src/share/vm/opto/lcm.cpp

Mon, 27 May 2013 12:56:34 +0200

author
stefank
date
Mon, 27 May 2013 12:56:34 +0200
changeset 5195
95c00927be11
parent 5111
70120f47d403
child 5509
d1034bd8cefc
child 6441
d2907f74462e
permissions
-rw-r--r--

8015428: Remove unused CDS support from StringTable
Summary: The string in StringTable is not used by CDS anymore. Remove the unnecessary code in preparation for 8015422: Large performance hit when the StringTable is walked twice in Parallel Scavenge
Reviewed-by: pliden, tschatzl, coleenp

     1 /*
     2  * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.inline.hpp"
    27 #include "opto/block.hpp"
    28 #include "opto/c2compiler.hpp"
    29 #include "opto/callnode.hpp"
    30 #include "opto/cfgnode.hpp"
    31 #include "opto/machnode.hpp"
    32 #include "opto/runtime.hpp"
    33 #ifdef TARGET_ARCH_MODEL_x86_32
    34 # include "adfiles/ad_x86_32.hpp"
    35 #endif
    36 #ifdef TARGET_ARCH_MODEL_x86_64
    37 # include "adfiles/ad_x86_64.hpp"
    38 #endif
    39 #ifdef TARGET_ARCH_MODEL_sparc
    40 # include "adfiles/ad_sparc.hpp"
    41 #endif
    42 #ifdef TARGET_ARCH_MODEL_zero
    43 # include "adfiles/ad_zero.hpp"
    44 #endif
    45 #ifdef TARGET_ARCH_MODEL_arm
    46 # include "adfiles/ad_arm.hpp"
    47 #endif
    48 #ifdef TARGET_ARCH_MODEL_ppc
    49 # include "adfiles/ad_ppc.hpp"
    50 #endif
    52 // Optimization - Graph Style
    54 //------------------------------implicit_null_check----------------------------
    55 // Detect implicit-null-check opportunities.  Basically, find NULL checks
    56 // with suitable memory ops nearby.  Use the memory op to do the NULL check.
    57 // I can generate a memory op if there is not one nearby.
    58 // The proj is the control projection for the not-null case.
    59 // The val is the pointer being checked for nullness or
    60 // decodeHeapOop_not_null node if it did not fold into address.
    61 void Block::implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowed_reasons) {
    62   // Assume if null check need for 0 offset then always needed
    63   // Intel solaris doesn't support any null checks yet and no
    64   // mechanism exists (yet) to set the switches at an os_cpu level
    65   if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
    67   // Make sure the ptr-is-null path appears to be uncommon!
    68   float f = end()->as_MachIf()->_prob;
    69   if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
    70   if( f > PROB_UNLIKELY_MAG(4) ) return;
    72   uint bidx = 0;                // Capture index of value into memop
    73   bool was_store;               // Memory op is a store op
    75   // Get the successor block for if the test ptr is non-null
    76   Block* not_null_block;  // this one goes with the proj
    77   Block* null_block;
    78   if (_nodes[_nodes.size()-1] == proj) {
    79     null_block     = _succs[0];
    80     not_null_block = _succs[1];
    81   } else {
    82     assert(_nodes[_nodes.size()-2] == proj, "proj is one or the other");
    83     not_null_block = _succs[0];
    84     null_block     = _succs[1];
    85   }
    86   while (null_block->is_Empty() == Block::empty_with_goto) {
    87     null_block     = null_block->_succs[0];
    88   }
    90   // Search the exception block for an uncommon trap.
    91   // (See Parse::do_if and Parse::do_ifnull for the reason
    92   // we need an uncommon trap.  Briefly, we need a way to
    93   // detect failure of this optimization, as in 6366351.)
    94   {
    95     bool found_trap = false;
    96     for (uint i1 = 0; i1 < null_block->_nodes.size(); i1++) {
    97       Node* nn = null_block->_nodes[i1];
    98       if (nn->is_MachCall() &&
    99           nn->as_MachCall()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
   100         const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
   101         if (trtype->isa_int() && trtype->is_int()->is_con()) {
   102           jint tr_con = trtype->is_int()->get_con();
   103           Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
   104           Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
   105           assert((int)reason < (int)BitsPerInt, "recode bit map");
   106           if (is_set_nth_bit(allowed_reasons, (int) reason)
   107               && action != Deoptimization::Action_none) {
   108             // This uncommon trap is sure to recompile, eventually.
   109             // When that happens, C->too_many_traps will prevent
   110             // this transformation from happening again.
   111             found_trap = true;
   112           }
   113         }
   114         break;
   115       }
   116     }
   117     if (!found_trap) {
   118       // We did not find an uncommon trap.
   119       return;
   120     }
   121   }
   123   // Check for decodeHeapOop_not_null node which did not fold into address
   124   bool is_decoden = ((intptr_t)val) & 1;
   125   val = (Node*)(((intptr_t)val) & ~1);
   127   assert(!is_decoden || (val->in(0) == NULL) && val->is_Mach() &&
   128          (val->as_Mach()->ideal_Opcode() == Op_DecodeN), "sanity");
   130   // Search the successor block for a load or store who's base value is also
   131   // the tested value.  There may be several.
