src/share/vm/opto/output.cpp

Mon, 27 May 2013 12:56:34 +0200

author
stefank
date
Mon, 27 May 2013 12:56:34 +0200
changeset 5195
95c00927be11
parent 5111
70120f47d403
child 5509
d1034bd8cefc
child 6453
75ef1a499665
permissions
-rw-r--r--

8015428: Remove unused CDS support from StringTable
Summary: The string in StringTable is not used by CDS anymore. Remove the unnecessary code in preparation for 8015422: Large performance hit when the StringTable is walked twice in Parallel Scavenge
Reviewed-by: pliden, tschatzl, coleenp

     1 /*
     2  * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.inline.hpp"
    27 #include "code/compiledIC.hpp"
    28 #include "code/debugInfo.hpp"
    29 #include "code/debugInfoRec.hpp"
    30 #include "compiler/compileBroker.hpp"
    31 #include "compiler/oopMap.hpp"
    32 #include "memory/allocation.inline.hpp"
    33 #include "opto/callnode.hpp"
    34 #include "opto/cfgnode.hpp"
    35 #include "opto/locknode.hpp"
    36 #include "opto/machnode.hpp"
    37 #include "opto/output.hpp"
    38 #include "opto/regalloc.hpp"
    39 #include "opto/runtime.hpp"
    40 #include "opto/subnode.hpp"
    41 #include "opto/type.hpp"
    42 #include "runtime/handles.inline.hpp"
    43 #include "utilities/xmlstream.hpp"
    45 extern uint size_exception_handler();
    46 extern uint size_deopt_handler();
    48 #ifndef PRODUCT
    49 #define DEBUG_ARG(x) , x
    50 #else
    51 #define DEBUG_ARG(x)
    52 #endif
    54 extern int emit_exception_handler(CodeBuffer &cbuf);
    55 extern int emit_deopt_handler(CodeBuffer &cbuf);
    57 //------------------------------Output-----------------------------------------
    58 // Convert Nodes to instruction bits and pass off to the VM
    59 void Compile::Output() {
    60   // RootNode goes
    61   assert( _cfg->_broot->_nodes.size() == 0, "" );
    63   // The number of new nodes (mostly MachNop) is proportional to
    64   // the number of java calls and inner loops which are aligned.
    65   if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 +
    66                             C->inner_loops()*(OptoLoopAlignment-1)),
    67                            "out of nodes before code generation" ) ) {
    68     return;
    69   }
    70   // Make sure I can find the Start Node
    71   Block_Array& bbs = _cfg->_bbs;
    72   Block *entry = _cfg->_blocks[1];
    73   Block *broot = _cfg->_broot;
    75   const StartNode *start = entry->_nodes[0]->as_Start();
    77   // Replace StartNode with prolog
    78   MachPrologNode *prolog = new (this) MachPrologNode();
    79   entry->_nodes.map( 0, prolog );
    80   bbs.map( prolog->_idx, entry );
    81   bbs.map( start->_idx, NULL ); // start is no longer in any block
    83   // Virtual methods need an unverified entry point
    85   if( is_osr_compilation() ) {
    86     if( PoisonOSREntry ) {
    87       // TODO: Should use a ShouldNotReachHereNode...
    88       _cfg->insert( broot, 0, new (this) MachBreakpointNode() );
    89     }
    90   } else {
    91     if( _method && !_method->flags().is_static() ) {
    92       // Insert unvalidated entry point
    93       _cfg->insert( broot, 0, new (this) MachUEPNode() );
    94     }
    96   }
    99   // Break before main entry point
   100   if( (_method && _method->break_at_execute())
   101 #ifndef PRODUCT
   102     ||(OptoBreakpoint && is_method_compilation())
   103     ||(OptoBreakpointOSR && is_osr_compilation())
   104     ||(OptoBreakpointC2R && !_method)
   105 #endif
   106     ) {
   107     // checking for _method means that OptoBreakpoint does not apply to
   108     // runtime stubs or frame converters
   109     _cfg->insert( entry, 1, new (this) MachBreakpointNode() );
   110   }
   112   // Insert epilogs before every return
   113   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
   114     Block *b = _cfg->_blocks[i];
   115     if( !b->is_connector() && b->non_connector_successor(0) == _cfg->_broot ) { // Found a program exit point?
   116       Node *m = b->end();
   117       if( m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt ) {
   118         MachEpilogNode *epilog = new (this) MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
   119         b->add_inst( epilog );
   120         bbs.map(epilog->_idx, b);
   121         //_regalloc->set_bad(epilog->_idx); // Already initialized this way.
   122       }
   123     }
   124   }
   126 # ifdef ENABLE_ZAP_DEAD_LOCALS
   127   if ( ZapDeadCompiledLocals )  Insert_zap_nodes();
   128 # endif
   130   uint* blk_starts = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks+1);
   131   blk_starts[0]    = 0;
   133   // Initialize code buffer and process short branches.
   134   CodeBuffer* cb = init_buffer(blk_starts);
   136   if (cb == NULL || failing())  return;
   138   ScheduleAndBundle();
   140 #ifndef PRODUCT
   141   if (trace_opto_output()) {
   142     tty->print("\n---- After ScheduleAndBundle ----\n");
   143     for (uint i = 0; i < _cfg->_num_blocks; i++) {
   144       tty->print("\nBB#%03d:\n", i);
   145       Block *bb = _cfg->_blocks[i];
   146       for (uint j = 0; j < bb->_nodes.size(); j++) {
   147         Node *n = bb->_nodes[j];
   148         OptoReg::Name reg = _regalloc->get_reg_first(n);
   149         tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
   150         n->dump();
   151       }
   152     }
   153   }
   154 #endif
   156   if (failing())  return;
   158   BuildOopMaps();
   160   if (failing())  return;
   162   fill_buffer(cb, blk_starts);
   163 }
   165 bool Compile::need_stack_bang(int frame_size_in_bytes) const {
   166   // Determine if we need to generate a stack overflow check.
   167   // Do it if the method is not a stub function and
   168   // has java calls or has frame size > vm_page_size/8.
   169   return (UseStackBanging && stub_function() == NULL &&
   170           (has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3));
   171 }
   173 bool Compile::need_register_stack_bang() const {
   174   // Determine if we need to generate a register stack overflow check.
   175   // This is only used on architectures which have split register
   176   // and memory stacks (ie. IA64).
   177   // Bang if the method is not a stub function and has java calls
   178   return (stub_function() == NULL && has_java_calls());
   179 }
   181 # ifdef ENABLE_ZAP_DEAD_LOCALS
   184 // In order to catch compiler oop-map bugs, we have implemented
   185 // a debugging mode called ZapDeadCompilerLocals.
   186 // This mode causes the compiler to insert a call to a runtime routine,
   187 // "zap_dead_locals", right before each place in compiled code
   188 // that could potentially be a gc-point (i.e., a safepoint or oop map point).
   189 // The runtime routine checks that locations mapped as oops are really
   190 // oops, that locations mapped as values do not look like oops,
   191 // and that locations mapped as dead are not used later
   192 // (by zapping them to an invalid address).
   194 int Compile::_CompiledZap_count = 0;
   196 void Compile::Insert_zap_nodes() {
   197   bool skip = false;
   200   // Dink with static counts because code code without the extra
   201   // runtime calls is MUCH faster for debugging purposes
   203        if ( CompileZapFirst  ==  0  ) ; // nothing special
   204   else if ( CompileZapFirst  >  CompiledZap_count() )  skip = true;
   205   else if ( CompileZapFirst  == CompiledZap_count() )
   206     warning("starting zap compilation after skipping");
   208        if ( CompileZapLast  ==  -1  ) ; // nothing special
   209   else if ( CompileZapLast  <   CompiledZap_count() )  skip = true;
   210   else if ( CompileZapLast  ==  CompiledZap_count() )
   211     warning("about to compile last zap");
   213   ++_CompiledZap_count; // counts skipped zaps, too
   215   if ( skip )  return;
   218   if ( _method == NULL )
   219     return; // no safepoints/oopmaps emitted for calls in stubs,so we don't care
   221   // Insert call to zap runtime stub before every node with an oop map
   222   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
   223     Block *b = _cfg->_blocks[i];
   224     for ( uint j = 0;  j < b->_nodes.size();  ++j ) {
   225       Node *n = b->_nodes[j];
   227       // Determining if we should insert a zap-a-lot node in output.
   228       // We do that for all nodes that has oopmap info, except for calls
   229       // to allocation.  Calls to allocation passes in the old top-of-eden pointer
   230       // and expect the C code to reset it.  Hence, there can be no safepoints between
   231       // the inlined-allocation and the call to new_Java, etc.
   232       // We also cannot zap monitor calls, as they must hold the microlock
   233       // during the call to Zap, which also wants to grab the microlock.
   234       bool insert = n->is_MachSafePoint() && (n->as_MachSafePoint()->oop_map() != NULL);
   235       if ( insert ) { // it is MachSafePoint
   236         if ( !n->is_MachCall() ) {
   237           insert = false;
   238         } else if ( n->is_MachCall() ) {
   239           MachCallNode* call = n->as_MachCall();
   240           if (call->entry_point() == OptoRuntime::new_instance_Java() ||
   241               call->entry_point() == OptoRuntime::new_array_Java() ||
   242               call->entry_point() == OptoRuntime::multianewarray2_Java() ||
   243               call->entry_point() == OptoRuntime::multianewarray3_Java() ||
   244               call->entry_point() == OptoRuntime::multianewarray4_Java() ||
   245               call->entry_point() == OptoRuntime::multianewarray5_Java() ||
   246               call->entry_point() == OptoRuntime::slow_arraycopy_Java() ||
   247               call->entry_point() == OptoRuntime::complete_monitor_locking_Java()
   248               ) {
   249             insert = false;
   250           }
   251         }
   252         if (insert) {
   253           Node *zap = call_zap_node(n->as_MachSafePoint(), i);
   254           b->_nodes.insert( j, zap );
   255           _cfg->_bbs.map( zap->_idx, b );
   256           ++j;
   257         }
   258       }
   259     }
   260   }
   261 }
   264 Node* Compile::call_zap_node(MachSafePointNode* node_to_check, int block_no) {
   265   const TypeFunc *tf = OptoRuntime::zap_dead_locals_Type();
   266   CallStaticJavaNode* ideal_node =
   267     new (this) CallStaticJavaNode( tf,
   268          OptoRuntime::zap_dead_locals_stub(_method->flags().is_native()),
   269                        "call zap dead locals stub", 0, TypePtr::BOTTOM);
   270   // We need to copy the OopMap from the site we're zapping at.
   271   // We have to make a copy, because the zap site might not be
   272   // a call site, and zap_dead is a call site.
   273   OopMap* clone = node_to_check->oop_map()->deep_copy();
   275   // Add the cloned OopMap to the zap node
   276   ideal_node->set_oop_map(clone);
   277   return _matcher->match_sfpt(ideal_node);
   278 }
   280 //------------------------------is_node_getting_a_safepoint--------------------
   281 bool Compile::is_node_getting_a_safepoint( Node* n) {
   282   // This code duplicates the logic prior to the call of add_safepoint
   283   // below in this file.
   284   if( n->is_MachSafePoint() ) return true;
   285   return false;
   286 }
   288 # endif // ENABLE_ZAP_DEAD_LOCALS
   290 //------------------------------compute_loop_first_inst_sizes------------------
   291 // Compute the size of first NumberOfLoopInstrToAlign instructions at the top
   292 // of a loop. When aligning a loop we need to provide enough instructions
   293 // in cpu's fetch buffer to feed decoders. The loop alignment could be
   294 // avoided if we have enough instructions in fetch buffer at the head of a loop.
   295 // By default, the size is set to 999999 by Block's constructor so that
   296 // a loop will be aligned if the size is not reset here.
   297 //
   298 // Note: Mach instructions could contain several HW instructions
   299 // so the size is estimated only.
   300 //
   301 void Compile::compute_loop_first_inst_sizes() {
   302   // The next condition is used to gate the loop alignment optimization.
   303   // Don't aligned a loop if there are enough instructions at the head of a loop
   304   // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
   305   // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
   306   // equal to 11 bytes which is the largest address NOP instruction.
   307   if( MaxLoopPad < OptoLoopAlignment-1 ) {
   308     uint last_block = _cfg->_num_blocks-1;
   309     for( uint i=1; i <= last_block; i++ ) {
   310       Block *b = _cfg->_blocks[i];
   311       // Check the first loop's block which requires an alignment.
   312       if( b->loop_alignment() > (uint)relocInfo::addr_unit() ) {
   313         uint sum_size = 0;
   314         uint inst_cnt = NumberOfLoopInstrToAlign;
   315         inst_cnt = b->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
   317         // Check subsequent fallthrough blocks if the loop's first
   318         // block(s) does not have enough instructions.
   319         Block *nb = b;
   320         while( inst_cnt > 0 &&
   321                i < last_block &&
   322                !_cfg->_blocks[i+1]->has_loop_alignment() &&
   323                !nb->has_successor(b) ) {
   324           i++;
   325           nb = _cfg->_blocks[i];
   326           inst_cnt  = nb->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
   327         } // while( inst_cnt > 0 && i < last_block  )
   329         b->set_first_inst_size(sum_size);
   330       } // f( b->head()->is_Loop() )
   331     } // for( i <= last_block )
   332   } // if( MaxLoopPad < OptoLoopAlignment-1 )
   333 }
   335 //----------------------shorten_branches---------------------------------------
   336 // The architecture description provides short branch variants for some long
   337 // branch instructions. Replace eligible long branches with short branches.
   338 void Compile::shorten_branches(uint* blk_starts, int& code_size, int& reloc_size, int& stub_size) {
   340   // ------------------
   341   // Compute size of each block, method size, and relocation information size
   342   uint nblocks  = _cfg->_num_blocks;
   344   uint*      jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
   345   uint*      jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
   346   int*       jmp_nidx   = NEW_RESOURCE_ARRAY(int ,nblocks);
   347   DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); )
   348   DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); )
   350   bool has_short_branch_candidate = false;
   352   // Initialize the sizes to 0
   353   code_size  = 0;          // Size in bytes of generated code
   354   stub_size  = 0;          // Size in bytes of all stub entries
   355   // Size in bytes of all relocation entries, including those in local stubs.
