src/share/vm/opto/macro.cpp

Mon, 27 May 2013 12:56:34 +0200

author
stefank
date
Mon, 27 May 2013 12:56:34 +0200
changeset 5195
95c00927be11
parent 5111
70120f47d403
child 5626
766fac3395d6
permissions
-rw-r--r--

8015428: Remove unused CDS support from StringTable
Summary: The string in StringTable is not used by CDS anymore. Remove the unnecessary code in preparation for 8015422: Large performance hit when the StringTable is walked twice in Parallel Scavenge
Reviewed-by: pliden, tschatzl, coleenp

     1 /*
     2  * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "compiler/compileLog.hpp"
    27 #include "libadt/vectset.hpp"
    28 #include "opto/addnode.hpp"
    29 #include "opto/callnode.hpp"
    30 #include "opto/cfgnode.hpp"
    31 #include "opto/compile.hpp"
    32 #include "opto/connode.hpp"
    33 #include "opto/locknode.hpp"
    34 #include "opto/loopnode.hpp"
    35 #include "opto/macro.hpp"
    36 #include "opto/memnode.hpp"
    37 #include "opto/node.hpp"
    38 #include "opto/phaseX.hpp"
    39 #include "opto/rootnode.hpp"
    40 #include "opto/runtime.hpp"
    41 #include "opto/subnode.hpp"
    42 #include "opto/type.hpp"
    43 #include "runtime/sharedRuntime.hpp"
    46 //
    47 // Replace any references to "oldref" in inputs to "use" with "newref".
    48 // Returns the number of replacements made.
    49 //
    50 int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) {
    51   int nreplacements = 0;
    52   uint req = use->req();
    53   for (uint j = 0; j < use->len(); j++) {
    54     Node *uin = use->in(j);
    55     if (uin == oldref) {
    56       if (j < req)
    57         use->set_req(j, newref);
    58       else
    59         use->set_prec(j, newref);
    60       nreplacements++;
    61     } else if (j >= req && uin == NULL) {
    62       break;
    63     }
    64   }
    65   return nreplacements;
    66 }
    68 void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcall) {
    69   // Copy debug information and adjust JVMState information
    70   uint old_dbg_start = oldcall->tf()->domain()->cnt();
    71   uint new_dbg_start = newcall->tf()->domain()->cnt();
    72   int jvms_adj  = new_dbg_start - old_dbg_start;
    73   assert (new_dbg_start == newcall->req(), "argument count mismatch");
    75   Dict* sosn_map = new Dict(cmpkey,hashkey);
    76   for (uint i = old_dbg_start; i < oldcall->req(); i++) {
    77     Node* old_in = oldcall->in(i);
    78     // Clone old SafePointScalarObjectNodes, adjusting their field contents.
    79     if (old_in != NULL && old_in->is_SafePointScalarObject()) {
    80       SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
    81       uint old_unique = C->unique();
    82       Node* new_in = old_sosn->clone(jvms_adj, sosn_map);
    83       if (old_unique != C->unique()) {
    84         new_in->set_req(0, C->root()); // reset control edge
    85         new_in = transform_later(new_in); // Register new node.
    86       }
    87       old_in = new_in;
    88     }
    89     newcall->add_req(old_in);
    90   }
    92   newcall->set_jvms(oldcall->jvms());
    93   for (JVMState *jvms = newcall->jvms(); jvms != NULL; jvms = jvms->caller()) {
    94     jvms->set_map(newcall);
    95     jvms->set_locoff(jvms->locoff()+jvms_adj);
    96     jvms->set_stkoff(jvms->stkoff()+jvms_adj);
    97     jvms->set_monoff(jvms->monoff()+jvms_adj);
    98     jvms->set_scloff(jvms->scloff()+jvms_adj);
    99     jvms->set_endoff(jvms->endoff()+jvms_adj);
   100   }
   101 }
   103 Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) {
   104   Node* cmp;
   105   if (mask != 0) {
   106     Node* and_node = transform_later(new (C) AndXNode(word, MakeConX(mask)));
   107     cmp = transform_later(new (C) CmpXNode(and_node, MakeConX(bits)));
   108   } else {
   109     cmp = word;
   110   }
   111   Node* bol = transform_later(new (C) BoolNode(cmp, BoolTest::ne));
   112   IfNode* iff = new (C) IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
   113   transform_later(iff);
   115   // Fast path taken.
   116   Node *fast_taken = transform_later( new (C) IfFalseNode(iff) );
   118   // Fast path not-taken, i.e. slow path
   119   Node *slow_taken = transform_later( new (C) IfTrueNode(iff) );
   121   if (return_fast_path) {
   122     region->init_req(edge, slow_taken); // Capture slow-control
   123     return fast_taken;
   124   } else {
   125     region->init_req(edge, fast_taken); // Capture fast-control
   126     return slow_taken;
   127   }
   128 }
   130 //--------------------copy_predefined_input_for_runtime_call--------------------
   131 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
   132   // Set fixed predefined input arguments
   133   call->init_req( TypeFunc::Control, ctrl );
   134   call->init_req( TypeFunc::I_O    , oldcall->in( TypeFunc::I_O) );
   135   call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
   136   call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
   137   call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
   138 }
   140 //------------------------------make_slow_call---------------------------------
   141 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type, address slow_call, const char* leaf_name, Node* slow_path, Node* parm0, Node* parm1) {
   143   // Slow-path call
   144  CallNode *call = leaf_name
   145    ? (CallNode*)new (C) CallLeafNode      ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
   146    : (CallNode*)new (C) CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), oldcall->jvms()->bci(), TypeRawPtr::BOTTOM );
   148   // Slow path call has no side-effects, uses few values
   149   copy_predefined_input_for_runtime_call(slow_path, oldcall, call );
   150   if (parm0 != NULL)  call->init_req(TypeFunc::Parms+0, parm0);
   151   if (parm1 != NULL)  call->init_req(TypeFunc::Parms+1, parm1);
   152   copy_call_debug_info(oldcall, call);
   153   call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
   154   _igvn.replace_node(oldcall, call);
   155   transform_later(call);
   157   return call;
   158 }
   160 void PhaseMacroExpand::extract_call_projections(CallNode *call) {
   161   _fallthroughproj = NULL;
   162   _fallthroughcatchproj = NULL;
   163   _ioproj_fallthrough = NULL;
   164   _ioproj_catchall = NULL;
   165   _catchallcatchproj = NULL;
   166   _memproj_fallthrough = NULL;
   167   _memproj_catchall = NULL;
   168   _resproj = NULL;
   169   for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) {
   170     ProjNode *pn = call->fast_out(i)->as_Proj();
   171     switch (pn->_con) {
   172       case TypeFunc::Control:
   173       {
   174         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
   175         _fallthroughproj = pn;
   176         DUIterator_Fast jmax, j = pn->fast_outs(jmax);
   177         const Node *cn = pn->fast_out(j);
   178         if (cn->is_Catch()) {
   179           ProjNode *cpn = NULL;
   180           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
   181             cpn = cn->fast_out(k)->as_Proj();
   182             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
   183             if (cpn->_con == CatchProjNode::fall_through_index)
   184               _fallthroughcatchproj = cpn;
   185             else {
   186               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
   187               _catchallcatchproj = cpn;
   188             }
   189           }
   190         }
   191         break;
   192       }
   193       case TypeFunc::I_O:
   194         if (pn->_is_io_use)
   195           _ioproj_catchall = pn;
   196         else
   197           _ioproj_fallthrough = pn;
   198         break;
   199       case TypeFunc::Memory:
   200         if (pn->_is_io_use)
   201           _memproj_catchall = pn;
   202         else
   203           _memproj_fallthrough = pn;
   204         break;
   205       case TypeFunc::Parms:
   206         _resproj = pn;
   207         break;
   208       default:
   209         assert(false, "unexpected projection from allocation node.");
   210     }
   211   }
   213 }
   215 // Eliminate a card mark sequence.  p2x is a ConvP2XNode
   216 void PhaseMacroExpand::eliminate_card_mark(Node* p2x) {
   217   assert(p2x->Opcode() == Op_CastP2X, "ConvP2XNode required");
   218   if (!UseG1GC) {
   219     // vanilla/CMS post barrier
   220     Node *shift = p2x->unique_out();
   221     Node *addp = shift->unique_out();
   222     for (DUIterator_Last jmin, j = addp->last_outs(jmin); j >= jmin; --j) {
   223       Node *mem = addp->last_out(j);
   224       if (UseCondCardMark && mem->is_Load()) {
   225         assert(mem->Opcode() == Op_LoadB, "unexpected code shape");
   226         // The load is checking if the card has been written so
   227         // replace it with zero to fold the test.
   228         _igvn.replace_node(mem, intcon(0));
   229         continue;
   230       }
   231       assert(mem->is_Store(), "store required");
   232       _igvn.replace_node(mem, mem->in(MemNode::Memory));
   233     }
   234   } else {
   235     // G1 pre/post barriers
   236     assert(p2x->outcnt() <= 2, "expects 1 or 2 users: Xor and URShift nodes");
   237     // It could be only one user, URShift node, in Object.clone() instrinsic
   238     // but the new allocation is passed to arraycopy stub and it could not
   239     // be scalar replaced. So we don't check the case.
   241     // An other case of only one user (Xor) is when the value check for NULL
   242     // in G1 post barrier is folded after CCP so the code which used URShift
   243     // is removed.
   245     // Take Region node before eliminating post barrier since it also
   246     // eliminates CastP2X node when it has only one user.
   247     Node* this_region = p2x->in(0);
   248     assert(this_region != NULL, "");
   250     // Remove G1 post barrier.
   252     // Search for CastP2X->Xor->URShift->Cmp path which
   253     // checks if the store done to a different from the value's region.
   254     // And replace Cmp with #0 (false) to collapse G1 post barrier.
   255     Node* xorx = NULL;
   256     for (DUIterator_Fast imax, i = p2x->fast_outs(imax); i < imax; i++) {
   257       Node* u = p2x->fast_out(i);
   258       if (u->Opcode() == Op_XorX) {
   259         xorx = u;
   260         break;
   261       }
   262     }
   263     assert(xorx != NULL, "missing G1 post barrier");
   264     Node* shift = xorx->unique_out();
   265     Node* cmpx = shift->unique_out();
   266     assert(cmpx->is_Cmp() && cmpx->unique_out()->is_Bool() &&
   267     cmpx->unique_out()->as_Bool()->_test._test == BoolTest::ne,
   268     "missing region check in G1 post barrier");
   269     _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
   271     // Remove G1 pre barrier.
   273     // Search "if (marking != 0)" check and set it to "false".
   274     // There is no G1 pre barrier if previous stored value is NULL
   275     // (for example, after initialization).
   276     if (this_region->is_Region() && this_region->req() == 3) {
   277       int ind = 1;
   278       if (!this_region->in(ind)->is_IfFalse()) {
   279         ind = 2;
   280       }
   281       if (this_region->in(ind)->is_IfFalse()) {
   282         Node* bol = this_region->in(ind)->in(0)->in(1);
   283         assert(bol->is_Bool(), "");
   284         cmpx = bol->in(1);
   285         if (bol->as_Bool()->_test._test == BoolTest::ne &&
   286             cmpx->is_Cmp() && cmpx->in(2) == intcon(0) &&
   287             cmpx->in(1)->is_Load()) {
   288           Node* adr = cmpx->in(1)->as_Load()->in(MemNode::Address);
   289           const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +
   290                                               PtrQueue::byte_offset_of_active());
   291           if (adr->is_AddP() && adr->in(AddPNode::Base) == top() &&
   292               adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
   293               adr->in(AddPNode::Offset) == MakeConX(marking_offset)) {
   294             _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
   295           }
   296         }
   297       }
   298     }
   299     // Now CastP2X can be removed since it is used only on dead path
   300     // which currently still alive until igvn optimize it.
   301     assert(p2x->outcnt() == 0 || p2x->unique_out()->Opcode() == Op_URShiftX, "");
   302     _igvn.replace_node(p2x, top());
   303   }
   304 }
   306 // Search for a memory operation for the specified memory slice.
   307 static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) {
   308   Node *orig_mem = mem;
   309   Node *alloc_mem = alloc->in(TypeFunc::Memory);
   310   const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr();
   311   while (true) {
   312     if (mem == alloc_mem || mem == start_mem ) {
   313       return mem;  // hit one of our sentinels
   314     } else if (mem->is_MergeMem()) {
   315       mem = mem->as_MergeMem()->memory_at(alias_idx);
   316     } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) {
   317       Node *in = mem->in(0);
   318       // we can safely skip over safepoints, calls, locks and membars because we
   319       // already know that the object is safe to eliminate.
   320       if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) {
   321         return in;
   322       } else if (in->is_Call()) {
   323         CallNode *call = in->as_Call();
   324         if (!call->may_modify(tinst, phase)) {
   325           mem = call->in(TypeFunc::Memory);
   326         }
   327         mem = in->in(TypeFunc::Memory);
   328       } else if (in->is_MemBar()) {
   329         mem = in->in(TypeFunc::Memory);
   330       } else {
   331         assert(false, "unexpected projection");
   332       }
   333     } else if (mem->is_Store()) {
   334       const TypePtr* atype = mem->as_Store()->adr_type();
   335       int adr_idx = Compile::current()->get_alias_index(atype);
   336       if (adr_idx == alias_idx) {
   337         assert(atype->isa_oopptr(), "address type must be oopptr");
   338         int adr_offset = atype->offset();
   339         uint adr_iid = atype->is_oopptr()->instance_id();
   340         // Array elements references have the same alias_idx
   341         // but different offset and different instance_id.