   132   Node_List *out = new Node_List(Thread::current()->resource_area());
   133   MachNode *best = NULL;        // Best found so far
   134   for (DUIterator i = val->outs(); val->has_out(i); i++) {
   135     Node *m = val->out(i);
   136     if( !m->is_Mach() ) continue;
   137     MachNode *mach = m->as_Mach();
   138     was_store = false;
   139     int iop = mach->ideal_Opcode();
   140     switch( iop ) {
   141     case Op_LoadB:
   142     case Op_LoadUB:
   143     case Op_LoadUS:
   144     case Op_LoadD:
   145     case Op_LoadF:
   146     case Op_LoadI:
   147     case Op_LoadL:
   148     case Op_LoadP:
   149     case Op_LoadN:
   150     case Op_LoadS:
   151     case Op_LoadKlass:
   152     case Op_LoadNKlass:
   153     case Op_LoadRange:
   154     case Op_LoadD_unaligned:
   155     case Op_LoadL_unaligned:
   156       assert(mach->in(2) == val, "should be address");
   157       break;
   158     case Op_StoreB:
   159     case Op_StoreC:
   160     case Op_StoreCM:
   161     case Op_StoreD:
   162     case Op_StoreF:
   163     case Op_StoreI:
   164     case Op_StoreL:
   165     case Op_StoreP:
   166     case Op_StoreN:
   167     case Op_StoreNKlass:
   168       was_store = true;         // Memory op is a store op
   169       // Stores will have their address in slot 2 (memory in slot 1).
   170       // If the value being nul-checked is in another slot, it means we
   171       // are storing the checked value, which does NOT check the value!
   172       if( mach->in(2) != val ) continue;
   173       break;                    // Found a memory op?
   174     case Op_StrComp:
   175     case Op_StrEquals:
   176     case Op_StrIndexOf:
   177     case Op_AryEq:
   178     case Op_EncodeISOArray:
   179       // Not a legit memory op for implicit null check regardless of
   180       // embedded loads
   181       continue;
   182     default:                    // Also check for embedded loads
   183       if( !mach->needs_anti_dependence_check() )
   184         continue;               // Not an memory op; skip it
   185       if( must_clone[iop] ) {
   186         // Do not move nodes which produce flags because
   187         // RA will try to clone it to place near branch and
   188         // it will cause recompilation, see clone_node().
   189         continue;
   190       }
   191       {
   192         // Check that value is used in memory address in
   193         // instructions with embedded load (CmpP val1,(val2+off)).
   194         Node* base;
   195         Node* index;
   196         const MachOper* oper = mach->memory_inputs(base, index);
   197         if (oper == NULL || oper == (MachOper*)-1) {
   198           continue;             // Not an memory op; skip it
   199         }
   200         if (val == base ||
   201             val == index && val->bottom_type()->isa_narrowoop()) {
   202           break;                // Found it
   203         } else {
   204           continue;             // Skip it
   205         }
   206       }
   207       break;
   208     }
   209     // check if the offset is not too high for implicit exception
   210     {
   211       intptr_t offset = 0;
   212       const TypePtr *adr_type = NULL;  // Do not need this return value here
   213       const Node* base = mach->get_base_and_disp(offset, adr_type);
   214       if (base == NULL || base == NodeSentinel) {
   215         // Narrow oop address doesn't have base, only index
   216         if( val->bottom_type()->isa_narrowoop() &&
   217             MacroAssembler::needs_explicit_null_check(offset) )
   218           continue;             // Give up if offset is beyond page size
   219         // cannot reason about it; is probably not implicit null exception
   220       } else {
   221         const TypePtr* tptr;
   222         if (UseCompressedOops && (Universe::narrow_oop_shift() == 0 ||
   223                                   Universe::narrow_klass_shift() == 0)) {
   224           // 32-bits narrow oop can be the base of address expressions
   225           tptr = base->get_ptr_type();
   226         } else {
   227           // only regular oops are expected here
   228           tptr = base->bottom_type()->is_ptr();
   229         }
   230         // Give up if offset is not a compile-time constant
   231         if( offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot )
   232           continue;
   233         offset += tptr->_offset; // correct if base is offseted
   234         if( MacroAssembler::needs_explicit_null_check(offset) )
   235           continue;             // Give up is reference is beyond 4K page size
   236       }
   237     }
   239     // Check ctrl input to see if the null-check dominates the memory op
   240     Block *cb = cfg->_bbs[mach->_idx];
   241     cb = cb->_idom;             // Always hoist at least 1 block
   242     if( !was_store ) {          // Stores can be hoisted only one block
   243       while( cb->_dom_depth > (_dom_depth + 1))
   244         cb = cb->_idom;         // Hoist loads as far as we want
   245       // The non-null-block should dominate the memory op, too. Live
   246       // range spilling will insert a spill in the non-null-block if it is
   247       // needs to spill the memory op for an implicit null check.
   248       if (cb->_dom_depth == (_dom_depth + 1)) {
   249         if (cb != not_null_block) continue;
   250         cb = cb->_idom;
   251       }
   252     }
   253     if( cb != this ) continue;
   255     // Found a memory user; see if it can be hoisted to check-block
   256     uint vidx = 0;              // Capture index of value into memop
   257     uint j;
   258     for( j = mach->req()-1; j > 0; j-- ) {
   259       if( mach->in(j) == val ) {
   260         vidx = j;
   261         // Ignore DecodeN val which could be hoisted to where needed.
   262         if( is_decoden ) continue;
   263       }
   264       // Block of memory-op input
   265       Block *inb = cfg->_bbs[mach->in(j)->_idx];
   266       Block *b = this;          // Start from nul check
   267       while( b != inb && b->_dom_depth > inb->_dom_depth )
   268         b = b->_idom;           // search upwards for input
   269       // See if input dominates null check
   270       if( b != inb )
   271         break;
   272     }
   273     if( j > 0 )
   274       continue;
   275     Block *mb = cfg->_bbs[mach->_idx];
   276     // Hoisting stores requires more checks for the anti-dependence case.