   356   // Start with 2-bytes of reloc info for the unvalidated entry point
   357   reloc_size = 1;          // Number of relocation entries
   359   // Make three passes.  The first computes pessimistic blk_starts,
   360   // relative jmp_offset and reloc_size information.  The second performs
   361   // short branch substitution using the pessimistic sizing.  The
   362   // third inserts nops where needed.
   364   // Step one, perform a pessimistic sizing pass.
   365   uint last_call_adr = max_uint;
   366   uint last_avoid_back_to_back_adr = max_uint;
   367   uint nop_size = (new (this) MachNopNode())->size(_regalloc);
   368   for (uint i = 0; i < nblocks; i++) { // For all blocks
   369     Block *b = _cfg->_blocks[i];
   371     // During short branch replacement, we store the relative (to blk_starts)
   372     // offset of jump in jmp_offset, rather than the absolute offset of jump.
   373     // This is so that we do not need to recompute sizes of all nodes when
   374     // we compute correct blk_starts in our next sizing pass.
   375     jmp_offset[i] = 0;
   376     jmp_size[i]   = 0;
   377     jmp_nidx[i]   = -1;
   378     DEBUG_ONLY( jmp_target[i] = 0; )
   379     DEBUG_ONLY( jmp_rule[i]   = 0; )
   381     // Sum all instruction sizes to compute block size
   382     uint last_inst = b->_nodes.size();
   383     uint blk_size = 0;
   384     for (uint j = 0; j < last_inst; j++) {
   385       Node* nj = b->_nodes[j];
   386       // Handle machine instruction nodes
   387       if (nj->is_Mach()) {
   388         MachNode *mach = nj->as_Mach();
   389         blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
   390         reloc_size += mach->reloc();
   391         if (mach->is_MachCall()) {
   392           MachCallNode *mcall = mach->as_MachCall();
   393           // This destination address is NOT PC-relative
   395           mcall->method_set((intptr_t)mcall->entry_point());
   397           if (mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method) {
   398             stub_size  += CompiledStaticCall::to_interp_stub_size();
   399             reloc_size += CompiledStaticCall::reloc_to_interp_stub();
   400           }
   401         } else if (mach->is_MachSafePoint()) {
   402           // If call/safepoint are adjacent, account for possible
   403           // nop to disambiguate the two safepoints.
   404           // ScheduleAndBundle() can rearrange nodes in a block,
   405           // check for all offsets inside this block.
   406           if (last_call_adr >= blk_starts[i]) {
   407             blk_size += nop_size;
   408           }
   409         }
   410         if (mach->avoid_back_to_back()) {
   411           // Nop is inserted between "avoid back to back" instructions.
   412           // ScheduleAndBundle() can rearrange nodes in a block,
   413           // check for all offsets inside this block.
   414           if (last_avoid_back_to_back_adr >= blk_starts[i]) {
   415             blk_size += nop_size;
   416           }
   417         }
   418         if (mach->may_be_short_branch()) {
   419           if (!nj->is_MachBranch()) {
   420 #ifndef PRODUCT
   421             nj->dump(3);
   422 #endif
   423             Unimplemented();
   424           }
   425           assert(jmp_nidx[i] == -1, "block should have only one branch");
   426           jmp_offset[i] = blk_size;
   427           jmp_size[i]   = nj->size(_regalloc);
   428           jmp_nidx[i]   = j;
   429           has_short_branch_candidate = true;
   430         }
   431       }
   432       blk_size += nj->size(_regalloc);
   433       // Remember end of call offset
   434       if (nj->is_MachCall() && !nj->is_MachCallLeaf()) {
   435         last_call_adr = blk_starts[i]+blk_size;
   436       }
   437       // Remember end of avoid_back_to_back offset
   438       if (nj->is_Mach() && nj->as_Mach()->avoid_back_to_back()) {
   439         last_avoid_back_to_back_adr = blk_starts[i]+blk_size;
   440       }
   441     }
   443     // When the next block starts a loop, we may insert pad NOP
   444     // instructions.  Since we cannot know our future alignment,
   445     // assume the worst.
   446     if (i< nblocks-1) {
   447       Block *nb = _cfg->_blocks[i+1];
   448       int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
   449       if (max_loop_pad > 0) {
   450         assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
   451         // Adjust last_call_adr and/or last_avoid_back_to_back_adr.
   452         // If either is the last instruction in this block, bump by
   453         // max_loop_pad in lock-step with blk_size, so sizing
   454         // calculations in subsequent blocks still can conservatively
   455         // detect that it may the last instruction in this block.
   456         if (last_call_adr == blk_starts[i]+blk_size) {
   457           last_call_adr += max_loop_pad;
   458         }
   459         if (last_avoid_back_to_back_adr == blk_starts[i]+blk_size) {
   460           last_avoid_back_to_back_adr += max_loop_pad;
   461         }
   462         blk_size += max_loop_pad;
   463       }
   464     }
   466     // Save block size; update total method size
   467     blk_starts[i+1] = blk_starts[i]+blk_size;
   468   }
   470   // Step two, replace eligible long jumps.
   471   bool progress = true;
   472   uint last_may_be_short_branch_adr = max_uint;
   473   while (has_short_branch_candidate && progress) {
   474     progress = false;
   475     has_short_branch_candidate = false;
   476     int adjust_block_start = 0;
   477     for (uint i = 0; i < nblocks; i++) {
   478       Block *b = _cfg->_blocks[i];
   479       int idx = jmp_nidx[i];
   480       MachNode* mach = (idx == -1) ? NULL: b->_nodes[idx]->as_Mach();
   481       if (mach != NULL && mach->may_be_short_branch()) {
   482 #ifdef ASSERT
   483         assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity");
   484         int j;
   485         // Find the branch; ignore trailing NOPs.
   486         for (j = b->_nodes.size()-1; j>=0; j--) {
   487           Node* n = b->_nodes[j];
   488           if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con)
   489             break;
   490         }
   491         assert(j >= 0 && j == idx && b->_nodes[j] == (Node*)mach, "sanity");
   492 #endif
   493         int br_size = jmp_size[i];
   494         int br_offs = blk_starts[i] + jmp_offset[i];
   496         // This requires the TRUE branch target be in succs[0]
   497         uint bnum = b->non_connector_successor(0)->_pre_order;
   498         int offset = blk_starts[bnum] - br_offs;
   499         if (bnum > i) { // adjust following block's offset
   500           offset -= adjust_block_start;
   501         }
   502         // In the following code a nop could be inserted before
   503         // the branch which will increase the backward distance.
   504         bool needs_padding = ((uint)br_offs == last_may_be_short_branch_adr);
   505         if (needs_padding && offset <= 0)
   506           offset -= nop_size;
   508         if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) {
   509           // We've got a winner.  Replace this branch.
   510           MachNode* replacement = mach->as_MachBranch()->short_branch_version(this);
   512           // Update the jmp_size.
   513           int new_size = replacement->size(_regalloc);
   514           int diff     = br_size - new_size;
   515           assert(diff >= (int)nop_size, "short_branch size should be smaller");
   516           // Conservatively take into accound padding between
   517           // avoid_back_to_back branches. Previous branch could be
   518           // converted into avoid_back_to_back branch during next
   519           // rounds.
   520           if (needs_padding && replacement->avoid_back_to_back()) {
   521             jmp_offset[i] += nop_size;
   522             diff -= nop_size;
   523           }
   524           adjust_block_start += diff;
   525           b->_nodes.map(idx, replacement);
   526           mach->subsume_by(replacement, C);
   527           mach = replacement;
   528           progress = true;
   530           jmp_size[i] = new_size;
   531           DEBUG_ONLY( jmp_target[i] = bnum; );
   532           DEBUG_ONLY( jmp_rule[i] = mach->rule(); );
   533         } else {
   534           // The jump distance is not short, try again during next iteration.
   535           has_short_branch_candidate = true;
   536         }
   537       } // (mach->may_be_short_branch())
   538       if (mach != NULL && (mach->may_be_short_branch() ||
   539                            mach->avoid_back_to_back())) {
   540         last_may_be_short_branch_adr = blk_starts[i] + jmp_offset[i] + jmp_size[i];
   541       }
   542       blk_starts[i+1] -= adjust_block_start;
   543     }
   544   }
   546 #ifdef ASSERT
   547   for (uint i = 0; i < nblocks; i++) { // For all blocks
   548     if (jmp_target[i] != 0) {
   549       int br_size = jmp_size[i];
   550       int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
   551       if (!_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
   552         tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
   553       }
   554       assert(_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset), "Displacement too large for short jmp");
   555     }
   556   }
   557 #endif
   559   // Step 3, compute the offsets of all blocks, will be done in fill_buffer()
   560   // after ScheduleAndBundle().
   562   // ------------------
   563   // Compute size for code buffer
   564   code_size = blk_starts[nblocks];
   566   // Relocation records
   567   reloc_size += 1;              // Relo entry for exception handler
   569   // Adjust reloc_size to number of record of relocation info
   570   // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
   571   // a relocation index.
   572   // The CodeBuffer will expand the locs array if this estimate is too low.
   573   reloc_size *= 10 / sizeof(relocInfo);
   574 }
   576 //------------------------------FillLocArray-----------------------------------
   577 // Create a bit of debug info and append it to the array.  The mapping is from
   578 // Java local or expression stack to constant, register or stack-slot.  For
   579 // doubles, insert 2 mappings and return 1 (to tell the caller that the next
   580 // entry has been taken care of and caller should skip it).
   581 static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
   582   // This should never have accepted Bad before
   583   assert(OptoReg::is_valid(regnum), "location must be valid");
   584   return (OptoReg::is_reg(regnum))
   585     ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
   586     : new LocationValue(Location::new_stk_loc(l_type,  ra->reg2offset(regnum)));
   587 }
   590 ObjectValue*
   591 Compile::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) {
   592   for (int i = 0; i < objs->length(); i++) {
   593     assert(objs->at(i)->is_object(), "corrupt object cache");
   594     ObjectValue* sv = (ObjectValue*) objs->at(i);
   595     if (sv->id() == id) {
   596       return sv;
   597     }
   598   }
   599   // Otherwise..
   600   return NULL;
   601 }
   603 void Compile::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
   604                                      ObjectValue* sv ) {
   605   assert(sv_for_node_id(objs, sv->id()) == NULL, "Precondition");
   606   objs->append(sv);
   607 }
   610 void Compile::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local,
   611                             GrowableArray<ScopeValue*> *array,
   612                             GrowableArray<ScopeValue*> *objs ) {
   613   assert( local, "use _top instead of null" );
   614   if (array->length() != idx) {
   615     assert(array->length() == idx + 1, "Unexpected array count");
   616     // Old functionality:
   617     //   return
   618     // New functionality:
   619     //   Assert if the local is not top. In product mode let the new node
   620     //   override the old entry.
   621     assert(local == top(), "LocArray collision");
   622     if (local == top()) {
   623       return;
   624     }
   625     array->pop();
   626   }
   627   const Type *t = local->bottom_type();
   629   // Is it a safepoint scalar object node?
   630   if (local->is_SafePointScalarObject()) {
   631     SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject();
   633     ObjectValue* sv = Compile::sv_for_node_id(objs, spobj->_idx);
   634     if (sv == NULL) {
   635       ciKlass* cik = t->is_oopptr()->klass();
   636       assert(cik->is_instance_klass() ||
   637              cik->is_array_klass(), "Not supported allocation.");
   638       sv = new ObjectValue(spobj->_idx,
   639                            new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
   640       Compile::set_sv_for_object_node(objs, sv);
   642       uint first_ind = spobj->first_index();
   643       for (uint i = 0; i < spobj->n_fields(); i++) {
   644         Node* fld_node = sfpt->in(first_ind+i);
   645         (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs);
   646       }
   647     }
   648     array->append(sv);
   649     return;
   650   }
   652   // Grab the register number for the local
   653   OptoReg::Name regnum = _regalloc->get_reg_first(local);
   654   if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
   655     // Record the double as two float registers.
   656     // The register mask for such a value always specifies two adjacent
   657     // float registers, with the lower register number even.
   658     // Normally, the allocation of high and low words to these registers
   659     // is irrelevant, because nearly all operations on register pairs
   660     // (e.g., StoreD) treat them as a single unit.
   661     // Here, we assume in addition that the words in these two registers
   662     // stored "naturally" (by operations like StoreD and double stores
   663     // within the interpreter) such that the lower-numbered register
   664     // is written to the lower memory address.  This may seem like
   665     // a machine dependency, but it is not--it is a requirement on
   666     // the author of the <arch>.ad file to ensure that, for every
   667     // even/odd double-register pair to which a double may be allocated,
   668     // the word in the even single-register is stored to the first
   669     // memory word.  (Note that register numbers are completely
   670     // arbitrary, and are not tied to any machine-level encodings.)
   671 #ifdef _LP64
   672     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
   673       array->append(new ConstantIntValue(0));
   674       array->append(new_loc_value( _regalloc, regnum, Location::dbl ));
   675     } else if ( t->base() == Type::Long ) {
   676       array->append(new ConstantIntValue(0));
   677       array->append(new_loc_value( _regalloc, regnum, Location::lng ));
   678     } else if ( t->base() == Type::RawPtr ) {
   679       // jsr/ret return address which must be restored into a the full
   680       // width 64-bit stack slot.
   681       array->append(new_loc_value( _regalloc, regnum, Location::lng ));
   682     }
   683 #else //_LP64
   684 #ifdef SPARC
   685     if (t->base() == Type::Long && OptoReg::is_reg(regnum)) {
   686       // For SPARC we have to swap high and low words for
   687       // long values stored in a single-register (g0-g7).
   688       array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
   689       array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
   690     } else
   691 #endif //SPARC
   692     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
   693       // Repack the double/long as two jints.
   694       // The convention the interpreter uses is that the second local
   695       // holds the first raw word of the native double representation.
   696       // This is actually reasonable, since locals and stack arrays
   697       // grow downwards in all implementations.
   698       // (If, on some machine, the interpreter's Java locals or stack
   699       // were to grow upwards, the embedded doubles would be word-swapped.)