   342         if (adr_offset == offset && adr_iid == alloc->_idx)
   343           return mem;
   344       } else {
   345         assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw");
   346       }
   347       mem = mem->in(MemNode::Memory);
   348     } else if (mem->is_ClearArray()) {
   349       if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) {
   350         // Can not bypass initialization of the instance
   351         // we are looking.
   352         debug_only(intptr_t offset;)
   353         assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity");
   354         InitializeNode* init = alloc->as_Allocate()->initialization();
   355         // We are looking for stored value, return Initialize node
   356         // or memory edge from Allocate node.
   357         if (init != NULL)
   358           return init;
   359         else
   360           return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers).
   361       }
   362       // Otherwise skip it (the call updated 'mem' value).
   363     } else if (mem->Opcode() == Op_SCMemProj) {
   364       mem = mem->in(0);
   365       Node* adr = NULL;
   366       if (mem->is_LoadStore()) {
   367         adr = mem->in(MemNode::Address);
   368       } else {
   369         assert(mem->Opcode() == Op_EncodeISOArray, "sanity");
   370         adr = mem->in(3); // Destination array
   371       }
   372       const TypePtr* atype = adr->bottom_type()->is_ptr();
   373       int adr_idx = Compile::current()->get_alias_index(atype);
   374       if (adr_idx == alias_idx) {
   375         assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
   376         return NULL;
   377       }
   378       mem = mem->in(MemNode::Memory);
   379     } else {
   380       return mem;
   381     }
   382     assert(mem != orig_mem, "dead memory loop");
   383   }
   384 }
   386 //
   387 // Given a Memory Phi, compute a value Phi containing the values from stores
   388 // on the input paths.
   389 // Note: this function is recursive, its depth is limied by the "level" argument
   390 // Returns the computed Phi, or NULL if it cannot compute it.
   391 Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, Node *alloc, Node_Stack *value_phis, int level) {
   392   assert(mem->is_Phi(), "sanity");
   393   int alias_idx = C->get_alias_index(adr_t);
   394   int offset = adr_t->offset();
   395   int instance_id = adr_t->instance_id();
   397   // Check if an appropriate value phi already exists.
   398   Node* region = mem->in(0);
   399   for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
   400     Node* phi = region->fast_out(k);
   401     if (phi->is_Phi() && phi != mem &&
   402         phi->as_Phi()->is_same_inst_field(phi_type, instance_id, alias_idx, offset)) {
   403       return phi;
   404     }
   405   }
   406   // Check if an appropriate new value phi already exists.
   407   Node* new_phi = value_phis->find(mem->_idx);
   408   if (new_phi != NULL)
   409     return new_phi;
   411   if (level <= 0) {
   412     return NULL; // Give up: phi tree too deep
   413   }
   414   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
   415   Node *alloc_mem = alloc->in(TypeFunc::Memory);
   417   uint length = mem->req();
   418   GrowableArray <Node *> values(length, length, NULL, false);
   420   // create a new Phi for the value
   421   PhiNode *phi = new (C) PhiNode(mem->in(0), phi_type, NULL, instance_id, alias_idx, offset);
   422   transform_later(phi);
   423   value_phis->push(phi, mem->_idx);
   425   for (uint j = 1; j < length; j++) {
   426     Node *in = mem->in(j);
   427     if (in == NULL || in->is_top()) {
   428       values.at_put(j, in);
   429     } else  {
   430       Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn);
   431       if (val == start_mem || val == alloc_mem) {
   432         // hit a sentinel, return appropriate 0 value
   433         values.at_put(j, _igvn.zerocon(ft));
   434         continue;
   435       }
   436       if (val->is_Initialize()) {
   437         val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
   438       }
   439       if (val == NULL) {
   440         return NULL;  // can't find a value on this path
   441       }
   442       if (val == mem) {
   443         values.at_put(j, mem);
   444       } else if (val->is_Store()) {
   445         values.at_put(j, val->in(MemNode::ValueIn));
   446       } else if(val->is_Proj() && val->in(0) == alloc) {
   447         values.at_put(j, _igvn.zerocon(ft));
   448       } else if (val->is_Phi()) {
   449         val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1);
   450         if (val == NULL) {
   451           return NULL;
   452         }
   453         values.at_put(j, val);
   454       } else if (val->Opcode() == Op_SCMemProj) {
   455         assert(val->in(0)->is_LoadStore() || val->in(0)->Opcode() == Op_EncodeISOArray, "sanity");
   456         assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
   457         return NULL;
   458       } else {
   459 #ifdef ASSERT
   460         val->dump();
   461         assert(false, "unknown node on this path");
   462 #endif
   463         return NULL;  // unknown node on this path
   464       }
   465     }
   466   }
   467   // Set Phi's inputs
   468   for (uint j = 1; j < length; j++) {
   469     if (values.at(j) == mem) {
   470       phi->init_req(j, phi);
   471     } else {
   472       phi->init_req(j, values.at(j));
   473     }
   474   }
   475   return phi;
   476 }
   478 // Search the last value stored into the object's field.
   479 Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, Node *alloc) {
   480   assert(adr_t->is_known_instance_field(), "instance required");
   481   int instance_id = adr_t->instance_id();
   482   assert((uint)instance_id == alloc->_idx, "wrong allocation");
   484   int alias_idx = C->get_alias_index(adr_t);
   485   int offset = adr_t->offset();
   486   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
   487   Node *alloc_ctrl = alloc->in(TypeFunc::Control);
   488   Node *alloc_mem = alloc->in(TypeFunc::Memory);
   489   Arena *a = Thread::current()->resource_area();
   490   VectorSet visited(a);
   493   bool done = sfpt_mem == alloc_mem;
   494   Node *mem = sfpt_mem;
   495   while (!done) {
   496     if (visited.test_set(mem->_idx)) {
   497       return NULL;  // found a loop, give up
   498     }
   499     mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn);
   500     if (mem == start_mem || mem == alloc_mem) {
   501       done = true;  // hit a sentinel, return appropriate 0 value
   502     } else if (mem->is_Initialize()) {
   503       mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
   504       if (mem == NULL) {
   505         done = true; // Something go wrong.
   506       } else if (mem->is_Store()) {
   507         const TypePtr* atype = mem->as_Store()->adr_type();
   508         assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice");
   509         done = true;
   510       }
   511     } else if (mem->is_Store()) {
   512       const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr();
   513       assert(atype != NULL, "address type must be oopptr");
   514       assert(C->get_alias_index(atype) == alias_idx &&
   515              atype->is_known_instance_field() && atype->offset() == offset &&
   516              atype->instance_id() == instance_id, "store is correct memory slice");
   517       done = true;
   518     } else if (mem->is_Phi()) {
   519       // try to find a phi's unique input
   520       Node *unique_input = NULL;
   521       Node *top = C->top();
   522       for (uint i = 1; i < mem->req(); i++) {
   523         Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn);
   524         if (n == NULL || n == top || n == mem) {
   525           continue;
   526         } else if (unique_input == NULL) {
   527           unique_input = n;
   528         } else if (unique_input != n) {
   529           unique_input = top;
   530           break;
   531         }
   532       }
   533       if (unique_input != NULL && unique_input != top) {
   534         mem = unique_input;
   535       } else {
   536         done = true;
   537       }
   538     } else {
   539       assert(false, "unexpected node");
   540     }
   541   }
   542   if (mem != NULL) {
   543     if (mem == start_mem || mem == alloc_mem) {
   544       // hit a sentinel, return appropriate 0 value
   545       return _igvn.zerocon(ft);
   546     } else if (mem->is_Store()) {
   547       return mem->in(MemNode::ValueIn);
   548     } else if (mem->is_Phi()) {
   549       // attempt to produce a Phi reflecting the values on the input paths of the Phi
   550       Node_Stack value_phis(a, 8);
   551       Node * phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit);
   552       if (phi != NULL) {
   553         return phi;
   554       } else {
   555         // Kill all new Phis
   556         while(value_phis.is_nonempty()) {
   557           Node* n = value_phis.node();
   558           _igvn.replace_node(n, C->top());
   559           value_phis.pop();
   560         }
   561       }
   562     }
   563   }
   564   // Something go wrong.
   565   return NULL;
   566 }
   568 // Check the possibility of scalar replacement.
   569 bool PhaseMacroExpand::can_eliminate_allocation(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
   570   //  Scan the uses of the allocation to check for anything that would
   571   //  prevent us from eliminating it.
   572   NOT_PRODUCT( const char* fail_eliminate = NULL; )
   573   DEBUG_ONLY( Node* disq_node = NULL; )
   574   bool  can_eliminate = true;
   576   Node* res = alloc->result_cast();
   577   const TypeOopPtr* res_type = NULL;
   578   if (res == NULL) {
   579     // All users were eliminated.
   580   } else if (!res->is_CheckCastPP()) {
   581     NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";)
   582     can_eliminate = false;
   583   } else {
   584     res_type = _igvn.type(res)->isa_oopptr();
   585     if (res_type == NULL) {
   586       NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";)
   587       can_eliminate = false;
   588     } else if (res_type->isa_aryptr()) {
   589       int length = alloc->in(AllocateNode::ALength)->find_int_con(-1);
   590       if (length < 0) {
   591         NOT_PRODUCT(fail_eliminate = "Array's size is not constant";)
   592         can_eliminate = false;
   593       }
   594     }
   595   }
   597   if (can_eliminate && res != NULL) {
   598     for (DUIterator_Fast jmax, j = res->fast_outs(jmax);
   599                                j < jmax && can_eliminate; j++) {
   600       Node* use = res->fast_out(j);
   602       if (use->is_AddP()) {
   603         const TypePtr* addp_type = _igvn.type(use)->is_ptr();
   604         int offset = addp_type->offset();
   606         if (offset == Type::OffsetTop || offset == Type::OffsetBot) {
   607           NOT_PRODUCT(fail_eliminate = "Undefined field referrence";)
   608           can_eliminate = false;
   609           break;
   610         }
   611         for (DUIterator_Fast kmax, k = use->fast_outs(kmax);
   612                                    k < kmax && can_eliminate; k++) {
   613           Node* n = use->fast_out(k);
   614           if (!n->is_Store() && n->Opcode() != Op_CastP2X) {
   615             DEBUG_ONLY(disq_node = n;)
   616             if (n->is_Load() || n->is_LoadStore()) {
   617               NOT_PRODUCT(fail_eliminate = "Field load";)
   618             } else {
   619               NOT_PRODUCT(fail_eliminate = "Not store field referrence";)
   620             }
   621             can_eliminate = false;
   622           }
   623         }
   624       } else if (use->is_SafePoint()) {
   625         SafePointNode* sfpt = use->as_SafePoint();
   626         if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) {
   627           // Object is passed as argument.
   628           DEBUG_ONLY(disq_node = use;)
   629           NOT_PRODUCT(fail_eliminate = "Object is passed as argument";)
   630           can_eliminate = false;
   631         }
   632         Node* sfptMem = sfpt->memory();
   633         if (sfptMem == NULL || sfptMem->is_top()) {
   634           DEBUG_ONLY(disq_node = use;)
   635           NOT_PRODUCT(fail_eliminate = "NULL or TOP memory";)
   636           can_eliminate = false;
   637         } else {
   638           safepoints.append_if_missing(sfpt);
   639         }
   640       } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark
   641         if (use->is_Phi()) {
   642           if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) {
   643             NOT_PRODUCT(fail_eliminate = "Object is return value";)
   644           } else {
   645             NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";)
   646           }
   647           DEBUG_ONLY(disq_node = use;)
   648         } else {
   649           if (use->Opcode() == Op_Return) {
   650             NOT_PRODUCT(fail_eliminate = "Object is return value";)
   651           }else {
   652             NOT_PRODUCT(fail_eliminate = "Object is referenced by node";)
   653           }
   654           DEBUG_ONLY(disq_node = use;)
   655         }
   656         can_eliminate = false;
   657       }
   658     }
   659   }
   661 #ifndef PRODUCT
   662   if (PrintEliminateAllocations) {
   663     if (can_eliminate) {
   664       tty->print("Scalar ");
   665       if (res == NULL)
   666         alloc->dump();
   667       else
   668         res->dump();
   669     } else if (alloc->_is_scalar_replaceable) {
   670       tty->print("NotScalar (%s)", fail_eliminate);
   671       if (res == NULL)
   672         alloc->dump();
   673       else
   674         res->dump();
   675 #ifdef ASSERT
   676       if (disq_node != NULL) {
   677           tty->print("  >>>> ");
   678           disq_node->dump();
   679       }
   680 #endif /*ASSERT*/
   681     }
   682   }
   683 #endif
   684   return can_eliminate;
   685 }
   687 // Do scalar replacement.