   277     // Give up hoisting if we have to move the store past any load.
   278     if( was_store ) {
   279       Block *b = mb;            // Start searching here for a local load
   280       // mach use (faulting) trying to hoist
   281       // n might be blocker to hoisting
   282       while( b != this ) {
   283         uint k;
   284         for( k = 1; k < b->_nodes.size(); k++ ) {
   285           Node *n = b->_nodes[k];
   286           if( n->needs_anti_dependence_check() &&
   287               n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
   288             break;              // Found anti-dependent load
   289         }
   290         if( k < b->_nodes.size() )
   291           break;                // Found anti-dependent load
   292         // Make sure control does not do a merge (would have to check allpaths)
   293         if( b->num_preds() != 2 ) break;
   294         b = cfg->_bbs[b->pred(1)->_idx]; // Move up to predecessor block
   295       }
   296       if( b != this ) continue;
   297     }
   299     // Make sure this memory op is not already being used for a NullCheck
   300     Node *e = mb->end();
   301     if( e->is_MachNullCheck() && e->in(1) == mach )
   302       continue;                 // Already being used as a NULL check
   304     // Found a candidate!  Pick one with least dom depth - the highest
   305     // in the dom tree should be closest to the null check.
   306     if( !best ||
   307         cfg->_bbs[mach->_idx]->_dom_depth < cfg->_bbs[best->_idx]->_dom_depth ) {
   308       best = mach;
   309       bidx = vidx;
   311     }
   312   }
   313   // No candidate!
   314   if( !best ) return;
   316   // ---- Found an implicit null check
   317   extern int implicit_null_checks;
   318   implicit_null_checks++;
   320   if( is_decoden ) {
   321     // Check if we need to hoist decodeHeapOop_not_null first.
   322     Block *valb = cfg->_bbs[val->_idx];
   323     if( this != valb && this->_dom_depth < valb->_dom_depth ) {
   324       // Hoist it up to the end of the test block.
   325       valb->find_remove(val);
   326       this->add_inst(val);
   327       cfg->_bbs.map(val->_idx,this);
   328       // DecodeN on x86 may kill flags. Check for flag-killing projections
   329       // that also need to be hoisted.
   330       for (DUIterator_Fast jmax, j = val->fast_outs(jmax); j < jmax; j++) {
   331         Node* n = val->fast_out(j);
   332         if( n->is_MachProj() ) {
   333           cfg->_bbs[n->_idx]->find_remove(n);
   334           this->add_inst(n);
   335           cfg->_bbs.map(n->_idx,this);
   336         }
   337       }
   338     }
   339   }
   340   // Hoist the memory candidate up to the end of the test block.
   341   Block *old_block = cfg->_bbs[best->_idx];
   342   old_block->find_remove(best);
   343   add_inst(best);
   344   cfg->_bbs.map(best->_idx,this);
   346   // Move the control dependence
   347   if (best->in(0) && best->in(0) == old_block->_nodes[0])
   348     best->set_req(0, _nodes[0]);
   350   // Check for flag-killing projections that also need to be hoisted
   351   // Should be DU safe because no edge updates.
   352   for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
   353     Node* n = best->fast_out(j);
   354     if( n->is_MachProj() ) {
   355       cfg->_bbs[n->_idx]->find_remove(n);
   356       add_inst(n);
   357       cfg->_bbs.map(n->_idx,this);
   358     }
   359   }
   361   Compile *C = cfg->C;
   362   // proj==Op_True --> ne test; proj==Op_False --> eq test.
   363   // One of two graph shapes got matched:
   364   //   (IfTrue  (If (Bool NE (CmpP ptr NULL))))
   365   //   (IfFalse (If (Bool EQ (CmpP ptr NULL))))
   366   // NULL checks are always branch-if-eq.  If we see a IfTrue projection
   367   // then we are replacing a 'ne' test with a 'eq' NULL check test.
   368   // We need to flip the projections to keep the same semantics.
   369   if( proj->Opcode() == Op_IfTrue ) {
   370     // Swap order of projections in basic block to swap branch targets
   371     Node *tmp1 = _nodes[end_idx()+1];
   372     Node *tmp2 = _nodes[end_idx()+2];
   373     _nodes.map(end_idx()+1, tmp2);
   374     _nodes.map(end_idx()+2, tmp1);
   375     Node *tmp = new (C) Node(C->top()); // Use not NULL input
   376     tmp1->replace_by(tmp);
   377     tmp2->replace_by(tmp1);
   378     tmp->replace_by(tmp2);
   379     tmp->destruct();
   380   }
   382   // Remove the existing null check; use a new implicit null check instead.
   383   // Since schedule-local needs precise def-use info, we need to correct
   384   // it as well.
   385   Node *old_tst = proj->in(0);
   386   MachNode *nul_chk = new (C) MachNullCheckNode(old_tst->in(0),best,bidx);
   387   _nodes.map(end_idx(),nul_chk);
   388   cfg->_bbs.map(nul_chk->_idx,this);
   389   // Redirect users of old_test to nul_chk
   390   for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
   391     old_tst->last_out(i2)->set_req(0, nul_chk);
   392   // Clean-up any dead code
   393   for (uint i3 = 0; i3 < old_tst->req(); i3++)
   394     old_tst->set_req(i3, NULL);
   396   cfg->latency_from_uses(nul_chk);
   397   cfg->latency_from_uses(best);
   398 }
   401 //------------------------------select-----------------------------------------
   402 // Select a nice fellow from the worklist to schedule next. If there is only
   403 // one choice, then use it. Projections take top priority for correctness
   404 // reasons - if I see a projection, then it is next.  There are a number of
   405 // other special cases, for instructions that consume condition codes, et al.
