src/share/vm/opto/runtime.cpp

Mon, 27 May 2013 12:56:34 +0200

author
stefank
date
Mon, 27 May 2013 12:56:34 +0200
changeset 5195
95c00927be11
parent 5106
e76dd894b984
child 5353
b800986664f4
child 6441
d2907f74462e
permissions
-rw-r--r--

8015428: Remove unused CDS support from StringTable
Summary: The string in StringTable is not used by CDS anymore. Remove the unnecessary code in preparation for 8015422: Large performance hit when the StringTable is walked twice in Parallel Scavenge
Reviewed-by: pliden, tschatzl, coleenp

     1 /*
     2  * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "code/compiledIC.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/nmethod.hpp"
    31 #include "code/pcDesc.hpp"
    32 #include "code/scopeDesc.hpp"
    33 #include "code/vtableStubs.hpp"
    34 #include "compiler/compileBroker.hpp"
    35 #include "compiler/compilerOracle.hpp"
    36 #include "compiler/oopMap.hpp"
    37 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    38 #include "gc_implementation/g1/heapRegion.hpp"
    39 #include "gc_interface/collectedHeap.hpp"
    40 #include "interpreter/bytecode.hpp"
    41 #include "interpreter/interpreter.hpp"
    42 #include "interpreter/linkResolver.hpp"
    43 #include "memory/barrierSet.hpp"
    44 #include "memory/gcLocker.inline.hpp"
    45 #include "memory/oopFactory.hpp"
    46 #include "oops/objArrayKlass.hpp"
    47 #include "oops/oop.inline.hpp"
    48 #include "opto/addnode.hpp"
    49 #include "opto/callnode.hpp"
    50 #include "opto/cfgnode.hpp"
    51 #include "opto/connode.hpp"
    52 #include "opto/graphKit.hpp"
    53 #include "opto/machnode.hpp"
    54 #include "opto/matcher.hpp"
    55 #include "opto/memnode.hpp"
    56 #include "opto/mulnode.hpp"
    57 #include "opto/runtime.hpp"
    58 #include "opto/subnode.hpp"
    59 #include "runtime/fprofiler.hpp"
    60 #include "runtime/handles.inline.hpp"
    61 #include "runtime/interfaceSupport.hpp"
    62 #include "runtime/javaCalls.hpp"
    63 #include "runtime/sharedRuntime.hpp"
    64 #include "runtime/signature.hpp"
    65 #include "runtime/threadCritical.hpp"
    66 #include "runtime/vframe.hpp"
    67 #include "runtime/vframeArray.hpp"
    68 #include "runtime/vframe_hp.hpp"
    69 #include "utilities/copy.hpp"
    70 #include "utilities/preserveException.hpp"
    71 #ifdef TARGET_ARCH_MODEL_x86_32
    72 # include "adfiles/ad_x86_32.hpp"
    73 #endif
    74 #ifdef TARGET_ARCH_MODEL_x86_64
    75 # include "adfiles/ad_x86_64.hpp"
    76 #endif
    77 #ifdef TARGET_ARCH_MODEL_sparc
    78 # include "adfiles/ad_sparc.hpp"
    79 #endif
    80 #ifdef TARGET_ARCH_MODEL_zero
    81 # include "adfiles/ad_zero.hpp"
    82 #endif
    83 #ifdef TARGET_ARCH_MODEL_arm
    84 # include "adfiles/ad_arm.hpp"
    85 #endif
    86 #ifdef TARGET_ARCH_MODEL_ppc
    87 # include "adfiles/ad_ppc.hpp"
    88 #endif
    91 // For debugging purposes:
    92 //  To force FullGCALot inside a runtime function, add the following two lines
    93 //
    94 //  Universe::release_fullgc_alot_dummy();
    95 //  MarkSweep::invoke(0, "Debugging");
    96 //
    97 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
   102 // Compiled code entry points
   103 address OptoRuntime::_new_instance_Java                           = NULL;
   104 address OptoRuntime::_new_array_Java                              = NULL;
   105 address OptoRuntime::_new_array_nozero_Java                       = NULL;
   106 address OptoRuntime::_multianewarray2_Java                        = NULL;
   107 address OptoRuntime::_multianewarray3_Java                        = NULL;
   108 address OptoRuntime::_multianewarray4_Java                        = NULL;
   109 address OptoRuntime::_multianewarray5_Java                        = NULL;
   110 address OptoRuntime::_multianewarrayN_Java                        = NULL;
   111 address OptoRuntime::_g1_wb_pre_Java                              = NULL;
   112 address OptoRuntime::_g1_wb_post_Java                             = NULL;
   113 address OptoRuntime::_vtable_must_compile_Java                    = NULL;
   114 address OptoRuntime::_complete_monitor_locking_Java               = NULL;
   115 address OptoRuntime::_rethrow_Java                                = NULL;
   117 address OptoRuntime::_slow_arraycopy_Java                         = NULL;
   118 address OptoRuntime::_register_finalizer_Java                     = NULL;
   120 # ifdef ENABLE_ZAP_DEAD_LOCALS
   121 address OptoRuntime::_zap_dead_Java_locals_Java                   = NULL;
   122 address OptoRuntime::_zap_dead_native_locals_Java                 = NULL;
   123 # endif
   125 ExceptionBlob* OptoRuntime::_exception_blob;
   127 // This should be called in an assertion at the start of OptoRuntime routines
   128 // which are entered from compiled code (all of them)
   129 #ifdef ASSERT
   130 static bool check_compiled_frame(JavaThread* thread) {
   131   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
   132   RegisterMap map(thread, false);
   133   frame caller = thread->last_frame().sender(&map);
   134   assert(caller.is_compiled_frame(), "not being called from compiled like code");
   135   return true;
   136 }
   137 #endif // ASSERT
   140 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
   141   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc)
   143 void OptoRuntime::generate(ciEnv* env) {
   145   generate_exception_blob();
   147   // Note: tls: Means fetching the return oop out of the thread-local storage
   148   //
   149   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
   150   // -------------------------------------------------------------------------------------------------------------------------------
   151   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
   152   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
   153   gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true , false, false);
   154   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
   155   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
   156   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
   157   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
   158   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true , false, false);