   688 bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
   689   GrowableArray <SafePointNode *> safepoints_done;
   691   ciKlass* klass = NULL;
   692   ciInstanceKlass* iklass = NULL;
   693   int nfields = 0;
   694   int array_base;
   695   int element_size;
   696   BasicType basic_elem_type;
   697   ciType* elem_type;
   699   Node* res = alloc->result_cast();
   700   const TypeOopPtr* res_type = NULL;
   701   if (res != NULL) { // Could be NULL when there are no users
   702     res_type = _igvn.type(res)->isa_oopptr();
   703   }
   705   if (res != NULL) {
   706     klass = res_type->klass();
   707     if (res_type->isa_instptr()) {
   708       // find the fields of the class which will be needed for safepoint debug information
   709       assert(klass->is_instance_klass(), "must be an instance klass.");
   710       iklass = klass->as_instance_klass();
   711       nfields = iklass->nof_nonstatic_fields();
   712     } else {
   713       // find the array's elements which will be needed for safepoint debug information
   714       nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
   715       assert(klass->is_array_klass() && nfields >= 0, "must be an array klass.");
   716       elem_type = klass->as_array_klass()->element_type();
   717       basic_elem_type = elem_type->basic_type();
   718       array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
   719       element_size = type2aelembytes(basic_elem_type);
   720     }
   721   }
   722   //
   723   // Process the safepoint uses
   724   //
   725   while (safepoints.length() > 0) {
   726     SafePointNode* sfpt = safepoints.pop();
   727     Node* mem = sfpt->memory();
   728     uint first_ind = sfpt->req();
   729     SafePointScalarObjectNode* sobj = new (C) SafePointScalarObjectNode(res_type,
   730 #ifdef ASSERT
   731                                                  alloc,
   732 #endif
   733                                                  first_ind, nfields);
   734     sobj->init_req(0, C->root());
   735     transform_later(sobj);
   737     // Scan object's fields adding an input to the safepoint for each field.
   738     for (int j = 0; j < nfields; j++) {
   739       intptr_t offset;
   740       ciField* field = NULL;
   741       if (iklass != NULL) {
   742         field = iklass->nonstatic_field_at(j);
   743         offset = field->offset();
   744         elem_type = field->type();
   745         basic_elem_type = field->layout_type();
   746       } else {
   747         offset = array_base + j * (intptr_t)element_size;
   748       }
   750       const Type *field_type;
   751       // The next code is taken from Parse::do_get_xxx().
   752       if (basic_elem_type == T_OBJECT || basic_elem_type == T_ARRAY) {
   753         if (!elem_type->is_loaded()) {
   754           field_type = TypeInstPtr::BOTTOM;
   755         } else if (field != NULL && field->is_constant() && field->is_static()) {
   756           // This can happen if the constant oop is non-perm.
   757           ciObject* con = field->constant_value().as_object();
   758           // Do not "join" in the previous type; it doesn't add value,
   759           // and may yield a vacuous result if the field is of interface type.
   760           field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
   761           assert(field_type != NULL, "field singleton type must be consistent");
   762         } else {
   763           field_type = TypeOopPtr::make_from_klass(elem_type->as_klass());
   764         }
   765         if (UseCompressedOops) {
   766           field_type = field_type->make_narrowoop();
   767           basic_elem_type = T_NARROWOOP;
   768         }
   769       } else {
   770         field_type = Type::get_const_basic_type(basic_elem_type);
   771       }
   773       const TypeOopPtr *field_addr_type = res_type->add_offset(offset)->isa_oopptr();
   775       Node *field_val = value_from_mem(mem, basic_elem_type, field_type, field_addr_type, alloc);
   776       if (field_val == NULL) {
   777         // We weren't able to find a value for this field,
   778         // give up on eliminating this allocation.
   780         // Remove any extra entries we added to the safepoint.
   781         uint last = sfpt->req() - 1;
   782         for (int k = 0;  k < j; k++) {
   783           sfpt->del_req(last--);
   784         }
   785         // rollback processed safepoints
   786         while (safepoints_done.length() > 0) {
   787           SafePointNode* sfpt_done = safepoints_done.pop();
   788           // remove any extra entries we added to the safepoint
   789           last = sfpt_done->req() - 1;
   790           for (int k = 0;  k < nfields; k++) {
   791             sfpt_done->del_req(last--);
   792           }
   793           JVMState *jvms = sfpt_done->jvms();
   794           jvms->set_endoff(sfpt_done->req());
   795           // Now make a pass over the debug information replacing any references
   796           // to SafePointScalarObjectNode with the allocated object.
   797           int start = jvms->debug_start();
   798           int end   = jvms->debug_end();
   799           for (int i = start; i < end; i++) {
   800             if (sfpt_done->in(i)->is_SafePointScalarObject()) {
   801               SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject();
   802               if (scobj->first_index() == sfpt_done->req() &&
   803                   scobj->n_fields() == (uint)nfields) {
   804                 assert(scobj->alloc() == alloc, "sanity");
   805                 sfpt_done->set_req(i, res);
   806               }
   807             }
   808           }
   809         }
   810 #ifndef PRODUCT
   811         if (PrintEliminateAllocations) {
   812           if (field != NULL) {
   813             tty->print("=== At SafePoint node %d can't find value of Field: ",
   814                        sfpt->_idx);
   815             field->print();
   816             int field_idx = C->get_alias_index(field_addr_type);
   817             tty->print(" (alias_idx=%d)", field_idx);
   818           } else { // Array's element
   819             tty->print("=== At SafePoint node %d can't find value of array element [%d]",
   820                        sfpt->_idx, j);
   821           }
   822           tty->print(", which prevents elimination of: ");
   823           if (res == NULL)
   824             alloc->dump();
   825           else
   826             res->dump();
   827         }
   828 #endif
   829         return false;
   830       }
   831       if (UseCompressedOops && field_type->isa_narrowoop()) {
   832         // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation
   833         // to be able scalar replace the allocation.
   834         if (field_val->is_EncodeP()) {
   835           field_val = field_val->in(1);
   836         } else {
   837           field_val = transform_later(new (C) DecodeNNode(field_val, field_val->get_ptr_type()));
   838         }
   839       }
   840       sfpt->add_req(field_val);
   841     }
   842     JVMState *jvms = sfpt->jvms();
   843     jvms->set_endoff(sfpt->req());
   844     // Now make a pass over the debug information replacing any references
   845     // to the allocated object with "sobj"
   846     int start = jvms->debug_start();
   847     int end   = jvms->debug_end();
   848     sfpt->replace_edges_in_range(res, sobj, start, end);
   849     safepoints_done.append_if_missing(sfpt); // keep it for rollback
   850   }
   851   return true;
   852 }
   854 // Process users of eliminated allocation.
   855 void PhaseMacroExpand::process_users_of_allocation(CallNode *alloc) {
   856   Node* res = alloc->result_cast();
   857   if (res != NULL) {
   858     for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) {
   859       Node *use = res->last_out(j);
   860       uint oc1 = res->outcnt();
   862       if (use->is_AddP()) {
   863         for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) {
   864           Node *n = use->last_out(k);
   865           uint oc2 = use->outcnt();
   866           if (n->is_Store()) {
   867 #ifdef ASSERT
   868             // Verify that there is no dependent MemBarVolatile nodes,
   869             // they should be removed during IGVN, see MemBarNode::Ideal().
   870             for (DUIterator_Fast pmax, p = n->fast_outs(pmax);
   871                                        p < pmax; p++) {
   872               Node* mb = n->fast_out(p);
   873               assert(mb->is_Initialize() || !mb->is_MemBar() ||
   874                      mb->req() <= MemBarNode::Precedent ||
   875                      mb->in(MemBarNode::Precedent) != n,
   876                      "MemBarVolatile should be eliminated for non-escaping object");
   877             }
   878 #endif
   879             _igvn.replace_node(n, n->in(MemNode::Memory));
   880           } else {
   881             eliminate_card_mark(n);
   882           }
   883           k -= (oc2 - use->outcnt());
   884         }
   885       } else {
   886         eliminate_card_mark(use);
   887       }
   888       j -= (oc1 - res->outcnt());
   889     }
   890     assert(res->outcnt() == 0, "all uses of allocated objects must be deleted");
   891     _igvn.remove_dead_node(res);
   892   }
   894   //
   895   // Process other users of allocation's projections
   896   //
   897   if (_resproj != NULL && _resproj->outcnt() != 0) {
   898     // First disconnect stores captured by Initialize node.
   899     // If Initialize node is eliminated first in the following code,
   900     // it will kill such stores and DUIterator_Last will assert.
   901     for (DUIterator_Fast jmax, j = _resproj->fast_outs(jmax);  j < jmax; j++) {
   902       Node *use = _resproj->fast_out(j);
   903       if (use->is_AddP()) {
   904         // raw memory addresses used only by the initialization
   905         _igvn.replace_node(use, C->top());
   906         --j; --jmax;
   907       }
   908     }
   909     for (DUIterator_Last jmin, j = _resproj->last_outs(jmin); j >= jmin; ) {
   910       Node *use = _resproj->last_out(j);
   911       uint oc1 = _resproj->outcnt();
   912       if (use->is_Initialize()) {
   913         // Eliminate Initialize node.
   914         InitializeNode *init = use->as_Initialize();
   915         assert(init->outcnt() <= 2, "only a control and memory projection expected");
   916         Node *ctrl_proj = init->proj_out(TypeFunc::Control);
   917         if (ctrl_proj != NULL) {
   918            assert(init->in(TypeFunc::Control) == _fallthroughcatchproj, "allocation control projection");
   919           _igvn.replace_node(ctrl_proj, _fallthroughcatchproj);
   920         }
   921         Node *mem_proj = init->proj_out(TypeFunc::Memory);
   922         if (mem_proj != NULL) {
   923           Node *mem = init->in(TypeFunc::Memory);
   924 #ifdef ASSERT
   925           if (mem->is_MergeMem()) {
   926             assert(mem->in(TypeFunc::Memory) == _memproj_fallthrough, "allocation memory projection");
   927           } else {
   928             assert(mem == _memproj_fallthrough, "allocation memory projection");
   929           }
   930 #endif
   931           _igvn.replace_node(mem_proj, mem);
   932         }
   933       } else  {
   934         assert(false, "only Initialize or AddP expected");
   935       }
   936       j -= (oc1 - _resproj->outcnt());
   937     }
   938   }
   939   if (_fallthroughcatchproj != NULL) {
   940     _igvn.replace_node(_fallthroughcatchproj, alloc->in(TypeFunc::Control));
   941   }
   942   if (_memproj_fallthrough != NULL) {
   943     _igvn.replace_node(_memproj_fallthrough, alloc->in(TypeFunc::Memory));
   944   }
   945   if (_memproj_catchall != NULL) {
   946     _igvn.replace_node(_memproj_catchall, C->top());
   947   }
   948   if (_ioproj_fallthrough != NULL) {
   949     _igvn.replace_node(_ioproj_fallthrough, alloc->in(TypeFunc::I_O));
   950   }
   951   if (_ioproj_catchall != NULL) {
   952     _igvn.replace_node(_ioproj_catchall, C->top());
   953   }
   954   if (_catchallcatchproj != NULL) {
   955     _igvn.replace_node(_catchallcatchproj, C->top());
   956   }
   957 }
   959 bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
   960   if (!EliminateAllocations || !alloc->_is_non_escaping) {
   961     return false;
   962   }
   963   Node* klass = alloc->in(AllocateNode::KlassNode);
   964   const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr();
   965   Node* res = alloc->result_cast();
   966   // Eliminate boxing allocations which are not used
   967   // regardless scalar replacable status.
   968   bool boxing_alloc = C->eliminate_boxing() &&
   969                       tklass->klass()->is_instance_klass()  &&
   970                       tklass->klass()->as_instance_klass()->is_box_klass();
   971   if (!alloc->_is_scalar_replaceable && (!boxing_alloc || (res != NULL))) {
   972     return false;
   973   }
   975   extract_call_projections(alloc);
   977   GrowableArray <SafePointNode *> safepoints;
   978   if (!can_eliminate_allocation(alloc, safepoints)) {
   979     return false;
   980   }
   982   if (!alloc->_is_scalar_replaceable) {
   983     assert(res == NULL, "sanity");
   984     // We can only eliminate allocation if all debug info references
   985     // are already replaced with SafePointScalarObject because
   986     // we can't search for a fields value without instance_id.
   987     if (safepoints.length() > 0) {
   988       return false;
   989     }
   990   }
   992   if (!scalar_replacement(alloc, safepoints)) {
   993     return false;
   994   }
   996   CompileLog* log = C->log();
   997   if (log != NULL) {
   998     log->head("eliminate_allocation type='%d'",
   999               log->identify(tklass->klass()));
  1000     JVMState* p = alloc->jvms();
  1001     while (p != NULL) {
  1002       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
  1003       p = p->caller();
  1005     log->tail("eliminate_allocation");
  1008   process_users_of_allocation(alloc);
  1010 #ifndef PRODUCT
  1011   if (PrintEliminateAllocations) {
  1012     if (alloc->is_AllocateArray())
  1013       tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
  1014     else
  1015       tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
  1017 #endif
  1019   return true;
  1022 bool PhaseMacroExpand::eliminate_boxing_node(CallStaticJavaNode *boxing) {
  1023   // EA should remove all uses of non-escaping boxing node.