   406 // These are chosen immediately. Some instructions are required to immediately
   407 // precede the last instruction in the block, and these are taken last. Of the
   408 // remaining cases (most), choose the instruction with the greatest latency
   409 // (that is, the most number of pseudo-cycles required to the end of the
   410 // routine). If there is a tie, choose the instruction with the most inputs.
   411 Node *Block::select(PhaseCFG *cfg, Node_List &worklist, GrowableArray<int> &ready_cnt, VectorSet &next_call, uint sched_slot) {
   413   // If only a single entry on the stack, use it
   414   uint cnt = worklist.size();
   415   if (cnt == 1) {
   416     Node *n = worklist[0];
   417     worklist.map(0,worklist.pop());
   418     return n;
   419   }
   421   uint choice  = 0; // Bigger is most important
   422   uint latency = 0; // Bigger is scheduled first
   423   uint score   = 0; // Bigger is better
   424   int idx = -1;     // Index in worklist
   425   int cand_cnt = 0; // Candidate count
   427   for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
   428     // Order in worklist is used to break ties.
   429     // See caller for how this is used to delay scheduling
   430     // of induction variable increments to after the other
   431     // uses of the phi are scheduled.
   432     Node *n = worklist[i];      // Get Node on worklist
   434     int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
   435     if( n->is_Proj() ||         // Projections always win
   436         n->Opcode()== Op_Con || // So does constant 'Top'
   437         iop == Op_CreateEx ||   // Create-exception must start block
   438         iop == Op_CheckCastPP
   439         ) {
   440       worklist.map(i,worklist.pop());
   441       return n;
   442     }
   444     // Final call in a block must be adjacent to 'catch'
   445     Node *e = end();
   446     if( e->is_Catch() && e->in(0)->in(0) == n )
   447       continue;
   449     // Memory op for an implicit null check has to be at the end of the block
   450     if( e->is_MachNullCheck() && e->in(1) == n )
   451       continue;
   453     // Schedule IV increment last.
   454     if (e->is_Mach() && e->as_Mach()->ideal_Opcode() == Op_CountedLoopEnd &&
   455         e->in(1)->in(1) == n && n->is_iteratively_computed())
   456       continue;
   458     uint n_choice  = 2;
   460     // See if this instruction is consumed by a branch. If so, then (as the
   461     // branch is the last instruction in the basic block) force it to the
   462     // end of the basic block
   463     if ( must_clone[iop] ) {
   464       // See if any use is a branch
   465       bool found_machif = false;
   467       for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
   468         Node* use = n->fast_out(j);
   470         // The use is a conditional branch, make them adjacent
   471         if (use->is_MachIf() && cfg->_bbs[use->_idx]==this ) {
   472           found_machif = true;
   473           break;
   474         }
   476         // More than this instruction pending for successor to be ready,
   477         // don't choose this if other opportunities are ready
   478         if (ready_cnt.at(use->_idx) > 1)
   479           n_choice = 1;
   480       }
   482       // loop terminated, prefer not to use this instruction
   483       if (found_machif)
   484         continue;
   485     }
   487     // See if this has a predecessor that is "must_clone", i.e. sets the
   488     // condition code. If so, choose this first
   489     for (uint j = 0; j < n->req() ; j++) {
   490       Node *inn = n->in(j);
   491       if (inn) {
   492         if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
   493           n_choice = 3;
   494           break;
   495         }
   496       }
   497     }
   499     // MachTemps should be scheduled last so they are near their uses
   500     if (n->is_MachTemp()) {
   501       n_choice = 1;
   502     }
   504     uint n_latency = cfg->_node_latency->at_grow(n->_idx);
   505     uint n_score   = n->req();   // Many inputs get high score to break ties
   507     // Keep best latency found
   508     cand_cnt++;
   509     if (choice < n_choice ||
   510         (choice == n_choice &&
   511          ((StressLCM && Compile::randomized_select(cand_cnt)) ||
   512           (!StressLCM &&
   513            (latency < n_latency ||
   514             (latency == n_latency &&
   515              (score < n_score))))))) {
   516       choice  = n_choice;
   517       latency = n_latency;
   518       score   = n_score;
   519       idx     = i;               // Also keep index in worklist
   520     }
   521   } // End of for all ready nodes in worklist
   523   assert(idx >= 0, "index should be set");
   524   Node *n = worklist[(uint)idx];      // Get the winner
   526   worklist.map((uint)idx, worklist.pop());     // Compress worklist
   527   return n;
   528 }
   531 //------------------------------set_next_call----------------------------------
   532 void Block::set_next_call( Node *n, VectorSet &next_call, Block_Array &bbs ) {
   533   if( next_call.test_set(n->_idx) ) return;
   534   for( uint i=0; i<n->len(); i++ ) {
   535     Node *m = n->in(i);
   536     if( !m ) continue;  // must see all nodes in block that precede call
   537     if( bbs[m->_idx] == this )
   538       set_next_call( m, next_call, bbs );
   539   }
   540 }
   542 //------------------------------needed_for_next_call---------------------------
   543 // Set the flag 'next_call' for each Node that is needed for the next call to
   544 // be scheduled.  This flag lets me bias scheduling so Nodes needed for the
   545 // next subroutine call get priority - basically it moves things NOT needed
   546 // for the next call till after the call.  This prevents me from trying to
   547 // carry lots of stuff live across a call.
