735   #ifndef EM_486
  1736   #define EM_486          6               /* Intel 80486 */
  1737   #endif
  1739   static const arch_t arch_array[]={
  1740     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1741     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1742     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
  1743     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
  1744     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1745     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1746     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
  1747     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
  1748     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
  1749     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
  1750     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
  1751     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
  1752     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
  1753     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
  1754     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
  1755     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
  1756   };
  1758   #if  (defined IA32)
  1759     static  Elf32_Half running_arch_code=EM_386;
  1760   #elif   (defined AMD64)
  1761     static  Elf32_Half running_arch_code=EM_X86_64;
  1762   #elif  (defined IA64)
  1763     static  Elf32_Half running_arch_code=EM_IA_64;
  1764   #elif  (defined __sparc) && (defined _LP64)
  1765     static  Elf32_Half running_arch_code=EM_SPARCV9;
  1766   #elif  (defined __sparc) && (!defined _LP64)
  1767     static  Elf32_Half running_arch_code=EM_SPARC;
  1768   #elif  (defined __powerpc64__)
  1769     static  Elf32_Half running_arch_code=EM_PPC64;
  1770   #elif  (defined __powerpc__)
  1771     static  Elf32_Half running_arch_code=EM_PPC;
  1772   #elif  (defined ARM)
  1773     static  Elf32_Half running_arch_code=EM_ARM;
  1774   #elif  (defined S390)
  1775     static  Elf32_Half running_arch_code=EM_S390;
  1776   #elif  (defined ALPHA)
  1777     static  Elf32_Half running_arch_code=EM_ALPHA;
  1778   #elif  (defined MIPSEL)
  1779     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
  1780   #elif  (defined PARISC)
  1781     static  Elf32_Half running_arch_code=EM_PARISC;
  1782   #elif  (defined MIPS)
  1783     static  Elf32_Half running_arch_code=EM_MIPS;
  1784   #elif  (defined M68K)
  1785     static  Elf32_Half running_arch_code=EM_68K;
  1786   #else
  1787     #error Method os::dll_load requires that one of following is defined:\
  1788          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
  1789   #endif
  1791   // Identify compatability class for VM's architecture and library's architecture
  1792   // Obtain string descriptions for architectures
  1794   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
  1795   int running_arch_index=-1;
  1797   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
  1798     if (running_arch_code == arch_array[i].code) {
  1799       running_arch_index    = i;
  1801     if (lib_arch.code == arch_array[i].code) {
  1802       lib_arch.compat_class = arch_array[i].compat_class;
  1803       lib_arch.name         = arch_array[i].name;
  1807   assert(running_arch_index != -1,
  1808     "Didn't find running architecture code (running_arch_code) in arch_array");
  1809   if (running_arch_index == -1) {
  1810     // Even though running architecture detection failed
  1811     // we may still continue with reporting dlerror() message
  1812     return NULL;
  1815   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
  1816     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
  1817     return NULL;
  1820 #ifndef S390
  1821   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
  1822     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
  1823     return NULL;
  1825 #endif // !S390
  1827   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
  1828     if ( lib_arch.name!=NULL ) {
  1829       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  1830         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
  1831         lib_arch.name, arch_array[running_arch_index].name);
  1832     } else {
  1833       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  1834       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
  1835         lib_arch.code,
  1836         arch_array[running_arch_index].name);
  1840   return NULL;
  1843 /*
  1844  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
  1845  * chances are you might want to run the generated bits against glibc-2.0
  1846  * libdl.so, so always use locking for any version of glibc.
  1847  */
  1848 void* os::dll_lookup(void* handle, const char* name) {
  1849   pthread_mutex_lock(&dl_mutex);
  1850   void* res = dlsym(handle, name);
  1851   pthread_mutex_unlock(&dl_mutex);
  1852   return res;
  1856 bool _print_ascii_file(const char* filename, outputStream* st) {
  1857   int fd = open(filename, O_RDONLY);
  1858   if (fd == -1) {
  1859      return false;
  1862   char buf[32];
  1863   int bytes;
  1864   while ((bytes = read(fd, buf, sizeof(buf))) > 0) {
  1865     st->print_raw(buf, bytes);
  1868   close(fd);
  1870   return true;
  1873 void os::print_dll_info(outputStream *st) {
  1874    st->print_cr("Dynamic libraries:");
  1876    char fname[32];
  1877    pid_t pid = os::Linux::gettid();
  1879    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
  1881    if (!_print_ascii_file(fname, st)) {
  1882      st->print("Can not get library information for pid = %d\n", pid);
  1887 void os::print_os_info(outputStream* st) {
  1888   st->print("OS:");
  1890   // Try to identify popular distros.
  1891   // Most Linux distributions have /etc/XXX-release file, which contains
  1892   // the OS version string. Some have more than one /etc/XXX-release file
  1893   // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
  1894   // so the order is important.
  1895   if (!_print_ascii_file("/etc/mandrake-release", st) &&
  1896       !_print_ascii_file("/etc/sun-release", st) &&
  1897       !_print_ascii_file("/etc/redhat-release", st) &&
  1898       !_print_ascii_file("/etc/SuSE-release", st) &&
  1899       !_print_ascii_file("/etc/turbolinux-release", st) &&
  1900       !_print_ascii_file("/etc/gentoo-release", st) &&
  1901       !_print_ascii_file("/etc/debian_version", st)) {
  1902       st->print("Linux");
  1904   st->cr();
  1906   // kernel
  1907   st->print("uname:");
  1908   struct utsname name;
  1909   uname(&name);
  1910   st->print(name.sysname); st->print(" ");
  1911   st->print(name.release); st->print(" ");
  1912   st->print(name.version); st->print(" ");
  1913   st->print(name.machine);
  1914   st->cr();
  1916   // Print warning if unsafe chroot environment detected
  1917   if (unsafe_chroot_detected) {
  1918     st->print("WARNING!! ");
  1919     st->print_cr(unstable_chroot_error);
  1922   // libc, pthread
  1923   st->print("libc:");
  1924   st->print(os::Linux::glibc_version()); st->print(" ");
  1925   st->print(os::Linux::libpthread_version()); st->print(" ");
  1926   if (os::Linux::is_LinuxThreads()) {
  1927      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
  1929   st->cr();
  1931   // rlimit
  1932   st->print("rlimit:");
  1933   struct rlimit rlim;
  1935   st->print(" STACK ");
  1936   getrlimit(RLIMIT_STACK, &rlim);
  1937   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  1938   else st->print("%uk", rlim.rlim_cur >> 10);
  1940   st->print(", CORE ");
  1941   getrlimit(RLIMIT_CORE, &rlim);
  1942   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  1943   else st->print("%uk", rlim.rlim_cur >> 10);
  1945   st->print(", NPROC ");
  1946   getrlimit(RLIMIT_NPROC, &rlim);
  1947   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  1948   else st->print("%d", rlim.rlim_cur);
  1950   st->print(", NOFILE ");
  1951   getrlimit(RLIMIT_NOFILE, &rlim);
  1952   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  1953   else st->print("%d", rlim.rlim_cur);
  1955   st->print(", AS ");
  1956   getrlimit(RLIMIT_AS, &rlim);
  1957   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  1958   else st->print("%uk", rlim.rlim_cur >> 10);
  1959   st->cr();
  1961   // load average
  1962   st->print("load average:");
  1963   double loadavg[3];
  1964   os::loadavg(loadavg, 3);
  1965   st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
  1966   st->cr();
  1969 void os::print_memory_info(outputStream* st) {
  1971   st->print("Memory:");
  1972   st->print(" %dk page", os::vm_page_size()>>10);
  1974   // values in struct sysinfo are "unsigned long"
  1975   struct sysinfo si;
  1976   sysinfo(&si);
  1978   st->print(", physical " UINT64_FORMAT "k",
  1979             os::physical_memory() >> 10);
  1980   st->print("(" UINT64_FORMAT "k free)",
  1981             os::available_memory() >> 10);
  1982   st->print(", swap " UINT64_FORMAT "k",
  1983             ((jlong)si.totalswap * si.mem_unit) >> 10);
  1984   st->print("(" UINT64_FORMAT "k free)",
  1985             ((jlong)si.freeswap * si.mem_unit) >> 10);
  1986   st->cr();
  1989 // Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
  1990 // but they're the same for all the linux arch that we support
  1991 // and they're the same for solaris but there's no common place to put this.
  1992 const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
  1993                           "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
  1994                           "ILL_COPROC", "ILL_BADSTK" };
  1996 const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
  1997                           "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
  1998                           "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
  2000 const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
  2002 const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
  2004 void os::print_siginfo(outputStream* st, void* siginfo) {
  2005   st->print("siginfo:");
  2007   const int buflen = 100;
  2008   char buf[buflen];
  2009   siginfo_t *si = (siginfo_t*)siginfo;
  2010   st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
  2011   if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
  2012     st->print("si_errno=%s", buf);
  2013   } else {
  2014     st->print("si_errno=%d", si->si_errno);
  2016   const int c = si->si_code;
  2017   assert(c > 0, "unexpected si_code");
  2018   switch (si->si_signo) {
  2019   case SIGILL:
  2020     st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
  2021     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2022     break;
  2023   case SIGFPE:
  2024     st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
  2025     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2026     break;
  2027   case SIGSEGV:
  2028     st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
  2029     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2030     break;
  2031   case SIGBUS:
  2032     st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
  2033     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2034     break;
  2035   default:
  2036     st->print(", si_code=%d", si->si_code);
  2037     // no si_addr
  2040   if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
  2041       UseSharedSpaces) {
  2042     FileMapInfo* mapinfo = FileMapInfo::current_info();
  2043     if (mapinfo->is_in_shared_space(si->si_addr)) {
  2044       st->print("\n\nError accessing class data sharing archive."   \
  2045                 " Mapped file inaccessible during execution, "      \
  2046                 " possible disk/network problem.");
  2049   st->cr();
  2053 static void print_signal_handler(outputStream* st, int sig,
  2054                                  char* buf, size_t buflen);
  2056 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  2057   st->print_cr("Signal Handlers:");
  2058   print_signal_handler(st, SIGSEGV, buf, buflen);
  2059   print_signal_handler(st, SIGBUS , buf, buflen);
  2060   print_signal_handler(st, SIGFPE , buf, buflen);
  2061   print_signal_handler(st, SIGPIPE, buf, buflen);
  2062   print_signal_handler(st, SIGXFSZ, buf, buflen);
  2063   print_signal_handler(st, SIGILL , buf, buflen);
  2064   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
  2065   print_signal_handler(st, SR_signum, buf, buflen);
  2066   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
  2067   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
  2068   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
  2069   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
  2072 static char saved_jvm_path[MAXPATHLEN] = {0};
  2074 // Find the full path to the current module, libjvm.so or libjvm_g.so
  2075 void os::jvm_path(char *buf, jint len) {
  2076   // Error checking.
  2077   if (len < MAXPATHLEN) {
  2078     assert(false, "must use a large-enough buffer");
  2079     buf[0] = '\0';
  2080     return;
  2082   // Lazy resolve the path to current module.
  2083   if (saved_jvm_path[0] != 0) {
  2084     strcpy(buf, saved_jvm_path);
  2085     return;
  2088   char dli_fname[MAXPATHLEN];
  2089   bool ret = dll_address_to_library_name(
  2090                 CAST_FROM_FN_PTR(address, os::jvm_path),
  2091                 dli_fname, sizeof(dli_fname), NULL);
  2092   assert(ret != 0, "cannot locate libjvm");
  2093   if (realpath(dli_fname, buf) == NULL)
  2094     return;
  2096   if (strcmp(Arguments::sun_java_launcher(), "gamma") == 0) {
  2097     // Support for the gamma launcher.  Typical value for buf is
  2098     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
  2099     // the right place in the string, then assume we are installed in a JDK and
  2100     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
  2101     // up the path so it looks like libjvm.so is installed there (append a
  2102     // fake suffix hotspot/libjvm.so).
  2103     const char *p = buf + strlen(buf) - 1;
  2104     for (int count = 0; p > buf && count < 5; ++count) {
  2105       for (--p; p > buf && *p != '/'; --p)
  2106         /* empty */ ;
  2109     if (strncmp(p, "/jre/lib/", 9) != 0) {
  2110       // Look for JAVA_HOME in the environment.