   700       array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
   701       array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
   702     }
   703 #endif //_LP64
   704     else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
   705                OptoReg::is_reg(regnum) ) {
   706       array->append(new_loc_value( _regalloc, regnum, Matcher::float_in_double()
   707                                    ? Location::float_in_dbl : Location::normal ));
   708     } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
   709       array->append(new_loc_value( _regalloc, regnum, Matcher::int_in_long
   710                                    ? Location::int_in_long : Location::normal ));
   711     } else if( t->base() == Type::NarrowOop ) {
   712       array->append(new_loc_value( _regalloc, regnum, Location::narrowoop ));
   713     } else {
   714       array->append(new_loc_value( _regalloc, regnum, _regalloc->is_oop(local) ? Location::oop : Location::normal ));
   715     }
   716     return;
   717   }
   719   // No register.  It must be constant data.
   720   switch (t->base()) {
   721   case Type::Half:              // Second half of a double
   722     ShouldNotReachHere();       // Caller should skip 2nd halves
   723     break;
   724   case Type::AnyPtr:
   725     array->append(new ConstantOopWriteValue(NULL));
   726     break;
   727   case Type::AryPtr:
   728   case Type::InstPtr:          // fall through
   729     array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding()));
   730     break;
   731   case Type::NarrowOop:
   732     if (t == TypeNarrowOop::NULL_PTR) {
   733       array->append(new ConstantOopWriteValue(NULL));
   734     } else {
   735       array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding()));
   736     }
   737     break;
   738   case Type::Int:
   739     array->append(new ConstantIntValue(t->is_int()->get_con()));
   740     break;
   741   case Type::RawPtr:
   742     // A return address (T_ADDRESS).
   743     assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
   744 #ifdef _LP64
   745     // Must be restored to the full-width 64-bit stack slot.
   746     array->append(new ConstantLongValue(t->is_ptr()->get_con()));
   747 #else
   748     array->append(new ConstantIntValue(t->is_ptr()->get_con()));
   749 #endif
   750     break;
   751   case Type::FloatCon: {
   752     float f = t->is_float_constant()->getf();
   753     array->append(new ConstantIntValue(jint_cast(f)));
   754     break;
   755   }
   756   case Type::DoubleCon: {
   757     jdouble d = t->is_double_constant()->getd();
   758 #ifdef _LP64
   759     array->append(new ConstantIntValue(0));
   760     array->append(new ConstantDoubleValue(d));
   761 #else
   762     // Repack the double as two jints.
   763     // The convention the interpreter uses is that the second local
   764     // holds the first raw word of the native double representation.
   765     // This is actually reasonable, since locals and stack arrays
   766     // grow downwards in all implementations.
   767     // (If, on some machine, the interpreter's Java locals or stack
   768     // were to grow upwards, the embedded doubles would be word-swapped.)
   769     jint   *dp = (jint*)&d;
   770     array->append(new ConstantIntValue(dp[1]));
   771     array->append(new ConstantIntValue(dp[0]));
   772 #endif
   773     break;
   774   }
   775   case Type::Long: {
   776     jlong d = t->is_long()->get_con();
   777 #ifdef _LP64
   778     array->append(new ConstantIntValue(0));
   779     array->append(new ConstantLongValue(d));
   780 #else
   781     // Repack the long as two jints.
   782     // The convention the interpreter uses is that the second local
   783     // holds the first raw word of the native double representation.
   784     // This is actually reasonable, since locals and stack arrays
   785     // grow downwards in all implementations.
   786     // (If, on some machine, the interpreter's Java locals or stack
   787     // were to grow upwards, the embedded doubles would be word-swapped.)
   788     jint *dp = (jint*)&d;
   789     array->append(new ConstantIntValue(dp[1]));
   790     array->append(new ConstantIntValue(dp[0]));
   791 #endif
   792     break;
   793   }
   794   case Type::Top:               // Add an illegal value here
   795     array->append(new LocationValue(Location()));
   796     break;
   797   default:
   798     ShouldNotReachHere();
   799     break;
   800   }
   801 }
   803 // Determine if this node starts a bundle
   804 bool Compile::starts_bundle(const Node *n) const {
   805   return (_node_bundling_limit > n->_idx &&
   806           _node_bundling_base[n->_idx].starts_bundle());
   807 }
   809 //--------------------------Process_OopMap_Node--------------------------------
   810 void Compile::Process_OopMap_Node(MachNode *mach, int current_offset) {
   812   // Handle special safepoint nodes for synchronization
   813   MachSafePointNode *sfn   = mach->as_MachSafePoint();
   814   MachCallNode      *mcall;
   816 #ifdef ENABLE_ZAP_DEAD_LOCALS
   817   assert( is_node_getting_a_safepoint(mach),  "logic does not match; false negative");
   818 #endif
   820   int safepoint_pc_offset = current_offset;
   821   bool is_method_handle_invoke = false;
   822   bool return_oop = false;
   824   // Add the safepoint in the DebugInfoRecorder
   825   if( !mach->is_MachCall() ) {
   826     mcall = NULL;
   827     debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
   828   } else {
   829     mcall = mach->as_MachCall();
   831     // Is the call a MethodHandle call?
   832     if (mcall->is_MachCallJava()) {
   833       if (mcall->as_MachCallJava()->_method_handle_invoke) {
   834         assert(has_method_handle_invokes(), "must have been set during call generation");
   835         is_method_handle_invoke = true;
   836       }
   837     }
   839     // Check if a call returns an object.
   840     if (mcall->return_value_is_used() &&
   841         mcall->tf()->range()->field_at(TypeFunc::Parms)->isa_ptr()) {
   842       return_oop = true;
   843     }
   844     safepoint_pc_offset += mcall->ret_addr_offset();
   845     debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
   846   }
   848   // Loop over the JVMState list to add scope information
   849   // Do not skip safepoints with a NULL method, they need monitor info
   850   JVMState* youngest_jvms = sfn->jvms();
   851   int max_depth = youngest_jvms->depth();
   853   // Allocate the object pool for scalar-replaced objects -- the map from
   854   // small-integer keys (which can be recorded in the local and ostack
   855   // arrays) to descriptions of the object state.
   856   GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>();
   858   // Visit scopes from oldest to youngest.
   859   for (int depth = 1; depth <= max_depth; depth++) {
   860     JVMState* jvms = youngest_jvms->of_depth(depth);
   861     int idx;
   862     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
   863     // Safepoints that do not have method() set only provide oop-map and monitor info
   864     // to support GC; these do not support deoptimization.
   865     int num_locs = (method == NULL) ? 0 : jvms->loc_size();
   866     int num_exps = (method == NULL) ? 0 : jvms->stk_size();
   867     int num_mon  = jvms->nof_monitors();
   868     assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(),
   869            "JVMS local count must match that of the method");
   871     // Add Local and Expression Stack Information
   873     // Insert locals into the locarray
   874     GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs);
   875     for( idx = 0; idx < num_locs; idx++ ) {
   876       FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs );
   877     }
   879     // Insert expression stack entries into the exparray
   880     GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps);
   881     for( idx = 0; idx < num_exps; idx++ ) {
   882       FillLocArray( idx,  sfn, sfn->stack(jvms, idx), exparray, objs );
   883     }
   885     // Add in mappings of the monitors
   886     assert( !method ||
   887             !method->is_synchronized() ||
   888             method->is_native() ||
   889             num_mon > 0 ||
   890             !GenerateSynchronizationCode,
   891             "monitors must always exist for synchronized methods");
   893     // Build the growable array of ScopeValues for exp stack
   894     GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
   896     // Loop over monitors and insert into array
   897     for(idx = 0; idx < num_mon; idx++) {
   898       // Grab the node that defines this monitor
   899       Node* box_node = sfn->monitor_box(jvms, idx);
   900       Node* obj_node = sfn->monitor_obj(jvms, idx);
   902       // Create ScopeValue for object
   903       ScopeValue *scval = NULL;
   905       if( obj_node->is_SafePointScalarObject() ) {
   906         SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject();
   907         scval = Compile::sv_for_node_id(objs, spobj->_idx);
   908         if (scval == NULL) {
   909           const Type *t = obj_node->bottom_type();
   910           ciKlass* cik = t->is_oopptr()->klass();
   911           assert(cik->is_instance_klass() ||
   912                  cik->is_array_klass(), "Not supported allocation.");
   913           ObjectValue* sv = new ObjectValue(spobj->_idx,
   914                                             new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
   915           Compile::set_sv_for_object_node(objs, sv);
   917           uint first_ind = spobj->first_index();
   918           for (uint i = 0; i < spobj->n_fields(); i++) {
   919             Node* fld_node = sfn->in(first_ind+i);
   920             (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs);
   921           }
   922           scval = sv;
   923         }
   924       } else if( !obj_node->is_Con() ) {
   925         OptoReg::Name obj_reg = _regalloc->get_reg_first(obj_node);
   926         if( obj_node->bottom_type()->base() == Type::NarrowOop ) {
   927           scval = new_loc_value( _regalloc, obj_reg, Location::narrowoop );
   928         } else {
   929           scval = new_loc_value( _regalloc, obj_reg, Location::oop );
   930         }
   931       } else {
   932         const TypePtr *tp = obj_node->get_ptr_type();
   933         scval = new ConstantOopWriteValue(tp->is_oopptr()->const_oop()->constant_encoding());
   934       }
   936       OptoReg::Name box_reg = BoxLockNode::reg(box_node);
   937       Location basic_lock = Location::new_stk_loc(Location::normal,_regalloc->reg2offset(box_reg));
   938       bool eliminated = (box_node->is_BoxLock() && box_node->as_BoxLock()->is_eliminated());
   939       monarray->append(new MonitorValue(scval, basic_lock, eliminated));
   940     }
   942     // We dump the object pool first, since deoptimization reads it in first.
   943     debug_info()->dump_object_pool(objs);
   945     // Build first class objects to pass to scope
   946     DebugToken *locvals = debug_info()->create_scope_values(locarray);
   947     DebugToken *expvals = debug_info()->create_scope_values(exparray);
   948     DebugToken *monvals = debug_info()->create_monitor_values(monarray);
   950     // Make method available for all Safepoints
   951     ciMethod* scope_method = method ? method : _method;
   952     // Describe the scope here
   953     assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
   954     assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest");
   955     // Now we can describe the scope.
   956     debug_info()->describe_scope(safepoint_pc_offset, scope_method, jvms->bci(), jvms->should_reexecute(), is_method_handle_invoke, return_oop, locvals, expvals, monvals);
   957   } // End jvms loop
   959   // Mark the end of the scope set.
   960   debug_info()->end_safepoint(safepoint_pc_offset);
   961 }
   965 // A simplified version of Process_OopMap_Node, to handle non-safepoints.
   966 class NonSafepointEmitter {
   967   Compile*  C;
   968   JVMState* _pending_jvms;
   969   int       _pending_offset;
   971   void emit_non_safepoint();
   973  public:
   974   NonSafepointEmitter(Compile* compile) {
   975     this->C = compile;
   976     _pending_jvms = NULL;
   977     _pending_offset = 0;
   978   }
   980   void observe_instruction(Node* n, int pc_offset) {
   981     if (!C->debug_info()->recording_non_safepoints())  return;
   983     Node_Notes* nn = C->node_notes_at(n->_idx);
   984     if (nn == NULL || nn->jvms() == NULL)  return;
   985     if (_pending_jvms != NULL &&
   986         _pending_jvms->same_calls_as(nn->jvms())) {
   987       // Repeated JVMS?  Stretch it up here.
   988       _pending_offset = pc_offset;
   989     } else {
   990       if (_pending_jvms != NULL &&
   991           _pending_offset < pc_offset) {
   992         emit_non_safepoint();
   993       }
   994       _pending_jvms = NULL;
   995       if (pc_offset > C->debug_info()->last_pc_offset()) {
   996         // This is the only way _pending_jvms can become non-NULL:
   997         _pending_jvms = nn->jvms();
   998         _pending_offset = pc_offset;
   999       }
  1003   // Stay out of the way of real safepoints:
  1004   void observe_safepoint(JVMState* jvms, int pc_offset) {
  1005     if (_pending_jvms != NULL &&
  1006         !_pending_jvms->same_calls_as(jvms) &&
  1007         _pending_offset < pc_offset) {
  1008       emit_non_safepoint();
  1010     _pending_jvms = NULL;
  1013   void flush_at_end() {
  1014     if (_pending_jvms != NULL) {
  1015       emit_non_safepoint();
  1017     _pending_jvms = NULL;
  1019 };
  1021 void NonSafepointEmitter::emit_non_safepoint() {
  1022   JVMState* youngest_jvms = _pending_jvms;
  1023   int       pc_offset     = _pending_offset;
  1025   // Clear it now:
  1026   _pending_jvms = NULL;
  1028   DebugInformationRecorder* debug_info = C->debug_info();
  1029   assert(debug_info->recording_non_safepoints(), "sanity");
  1031   debug_info->add_non_safepoint(pc_offset);
  1032   int max_depth = youngest_jvms->depth();
  1034   // Visit scopes from oldest to youngest.
  1035   for (int depth = 1; depth <= max_depth; depth++) {
  1036     JVMState* jvms = youngest_jvms->of_depth(depth);
  1037     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
  1038     assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest");
  1039     debug_info->describe_scope(pc_offset, method, jvms->bci(), jvms->should_reexecute());
  1042   // Mark the end of the scope set.
  1043   debug_info->end_non_safepoint(pc_offset);
  1046 //------------------------------init_buffer------------------------------------
  1047 CodeBuffer* Compile::init_buffer(uint* blk_starts) {
  1049   // Set the initially allocated size
  1050   int  code_req   = initial_code_capacity;
  1051   int  locs_req   = initial_locs_capacity;
  1052   int  stub_req   = TraceJumps ? initial_stub_capacity * 10 : initial_stub_capacity;
  1053   int  const_req  = initial_const_capacity;
  1055   int  pad_req    = NativeCall::instruction_size;
  1056   // The extra spacing after the code is necessary on some platforms.
  1057   // Sometimes we need to patch in a jump after the last instruction,
  1058   // if the nmethod has been deoptimized.  (See 4932387, 4894843.)
  1060   // Compute the byte offset where we can store the deopt pc.
  1061   if (fixed_slots() != 0) {
  1062     _orig_pc_slot_offset_in_bytes = _regalloc->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
  1065   // Compute prolog code size
  1066   _method_size = 0;
  1067   _frame_slots = OptoReg::reg2stack(_matcher->_old_SP)+_regalloc->_framesize;
  1068 #ifdef IA64
  1069   if (save_argument_registers()) {
  1070     // 4815101: this is a stub with implicit and unknown precision fp args.