   548 void Block::needed_for_next_call(Node *this_call, VectorSet &next_call, Block_Array &bbs) {
   549   // Find the next control-defining Node in this block
   550   Node* call = NULL;
   551   for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
   552     Node* m = this_call->fast_out(i);
   553     if( bbs[m->_idx] == this && // Local-block user
   554         m != this_call &&       // Not self-start node
   555         m->is_MachCall() )
   556       call = m;
   557       break;
   558   }
   559   if (call == NULL)  return;    // No next call (e.g., block end is near)
   560   // Set next-call for all inputs to this call
   561   set_next_call(call, next_call, bbs);
   562 }
   564 //------------------------------add_call_kills-------------------------------------
   565 void Block::add_call_kills(MachProjNode *proj, RegMask& regs, const char* save_policy, bool exclude_soe) {
   566   // Fill in the kill mask for the call
   567   for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
   568     if( !regs.Member(r) ) {     // Not already defined by the call
   569       // Save-on-call register?
   570       if ((save_policy[r] == 'C') ||
   571           (save_policy[r] == 'A') ||
   572           ((save_policy[r] == 'E') && exclude_soe)) {
   573         proj->_rout.Insert(r);
   574       }
   575     }
   576   }
   577 }
   580 //------------------------------sched_call-------------------------------------
   581 uint Block::sched_call( Matcher &matcher, Block_Array &bbs, uint node_cnt, Node_List &worklist, GrowableArray<int> &ready_cnt, MachCallNode *mcall, VectorSet &next_call ) {
   582   RegMask regs;
   584   // Schedule all the users of the call right now.  All the users are
   585   // projection Nodes, so they must be scheduled next to the call.
   586   // Collect all the defined registers.
   587   for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
   588     Node* n = mcall->fast_out(i);
   589     assert( n->is_MachProj(), "" );
   590     int n_cnt = ready_cnt.at(n->_idx)-1;
   591     ready_cnt.at_put(n->_idx, n_cnt);
   592     assert( n_cnt == 0, "" );
   593     // Schedule next to call
   594     _nodes.map(node_cnt++, n);
   595     // Collect defined registers
   596     regs.OR(n->out_RegMask());
   597     // Check for scheduling the next control-definer
   598     if( n->bottom_type() == Type::CONTROL )
   599       // Warm up next pile of heuristic bits
   600       needed_for_next_call(n, next_call, bbs);
   602     // Children of projections are now all ready
   603     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
   604       Node* m = n->fast_out(j); // Get user
   605       if( bbs[m->_idx] != this ) continue;
   606       if( m->is_Phi() ) continue;
   607       int m_cnt = ready_cnt.at(m->_idx)-1;
   608       ready_cnt.at_put(m->_idx, m_cnt);
   609       if( m_cnt == 0 )
   610         worklist.push(m);
   611     }
   613   }
   615   // Act as if the call defines the Frame Pointer.
   616   // Certainly the FP is alive and well after the call.
   617   regs.Insert(matcher.c_frame_pointer());
   619   // Set all registers killed and not already defined by the call.
   620   uint r_cnt = mcall->tf()->range()->cnt();
   621   int op = mcall->ideal_Opcode();
   622   MachProjNode *proj = new (matcher.C) MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
   623   bbs.map(proj->_idx,this);
   624   _nodes.insert(node_cnt++, proj);
   626   // Select the right register save policy.
   627   const char * save_policy;
   628   switch (op) {
   629     case Op_CallRuntime:
   630     case Op_CallLeaf:
   631     case Op_CallLeafNoFP:
   632       // Calling C code so use C calling convention
   633       save_policy = matcher._c_reg_save_policy;
   634       break;
   636     case Op_CallStaticJava:
   637     case Op_CallDynamicJava:
   638       // Calling Java code so use Java calling convention
   639       save_policy = matcher._register_save_policy;
   640       break;
   642     default:
   643       ShouldNotReachHere();
   644   }
   646   // When using CallRuntime mark SOE registers as killed by the call
   647   // so values that could show up in the RegisterMap aren't live in a
   648   // callee saved register since the register wouldn't know where to
   649   // find them.  CallLeaf and CallLeafNoFP are ok because they can't
   650   // have debug info on them.  Strictly speaking this only needs to be
   651   // done for oops since idealreg2debugmask takes care of debug info
   652   // references but there no way to handle oops differently than other
   653   // pointers as far as the kill mask goes.
   654   bool exclude_soe = op == Op_CallRuntime;
   656   // If the call is a MethodHandle invoke, we need to exclude the
   657   // register which is used to save the SP value over MH invokes from
   658   // the mask.  Otherwise this register could be used for
   659   // deoptimization information.
   660   if (op == Op_CallStaticJava) {
   661     MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
   662     if (mcallstaticjava->_method_handle_invoke)
   663       proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
   664   }
   666   add_call_kills(proj, regs, save_policy, exclude_soe);
   668   return node_cnt;
   669 }
   672 //------------------------------schedule_local---------------------------------
   673 // Topological sort within a block.  Someday become a real scheduler.
   674 bool Block::schedule_local(PhaseCFG *cfg, Matcher &matcher, GrowableArray<int> &ready_cnt, VectorSet &next_call) {
   675   // Already "sorted" are the block start Node (as the first entry), and
   676   // the block-ending Node and any trailing control projections.  We leave
   677   // these alone.  PhiNodes and ParmNodes are made to follow the block start
   678   // Node.  Everything else gets topo-sorted.