   159   gen(env, _g1_wb_pre_Java                 , g1_wb_pre_Type               , SharedRuntime::g1_wb_pre        ,    0 , false, false, false);
   160   gen(env, _g1_wb_post_Java                , g1_wb_post_Type              , SharedRuntime::g1_wb_post       ,    0 , false, false, false);
   161   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C      ,    0 , false, false, false);
   162   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
   164   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
   165   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
   167 # ifdef ENABLE_ZAP_DEAD_LOCALS
   168   gen(env, _zap_dead_Java_locals_Java      , zap_dead_locals_Type         , zap_dead_Java_locals_C          ,    0 , false, true , false );
   169   gen(env, _zap_dead_native_locals_Java    , zap_dead_locals_Type         , zap_dead_native_locals_C        ,    0 , false, true , false );
   170 # endif
   172 }
   174 #undef gen
   177 // Helper method to do generation of RunTimeStub's
   178 address OptoRuntime::generate_stub( ciEnv* env,
   179                                     TypeFunc_generator gen, address C_function,
   180                                     const char *name, int is_fancy_jump,
   181                                     bool pass_tls,
   182                                     bool save_argument_registers,
   183                                     bool return_pc ) {
   184   ResourceMark rm;
   185   Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc );
   186   return  C.stub_entry_point();
   187 }
   189 const char* OptoRuntime::stub_name(address entry) {
   190 #ifndef PRODUCT
   191   CodeBlob* cb = CodeCache::find_blob(entry);
   192   RuntimeStub* rs =(RuntimeStub *)cb;
   193   assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
   194   return rs->name();
   195 #else
   196   // Fast implementation for product mode (maybe it should be inlined too)
   197   return "runtime stub";
   198 #endif
   199 }
   202 //=============================================================================
   203 // Opto compiler runtime routines
   204 //=============================================================================
   207 //=============================allocation======================================
   208 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
   209 // and try allocation again.
   211 void OptoRuntime::new_store_pre_barrier(JavaThread* thread) {
   212   // After any safepoint, just before going back to compiled code,
   213   // we inform the GC that we will be doing initializing writes to
   214   // this object in the future without emitting card-marks, so
   215   // GC may take any compensating steps.
   216   // NOTE: Keep this code consistent with GraphKit::store_barrier.
   218   oop new_obj = thread->vm_result();
   219   if (new_obj == NULL)  return;
   221   assert(Universe::heap()->can_elide_tlab_store_barriers(),
   222          "compiler must check this first");
   223   // GC may decide to give back a safer copy of new_obj.
   224   new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj);
   225   thread->set_vm_result(new_obj);
   226 }
   228 // object allocation
   229 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
   230   JRT_BLOCK;
   231 #ifndef PRODUCT
   232   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
   233 #endif
   234   assert(check_compiled_frame(thread), "incorrect caller");
   236   // These checks are cheap to make and support reflective allocation.
   237   int lh = klass->layout_helper();
   238   if (Klass::layout_helper_needs_slow_path(lh)
   239       || !InstanceKlass::cast(klass)->is_initialized()) {
   240     KlassHandle kh(THREAD, klass);
   241     kh->check_valid_for_instantiation(false, THREAD);
   242     if (!HAS_PENDING_EXCEPTION) {
   243       InstanceKlass::cast(kh())->initialize(THREAD);
   244     }
   245     if (!HAS_PENDING_EXCEPTION) {
   246       klass = kh();
   247     } else {
   248       klass = NULL;
   249     }
   250   }
   252   if (klass != NULL) {
   253     // Scavenge and allocate an instance.
   254     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
   255     thread->set_vm_result(result);
   257     // Pass oops back through thread local storage.  Our apparent type to Java
   258     // is that we return an oop, but we can block on exit from this routine and
   259     // a GC can trash the oop in C's return register.  The generated stub will
   260     // fetch the oop from TLS after any possible GC.
   261   }
   263   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   264   JRT_BLOCK_END;
   266   if (GraphKit::use_ReduceInitialCardMarks()) {
   267     // inform GC that we won't do card marks for initializing writes.
   268     new_store_pre_barrier(thread);
   269   }
   270 JRT_END
   273 // array allocation
   274 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
   275   JRT_BLOCK;
   276 #ifndef PRODUCT
   277   SharedRuntime::_new_array_ctr++;            // new array requires GC
   278 #endif
   279   assert(check_compiled_frame(thread), "incorrect caller");
   281   // Scavenge and allocate an instance.
   282   oop result;
   284   if (array_type->oop_is_typeArray()) {
   285     // The oopFactory likes to work with the element type.
   286     // (We could bypass the oopFactory, since it doesn't add much value.)
   287     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
   288     result = oopFactory::new_typeArray(elem_type, len, THREAD);
   289   } else {
   290     // Although the oopFactory likes to work with the elem_type,
   291     // the compiler prefers the array_type, since it must already have
   292     // that latter value in hand for the fast path.
   293     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
   294     result = oopFactory::new_objArray(elem_type, len, THREAD);
   295   }
   297   // Pass oops back through thread local storage.  Our apparent type to Java
   298   // is that we return an oop, but we can block on exit from this routine and
   299   // a GC can trash the oop in C's return register.  The generated stub will
   300   // fetch the oop from TLS after any possible GC.