  1071     // The usual spill mechanism can only generate stfd's in this case, which
  1072     // doesn't work if the fp reg to spill contains a single-precision denorm.
  1073     // Instead, we hack around the normal spill mechanism using stfspill's and
  1074     // ldffill's in the MachProlog and MachEpilog emit methods.  We allocate
  1075     // space here for the fp arg regs (f8-f15) we're going to thusly spill.
  1076     //
  1077     // If we ever implement 16-byte 'registers' == stack slots, we can
  1078     // get rid of this hack and have SpillCopy generate stfspill/ldffill
  1079     // instead of stfd/stfs/ldfd/ldfs.
  1080     _frame_slots += 8*(16/BytesPerInt);
  1082 #endif
  1083   assert(_frame_slots >= 0 && _frame_slots < 1000000, "sanity check");
  1085   if (has_mach_constant_base_node()) {
  1086     // Fill the constant table.
  1087     // Note:  This must happen before shorten_branches.
  1088     for (uint i = 0; i < _cfg->_num_blocks; i++) {
  1089       Block* b = _cfg->_blocks[i];
  1091       for (uint j = 0; j < b->_nodes.size(); j++) {
  1092         Node* n = b->_nodes[j];
  1094         // If the node is a MachConstantNode evaluate the constant
  1095         // value section.
  1096         if (n->is_MachConstant()) {
  1097           MachConstantNode* machcon = n->as_MachConstant();
  1098           machcon->eval_constant(C);
  1103     // Calculate the offsets of the constants and the size of the
  1104     // constant table (including the padding to the next section).
  1105     constant_table().calculate_offsets_and_size();
  1106     const_req = constant_table().size();
  1109   // Initialize the space for the BufferBlob used to find and verify
  1110   // instruction size in MachNode::emit_size()
  1111   init_scratch_buffer_blob(const_req);
  1112   if (failing())  return NULL; // Out of memory
  1114   // Pre-compute the length of blocks and replace
  1115   // long branches with short if machine supports it.
  1116   shorten_branches(blk_starts, code_req, locs_req, stub_req);
  1118   // nmethod and CodeBuffer count stubs & constants as part of method's code.
  1119   int exception_handler_req = size_exception_handler();
  1120   int deopt_handler_req = size_deopt_handler();
  1121   exception_handler_req += MAX_stubs_size; // add marginal slop for handler
  1122   deopt_handler_req += MAX_stubs_size; // add marginal slop for handler
  1123   stub_req += MAX_stubs_size;   // ensure per-stub margin
  1124   code_req += MAX_inst_size;    // ensure per-instruction margin
  1126   if (StressCodeBuffers)
  1127     code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10;  // force expansion
  1129   int total_req =
  1130     const_req +
  1131     code_req +
  1132     pad_req +
  1133     stub_req +
  1134     exception_handler_req +
  1135     deopt_handler_req;               // deopt handler
  1137   if (has_method_handle_invokes())
  1138     total_req += deopt_handler_req;  // deopt MH handler
  1140   CodeBuffer* cb = code_buffer();
  1141   cb->initialize(total_req, locs_req);
  1143   // Have we run out of code space?
  1144   if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
  1145     C->record_failure("CodeCache is full");
  1146     return NULL;
  1148   // Configure the code buffer.
  1149   cb->initialize_consts_size(const_req);
  1150   cb->initialize_stubs_size(stub_req);
  1151   cb->initialize_oop_recorder(env()->oop_recorder());
  1153   // fill in the nop array for bundling computations
  1154   MachNode *_nop_list[Bundle::_nop_count];
  1155   Bundle::initialize_nops(_nop_list, this);
  1157   return cb;
  1160 //------------------------------fill_buffer------------------------------------
  1161 void Compile::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
  1162   // blk_starts[] contains offsets calculated during short branches processing,
  1163   // offsets should not be increased during following steps.
  1165   // Compute the size of first NumberOfLoopInstrToAlign instructions at head
  1166   // of a loop. It is used to determine the padding for loop alignment.
  1167   compute_loop_first_inst_sizes();
  1169   // Create oopmap set.
  1170   _oop_map_set = new OopMapSet();
  1172   // !!!!! This preserves old handling of oopmaps for now
  1173   debug_info()->set_oopmaps(_oop_map_set);
  1175   uint nblocks  = _cfg->_num_blocks;
  1176   // Count and start of implicit null check instructions
  1177   uint inct_cnt = 0;
  1178   uint *inct_starts = NEW_RESOURCE_ARRAY(uint, nblocks+1);
  1180   // Count and start of calls
  1181   uint *call_returns = NEW_RESOURCE_ARRAY(uint, nblocks+1);
  1183   uint  return_offset = 0;
  1184   int nop_size = (new (this) MachNopNode())->size(_regalloc);
  1186   int previous_offset = 0;
  1187   int current_offset  = 0;
  1188   int last_call_offset = -1;
  1189   int last_avoid_back_to_back_offset = -1;
  1190 #ifdef ASSERT
  1191   uint* jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks);
  1192   uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
  1193   uint* jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
  1194   uint* jmp_rule   = NEW_RESOURCE_ARRAY(uint,nblocks);
  1195 #endif
  1197   // Create an array of unused labels, one for each basic block, if printing is enabled
  1198 #ifndef PRODUCT
  1199   int *node_offsets      = NULL;
  1200   uint node_offset_limit = unique();
  1202   if (print_assembly())
  1203     node_offsets         = NEW_RESOURCE_ARRAY(int, node_offset_limit);
  1204 #endif
  1206   NonSafepointEmitter non_safepoints(this);  // emit non-safepoints lazily
  1208   // Emit the constant table.
  1209   if (has_mach_constant_base_node()) {
  1210     constant_table().emit(*cb);
  1213   // Create an array of labels, one for each basic block
  1214   Label *blk_labels = NEW_RESOURCE_ARRAY(Label, nblocks+1);
  1215   for (uint i=0; i <= nblocks; i++) {
  1216     blk_labels[i].init();
  1219   // ------------------
  1220   // Now fill in the code buffer
  1221   Node *delay_slot = NULL;
  1223   for (uint i=0; i < nblocks; i++) {
  1224     Block *b = _cfg->_blocks[i];
  1226     Node *head = b->head();
  1228     // If this block needs to start aligned (i.e, can be reached other
  1229     // than by falling-thru from the previous block), then force the
  1230     // start of a new bundle.
  1231     if (Pipeline::requires_bundling() && starts_bundle(head))
  1232       cb->flush_bundle(true);
  1234 #ifdef ASSERT
  1235     if (!b->is_connector()) {
  1236       stringStream st;
  1237       b->dump_head(&_cfg->_bbs, &st);
  1238       MacroAssembler(cb).block_comment(st.as_string());
  1240     jmp_target[i] = 0;
  1241     jmp_offset[i] = 0;
  1242     jmp_size[i]   = 0;
  1243     jmp_rule[i]   = 0;
  1244 #endif
  1245     int blk_offset = current_offset;
  1247     // Define the label at the beginning of the basic block
  1248     MacroAssembler(cb).bind(blk_labels[b->_pre_order]);
  1250     uint last_inst = b->_nodes.size();
  1252     // Emit block normally, except for last instruction.
  1253     // Emit means "dump code bits into code buffer".
  1254     for (uint j = 0; j<last_inst; j++) {
  1256       // Get the node
  1257       Node* n = b->_nodes[j];
  1259       // See if delay slots are supported
  1260       if (valid_bundle_info(n) &&
  1261           node_bundling(n)->used_in_unconditional_delay()) {
  1262         assert(delay_slot == NULL, "no use of delay slot node");
  1263         assert(n->size(_regalloc) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");
  1265         delay_slot = n;
  1266         continue;
  1269       // If this starts a new instruction group, then flush the current one
  1270       // (but allow split bundles)
  1271       if (Pipeline::requires_bundling() && starts_bundle(n))
  1272         cb->flush_bundle(false);
  1274       // The following logic is duplicated in the code ifdeffed for
  1275       // ENABLE_ZAP_DEAD_LOCALS which appears above in this file.  It
  1276       // should be factored out.  Or maybe dispersed to the nodes?
  1278       // Special handling for SafePoint/Call Nodes
  1279       bool is_mcall = false;
  1280       if (n->is_Mach()) {
  1281         MachNode *mach = n->as_Mach();
  1282         is_mcall = n->is_MachCall();
  1283         bool is_sfn = n->is_MachSafePoint();
  1285         // If this requires all previous instructions be flushed, then do so
  1286         if (is_sfn || is_mcall || mach->alignment_required() != 1) {
  1287           cb->flush_bundle(true);
  1288           current_offset = cb->insts_size();
  1291         // A padding may be needed again since a previous instruction
  1292         // could be moved to delay slot.
  1294         // align the instruction if necessary
  1295         int padding = mach->compute_padding(current_offset);
  1296         // Make sure safepoint node for polling is distinct from a call's
  1297         // return by adding a nop if needed.
  1298         if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset) {
  1299           padding = nop_size;
  1301         if (padding == 0 && mach->avoid_back_to_back() &&
  1302             current_offset == last_avoid_back_to_back_offset) {
  1303           // Avoid back to back some instructions.
  1304           padding = nop_size;
  1307         if(padding > 0) {
  1308           assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
  1309           int nops_cnt = padding / nop_size;
  1310           MachNode *nop = new (this) MachNopNode(nops_cnt);
  1311           b->_nodes.insert(j++, nop);
  1312           last_inst++;
  1313           _cfg->_bbs.map( nop->_idx, b );
  1314           nop->emit(*cb, _regalloc);
  1315           cb->flush_bundle(true);
  1316           current_offset = cb->insts_size();
  1319         // Remember the start of the last call in a basic block
  1320         if (is_mcall) {
  1321           MachCallNode *mcall = mach->as_MachCall();
  1323           // This destination address is NOT PC-relative
  1324           mcall->method_set((intptr_t)mcall->entry_point());
  1326           // Save the return address
  1327           call_returns[b->_pre_order] = current_offset + mcall->ret_addr_offset();
  1329           if (mcall->is_MachCallLeaf()) {
  1330             is_mcall = false;
  1331             is_sfn = false;
  1335         // sfn will be valid whenever mcall is valid now because of inheritance
  1336         if (is_sfn || is_mcall) {
  1338           // Handle special safepoint nodes for synchronization
  1339           if (!is_mcall) {
  1340             MachSafePointNode *sfn = mach->as_MachSafePoint();
  1341             // !!!!! Stubs only need an oopmap right now, so bail out
  1342             if (sfn->jvms()->method() == NULL) {
  1343               // Write the oopmap directly to the code blob??!!
  1344 #             ifdef ENABLE_ZAP_DEAD_LOCALS
  1345               assert( !is_node_getting_a_safepoint(sfn),  "logic does not match; false positive");
  1346 #             endif
  1347               continue;
  1349           } // End synchronization
  1351           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
  1352                                            current_offset);
  1353           Process_OopMap_Node(mach, current_offset);
  1354         } // End if safepoint
  1356         // If this is a null check, then add the start of the previous instruction to the list
  1357         else if( mach->is_MachNullCheck() ) {
  1358           inct_starts[inct_cnt++] = previous_offset;
  1361         // If this is a branch, then fill in the label with the target BB's label
  1362         else if (mach->is_MachBranch()) {
  1363           // This requires the TRUE branch target be in succs[0]
  1364           uint block_num = b->non_connector_successor(0)->_pre_order;
  1366           // Try to replace long branch if delay slot is not used,
  1367           // it is mostly for back branches since forward branch's
  1368           // distance is not updated yet.
  1369           bool delay_slot_is_used = valid_bundle_info(n) &&
  1370                                     node_bundling(n)->use_unconditional_delay();
  1371           if (!delay_slot_is_used && mach->may_be_short_branch()) {
  1372            assert(delay_slot == NULL, "not expecting delay slot node");
  1373            int br_size = n->size(_regalloc);
  1374             int offset = blk_starts[block_num] - current_offset;
  1375             if (block_num >= i) {
  1376               // Current and following block's offset are not
  1377               // finilized yet, adjust distance by the difference
  1378               // between calculated and final offsets of current block.
  1379               offset -= (blk_starts[i] - blk_offset);
  1381             // In the following code a nop could be inserted before
  1382             // the branch which will increase the backward distance.
  1383             bool needs_padding = (current_offset == last_avoid_back_to_back_offset);
  1384             if (needs_padding && offset <= 0)
  1385               offset -= nop_size;
  1387             if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) {
  1388               // We've got a winner.  Replace this branch.
  1389               MachNode* replacement = mach->as_MachBranch()->short_branch_version(this);
  1391               // Update the jmp_size.
  1392               int new_size = replacement->size(_regalloc);
  1393               assert((br_size - new_size) >= (int)nop_size, "short_branch size should be smaller");
  1394               // Insert padding between avoid_back_to_back branches.
  1395               if (needs_padding && replacement->avoid_back_to_back()) {
  1396                 MachNode *nop = new (this) MachNopNode();
  1397                 b->_nodes.insert(j++, nop);
  1398                 _cfg->_bbs.map(nop->_idx, b);
  1399                 last_inst++;
  1400                 nop->emit(*cb, _regalloc);
  1401                 cb->flush_bundle(true);
  1402                 current_offset = cb->insts_size();
  1404 #ifdef ASSERT
  1405               jmp_target[i] = block_num;
  1406               jmp_offset[i] = current_offset - blk_offset;
  1407               jmp_size[i]   = new_size;
  1408               jmp_rule[i]   = mach->rule();
  1409 #endif
  1410               b->_nodes.map(j, replacement);
  1411               mach->subsume_by(replacement, C);
  1412               n    = replacement;
  1413               mach = replacement;
  1416           mach->as_MachBranch()->label_set( &blk_labels[block_num], block_num );
  1417         } else if (mach->ideal_Opcode() == Op_Jump) {
  1418           for (uint h = 0; h < b->_num_succs; h++) {
  1419             Block* succs_block = b->_succs[h];
  1420             for (uint j = 1; j < succs_block->num_preds(); j++) {
  1421               Node* jpn = succs_block->pred(j);
  1422               if (jpn->is_JumpProj() && jpn->in(0) == mach) {
  1423                 uint block_num = succs_block->non_connector()->_pre_order;
  1424                 Label *blkLabel = &blk_labels[block_num];
  1425                 mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
  1431 #ifdef ASSERT
  1432         // Check that oop-store precedes the card-mark
  1433         else if (mach->ideal_Opcode() == Op_StoreCM) {
  1434           uint storeCM_idx = j;
  1435           int count = 0;
  1436           for (uint prec = mach->req(); prec < mach->len(); prec++) {
  1437             Node *oop_store = mach->in(prec);  // Precedence edge
  1438             if (oop_store == NULL) continue;
  1439             count++;
  1440             uint i4;
  1441             for( i4 = 0; i4 < last_inst; ++i4 ) {
  1442               if( b->_nodes[i4] == oop_store ) break;
  1444             // Note: This test can provide a false failure if other precedence
  1445             // edges have been added to the storeCMNode.