   680 #ifndef PRODUCT
   681     if (cfg->trace_opto_pipelining()) {
   682       tty->print_cr("# --- schedule_local B%d, before: ---", _pre_order);
   683       for (uint i = 0;i < _nodes.size();i++) {
   684         tty->print("# ");
   685         _nodes[i]->fast_dump();
   686       }
   687       tty->print_cr("#");
   688     }
   689 #endif
   691   // RootNode is already sorted
   692   if( _nodes.size() == 1 ) return true;
   694   // Move PhiNodes and ParmNodes from 1 to cnt up to the start
   695   uint node_cnt = end_idx();
   696   uint phi_cnt = 1;
   697   uint i;
   698   for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
   699     Node *n = _nodes[i];
   700     if( n->is_Phi() ||          // Found a PhiNode or ParmNode
   701         (n->is_Proj()  && n->in(0) == head()) ) {
   702       // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
   703       _nodes.map(i,_nodes[phi_cnt]);
   704       _nodes.map(phi_cnt++,n);  // swap Phi/Parm up front
   705     } else {                    // All others
   706       // Count block-local inputs to 'n'
   707       uint cnt = n->len();      // Input count
   708       uint local = 0;
   709       for( uint j=0; j<cnt; j++ ) {
   710         Node *m = n->in(j);
   711         if( m && cfg->_bbs[m->_idx] == this && !m->is_top() )
   712           local++;              // One more block-local input
   713       }
   714       ready_cnt.at_put(n->_idx, local); // Count em up
   716 #ifdef ASSERT
   717       if( UseConcMarkSweepGC || UseG1GC ) {
   718         if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
   719           // Check the precedence edges
   720           for (uint prec = n->req(); prec < n->len(); prec++) {
   721             Node* oop_store = n->in(prec);
   722             if (oop_store != NULL) {
   723               assert(cfg->_bbs[oop_store->_idx]->_dom_depth <= this->_dom_depth, "oop_store must dominate card-mark");
   724             }
   725           }
   726         }
   727       }
   728 #endif
   730       // A few node types require changing a required edge to a precedence edge
   731       // before allocation.
   732       if( n->is_Mach() && n->req() > TypeFunc::Parms &&
   733           (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
   734            n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
   735         // MemBarAcquire could be created without Precedent edge.
   736         // del_req() replaces the specified edge with the last input edge
   737         // and then removes the last edge. If the specified edge > number of
   738         // edges the last edge will be moved outside of the input edges array
   739         // and the edge will be lost. This is why this code should be
   740         // executed only when Precedent (== TypeFunc::Parms) edge is present.
   741         Node *x = n->in(TypeFunc::Parms);
   742         n->del_req(TypeFunc::Parms);
   743         n->add_prec(x);
   744       }
   745     }
   746   }
   747   for(uint i2=i; i2<_nodes.size(); i2++ ) // Trailing guys get zapped count
   748     ready_cnt.at_put(_nodes[i2]->_idx, 0);
   750   // All the prescheduled guys do not hold back internal nodes
   751   uint i3;
   752   for(i3 = 0; i3<phi_cnt; i3++ ) {  // For all pre-scheduled
   753     Node *n = _nodes[i3];       // Get pre-scheduled
   754     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
   755       Node* m = n->fast_out(j);
   756       if( cfg->_bbs[m->_idx] ==this ) { // Local-block user
   757         int m_cnt = ready_cnt.at(m->_idx)-1;
   758         ready_cnt.at_put(m->_idx, m_cnt);   // Fix ready count
   759       }
   760     }
   761   }
   763   Node_List delay;
   764   // Make a worklist
   765   Node_List worklist;
   766   for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
   767     Node *m = _nodes[i4];
   768     if( !ready_cnt.at(m->_idx) ) {   // Zero ready count?
   769       if (m->is_iteratively_computed()) {
   770         // Push induction variable increments last to allow other uses
   771         // of the phi to be scheduled first. The select() method breaks
   772         // ties in scheduling by worklist order.
   773         delay.push(m);
   774       } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
   775         // Force the CreateEx to the top of the list so it's processed
   776         // first and ends up at the start of the block.
   777         worklist.insert(0, m);
   778       } else {
   779         worklist.push(m);         // Then on to worklist!