   301   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   302   thread->set_vm_result(result);
   303   JRT_BLOCK_END;
   305   if (GraphKit::use_ReduceInitialCardMarks()) {
   306     // inform GC that we won't do card marks for initializing writes.
   307     new_store_pre_barrier(thread);
   308   }
   309 JRT_END
   311 // array allocation without zeroing
   312 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
   313   JRT_BLOCK;
   314 #ifndef PRODUCT
   315   SharedRuntime::_new_array_ctr++;            // new array requires GC
   316 #endif
   317   assert(check_compiled_frame(thread), "incorrect caller");
   319   // Scavenge and allocate an instance.
   320   oop result;
   322   assert(array_type->oop_is_typeArray(), "should be called only for type array");
   323   // The oopFactory likes to work with the element type.
   324   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
   325   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
   327   // Pass oops back through thread local storage.  Our apparent type to Java
   328   // is that we return an oop, but we can block on exit from this routine and
   329   // a GC can trash the oop in C's return register.  The generated stub will
   330   // fetch the oop from TLS after any possible GC.
   331   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   332   thread->set_vm_result(result);
   333   JRT_BLOCK_END;
   335   if (GraphKit::use_ReduceInitialCardMarks()) {
   336     // inform GC that we won't do card marks for initializing writes.
   337     new_store_pre_barrier(thread);
   338   }
   340   oop result = thread->vm_result();
   341   if ((len > 0) && (result != NULL) &&
   342       is_deoptimized_caller_frame(thread)) {
   343     // Zero array here if the caller is deoptimized.
   344     int size = ((typeArrayOop)result)->object_size();
   345     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
   346     const size_t hs = arrayOopDesc::header_size(elem_type);
   347     // Align to next 8 bytes to avoid trashing arrays's length.
   348     const size_t aligned_hs = align_object_offset(hs);
   349     HeapWord* obj = (HeapWord*)result;
   350     if (aligned_hs > hs) {
   351       Copy::zero_to_words(obj+hs, aligned_hs-hs);
   352     }
   353     // Optimized zeroing.
   354     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
   355   }
   357 JRT_END
   359 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
   361 // multianewarray for 2 dimensions
   362 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
   363 #ifndef PRODUCT
   364   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
   365 #endif
   366   assert(check_compiled_frame(thread), "incorrect caller");
   367   assert(elem_type->is_klass(), "not a class");
   368   jint dims[2];
   369   dims[0] = len1;
   370   dims[1] = len2;
   371   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
   372   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   373   thread->set_vm_result(obj);
   374 JRT_END
   376 // multianewarray for 3 dimensions
   377 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
   378 #ifndef PRODUCT
   379   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
   380 #endif
   381   assert(check_compiled_frame(thread), "incorrect caller");
   382   assert(elem_type->is_klass(), "not a class");
   383   jint dims[3];
   384   dims[0] = len1;
   385   dims[1] = len2;
   386   dims[2] = len3;
   387   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
   388   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   389   thread->set_vm_result(obj);
   390 JRT_END
   392 // multianewarray for 4 dimensions
   393 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
   394 #ifndef PRODUCT
   395   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
   396 #endif
   397   assert(check_compiled_frame(thread), "incorrect caller");
   398   assert(elem_type->is_klass(), "not a class");
   399   jint dims[4];
   400   dims[0] = len1;
   401   dims[1] = len2;
   402   dims[2] = len3;
   403   dims[3] = len4;
   404   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
   405   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   406   thread->set_vm_result(obj);
   407 JRT_END
   409 // multianewarray for 5 dimensions
   410 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
   411 #ifndef PRODUCT
   412   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
   413 #endif
   414   assert(check_compiled_frame(thread), "incorrect caller");
   415   assert(elem_type->is_klass(), "not a class");
   416   jint dims[5];
   417   dims[0] = len1;
   418   dims[1] = len2;
   419   dims[2] = len3;
   420   dims[3] = len4;
   421   dims[4] = len5;
   422   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
   423   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   424   thread->set_vm_result(obj);
   425 JRT_END
   427 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
   428   assert(check_compiled_frame(thread), "incorrect caller");
   429   assert(elem_type->is_klass(), "not a class");
   430   assert(oop(dims)->is_typeArray(), "not an array");
   432   ResourceMark rm;
   433   jint len = dims->length();
   434   assert(len > 0, "Dimensions array should contain data");
   435   jint *j_dims = typeArrayOop(dims)->int_at_addr(0);
   436   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
   437   Copy::conjoint_jints_atomic(j_dims, c_dims, len);
   439   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
   440   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   441   thread->set_vm_result(obj);
   442 JRT_END
   445 const TypeFunc *OptoRuntime::new_instance_Type() {
   446   // create input type (domain)
   447   const Type **fields = TypeTuple::fields(1);
   448   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
   449   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   451   // create result type (range)
   452   fields = TypeTuple::fields(1);
   453   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   455   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   457   return TypeFunc::make(domain, range);
   458 }
   461 const TypeFunc *OptoRuntime::athrow_Type() {
   462   // create input type (domain)
   463   const Type **fields = TypeTuple::fields(1);
   464   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
   465   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   467   // create result type (range)
   468   fields = TypeTuple::fields(0);
   470   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
   472   return TypeFunc::make(domain, range);
   473 }
   476 const TypeFunc *OptoRuntime::new_array_Type() {
   477   // create input type (domain)
   478   const Type **fields = TypeTuple::fields(2);
   479   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
   480   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
   481   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   483   // create result type (range)
   484   fields = TypeTuple::fields(1);
   485   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   487   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   489   return TypeFunc::make(domain, range);
   490 }
   492 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
   493   // create input type (domain)
   494   const int nargs = ndim + 1;
   495   const Type **fields = TypeTuple::fields(nargs);
   496   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
   497   for( int i = 1; i < nargs; i++ )
   498     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
   499   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
   501   // create result type (range)
   502   fields = TypeTuple::fields(1);
   503   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   504   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   506   return TypeFunc::make(domain, range);
   507 }
   509 const TypeFunc *OptoRuntime::multianewarray2_Type() {
   510   return multianewarray_Type(2);