  2111       char* java_home_var = ::getenv("JAVA_HOME");
  2112       if (java_home_var != NULL && java_home_var[0] != 0) {
  2113         // Check the current module name "libjvm.so" or "libjvm_g.so".
  2114         p = strrchr(buf, '/');
  2115         assert(strstr(p, "/libjvm") == p, "invalid library name");
  2116         p = strstr(p, "_g") ? "_g" : "";
  2118         if (realpath(java_home_var, buf) == NULL)
  2119           return;
  2120         sprintf(buf + strlen(buf), "/jre/lib/%s", cpu_arch);
  2121         if (0 == access(buf, F_OK)) {
  2122           // Use current module name "libjvm[_g].so" instead of
  2123           // "libjvm"debug_only("_g")".so" since for fastdebug version
  2124           // we should have "libjvm.so" but debug_only("_g") adds "_g"!
  2125           // It is used when we are choosing the HPI library's name
  2126           // "libhpi[_g].so" in hpi::initialize_get_interface().
  2127           sprintf(buf + strlen(buf), "/hotspot/libjvm%s.so", p);
  2128         } else {
  2129           // Go back to path of .so
  2130           if (realpath(dli_fname, buf) == NULL)
  2131             return;
  2137   strcpy(saved_jvm_path, buf);
  2140 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  2141   // no prefix required, not even "_"
  2144 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  2145   // no suffix required
  2148 ////////////////////////////////////////////////////////////////////////////////
  2149 // sun.misc.Signal support
  2151 static volatile jint sigint_count = 0;
  2153 static void
  2154 UserHandler(int sig, void *siginfo, void *context) {
  2155   // 4511530 - sem_post is serialized and handled by the manager thread. When
  2156   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
  2157   // don't want to flood the manager thread with sem_post requests.
  2158   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
  2159       return;
  2161   // Ctrl-C is pressed during error reporting, likely because the error
  2162   // handler fails to abort. Let VM die immediately.
  2163   if (sig == SIGINT && is_error_reported()) {
  2164      os::die();
  2167   os::signal_notify(sig);
  2170 void* os::user_handler() {
  2171   return CAST_FROM_FN_PTR(void*, UserHandler);
  2174 extern "C" {
  2175   typedef void (*sa_handler_t)(int);
  2176   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
  2179 void* os::signal(int signal_number, void* handler) {
  2180   struct sigaction sigAct, oldSigAct;
  2182   sigfillset(&(sigAct.sa_mask));
  2183   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
  2184   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
  2186   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
  2187     // -1 means registration failed
  2188     return (void *)-1;
  2191   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
  2194 void os::signal_raise(int signal_number) {
  2195   ::raise(signal_number);
  2198 /*
  2199  * The following code is moved from os.cpp for making this
  2200  * code platform specific, which it is by its very nature.
  2201  */
  2203 // Will be modified when max signal is changed to be dynamic
  2204 int os::sigexitnum_pd() {
  2205   return NSIG;
  2208 // a counter for each possible signal value
  2209 static volatile jint pending_signals[NSIG+1] = { 0 };
  2211 // Linux(POSIX) specific hand shaking semaphore.
  2212 static sem_t sig_sem;
  2214 void os::signal_init_pd() {
  2215   // Initialize signal structures
  2216   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
  2218   // Initialize signal semaphore
  2219   ::sem_init(&sig_sem, 0, 0);
  2222 void os::signal_notify(int sig) {
  2223   Atomic::inc(&pending_signals[sig]);
  2224   ::sem_post(&sig_sem);
  2227 static int check_pending_signals(bool wait) {
  2228   Atomic::store(0, &sigint_count);
  2229   for (;;) {
  2230     for (int i = 0; i < NSIG + 1; i++) {
  2231       jint n = pending_signals[i];
  2232       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  2233         return i;
  2236     if (!wait) {
  2237       return -1;
  2239     JavaThread *thread = JavaThread::current();
  2240     ThreadBlockInVM tbivm(thread);
  2242     bool threadIsSuspended;
  2243     do {
  2244       thread->set_suspend_equivalent();
  2245       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  2246       ::sem_wait(&sig_sem);
  2248       // were we externally suspended while we were waiting?
  2249       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  2250       if (threadIsSuspended) {
  2251         //
  2252         // The semaphore has been incremented, but while we were waiting
  2253         // another thread suspended us. We don't want to continue running
  2254         // while suspended because that would surprise the thread that
  2255         // suspended us.
  2256         //
  2257         ::sem_post(&sig_sem);
  2259         thread->java_suspend_self();
  2261     } while (threadIsSuspended);
  2265 int os::signal_lookup() {
  2266   return check_pending_signals(false);
  2269 int os::signal_wait() {
  2270   return check_pending_signals(true);
  2273 ////////////////////////////////////////////////////////////////////////////////
  2274 // Virtual Memory
  2276 int os::vm_page_size() {
  2277   // Seems redundant as all get out
  2278   assert(os::Linux::page_size() != -1, "must call os::init");
  2279   return os::Linux::page_size();
  2282 // Solaris allocates memory by pages.
  2283 int os::vm_allocation_granularity() {
  2284   assert(os::Linux::page_size() != -1, "must call os::init");
  2285   return os::Linux::page_size();
  2288 // Rationale behind this function:
  2289 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
  2290 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
  2291 //  samples for JITted code. Here we create private executable mapping over the code cache
  2292 //  and then we can use standard (well, almost, as mapping can change) way to provide
  2293 //  info for the reporting script by storing timestamp and location of symbol
  2294 void linux_wrap_code(char* base, size_t size) {
  2295   static volatile jint cnt = 0;
  2297   if (!UseOprofile) {
  2298     return;
  2301   char buf[40];
  2302   int num = Atomic::add(1, &cnt);
  2304   sprintf(buf, "/tmp/hs-vm-%d-%d", os::current_process_id(), num);
  2305   unlink(buf);
  2307   int fd = open(buf, O_CREAT | O_RDWR, S_IRWXU);
  2309   if (fd != -1) {
  2310     off_t rv = lseek(fd, size-2, SEEK_SET);
  2311     if (rv != (off_t)-1) {
  2312       if (write(fd, "", 1) == 1) {
  2313         mmap(base, size,
  2314              PROT_READ|PROT_WRITE|PROT_EXEC,
  2315              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
  2318     close(fd);
  2319     unlink(buf);
  2323 // NOTE: Linux kernel does not really reserve the pages for us.
  2324 //       All it does is to check if there are enough free pages
  2325 //       left at the time of mmap(). This could be a potential
  2326 //       problem.
  2327 bool os::commit_memory(char* addr, size_t size, bool exec) {
  2328   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  2329   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
  2330                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
  2331   return res != (uintptr_t) MAP_FAILED;
  2334 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
  2335                        bool exec) {
  2336   return commit_memory(addr, size, exec);
  2339 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
  2341 void os::free_memory(char *addr, size_t bytes) {
  2342   ::mmap(addr, bytes, PROT_READ | PROT_WRITE,
  2343          MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
  2346 void os::numa_make_global(char *addr, size_t bytes) {
  2347   Linux::numa_interleave_memory(addr, bytes);
  2350 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
  2351   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
  2354 bool os::numa_topology_changed()   { return false; }
  2356 size_t os::numa_get_groups_num() {
  2357   int max_node = Linux::numa_max_node();
  2358   return max_node > 0 ? max_node + 1 : 1;
  2361 int os::numa_get_group_id() {
  2362   int cpu_id = Linux::sched_getcpu();
  2363   if (cpu_id != -1) {
  2364     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
  2365     if (lgrp_id != -1) {
  2366       return lgrp_id;
  2369   return 0;
  2372 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  2373   for (size_t i = 0; i < size; i++) {
  2374     ids[i] = i;
  2376   return size;
  2379 bool os::get_page_info(char *start, page_info* info) {
  2380   return false;
  2383 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  2384   return end;
  2387 extern "C" void numa_warn(int number, char *where, ...) { }
  2388 extern "C" void numa_error(char *where) { }
  2391 // If we are running with libnuma version > 2, then we should
  2392 // be trying to use symbols with versions 1.1
  2393 // If we are running with earlier version, which did not have symbol versions,
  2394 // we should use the base version.
  2395 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
  2396   void *f = dlvsym(handle, name, "libnuma_1.1");
  2397   if (f == NULL) {
  2398     f = dlsym(handle, name);
  2400   return f;
  2403 bool os::Linux::libnuma_init() {
  2404   // sched_getcpu() should be in libc.
  2405   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
  2406                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
  2408   if (sched_getcpu() != -1) { // Does it work?
  2409     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
  2410     if (handle != NULL) {
  2411       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
  2412                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
  2413       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
  2414                                        libnuma_dlsym(handle, "numa_max_node")));
  2415       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
  2416                                         libnuma_dlsym(handle, "numa_available")));
  2417       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
  2418                                             libnuma_dlsym(handle, "numa_tonode_memory")));
  2419       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
  2420                                             libnuma_dlsym(handle, "numa_interleave_memory")));
  2423       if (numa_available() != -1) {
  2424         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
  2425         // Create a cpu -> node mapping
  2426         _cpu_to_node = new (ResourceObj::C_HEAP) GrowableArray<int>(0, true);
  2427         rebuild_cpu_to_node_map();
  2428         return true;
  2432   return false;
  2435 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
  2436 // The table is later used in get_node_by_cpu().
  2437 void os::Linux::rebuild_cpu_to_node_map() {
  2438   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
  2439                               // in libnuma (possible values are starting from 16,
  2440                               // and continuing up with every other power of 2, but less
  2441                               // than the maximum number of CPUs supported by kernel), and
  2442                               // is a subject to change (in libnuma version 2 the requirements
  2443                               // are more reasonable) we'll just hardcode the number they use
  2444                               // in the library.
  2445   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
  2447   size_t cpu_num = os::active_processor_count();
  2448   size_t cpu_map_size = NCPUS / BitsPerCLong;
  2449   size_t cpu_map_valid_size =
  2450     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
  2452   cpu_to_node()->clear();
  2453   cpu_to_node()->at_grow(cpu_num - 1);
  2454   size_t node_num = numa_get_groups_num();
  2456   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size);
  2457   for (size_t i = 0; i < node_num; i++) {
  2458     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
  2459       for (size_t j = 0; j < cpu_map_valid_size; j++) {
  2460         if (cpu_map[j] != 0) {
  2461           for (size_t k = 0; k < BitsPerCLong; k++) {
  2462             if (cpu_map[j] & (1UL << k)) {
  2463               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
  2470   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
  2473 int os::Linux::get_node_by_cpu(int cpu_id) {
  2474   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
  2475     return cpu_to_node()->at(cpu_id);
  2477   return -1;
  2480 GrowableArray<int>* os::Linux::_cpu_to_node;
  2481 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
  2482 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
  2483 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
  2484 os::Linux::numa_available_func_t os::Linux::_numa_available;
  2485 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
  2486 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
  2487 unsigned long* os::Linux::_numa_all_nodes;
  2489 bool os::uncommit_memory(char* addr, size_t size) {
  2490   return ::mmap(addr, size, PROT_NONE,
  2491                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0)
  2492     != MAP_FAILED;
  2495 static address _highest_vm_reserved_address = NULL;
  2497 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
  2498 // at 'requested_addr'. If there are existing memory mappings at the same
  2499 // location, however, they will be overwritten. If 'fixed' is false,
  2500 // 'requested_addr' is only treated as a hint, the return value may or
  2501 // may not start from the requested address. Unlike Linux mmap(), this
  2502 // function returns NULL to indicate failure.
  2503 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
  2504   char * addr;
  2505   int flags;
  2507   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
  2508   if (fixed) {
  2509     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
  2510     flags |= MAP_FIXED;
  2513   // Map uncommitted pages PROT_READ and PROT_WRITE, change access
  2514   // to PROT_EXEC if executable when we commit the page.
  2515   addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
  2516                        flags, -1, 0);
  2518   if (addr != MAP_FAILED) {
  2519     // anon_mmap() should only get called during VM initialization,
  2520     // don't need lock (actually we can skip locking even it can be called
  2521     // from multiple threads, because _highest_vm_reserved_address is just a
  2522     // hint about the upper limit of non-stack memory regions.)