  1024   if (!C->eliminate_boxing() || boxing->proj_out(TypeFunc::Parms) != NULL) {
  1025     return false;
  1028   extract_call_projections(boxing);
  1030   const TypeTuple* r = boxing->tf()->range();
  1031   assert(r->cnt() > TypeFunc::Parms, "sanity");
  1032   const TypeInstPtr* t = r->field_at(TypeFunc::Parms)->isa_instptr();
  1033   assert(t != NULL, "sanity");
  1035   CompileLog* log = C->log();
  1036   if (log != NULL) {
  1037     log->head("eliminate_boxing type='%d'",
  1038               log->identify(t->klass()));
  1039     JVMState* p = boxing->jvms();
  1040     while (p != NULL) {
  1041       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
  1042       p = p->caller();
  1044     log->tail("eliminate_boxing");
  1047   process_users_of_allocation(boxing);
  1049 #ifndef PRODUCT
  1050   if (PrintEliminateAllocations) {
  1051     tty->print("++++ Eliminated: %d ", boxing->_idx);
  1052     boxing->method()->print_short_name(tty);
  1053     tty->cr();
  1055 #endif
  1057   return true;
  1060 //---------------------------set_eden_pointers-------------------------
  1061 void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) {
  1062   if (UseTLAB) {                // Private allocation: load from TLS
  1063     Node* thread = transform_later(new (C) ThreadLocalNode());
  1064     int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset());
  1065     int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset());
  1066     eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset);
  1067     eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset);
  1068   } else {                      // Shared allocation: load from globals
  1069     CollectedHeap* ch = Universe::heap();
  1070     address top_adr = (address)ch->top_addr();
  1071     address end_adr = (address)ch->end_addr();
  1072     eden_top_adr = makecon(TypeRawPtr::make(top_adr));
  1073     eden_end_adr = basic_plus_adr(eden_top_adr, end_adr - top_adr);
  1078 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
  1079   Node* adr = basic_plus_adr(base, offset);
  1080   const TypePtr* adr_type = adr->bottom_type()->is_ptr();
  1081   Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt);
  1082   transform_later(value);
  1083   return value;
  1087 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
  1088   Node* adr = basic_plus_adr(base, offset);
  1089   mem = StoreNode::make(_igvn, ctl, mem, adr, NULL, value, bt);
  1090   transform_later(mem);
  1091   return mem;
  1094 //=============================================================================
  1095 //
  1096 //                              A L L O C A T I O N
  1097 //
  1098 // Allocation attempts to be fast in the case of frequent small objects.
  1099 // It breaks down like this:
  1100 //
  1101 // 1) Size in doublewords is computed.  This is a constant for objects and
  1102 // variable for most arrays.  Doubleword units are used to avoid size
  1103 // overflow of huge doubleword arrays.  We need doublewords in the end for
  1104 // rounding.
  1105 //
  1106 // 2) Size is checked for being 'too large'.  Too-large allocations will go
  1107 // the slow path into the VM.  The slow path can throw any required
  1108 // exceptions, and does all the special checks for very large arrays.  The
  1109 // size test can constant-fold away for objects.  For objects with
  1110 // finalizers it constant-folds the otherway: you always go slow with
  1111 // finalizers.
  1112 //
  1113 // 3) If NOT using TLABs, this is the contended loop-back point.
  1114 // Load-Locked the heap top.  If using TLABs normal-load the heap top.
  1115 //
  1116 // 4) Check that heap top + size*8 < max.  If we fail go the slow ` route.
  1117 // NOTE: "top+size*8" cannot wrap the 4Gig line!  Here's why: for largish
  1118 // "size*8" we always enter the VM, where "largish" is a constant picked small
  1119 // enough that there's always space between the eden max and 4Gig (old space is
  1120 // there so it's quite large) and large enough that the cost of entering the VM
  1121 // is dwarfed by the cost to initialize the space.
  1122 //
  1123 // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back
  1124 // down.  If contended, repeat at step 3.  If using TLABs normal-store
  1125 // adjusted heap top back down; there is no contention.
  1126 //
  1127 // 6) If !ZeroTLAB then Bulk-clear the object/array.  Fill in klass & mark
  1128 // fields.
  1129 //
  1130 // 7) Merge with the slow-path; cast the raw memory pointer to the correct
  1131 // oop flavor.
  1132 //
  1133 //=============================================================================
  1134 // FastAllocateSizeLimit value is in DOUBLEWORDS.
  1135 // Allocations bigger than this always go the slow route.
  1136 // This value must be small enough that allocation attempts that need to
  1137 // trigger exceptions go the slow route.  Also, it must be small enough so
  1138 // that heap_top + size_in_bytes does not wrap around the 4Gig limit.
  1139 //=============================================================================j//
  1140 // %%% Here is an old comment from parseHelper.cpp; is it outdated?
  1141 // The allocator will coalesce int->oop copies away.  See comment in
  1142 // coalesce.cpp about how this works.  It depends critically on the exact
  1143 // code shape produced here, so if you are changing this code shape
  1144 // make sure the GC info for the heap-top is correct in and around the
  1145 // slow-path call.
  1146 //
  1148 void PhaseMacroExpand::expand_allocate_common(
  1149             AllocateNode* alloc, // allocation node to be expanded
  1150             Node* length,  // array length for an array allocation
  1151             const TypeFunc* slow_call_type, // Type of slow call
  1152             address slow_call_address  // Address of slow call
  1156   Node* ctrl = alloc->in(TypeFunc::Control);
  1157   Node* mem  = alloc->in(TypeFunc::Memory);
  1158   Node* i_o  = alloc->in(TypeFunc::I_O);
  1159   Node* size_in_bytes     = alloc->in(AllocateNode::AllocSize);
  1160   Node* klass_node        = alloc->in(AllocateNode::KlassNode);
  1161   Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
  1163   assert(ctrl != NULL, "must have control");
  1164   // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
  1165   // they will not be used if "always_slow" is set
  1166   enum { slow_result_path = 1, fast_result_path = 2 };
  1167   Node *result_region;
  1168   Node *result_phi_rawmem;
  1169   Node *result_phi_rawoop;
  1170   Node *result_phi_i_o;
  1172   // The initial slow comparison is a size check, the comparison
  1173   // we want to do is a BoolTest::gt
  1174   bool always_slow = false;
  1175   int tv = _igvn.find_int_con(initial_slow_test, -1);
  1176   if (tv >= 0) {
  1177     always_slow = (tv == 1);
  1178     initial_slow_test = NULL;
  1179   } else {
  1180     initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
  1183   if (C->env()->dtrace_alloc_probes() ||
  1184       !UseTLAB && (!Universe::heap()->supports_inline_contig_alloc() ||
  1185                    (UseConcMarkSweepGC && CMSIncrementalMode))) {
  1186     // Force slow-path allocation
  1187     always_slow = true;
  1188     initial_slow_test = NULL;
  1192   enum { too_big_or_final_path = 1, need_gc_path = 2 };
  1193   Node *slow_region = NULL;
  1194   Node *toobig_false = ctrl;
  1196   assert (initial_slow_test == NULL || !always_slow, "arguments must be consistent");
  1197   // generate the initial test if necessary
  1198   if (initial_slow_test != NULL ) {
  1199     slow_region = new (C) RegionNode(3);
  1201     // Now make the initial failure test.  Usually a too-big test but
  1202     // might be a TRUE for finalizers or a fancy class check for
  1203     // newInstance0.
  1204     IfNode *toobig_iff = new (C) IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
  1205     transform_later(toobig_iff);
  1206     // Plug the failing-too-big test into the slow-path region
  1207     Node *toobig_true = new (C) IfTrueNode( toobig_iff );
  1208     transform_later(toobig_true);
  1209     slow_region    ->init_req( too_big_or_final_path, toobig_true );
  1210     toobig_false = new (C) IfFalseNode( toobig_iff );
  1211     transform_later(toobig_false);
  1212   } else {         // No initial test, just fall into next case
  1213     toobig_false = ctrl;
  1214     debug_only(slow_region = NodeSentinel);
  1217   Node *slow_mem = mem;  // save the current memory state for slow path
  1218   // generate the fast allocation code unless we know that the initial test will always go slow
  1219   if (!always_slow) {
  1220     // Fast path modifies only raw memory.
  1221     if (mem->is_MergeMem()) {
  1222       mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
  1225     Node* eden_top_adr;
  1226     Node* eden_end_adr;
  1228     set_eden_pointers(eden_top_adr, eden_end_adr);
  1230     // Load Eden::end.  Loop invariant and hoisted.
  1231     //
  1232     // Note: We set the control input on "eden_end" and "old_eden_top" when using
  1233     //       a TLAB to work around a bug where these values were being moved across
  1234     //       a safepoint.  These are not oops, so they cannot be include in the oop
  1235     //       map, but they can be changed by a GC.   The proper way to fix this would
  1236     //       be to set the raw memory state when generating a  SafepointNode.  However
  1237     //       this will require extensive changes to the loop optimization in order to
  1238     //       prevent a degradation of the optimization.
  1239     //       See comment in memnode.hpp, around line 227 in class LoadPNode.
  1240     Node *eden_end = make_load(ctrl, mem, eden_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS);
  1242     // allocate the Region and Phi nodes for the result
  1243     result_region = new (C) RegionNode(3);
  1244     result_phi_rawmem = new (C) PhiNode(result_region, Type::MEMORY, TypeRawPtr::BOTTOM);
  1245     result_phi_rawoop = new (C) PhiNode(result_region, TypeRawPtr::BOTTOM);
  1246     result_phi_i_o    = new (C) PhiNode(result_region, Type::ABIO); // I/O is used for Prefetch
  1248     // We need a Region for the loop-back contended case.
  1249     enum { fall_in_path = 1, contended_loopback_path = 2 };
  1250     Node *contended_region;
  1251     Node *contended_phi_rawmem;
  1252     if (UseTLAB) {
  1253       contended_region = toobig_false;
  1254       contended_phi_rawmem = mem;
  1255     } else {
  1256       contended_region = new (C) RegionNode(3);
  1257       contended_phi_rawmem = new (C) PhiNode(contended_region, Type::MEMORY, TypeRawPtr::BOTTOM);
  1258       // Now handle the passing-too-big test.  We fall into the contended
  1259       // loop-back merge point.
  1260       contended_region    ->init_req(fall_in_path, toobig_false);
  1261       contended_phi_rawmem->init_req(fall_in_path, mem);
  1262       transform_later(contended_region);
  1263       transform_later(contended_phi_rawmem);
  1266     // Load(-locked) the heap top.
  1267     // See note above concerning the control input when using a TLAB
  1268     Node *old_eden_top = UseTLAB
  1269       ? new (C) LoadPNode      (ctrl, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM)
  1270       : new (C) LoadPLockedNode(contended_region, contended_phi_rawmem, eden_top_adr);
  1272     transform_later(old_eden_top);
  1273     // Add to heap top to get a new heap top
  1274     Node *new_eden_top = new (C) AddPNode(top(), old_eden_top, size_in_bytes);
  1275     transform_later(new_eden_top);
  1276     // Check for needing a GC; compare against heap end
  1277     Node *needgc_cmp = new (C) CmpPNode(new_eden_top, eden_end);
  1278     transform_later(needgc_cmp);
  1279     Node *needgc_bol = new (C) BoolNode(needgc_cmp, BoolTest::ge);
  1280     transform_later(needgc_bol);
  1281     IfNode *needgc_iff = new (C) IfNode(contended_region, needgc_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN);
  1282     transform_later(needgc_iff);
  1284     // Plug the failing-heap-space-need-gc test into the slow-path region
  1285     Node *needgc_true = new (C) IfTrueNode(needgc_iff);
  1286     transform_later(needgc_true);
  1287     if (initial_slow_test) {
  1288       slow_region->init_req(need_gc_path, needgc_true);
  1289       // This completes all paths into the slow merge point
  1290       transform_later(slow_region);
  1291     } else {                      // No initial slow path needed!
  1292       // Just fall from the need-GC path straight into the VM call.
  1293       slow_region = needgc_true;
  1295     // No need for a GC.  Setup for the Store-Conditional
  1296     Node *needgc_false = new (C) IfFalseNode(needgc_iff);
  1297     transform_later(needgc_false);
  1299     // Grab regular I/O before optional prefetch may change it.
  1300     // Slow-path does no I/O so just set it to the original I/O.
  1301     result_phi_i_o->init_req(slow_result_path, i_o);
  1303     i_o = prefetch_allocation(i_o, needgc_false, contended_phi_rawmem,
  1304                               old_eden_top, new_eden_top, length);
  1306     // Name successful fast-path variables
  1307     Node* fast_oop = old_eden_top;
  1308     Node* fast_oop_ctrl;
  1309     Node* fast_oop_rawmem;
  1311     // Store (-conditional) the modified eden top back down.
  1312     // StorePConditional produces flags for a test PLUS a modified raw
  1313     // memory state.
  1314     if (UseTLAB) {
  1315       Node* store_eden_top =
  1316         new (C) StorePNode(needgc_false, contended_phi_rawmem, eden_top_adr,
  1317                               TypeRawPtr::BOTTOM, new_eden_top);
  1318       transform_later(store_eden_top);
  1319       fast_oop_ctrl = needgc_false; // No contention, so this is the fast path
  1320       fast_oop_rawmem = store_eden_top;
  1321     } else {
  1322       Node* store_eden_top =
  1323         new (C) StorePConditionalNode(needgc_false, contended_phi_rawmem, eden_top_adr,
  1324                                          new_eden_top, fast_oop/*old_eden_top*/);
  1325       transform_later(store_eden_top);
  1326       Node *contention_check = new (C) BoolNode(store_eden_top, BoolTest::ne);
  1327       transform_later(contention_check);
  1328       store_eden_top = new (C) SCMemProjNode(store_eden_top);
  1329       transform_later(store_eden_top);
  1331       // If not using TLABs, check to see if there was contention.