   511 }
   513 const TypeFunc *OptoRuntime::multianewarray3_Type() {
   514   return multianewarray_Type(3);
   515 }
   517 const TypeFunc *OptoRuntime::multianewarray4_Type() {
   518   return multianewarray_Type(4);
   519 }
   521 const TypeFunc *OptoRuntime::multianewarray5_Type() {
   522   return multianewarray_Type(5);
   523 }
   525 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
   526   // create input type (domain)
   527   const Type **fields = TypeTuple::fields(2);
   528   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
   529   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
   530   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   532   // create result type (range)
   533   fields = TypeTuple::fields(1);
   534   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   535   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   537   return TypeFunc::make(domain, range);
   538 }
   540 const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
   541   const Type **fields = TypeTuple::fields(2);
   542   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
   543   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
   544   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   546   // create result type (range)
   547   fields = TypeTuple::fields(0);
   548   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
   550   return TypeFunc::make(domain, range);
   551 }
   553 const TypeFunc *OptoRuntime::g1_wb_post_Type() {
   555   const Type **fields = TypeTuple::fields(2);
   556   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
   557   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
   558   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   560   // create result type (range)
   561   fields = TypeTuple::fields(0);
   562   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   564   return TypeFunc::make(domain, range);
   565 }
   567 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
   568   // create input type (domain)
   569   const Type **fields = TypeTuple::fields(1);
   570   // Symbol* name of class to be loaded
   571   fields[TypeFunc::Parms+0] = TypeInt::INT;
   572   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   574   // create result type (range)
   575   fields = TypeTuple::fields(0);
   576   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
   578   return TypeFunc::make(domain, range);
   579 }
   581 # ifdef ENABLE_ZAP_DEAD_LOCALS
   582 // Type used for stub generation for zap_dead_locals.
   583 // No inputs or outputs
   584 const TypeFunc *OptoRuntime::zap_dead_locals_Type() {
   585   // create input type (domain)
   586   const Type **fields = TypeTuple::fields(0);
   587   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields);
   589   // create result type (range)
   590   fields = TypeTuple::fields(0);
   591   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields);
   593   return TypeFunc::make(domain,range);
   594 }
   595 # endif
   598 //-----------------------------------------------------------------------------
   599 // Monitor Handling
   600 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
   601   // create input type (domain)
   602   const Type **fields = TypeTuple::fields(2);
   603   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
   604   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
   605   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
   607   // create result type (range)
   608   fields = TypeTuple::fields(0);
   610   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
   612   return TypeFunc::make(domain,range);
   613 }
   616 //-----------------------------------------------------------------------------
   617 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
   618   // create input type (domain)
   619   const Type **fields = TypeTuple::fields(2);
   620   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
   621   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
   622   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
   624   // create result type (range)
   625   fields = TypeTuple::fields(0);
   627   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
   629   return TypeFunc::make(domain,range);
   630 }
   632 const TypeFunc* OptoRuntime::flush_windows_Type() {
   633   // create input type (domain)
   634   const Type** fields = TypeTuple::fields(1);
   635   fields[TypeFunc::Parms+0] = NULL; // void
   636   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
   638   // create result type
   639   fields = TypeTuple::fields(1);
   640   fields[TypeFunc::Parms+0] = NULL; // void
   641   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   643   return TypeFunc::make(domain, range);
   644 }
   646 const TypeFunc* OptoRuntime::l2f_Type() {
   647   // create input type (domain)
   648   const Type **fields = TypeTuple::fields(2);
   649   fields[TypeFunc::Parms+0] = TypeLong::LONG;
   650   fields[TypeFunc::Parms+1] = Type::HALF;
   651   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   653   // create result type (range)
   654   fields = TypeTuple::fields(1);
   655   fields[TypeFunc::Parms+0] = Type::FLOAT;
   656   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   658   return TypeFunc::make(domain, range);
   659 }
   661 const TypeFunc* OptoRuntime::modf_Type() {
   662   const Type **fields = TypeTuple::fields(2);
   663   fields[TypeFunc::Parms+0] = Type::FLOAT;
   664   fields[TypeFunc::Parms+1] = Type::FLOAT;
   665   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   667   // create result type (range)
   668   fields = TypeTuple::fields(1);
   669   fields[TypeFunc::Parms+0] = Type::FLOAT;
   671   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   673   return TypeFunc::make(domain, range);
   674 }
   676 const TypeFunc *OptoRuntime::Math_D_D_Type() {
   677   // create input type (domain)
   678   const Type **fields = TypeTuple::fields(2);
   679   // Symbol* name of class to be loaded
   680   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   681   fields[TypeFunc::Parms+1] = Type::HALF;
   682   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   684   // create result type (range)
   685   fields = TypeTuple::fields(2);
   686   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   687   fields[TypeFunc::Parms+1] = Type::HALF;
   688   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
   690   return TypeFunc::make(domain, range);
   691 }
   693 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
   694   const Type **fields = TypeTuple::fields(4);
   695   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   696   fields[TypeFunc::Parms+1] = Type::HALF;
   697   fields[TypeFunc::Parms+2] = Type::DOUBLE;
   698   fields[TypeFunc::Parms+3] = Type::HALF;
   699   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
   701   // create result type (range)
   702   fields = TypeTuple::fields(2);
   703   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   704   fields[TypeFunc::Parms+1] = Type::HALF;
   705   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
   707   return TypeFunc::make(domain, range);
   708 }
   710 //-------------- currentTimeMillis, currentTimeNanos, etc
   712 const TypeFunc* OptoRuntime::void_long_Type() {
   713   // create input type (domain)
   714   const Type **fields = TypeTuple::fields(0);
   715   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
   717   // create result type (range)
   718   fields = TypeTuple::fields(2);
   719   fields[TypeFunc::Parms+0] = TypeLong::LONG;
   720   fields[TypeFunc::Parms+1] = Type::HALF;
   721   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
   723   return TypeFunc::make(domain, range);
   724 }
   726 // arraycopy stub variations:
   727 enum ArrayCopyType {
   728   ac_fast,                      // void(ptr, ptr, size_t)
   729   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