  2523     if ((address)addr + bytes > _highest_vm_reserved_address) {
  2524       _highest_vm_reserved_address = (address)addr + bytes;
  2528   return addr == MAP_FAILED ? NULL : addr;
  2531 // Don't update _highest_vm_reserved_address, because there might be memory
  2532 // regions above addr + size. If so, releasing a memory region only creates
  2533 // a hole in the address space, it doesn't help prevent heap-stack collision.
  2534 //
  2535 static int anon_munmap(char * addr, size_t size) {
  2536   return ::munmap(addr, size) == 0;
  2539 char* os::reserve_memory(size_t bytes, char* requested_addr,
  2540                          size_t alignment_hint) {
  2541   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
  2544 bool os::release_memory(char* addr, size_t size) {
  2545   return anon_munmap(addr, size);
  2548 static address highest_vm_reserved_address() {
  2549   return _highest_vm_reserved_address;
  2552 static bool linux_mprotect(char* addr, size_t size, int prot) {
  2553   // Linux wants the mprotect address argument to be page aligned.
  2554   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
  2556   // According to SUSv3, mprotect() should only be used with mappings
  2557   // established by mmap(), and mmap() always maps whole pages. Unaligned
  2558   // 'addr' likely indicates problem in the VM (e.g. trying to change
  2559   // protection of malloc'ed or statically allocated memory). Check the
  2560   // caller if you hit this assert.
  2561   assert(addr == bottom, "sanity check");
  2563   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
  2564   return ::mprotect(bottom, size, prot) == 0;
  2567 // Set protections specified
  2568 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  2569                         bool is_committed) {
  2570   unsigned int p = 0;
  2571   switch (prot) {
  2572   case MEM_PROT_NONE: p = PROT_NONE; break;
  2573   case MEM_PROT_READ: p = PROT_READ; break;
  2574   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
  2575   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
  2576   default:
  2577     ShouldNotReachHere();
  2579   // is_committed is unused.
  2580   return linux_mprotect(addr, bytes, p);
  2583 bool os::guard_memory(char* addr, size_t size) {
  2584   return linux_mprotect(addr, size, PROT_NONE);
  2587 bool os::unguard_memory(char* addr, size_t size) {
  2588   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
  2591 // Large page support
  2593 static size_t _large_page_size = 0;
  2595 bool os::large_page_init() {
  2596   if (!UseLargePages) return false;
  2598   if (LargePageSizeInBytes) {
  2599     _large_page_size = LargePageSizeInBytes;
  2600   } else {
  2601     // large_page_size on Linux is used to round up heap size. x86 uses either
  2602     // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
  2603     // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
  2604     // page as large as 256M.
  2605     //
  2606     // Here we try to figure out page size by parsing /proc/meminfo and looking
  2607     // for a line with the following format:
  2608     //    Hugepagesize:     2048 kB
  2609     //
  2610     // If we can't determine the value (e.g. /proc is not mounted, or the text
  2611     // format has been changed), we'll use the largest page size supported by
  2612     // the processor.
  2614 #ifndef ZERO
  2615     _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M);
  2616 #endif // ZERO
  2618     FILE *fp = fopen("/proc/meminfo", "r");
  2619     if (fp) {
  2620       while (!feof(fp)) {
  2621         int x = 0;
  2622         char buf[16];
  2623         if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
  2624           if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
  2625             _large_page_size = x * K;
  2626             break;
  2628         } else {
  2629           // skip to next line
  2630           for (;;) {
  2631             int ch = fgetc(fp);
  2632             if (ch == EOF || ch == (int)'\n') break;
  2636       fclose(fp);
  2640   const size_t default_page_size = (size_t)Linux::page_size();
  2641   if (_large_page_size > default_page_size) {
  2642     _page_sizes[0] = _large_page_size;
  2643     _page_sizes[1] = default_page_size;
  2644     _page_sizes[2] = 0;
  2647   // Large page support is available on 2.6 or newer kernel, some vendors
  2648   // (e.g. Redhat) have backported it to their 2.4 based distributions.
  2649   // We optimistically assume the support is available. If later it turns out
  2650   // not true, VM will automatically switch to use regular page size.
  2651   return true;
  2654 #ifndef SHM_HUGETLB
  2655 #define SHM_HUGETLB 04000
  2656 #endif
  2658 char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
  2659   // "exec" is passed in but not used.  Creating the shared image for
  2660   // the code cache doesn't have an SHM_X executable permission to check.
  2661   assert(UseLargePages, "only for large pages");
  2663   key_t key = IPC_PRIVATE;
  2664   char *addr;
  2666   bool warn_on_failure = UseLargePages &&
  2667                         (!FLAG_IS_DEFAULT(UseLargePages) ||
  2668                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
  2669                         );
  2670   char msg[128];
  2672   // Create a large shared memory region to attach to based on size.
  2673   // Currently, size is the total size of the heap
  2674   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
  2675   if (shmid == -1) {
  2676      // Possible reasons for shmget failure:
  2677      // 1. shmmax is too small for Java heap.
  2678      //    > check shmmax value: cat /proc/sys/kernel/shmmax
  2679      //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
  2680      // 2. not enough large page memory.
  2681      //    > check available large pages: cat /proc/meminfo
  2682      //    > increase amount of large pages:
  2683      //          echo new_value > /proc/sys/vm/nr_hugepages
  2684      //      Note 1: different Linux may use different name for this property,
  2685      //            e.g. on Redhat AS-3 it is "hugetlb_pool".
  2686      //      Note 2: it's possible there's enough physical memory available but
  2687      //            they are so fragmented after a long run that they can't
  2688      //            coalesce into large pages. Try to reserve large pages when
  2689      //            the system is still "fresh".
  2690      if (warn_on_failure) {
  2691        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
  2692        warning(msg);
  2694      return NULL;
  2697   // attach to the region
  2698   addr = (char*)shmat(shmid, NULL, 0);
  2699   int err = errno;
  2701   // Remove shmid. If shmat() is successful, the actual shared memory segment
  2702   // will be deleted when it's detached by shmdt() or when the process
  2703   // terminates. If shmat() is not successful this will remove the shared
  2704   // segment immediately.
  2705   shmctl(shmid, IPC_RMID, NULL);
  2707   if ((intptr_t)addr == -1) {
  2708      if (warn_on_failure) {
  2709        jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
  2710        warning(msg);
  2712      return NULL;
  2715   return addr;
  2718 bool os::release_memory_special(char* base, size_t bytes) {
  2719   // detaching the SHM segment will also delete it, see reserve_memory_special()
  2720   int rslt = shmdt(base);
  2721   return rslt == 0;
  2724 size_t os::large_page_size() {
  2725   return _large_page_size;
  2728 // Linux does not support anonymous mmap with large page memory. The only way
  2729 // to reserve large page memory without file backing is through SysV shared
  2730 // memory API. The entire memory region is committed and pinned upfront.
  2731 // Hopefully this will change in the future...
  2732 bool os::can_commit_large_page_memory() {
  2733   return false;
  2736 bool os::can_execute_large_page_memory() {
  2737   return false;
  2740 // Reserve memory at an arbitrary address, only if that area is
  2741 // available (and not reserved for something else).
  2743 char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  2744   const int max_tries = 10;
  2745   char* base[max_tries];
  2746   size_t size[max_tries];
  2747   const size_t gap = 0x000000;
  2749   // Assert only that the size is a multiple of the page size, since
  2750   // that's all that mmap requires, and since that's all we really know
  2751   // about at this low abstraction level.  If we need higher alignment,
  2752   // we can either pass an alignment to this method or verify alignment
  2753   // in one of the methods further up the call chain.  See bug 5044738.
  2754   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
  2756   // Repeatedly allocate blocks until the block is allocated at the
  2757   // right spot. Give up after max_tries. Note that reserve_memory() will
  2758   // automatically update _highest_vm_reserved_address if the call is
  2759   // successful. The variable tracks the highest memory address every reserved
  2760   // by JVM. It is used to detect heap-stack collision if running with
  2761   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
  2762   // space than needed, it could confuse the collision detecting code. To
  2763   // solve the problem, save current _highest_vm_reserved_address and
  2764   // calculate the correct value before return.
  2765   address old_highest = _highest_vm_reserved_address;
  2767   // Linux mmap allows caller to pass an address as hint; give it a try first,
  2768   // if kernel honors the hint then we can return immediately.
  2769   char * addr = anon_mmap(requested_addr, bytes, false);
  2770   if (addr == requested_addr) {
  2771      return requested_addr;
  2774   if (addr != NULL) {
  2775      // mmap() is successful but it fails to reserve at the requested address
  2776      anon_munmap(addr, bytes);
  2779   int i;
  2780   for (i = 0; i < max_tries; ++i) {
  2781     base[i] = reserve_memory(bytes);
  2783     if (base[i] != NULL) {
  2784       // Is this the block we wanted?
  2785       if (base[i] == requested_addr) {
  2786         size[i] = bytes;
  2787         break;
  2790       // Does this overlap the block we wanted? Give back the overlapped
  2791       // parts and try again.
  2793       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
  2794       if (top_overlap >= 0 && top_overlap < bytes) {
  2795         unmap_memory(base[i], top_overlap);
  2796         base[i] += top_overlap;
  2797         size[i] = bytes - top_overlap;
  2798       } else {
  2799         size_t bottom_overlap = base[i] + bytes - requested_addr;
  2800         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
  2801           unmap_memory(requested_addr, bottom_overlap);
  2802           size[i] = bytes - bottom_overlap;
  2803         } else {
  2804           size[i] = bytes;
  2810   // Give back the unused reserved pieces.
  2812   for (int j = 0; j < i; ++j) {
  2813     if (base[j] != NULL) {
  2814       unmap_memory(base[j], size[j]);
  2818   if (i < max_tries) {
  2819     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
  2820     return requested_addr;
  2821   } else {
  2822     _highest_vm_reserved_address = old_highest;
  2823     return NULL;
  2827 size_t os::read(int fd, void *buf, unsigned int nBytes) {
  2828   return ::read(fd, buf, nBytes);
  2831 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
  2832 // Solaris uses poll(), linux uses park().
  2833 // Poll() is likely a better choice, assuming that Thread.interrupt()
  2834 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
  2835 // SIGSEGV, see 4355769.
  2837 const int NANOSECS_PER_MILLISECS = 1000000;
  2839 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
  2840   assert(thread == Thread::current(),  "thread consistency check");
  2842   ParkEvent * const slp = thread->_SleepEvent ;
  2843   slp->reset() ;
  2844   OrderAccess::fence() ;
  2846   if (interruptible) {
  2847     jlong prevtime = javaTimeNanos();
  2849     for (;;) {
  2850       if (os::is_interrupted(thread, true)) {
  2851         return OS_INTRPT;
  2854       jlong newtime = javaTimeNanos();
  2856       if (newtime - prevtime < 0) {
  2857         // time moving backwards, should only happen if no monotonic clock
  2858         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  2859         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  2860       } else {
  2861         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
  2864       if(millis <= 0) {
  2865         return OS_OK;
  2868       prevtime = newtime;
  2871         assert(thread->is_Java_thread(), "sanity check");
  2872         JavaThread *jt = (JavaThread *) thread;
  2873         ThreadBlockInVM tbivm(jt);
  2874         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
  2876         jt->set_suspend_equivalent();
  2877         // cleared by handle_special_suspend_equivalent_condition() or
  2878         // java_suspend_self() via check_and_wait_while_suspended()
  2880         slp->park(millis);
  2882         // were we externally suspended while we were waiting?
  2883         jt->check_and_wait_while_suspended();
  2886   } else {
  2887     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  2888     jlong prevtime = javaTimeNanos();
  2890     for (;;) {
  2891       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
  2892       // the 1st iteration ...
  2893       jlong newtime = javaTimeNanos();
  2895       if (newtime - prevtime < 0) {
  2896         // time moving backwards, should only happen if no monotonic clock
  2897         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  2898         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  2899       } else {
  2900         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
  2903       if(millis <= 0) break ;
  2905       prevtime = newtime;
  2906       slp->park(millis);
  2908     return OS_OK ;
  2912 int os::naked_sleep() {
  2913   // %% make the sleep time an integer flag. for now use 1 millisec.
  2914   return os::sleep(Thread::current(), 1, false);
  2917 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  2918 void os::infinite_sleep() {
  2919   while (true) {    // sleep forever ...