  1332       IfNode *contention_iff = new (C) IfNode (needgc_false, contention_check, PROB_MIN, COUNT_UNKNOWN);
  1333       transform_later(contention_iff);
  1334       Node *contention_true = new (C) IfTrueNode(contention_iff);
  1335       transform_later(contention_true);
  1336       // If contention, loopback and try again.
  1337       contended_region->init_req(contended_loopback_path, contention_true);
  1338       contended_phi_rawmem->init_req(contended_loopback_path, store_eden_top);
  1340       // Fast-path succeeded with no contention!
  1341       Node *contention_false = new (C) IfFalseNode(contention_iff);
  1342       transform_later(contention_false);
  1343       fast_oop_ctrl = contention_false;
  1345       // Bump total allocated bytes for this thread
  1346       Node* thread = new (C) ThreadLocalNode();
  1347       transform_later(thread);
  1348       Node* alloc_bytes_adr = basic_plus_adr(top()/*not oop*/, thread,
  1349                                              in_bytes(JavaThread::allocated_bytes_offset()));
  1350       Node* alloc_bytes = make_load(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
  1351                                     0, TypeLong::LONG, T_LONG);
  1352 #ifdef _LP64
  1353       Node* alloc_size = size_in_bytes;
  1354 #else
  1355       Node* alloc_size = new (C) ConvI2LNode(size_in_bytes);
  1356       transform_later(alloc_size);
  1357 #endif
  1358       Node* new_alloc_bytes = new (C) AddLNode(alloc_bytes, alloc_size);
  1359       transform_later(new_alloc_bytes);
  1360       fast_oop_rawmem = make_store(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
  1361                                    0, new_alloc_bytes, T_LONG);
  1364     InitializeNode* init = alloc->initialization();
  1365     fast_oop_rawmem = initialize_object(alloc,
  1366                                         fast_oop_ctrl, fast_oop_rawmem, fast_oop,
  1367                                         klass_node, length, size_in_bytes);
  1369     // If initialization is performed by an array copy, any required
  1370     // MemBarStoreStore was already added. If the object does not
  1371     // escape no need for a MemBarStoreStore. Otherwise we need a
  1372     // MemBarStoreStore so that stores that initialize this object
  1373     // can't be reordered with a subsequent store that makes this
  1374     // object accessible by other threads.
  1375     if (init == NULL || (!init->is_complete_with_arraycopy() && !init->does_not_escape())) {
  1376       if (init == NULL || init->req() < InitializeNode::RawStores) {
  1377         // No InitializeNode or no stores captured by zeroing
  1378         // elimination. Simply add the MemBarStoreStore after object
  1379         // initialization.
  1380         MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
  1381         transform_later(mb);
  1383         mb->init_req(TypeFunc::Memory, fast_oop_rawmem);
  1384         mb->init_req(TypeFunc::Control, fast_oop_ctrl);
  1385         fast_oop_ctrl = new (C) ProjNode(mb,TypeFunc::Control);
  1386         transform_later(fast_oop_ctrl);
  1387         fast_oop_rawmem = new (C) ProjNode(mb,TypeFunc::Memory);
  1388         transform_later(fast_oop_rawmem);
  1389       } else {
  1390         // Add the MemBarStoreStore after the InitializeNode so that
  1391         // all stores performing the initialization that were moved
  1392         // before the InitializeNode happen before the storestore
  1393         // barrier.
  1395         Node* init_ctrl = init->proj_out(TypeFunc::Control);
  1396         Node* init_mem = init->proj_out(TypeFunc::Memory);
  1398         MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
  1399         transform_later(mb);
  1401         Node* ctrl = new (C) ProjNode(init,TypeFunc::Control);
  1402         transform_later(ctrl);
  1403         Node* mem = new (C) ProjNode(init,TypeFunc::Memory);
  1404         transform_later(mem);
  1406         // The MemBarStoreStore depends on control and memory coming
  1407         // from the InitializeNode
  1408         mb->init_req(TypeFunc::Memory, mem);
  1409         mb->init_req(TypeFunc::Control, ctrl);
  1411         ctrl = new (C) ProjNode(mb,TypeFunc::Control);
  1412         transform_later(ctrl);
  1413         mem = new (C) ProjNode(mb,TypeFunc::Memory);
  1414         transform_later(mem);
  1416         // All nodes that depended on the InitializeNode for control
  1417         // and memory must now depend on the MemBarNode that itself
  1418         // depends on the InitializeNode
  1419         _igvn.replace_node(init_ctrl, ctrl);
  1420         _igvn.replace_node(init_mem, mem);
  1424     if (C->env()->dtrace_extended_probes()) {
  1425       // Slow-path call
  1426       int size = TypeFunc::Parms + 2;
  1427       CallLeafNode *call = new (C) CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(),
  1428                                                 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc_base),
  1429                                                 "dtrace_object_alloc",
  1430                                                 TypeRawPtr::BOTTOM);
  1432       // Get base of thread-local storage area
  1433       Node* thread = new (C) ThreadLocalNode();
  1434       transform_later(thread);
  1436       call->init_req(TypeFunc::Parms+0, thread);
  1437       call->init_req(TypeFunc::Parms+1, fast_oop);
  1438       call->init_req(TypeFunc::Control, fast_oop_ctrl);
  1439       call->init_req(TypeFunc::I_O    , top()); // does no i/o
  1440       call->init_req(TypeFunc::Memory , fast_oop_rawmem);
  1441       call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr));
  1442       call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr));
  1443       transform_later(call);
  1444       fast_oop_ctrl = new (C) ProjNode(call,TypeFunc::Control);
  1445       transform_later(fast_oop_ctrl);
  1446       fast_oop_rawmem = new (C) ProjNode(call,TypeFunc::Memory);
  1447       transform_later(fast_oop_rawmem);
  1450     // Plug in the successful fast-path into the result merge point
  1451     result_region    ->init_req(fast_result_path, fast_oop_ctrl);
  1452     result_phi_rawoop->init_req(fast_result_path, fast_oop);
  1453     result_phi_i_o   ->init_req(fast_result_path, i_o);
  1454     result_phi_rawmem->init_req(fast_result_path, fast_oop_rawmem);
  1455   } else {
  1456     slow_region = ctrl;
  1457     result_phi_i_o = i_o; // Rename it to use in the following code.
  1460   // Generate slow-path call
  1461   CallNode *call = new (C) CallStaticJavaNode(slow_call_type, slow_call_address,
  1462                                OptoRuntime::stub_name(slow_call_address),
  1463                                alloc->jvms()->bci(),
  1464                                TypePtr::BOTTOM);
  1465   call->init_req( TypeFunc::Control, slow_region );
  1466   call->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
  1467   call->init_req( TypeFunc::Memory , slow_mem ); // may gc ptrs
  1468   call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
  1469   call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
  1471   call->init_req(TypeFunc::Parms+0, klass_node);
  1472   if (length != NULL) {
  1473     call->init_req(TypeFunc::Parms+1, length);
  1476   // Copy debug information and adjust JVMState information, then replace
  1477   // allocate node with the call
  1478   copy_call_debug_info((CallNode *) alloc,  call);
  1479   if (!always_slow) {
  1480     call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
  1481   } else {
  1482     // Hook i_o projection to avoid its elimination during allocation
  1483     // replacement (when only a slow call is generated).
  1484     call->set_req(TypeFunc::I_O, result_phi_i_o);
  1486   _igvn.replace_node(alloc, call);
  1487   transform_later(call);
  1489   // Identify the output projections from the allocate node and
  1490   // adjust any references to them.
  1491   // The control and io projections look like:
  1492   //
  1493   //        v---Proj(ctrl) <-----+   v---CatchProj(ctrl)
  1494   //  Allocate                   Catch
  1495   //        ^---Proj(io) <-------+   ^---CatchProj(io)
  1496   //
  1497   //  We are interested in the CatchProj nodes.
  1498   //
  1499   extract_call_projections(call);
  1501   // An allocate node has separate memory projections for the uses on
  1502   // the control and i_o paths. Replace the control memory projection with
  1503   // result_phi_rawmem (unless we are only generating a slow call when
  1504   // both memory projections are combined)
  1505   if (!always_slow && _memproj_fallthrough != NULL) {
  1506     for (DUIterator_Fast imax, i = _memproj_fallthrough->fast_outs(imax); i < imax; i++) {
  1507       Node *use = _memproj_fallthrough->fast_out(i);
  1508       _igvn.rehash_node_delayed(use);
  1509       imax -= replace_input(use, _memproj_fallthrough, result_phi_rawmem);
  1510       // back up iterator
  1511       --i;
  1514   // Now change uses of _memproj_catchall to use _memproj_fallthrough and delete
  1515   // _memproj_catchall so we end up with a call that has only 1 memory projection.
  1516   if (_memproj_catchall != NULL ) {
  1517     if (_memproj_fallthrough == NULL) {
  1518       _memproj_fallthrough = new (C) ProjNode(call, TypeFunc::Memory);
  1519       transform_later(_memproj_fallthrough);
  1521     for (DUIterator_Fast imax, i = _memproj_catchall->fast_outs(imax); i < imax; i++) {
  1522       Node *use = _memproj_catchall->fast_out(i);
  1523       _igvn.rehash_node_delayed(use);
  1524       imax -= replace_input(use, _memproj_catchall, _memproj_fallthrough);
  1525       // back up iterator
  1526       --i;
  1528     assert(_memproj_catchall->outcnt() == 0, "all uses must be deleted");
  1529     _igvn.remove_dead_node(_memproj_catchall);
  1532   // An allocate node has separate i_o projections for the uses on the control
  1533   // and i_o paths. Always replace the control i_o projection with result i_o
  1534   // otherwise incoming i_o become dead when only a slow call is generated
  1535   // (it is different from memory projections where both projections are
  1536   // combined in such case).
  1537   if (_ioproj_fallthrough != NULL) {
  1538     for (DUIterator_Fast imax, i = _ioproj_fallthrough->fast_outs(imax); i < imax; i++) {
  1539       Node *use = _ioproj_fallthrough->fast_out(i);
  1540       _igvn.rehash_node_delayed(use);
  1541       imax -= replace_input(use, _ioproj_fallthrough, result_phi_i_o);
  1542       // back up iterator
  1543       --i;
  1546   // Now change uses of _ioproj_catchall to use _ioproj_fallthrough and delete
  1547   // _ioproj_catchall so we end up with a call that has only 1 i_o projection.
  1548   if (_ioproj_catchall != NULL ) {
  1549     if (_ioproj_fallthrough == NULL) {
  1550       _ioproj_fallthrough = new (C) ProjNode(call, TypeFunc::I_O);
  1551       transform_later(_ioproj_fallthrough);
  1553     for (DUIterator_Fast imax, i = _ioproj_catchall->fast_outs(imax); i < imax; i++) {
  1554       Node *use = _ioproj_catchall->fast_out(i);
  1555       _igvn.rehash_node_delayed(use);
  1556       imax -= replace_input(use, _ioproj_catchall, _ioproj_fallthrough);
  1557       // back up iterator
  1558       --i;
  1560     assert(_ioproj_catchall->outcnt() == 0, "all uses must be deleted");
  1561     _igvn.remove_dead_node(_ioproj_catchall);
  1564   // if we generated only a slow call, we are done
  1565   if (always_slow) {
  1566     // Now we can unhook i_o.
  1567     if (result_phi_i_o->outcnt() > 1) {
  1568       call->set_req(TypeFunc::I_O, top());
  1569     } else {
  1570       assert(result_phi_i_o->unique_ctrl_out() == call, "");
  1571       // Case of new array with negative size known during compilation.
  1572       // AllocateArrayNode::Ideal() optimization disconnect unreachable
  1573       // following code since call to runtime will throw exception.
  1574       // As result there will be no users of i_o after the call.
  1575       // Leave i_o attached to this call to avoid problems in preceding graph.
  1577     return;
  1581   if (_fallthroughcatchproj != NULL) {
  1582     ctrl = _fallthroughcatchproj->clone();
  1583     transform_later(ctrl);
  1584     _igvn.replace_node(_fallthroughcatchproj, result_region);
  1585   } else {
  1586     ctrl = top();
  1588   Node *slow_result;
  1589   if (_resproj == NULL) {
  1590     // no uses of the allocation result
  1591     slow_result = top();
  1592   } else {
  1593     slow_result = _resproj->clone();
  1594     transform_later(slow_result);
  1595     _igvn.replace_node(_resproj, result_phi_rawoop);
  1598   // Plug slow-path into result merge point
  1599   result_region    ->init_req( slow_result_path, ctrl );
  1600   result_phi_rawoop->init_req( slow_result_path, slow_result);
  1601   result_phi_rawmem->init_req( slow_result_path, _memproj_fallthrough );
  1602   transform_later(result_region);
  1603   transform_later(result_phi_rawoop);
  1604   transform_later(result_phi_rawmem);
  1605   transform_later(result_phi_i_o);
  1606   // This completes all paths into the result merge point
  1610 // Helper for PhaseMacroExpand::expand_allocate_common.
  1611 // Initializes the newly-allocated storage.