   730   ac_slow,                      // void(ptr, int, ptr, int, int)
   731   ac_generic                    //  int(ptr, int, ptr, int, int)
   732 };
   734 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
   735   // create input type (domain)
   736   int num_args      = (act == ac_fast ? 3 : 5);
   737   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
   738   int argcnt = num_args;
   739   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
   740   const Type** fields = TypeTuple::fields(argcnt);
   741   int argp = TypeFunc::Parms;
   742   fields[argp++] = TypePtr::NOTNULL;    // src
   743   if (num_size_args == 0) {
   744     fields[argp++] = TypeInt::INT;      // src_pos
   745   }
   746   fields[argp++] = TypePtr::NOTNULL;    // dest
   747   if (num_size_args == 0) {
   748     fields[argp++] = TypeInt::INT;      // dest_pos
   749     fields[argp++] = TypeInt::INT;      // length
   750   }
   751   while (num_size_args-- > 0) {
   752     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
   753     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
   754   }
   755   if (act == ac_checkcast) {
   756     fields[argp++] = TypePtr::NOTNULL;  // super_klass
   757   }
   758   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
   759   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   761   // create result type if needed
   762   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
   763   fields = TypeTuple::fields(1);
   764   if (retcnt == 0)
   765     fields[TypeFunc::Parms+0] = NULL; // void
   766   else
   767     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
   768   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
   769   return TypeFunc::make(domain, range);
   770 }
   772 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
   773   // This signature is simple:  Two base pointers and a size_t.
   774   return make_arraycopy_Type(ac_fast);
   775 }
   777 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
   778   // An extension of fast_arraycopy_Type which adds type checking.
   779   return make_arraycopy_Type(ac_checkcast);
   780 }
   782 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
   783   // This signature is exactly the same as System.arraycopy.
   784   // There are no intptr_t (int/long) arguments.
   785   return make_arraycopy_Type(ac_slow);
   786 }
   788 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
   789   // This signature is like System.arraycopy, except that it returns status.
   790   return make_arraycopy_Type(ac_generic);
   791 }
   794 const TypeFunc* OptoRuntime::array_fill_Type() {
   795   // create input type (domain): pointer, int, size_t
   796   const Type** fields = TypeTuple::fields(3 LP64_ONLY( + 1));
   797   int argp = TypeFunc::Parms;
   798   fields[argp++] = TypePtr::NOTNULL;
   799   fields[argp++] = TypeInt::INT;
   800   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
   801   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
   802   const TypeTuple *domain = TypeTuple::make(argp, fields);
   804   // create result type
   805   fields = TypeTuple::fields(1);
   806   fields[TypeFunc::Parms+0] = NULL; // void
   807   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   809   return TypeFunc::make(domain, range);
   810 }
   812 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
   813 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
   814   // create input type (domain)
   815   int num_args      = 3;
   816   int argcnt = num_args;
   817   const Type** fields = TypeTuple::fields(argcnt);
   818   int argp = TypeFunc::Parms;
   819   fields[argp++] = TypePtr::NOTNULL;    // src
   820   fields[argp++] = TypePtr::NOTNULL;    // dest
   821   fields[argp++] = TypePtr::NOTNULL;    // k array
   822   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
   823   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   825   // no result type needed
   826   fields = TypeTuple::fields(1);
   827   fields[TypeFunc::Parms+0] = NULL; // void
   828   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
   829   return TypeFunc::make(domain, range);
   830 }
   832 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning void
   833 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
   834   // create input type (domain)
   835   int num_args      = 5;
   836   int argcnt = num_args;
   837   const Type** fields = TypeTuple::fields(argcnt);
   838   int argp = TypeFunc::Parms;
   839   fields[argp++] = TypePtr::NOTNULL;    // src
   840   fields[argp++] = TypePtr::NOTNULL;    // dest
   841   fields[argp++] = TypePtr::NOTNULL;    // k array
   842   fields[argp++] = TypePtr::NOTNULL;    // r array
   843   fields[argp++] = TypeInt::INT;        // src len
   844   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
   845   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   847   // no result type needed
   848   fields = TypeTuple::fields(1);
   849   fields[TypeFunc::Parms+0] = NULL; // void
   850   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
   851   return TypeFunc::make(domain, range);
   852 }
   854 //------------- Interpreter state access for on stack replacement
   855 const TypeFunc* OptoRuntime::osr_end_Type() {
   856   // create input type (domain)
   857   const Type **fields = TypeTuple::fields(1);
   858   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
   859   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   861   // create result type
   862   fields = TypeTuple::fields(1);
   863   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
   864   fields[TypeFunc::Parms+0] = NULL; // void
   865   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   866   return TypeFunc::make(domain, range);
   867 }
   869 //-------------- methodData update helpers
   871 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
   872   // create input type (domain)
   873   const Type **fields = TypeTuple::fields(2);
   874   fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
   875   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
   876   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   878   // create result type
   879   fields = TypeTuple::fields(1);
   880   fields[TypeFunc::Parms+0] = NULL; // void
   881   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   882   return TypeFunc::make(domain,range);
   883 }
   885 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
   886   if (receiver == NULL) return;
   887   Klass* receiver_klass = receiver->klass();
   889   intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
   890   int empty_row = -1;           // free row, if any is encountered
   892   // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
   893   for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
   894     // if (vc->receiver(row) == receiver_klass)
   895     int receiver_off = ReceiverTypeData::receiver_cell_index(row);
   896     intptr_t row_recv = *(mdp + receiver_off);
   897     if (row_recv == (intptr_t) receiver_klass) {
   898       // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
   899       int count_off = ReceiverTypeData::receiver_count_cell_index(row);
   900       *(mdp + count_off) += DataLayout::counter_increment;
   901       return;
   902     } else if (row_recv == 0) {
   903       // else if (vc->receiver(row) == NULL)
   904       empty_row = (int) row;
   905     }
   906   }
   908   if (empty_row != -1) {
   909     int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
   910     // vc->set_receiver(empty_row, receiver_klass);
   911     *(mdp + receiver_off) = (intptr_t) receiver_klass;
   912     // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
   913     int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
   914     *(mdp + count_off) = DataLayout::counter_increment;
   915   } else {
   916     // Receiver did not match any saved receiver and there is no empty row for it.