  1446             assert( i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
  1448           assert(count > 0, "storeCM expects at least one precedence edge");
  1450 #endif
  1452         else if (!n->is_Proj()) {
  1453           // Remember the beginning of the previous instruction, in case
  1454           // it's followed by a flag-kill and a null-check.  Happens on
  1455           // Intel all the time, with add-to-memory kind of opcodes.
  1456           previous_offset = current_offset;
  1460       // Verify that there is sufficient space remaining
  1461       cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
  1462       if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
  1463         C->record_failure("CodeCache is full");
  1464         return;
  1467       // Save the offset for the listing
  1468 #ifndef PRODUCT
  1469       if (node_offsets && n->_idx < node_offset_limit)
  1470         node_offsets[n->_idx] = cb->insts_size();
  1471 #endif
  1473       // "Normal" instruction case
  1474       DEBUG_ONLY( uint instr_offset = cb->insts_size(); )
  1475       n->emit(*cb, _regalloc);
  1476       current_offset  = cb->insts_size();
  1478 #ifdef ASSERT
  1479       if (n->size(_regalloc) < (current_offset-instr_offset)) {
  1480         n->dump();
  1481         assert(false, "wrong size of mach node");
  1483 #endif
  1484       non_safepoints.observe_instruction(n, current_offset);
  1486       // mcall is last "call" that can be a safepoint
  1487       // record it so we can see if a poll will directly follow it
  1488       // in which case we'll need a pad to make the PcDesc sites unique
  1489       // see  5010568. This can be slightly inaccurate but conservative
  1490       // in the case that return address is not actually at current_offset.
  1491       // This is a small price to pay.
  1493       if (is_mcall) {
  1494         last_call_offset = current_offset;
  1497       if (n->is_Mach() && n->as_Mach()->avoid_back_to_back()) {
  1498         // Avoid back to back some instructions.
  1499         last_avoid_back_to_back_offset = current_offset;
  1502       // See if this instruction has a delay slot
  1503       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
  1504         assert(delay_slot != NULL, "expecting delay slot node");
  1506         // Back up 1 instruction
  1507         cb->set_insts_end(cb->insts_end() - Pipeline::instr_unit_size());
  1509         // Save the offset for the listing
  1510 #ifndef PRODUCT
  1511         if (node_offsets && delay_slot->_idx < node_offset_limit)
  1512           node_offsets[delay_slot->_idx] = cb->insts_size();
  1513 #endif
  1515         // Support a SafePoint in the delay slot
  1516         if (delay_slot->is_MachSafePoint()) {
  1517           MachNode *mach = delay_slot->as_Mach();
  1518           // !!!!! Stubs only need an oopmap right now, so bail out
  1519           if (!mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL) {
  1520             // Write the oopmap directly to the code blob??!!
  1521 #           ifdef ENABLE_ZAP_DEAD_LOCALS
  1522             assert( !is_node_getting_a_safepoint(mach),  "logic does not match; false positive");
  1523 #           endif
  1524             delay_slot = NULL;
  1525             continue;
  1528           int adjusted_offset = current_offset - Pipeline::instr_unit_size();
  1529           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
  1530                                            adjusted_offset);
  1531           // Generate an OopMap entry
  1532           Process_OopMap_Node(mach, adjusted_offset);
  1535         // Insert the delay slot instruction
  1536         delay_slot->emit(*cb, _regalloc);
  1538         // Don't reuse it
  1539         delay_slot = NULL;
  1542     } // End for all instructions in block
  1544     // If the next block is the top of a loop, pad this block out to align
  1545     // the loop top a little. Helps prevent pipe stalls at loop back branches.
  1546     if (i < nblocks-1) {
  1547       Block *nb = _cfg->_blocks[i+1];
  1548       int padding = nb->alignment_padding(current_offset);
  1549       if( padding > 0 ) {
  1550         MachNode *nop = new (this) MachNopNode(padding / nop_size);
  1551         b->_nodes.insert( b->_nodes.size(), nop );
  1552         _cfg->_bbs.map( nop->_idx, b );
  1553         nop->emit(*cb, _regalloc);
  1554         current_offset = cb->insts_size();
  1557     // Verify that the distance for generated before forward
  1558     // short branches is still valid.
  1559     guarantee((int)(blk_starts[i+1] - blk_starts[i]) >= (current_offset - blk_offset), "shouldn't increase block size");
  1561     // Save new block start offset
  1562     blk_starts[i] = blk_offset;
  1563   } // End of for all blocks
  1564   blk_starts[nblocks] = current_offset;
  1566   non_safepoints.flush_at_end();
  1568   // Offset too large?
  1569   if (failing())  return;
  1571   // Define a pseudo-label at the end of the code
  1572   MacroAssembler(cb).bind( blk_labels[nblocks] );
  1574   // Compute the size of the first block
  1575   _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();
  1577   assert(cb->insts_size() < 500000, "method is unreasonably large");
  1579 #ifdef ASSERT
  1580   for (uint i = 0; i < nblocks; i++) { // For all blocks
  1581     if (jmp_target[i] != 0) {
  1582       int br_size = jmp_size[i];
  1583       int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
  1584       if (!_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
  1585         tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
  1586         assert(false, "Displacement too large for short jmp");
  1590 #endif
  1592   // ------------------
  1594 #ifndef PRODUCT
  1595   // Information on the size of the method, without the extraneous code
  1596   Scheduling::increment_method_size(cb->insts_size());
  1597 #endif
  1599   // ------------------
  1600   // Fill in exception table entries.
  1601   FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);
  1603   // Only java methods have exception handlers and deopt handlers
  1604   if (_method) {
  1605     // Emit the exception handler code.
  1606     _code_offsets.set_value(CodeOffsets::Exceptions, emit_exception_handler(*cb));
  1607     // Emit the deopt handler code.
  1608     _code_offsets.set_value(CodeOffsets::Deopt, emit_deopt_handler(*cb));
  1610     // Emit the MethodHandle deopt handler code (if required).
  1611     if (has_method_handle_invokes()) {
  1612       // We can use the same code as for the normal deopt handler, we
  1613       // just need a different entry point address.
  1614       _code_offsets.set_value(CodeOffsets::DeoptMH, emit_deopt_handler(*cb));
  1618   // One last check for failed CodeBuffer::expand:
  1619   if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
  1620     C->record_failure("CodeCache is full");
  1621     return;
  1624 #ifndef PRODUCT
  1625   // Dump the assembly code, including basic-block numbers
  1626   if (print_assembly()) {
  1627     ttyLocker ttyl;  // keep the following output all in one block
  1628     if (!VMThread::should_terminate()) {  // test this under the tty lock
  1629       // This output goes directly to the tty, not the compiler log.
  1630       // To enable tools to match it up with the compilation activity,
  1631       // be sure to tag this tty output with the compile ID.
  1632       if (xtty != NULL) {
  1633         xtty->head("opto_assembly compile_id='%d'%s", compile_id(),
  1634                    is_osr_compilation()    ? " compile_kind='osr'" :
  1635                    "");
  1637       if (method() != NULL) {
  1638         method()->print_metadata();
  1640       dump_asm(node_offsets, node_offset_limit);
  1641       if (xtty != NULL) {
  1642         xtty->tail("opto_assembly");
  1646 #endif
  1650 void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
  1651   _inc_table.set_size(cnt);
  1653   uint inct_cnt = 0;
  1654   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
  1655     Block *b = _cfg->_blocks[i];
  1656     Node *n = NULL;
  1657     int j;
  1659     // Find the branch; ignore trailing NOPs.
  1660     for( j = b->_nodes.size()-1; j>=0; j-- ) {
  1661       n = b->_nodes[j];
  1662       if( !n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con )
  1663         break;
  1666     // If we didn't find anything, continue
  1667     if( j < 0 ) continue;
  1669     // Compute ExceptionHandlerTable subtable entry and add it
  1670     // (skip empty blocks)
  1671     if( n->is_Catch() ) {
  1673       // Get the offset of the return from the call
  1674       uint call_return = call_returns[b->_pre_order];
  1675 #ifdef ASSERT
  1676       assert( call_return > 0, "no call seen for this basic block" );
  1677       while( b->_nodes[--j]->is_MachProj() ) ;
  1678       assert( b->_nodes[j]->is_MachCall(), "CatchProj must follow call" );
  1679 #endif
  1680       // last instruction is a CatchNode, find it's CatchProjNodes
  1681       int nof_succs = b->_num_succs;
  1682       // allocate space
  1683       GrowableArray<intptr_t> handler_bcis(nof_succs);
  1684       GrowableArray<intptr_t> handler_pcos(nof_succs);
  1685       // iterate through all successors
  1686       for (int j = 0; j < nof_succs; j++) {
  1687         Block* s = b->_succs[j];
  1688         bool found_p = false;
  1689         for( uint k = 1; k < s->num_preds(); k++ ) {
  1690           Node *pk = s->pred(k);
  1691           if( pk->is_CatchProj() && pk->in(0) == n ) {
  1692             const CatchProjNode* p = pk->as_CatchProj();
  1693             found_p = true;
  1694             // add the corresponding handler bci & pco information
  1695             if( p->_con != CatchProjNode::fall_through_index ) {
  1696               // p leads to an exception handler (and is not fall through)
  1697               assert(s == _cfg->_blocks[s->_pre_order],"bad numbering");
  1698               // no duplicates, please
  1699               if( !handler_bcis.contains(p->handler_bci()) ) {
  1700                 uint block_num = s->non_connector()->_pre_order;
  1701                 handler_bcis.append(p->handler_bci());
  1702                 handler_pcos.append(blk_labels[block_num].loc_pos());
  1707         assert(found_p, "no matching predecessor found");
  1708         // Note:  Due to empty block removal, one block may have
  1709         // several CatchProj inputs, from the same Catch.
  1712       // Set the offset of the return from the call
  1713       _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos);
  1714       continue;
  1717     // Handle implicit null exception table updates
  1718     if( n->is_MachNullCheck() ) {
  1719       uint block_num = b->non_connector_successor(0)->_pre_order;
  1720       _inc_table.append( inct_starts[inct_cnt++], blk_labels[block_num].loc_pos() );
  1721       continue;
  1723   } // End of for all blocks fill in exception table entries
  1726 // Static Variables
  1727 #ifndef PRODUCT
  1728 uint Scheduling::_total_nop_size = 0;
  1729 uint Scheduling::_total_method_size = 0;
  1730 uint Scheduling::_total_branches = 0;
  1731 uint Scheduling::_total_unconditional_delays = 0;
  1732 uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
  1733 #endif
  1735 // Initializer for class Scheduling
  1737 Scheduling::Scheduling(Arena *arena, Compile &compile)
  1738   : _arena(arena),
  1739     _cfg(compile.cfg()),
  1740     _bbs(compile.cfg()->_bbs),
  1741     _regalloc(compile.regalloc()),
  1742     _reg_node(arena),
  1743     _bundle_instr_count(0),
  1744     _bundle_cycle_number(0),
  1745     _scheduled(arena),
  1746     _available(arena),
  1747     _next_node(NULL),
  1748     _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]),
  1749     _pinch_free_list(arena)
  1750 #ifndef PRODUCT
  1751   , _branches(0)
  1752   , _unconditional_delays(0)
  1753 #endif
  1755   // Create a MachNopNode
  1756   _nop = new (&compile) MachNopNode();
  1758   // Now that the nops are in the array, save the count
  1759   // (but allow entries for the nops)
  1760   _node_bundling_limit = compile.unique();
  1761   uint node_max = _regalloc->node_regs_max_index();
  1763   compile.set_node_bundling_limit(_node_bundling_limit);
  1765   // This one is persistent within the Compile class
  1766   _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
  1768   // Allocate space for fixed-size arrays
  1769   _node_latency    = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
  1770   _uses            = NEW_ARENA_ARRAY(arena, short,          node_max);
  1771   _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
  1773   // Clear the arrays
  1774   memset(_node_bundling_base, 0, node_max * sizeof(Bundle));
  1775   memset(_node_latency,       0, node_max * sizeof(unsigned short));
  1776   memset(_uses,               0, node_max * sizeof(short));
  1777   memset(_current_latency,    0, node_max * sizeof(unsigned short));
  1779   // Clear the bundling information
  1780   memcpy(_bundle_use_elements,
  1781     Pipeline_Use::elaborated_elements,
  1782     sizeof(Pipeline_Use::elaborated_elements));
  1784   // Get the last node
  1785   Block *bb = _cfg->_blocks[_cfg->_blocks.size()-1];
  1787   _next_node = bb->_nodes[bb->_nodes.size()-1];
  1790 #ifndef PRODUCT
  1791 // Scheduling destructor
  1792 Scheduling::~Scheduling() {
  1793   _total_branches             += _branches;
  1794   _total_unconditional_delays += _unconditional_delays;
  1796 #endif
  1798 // Step ahead "i" cycles
  1799 void Scheduling::step(uint i) {
  1801   Bundle *bundle = node_bundling(_next_node);
  1802   bundle->set_starts_bundle();
  1804   // Update the bundle record, but leave the flags information alone
  1805   if (_bundle_instr_count > 0) {
  1806     bundle->set_instr_count(_bundle_instr_count);
  1807     bundle->set_resources_used(_bundle_use.resourcesUsed());
  1810   // Update the state information
  1811   _bundle_instr_count = 0;
  1812   _bundle_cycle_number += i;
  1813   _bundle_use.step(i);
  1816 void Scheduling::step_and_clear() {
  1817   Bundle *bundle = node_bundling(_next_node);
  1818   bundle->set_starts_bundle();
  1820   // Update the bundle record
  1821   if (_bundle_instr_count > 0) {
  1822     bundle->set_instr_count(_bundle_instr_count);
  1823     bundle->set_resources_used(_bundle_use.resourcesUsed());
  1825     _bundle_cycle_number += 1;
  1828   // Clear the bundling information
  1829   _bundle_instr_count = 0;
  1830   _bundle_use.reset();
  1832   memcpy(_bundle_use_elements,
  1833     Pipeline_Use::elaborated_elements,
  1834     sizeof(Pipeline_Use::elaborated_elements));
  1837 //------------------------------ScheduleAndBundle------------------------------
  1838 // Perform instruction scheduling and bundling over the sequence of
  1839 // instructions in backwards order.