  2920     ::sleep(100);   // ... 100 seconds at a time
  2924 // Used to convert frequent JVM_Yield() to nops
  2925 bool os::dont_yield() {
  2926   return DontYieldALot;
  2929 void os::yield() {
  2930   sched_yield();
  2933 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
  2935 void os::yield_all(int attempts) {
  2936   // Yields to all threads, including threads with lower priorities
  2937   // Threads on Linux are all with same priority. The Solaris style
  2938   // os::yield_all() with nanosleep(1ms) is not necessary.
  2939   sched_yield();
  2942 // Called from the tight loops to possibly influence time-sharing heuristics
  2943 void os::loop_breaker(int attempts) {
  2944   os::yield_all(attempts);
  2947 ////////////////////////////////////////////////////////////////////////////////
  2948 // thread priority support
  2950 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
  2951 // only supports dynamic priority, static priority must be zero. For real-time
  2952 // applications, Linux supports SCHED_RR which allows static priority (1-99).
  2953 // However, for large multi-threaded applications, SCHED_RR is not only slower
  2954 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
  2955 // of 5 runs - Sep 2005).
  2956 //
  2957 // The following code actually changes the niceness of kernel-thread/LWP. It
  2958 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
  2959 // not the entire user process, and user level threads are 1:1 mapped to kernel
  2960 // threads. It has always been the case, but could change in the future. For
  2961 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
  2962 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
  2964 int os::java_to_os_priority[MaxPriority + 1] = {
  2965   19,              // 0 Entry should never be used
  2967    4,              // 1 MinPriority
  2968    3,              // 2
  2969    2,              // 3
  2971    1,              // 4
  2972    0,              // 5 NormPriority
  2973   -1,              // 6
  2975   -2,              // 7
  2976   -3,              // 8
  2977   -4,              // 9 NearMaxPriority
  2979   -5               // 10 MaxPriority
  2980 };
  2982 static int prio_init() {
  2983   if (ThreadPriorityPolicy == 1) {
  2984     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
  2985     // if effective uid is not root. Perhaps, a more elegant way of doing
  2986     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
  2987     if (geteuid() != 0) {
  2988       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
  2989         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
  2991       ThreadPriorityPolicy = 0;
  2994   return 0;
  2997 OSReturn os::set_native_priority(Thread* thread, int newpri) {
  2998   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
  3000   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
  3001   return (ret == 0) ? OS_OK : OS_ERR;
  3004 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
  3005   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
  3006     *priority_ptr = java_to_os_priority[NormPriority];
  3007     return OS_OK;
  3010   errno = 0;
  3011   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
  3012   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
  3015 // Hint to the underlying OS that a task switch would not be good.
  3016 // Void return because it's a hint and can fail.
  3017 void os::hint_no_preempt() {}
  3019 ////////////////////////////////////////////////////////////////////////////////
  3020 // suspend/resume support
  3022 //  the low-level signal-based suspend/resume support is a remnant from the
  3023 //  old VM-suspension that used to be for java-suspension, safepoints etc,
  3024 //  within hotspot. Now there is a single use-case for this:
  3025 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
  3026 //      that runs in the watcher thread.
  3027 //  The remaining code is greatly simplified from the more general suspension
  3028 //  code that used to be used.
  3029 //
  3030 //  The protocol is quite simple:
  3031 //  - suspend:
  3032 //      - sends a signal to the target thread
  3033 //      - polls the suspend state of the osthread using a yield loop
  3034 //      - target thread signal handler (SR_handler) sets suspend state
  3035 //        and blocks in sigsuspend until continued
  3036 //  - resume:
  3037 //      - sets target osthread state to continue
  3038 //      - sends signal to end the sigsuspend loop in the SR_handler
  3039 //
  3040 //  Note that the SR_lock plays no role in this suspend/resume protocol.
  3041 //
  3043 static void resume_clear_context(OSThread *osthread) {
  3044   osthread->set_ucontext(NULL);
  3045   osthread->set_siginfo(NULL);
  3047   // notify the suspend action is completed, we have now resumed
  3048   osthread->sr.clear_suspended();
  3051 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
  3052   osthread->set_ucontext(context);
  3053   osthread->set_siginfo(siginfo);
  3056 //
  3057 // Handler function invoked when a thread's execution is suspended or
  3058 // resumed. We have to be careful that only async-safe functions are
  3059 // called here (Note: most pthread functions are not async safe and
  3060 // should be avoided.)
  3061 //
  3062 // Note: sigwait() is a more natural fit than sigsuspend() from an
  3063 // interface point of view, but sigwait() prevents the signal hander
  3064 // from being run. libpthread would get very confused by not having
  3065 // its signal handlers run and prevents sigwait()'s use with the
  3066 // mutex granting granting signal.
  3067 //
  3068 // Currently only ever called on the VMThread
  3069 //
  3070 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
  3071   // Save and restore errno to avoid confusing native code with EINTR
  3072   // after sigsuspend.
  3073   int old_errno = errno;
  3075   Thread* thread = Thread::current();
  3076   OSThread* osthread = thread->osthread();
  3077   assert(thread->is_VM_thread(), "Must be VMThread");
  3078   // read current suspend action
  3079   int action = osthread->sr.suspend_action();
  3080   if (action == SR_SUSPEND) {
  3081     suspend_save_context(osthread, siginfo, context);
  3083     // Notify the suspend action is about to be completed. do_suspend()
  3084     // waits until SR_SUSPENDED is set and then returns. We will wait
  3085     // here for a resume signal and that completes the suspend-other
  3086     // action. do_suspend/do_resume is always called as a pair from
  3087     // the same thread - so there are no races
  3089     // notify the caller
  3090     osthread->sr.set_suspended();
  3092     sigset_t suspend_set;  // signals for sigsuspend()
  3094     // get current set of blocked signals and unblock resume signal
  3095     pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
  3096     sigdelset(&suspend_set, SR_signum);
  3098     // wait here until we are resumed
  3099     do {
  3100       sigsuspend(&suspend_set);
  3101       // ignore all returns until we get a resume signal
  3102     } while (osthread->sr.suspend_action() != SR_CONTINUE);
  3104     resume_clear_context(osthread);
  3106   } else {
  3107     assert(action == SR_CONTINUE, "unexpected sr action");
  3108     // nothing special to do - just leave the handler
  3111   errno = old_errno;
  3115 static int SR_initialize() {
  3116   struct sigaction act;
  3117   char *s;
  3118   /* Get signal number to use for suspend/resume */
  3119   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
  3120     int sig = ::strtol(s, 0, 10);
  3121     if (sig > 0 || sig < _NSIG) {
  3122         SR_signum = sig;
  3126   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
  3127         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
  3129   sigemptyset(&SR_sigset);
  3130   sigaddset(&SR_sigset, SR_signum);
  3132   /* Set up signal handler for suspend/resume */
  3133   act.sa_flags = SA_RESTART|SA_SIGINFO;
  3134   act.sa_handler = (void (*)(int)) SR_handler;
  3136   // SR_signum is blocked by default.
  3137   // 4528190 - We also need to block pthread restart signal (32 on all
  3138   // supported Linux platforms). Note that LinuxThreads need to block
  3139   // this signal for all threads to work properly. So we don't have
  3140   // to use hard-coded signal number when setting up the mask.
  3141   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
  3143   if (sigaction(SR_signum, &act, 0) == -1) {
  3144     return -1;
  3147   // Save signal flag
  3148   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
  3149   return 0;
  3152 static int SR_finalize() {
  3153   return 0;
  3157 // returns true on success and false on error - really an error is fatal
  3158 // but this seems the normal response to library errors
  3159 static bool do_suspend(OSThread* osthread) {
  3160   // mark as suspended and send signal
  3161   osthread->sr.set_suspend_action(SR_SUSPEND);
  3162   int status = pthread_kill(osthread->pthread_id(), SR_signum);
  3163   assert_status(status == 0, status, "pthread_kill");
  3165   // check status and wait until notified of suspension
  3166   if (status == 0) {
  3167     for (int i = 0; !osthread->sr.is_suspended(); i++) {
  3168       os::yield_all(i);
  3170     osthread->sr.set_suspend_action(SR_NONE);
  3171     return true;
  3173   else {
  3174     osthread->sr.set_suspend_action(SR_NONE);
  3175     return false;
  3179 static void do_resume(OSThread* osthread) {
  3180   assert(osthread->sr.is_suspended(), "thread should be suspended");
  3181   osthread->sr.set_suspend_action(SR_CONTINUE);
  3183   int status = pthread_kill(osthread->pthread_id(), SR_signum);
  3184   assert_status(status == 0, status, "pthread_kill");
  3185   // check status and wait unit notified of resumption
  3186   if (status == 0) {
  3187     for (int i = 0; osthread->sr.is_suspended(); i++) {
  3188       os::yield_all(i);
  3191   osthread->sr.set_suspend_action(SR_NONE);
  3194 ////////////////////////////////////////////////////////////////////////////////
  3195 // interrupt support
  3197 void os::interrupt(Thread* thread) {
  3198   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  3199     "possibility of dangling Thread pointer");
  3201   OSThread* osthread = thread->osthread();
  3203   if (!osthread->interrupted()) {
  3204     osthread->set_interrupted(true);
  3205     // More than one thread can get here with the same value of osthread,
  3206     // resulting in multiple notifications.  We do, however, want the store
  3207     // to interrupted() to be visible to other threads before we execute unpark().
  3208     OrderAccess::fence();
  3209     ParkEvent * const slp = thread->_SleepEvent ;
  3210     if (slp != NULL) slp->unpark() ;
  3213   // For JSR166. Unpark even if interrupt status already was set
  3214   if (thread->is_Java_thread())
  3215     ((JavaThread*)thread)->parker()->unpark();
  3217   ParkEvent * ev = thread->_ParkEvent ;
  3218   if (ev != NULL) ev->unpark() ;
  3222 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  3223   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  3224     "possibility of dangling Thread pointer");
  3226   OSThread* osthread = thread->osthread();
  3228   bool interrupted = osthread->interrupted();
  3230   if (interrupted && clear_interrupted) {
  3231     osthread->set_interrupted(false);
  3232     // consider thread->_SleepEvent->reset() ... optional optimization
  3235   return interrupted;
  3238 ///////////////////////////////////////////////////////////////////////////////////
  3239 // signal handling (except suspend/resume)
  3241 // This routine may be used by user applications as a "hook" to catch signals.
  3242 // The user-defined signal handler must pass unrecognized signals to this
  3243 // routine, and if it returns true (non-zero), then the signal handler must
  3244 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
  3245 // routine will never retun false (zero), but instead will execute a VM panic
  3246 // routine kill the process.
  3247 //
  3248 // If this routine returns false, it is OK to call it again.  This allows
  3249 // the user-defined signal handler to perform checks either before or after
  3250 // the VM performs its own checks.  Naturally, the user code would be making
  3251 // a serious error if it tried to handle an exception (such as a null check
  3252 // or breakpoint) that the VM was generating for its own correct operation.
  3253 //
  3254 // This routine may recognize any of the following kinds of signals:
  3255 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
  3256 // It should be consulted by handlers for any of those signals.
  3257 //
  3258 // The caller of this routine must pass in the three arguments supplied
  3259 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
  3260 // field of the structure passed to sigaction().  This routine assumes that
  3261 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
  3262 //
  3263 // Note that the VM will print warnings if it detects conflicting signal
  3264 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
  3265 //
  3266 extern "C" int
  3267 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
  3268                         void* ucontext, int abort_if_unrecognized);
  3270 void signalHandler(int sig, siginfo_t* info, void* uc) {
  3271   assert(info != NULL && uc != NULL, "it must be old kernel");
  3272   JVM_handle_linux_signal(sig, info, uc, true);
  3276 // This boolean allows users to forward their own non-matching signals
  3277 // to JVM_handle_linux_signal, harmlessly.
  3278 bool os::Linux::signal_handlers_are_installed = false;
  3280 // For signal-chaining
  3281 struct sigaction os::Linux::sigact[MAXSIGNUM];
  3282 unsigned int os::Linux::sigs = 0;
  3283 bool os::Linux::libjsig_is_loaded = false;
  3284 typedef struct sigaction *(*get_signal_t)(int);
  3285 get_signal_t os::Linux::get_signal_action = NULL;
  3287 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
  3288   struct sigaction *actp = NULL;
  3290   if (libjsig_is_loaded) {
  3291     // Retrieve the old signal handler from libjsig
  3292     actp = (*get_signal_action)(sig);
  3294   if (actp == NULL) {
  3295     // Retrieve the preinstalled signal handler from jvm
  3296     actp = get_preinstalled_handler(sig);
  3299   return actp;
  3302 static bool call_chained_handler(struct sigaction *actp, int sig,
  3303                                  siginfo_t *siginfo, void *context) {
  3304   // Call the old signal handler
  3305   if (actp->sa_handler == SIG_DFL) {
  3306     // It's more reasonable to let jvm treat it as an unexpected exception
  3307     // instead of taking the default action.