   917     // Increment total counter to indicate polymorphic case.
   918     intptr_t* count_p = (intptr_t*)(((byte*)(data)) + in_bytes(CounterData::count_offset()));
   919     *count_p += DataLayout::counter_increment;
   920   }
   921 JRT_END
   923 //-------------------------------------------------------------------------------------
   924 // register policy
   926 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
   927   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
   928   switch (register_save_policy[reg]) {
   929     case 'C': return false; //SOC
   930     case 'E': return true ; //SOE
   931     case 'N': return false; //NS
   932     case 'A': return false; //AS
   933   }
   934   ShouldNotReachHere();
   935   return false;
   936 }
   938 //-----------------------------------------------------------------------
   939 // Exceptions
   940 //
   942 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN;
   944 // The method is an entry that is always called by a C++ method not
   945 // directly from compiled code. Compiled code will call the C++ method following.
   946 // We can't allow async exception to be installed during  exception processing.
   947 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
   949   // Do not confuse exception_oop with pending_exception. The exception_oop
   950   // is only used to pass arguments into the method. Not for general
   951   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
   952   // the runtime stubs checks this on exit.
   953   assert(thread->exception_oop() != NULL, "exception oop is found");
   954   address handler_address = NULL;
   956   Handle exception(thread, thread->exception_oop());
   958   if (TraceExceptions) {
   959     trace_exception(exception(), thread->exception_pc(), "");
   960   }
   961   // for AbortVMOnException flag
   962   NOT_PRODUCT(Exceptions::debug_check_abort(exception));
   964   #ifdef ASSERT
   965     if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
   966       // should throw an exception here
   967       ShouldNotReachHere();
   968     }
   969   #endif
   972   // new exception handling: this method is entered only from adapters
   973   // exceptions from compiled java methods are handled in compiled code
   974   // using rethrow node
   976   address pc = thread->exception_pc();
   977   nm = CodeCache::find_nmethod(pc);
   978   assert(nm != NULL, "No NMethod found");
   979   if (nm->is_native_method()) {
   980     fatal("Native mathod should not have path to exception handling");
   981   } else {
   982     // we are switching to old paradigm: search for exception handler in caller_frame
   983     // instead in exception handler of caller_frame.sender()
   985     if (JvmtiExport::can_post_on_exceptions()) {
   986       // "Full-speed catching" is not necessary here,
   987       // since we're notifying the VM on every catch.
   988       // Force deoptimization and the rest of the lookup
   989       // will be fine.
   990       deoptimize_caller_frame(thread);
   991     }
   993     // Check the stack guard pages.  If enabled, look for handler in this frame;
   994     // otherwise, forcibly unwind the frame.
   995     //
   996     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
   997     bool force_unwind = !thread->reguard_stack();
   998     bool deopting = false;
   999     if (nm->is_deopt_pc(pc)) {
  1000       deopting = true;
  1001       RegisterMap map(thread, false);
  1002       frame deoptee = thread->last_frame().sender(&map);
  1003       assert(deoptee.is_deoptimized_frame(), "must be deopted");
  1004       // Adjust the pc back to the original throwing pc
  1005       pc = deoptee.pc();
  1008     // If we are forcing an unwind because of stack overflow then deopt is
  1009     // irrelevant sice we are throwing the frame away anyway.
  1011     if (deopting && !force_unwind) {
  1012       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
  1013     } else {
  1015       handler_address =
  1016         force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
  1018       if (handler_address == NULL) {
  1019         Handle original_exception(thread, exception());
  1020         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true);
  1021         assert (handler_address != NULL, "must have compiled handler");
  1022         // Update the exception cache only when the unwind was not forced
  1023         // and there didn't happen another exception during the computation of the
  1024         // compiled exception handler.
  1025         if (!force_unwind && original_exception() == exception()) {
  1026           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
  1028       } else {
  1029         assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same");
  1033     thread->set_exception_pc(pc);
  1034     thread->set_exception_handler_pc(handler_address);
  1036     // Check if the exception PC is a MethodHandle call site.
  1037     thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
  1040   // Restore correct return pc.  Was saved above.
  1041   thread->set_exception_oop(exception());
  1042   return handler_address;
  1044 JRT_END
  1046 // We are entering here from exception_blob
  1047 // If there is a compiled exception handler in this method, we will continue there;
  1048 // otherwise we will unwind the stack and continue at the caller of top frame method
  1049 // Note we enter without the usual JRT wrapper. We will call a helper routine that
  1050 // will do the normal VM entry. We do it this way so that we can see if the nmethod
  1051 // we looked up the handler for has been deoptimized in the meantime. If it has been
  1052 // we must not use the handler and instread return the deopt blob.