   780       }
   781     }
   782   }
   783   while (delay.size()) {
   784     Node* d = delay.pop();
   785     worklist.push(d);
   786   }
   788   // Warm up the 'next_call' heuristic bits
   789   needed_for_next_call(_nodes[0], next_call, cfg->_bbs);
   791 #ifndef PRODUCT
   792     if (cfg->trace_opto_pipelining()) {
   793       for (uint j=0; j<_nodes.size(); j++) {
   794         Node     *n = _nodes[j];
   795         int     idx = n->_idx;
   796         tty->print("#   ready cnt:%3d  ", ready_cnt.at(idx));
   797         tty->print("latency:%3d  ", cfg->_node_latency->at_grow(idx));
   798         tty->print("%4d: %s\n", idx, n->Name());
   799       }
   800     }
   801 #endif
   803   uint max_idx = (uint)ready_cnt.length();
   804   // Pull from worklist and schedule
   805   while( worklist.size() ) {    // Worklist is not ready
   807 #ifndef PRODUCT
   808     if (cfg->trace_opto_pipelining()) {
   809       tty->print("#   ready list:");
   810       for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
   811         Node *n = worklist[i];      // Get Node on worklist
   812         tty->print(" %d", n->_idx);
   813       }
   814       tty->cr();
   815     }
   816 #endif
   818     // Select and pop a ready guy from worklist
   819     Node* n = select(cfg, worklist, ready_cnt, next_call, phi_cnt);
   820     _nodes.map(phi_cnt++,n);    // Schedule him next
   822 #ifndef PRODUCT
   823     if (cfg->trace_opto_pipelining()) {
   824       tty->print("#    select %d: %s", n->_idx, n->Name());
   825       tty->print(", latency:%d", cfg->_node_latency->at_grow(n->_idx));
   826       n->dump();
   827       if (Verbose) {
   828         tty->print("#   ready list:");
   829         for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
   830           Node *n = worklist[i];      // Get Node on worklist
   831           tty->print(" %d", n->_idx);
   832         }
   833         tty->cr();
   834       }
   835     }
   837 #endif
   838     if( n->is_MachCall() ) {
   839       MachCallNode *mcall = n->as_MachCall();
   840       phi_cnt = sched_call(matcher, cfg->_bbs, phi_cnt, worklist, ready_cnt, mcall, next_call);
   841       continue;
   842     }
   844     if (n->is_Mach() && n->as_Mach()->has_call()) {
   845       RegMask regs;
   846       regs.Insert(matcher.c_frame_pointer());
   847       regs.OR(n->out_RegMask());
   849       MachProjNode *proj = new (matcher.C) MachProjNode( n, 1, RegMask::Empty, MachProjNode::fat_proj );
   850       cfg->_bbs.map(proj->_idx,this);
   851       _nodes.insert(phi_cnt++, proj);
   853       add_call_kills(proj, regs, matcher._c_reg_save_policy, false);
   854     }
   856     // Children are now all ready
   857     for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
   858       Node* m = n->fast_out(i5); // Get user
   859       if( cfg->_bbs[m->_idx] != this ) continue;
   860       if( m->is_Phi() ) continue;
   861       if (m->_idx >= max_idx) { // new node, skip it
   862         assert(m->is_MachProj() && n->is_Mach() && n->as_Mach()->has_call(), "unexpected node types");
   863         continue;
   864       }
   865       int m_cnt = ready_cnt.at(m->_idx)-1;
   866       ready_cnt.at_put(m->_idx, m_cnt);
   867       if( m_cnt == 0 )
   868         worklist.push(m);
   869     }
   870   }
   872   if( phi_cnt != end_idx() ) {
   873     // did not schedule all.  Retry, Bailout, or Die
   874     Compile* C = matcher.C;
   875     if (C->subsume_loads() == true && !C->failing()) {
   876       // Retry with subsume_loads == false
   877       // If this is the first failure, the sentinel string will "stick"
   878       // to the Compile object, and the C2Compiler will see it and retry.
   879       C->record_failure(C2Compiler::retry_no_subsuming_loads());
   880     }
   881     // assert( phi_cnt == end_idx(), "did not schedule all" );
   882     return false;
   883   }
   885 #ifndef PRODUCT
   886   if (cfg->trace_opto_pipelining()) {
   887     tty->print_cr("#");
   888     tty->print_cr("# after schedule_local");
   889     for (uint i = 0;i < _nodes.size();i++) {
   890       tty->print("# ");
   891       _nodes[i]->fast_dump();
   892     }
   893     tty->cr();
   894   }
   895 #endif
   898   return true;
   899 }
   901 //--------------------------catch_cleanup_fix_all_inputs-----------------------
   902 static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
   903   for (uint l = 0; l < use->len(); l++) {
   904     if (use->in(l) == old_def) {
   905       if (l < use->req()) {
   906         use->set_req(l, new_def);
   907       } else {
   908         use->rm_prec(l);
   909         use->add_prec(new_def);
   910         l--;
   911       }
   912     }
   913   }
   914 }
   916 //------------------------------catch_cleanup_find_cloned_def------------------
   917 static Node *catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
   918   assert( use_blk != def_blk, "Inter-block cleanup only");
   920   // The use is some block below the Catch.  Find and return the clone of the def
   921   // that dominates the use. If there is no clone in a dominating block, then
   922   // create a phi for the def in a dominating block.
   924   // Find which successor block dominates this use.  The successor
   925   // blocks must all be single-entry (from the Catch only; I will have
   926   // split blocks to make this so), hence they all dominate.
   927   while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
   928     use_blk = use_blk->_idom;
   930   // Find the successor
   931   Node *fixup = NULL;
   933   uint j;
   934   for( j = 0; j < def_blk->_num_succs; j++ )
   935     if( use_blk == def_blk->_succs[j] )
   936       break;
   938   if( j == def_blk->_num_succs ) {
   939     // Block at same level in dom-tree is not a successor.  It needs a
   940     // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
   941     Node_Array inputs = new Node_List(Thread::current()->resource_area());
   942     for(uint k = 1; k < use_blk->num_preds(); k++) {
   943       inputs.map(k, catch_cleanup_find_cloned_def(bbs[use_blk->pred(k)->_idx], def, def_blk, bbs, n_clone_idx));
   944     }
   946     // Check to see if the use_blk already has an identical phi inserted.
   947     // If it exists, it will be at the first position since all uses of a
   948     // def are processed together.
   949     Node *phi = use_blk->_nodes[1];
   950     if( phi->is_Phi() ) {
   951       fixup = phi;
   952       for (uint k = 1; k < use_blk->num_preds(); k++) {
   953         if (phi->in(k) != inputs[k]) {
   954           // Not a match
   955           fixup = NULL;
   956           break;
   957         }
   958       }
   959     }
   961     // If an existing PhiNode was not found, make a new one.