  3308     return false;
  3309   } else if (actp->sa_handler != SIG_IGN) {
  3310     if ((actp->sa_flags & SA_NODEFER) == 0) {
  3311       // automaticlly block the signal
  3312       sigaddset(&(actp->sa_mask), sig);
  3315     sa_handler_t hand;
  3316     sa_sigaction_t sa;
  3317     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
  3318     // retrieve the chained handler
  3319     if (siginfo_flag_set) {
  3320       sa = actp->sa_sigaction;
  3321     } else {
  3322       hand = actp->sa_handler;
  3325     if ((actp->sa_flags & SA_RESETHAND) != 0) {
  3326       actp->sa_handler = SIG_DFL;
  3329     // try to honor the signal mask
  3330     sigset_t oset;
  3331     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
  3333     // call into the chained handler
  3334     if (siginfo_flag_set) {
  3335       (*sa)(sig, siginfo, context);
  3336     } else {
  3337       (*hand)(sig);
  3340     // restore the signal mask
  3341     pthread_sigmask(SIG_SETMASK, &oset, 0);
  3343   // Tell jvm's signal handler the signal is taken care of.
  3344   return true;
  3347 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
  3348   bool chained = false;
  3349   // signal-chaining
  3350   if (UseSignalChaining) {
  3351     struct sigaction *actp = get_chained_signal_action(sig);
  3352     if (actp != NULL) {
  3353       chained = call_chained_handler(actp, sig, siginfo, context);
  3356   return chained;
  3359 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
  3360   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
  3361     return &sigact[sig];
  3363   return NULL;
  3366 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
  3367   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3368   sigact[sig] = oldAct;
  3369   sigs |= (unsigned int)1 << sig;
  3372 // for diagnostic
  3373 int os::Linux::sigflags[MAXSIGNUM];
  3375 int os::Linux::get_our_sigflags(int sig) {
  3376   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3377   return sigflags[sig];
  3380 void os::Linux::set_our_sigflags(int sig, int flags) {
  3381   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3382   sigflags[sig] = flags;
  3385 void os::Linux::set_signal_handler(int sig, bool set_installed) {
  3386   // Check for overwrite.
  3387   struct sigaction oldAct;
  3388   sigaction(sig, (struct sigaction*)NULL, &oldAct);
  3390   void* oldhand = oldAct.sa_sigaction
  3391                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
  3392                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
  3393   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
  3394       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
  3395       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
  3396     if (AllowUserSignalHandlers || !set_installed) {
  3397       // Do not overwrite; user takes responsibility to forward to us.
  3398       return;
  3399     } else if (UseSignalChaining) {
  3400       // save the old handler in jvm
  3401       save_preinstalled_handler(sig, oldAct);
  3402       // libjsig also interposes the sigaction() call below and saves the
  3403       // old sigaction on it own.
  3404     } else {
  3405       fatal2("Encountered unexpected pre-existing sigaction handler %#lx for signal %d.", (long)oldhand, sig);
  3409   struct sigaction sigAct;
  3410   sigfillset(&(sigAct.sa_mask));
  3411   sigAct.sa_handler = SIG_DFL;
  3412   if (!set_installed) {
  3413     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  3414   } else {
  3415     sigAct.sa_sigaction = signalHandler;
  3416     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  3418   // Save flags, which are set by ours
  3419   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3420   sigflags[sig] = sigAct.sa_flags;
  3422   int ret = sigaction(sig, &sigAct, &oldAct);
  3423   assert(ret == 0, "check");
  3425   void* oldhand2  = oldAct.sa_sigaction
  3426                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
  3427                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
  3428   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
  3431 // install signal handlers for signals that HotSpot needs to
  3432 // handle in order to support Java-level exception handling.
  3434 void os::Linux::install_signal_handlers() {
  3435   if (!signal_handlers_are_installed) {
  3436     signal_handlers_are_installed = true;
  3438     // signal-chaining
  3439     typedef void (*signal_setting_t)();
  3440     signal_setting_t begin_signal_setting = NULL;
  3441     signal_setting_t end_signal_setting = NULL;
  3442     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  3443                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
  3444     if (begin_signal_setting != NULL) {
  3445       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  3446                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
  3447       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
  3448                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
  3449       libjsig_is_loaded = true;
  3450       assert(UseSignalChaining, "should enable signal-chaining");
  3452     if (libjsig_is_loaded) {
  3453       // Tell libjsig jvm is setting signal handlers
  3454       (*begin_signal_setting)();
  3457     set_signal_handler(SIGSEGV, true);
  3458     set_signal_handler(SIGPIPE, true);
  3459     set_signal_handler(SIGBUS, true);
  3460     set_signal_handler(SIGILL, true);
  3461     set_signal_handler(SIGFPE, true);
  3462     set_signal_handler(SIGXFSZ, true);
  3464     if (libjsig_is_loaded) {
  3465       // Tell libjsig jvm finishes setting signal handlers
  3466       (*end_signal_setting)();
  3469     // We don't activate signal checker if libjsig is in place, we trust ourselves
  3470     // and if UserSignalHandler is installed all bets are off
  3471     if (CheckJNICalls) {
  3472       if (libjsig_is_loaded) {
  3473         tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
  3474         check_signals = false;
  3476       if (AllowUserSignalHandlers) {
  3477         tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
  3478         check_signals = false;
  3484 // This is the fastest way to get thread cpu time on Linux.
  3485 // Returns cpu time (user+sys) for any thread, not only for current.
  3486 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
  3487 // It might work on 2.6.10+ with a special kernel/glibc patch.
  3488 // For reference, please, see IEEE Std 1003.1-2004:
  3489 //   http://www.unix.org/single_unix_specification
  3491 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
  3492   struct timespec tp;
  3493   int rc = os::Linux::clock_gettime(clockid, &tp);
  3494   assert(rc == 0, "clock_gettime is expected to return 0 code");
  3496   return (tp.tv_sec * SEC_IN_NANOSECS) + tp.tv_nsec;
  3499 /////
  3500 // glibc on Linux platform uses non-documented flag
  3501 // to indicate, that some special sort of signal
  3502 // trampoline is used.
  3503 // We will never set this flag, and we should
  3504 // ignore this flag in our diagnostic
  3505 #ifdef SIGNIFICANT_SIGNAL_MASK
  3506 #undef SIGNIFICANT_SIGNAL_MASK
  3507 #endif
  3508 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
  3510 static const char* get_signal_handler_name(address handler,
  3511                                            char* buf, int buflen) {
  3512   int offset;
  3513   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
  3514   if (found) {
  3515     // skip directory names
  3516     const char *p1, *p2;
  3517     p1 = buf;
  3518     size_t len = strlen(os::file_separator());
  3519     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
  3520     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
  3521   } else {
  3522     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
  3524   return buf;
  3527 static void print_signal_handler(outputStream* st, int sig,
  3528                                  char* buf, size_t buflen) {
  3529   struct sigaction sa;
  3531   sigaction(sig, NULL, &sa);
  3533   // See comment for SIGNIFICANT_SIGNAL_MASK define
  3534   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  3536   st->print("%s: ", os::exception_name(sig, buf, buflen));
  3538   address handler = (sa.sa_flags & SA_SIGINFO)
  3539     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
  3540     : CAST_FROM_FN_PTR(address, sa.sa_handler);
  3542   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
  3543     st->print("SIG_DFL");
  3544   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
  3545     st->print("SIG_IGN");
  3546   } else {
  3547     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
  3550   st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
  3552   address rh = VMError::get_resetted_sighandler(sig);
  3553   // May be, handler was resetted by VMError?
  3554   if(rh != NULL) {
  3555     handler = rh;
  3556     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
  3559   st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
  3561   // Check: is it our handler?
  3562   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
  3563      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
  3564     // It is our signal handler
  3565     // check for flags, reset system-used one!
  3566     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
  3567       st->print(
  3568                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
  3569                 os::Linux::get_our_sigflags(sig));
  3572   st->cr();
  3576 #define DO_SIGNAL_CHECK(sig) \
  3577   if (!sigismember(&check_signal_done, sig)) \
  3578     os::Linux::check_signal_handler(sig)
  3580 // This method is a periodic task to check for misbehaving JNI applications
  3581 // under CheckJNI, we can add any periodic checks here
  3583 void os::run_periodic_checks() {
  3585   if (check_signals == false) return;
  3587   // SEGV and BUS if overridden could potentially prevent
  3588   // generation of hs*.log in the event of a crash, debugging
  3589   // such a case can be very challenging, so we absolutely
  3590   // check the following for a good measure:
  3591   DO_SIGNAL_CHECK(SIGSEGV);
  3592   DO_SIGNAL_CHECK(SIGILL);
  3593   DO_SIGNAL_CHECK(SIGFPE);
  3594   DO_SIGNAL_CHECK(SIGBUS);
  3595   DO_SIGNAL_CHECK(SIGPIPE);
  3596   DO_SIGNAL_CHECK(SIGXFSZ);
  3599   // ReduceSignalUsage allows the user to override these handlers
  3600   // see comments at the very top and jvm_solaris.h
  3601   if (!ReduceSignalUsage) {
  3602     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
  3603     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
  3604     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
  3605     DO_SIGNAL_CHECK(BREAK_SIGNAL);
  3608   DO_SIGNAL_CHECK(SR_signum);
  3609   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
  3612 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
  3614 static os_sigaction_t os_sigaction = NULL;
  3616 void os::Linux::check_signal_handler(int sig) {
  3617   char buf[O_BUFLEN];
  3618   address jvmHandler = NULL;
  3621   struct sigaction act;
  3622   if (os_sigaction == NULL) {
  3623     // only trust the default sigaction, in case it has been interposed
  3624     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
  3625     if (os_sigaction == NULL) return;
  3628   os_sigaction(sig, (struct sigaction*)NULL, &act);
  3631   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  3633   address thisHandler = (act.sa_flags & SA_SIGINFO)
  3634     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
  3635     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
  3638   switch(sig) {
  3639   case SIGSEGV:
  3640   case SIGBUS:
  3641   case SIGFPE:
  3642   case SIGPIPE:
  3643   case SIGILL:
  3644   case SIGXFSZ:
  3645     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
  3646     break;
  3648   case SHUTDOWN1_SIGNAL:
  3649   case SHUTDOWN2_SIGNAL:
  3650   case SHUTDOWN3_SIGNAL:
  3651   case BREAK_SIGNAL:
  3652     jvmHandler = (address)user_handler();
  3653     break;
  3655   case INTERRUPT_SIGNAL:
  3656     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
  3657     break;
  3659   default:
  3660     if (sig == SR_signum) {
  3661       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
  3662     } else {
  3663       return;
  3665     break;
  3668   if (thisHandler != jvmHandler) {
  3669     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
  3670     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
  3671     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
  3672     // No need to check this sig any longer
  3673     sigaddset(&check_signal_done, sig);
  3674   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
  3675     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
  3676     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
  3677     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
  3678     // No need to check this sig any longer
  3679     sigaddset(&check_signal_done, sig);
  3682   // Dump all the signal
  3683   if (sigismember(&check_signal_done, sig)) {
  3684     print_signal_handlers(tty, buf, O_BUFLEN);
  3688 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
  3690 extern bool signal_name(int signo, char* buf, size_t len);
  3692 const char* os::exception_name(int exception_code, char* buf, size_t size) {
  3693   if (0 < exception_code && exception_code <= SIGRTMAX) {
  3694     // signal
  3695     if (!signal_name(exception_code, buf, size)) {
  3696       jio_snprintf(buf, size, "SIG%d", exception_code);
  3698     return buf;
  3699   } else {
  3700     return NULL;
  3704 // this is called _before_ the most of global arguments have been parsed
  3705 void os::init(void) {
  3706   char dummy;   /* used to get a guess on initial stack address */
  3707 //  first_hrtime = gethrtime();
  3709   // With LinuxThreads the JavaMain thread pid (primordial thread)
  3710   // is different than the pid of the java launcher thread.