  1612 Node*
  1613 PhaseMacroExpand::initialize_object(AllocateNode* alloc,
  1614                                     Node* control, Node* rawmem, Node* object,
  1615                                     Node* klass_node, Node* length,
  1616                                     Node* size_in_bytes) {
  1617   InitializeNode* init = alloc->initialization();
  1618   // Store the klass & mark bits
  1619   Node* mark_node = NULL;
  1620   // For now only enable fast locking for non-array types
  1621   if (UseBiasedLocking && (length == NULL)) {
  1622     mark_node = make_load(control, rawmem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeRawPtr::BOTTOM, T_ADDRESS);
  1623   } else {
  1624     mark_node = makecon(TypeRawPtr::make((address)markOopDesc::prototype()));
  1626   rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS);
  1628   rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_METADATA);
  1629   int header_size = alloc->minimum_header_size();  // conservatively small
  1631   // Array length
  1632   if (length != NULL) {         // Arrays need length field
  1633     rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
  1634     // conservatively small header size:
  1635     header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE);
  1636     ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
  1637     if (k->is_array_klass())    // we know the exact header size in most cases:
  1638       header_size = Klass::layout_helper_header_size(k->layout_helper());
  1641   // Clear the object body, if necessary.
  1642   if (init == NULL) {
  1643     // The init has somehow disappeared; be cautious and clear everything.
  1644     //
  1645     // This can happen if a node is allocated but an uncommon trap occurs
  1646     // immediately.  In this case, the Initialize gets associated with the
  1647     // trap, and may be placed in a different (outer) loop, if the Allocate
  1648     // is in a loop.  If (this is rare) the inner loop gets unrolled, then
  1649     // there can be two Allocates to one Initialize.  The answer in all these
  1650     // edge cases is safety first.  It is always safe to clear immediately
  1651     // within an Allocate, and then (maybe or maybe not) clear some more later.
  1652     if (!ZeroTLAB)
  1653       rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
  1654                                             header_size, size_in_bytes,
  1655                                             &_igvn);
  1656   } else {
  1657     if (!init->is_complete()) {
  1658       // Try to win by zeroing only what the init does not store.
  1659       // We can also try to do some peephole optimizations,
  1660       // such as combining some adjacent subword stores.
  1661       rawmem = init->complete_stores(control, rawmem, object,
  1662                                      header_size, size_in_bytes, &_igvn);
  1664     // We have no more use for this link, since the AllocateNode goes away:
  1665     init->set_req(InitializeNode::RawAddress, top());
  1666     // (If we keep the link, it just confuses the register allocator,
  1667     // who thinks he sees a real use of the address by the membar.)
  1670   return rawmem;
  1673 // Generate prefetch instructions for next allocations.
  1674 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false,
  1675                                         Node*& contended_phi_rawmem,
  1676                                         Node* old_eden_top, Node* new_eden_top,
  1677                                         Node* length) {
  1678    enum { fall_in_path = 1, pf_path = 2 };
  1679    if( UseTLAB && AllocatePrefetchStyle == 2 ) {
  1680       // Generate prefetch allocation with watermark check.
  1681       // As an allocation hits the watermark, we will prefetch starting
  1682       // at a "distance" away from watermark.
  1684       Node *pf_region = new (C) RegionNode(3);
  1685       Node *pf_phi_rawmem = new (C) PhiNode( pf_region, Type::MEMORY,
  1686                                                 TypeRawPtr::BOTTOM );
  1687       // I/O is used for Prefetch
  1688       Node *pf_phi_abio = new (C) PhiNode( pf_region, Type::ABIO );
  1690       Node *thread = new (C) ThreadLocalNode();
  1691       transform_later(thread);
  1693       Node *eden_pf_adr = new (C) AddPNode( top()/*not oop*/, thread,
  1694                    _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) );
  1695       transform_later(eden_pf_adr);
  1697       Node *old_pf_wm = new (C) LoadPNode( needgc_false,
  1698                                    contended_phi_rawmem, eden_pf_adr,
  1699                                    TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM );
  1700       transform_later(old_pf_wm);
  1702       // check against new_eden_top
  1703       Node *need_pf_cmp = new (C) CmpPNode( new_eden_top, old_pf_wm );
  1704       transform_later(need_pf_cmp);
  1705       Node *need_pf_bol = new (C) BoolNode( need_pf_cmp, BoolTest::ge );
  1706       transform_later(need_pf_bol);
  1707       IfNode *need_pf_iff = new (C) IfNode( needgc_false, need_pf_bol,
  1708                                        PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
  1709       transform_later(need_pf_iff);
  1711       // true node, add prefetchdistance
  1712       Node *need_pf_true = new (C) IfTrueNode( need_pf_iff );
  1713       transform_later(need_pf_true);
  1715       Node *need_pf_false = new (C) IfFalseNode( need_pf_iff );
  1716       transform_later(need_pf_false);
  1718       Node *new_pf_wmt = new (C) AddPNode( top(), old_pf_wm,
  1719                                     _igvn.MakeConX(AllocatePrefetchDistance) );
  1720       transform_later(new_pf_wmt );
  1721       new_pf_wmt->set_req(0, need_pf_true);
  1723       Node *store_new_wmt = new (C) StorePNode( need_pf_true,
  1724                                        contended_phi_rawmem, eden_pf_adr,
  1725                                        TypeRawPtr::BOTTOM, new_pf_wmt );
  1726       transform_later(store_new_wmt);
  1728       // adding prefetches
  1729       pf_phi_abio->init_req( fall_in_path, i_o );
  1731       Node *prefetch_adr;
  1732       Node *prefetch;
  1733       uint lines = AllocatePrefetchDistance / AllocatePrefetchStepSize;
  1734       uint step_size = AllocatePrefetchStepSize;
  1735       uint distance = 0;
  1737       for ( uint i = 0; i < lines; i++ ) {
  1738         prefetch_adr = new (C) AddPNode( old_pf_wm, new_pf_wmt,
  1739                                             _igvn.MakeConX(distance) );
  1740         transform_later(prefetch_adr);
  1741         prefetch = new (C) PrefetchAllocationNode( i_o, prefetch_adr );
  1742         transform_later(prefetch);
  1743         distance += step_size;
  1744         i_o = prefetch;
  1746       pf_phi_abio->set_req( pf_path, i_o );
  1748       pf_region->init_req( fall_in_path, need_pf_false );
  1749       pf_region->init_req( pf_path, need_pf_true );
  1751       pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem );
  1752       pf_phi_rawmem->init_req( pf_path, store_new_wmt );
  1754       transform_later(pf_region);
  1755       transform_later(pf_phi_rawmem);
  1756       transform_later(pf_phi_abio);
  1758       needgc_false = pf_region;
  1759       contended_phi_rawmem = pf_phi_rawmem;
  1760       i_o = pf_phi_abio;
  1761    } else if( UseTLAB && AllocatePrefetchStyle == 3 ) {
  1762       // Insert a prefetch for each allocation.
  1763       // This code is used for Sparc with BIS.
  1764       Node *pf_region = new (C) RegionNode(3);
  1765       Node *pf_phi_rawmem = new (C) PhiNode( pf_region, Type::MEMORY,
  1766                                              TypeRawPtr::BOTTOM );
  1768       // Generate several prefetch instructions.
  1769       uint lines = (length != NULL) ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
  1770       uint step_size = AllocatePrefetchStepSize;
  1771       uint distance = AllocatePrefetchDistance;
  1773       // Next cache address.
  1774       Node *cache_adr = new (C) AddPNode(old_eden_top, old_eden_top,
  1775                                             _igvn.MakeConX(distance));
  1776       transform_later(cache_adr);
  1777       cache_adr = new (C) CastP2XNode(needgc_false, cache_adr);
  1778       transform_later(cache_adr);
  1779       Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1));
  1780       cache_adr = new (C) AndXNode(cache_adr, mask);
  1781       transform_later(cache_adr);
  1782       cache_adr = new (C) CastX2PNode(cache_adr);
  1783       transform_later(cache_adr);
  1785       // Prefetch
  1786       Node *prefetch = new (C) PrefetchAllocationNode( contended_phi_rawmem, cache_adr );
  1787       prefetch->set_req(0, needgc_false);
  1788       transform_later(prefetch);
  1789       contended_phi_rawmem = prefetch;
  1790       Node *prefetch_adr;
  1791       distance = step_size;
  1792       for ( uint i = 1; i < lines; i++ ) {
  1793         prefetch_adr = new (C) AddPNode( cache_adr, cache_adr,
  1794                                             _igvn.MakeConX(distance) );
  1795         transform_later(prefetch_adr);
  1796         prefetch = new (C) PrefetchAllocationNode( contended_phi_rawmem, prefetch_adr );
  1797         transform_later(prefetch);
  1798         distance += step_size;
  1799         contended_phi_rawmem = prefetch;
  1801    } else if( AllocatePrefetchStyle > 0 ) {
  1802       // Insert a prefetch for each allocation only on the fast-path
  1803       Node *prefetch_adr;
  1804       Node *prefetch;
  1805       // Generate several prefetch instructions.
  1806       uint lines = (length != NULL) ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
  1807       uint step_size = AllocatePrefetchStepSize;
  1808       uint distance = AllocatePrefetchDistance;
  1809       for ( uint i = 0; i < lines; i++ ) {
  1810         prefetch_adr = new (C) AddPNode( old_eden_top, new_eden_top,
  1811                                             _igvn.MakeConX(distance) );
  1812         transform_later(prefetch_adr);
  1813         prefetch = new (C) PrefetchAllocationNode( i_o, prefetch_adr );
  1814         // Do not let it float too high, since if eden_top == eden_end,
  1815         // both might be null.
  1816         if( i == 0 ) { // Set control for first prefetch, next follows it
  1817           prefetch->init_req(0, needgc_false);
  1819         transform_later(prefetch);
  1820         distance += step_size;
  1821         i_o = prefetch;
  1824    return i_o;
  1828 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
  1829   expand_allocate_common(alloc, NULL,
  1830                          OptoRuntime::new_instance_Type(),
  1831                          OptoRuntime::new_instance_Java());
  1834 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
  1835   Node* length = alloc->in(AllocateNode::ALength);
  1836   InitializeNode* init = alloc->initialization();
  1837   Node* klass_node = alloc->in(AllocateNode::KlassNode);
  1838   ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
  1839   address slow_call_address;  // Address of slow call
  1840   if (init != NULL && init->is_complete_with_arraycopy() &&
  1841       k->is_type_array_klass()) {
  1842     // Don't zero type array during slow allocation in VM since
  1843     // it will be initialized later by arraycopy in compiled code.
  1844     slow_call_address = OptoRuntime::new_array_nozero_Java();
  1845   } else {
  1846     slow_call_address = OptoRuntime::new_array_Java();
  1848   expand_allocate_common(alloc, length,
  1849                          OptoRuntime::new_array_Type(),
  1850                          slow_call_address);
  1853 //-------------------mark_eliminated_box----------------------------------
  1854 //
  1855 // During EA obj may point to several objects but after few ideal graph
  1856 // transformations (CCP) it may point to only one non escaping object
  1857 // (but still using phi), corresponding locks and unlocks will be marked
  1858 // for elimination. Later obj could be replaced with a new node (new phi)
  1859 // and which does not have escape information. And later after some graph
  1860 // reshape other locks and unlocks (which were not marked for elimination
  1861 // before) are connected to this new obj (phi) but they still will not be
  1862 // marked for elimination since new obj has no escape information.
  1863 // Mark all associated (same box and obj) lock and unlock nodes for
  1864 // elimination if some of them marked already.
  1865 void PhaseMacroExpand::mark_eliminated_box(Node* oldbox, Node* obj) {
  1866   if (oldbox->as_BoxLock()->is_eliminated())
  1867     return; // This BoxLock node was processed already.
  1869   // New implementation (EliminateNestedLocks) has separate BoxLock
  1870   // node for each locked region so mark all associated locks/unlocks as
  1871   // eliminated even if different objects are referenced in one locked region
  1872   // (for example, OSR compilation of nested loop inside locked scope).
  1873   if (EliminateNestedLocks ||
  1874       oldbox->as_BoxLock()->is_simple_lock_region(NULL, obj)) {
  1875     // Box is used only in one lock region. Mark this box as eliminated.
  1876     _igvn.hash_delete(oldbox);
  1877     oldbox->as_BoxLock()->set_eliminated(); // This changes box's hash value
  1878     _igvn.hash_insert(oldbox);
  1880     for (uint i = 0; i < oldbox->outcnt(); i++) {
  1881       Node* u = oldbox->raw_out(i);
  1882       if (u->is_AbstractLock() && !u->as_AbstractLock()->is_non_esc_obj()) {
  1883         AbstractLockNode* alock = u->as_AbstractLock();
  1884         // Check lock's box since box could be referenced by Lock's debug info.
  1885         if (alock->box_node() == oldbox) {
  1886           // Mark eliminated all related locks and unlocks.
  1887           alock->set_non_esc_obj();
  1891     return;
  1894   // Create new "eliminated" BoxLock node and use it in monitor debug info
  1895   // instead of oldbox for the same object.
  1896   BoxLockNode* newbox = oldbox->clone()->as_BoxLock();
  1898   // Note: BoxLock node is marked eliminated only here and it is used
  1899   // to indicate that all associated lock and unlock nodes are marked
  1900   // for elimination.
  1901   newbox->set_eliminated();
  1902   transform_later(newbox);
  1904   // Replace old box node with new box for all users of the same object.
  1905   for (uint i = 0; i < oldbox->outcnt();) {
  1906     bool next_edge = true;
  1908     Node* u = oldbox->raw_out(i);
  1909     if (u->is_AbstractLock()) {
  1910       AbstractLockNode* alock = u->as_AbstractLock();
  1911       if (alock->box_node() == oldbox && alock->obj_node()->eqv_uncast(obj)) {
  1912         // Replace Box and mark eliminated all related locks and unlocks.