  1840 void Compile::ScheduleAndBundle() {
  1842   // Don't optimize this if it isn't a method
  1843   if (!_method)
  1844     return;
  1846   // Don't optimize this if scheduling is disabled
  1847   if (!do_scheduling())
  1848     return;
  1850   // Scheduling code works only with pairs (8 bytes) maximum.
  1851   if (max_vector_size() > 8)
  1852     return;
  1854   NOT_PRODUCT( TracePhase t2("isched", &_t_instrSched, TimeCompiler); )
  1856   // Create a data structure for all the scheduling information
  1857   Scheduling scheduling(Thread::current()->resource_area(), *this);
  1859   // Walk backwards over each basic block, computing the needed alignment
  1860   // Walk over all the basic blocks
  1861   scheduling.DoScheduling();
  1864 //------------------------------ComputeLocalLatenciesForward-------------------
  1865 // Compute the latency of all the instructions.  This is fairly simple,
  1866 // because we already have a legal ordering.  Walk over the instructions
  1867 // from first to last, and compute the latency of the instruction based
  1868 // on the latency of the preceding instruction(s).
  1869 void Scheduling::ComputeLocalLatenciesForward(const Block *bb) {
  1870 #ifndef PRODUCT
  1871   if (_cfg->C->trace_opto_output())
  1872     tty->print("# -> ComputeLocalLatenciesForward\n");
  1873 #endif
  1875   // Walk over all the schedulable instructions
  1876   for( uint j=_bb_start; j < _bb_end; j++ ) {
  1878     // This is a kludge, forcing all latency calculations to start at 1.
  1879     // Used to allow latency 0 to force an instruction to the beginning
  1880     // of the bb
  1881     uint latency = 1;
  1882     Node *use = bb->_nodes[j];
  1883     uint nlen = use->len();
  1885     // Walk over all the inputs
  1886     for ( uint k=0; k < nlen; k++ ) {
  1887       Node *def = use->in(k);
  1888       if (!def)
  1889         continue;
  1891       uint l = _node_latency[def->_idx] + use->latency(k);
  1892       if (latency < l)
  1893         latency = l;
  1896     _node_latency[use->_idx] = latency;
  1898 #ifndef PRODUCT
  1899     if (_cfg->C->trace_opto_output()) {
  1900       tty->print("# latency %4d: ", latency);
  1901       use->dump();
  1903 #endif
  1906 #ifndef PRODUCT
  1907   if (_cfg->C->trace_opto_output())
  1908     tty->print("# <- ComputeLocalLatenciesForward\n");
  1909 #endif
  1911 } // end ComputeLocalLatenciesForward
  1913 // See if this node fits into the present instruction bundle
  1914 bool Scheduling::NodeFitsInBundle(Node *n) {
  1915   uint n_idx = n->_idx;
  1917   // If this is the unconditional delay instruction, then it fits
  1918   if (n == _unconditional_delay_slot) {
  1919 #ifndef PRODUCT
  1920     if (_cfg->C->trace_opto_output())
  1921       tty->print("#     NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx);
  1922 #endif
  1923     return (true);
  1926   // If the node cannot be scheduled this cycle, skip it
  1927   if (_current_latency[n_idx] > _bundle_cycle_number) {
  1928 #ifndef PRODUCT
  1929     if (_cfg->C->trace_opto_output())
  1930       tty->print("#     NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
  1931         n->_idx, _current_latency[n_idx], _bundle_cycle_number);
  1932 #endif
  1933     return (false);
  1936   const Pipeline *node_pipeline = n->pipeline();
  1938   uint instruction_count = node_pipeline->instructionCount();
  1939   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
  1940     instruction_count = 0;
  1941   else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
  1942     instruction_count++;
  1944   if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
  1945 #ifndef PRODUCT
  1946     if (_cfg->C->trace_opto_output())
  1947       tty->print("#     NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
  1948         n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
  1949 #endif
  1950     return (false);
  1953   // Don't allow non-machine nodes to be handled this way
  1954   if (!n->is_Mach() && instruction_count == 0)
  1955     return (false);
  1957   // See if there is any overlap
  1958   uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());
  1960   if (delay > 0) {
  1961 #ifndef PRODUCT
  1962     if (_cfg->C->trace_opto_output())
  1963       tty->print("#     NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
  1964 #endif
  1965     return false;
  1968 #ifndef PRODUCT
  1969   if (_cfg->C->trace_opto_output())
  1970     tty->print("#     NodeFitsInBundle [%4d]:  TRUE\n", n_idx);
  1971 #endif
  1973   return true;
  1976 Node * Scheduling::ChooseNodeToBundle() {
  1977   uint siz = _available.size();
  1979   if (siz == 0) {
  1981 #ifndef PRODUCT
  1982     if (_cfg->C->trace_opto_output())
  1983       tty->print("#   ChooseNodeToBundle: NULL\n");
  1984 #endif
  1985     return (NULL);
  1988   // Fast path, if only 1 instruction in the bundle
  1989   if (siz == 1) {
  1990 #ifndef PRODUCT
  1991     if (_cfg->C->trace_opto_output()) {
  1992       tty->print("#   ChooseNodeToBundle (only 1): ");
  1993       _available[0]->dump();
  1995 #endif
  1996     return (_available[0]);
  1999   // Don't bother, if the bundle is already full
  2000   if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
  2001     for ( uint i = 0; i < siz; i++ ) {
  2002       Node *n = _available[i];
  2004       // Skip projections, we'll handle them another way
  2005       if (n->is_Proj())
  2006         continue;
  2008       // This presupposed that instructions are inserted into the
  2009       // available list in a legality order; i.e. instructions that
  2010       // must be inserted first are at the head of the list
  2011       if (NodeFitsInBundle(n)) {
  2012 #ifndef PRODUCT
  2013         if (_cfg->C->trace_opto_output()) {
  2014           tty->print("#   ChooseNodeToBundle: ");
  2015           n->dump();
  2017 #endif
  2018         return (n);
  2023   // Nothing fits in this bundle, choose the highest priority
  2024 #ifndef PRODUCT
  2025   if (_cfg->C->trace_opto_output()) {
  2026     tty->print("#   ChooseNodeToBundle: ");
  2027     _available[0]->dump();
  2029 #endif
  2031   return _available[0];
  2034 //------------------------------AddNodeToAvailableList-------------------------
  2035 void Scheduling::AddNodeToAvailableList(Node *n) {
  2036   assert( !n->is_Proj(), "projections never directly made available" );
  2037 #ifndef PRODUCT
  2038   if (_cfg->C->trace_opto_output()) {
  2039     tty->print("#   AddNodeToAvailableList: ");
  2040     n->dump();
  2042 #endif
  2044   int latency = _current_latency[n->_idx];
  2046   // Insert in latency order (insertion sort)
  2047   uint i;
  2048   for ( i=0; i < _available.size(); i++ )
  2049     if (_current_latency[_available[i]->_idx] > latency)
  2050       break;
  2052   // Special Check for compares following branches
  2053   if( n->is_Mach() && _scheduled.size() > 0 ) {
  2054     int op = n->as_Mach()->ideal_Opcode();
  2055     Node *last = _scheduled[0];
  2056     if( last->is_MachIf() && last->in(1) == n &&
  2057         ( op == Op_CmpI ||
  2058           op == Op_CmpU ||
  2059           op == Op_CmpP ||
  2060           op == Op_CmpF ||
  2061           op == Op_CmpD ||
  2062           op == Op_CmpL ) ) {
  2064       // Recalculate position, moving to front of same latency
  2065       for ( i=0 ; i < _available.size(); i++ )
  2066         if (_current_latency[_available[i]->_idx] >= latency)
  2067           break;
  2071   // Insert the node in the available list
  2072   _available.insert(i, n);
  2074 #ifndef PRODUCT
  2075   if (_cfg->C->trace_opto_output())
  2076     dump_available();
  2077 #endif
  2080 //------------------------------DecrementUseCounts-----------------------------
  2081 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
  2082   for ( uint i=0; i < n->len(); i++ ) {
  2083     Node *def = n->in(i);
  2084     if (!def) continue;
  2085     if( def->is_Proj() )        // If this is a machine projection, then
  2086       def = def->in(0);         // propagate usage thru to the base instruction
  2088     if( _bbs[def->_idx] != bb ) // Ignore if not block-local
  2089       continue;
  2091     // Compute the latency
  2092     uint l = _bundle_cycle_number + n->latency(i);
  2093     if (_current_latency[def->_idx] < l)
  2094       _current_latency[def->_idx] = l;
  2096     // If this does not have uses then schedule it
  2097     if ((--_uses[def->_idx]) == 0)
  2098       AddNodeToAvailableList(def);
  2102 //------------------------------AddNodeToBundle--------------------------------
  2103 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
  2104 #ifndef PRODUCT
  2105   if (_cfg->C->trace_opto_output()) {
  2106     tty->print("#   AddNodeToBundle: ");
  2107     n->dump();
  2109 #endif
  2111   // Remove this from the available list
  2112   uint i;
  2113   for (i = 0; i < _available.size(); i++)
  2114     if (_available[i] == n)
  2115       break;
  2116   assert(i < _available.size(), "entry in _available list not found");
  2117   _available.remove(i);
  2119   // See if this fits in the current bundle
  2120   const Pipeline *node_pipeline = n->pipeline();
  2121   const Pipeline_Use& node_usage = node_pipeline->resourceUse();
  2123   // Check for instructions to be placed in the delay slot. We
  2124   // do this before we actually schedule the current instruction,
  2125   // because the delay slot follows the current instruction.
  2126   if (Pipeline::_branch_has_delay_slot &&
  2127       node_pipeline->hasBranchDelay() &&
  2128       !_unconditional_delay_slot) {
  2130     uint siz = _available.size();
  2132     // Conditional branches can support an instruction that
  2133     // is unconditionally executed and not dependent by the
  2134     // branch, OR a conditionally executed instruction if
  2135     // the branch is taken.  In practice, this means that
  2136     // the first instruction at the branch target is
  2137     // copied to the delay slot, and the branch goes to
  2138     // the instruction after that at the branch target
  2139     if ( n->is_MachBranch() ) {
  2141       assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" );
  2142       assert( !n->is_Catch(),         "should not look for delay slot for Catch" );
  2144 #ifndef PRODUCT
  2145       _branches++;
  2146 #endif
  2148       // At least 1 instruction is on the available list
  2149       // that is not dependent on the branch
  2150       for (uint i = 0; i < siz; i++) {
  2151         Node *d = _available[i];
  2152         const Pipeline *avail_pipeline = d->pipeline();
  2154         // Don't allow safepoints in the branch shadow, that will
  2155         // cause a number of difficulties
  2156         if ( avail_pipeline->instructionCount() == 1 &&
  2157             !avail_pipeline->hasMultipleBundles() &&
  2158             !avail_pipeline->hasBranchDelay() &&
  2159             Pipeline::instr_has_unit_size() &&
  2160             d->size(_regalloc) == Pipeline::instr_unit_size() &&
  2161             NodeFitsInBundle(d) &&
  2162             !node_bundling(d)->used_in_delay()) {
  2164           if (d->is_Mach() && !d->is_MachSafePoint()) {
  2165             // A node that fits in the delay slot was found, so we need to
  2166             // set the appropriate bits in the bundle pipeline information so
  2167             // that it correctly indicates resource usage.  Later, when we
  2168             // attempt to add this instruction to the bundle, we will skip
  2169             // setting the resource usage.
  2170             _unconditional_delay_slot = d;
  2171             node_bundling(n)->set_use_unconditional_delay();
  2172             node_bundling(d)->set_used_in_unconditional_delay();
  2173             _bundle_use.add_usage(avail_pipeline->resourceUse());
  2174             _current_latency[d->_idx] = _bundle_cycle_number;
  2175             _next_node = d;
  2176             ++_bundle_instr_count;
  2177 #ifndef PRODUCT
  2178             _unconditional_delays++;
  2179 #endif
  2180             break;
  2186     // No delay slot, add a nop to the usage
  2187     if (!_unconditional_delay_slot) {
  2188       // See if adding an instruction in the delay slot will overflow
  2189       // the bundle.
  2190       if (!NodeFitsInBundle(_nop)) {
  2191 #ifndef PRODUCT
  2192         if (_cfg->C->trace_opto_output())
  2193           tty->print("#  *** STEP(1 instruction for delay slot) ***\n");
  2194 #endif
  2195         step(1);
  2198       _bundle_use.add_usage(_nop->pipeline()->resourceUse());
  2199       _next_node = _nop;
  2200       ++_bundle_instr_count;
  2203     // See if the instruction in the delay slot requires a
  2204     // step of the bundles
  2205     if (!NodeFitsInBundle(n)) {
  2206 #ifndef PRODUCT
  2207         if (_cfg->C->trace_opto_output())
  2208           tty->print("#  *** STEP(branch won't fit) ***\n");
  2209 #endif
  2210         // Update the state information
  2211         _bundle_instr_count = 0;
  2212         _bundle_cycle_number += 1;
  2213         _bundle_use.step(1);
  2217   // Get the number of instructions
  2218   uint instruction_count = node_pipeline->instructionCount();
  2219   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
  2220     instruction_count = 0;
  2222   // Compute the latency information
  2223   uint delay = 0;
  2225   if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
  2226     int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
  2227     if (relative_latency < 0)
  2228       relative_latency = 0;
  2230     delay = _bundle_use.full_latency(relative_latency, node_usage);
  2232     // Does not fit in this bundle, start a new one
  2233     if (delay > 0) {
  2234       step(delay);
  2236 #ifndef PRODUCT
  2237       if (_cfg->C->trace_opto_output())
  2238         tty->print("#  *** STEP(%d) ***\n", delay);
  2239 #endif
  2243   // If this was placed in the delay slot, ignore it
  2244   if (n != _unconditional_delay_slot) {
  2246     if (delay == 0) {
  2247       if (node_pipeline->hasMultipleBundles()) {
  2248 #ifndef PRODUCT
  2249         if (_cfg->C->trace_opto_output())
  2250           tty->print("#  *** STEP(multiple instructions) ***\n");
  2251 #endif
  2252         step(1);
  2255       else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
  2256 #ifndef PRODUCT
  2257         if (_cfg->C->trace_opto_output())
  2258           tty->print("#  *** STEP(%d >= %d instructions) ***\n",
  2259             instruction_count + _bundle_instr_count,
  2260             Pipeline::_max_instrs_per_cycle);
  2261 #endif
  2262         step(1);
  2266     if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
  2267       _bundle_instr_count++;
  2269     // Set the node's latency
  2270     _current_latency[n->_idx] = _bundle_cycle_number;
  2272     // Now merge the functional unit information
  2273     if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
  2274       _bundle_use.add_usage(node_usage);
  2276     // Increment the number of instructions in this bundle
  2277     _bundle_instr_count += instruction_count;
  2279     // Remember this node for later
  2280     if (n->is_Mach())
  2281       _next_node = n;
  2284   // It's possible to have a BoxLock in the graph and in the _bbs mapping but
  2285   // not in the bb->_nodes array.  This happens for debug-info-only BoxLocks.