  3711   // So, on Linux, the launcher thread pid is passed to the VM
  3712   // via the sun.java.launcher.pid property.
  3713   // Use this property instead of getpid() if it was correctly passed.
  3714   // See bug 6351349.
  3715   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
  3717   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
  3719   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
  3721   init_random(1234567);
  3723   ThreadCritical::initialize();
  3725   Linux::set_page_size(sysconf(_SC_PAGESIZE));
  3726   if (Linux::page_size() == -1) {
  3727     fatal1("os_linux.cpp: os::init: sysconf failed (%s)", strerror(errno));
  3729   init_page_sizes((size_t) Linux::page_size());
  3731   Linux::initialize_system_info();
  3733   // main_thread points to the aboriginal thread
  3734   Linux::_main_thread = pthread_self();
  3736   Linux::clock_init();
  3737   initial_time_count = os::elapsed_counter();
  3738   pthread_mutex_init(&dl_mutex, NULL);
  3741 // To install functions for atexit system call
  3742 extern "C" {
  3743   static void perfMemory_exit_helper() {
  3744     perfMemory_exit();
  3748 // this is called _after_ the global arguments have been parsed
  3749 jint os::init_2(void)
  3751   Linux::fast_thread_clock_init();
  3753   // Allocate a single page and mark it as readable for safepoint polling
  3754   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  3755   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
  3757   os::set_polling_page( polling_page );
  3759 #ifndef PRODUCT
  3760   if(Verbose && PrintMiscellaneous)
  3761     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  3762 #endif
  3764   if (!UseMembar) {
  3765     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  3766     guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
  3767     os::set_memory_serialize_page( mem_serialize_page );
  3769 #ifndef PRODUCT
  3770     if(Verbose && PrintMiscellaneous)
  3771       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  3772 #endif
  3775   FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
  3777   // initialize suspend/resume support - must do this before signal_sets_init()
  3778   if (SR_initialize() != 0) {
  3779     perror("SR_initialize failed");
  3780     return JNI_ERR;
  3783   Linux::signal_sets_init();
  3784   Linux::install_signal_handlers();
  3786   size_t threadStackSizeInBytes = ThreadStackSize * K;
  3787   if (threadStackSizeInBytes != 0 &&
  3788       threadStackSizeInBytes < Linux::min_stack_allowed) {
  3789         tty->print_cr("\nThe stack size specified is too small, "
  3790                       "Specify at least %dk",
  3791                       Linux::min_stack_allowed / K);
  3792         return JNI_ERR;
  3795   // Make the stack size a multiple of the page size so that
  3796   // the yellow/red zones can be guarded.
  3797   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
  3798         vm_page_size()));
  3800   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
  3802   Linux::libpthread_init();
  3803   if (PrintMiscellaneous && (Verbose || WizardMode)) {
  3804      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
  3805           Linux::glibc_version(), Linux::libpthread_version(),
  3806           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
  3809   if (UseNUMA) {
  3810     if (!Linux::libnuma_init()) {
  3811       UseNUMA = false;
  3812     } else {
  3813       if ((Linux::numa_max_node() < 1)) {
  3814         // There's only one node(they start from 0), disable NUMA.
  3815         UseNUMA = false;
  3818     if (!UseNUMA && ForceNUMA) {
  3819       UseNUMA = true;
  3823   if (MaxFDLimit) {
  3824     // set the number of file descriptors to max. print out error
  3825     // if getrlimit/setrlimit fails but continue regardless.
  3826     struct rlimit nbr_files;
  3827     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
  3828     if (status != 0) {
  3829       if (PrintMiscellaneous && (Verbose || WizardMode))
  3830         perror("os::init_2 getrlimit failed");
  3831     } else {
  3832       nbr_files.rlim_cur = nbr_files.rlim_max;
  3833       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
  3834       if (status != 0) {
  3835         if (PrintMiscellaneous && (Verbose || WizardMode))
  3836           perror("os::init_2 setrlimit failed");
  3841   // Initialize lock used to serialize thread creation (see os::create_thread)
  3842   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
  3844   // Initialize HPI.
  3845   jint hpi_result = hpi::initialize();
  3846   if (hpi_result != JNI_OK) {
  3847     tty->print_cr("There was an error trying to initialize the HPI library.");
  3848     return hpi_result;
  3851   // at-exit methods are called in the reverse order of their registration.
  3852   // atexit functions are called on return from main or as a result of a
  3853   // call to exit(3C). There can be only 32 of these functions registered
  3854   // and atexit() does not set errno.
  3856   if (PerfAllowAtExitRegistration) {
  3857     // only register atexit functions if PerfAllowAtExitRegistration is set.
  3858     // atexit functions can be delayed until process exit time, which
  3859     // can be problematic for embedded VM situations. Embedded VMs should
  3860     // call DestroyJavaVM() to assure that VM resources are released.
  3862     // note: perfMemory_exit_helper atexit function may be removed in
  3863     // the future if the appropriate cleanup code can be added to the
  3864     // VM_Exit VMOperation's doit method.
  3865     if (atexit(perfMemory_exit_helper) != 0) {
  3866       warning("os::init2 atexit(perfMemory_exit_helper) failed");
  3870   // initialize thread priority policy
  3871   prio_init();
  3873   return JNI_OK;
  3876 // Mark the polling page as unreadable
  3877 void os::make_polling_page_unreadable(void) {
  3878   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
  3879     fatal("Could not disable polling page");
  3880 };
  3882 // Mark the polling page as readable
  3883 void os::make_polling_page_readable(void) {
  3884   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
  3885     fatal("Could not enable polling page");
  3887 };
  3889 int os::active_processor_count() {
  3890   // Linux doesn't yet have a (official) notion of processor sets,
  3891   // so just return the number of online processors.
  3892   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
  3893   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
  3894   return online_cpus;
  3897 bool os::distribute_processes(uint length, uint* distribution) {
  3898   // Not yet implemented.
  3899   return false;
  3902 bool os::bind_to_processor(uint processor_id) {
  3903   // Not yet implemented.
  3904   return false;
  3907 ///
  3909 // Suspends the target using the signal mechanism and then grabs the PC before
  3910 // resuming the target. Used by the flat-profiler only
  3911 ExtendedPC os::get_thread_pc(Thread* thread) {
  3912   // Make sure that it is called by the watcher for the VMThread
  3913   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
  3914   assert(thread->is_VM_thread(), "Can only be called for VMThread");
  3916   ExtendedPC epc;
  3918   OSThread* osthread = thread->osthread();
  3919   if (do_suspend(osthread)) {
  3920     if (osthread->ucontext() != NULL) {
  3921       epc = os::Linux::ucontext_get_pc(osthread->ucontext());
  3922     } else {
  3923       // NULL context is unexpected, double-check this is the VMThread
  3924       guarantee(thread->is_VM_thread(), "can only be called for VMThread");
  3926     do_resume(osthread);
  3928   // failure means pthread_kill failed for some reason - arguably this is
  3929   // a fatal problem, but such problems are ignored elsewhere
  3931   return epc;
  3934 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
  3936    if (is_NPTL()) {
  3937       return pthread_cond_timedwait(_cond, _mutex, _abstime);
  3938    } else {
  3939 #ifndef IA64
  3940       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
  3941       // word back to default 64bit precision if condvar is signaled. Java
  3942       // wants 53bit precision.  Save and restore current value.
  3943       int fpu = get_fpu_control_word();
  3944 #endif // IA64
  3945       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
  3946 #ifndef IA64
  3947       set_fpu_control_word(fpu);
  3948 #endif // IA64
  3949       return status;
  3953 ////////////////////////////////////////////////////////////////////////////////
  3954 // debug support
  3956 #ifndef PRODUCT
  3957 static address same_page(address x, address y) {
  3958   int page_bits = -os::vm_page_size();
  3959   if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
  3960     return x;
  3961   else if (x > y)
  3962     return (address)(intptr_t(y) | ~page_bits) + 1;
  3963   else
  3964     return (address)(intptr_t(y) & page_bits);
  3967 bool os::find(address addr) {
  3968   Dl_info dlinfo;
  3969   memset(&dlinfo, 0, sizeof(dlinfo));
  3970   if (dladdr(addr, &dlinfo)) {
  3971     tty->print(PTR_FORMAT ": ", addr);
  3972     if (dlinfo.dli_sname != NULL) {
  3973       tty->print("%s+%#x", dlinfo.dli_sname,
  3974                  addr - (intptr_t)dlinfo.dli_saddr);
  3975     } else if (dlinfo.dli_fname) {
  3976       tty->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
  3977     } else {
  3978       tty->print("<absolute address>");
  3980     if (dlinfo.dli_fname) {
  3981       tty->print(" in %s", dlinfo.dli_fname);
  3983     if (dlinfo.dli_fbase) {
  3984       tty->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
  3986     tty->cr();
  3988     if (Verbose) {
  3989       // decode some bytes around the PC
  3990       address begin = same_page(addr-40, addr);
  3991       address end   = same_page(addr+40, addr);
  3992       address       lowest = (address) dlinfo.dli_sname;
  3993       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
  3994       if (begin < lowest)  begin = lowest;
  3995       Dl_info dlinfo2;
  3996       if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
  3997           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
  3998         end = (address) dlinfo2.dli_saddr;
  3999       Disassembler::decode(begin, end);
  4001     return true;
  4003   return false;
  4006 #endif
  4008 ////////////////////////////////////////////////////////////////////////////////
  4009 // misc
  4011 // This does not do anything on Linux. This is basically a hook for being
  4012 // able to use structured exception handling (thread-local exception filters)
  4013 // on, e.g., Win32.
  4014 void
  4015 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
  4016                          JavaCallArguments* args, Thread* thread) {
  4017   f(value, method, args, thread);
  4020 void os::print_statistics() {
  4023 int os::message_box(const char* title, const char* message) {
  4024   int i;
  4025   fdStream err(defaultStream::error_fd());
  4026   for (i = 0; i < 78; i++) err.print_raw("=");
  4027   err.cr();
  4028   err.print_raw_cr(title);
  4029   for (i = 0; i < 78; i++) err.print_raw("-");
  4030   err.cr();
  4031   err.print_raw_cr(message);
  4032   for (i = 0; i < 78; i++) err.print_raw("=");
  4033   err.cr();
  4035   char buf[16];
  4036   // Prevent process from exiting upon "read error" without consuming all CPU
  4037   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
  4039   return buf[0] == 'y' || buf[0] == 'Y';
  4042 int os::stat(const char *path, struct stat *sbuf) {
  4043   char pathbuf[MAX_PATH];
  4044   if (strlen(path) > MAX_PATH - 1) {
  4045     errno = ENAMETOOLONG;
  4046     return -1;
  4048   hpi::native_path(strcpy(pathbuf, path));
  4049   return ::stat(pathbuf, sbuf);
  4052 bool os::check_heap(bool force) {
  4053   return true;
  4056 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
  4057   return ::vsnprintf(buf, count, format, args);
  4060 // Is a (classpath) directory empty?
  4061 bool os::dir_is_empty(const char* path) {
  4062   DIR *dir = NULL;
  4063   struct dirent *ptr;
  4065   dir = opendir(path);
  4066   if (dir == NULL) return true;
  4068   /* Scan the directory */
  4069   bool result = true;
  4070   char buf[sizeof(struct dirent) + MAX_PATH];
  4071   while (result && (ptr = ::readdir(dir)) != NULL) {
  4072     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
  4073       result = false;
  4076   closedir(dir);
  4077   return result;
  4080 // create binary file, rewriting existing file if required
  4081 int os::create_binary_file(const char* path, bool rewrite_existing) {
  4082   int oflags = O_WRONLY | O_CREAT;
  4083   if (!rewrite_existing) {
  4084     oflags |= O_EXCL;
  4086   return ::open64(path, oflags, S_IREAD | S_IWRITE);
  4089 // return current position of file pointer
  4090 jlong os::current_file_offset(int fd) {
  4091   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
  4094 // move file pointer to the specified offset
  4095 jlong os::seek_to_file_offset(int fd, jlong offset) {
  4096   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
  4099 // Map a block of memory.