  1913         alock->set_non_esc_obj();
  1914         _igvn.rehash_node_delayed(alock);
  1915         alock->set_box_node(newbox);
  1916         next_edge = false;
  1919     if (u->is_FastLock() && u->as_FastLock()->obj_node()->eqv_uncast(obj)) {
  1920       FastLockNode* flock = u->as_FastLock();
  1921       assert(flock->box_node() == oldbox, "sanity");
  1922       _igvn.rehash_node_delayed(flock);
  1923       flock->set_box_node(newbox);
  1924       next_edge = false;
  1927     // Replace old box in monitor debug info.
  1928     if (u->is_SafePoint() && u->as_SafePoint()->jvms()) {
  1929       SafePointNode* sfn = u->as_SafePoint();
  1930       JVMState* youngest_jvms = sfn->jvms();
  1931       int max_depth = youngest_jvms->depth();
  1932       for (int depth = 1; depth <= max_depth; depth++) {
  1933         JVMState* jvms = youngest_jvms->of_depth(depth);
  1934         int num_mon  = jvms->nof_monitors();
  1935         // Loop over monitors
  1936         for (int idx = 0; idx < num_mon; idx++) {
  1937           Node* obj_node = sfn->monitor_obj(jvms, idx);
  1938           Node* box_node = sfn->monitor_box(jvms, idx);
  1939           if (box_node == oldbox && obj_node->eqv_uncast(obj)) {
  1940             int j = jvms->monitor_box_offset(idx);
  1941             _igvn.replace_input_of(u, j, newbox);
  1942             next_edge = false;
  1947     if (next_edge) i++;
  1951 //-----------------------mark_eliminated_locking_nodes-----------------------
  1952 void PhaseMacroExpand::mark_eliminated_locking_nodes(AbstractLockNode *alock) {
  1953   if (EliminateNestedLocks) {
  1954     if (alock->is_nested()) {
  1955        assert(alock->box_node()->as_BoxLock()->is_eliminated(), "sanity");
  1956        return;
  1957     } else if (!alock->is_non_esc_obj()) { // Not eliminated or coarsened
  1958       // Only Lock node has JVMState needed here.
  1959       if (alock->jvms() != NULL && alock->as_Lock()->is_nested_lock_region()) {
  1960         // Mark eliminated related nested locks and unlocks.
  1961         Node* obj = alock->obj_node();
  1962         BoxLockNode* box_node = alock->box_node()->as_BoxLock();
  1963         assert(!box_node->is_eliminated(), "should not be marked yet");
  1964         // Note: BoxLock node is marked eliminated only here
  1965         // and it is used to indicate that all associated lock
  1966         // and unlock nodes are marked for elimination.
  1967         box_node->set_eliminated(); // Box's hash is always NO_HASH here
  1968         for (uint i = 0; i < box_node->outcnt(); i++) {
  1969           Node* u = box_node->raw_out(i);
  1970           if (u->is_AbstractLock()) {
  1971             alock = u->as_AbstractLock();
  1972             if (alock->box_node() == box_node) {
  1973               // Verify that this Box is referenced only by related locks.
  1974               assert(alock->obj_node()->eqv_uncast(obj), "");
  1975               // Mark all related locks and unlocks.
  1976               alock->set_nested();
  1981       return;
  1983     // Process locks for non escaping object
  1984     assert(alock->is_non_esc_obj(), "");
  1985   } // EliminateNestedLocks
  1987   if (alock->is_non_esc_obj()) { // Lock is used for non escaping object
  1988     // Look for all locks of this object and mark them and
  1989     // corresponding BoxLock nodes as eliminated.
  1990     Node* obj = alock->obj_node();
  1991     for (uint j = 0; j < obj->outcnt(); j++) {
  1992       Node* o = obj->raw_out(j);
  1993       if (o->is_AbstractLock() &&
  1994           o->as_AbstractLock()->obj_node()->eqv_uncast(obj)) {
  1995         alock = o->as_AbstractLock();
  1996         Node* box = alock->box_node();
  1997         // Replace old box node with new eliminated box for all users
  1998         // of the same object and mark related locks as eliminated.
  1999         mark_eliminated_box(box, obj);
  2005 // we have determined that this lock/unlock can be eliminated, we simply
  2006 // eliminate the node without expanding it.
  2007 //
  2008 // Note:  The membar's associated with the lock/unlock are currently not
  2009 //        eliminated.  This should be investigated as a future enhancement.
  2010 //
  2011 bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
  2013   if (!alock->is_eliminated()) {
  2014     return false;
  2016 #ifdef ASSERT
  2017   if (!alock->is_coarsened()) {
  2018     // Check that new "eliminated" BoxLock node is created.
  2019     BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
  2020     assert(oldbox->is_eliminated(), "should be done already");
  2022 #endif
  2023   CompileLog* log = C->log();
  2024   if (log != NULL) {
  2025     log->head("eliminate_lock lock='%d'",
  2026               alock->is_Lock());
  2027     JVMState* p = alock->jvms();
  2028     while (p != NULL) {
  2029       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
  2030       p = p->caller();
  2032     log->tail("eliminate_lock");
  2035   #ifndef PRODUCT
  2036   if (PrintEliminateLocks) {
  2037     if (alock->is_Lock()) {
  2038       tty->print_cr("++++ Eliminated: %d Lock", alock->_idx);
  2039     } else {
  2040       tty->print_cr("++++ Eliminated: %d Unlock", alock->_idx);
  2043   #endif
  2045   Node* mem  = alock->in(TypeFunc::Memory);
  2046   Node* ctrl = alock->in(TypeFunc::Control);
  2048   extract_call_projections(alock);
  2049   // There are 2 projections from the lock.  The lock node will
  2050   // be deleted when its last use is subsumed below.
  2051   assert(alock->outcnt() == 2 &&
  2052          _fallthroughproj != NULL &&
  2053          _memproj_fallthrough != NULL,
  2054          "Unexpected projections from Lock/Unlock");
  2056   Node* fallthroughproj = _fallthroughproj;
  2057   Node* memproj_fallthrough = _memproj_fallthrough;
  2059   // The memory projection from a lock/unlock is RawMem
  2060   // The input to a Lock is merged memory, so extract its RawMem input
  2061   // (unless the MergeMem has been optimized away.)
  2062   if (alock->is_Lock()) {
  2063     // Seach for MemBarAcquireLock node and delete it also.
  2064     MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar();
  2065     assert(membar != NULL && membar->Opcode() == Op_MemBarAcquireLock, "");
  2066     Node* ctrlproj = membar->proj_out(TypeFunc::Control);
  2067     Node* memproj = membar->proj_out(TypeFunc::Memory);
  2068     _igvn.replace_node(ctrlproj, fallthroughproj);
  2069     _igvn.replace_node(memproj, memproj_fallthrough);
  2071     // Delete FastLock node also if this Lock node is unique user
  2072     // (a loop peeling may clone a Lock node).
  2073     Node* flock = alock->as_Lock()->fastlock_node();
  2074     if (flock->outcnt() == 1) {
  2075       assert(flock->unique_out() == alock, "sanity");
  2076       _igvn.replace_node(flock, top());
  2080   // Seach for MemBarReleaseLock node and delete it also.
  2081   if (alock->is_Unlock() && ctrl != NULL && ctrl->is_Proj() &&
  2082       ctrl->in(0)->is_MemBar()) {
  2083     MemBarNode* membar = ctrl->in(0)->as_MemBar();
  2084     assert(membar->Opcode() == Op_MemBarReleaseLock &&
  2085            mem->is_Proj() && membar == mem->in(0), "");
  2086     _igvn.replace_node(fallthroughproj, ctrl);
  2087     _igvn.replace_node(memproj_fallthrough, mem);
  2088     fallthroughproj = ctrl;
  2089     memproj_fallthrough = mem;
  2090     ctrl = membar->in(TypeFunc::Control);
  2091     mem  = membar->in(TypeFunc::Memory);
  2094   _igvn.replace_node(fallthroughproj, ctrl);
  2095   _igvn.replace_node(memproj_fallthrough, mem);
  2096   return true;
  2100 //------------------------------expand_lock_node----------------------
  2101 void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
  2103   Node* ctrl = lock->in(TypeFunc::Control);
  2104   Node* mem = lock->in(TypeFunc::Memory);
  2105   Node* obj = lock->obj_node();
  2106   Node* box = lock->box_node();
  2107   Node* flock = lock->fastlock_node();
  2109   assert(!box->as_BoxLock()->is_eliminated(), "sanity");
  2111   // Make the merge point
  2112   Node *region;
  2113   Node *mem_phi;
  2114   Node *slow_path;
  2116   if (UseOptoBiasInlining) {
  2117     /*
  2118      *  See the full description in MacroAssembler::biased_locking_enter().
  2120      *  if( (mark_word & biased_lock_mask) == biased_lock_pattern ) {
  2121      *    // The object is biased.
  2122      *    proto_node = klass->prototype_header;
  2123      *    o_node = thread | proto_node;
  2124      *    x_node = o_node ^ mark_word;
  2125      *    if( (x_node & ~age_mask) == 0 ) { // Biased to the current thread ?
  2126      *      // Done.
  2127      *    } else {
  2128      *      if( (x_node & biased_lock_mask) != 0 ) {
  2129      *        // The klass's prototype header is no longer biased.
  2130      *        cas(&mark_word, mark_word, proto_node)
  2131      *        goto cas_lock;
  2132      *      } else {
  2133      *        // The klass's prototype header is still biased.
  2134      *        if( (x_node & epoch_mask) != 0 ) { // Expired epoch?
  2135      *          old = mark_word;
  2136      *          new = o_node;
  2137      *        } else {
  2138      *          // Different thread or anonymous biased.
  2139      *          old = mark_word & (epoch_mask | age_mask | biased_lock_mask);
  2140      *          new = thread | old;
  2141      *        }
  2142      *        // Try to rebias.
  2143      *        if( cas(&mark_word, old, new) == 0 ) {
  2144      *          // Done.
  2145      *        } else {
  2146      *          goto slow_path; // Failed.
  2147      *        }
  2148      *      }
  2149      *    }
  2150      *  } else {
  2151      *    // The object is not biased.
  2152      *    cas_lock:
  2153      *    if( FastLock(obj) == 0 ) {
  2154      *      // Done.
  2155      *    } else {
  2156      *      slow_path:
  2157      *      OptoRuntime::complete_monitor_locking_Java(obj);
  2158      *    }
  2159      *  }
  2160      */
  2162     region  = new (C) RegionNode(5);
  2163     // create a Phi for the memory state
  2164     mem_phi = new (C) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
  2166     Node* fast_lock_region  = new (C) RegionNode(3);
  2167     Node* fast_lock_mem_phi = new (C) PhiNode( fast_lock_region, Type::MEMORY, TypeRawPtr::BOTTOM);
  2169     // First, check mark word for the biased lock pattern.
  2170     Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
  2172     // Get fast path - mark word has the biased lock pattern.
  2173     ctrl = opt_bits_test(ctrl, fast_lock_region, 1, mark_node,
  2174                          markOopDesc::biased_lock_mask_in_place,
  2175                          markOopDesc::biased_lock_pattern, true);
  2176     // fast_lock_region->in(1) is set to slow path.
  2177     fast_lock_mem_phi->init_req(1, mem);
  2179     // Now check that the lock is biased to the current thread and has
  2180     // the same epoch and bias as Klass::_prototype_header.
  2182     // Special-case a fresh allocation to avoid building nodes:
  2183     Node* klass_node = AllocateNode::Ideal_klass(obj, &_igvn);
  2184     if (klass_node == NULL) {
  2185       Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
  2186       klass_node = transform_later( LoadKlassNode::make(_igvn, mem, k_adr, _igvn.type(k_adr)->is_ptr()) );
  2187 #ifdef _LP64
  2188       if (UseCompressedKlassPointers && klass_node->is_DecodeNKlass()) {
  2189         assert(klass_node->in(1)->Opcode() == Op_LoadNKlass, "sanity");
  2190         klass_node->in(1)->init_req(0, ctrl);
  2191       } else
  2192 #endif
  2193       klass_node->init_req(0, ctrl);
  2195     Node *proto_node = make_load(ctrl, mem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeX_X, TypeX_X->basic_type());
  2197     Node* thread = transform_later(new (C) ThreadLocalNode());
  2198     Node* cast_thread = transform_later(new (C) CastP2XNode(ctrl, thread));
  2199     Node* o_node = transform_later(new (C) OrXNode(cast_thread, proto_node));
  2200     Node* x_node = transform_later(new (C) XorXNode(o_node, mark_node));
  2202     // Get slow path - mark word does NOT match the value.
  2203     Node* not_biased_ctrl =  opt_bits_test(ctrl, region, 3, x_node,
  2204                                       (~markOopDesc::age_mask_in_place), 0);
  2205     // region->in(3) is set to fast path - the object is biased to the current thread.
  2206     mem_phi->init_req(3, mem);
  2209     // Mark word does NOT match the value (thread | Klass::_prototype_header).
  2212     // First, check biased pattern.
  2213     // Get fast path - _prototype_header has the same biased lock pattern.
  2214     ctrl =  opt_bits_test(not_biased_ctrl, fast_lock_region, 2, x_node,
  2215                           markOopDesc::biased_lock_mask_in_place, 0, true);
  2217     not_biased_ctrl = fast_lock_region->in(2); // Slow path
  2218     // fast_lock_region->in(2) - the prototype header is no longer biased
  2219     // and we have to revoke the bias on this object.