  2286   // 'Schedule' them (basically ignore in the schedule) but do not insert them
  2287   // into the block.  All other scheduled nodes get put in the schedule here.
  2288   int op = n->Opcode();
  2289   if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
  2290       (op != Op_Node &&         // Not an unused antidepedence node and
  2291        // not an unallocated boxlock
  2292        (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
  2294     // Push any trailing projections
  2295     if( bb->_nodes[bb->_nodes.size()-1] != n ) {
  2296       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2297         Node *foi = n->fast_out(i);
  2298         if( foi->is_Proj() )
  2299           _scheduled.push(foi);
  2303     // Put the instruction in the schedule list
  2304     _scheduled.push(n);
  2307 #ifndef PRODUCT
  2308   if (_cfg->C->trace_opto_output())
  2309     dump_available();
  2310 #endif
  2312   // Walk all the definitions, decrementing use counts, and
  2313   // if a definition has a 0 use count, place it in the available list.
  2314   DecrementUseCounts(n,bb);
  2317 //------------------------------ComputeUseCount--------------------------------
  2318 // This method sets the use count within a basic block.  We will ignore all
  2319 // uses outside the current basic block.  As we are doing a backwards walk,
  2320 // any node we reach that has a use count of 0 may be scheduled.  This also
  2321 // avoids the problem of cyclic references from phi nodes, as long as phi
  2322 // nodes are at the front of the basic block.  This method also initializes
  2323 // the available list to the set of instructions that have no uses within this
  2324 // basic block.
  2325 void Scheduling::ComputeUseCount(const Block *bb) {
  2326 #ifndef PRODUCT
  2327   if (_cfg->C->trace_opto_output())
  2328     tty->print("# -> ComputeUseCount\n");
  2329 #endif
  2331   // Clear the list of available and scheduled instructions, just in case
  2332   _available.clear();
  2333   _scheduled.clear();
  2335   // No delay slot specified
  2336   _unconditional_delay_slot = NULL;
  2338 #ifdef ASSERT
  2339   for( uint i=0; i < bb->_nodes.size(); i++ )
  2340     assert( _uses[bb->_nodes[i]->_idx] == 0, "_use array not clean" );
  2341 #endif
  2343   // Force the _uses count to never go to zero for unscheduable pieces
  2344   // of the block
  2345   for( uint k = 0; k < _bb_start; k++ )
  2346     _uses[bb->_nodes[k]->_idx] = 1;
  2347   for( uint l = _bb_end; l < bb->_nodes.size(); l++ )
  2348     _uses[bb->_nodes[l]->_idx] = 1;
  2350   // Iterate backwards over the instructions in the block.  Don't count the
  2351   // branch projections at end or the block header instructions.
  2352   for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
  2353     Node *n = bb->_nodes[j];
  2354     if( n->is_Proj() ) continue; // Projections handled another way
  2356     // Account for all uses
  2357     for ( uint k = 0; k < n->len(); k++ ) {
  2358       Node *inp = n->in(k);
  2359       if (!inp) continue;
  2360       assert(inp != n, "no cycles allowed" );
  2361       if( _bbs[inp->_idx] == bb ) { // Block-local use?
  2362         if( inp->is_Proj() )    // Skip through Proj's
  2363           inp = inp->in(0);
  2364         ++_uses[inp->_idx];     // Count 1 block-local use
  2368     // If this instruction has a 0 use count, then it is available
  2369     if (!_uses[n->_idx]) {
  2370       _current_latency[n->_idx] = _bundle_cycle_number;
  2371       AddNodeToAvailableList(n);
  2374 #ifndef PRODUCT
  2375     if (_cfg->C->trace_opto_output()) {
  2376       tty->print("#   uses: %3d: ", _uses[n->_idx]);
  2377       n->dump();
  2379 #endif
  2382 #ifndef PRODUCT
  2383   if (_cfg->C->trace_opto_output())
  2384     tty->print("# <- ComputeUseCount\n");
  2385 #endif
  2388 // This routine performs scheduling on each basic block in reverse order,
  2389 // using instruction latencies and taking into account function unit
  2390 // availability.
  2391 void Scheduling::DoScheduling() {
  2392 #ifndef PRODUCT
  2393   if (_cfg->C->trace_opto_output())
  2394     tty->print("# -> DoScheduling\n");
  2395 #endif
  2397   Block *succ_bb = NULL;
  2398   Block *bb;
  2400   // Walk over all the basic blocks in reverse order
  2401   for( int i=_cfg->_num_blocks-1; i >= 0; succ_bb = bb, i-- ) {
  2402     bb = _cfg->_blocks[i];
  2404 #ifndef PRODUCT
  2405     if (_cfg->C->trace_opto_output()) {
  2406       tty->print("#  Schedule BB#%03d (initial)\n", i);
  2407       for (uint j = 0; j < bb->_nodes.size(); j++)
  2408         bb->_nodes[j]->dump();
  2410 #endif
  2412     // On the head node, skip processing
  2413     if( bb == _cfg->_broot )
  2414       continue;
  2416     // Skip empty, connector blocks
  2417     if (bb->is_connector())
  2418       continue;
  2420     // If the following block is not the sole successor of
  2421     // this one, then reset the pipeline information
  2422     if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
  2423 #ifndef PRODUCT
  2424       if (_cfg->C->trace_opto_output()) {
  2425         tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
  2426                    _next_node->_idx, _bundle_instr_count);
  2428 #endif
  2429       step_and_clear();
  2432     // Leave untouched the starting instruction, any Phis, a CreateEx node
  2433     // or Top.  bb->_nodes[_bb_start] is the first schedulable instruction.
  2434     _bb_end = bb->_nodes.size()-1;
  2435     for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
  2436       Node *n = bb->_nodes[_bb_start];
  2437       // Things not matched, like Phinodes and ProjNodes don't get scheduled.
  2438       // Also, MachIdealNodes do not get scheduled
  2439       if( !n->is_Mach() ) continue;     // Skip non-machine nodes
  2440       MachNode *mach = n->as_Mach();
  2441       int iop = mach->ideal_Opcode();
  2442       if( iop == Op_CreateEx ) continue; // CreateEx is pinned
  2443       if( iop == Op_Con ) continue;      // Do not schedule Top
  2444       if( iop == Op_Node &&     // Do not schedule PhiNodes, ProjNodes
  2445           mach->pipeline() == MachNode::pipeline_class() &&
  2446           !n->is_SpillCopy() )  // Breakpoints, Prolog, etc
  2447         continue;
  2448       break;                    // Funny loop structure to be sure...
  2450     // Compute last "interesting" instruction in block - last instruction we
  2451     // might schedule.  _bb_end points just after last schedulable inst.  We
  2452     // normally schedule conditional branches (despite them being forced last
  2453     // in the block), because they have delay slots we can fill.  Calls all
  2454     // have their delay slots filled in the template expansions, so we don't
  2455     // bother scheduling them.
  2456     Node *last = bb->_nodes[_bb_end];
  2457     // Ignore trailing NOPs.
  2458     while (_bb_end > 0 && last->is_Mach() &&
  2459            last->as_Mach()->ideal_Opcode() == Op_Con) {
  2460       last = bb->_nodes[--_bb_end];
  2462     assert(!last->is_Mach() || last->as_Mach()->ideal_Opcode() != Op_Con, "");
  2463     if( last->is_Catch() ||
  2464        // Exclude unreachable path case when Halt node is in a separate block.
  2465        (_bb_end > 1 && last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
  2466       // There must be a prior call.  Skip it.
  2467       while( !bb->_nodes[--_bb_end]->is_MachCall() ) {
  2468         assert( bb->_nodes[_bb_end]->is_MachProj(), "skipping projections after expected call" );
  2470     } else if( last->is_MachNullCheck() ) {
  2471       // Backup so the last null-checked memory instruction is
  2472       // outside the schedulable range. Skip over the nullcheck,
  2473       // projection, and the memory nodes.
  2474       Node *mem = last->in(1);
  2475       do {
  2476         _bb_end--;
  2477       } while (mem != bb->_nodes[_bb_end]);
  2478     } else {
  2479       // Set _bb_end to point after last schedulable inst.
  2480       _bb_end++;
  2483     assert( _bb_start <= _bb_end, "inverted block ends" );
  2485     // Compute the register antidependencies for the basic block
  2486     ComputeRegisterAntidependencies(bb);
  2487     if (_cfg->C->failing())  return;  // too many D-U pinch points
  2489     // Compute intra-bb latencies for the nodes
  2490     ComputeLocalLatenciesForward(bb);
  2492     // Compute the usage within the block, and set the list of all nodes
  2493     // in the block that have no uses within the block.
  2494     ComputeUseCount(bb);
  2496     // Schedule the remaining instructions in the block
  2497     while ( _available.size() > 0 ) {
  2498       Node *n = ChooseNodeToBundle();
  2499       guarantee(n != NULL, "no nodes available");
  2500       AddNodeToBundle(n,bb);
  2503     assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
  2504 #ifdef ASSERT
  2505     for( uint l = _bb_start; l < _bb_end; l++ ) {
  2506       Node *n = bb->_nodes[l];
  2507       uint m;
  2508       for( m = 0; m < _bb_end-_bb_start; m++ )
  2509         if( _scheduled[m] == n )
  2510           break;
  2511       assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
  2513 #endif
  2515     // Now copy the instructions (in reverse order) back to the block
  2516     for ( uint k = _bb_start; k < _bb_end; k++ )
  2517       bb->_nodes.map(k, _scheduled[_bb_end-k-1]);
  2519 #ifndef PRODUCT
  2520     if (_cfg->C->trace_opto_output()) {
  2521       tty->print("#  Schedule BB#%03d (final)\n", i);
  2522       uint current = 0;
  2523       for (uint j = 0; j < bb->_nodes.size(); j++) {
  2524         Node *n = bb->_nodes[j];
  2525         if( valid_bundle_info(n) ) {
  2526           Bundle *bundle = node_bundling(n);
  2527           if (bundle->instr_count() > 0 || bundle->flags() > 0) {
  2528             tty->print("*** Bundle: ");
  2529             bundle->dump();
  2531           n->dump();
  2535 #endif
  2536 #ifdef ASSERT
  2537   verify_good_schedule(bb,"after block local scheduling");
  2538 #endif
  2541 #ifndef PRODUCT
  2542   if (_cfg->C->trace_opto_output())
  2543     tty->print("# <- DoScheduling\n");
  2544 #endif
  2546   // Record final node-bundling array location
  2547   _regalloc->C->set_node_bundling_base(_node_bundling_base);
  2549 } // end DoScheduling
  2551 //------------------------------verify_good_schedule---------------------------
  2552 // Verify that no live-range used in the block is killed in the block by a
  2553 // wrong DEF.  This doesn't verify live-ranges that span blocks.
  2555 // Check for edge existence.  Used to avoid adding redundant precedence edges.
  2556 static bool edge_from_to( Node *from, Node *to ) {
  2557   for( uint i=0; i<from->len(); i++ )
  2558     if( from->in(i) == to )
  2559       return true;
  2560   return false;
  2563 #ifdef ASSERT
  2564 //------------------------------verify_do_def----------------------------------
  2565 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
  2566   // Check for bad kills
  2567   if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
  2568     Node *prior_use = _reg_node[def];
  2569     if( prior_use && !edge_from_to(prior_use,n) ) {
  2570       tty->print("%s = ",OptoReg::as_VMReg(def)->name());
  2571       n->dump();
  2572       tty->print_cr("...");
  2573       prior_use->dump();
  2574       assert(edge_from_to(prior_use,n),msg);
  2576     _reg_node.map(def,NULL); // Kill live USEs
  2580 //------------------------------verify_good_schedule---------------------------
  2581 void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
  2583   // Zap to something reasonable for the verify code
  2584   _reg_node.clear();
  2586   // Walk over the block backwards.  Check to make sure each DEF doesn't
  2587   // kill a live value (other than the one it's supposed to).  Add each
  2588   // USE to the live set.
  2589   for( uint i = b->_nodes.size()-1; i >= _bb_start; i-- ) {
  2590     Node *n = b->_nodes[i];
  2591     int n_op = n->Opcode();
  2592     if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
  2593       // Fat-proj kills a slew of registers
  2594       RegMask rm = n->out_RegMask();// Make local copy
  2595       while( rm.is_NotEmpty() ) {
  2596         OptoReg::Name kill = rm.find_first_elem();
  2597         rm.Remove(kill);
  2598         verify_do_def( n, kill, msg );
  2600     } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
  2601       // Get DEF'd registers the normal way
  2602       verify_do_def( n, _regalloc->get_reg_first(n), msg );
  2603       verify_do_def( n, _regalloc->get_reg_second(n), msg );
  2606     // Now make all USEs live
  2607     for( uint i=1; i<n->req(); i++ ) {
  2608       Node *def = n->in(i);
  2609       assert(def != 0, "input edge required");
  2610       OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
  2611       OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
  2612       if( OptoReg::is_valid(reg_lo) ) {
  2613         assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), msg);
  2614         _reg_node.map(reg_lo,n);
  2616       if( OptoReg::is_valid(reg_hi) ) {
  2617         assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), msg);
  2618         _reg_node.map(reg_hi,n);
  2624   // Zap to something reasonable for the Antidependence code
  2625   _reg_node.clear();
  2627 #endif
  2629 // Conditionally add precedence edges.  Avoid putting edges on Projs.