  4100 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
  4101                      char *addr, size_t bytes, bool read_only,
  4102                      bool allow_exec) {
  4103   int prot;
  4104   int flags;
  4106   if (read_only) {
  4107     prot = PROT_READ;
  4108     flags = MAP_SHARED;
  4109   } else {
  4110     prot = PROT_READ | PROT_WRITE;
  4111     flags = MAP_PRIVATE;
  4114   if (allow_exec) {
  4115     prot |= PROT_EXEC;
  4118   if (addr != NULL) {
  4119     flags |= MAP_FIXED;
  4122   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
  4123                                      fd, file_offset);
  4124   if (mapped_address == MAP_FAILED) {
  4125     return NULL;
  4127   return mapped_address;
  4131 // Remap a block of memory.
  4132 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
  4133                        char *addr, size_t bytes, bool read_only,
  4134                        bool allow_exec) {
  4135   // same as map_memory() on this OS
  4136   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
  4137                         allow_exec);
  4141 // Unmap a block of memory.
  4142 bool os::unmap_memory(char* addr, size_t bytes) {
  4143   return munmap(addr, bytes) == 0;
  4146 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
  4148 static clockid_t thread_cpu_clockid(Thread* thread) {
  4149   pthread_t tid = thread->osthread()->pthread_id();
  4150   clockid_t clockid;
  4152   // Get thread clockid
  4153   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
  4154   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
  4155   return clockid;
  4158 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  4159 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  4160 // of a thread.
  4161 //
  4162 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
  4163 // the fast estimate available on the platform.
  4165 jlong os::current_thread_cpu_time() {
  4166   if (os::Linux::supports_fast_thread_cpu_time()) {
  4167     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  4168   } else {
  4169     // return user + sys since the cost is the same
  4170     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
  4174 jlong os::thread_cpu_time(Thread* thread) {
  4175   // consistent with what current_thread_cpu_time() returns
  4176   if (os::Linux::supports_fast_thread_cpu_time()) {
  4177     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  4178   } else {
  4179     return slow_thread_cpu_time(thread, true /* user + sys */);
  4183 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  4184   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  4185     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  4186   } else {
  4187     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
  4191 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  4192   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  4193     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  4194   } else {
  4195     return slow_thread_cpu_time(thread, user_sys_cpu_time);
  4199 //
  4200 //  -1 on error.
  4201 //
  4203 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  4204   static bool proc_pid_cpu_avail = true;
  4205   static bool proc_task_unchecked = true;
  4206   static const char *proc_stat_path = "/proc/%d/stat";
  4207   pid_t  tid = thread->osthread()->thread_id();
  4208   int i;
  4209   char *s;
  4210   char stat[2048];
  4211   int statlen;
  4212   char proc_name[64];
  4213   int count;
  4214   long sys_time, user_time;
  4215   char string[64];
  4216   int idummy;
  4217   long ldummy;
  4218   FILE *fp;
  4220   // We first try accessing /proc/<pid>/cpu since this is faster to
  4221   // process.  If this file is not present (linux kernels 2.5 and above)
  4222   // then we open /proc/<pid>/stat.
  4223   if ( proc_pid_cpu_avail ) {
  4224     sprintf(proc_name, "/proc/%d/cpu", tid);
  4225     fp =  fopen(proc_name, "r");
  4226     if ( fp != NULL ) {
  4227       count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
  4228       fclose(fp);
  4229       if ( count != 3 ) return -1;
  4231       if (user_sys_cpu_time) {
  4232         return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
  4233       } else {
  4234         return (jlong)user_time * (1000000000 / clock_tics_per_sec);
  4237     else proc_pid_cpu_avail = false;
  4240   // The /proc/<tid>/stat aggregates per-process usage on
  4241   // new Linux kernels 2.6+ where NPTL is supported.
  4242   // The /proc/self/task/<tid>/stat still has the per-thread usage.
  4243   // See bug 6328462.
  4244   // There can be no directory /proc/self/task on kernels 2.4 with NPTL
  4245   // and possibly in some other cases, so we check its availability.
  4246   if (proc_task_unchecked && os::Linux::is_NPTL()) {
  4247     // This is executed only once
  4248     proc_task_unchecked = false;
  4249     fp = fopen("/proc/self/task", "r");
  4250     if (fp != NULL) {
  4251       proc_stat_path = "/proc/self/task/%d/stat";
  4252       fclose(fp);
  4256   sprintf(proc_name, proc_stat_path, tid);
  4257   fp = fopen(proc_name, "r");
  4258   if ( fp == NULL ) return -1;
  4259   statlen = fread(stat, 1, 2047, fp);
  4260   stat[statlen] = '\0';
  4261   fclose(fp);
  4263   // Skip pid and the command string. Note that we could be dealing with
  4264   // weird command names, e.g. user could decide to rename java launcher
  4265   // to "java 1.4.2 :)", then the stat file would look like
  4266   //                1234 (java 1.4.2 :)) R ... ...
  4267   // We don't really need to know the command string, just find the last
  4268   // occurrence of ")" and then start parsing from there. See bug 4726580.
  4269   s = strrchr(stat, ')');
  4270   i = 0;
  4271   if (s == NULL ) return -1;
  4273   // Skip blank chars
  4274   do s++; while (isspace(*s));
  4276   count = sscanf(s,"%*c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
  4277                  &idummy, &idummy, &idummy, &idummy, &idummy,
  4278                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
  4279                  &user_time, &sys_time);
  4280   if ( count != 12 ) return -1;
  4281   if (user_sys_cpu_time) {
  4282     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
  4283   } else {
  4284     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
  4288 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  4289   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  4290   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  4291   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  4292   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  4295 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  4296   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  4297   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  4298   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  4299   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  4302 bool os::is_thread_cpu_time_supported() {
  4303   return true;
  4306 // System loadavg support.  Returns -1 if load average cannot be obtained.
  4307 // Linux doesn't yet have a (official) notion of processor sets,
  4308 // so just return the system wide load average.
  4309 int os::loadavg(double loadavg[], int nelem) {
  4310   return ::getloadavg(loadavg, nelem);
  4313 void os::pause() {
  4314   char filename[MAX_PATH];
  4315   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  4316     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  4317   } else {
  4318     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  4321   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  4322   if (fd != -1) {
  4323     struct stat buf;
  4324     close(fd);
  4325     while (::stat(filename, &buf) == 0) {
  4326       (void)::poll(NULL, 0, 100);
  4328   } else {
  4329     jio_fprintf(stderr,
  4330       "Could not open pause file '%s', continuing immediately.\n", filename);
  4334 extern "C" {
  4336 /**
  4337  * NOTE: the following code is to keep the green threads code
  4338  * in the libjava.so happy. Once the green threads is removed,
  4339  * these code will no longer be needed.
  4340  */
  4341 int
  4342 jdk_waitpid(pid_t pid, int* status, int options) {
  4343     return waitpid(pid, status, options);
  4346 int
  4347 fork1() {
  4348     return fork();
  4351 int
  4352 jdk_sem_init(sem_t *sem, int pshared, unsigned int value) {
  4353     return sem_init(sem, pshared, value);
  4356 int
  4357 jdk_sem_post(sem_t *sem) {
  4358     return sem_post(sem);
  4361 int
  4362 jdk_sem_wait(sem_t *sem) {
  4363     return sem_wait(sem);
  4366 int
  4367 jdk_pthread_sigmask(int how , const sigset_t* newmask, sigset_t* oldmask) {
  4368     return pthread_sigmask(how , newmask, oldmask);
  4373 // Refer to the comments in os_solaris.cpp park-unpark.
  4374 //
  4375 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
  4376 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
  4377 // For specifics regarding the bug see GLIBC BUGID 261237 :
  4378 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
  4379 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
  4380 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
  4381 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
  4382 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
  4383 // and monitorenter when we're using 1-0 locking.  All those operations may result in
  4384 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
  4385 // of libpthread avoids the problem, but isn't practical.
  4386 //
  4387 // Possible remedies:
  4388 //
  4389 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
  4390 //      This is palliative and probabilistic, however.  If the thread is preempted
  4391 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
  4392 //      than the minimum period may have passed, and the abstime may be stale (in the
  4393 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
  4394 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
  4395 //
  4396 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
  4397 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
  4398 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
  4399 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
  4400 //      thread.
  4401 //
  4402 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
  4403 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
  4404 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
  4405 //      This also works well.  In fact it avoids kernel-level scalability impediments
  4406 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
  4407 //      timers in a graceful fashion.
  4408 //
  4409 // 4.   When the abstime value is in the past it appears that control returns
  4410 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
  4411 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
  4412 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
  4413 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
  4414 //      It may be possible to avoid reinitialization by checking the return
  4415 //      value from pthread_cond_timedwait().  In addition to reinitializing the
  4416 //      condvar we must establish the invariant that cond_signal() is only called
  4417 //      within critical sections protected by the adjunct mutex.  This prevents
  4418 //      cond_signal() from "seeing" a condvar that's in the midst of being
  4419 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
  4420 //      desirable signal-after-unlock optimization that avoids futile context switching.
  4421 //
  4422 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
  4423 //      structure when a condvar is used or initialized.  cond_destroy()  would
  4424 //      release the helper structure.  Our reinitialize-after-timedwait fix
  4425 //      put excessive stress on malloc/free and locks protecting the c-heap.
  4426 //
  4427 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
  4428 // It may be possible to refine (4) by checking the kernel and NTPL verisons
  4429 // and only enabling the work-around for vulnerable environments.
  4431 // utility to compute the abstime argument to timedwait:
  4432 // millis is the relative timeout time
  4433 // abstime will be the absolute timeout time
  4434 // TODO: replace compute_abstime() with unpackTime()
  4436 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
  4437   if (millis < 0)  millis = 0;
  4438   struct timeval now;
  4439   int status = gettimeofday(&now, NULL);
  4440   assert(status == 0, "gettimeofday");
  4441   jlong seconds = millis / 1000;
  4442   millis %= 1000;
  4443   if (seconds > 50000000) { // see man cond_timedwait(3T)
  4444     seconds = 50000000;
  4446   abstime->tv_sec = now.tv_sec  + seconds;
  4447   long       usec = now.tv_usec + millis * 1000;
  4448   if (usec >= 1000000) {
  4449     abstime->tv_sec += 1;
  4450     usec -= 1000000;
  4452   abstime->tv_nsec = usec * 1000;
  4453   return abstime;
  4457 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
  4458 // Conceptually TryPark() should be equivalent to park(0).
  4460 int os::PlatformEvent::TryPark() {
  4461   for (;;) {
  4462     const int v = _Event ;
  4463     guarantee ((v == 0) || (v == 1), "invariant") ;
  4464     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
  4468 void os::PlatformEvent::park() {       // AKA "down()"
  4469   // Invariant: Only the thread associated with the Event/PlatformEvent
  4470   // may call park().
  4471   // TODO: assert that _Assoc != NULL or _Assoc == Self
  4472   int v ;
  4473   for (;;) {
  4474       v = _Event ;
  4475       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  4477   guarantee (v >= 0, "invariant") ;
  4478   if (v == 0) {
  4479      // Do this the hard way by blocking ...
  4480      int status = pthread_mutex_lock(_mutex);
  4481      assert_status(status == 0, status, "mutex_lock");
  4482      guarantee (_nParked == 0, "invariant") ;
  4483      ++ _nParked ;
  4484      while (_Event < 0) {
  4485         status = pthread_cond_wait(_cond, _mutex);
  4486         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
  4487         // Treat this the same as if the wait was interrupted
  4488         if (status == ETIME) { status = EINTR; }
  4489         assert_status(status == 0 || status == EINTR, status, "cond_wait");
  4491      -- _nParked ;
  4493     // In theory we could move the ST of 0 into _Event past the unlock(),
  4494     // but then we'd need a MEMBAR after the ST.
  4495     _Event = 0 ;
  4496      status = pthread_mutex_unlock(_mutex);
  4497      assert_status(status == 0, status, "mutex_unlock");
  4499   guarantee (_Event >= 0, "invariant") ;
  4502 int os::PlatformEvent::park(jlong millis) {
  4503   guarantee (_nParked == 0, "invariant") ;
  4505   int v ;
  4506   for (;;) {
  4507       v = _Event ;
  4508       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  4510   guarantee (v >= 0, "invariant") ;
  4511   if (v != 0) return OS_OK ;
  4513   // We do this the hard way, by blocking the thread.
  4514   // Consider enforcing a minimum timeout value.