  1053 address OptoRuntime::handle_exception_C(JavaThread* thread) {
  1054 //
  1055 // We are in Java not VM and in debug mode we have a NoHandleMark
  1056 //
  1057 #ifndef PRODUCT
  1058   SharedRuntime::_find_handler_ctr++;          // find exception handler
  1059 #endif
  1060   debug_only(NoHandleMark __hm;)
  1061   nmethod* nm = NULL;
  1062   address handler_address = NULL;
  1064     // Enter the VM
  1066     ResetNoHandleMark rnhm;
  1067     handler_address = handle_exception_C_helper(thread, nm);
  1070   // Back in java: Use no oops, DON'T safepoint
  1072   // Now check to see if the handler we are returning is in a now
  1073   // deoptimized frame
  1075   if (nm != NULL) {
  1076     RegisterMap map(thread, false);
  1077     frame caller = thread->last_frame().sender(&map);
  1078 #ifdef ASSERT
  1079     assert(caller.is_compiled_frame(), "must be");
  1080 #endif // ASSERT
  1081     if (caller.is_deoptimized_frame()) {
  1082       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
  1085   return handler_address;
  1088 //------------------------------rethrow----------------------------------------
  1089 // We get here after compiled code has executed a 'RethrowNode'.  The callee
  1090 // is either throwing or rethrowing an exception.  The callee-save registers
  1091 // have been restored, synchronized objects have been unlocked and the callee
  1092 // stack frame has been removed.  The return address was passed in.
  1093 // Exception oop is passed as the 1st argument.  This routine is then called
  1094 // from the stub.  On exit, we know where to jump in the caller's code.
  1095 // After this C code exits, the stub will pop his frame and end in a jump
  1096 // (instead of a return).  We enter the caller's default handler.
  1097 //
  1098 // This must be JRT_LEAF:
  1099 //     - caller will not change its state as we cannot block on exit,
  1100 //       therefore raw_exception_handler_for_return_address is all it takes
  1101 //       to handle deoptimized blobs
  1102 //
  1103 // However, there needs to be a safepoint check in the middle!  So compiled
  1104 // safepoints are completely watertight.
  1105 //
  1106 // Thus, it cannot be a leaf since it contains the No_GC_Verifier.
  1107 //
  1108 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
  1109 //
  1110 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
  1111 #ifndef PRODUCT
  1112   SharedRuntime::_rethrow_ctr++;               // count rethrows
  1113 #endif
  1114   assert (exception != NULL, "should have thrown a NULLPointerException");
  1115 #ifdef ASSERT
  1116   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
  1117     // should throw an exception here
  1118     ShouldNotReachHere();
  1120 #endif
  1122   thread->set_vm_result(exception);
  1123   // Frame not compiled (handles deoptimization blob)
  1124   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
  1128 const TypeFunc *OptoRuntime::rethrow_Type() {
  1129   // create input type (domain)
  1130   const Type **fields = TypeTuple::fields(1);
  1131   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
  1132   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
  1134   // create result type (range)
  1135   fields = TypeTuple::fields(1);
  1136   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
  1137   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
  1139   return TypeFunc::make(domain, range);
  1143 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
  1144   // Deoptimize the caller before continuing, as the compiled
  1145   // exception handler table may not be valid.
  1146   if (!StressCompiledExceptionHandlers && doit) {
  1147     deoptimize_caller_frame(thread);
  1151 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
  1152   // Called from within the owner thread, so no need for safepoint
  1153   RegisterMap reg_map(thread);
  1154   frame stub_frame = thread->last_frame();
  1155   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
  1156   frame caller_frame = stub_frame.sender(&reg_map);
  1158   // Deoptimize the caller frame.
  1159   Deoptimization::deoptimize_frame(thread, caller_frame.id());
  1163 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
  1164   // Called from within the owner thread, so no need for safepoint
  1165   RegisterMap reg_map(thread);
  1166   frame stub_frame = thread->last_frame();
  1167   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
  1168   frame caller_frame = stub_frame.sender(&reg_map);
  1169   return caller_frame.is_deoptimized_frame();
  1173 const TypeFunc *OptoRuntime::register_finalizer_Type() {
  1174   // create input type (domain)
  1175   const Type **fields = TypeTuple::fields(1);
  1176   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
  1177   // // The JavaThread* is passed to each routine as the last argument
  1178   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
  1179   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
  1181   // create result type (range)
  1182   fields = TypeTuple::fields(0);
  1184   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
  1186   return TypeFunc::make(domain,range);
  1190 //-----------------------------------------------------------------------------
  1191 // Dtrace support.  entry and exit probes have the same signature
  1192 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
  1193   // create input type (domain)
  1194   const Type **fields = TypeTuple::fields(2);
  1195   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
  1196   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
  1197   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
  1199   // create result type (range)
  1200   fields = TypeTuple::fields(0);
  1202   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
  1204   return TypeFunc::make(domain,range);
  1207 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
  1208   // create input type (domain)
  1209   const Type **fields = TypeTuple::fields(2);
  1210   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
  1211   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
  1213   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
  1215   // create result type (range)
  1216   fields = TypeTuple::fields(0);
  1218   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
  1220   return TypeFunc::make(domain,range);
  1224 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
  1225   assert(obj->is_oop(), "must be a valid oop");
  1226   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
  1227   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
  1228 JRT_END
  1230 //-----------------------------------------------------------------------------
  1232 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
  1234 //
  1235 // dump the collected NamedCounters.