  2220     // We are going to try to reset the mark of this object to the prototype
  2221     // value and fall through to the CAS-based locking scheme.
  2222     Node* adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
  2223     Node* cas = new (C) StoreXConditionalNode(not_biased_ctrl, mem, adr,
  2224                                               proto_node, mark_node);
  2225     transform_later(cas);
  2226     Node* proj = transform_later( new (C) SCMemProjNode(cas));
  2227     fast_lock_mem_phi->init_req(2, proj);
  2230     // Second, check epoch bits.
  2231     Node* rebiased_region  = new (C) RegionNode(3);
  2232     Node* old_phi = new (C) PhiNode( rebiased_region, TypeX_X);
  2233     Node* new_phi = new (C) PhiNode( rebiased_region, TypeX_X);
  2235     // Get slow path - mark word does NOT match epoch bits.
  2236     Node* epoch_ctrl =  opt_bits_test(ctrl, rebiased_region, 1, x_node,
  2237                                       markOopDesc::epoch_mask_in_place, 0);
  2238     // The epoch of the current bias is not valid, attempt to rebias the object
  2239     // toward the current thread.
  2240     rebiased_region->init_req(2, epoch_ctrl);
  2241     old_phi->init_req(2, mark_node);
  2242     new_phi->init_req(2, o_node);
  2244     // rebiased_region->in(1) is set to fast path.
  2245     // The epoch of the current bias is still valid but we know
  2246     // nothing about the owner; it might be set or it might be clear.
  2247     Node* cmask   = MakeConX(markOopDesc::biased_lock_mask_in_place |
  2248                              markOopDesc::age_mask_in_place |
  2249                              markOopDesc::epoch_mask_in_place);
  2250     Node* old = transform_later(new (C) AndXNode(mark_node, cmask));
  2251     cast_thread = transform_later(new (C) CastP2XNode(ctrl, thread));
  2252     Node* new_mark = transform_later(new (C) OrXNode(cast_thread, old));
  2253     old_phi->init_req(1, old);
  2254     new_phi->init_req(1, new_mark);
  2256     transform_later(rebiased_region);
  2257     transform_later(old_phi);
  2258     transform_later(new_phi);
  2260     // Try to acquire the bias of the object using an atomic operation.
  2261     // If this fails we will go in to the runtime to revoke the object's bias.
  2262     cas = new (C) StoreXConditionalNode(rebiased_region, mem, adr,
  2263                                            new_phi, old_phi);
  2264     transform_later(cas);
  2265     proj = transform_later( new (C) SCMemProjNode(cas));
  2267     // Get slow path - Failed to CAS.
  2268     not_biased_ctrl = opt_bits_test(rebiased_region, region, 4, cas, 0, 0);
  2269     mem_phi->init_req(4, proj);
  2270     // region->in(4) is set to fast path - the object is rebiased to the current thread.
  2272     // Failed to CAS.
  2273     slow_path  = new (C) RegionNode(3);
  2274     Node *slow_mem = new (C) PhiNode( slow_path, Type::MEMORY, TypeRawPtr::BOTTOM);
  2276     slow_path->init_req(1, not_biased_ctrl); // Capture slow-control
  2277     slow_mem->init_req(1, proj);
  2279     // Call CAS-based locking scheme (FastLock node).
  2281     transform_later(fast_lock_region);
  2282     transform_later(fast_lock_mem_phi);
  2284     // Get slow path - FastLock failed to lock the object.
  2285     ctrl = opt_bits_test(fast_lock_region, region, 2, flock, 0, 0);
  2286     mem_phi->init_req(2, fast_lock_mem_phi);
  2287     // region->in(2) is set to fast path - the object is locked to the current thread.
  2289     slow_path->init_req(2, ctrl); // Capture slow-control
  2290     slow_mem->init_req(2, fast_lock_mem_phi);
  2292     transform_later(slow_path);
  2293     transform_later(slow_mem);
  2294     // Reset lock's memory edge.
  2295     lock->set_req(TypeFunc::Memory, slow_mem);
  2297   } else {
  2298     region  = new (C) RegionNode(3);
  2299     // create a Phi for the memory state
  2300     mem_phi = new (C) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
  2302     // Optimize test; set region slot 2
  2303     slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0);
  2304     mem_phi->init_req(2, mem);
  2307   // Make slow path call
  2308   CallNode *call = make_slow_call( (CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(), OptoRuntime::complete_monitor_locking_Java(), NULL, slow_path, obj, box );
  2310   extract_call_projections(call);
  2312   // Slow path can only throw asynchronous exceptions, which are always
  2313   // de-opted.  So the compiler thinks the slow-call can never throw an
  2314   // exception.  If it DOES throw an exception we would need the debug
  2315   // info removed first (since if it throws there is no monitor).
  2316   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
  2317            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
  2319   // Capture slow path
  2320   // disconnect fall-through projection from call and create a new one
  2321   // hook up users of fall-through projection to region
  2322   Node *slow_ctrl = _fallthroughproj->clone();
  2323   transform_later(slow_ctrl);
  2324   _igvn.hash_delete(_fallthroughproj);
  2325   _fallthroughproj->disconnect_inputs(NULL, C);
  2326   region->init_req(1, slow_ctrl);
  2327   // region inputs are now complete
  2328   transform_later(region);
  2329   _igvn.replace_node(_fallthroughproj, region);
  2331   Node *memproj = transform_later( new(C) ProjNode(call, TypeFunc::Memory) );
  2332   mem_phi->init_req(1, memproj );
  2333   transform_later(mem_phi);
  2334   _igvn.replace_node(_memproj_fallthrough, mem_phi);
  2337 //------------------------------expand_unlock_node----------------------
  2338 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
  2340   Node* ctrl = unlock->in(TypeFunc::Control);
  2341   Node* mem = unlock->in(TypeFunc::Memory);
  2342   Node* obj = unlock->obj_node();
  2343   Node* box = unlock->box_node();
  2345   assert(!box->as_BoxLock()->is_eliminated(), "sanity");
  2347   // No need for a null check on unlock
  2349   // Make the merge point
  2350   Node *region;
  2351   Node *mem_phi;
  2353   if (UseOptoBiasInlining) {
  2354     // Check for biased locking unlock case, which is a no-op.
  2355     // See the full description in MacroAssembler::biased_locking_exit().
  2356     region  = new (C) RegionNode(4);
  2357     // create a Phi for the memory state
  2358     mem_phi = new (C) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
  2359     mem_phi->init_req(3, mem);
  2361     Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
  2362     ctrl = opt_bits_test(ctrl, region, 3, mark_node,
  2363                          markOopDesc::biased_lock_mask_in_place,
  2364                          markOopDesc::biased_lock_pattern);
  2365   } else {
  2366     region  = new (C) RegionNode(3);
  2367     // create a Phi for the memory state
  2368     mem_phi = new (C) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
  2371   FastUnlockNode *funlock = new (C) FastUnlockNode( ctrl, obj, box );
  2372   funlock = transform_later( funlock )->as_FastUnlock();
  2373   // Optimize test; set region slot 2
  2374   Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0);
  2376   CallNode *call = make_slow_call( (CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), "complete_monitor_unlocking_C", slow_path, obj, box );
  2378   extract_call_projections(call);
  2380   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
  2381            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
  2383   // No exceptions for unlocking
  2384   // Capture slow path
  2385   // disconnect fall-through projection from call and create a new one
  2386   // hook up users of fall-through projection to region
  2387   Node *slow_ctrl = _fallthroughproj->clone();
  2388   transform_later(slow_ctrl);
  2389   _igvn.hash_delete(_fallthroughproj);
  2390   _fallthroughproj->disconnect_inputs(NULL, C);
  2391   region->init_req(1, slow_ctrl);
  2392   // region inputs are now complete
  2393   transform_later(region);
  2394   _igvn.replace_node(_fallthroughproj, region);
  2396   Node *memproj = transform_later( new(C) ProjNode(call, TypeFunc::Memory) );
  2397   mem_phi->init_req(1, memproj );
  2398   mem_phi->init_req(2, mem);
  2399   transform_later(mem_phi);
  2400   _igvn.replace_node(_memproj_fallthrough, mem_phi);
  2403 //---------------------------eliminate_macro_nodes----------------------
  2404 // Eliminate scalar replaced allocations and associated locks.
  2405 void PhaseMacroExpand::eliminate_macro_nodes() {
  2406   if (C->macro_count() == 0)
  2407     return;
  2409   // First, attempt to eliminate locks
  2410   int cnt = C->macro_count();
  2411   for (int i=0; i < cnt; i++) {
  2412     Node *n = C->macro_node(i);
  2413     if (n->is_AbstractLock()) { // Lock and Unlock nodes
  2414       // Before elimination mark all associated (same box and obj)
  2415       // lock and unlock nodes.
  2416       mark_eliminated_locking_nodes(n->as_AbstractLock());
  2419   bool progress = true;
  2420   while (progress) {
  2421     progress = false;
  2422     for (int i = C->macro_count(); i > 0; i--) {
  2423       Node * n = C->macro_node(i-1);
  2424       bool success = false;
  2425       debug_only(int old_macro_count = C->macro_count(););
  2426       if (n->is_AbstractLock()) {
  2427         success = eliminate_locking_node(n->as_AbstractLock());
  2429       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
  2430       progress = progress || success;
  2433   // Next, attempt to eliminate allocations
  2434   progress = true;
  2435   while (progress) {
  2436     progress = false;
  2437     for (int i = C->macro_count(); i > 0; i--) {
  2438       Node * n = C->macro_node(i-1);
  2439       bool success = false;
  2440       debug_only(int old_macro_count = C->macro_count(););
  2441       switch (n->class_id()) {
  2442       case Node::Class_Allocate:
  2443       case Node::Class_AllocateArray:
  2444         success = eliminate_allocate_node(n->as_Allocate());
  2445         break;
  2446       case Node::Class_CallStaticJava:
  2447         success = eliminate_boxing_node(n->as_CallStaticJava());
  2448         break;
  2449       case Node::Class_Lock:
  2450       case Node::Class_Unlock:
  2451         assert(!n->as_AbstractLock()->is_eliminated(), "sanity");
  2452         break;
  2453       default:
  2454         assert(n->Opcode() == Op_LoopLimit ||
  2455                n->Opcode() == Op_Opaque1   ||
  2456                n->Opcode() == Op_Opaque2, "unknown node type in macro list");
  2458       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
  2459       progress = progress || success;
  2464 //------------------------------expand_macro_nodes----------------------
  2465 //  Returns true if a failure occurred.
  2466 bool PhaseMacroExpand::expand_macro_nodes() {
  2467   // Last attempt to eliminate macro nodes.
  2468   eliminate_macro_nodes();
  2470   // Make sure expansion will not cause node limit to be exceeded.
  2471   // Worst case is a macro node gets expanded into about 50 nodes.
  2472   // Allow 50% more for optimization.
  2473   if (C->check_node_count(C->macro_count() * 75, "out of nodes before macro expansion" ) )
  2474     return true;
  2476   // Eliminate Opaque and LoopLimit nodes. Do it after all loop optimizations.
  2477   bool progress = true;
  2478   while (progress) {
  2479     progress = false;
  2480     for (int i = C->macro_count(); i > 0; i--) {
  2481       Node * n = C->macro_node(i-1);
  2482       bool success = false;
  2483       debug_only(int old_macro_count = C->macro_count(););
  2484       if (n->Opcode() == Op_LoopLimit) {
  2485         // Remove it from macro list and put on IGVN worklist to optimize.
  2486         C->remove_macro_node(n);
  2487         _igvn._worklist.push(n);
  2488         success = true;
  2489       } else if (n->Opcode() == Op_CallStaticJava) {
  2490         // Remove it from macro list and put on IGVN worklist to optimize.
  2491         C->remove_macro_node(n);
  2492         _igvn._worklist.push(n);
  2493         success = true;
  2494       } else if (n->Opcode() == Op_Opaque1 || n->Opcode() == Op_Opaque2) {
  2495         _igvn.replace_node(n, n->in(1));
  2496         success = true;
  2498       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
  2499       progress = progress || success;
  2503   // expand "macro" nodes
  2504   // nodes are removed from the macro list as they are processed
  2505   while (C->macro_count() > 0) {
  2506     int macro_count = C->macro_count();
  2507     Node * n = C->macro_node(macro_count-1);
  2508     assert(n->is_macro(), "only macro nodes expected here");
  2509     if (_igvn.type(n) == Type::TOP || n->in(0)->is_top() ) {
  2510       // node is unreachable, so don't try to expand it
  2511       C->remove_macro_node(n);
  2512       continue;
  2514     switch (n->class_id()) {
  2515     case Node::Class_Allocate:
  2516       expand_allocate(n->as_Allocate());
  2517       break;
  2518     case Node::Class_AllocateArray:
  2519       expand_allocate_array(n->as_AllocateArray());
  2520       break;
  2521     case Node::Class_Lock:
  2522       expand_lock_node(n->as_Lock());
  2523       break;
  2524     case Node::Class_Unlock:
  2525       expand_unlock_node(n->as_Unlock());
  2526       break;
  2527     default:
  2528       assert(false, "unknown node type in macro list");
  2530     assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
  2531     if (C->failing())  return true;
  2534   _igvn.set_delay_transform(false);
  2535   _igvn.optimize();
  2536   if (C->failing())  return true;
  2537   return false;

mercurial