  4515   struct timespec abst;
  4516   compute_abstime(&abst, millis);
  4518   int ret = OS_TIMEOUT;
  4519   int status = pthread_mutex_lock(_mutex);
  4520   assert_status(status == 0, status, "mutex_lock");
  4521   guarantee (_nParked == 0, "invariant") ;
  4522   ++_nParked ;
  4524   // Object.wait(timo) will return because of
  4525   // (a) notification
  4526   // (b) timeout
  4527   // (c) thread.interrupt
  4528   //
  4529   // Thread.interrupt and object.notify{All} both call Event::set.
  4530   // That is, we treat thread.interrupt as a special case of notification.
  4531   // The underlying Solaris implementation, cond_timedwait, admits
  4532   // spurious/premature wakeups, but the JLS/JVM spec prevents the
  4533   // JVM from making those visible to Java code.  As such, we must
  4534   // filter out spurious wakeups.  We assume all ETIME returns are valid.
  4535   //
  4536   // TODO: properly differentiate simultaneous notify+interrupt.
  4537   // In that case, we should propagate the notify to another waiter.
  4539   while (_Event < 0) {
  4540     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
  4541     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  4542       pthread_cond_destroy (_cond);
  4543       pthread_cond_init (_cond, NULL) ;
  4545     assert_status(status == 0 || status == EINTR ||
  4546                   status == ETIME || status == ETIMEDOUT,
  4547                   status, "cond_timedwait");
  4548     if (!FilterSpuriousWakeups) break ;                 // previous semantics
  4549     if (status == ETIME || status == ETIMEDOUT) break ;
  4550     // We consume and ignore EINTR and spurious wakeups.
  4552   --_nParked ;
  4553   if (_Event >= 0) {
  4554      ret = OS_OK;
  4556   _Event = 0 ;
  4557   status = pthread_mutex_unlock(_mutex);
  4558   assert_status(status == 0, status, "mutex_unlock");
  4559   assert (_nParked == 0, "invariant") ;
  4560   return ret;
  4563 void os::PlatformEvent::unpark() {
  4564   int v, AnyWaiters ;
  4565   for (;;) {
  4566       v = _Event ;
  4567       if (v > 0) {
  4568          // The LD of _Event could have reordered or be satisfied
  4569          // by a read-aside from this processor's write buffer.
  4570          // To avoid problems execute a barrier and then
  4571          // ratify the value.
  4572          OrderAccess::fence() ;
  4573          if (_Event == v) return ;
  4574          continue ;
  4576       if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
  4578   if (v < 0) {
  4579      // Wait for the thread associated with the event to vacate
  4580      int status = pthread_mutex_lock(_mutex);
  4581      assert_status(status == 0, status, "mutex_lock");
  4582      AnyWaiters = _nParked ;
  4583      assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
  4584      if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
  4585         AnyWaiters = 0 ;
  4586         pthread_cond_signal (_cond);
  4588      status = pthread_mutex_unlock(_mutex);
  4589      assert_status(status == 0, status, "mutex_unlock");
  4590      if (AnyWaiters != 0) {
  4591         status = pthread_cond_signal(_cond);
  4592         assert_status(status == 0, status, "cond_signal");
  4596   // Note that we signal() _after dropping the lock for "immortal" Events.
  4597   // This is safe and avoids a common class of  futile wakeups.  In rare
  4598   // circumstances this can cause a thread to return prematurely from
  4599   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
  4600   // simply re-test the condition and re-park itself.
  4604 // JSR166
  4605 // -------------------------------------------------------
  4607 /*
  4608  * The solaris and linux implementations of park/unpark are fairly
  4609  * conservative for now, but can be improved. They currently use a
  4610  * mutex/condvar pair, plus a a count.
  4611  * Park decrements count if > 0, else does a condvar wait.  Unpark
  4612  * sets count to 1 and signals condvar.  Only one thread ever waits
  4613  * on the condvar. Contention seen when trying to park implies that someone
  4614  * is unparking you, so don't wait. And spurious returns are fine, so there
  4615  * is no need to track notifications.
  4616  */
  4619 #define NANOSECS_PER_SEC 1000000000
  4620 #define NANOSECS_PER_MILLISEC 1000000
  4621 #define MAX_SECS 100000000
  4622 /*
  4623  * This code is common to linux and solaris and will be moved to a
  4624  * common place in dolphin.
  4626  * The passed in time value is either a relative time in nanoseconds
  4627  * or an absolute time in milliseconds. Either way it has to be unpacked
  4628  * into suitable seconds and nanoseconds components and stored in the
  4629  * given timespec structure.
  4630  * Given time is a 64-bit value and the time_t used in the timespec is only
  4631  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
  4632  * overflow if times way in the future are given. Further on Solaris versions
  4633  * prior to 10 there is a restriction (see cond_timedwait) that the specified
  4634  * number of seconds, in abstime, is less than current_time  + 100,000,000.
  4635  * As it will be 28 years before "now + 100000000" will overflow we can
  4636  * ignore overflow and just impose a hard-limit on seconds using the value
  4637  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
  4638  * years from "now".
  4639  */
  4641 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
  4642   assert (time > 0, "convertTime");
  4644   struct timeval now;
  4645   int status = gettimeofday(&now, NULL);
  4646   assert(status == 0, "gettimeofday");
  4648   time_t max_secs = now.tv_sec + MAX_SECS;
  4650   if (isAbsolute) {
  4651     jlong secs = time / 1000;
  4652     if (secs > max_secs) {
  4653       absTime->tv_sec = max_secs;
  4655     else {
  4656       absTime->tv_sec = secs;
  4658     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
  4660   else {
  4661     jlong secs = time / NANOSECS_PER_SEC;
  4662     if (secs >= MAX_SECS) {
  4663       absTime->tv_sec = max_secs;
  4664       absTime->tv_nsec = 0;
  4666     else {
  4667       absTime->tv_sec = now.tv_sec + secs;
  4668       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
  4669       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  4670         absTime->tv_nsec -= NANOSECS_PER_SEC;
  4671         ++absTime->tv_sec; // note: this must be <= max_secs
  4675   assert(absTime->tv_sec >= 0, "tv_sec < 0");
  4676   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
  4677   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
  4678   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
  4681 void Parker::park(bool isAbsolute, jlong time) {
  4682   // Optional fast-path check:
  4683   // Return immediately if a permit is available.
  4684   if (_counter > 0) {
  4685       _counter = 0 ;
  4686       OrderAccess::fence();
  4687       return ;
  4690   Thread* thread = Thread::current();
  4691   assert(thread->is_Java_thread(), "Must be JavaThread");
  4692   JavaThread *jt = (JavaThread *)thread;
  4694   // Optional optimization -- avoid state transitions if there's an interrupt pending.
  4695   // Check interrupt before trying to wait
  4696   if (Thread::is_interrupted(thread, false)) {
  4697     return;
  4700   // Next, demultiplex/decode time arguments
  4701   timespec absTime;
  4702   if (time < 0) { // don't wait at all
  4703     return;
  4705   if (time > 0) {
  4706     unpackTime(&absTime, isAbsolute, time);
  4710   // Enter safepoint region
  4711   // Beware of deadlocks such as 6317397.
  4712   // The per-thread Parker:: mutex is a classic leaf-lock.
  4713   // In particular a thread must never block on the Threads_lock while
  4714   // holding the Parker:: mutex.  If safepoints are pending both the
  4715   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
  4716   ThreadBlockInVM tbivm(jt);
  4718   // Don't wait if cannot get lock since interference arises from
  4719   // unblocking.  Also. check interrupt before trying wait
  4720   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
  4721     return;
  4724   int status ;
  4725   if (_counter > 0)  { // no wait needed
  4726     _counter = 0;
  4727     status = pthread_mutex_unlock(_mutex);
  4728     assert (status == 0, "invariant") ;
  4729     OrderAccess::fence();
  4730     return;
  4733 #ifdef ASSERT
  4734   // Don't catch signals while blocked; let the running threads have the signals.
  4735   // (This allows a debugger to break into the running thread.)
  4736   sigset_t oldsigs;
  4737   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
  4738   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
  4739 #endif
  4741   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  4742   jt->set_suspend_equivalent();
  4743   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  4745   if (time == 0) {
  4746     status = pthread_cond_wait (_cond, _mutex) ;
  4747   } else {
  4748     status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
  4749     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  4750       pthread_cond_destroy (_cond) ;
  4751       pthread_cond_init    (_cond, NULL);
  4754   assert_status(status == 0 || status == EINTR ||
  4755                 status == ETIME || status == ETIMEDOUT,
  4756                 status, "cond_timedwait");
  4758 #ifdef ASSERT
  4759   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
  4760 #endif
  4762   _counter = 0 ;
  4763   status = pthread_mutex_unlock(_mutex) ;
  4764   assert_status(status == 0, status, "invariant") ;
  4765   // If externally suspended while waiting, re-suspend
  4766   if (jt->handle_special_suspend_equivalent_condition()) {
  4767     jt->java_suspend_self();
  4770   OrderAccess::fence();
  4773 void Parker::unpark() {
  4774   int s, status ;
  4775   status = pthread_mutex_lock(_mutex);
  4776   assert (status == 0, "invariant") ;
  4777   s = _counter;
  4778   _counter = 1;
  4779   if (s < 1) {
  4780      if (WorkAroundNPTLTimedWaitHang) {
  4781         status = pthread_cond_signal (_cond) ;
  4782         assert (status == 0, "invariant") ;
  4783         status = pthread_mutex_unlock(_mutex);
  4784         assert (status == 0, "invariant") ;
  4785      } else {
  4786         status = pthread_mutex_unlock(_mutex);
  4787         assert (status == 0, "invariant") ;
  4788         status = pthread_cond_signal (_cond) ;
  4789         assert (status == 0, "invariant") ;
  4791   } else {
  4792     pthread_mutex_unlock(_mutex);
  4793     assert (status == 0, "invariant") ;
  4798 extern char** environ;
  4800 #ifndef __NR_fork
  4801 #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
  4802 #endif
  4804 #ifndef __NR_execve
  4805 #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
  4806 #endif
  4808 // Run the specified command in a separate process. Return its exit value,
  4809 // or -1 on failure (e.g. can't fork a new process).
  4810 // Unlike system(), this function can be called from signal handler. It
  4811 // doesn't block SIGINT et al.
  4812 int os::fork_and_exec(char* cmd) {
  4813   const char * argv[4] = {"sh", "-c", cmd, NULL};
  4815   // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
  4816   // pthread_atfork handlers and reset pthread library. All we need is a
  4817   // separate process to execve. Make a direct syscall to fork process.
  4818   // On IA64 there's no fork syscall, we have to use fork() and hope for
  4819   // the best...
  4820   pid_t pid = NOT_IA64(syscall(__NR_fork);)
  4821               IA64_ONLY(fork();)
  4823   if (pid < 0) {
  4824     // fork failed
  4825     return -1;
  4827   } else if (pid == 0) {
  4828     // child process
  4830     // execve() in LinuxThreads will call pthread_kill_other_threads_np()
  4831     // first to kill every thread on the thread list. Because this list is
  4832     // not reset by fork() (see notes above), execve() will instead kill
  4833     // every thread in the parent process. We know this is the only thread
  4834     // in the new process, so make a system call directly.
  4835     // IA64 should use normal execve() from glibc to match the glibc fork()
  4836     // above.
  4837     NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
  4838     IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
  4840     // execve failed
  4841     _exit(-1);
  4843   } else  {
  4844     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
  4845     // care about the actual exit code, for now.
  4847     int status;
  4849     // Wait for the child process to exit.  This returns immediately if
  4850     // the child has already exited. */
  4851     while (waitpid(pid, &status, 0) < 0) {
  4852         switch (errno) {
  4853         case ECHILD: return 0;
  4854         case EINTR: break;
  4855         default: return -1;
  4859     if (WIFEXITED(status)) {
  4860        // The child exited normally; get its exit code.
  4861        return WEXITSTATUS(status);
  4862     } else if (WIFSIGNALED(status)) {
  4863        // The child exited because of a signal
  4864        // The best value to return is 0x80 + signal number,
  4865        // because that is what all Unix shells do, and because
  4866        // it allows callers to distinguish between process exit and
  4867        // process death by signal.
  4868        return 0x80 + WTERMSIG(status);
  4869     } else {
  4870        // Unknown exit code; pass it through
  4871        return status;

mercurial