  1236 //
  1237 void OptoRuntime::print_named_counters() {
  1238   int total_lock_count = 0;
  1239   int eliminated_lock_count = 0;
  1241   NamedCounter* c = _named_counters;
  1242   while (c) {
  1243     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
  1244       int count = c->count();
  1245       if (count > 0) {
  1246         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
  1247         if (Verbose) {
  1248           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
  1250         total_lock_count += count;
  1251         if (eliminated) {
  1252           eliminated_lock_count += count;
  1255     } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
  1256       BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
  1257       if (blc->nonzero()) {
  1258         tty->print_cr("%s", c->name());
  1259         blc->print_on(tty);
  1262     c = c->next();
  1264   if (total_lock_count > 0) {
  1265     tty->print_cr("dynamic locks: %d", total_lock_count);
  1266     if (eliminated_lock_count) {
  1267       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
  1268                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
  1273 //
  1274 //  Allocate a new NamedCounter.  The JVMState is used to generate the
  1275 //  name which consists of method@line for the inlining tree.
  1276 //
  1278 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
  1279   int max_depth = youngest_jvms->depth();
  1281   // Visit scopes from youngest to oldest.
  1282   bool first = true;
  1283   stringStream st;
  1284   for (int depth = max_depth; depth >= 1; depth--) {
  1285     JVMState* jvms = youngest_jvms->of_depth(depth);
  1286     ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
  1287     if (!first) {
  1288       st.print(" ");
  1289     } else {
  1290       first = false;
  1292     int bci = jvms->bci();
  1293     if (bci < 0) bci = 0;
  1294     st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
  1295     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
  1297   NamedCounter* c;
  1298   if (tag == NamedCounter::BiasedLockingCounter) {
  1299     c = new BiasedLockingNamedCounter(strdup(st.as_string()));
  1300   } else {
  1301     c = new NamedCounter(strdup(st.as_string()), tag);
  1304   // atomically add the new counter to the head of the list.  We only
  1305   // add counters so this is safe.
  1306   NamedCounter* head;
  1307   do {
  1308     head = _named_counters;
  1309     c->set_next(head);
  1310   } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
  1311   return c;
  1314 //-----------------------------------------------------------------------------
  1315 // Non-product code
  1316 #ifndef PRODUCT
  1318 int trace_exception_counter = 0;
  1319 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) {
  1320   ttyLocker ttyl;
  1321   trace_exception_counter++;
  1322   tty->print("%d [Exception (%s): ", trace_exception_counter, msg);
  1323   exception_oop->print_value();
  1324   tty->print(" in ");
  1325   CodeBlob* blob = CodeCache::find_blob(exception_pc);
  1326   if (blob->is_nmethod()) {
  1327     ((nmethod*)blob)->method()->print_value();
  1328   } else if (blob->is_runtime_stub()) {
  1329     tty->print("<runtime-stub>");
  1330   } else {
  1331     tty->print("<unknown>");
  1333   tty->print(" at " INTPTR_FORMAT,  exception_pc);
  1334   tty->print_cr("]");
  1337 #endif  // PRODUCT
  1340 # ifdef ENABLE_ZAP_DEAD_LOCALS
  1341 // Called from call sites in compiled code with oop maps (actually safepoints)
  1342 // Zaps dead locals in first java frame.
  1343 // Is entry because may need to lock to generate oop maps
  1344 // Currently, only used for compiler frames, but someday may be used
  1345 // for interpreter frames, too.
  1347 int OptoRuntime::ZapDeadCompiledLocals_count = 0;
  1349 // avoid pointers to member funcs with these helpers
  1350 static bool is_java_frame(  frame* f) { return f->is_java_frame();   }
  1351 static bool is_native_frame(frame* f) { return f->is_native_frame(); }
  1354 void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread,
  1355                                                 bool (*is_this_the_right_frame_to_zap)(frame*)) {
  1356   assert(JavaThread::current() == thread, "is this needed?");
  1358   if ( !ZapDeadCompiledLocals )  return;
  1360   bool skip = false;
  1362        if ( ZapDeadCompiledLocalsFirst  ==  0  ) ; // nothing special
  1363   else if ( ZapDeadCompiledLocalsFirst  >  ZapDeadCompiledLocals_count )  skip = true;
  1364   else if ( ZapDeadCompiledLocalsFirst  == ZapDeadCompiledLocals_count )
  1365     warning("starting zapping after skipping");
  1367        if ( ZapDeadCompiledLocalsLast  ==  -1  ) ; // nothing special
  1368   else if ( ZapDeadCompiledLocalsLast  <   ZapDeadCompiledLocals_count )  skip = true;
  1369   else if ( ZapDeadCompiledLocalsLast  ==  ZapDeadCompiledLocals_count )
  1370     warning("about to zap last zap");
  1372   ++ZapDeadCompiledLocals_count; // counts skipped zaps, too
  1374   if ( skip )  return;
  1376   // find java frame and zap it
  1378   for (StackFrameStream sfs(thread);  !sfs.is_done();  sfs.next()) {
  1379     if (is_this_the_right_frame_to_zap(sfs.current()) ) {
  1380       sfs.current()->zap_dead_locals(thread, sfs.register_map());
  1381       return;
  1384   warning("no frame found to zap in zap_dead_Java_locals_C");
  1387 JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread))
  1388   zap_dead_java_or_native_locals(thread, is_java_frame);
  1389 JRT_END
  1391 // The following does not work because for one thing, the
  1392 // thread state is wrong; it expects java, but it is native.
  1393 // Also, the invariants in a native stub are different and
  1394 // I'm not sure it is safe to have a MachCalRuntimeDirectNode
  1395 // in there.
  1396 // So for now, we do not zap in native stubs.
  1398 JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread))
  1399   zap_dead_java_or_native_locals(thread, is_native_frame);
  1400 JRT_END
  1402 # endif

mercurial