  2630 static void add_prec_edge_from_to( Node *from, Node *to ) {
  2631   if( from->is_Proj() ) {       // Put precedence edge on Proj's input
  2632     assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" );
  2633     from = from->in(0);
  2635   if( from != to &&             // No cycles (for things like LD L0,[L0+4] )
  2636       !edge_from_to( from, to ) ) // Avoid duplicate edge
  2637     from->add_prec(to);
  2640 //------------------------------anti_do_def------------------------------------
  2641 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
  2642   if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
  2643     return;
  2645   Node *pinch = _reg_node[def_reg]; // Get pinch point
  2646   if( !pinch || _bbs[pinch->_idx] != b || // No pinch-point yet?
  2647       is_def ) {    // Check for a true def (not a kill)
  2648     _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
  2649     return;
  2652   Node *kill = def;             // Rename 'def' to more descriptive 'kill'
  2653   debug_only( def = (Node*)0xdeadbeef; )
  2655   // After some number of kills there _may_ be a later def
  2656   Node *later_def = NULL;
  2658   // Finding a kill requires a real pinch-point.
  2659   // Check for not already having a pinch-point.
  2660   // Pinch points are Op_Node's.
  2661   if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
  2662     later_def = pinch;            // Must be def/kill as optimistic pinch-point
  2663     if ( _pinch_free_list.size() > 0) {
  2664       pinch = _pinch_free_list.pop();
  2665     } else {
  2666       pinch = new (_cfg->C) Node(1); // Pinch point to-be
  2668     if (pinch->_idx >= _regalloc->node_regs_max_index()) {
  2669       _cfg->C->record_method_not_compilable("too many D-U pinch points");
  2670       return;
  2672     _bbs.map(pinch->_idx,b);      // Pretend it's valid in this block (lazy init)
  2673     _reg_node.map(def_reg,pinch); // Record pinch-point
  2674     //_regalloc->set_bad(pinch->_idx); // Already initialized this way.
  2675     if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
  2676       pinch->init_req(0, _cfg->C->top());     // set not NULL for the next call
  2677       add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
  2678       later_def = NULL;           // and no later def
  2680     pinch->set_req(0,later_def);  // Hook later def so we can find it
  2681   } else {                        // Else have valid pinch point
  2682     if( pinch->in(0) )            // If there is a later-def
  2683       later_def = pinch->in(0);   // Get it
  2686   // Add output-dependence edge from later def to kill
  2687   if( later_def )               // If there is some original def
  2688     add_prec_edge_from_to(later_def,kill); // Add edge from def to kill
  2690   // See if current kill is also a use, and so is forced to be the pinch-point.
  2691   if( pinch->Opcode() == Op_Node ) {
  2692     Node *uses = kill->is_Proj() ? kill->in(0) : kill;
  2693     for( uint i=1; i<uses->req(); i++ ) {
  2694       if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
  2695           _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
  2696         // Yes, found a use/kill pinch-point
  2697         pinch->set_req(0,NULL);  //
  2698         pinch->replace_by(kill); // Move anti-dep edges up
  2699         pinch = kill;
  2700         _reg_node.map(def_reg,pinch);
  2701         return;
  2706   // Add edge from kill to pinch-point
  2707   add_prec_edge_from_to(kill,pinch);
  2710 //------------------------------anti_do_use------------------------------------
  2711 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
  2712   if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
  2713     return;
  2714   Node *pinch = _reg_node[use_reg]; // Get pinch point
  2715   // Check for no later def_reg/kill in block
  2716   if( pinch && _bbs[pinch->_idx] == b &&
  2717       // Use has to be block-local as well
  2718       _bbs[use->_idx] == b ) {
  2719     if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
  2720         pinch->req() == 1 ) {   // pinch not yet in block?
  2721       pinch->del_req(0);        // yank pointer to later-def, also set flag
  2722       // Insert the pinch-point in the block just after the last use
  2723       b->_nodes.insert(b->find_node(use)+1,pinch);
  2724       _bb_end++;                // Increase size scheduled region in block
  2727     add_prec_edge_from_to(pinch,use);
  2731 //------------------------------ComputeRegisterAntidependences-----------------
  2732 // We insert antidependences between the reads and following write of
  2733 // allocated registers to prevent illegal code motion. Hopefully, the
  2734 // number of added references should be fairly small, especially as we
  2735 // are only adding references within the current basic block.
  2736 void Scheduling::ComputeRegisterAntidependencies(Block *b) {
  2738 #ifdef ASSERT
  2739   verify_good_schedule(b,"before block local scheduling");
  2740 #endif
  2742   // A valid schedule, for each register independently, is an endless cycle
  2743   // of: a def, then some uses (connected to the def by true dependencies),
  2744   // then some kills (defs with no uses), finally the cycle repeats with a new
  2745   // def.  The uses are allowed to float relative to each other, as are the
  2746   // kills.  No use is allowed to slide past a kill (or def).  This requires
  2747   // antidependencies between all uses of a single def and all kills that
  2748   // follow, up to the next def.  More edges are redundant, because later defs
  2749   // & kills are already serialized with true or antidependencies.  To keep
  2750   // the edge count down, we add a 'pinch point' node if there's more than
  2751   // one use or more than one kill/def.
  2753   // We add dependencies in one bottom-up pass.
  2755   // For each instruction we handle it's DEFs/KILLs, then it's USEs.
  2757   // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
  2758   // register.  If not, we record the DEF/KILL in _reg_node, the
  2759   // register-to-def mapping.  If there is a prior DEF/KILL, we insert a
  2760   // "pinch point", a new Node that's in the graph but not in the block.
  2761   // We put edges from the prior and current DEF/KILLs to the pinch point.
  2762   // We put the pinch point in _reg_node.  If there's already a pinch point
  2763   // we merely add an edge from the current DEF/KILL to the pinch point.
  2765   // After doing the DEF/KILLs, we handle USEs.  For each used register, we
  2766   // put an edge from the pinch point to the USE.
  2768   // To be expedient, the _reg_node array is pre-allocated for the whole
  2769   // compilation.  _reg_node is lazily initialized; it either contains a NULL,
  2770   // or a valid def/kill/pinch-point, or a leftover node from some prior
  2771   // block.  Leftover node from some prior block is treated like a NULL (no
  2772   // prior def, so no anti-dependence needed).  Valid def is distinguished by
  2773   // it being in the current block.
  2774   bool fat_proj_seen = false;
  2775   uint last_safept = _bb_end-1;
  2776   Node* end_node         = (_bb_end-1 >= _bb_start) ? b->_nodes[last_safept] : NULL;
  2777   Node* last_safept_node = end_node;
  2778   for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
  2779     Node *n = b->_nodes[i];
  2780     int is_def = n->outcnt();   // def if some uses prior to adding precedence edges
  2781     if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) {
  2782       // Fat-proj kills a slew of registers
  2783       // This can add edges to 'n' and obscure whether or not it was a def,
  2784       // hence the is_def flag.
  2785       fat_proj_seen = true;
  2786       RegMask rm = n->out_RegMask();// Make local copy
  2787       while( rm.is_NotEmpty() ) {
  2788         OptoReg::Name kill = rm.find_first_elem();
  2789         rm.Remove(kill);
  2790         anti_do_def( b, n, kill, is_def );
  2792     } else {
  2793       // Get DEF'd registers the normal way
  2794       anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
  2795       anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
  2798     // Kill projections on a branch should appear to occur on the
  2799     // branch, not afterwards, so grab the masks from the projections
  2800     // and process them.
  2801     if (n->is_MachBranch() || n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_Jump) {
  2802       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2803         Node* use = n->fast_out(i);
  2804         if (use->is_Proj()) {
  2805           RegMask rm = use->out_RegMask();// Make local copy
  2806           while( rm.is_NotEmpty() ) {
  2807             OptoReg::Name kill = rm.find_first_elem();
  2808             rm.Remove(kill);
  2809             anti_do_def( b, n, kill, false );
  2815     // Check each register used by this instruction for a following DEF/KILL
  2816     // that must occur afterward and requires an anti-dependence edge.
  2817     for( uint j=0; j<n->req(); j++ ) {
  2818       Node *def = n->in(j);
  2819       if( def ) {
  2820         assert( !def->is_MachProj() || def->ideal_reg() != MachProjNode::fat_proj, "" );
  2821         anti_do_use( b, n, _regalloc->get_reg_first(def) );
  2822         anti_do_use( b, n, _regalloc->get_reg_second(def) );
  2825     // Do not allow defs of new derived values to float above GC
  2826     // points unless the base is definitely available at the GC point.
  2828     Node *m = b->_nodes[i];
  2830     // Add precedence edge from following safepoint to use of derived pointer
  2831     if( last_safept_node != end_node &&
  2832         m != last_safept_node) {
  2833       for (uint k = 1; k < m->req(); k++) {
  2834         const Type *t = m->in(k)->bottom_type();
  2835         if( t->isa_oop_ptr() &&
  2836             t->is_ptr()->offset() != 0 ) {
  2837           last_safept_node->add_prec( m );
  2838           break;
  2843     if( n->jvms() ) {           // Precedence edge from derived to safept
  2844       // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
  2845       if( b->_nodes[last_safept] != last_safept_node ) {
  2846         last_safept = b->find_node(last_safept_node);
  2848       for( uint j=last_safept; j > i; j-- ) {
  2849         Node *mach = b->_nodes[j];
  2850         if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
  2851           mach->add_prec( n );
  2853       last_safept = i;
  2854       last_safept_node = m;
  2858   if (fat_proj_seen) {
  2859     // Garbage collect pinch nodes that were not consumed.
  2860     // They are usually created by a fat kill MachProj for a call.
  2861     garbage_collect_pinch_nodes();
  2865 //------------------------------garbage_collect_pinch_nodes-------------------------------
  2867 // Garbage collect pinch nodes for reuse by other blocks.
  2868 //
  2869 // The block scheduler's insertion of anti-dependence
  2870 // edges creates many pinch nodes when the block contains
  2871 // 2 or more Calls.  A pinch node is used to prevent a
  2872 // combinatorial explosion of edges.  If a set of kills for a
  2873 // register is anti-dependent on a set of uses (or defs), rather
  2874 // than adding an edge in the graph between each pair of kill
  2875 // and use (or def), a pinch is inserted between them:
  2876 //
  2877 //            use1   use2  use3
  2878 //                \   |   /
  2879 //                 \  |  /
  2880 //                  pinch
  2881 //                 /  |  \
  2882 //                /   |   \
  2883 //            kill1 kill2 kill3
  2884 //
  2885 // One pinch node is created per register killed when
  2886 // the second call is encountered during a backwards pass
  2887 // over the block.  Most of these pinch nodes are never
  2888 // wired into the graph because the register is never
  2889 // used or def'ed in the block.
  2890 //
  2891 void Scheduling::garbage_collect_pinch_nodes() {
  2892 #ifndef PRODUCT
  2893     if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
  2894 #endif
  2895     int trace_cnt = 0;
  2896     for (uint k = 0; k < _reg_node.Size(); k++) {
  2897       Node* pinch = _reg_node[k];
  2898       if (pinch != NULL && pinch->Opcode() == Op_Node &&
  2899           // no predecence input edges
  2900           (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) {
  2901         cleanup_pinch(pinch);
  2902         _pinch_free_list.push(pinch);
  2903         _reg_node.map(k, NULL);
  2904 #ifndef PRODUCT
  2905         if (_cfg->C->trace_opto_output()) {
  2906           trace_cnt++;
  2907           if (trace_cnt > 40) {
  2908             tty->print("\n");
  2909             trace_cnt = 0;
  2911           tty->print(" %d", pinch->_idx);
  2913 #endif
  2916 #ifndef PRODUCT
  2917     if (_cfg->C->trace_opto_output()) tty->print("\n");
  2918 #endif
  2921 // Clean up a pinch node for reuse.
  2922 void Scheduling::cleanup_pinch( Node *pinch ) {
  2923   assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");
  2925   for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
  2926     Node* use = pinch->last_out(i);
  2927     uint uses_found = 0;
  2928     for (uint j = use->req(); j < use->len(); j++) {
  2929       if (use->in(j) == pinch) {
  2930         use->rm_prec(j);
  2931         uses_found++;
  2934     assert(uses_found > 0, "must be a precedence edge");
  2935     i -= uses_found;    // we deleted 1 or more copies of this edge
  2937   // May have a later_def entry
  2938   pinch->set_req(0, NULL);
  2941 //------------------------------print_statistics-------------------------------
  2942 #ifndef PRODUCT
  2944 void Scheduling::dump_available() const {
  2945   tty->print("#Availist  ");
  2946   for (uint i = 0; i < _available.size(); i++)
  2947     tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
  2948   tty->cr();
  2951 // Print Scheduling Statistics
  2952 void Scheduling::print_statistics() {
  2953   // Print the size added by nops for bundling
  2954   tty->print("Nops added %d bytes to total of %d bytes",
  2955     _total_nop_size, _total_method_size);
  2956   if (_total_method_size > 0)
  2957     tty->print(", for %.2f%%",
  2958       ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
  2959   tty->print("\n");
  2961   // Print the number of branch shadows filled
  2962   if (Pipeline::_branch_has_delay_slot) {
  2963     tty->print("Of %d branches, %d had unconditional delay slots filled",
  2964       _total_branches, _total_unconditional_delays);
  2965     if (_total_branches > 0)
  2966       tty->print(", for %.2f%%",
  2967         ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0);
  2968     tty->print("\n");
  2971   uint total_instructions = 0, total_bundles = 0;
  2973   for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
  2974     uint bundle_count   = _total_instructions_per_bundle[i];
  2975     total_instructions += bundle_count * i;
  2976     total_bundles      += bundle_count;
  2979   if (total_bundles > 0)
  2980     tty->print("Average ILP (excluding nops) is %.2f\n",
  2981       ((double)total_instructions) / ((double)total_bundles));
  2983 #endif

mercurial