   962     if (fixup == NULL) {
   963       Node *new_phi = PhiNode::make(use_blk->head(), def);
   964       use_blk->_nodes.insert(1, new_phi);
   965       bbs.map(new_phi->_idx, use_blk);
   966       for (uint k = 1; k < use_blk->num_preds(); k++) {
   967         new_phi->set_req(k, inputs[k]);
   968       }
   969       fixup = new_phi;
   970     }
   972   } else {
   973     // Found the use just below the Catch.  Make it use the clone.
   974     fixup = use_blk->_nodes[n_clone_idx];
   975   }
   977   return fixup;
   978 }
   980 //--------------------------catch_cleanup_intra_block--------------------------
   981 // Fix all input edges in use that reference "def".  The use is in the same
   982 // block as the def and both have been cloned in each successor block.
   983 static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
   985   // Both the use and def have been cloned. For each successor block,
   986   // get the clone of the use, and make its input the clone of the def
   987   // found in that block.
   989   uint use_idx = blk->find_node(use);
   990   uint offset_idx = use_idx - beg;
   991   for( uint k = 0; k < blk->_num_succs; k++ ) {
   992     // Get clone in each successor block
   993     Block *sb = blk->_succs[k];
   994     Node *clone = sb->_nodes[offset_idx+1];
   995     assert( clone->Opcode() == use->Opcode(), "" );
   997     // Make use-clone reference the def-clone
   998     catch_cleanup_fix_all_inputs(clone, def, sb->_nodes[n_clone_idx]);
   999   }
  1002 //------------------------------catch_cleanup_inter_block---------------------
  1003 // Fix all input edges in use that reference "def".  The use is in a different
  1004 // block than the def.
  1005 static void catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
  1006   if( !use_blk ) return;        // Can happen if the use is a precedence edge
  1008   Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, bbs, n_clone_idx);
  1009   catch_cleanup_fix_all_inputs(use, def, new_def);
  1012 //------------------------------call_catch_cleanup-----------------------------
  1013 // If we inserted any instructions between a Call and his CatchNode,
  1014 // clone the instructions on all paths below the Catch.
  1015 void Block::call_catch_cleanup(Block_Array &bbs, Compile* C) {
  1017   // End of region to clone
  1018   uint end = end_idx();
  1019   if( !_nodes[end]->is_Catch() ) return;
  1020   // Start of region to clone
  1021   uint beg = end;
  1022   while(!_nodes[beg-1]->is_MachProj() ||
  1023         !_nodes[beg-1]->in(0)->is_MachCall() ) {
  1024     beg--;
  1025     assert(beg > 0,"Catch cleanup walking beyond block boundary");
  1027   // Range of inserted instructions is [beg, end)
  1028   if( beg == end ) return;
  1030   // Clone along all Catch output paths.  Clone area between the 'beg' and
  1031   // 'end' indices.
  1032   for( uint i = 0; i < _num_succs; i++ ) {
  1033     Block *sb = _succs[i];
  1034     // Clone the entire area; ignoring the edge fixup for now.
  1035     for( uint j = end; j > beg; j-- ) {
  1036       // It is safe here to clone a node with anti_dependence
  1037       // since clones dominate on each path.
  1038       Node *clone = _nodes[j-1]->clone();
  1039       sb->_nodes.insert( 1, clone );
  1040       bbs.map(clone->_idx,sb);
  1045   // Fixup edges.  Check the def-use info per cloned Node
  1046   for(uint i2 = beg; i2 < end; i2++ ) {
  1047     uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
  1048     Node *n = _nodes[i2];        // Node that got cloned
  1049     // Need DU safe iterator because of edge manipulation in calls.
  1050     Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area());
  1051     for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
  1052       out->push(n->fast_out(j1));
  1054     uint max = out->size();
  1055     for (uint j = 0; j < max; j++) {// For all users
  1056       Node *use = out->pop();
  1057       Block *buse = bbs[use->_idx];
  1058       if( use->is_Phi() ) {
  1059         for( uint k = 1; k < use->req(); k++ )
  1060           if( use->in(k) == n ) {
  1061             Node *fixup = catch_cleanup_find_cloned_def(bbs[buse->pred(k)->_idx], n, this, bbs, n_clone_idx);
  1062             use->set_req(k, fixup);
  1064       } else {
  1065         if (this == buse) {
  1066           catch_cleanup_intra_block(use, n, this, beg, n_clone_idx);
  1067         } else {
  1068           catch_cleanup_inter_block(use, buse, n, this, bbs, n_clone_idx);
  1071     } // End for all users
  1073   } // End of for all Nodes in cloned area
  1075   // Remove the now-dead cloned ops
  1076   for(uint i3 = beg; i3 < end; i3++ ) {
  1077     _nodes[beg]->disconnect_inputs(NULL, C);
  1078     _nodes.remove(beg);
  1081   // If the successor blocks have a CreateEx node, move it back to the top
  1082   for(uint i4 = 0; i4 < _num_succs; i4++ ) {
  1083     Block *sb = _succs[i4];
  1084     uint new_cnt = end - beg;
  1085     // Remove any newly created, but dead, nodes.
  1086     for( uint j = new_cnt; j > 0; j-- ) {
  1087       Node *n = sb->_nodes[j];
  1088       if (n->outcnt() == 0 &&
  1089           (!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){
  1090         n->disconnect_inputs(NULL, C);
  1091         sb->_nodes.remove(j);
  1092         new_cnt--;
  1095     // If any newly created nodes remain, move the CreateEx node to the top
  1096     if (new_cnt > 0) {
  1097       Node *cex = sb->_nodes[1+new_cnt];
  1098       if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
  1099         sb->_nodes.remove(1+new_cnt);
  1100         sb->_nodes.insert(1,cex);

mercurial