src/share/vm/opto/domgraph.cpp

Mon, 27 May 2013 12:56:34 +0200

author
stefank
date
Mon, 27 May 2013 12:56:34 +0200
changeset 5195
95c00927be11
parent 4153
b9a9ed0f8eeb
child 5509
d1034bd8cefc
permissions
-rw-r--r--

8015428: Remove unused CDS support from StringTable
Summary: The string in StringTable is not used by CDS anymore. Remove the unnecessary code in preparation for 8015422: Large performance hit when the StringTable is walked twice in Parallel Scavenge
Reviewed-by: pliden, tschatzl, coleenp

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "libadt/vectset.hpp"
    27 #include "memory/allocation.hpp"
    28 #include "opto/block.hpp"
    29 #include "opto/machnode.hpp"
    30 #include "opto/phaseX.hpp"
    31 #include "opto/rootnode.hpp"
    33 // Portions of code courtesy of Clifford Click
    35 // Optimization - Graph Style
    37 //------------------------------Tarjan-----------------------------------------
    38 // A data structure that holds all the information needed to find dominators.
    39 struct Tarjan {
    40   Block *_block;                // Basic block for this info
    42   uint _semi;                   // Semi-dominators
    43   uint _size;                   // Used for faster LINK and EVAL
    44   Tarjan *_parent;              // Parent in DFS
    45   Tarjan *_label;               // Used for LINK and EVAL
    46   Tarjan *_ancestor;            // Used for LINK and EVAL
    47   Tarjan *_child;               // Used for faster LINK and EVAL
    48   Tarjan *_dom;                 // Parent in dominator tree (immediate dom)
    49   Tarjan *_bucket;              // Set of vertices with given semidominator
    51   Tarjan *_dom_child;           // Child in dominator tree
    52   Tarjan *_dom_next;            // Next in dominator tree
    54   // Fast union-find work
    55   void COMPRESS();
    56   Tarjan *EVAL(void);
    57   void LINK( Tarjan *w, Tarjan *tarjan0 );
    59   void setdepth( uint size );
    61 };
    63 //------------------------------Dominator--------------------------------------
    64 // Compute the dominator tree of the CFG.  The CFG must already have been
    65 // constructed.  This is the Lengauer & Tarjan O(E-alpha(E,V)) algorithm.
    66 void PhaseCFG::Dominators( ) {
    67   // Pre-grow the blocks array, prior to the ResourceMark kicking in
    68   _blocks.map(_num_blocks,0);
    70   ResourceMark rm;
    71   // Setup mappings from my Graph to Tarjan's stuff and back
    72   // Note: Tarjan uses 1-based arrays
    73   Tarjan *tarjan = NEW_RESOURCE_ARRAY(Tarjan,_num_blocks+1);
    75   // Tarjan's algorithm, almost verbatim:
    76   // Step 1:
    77   _rpo_ctr = _num_blocks;
    78   uint dfsnum = DFS( tarjan );
    79   if( dfsnum-1 != _num_blocks ) {// Check for unreachable loops!
    80     // If the returned dfsnum does not match the number of blocks, then we
    81     // must have some unreachable loops.  These can be made at any time by
    82     // IterGVN.  They are cleaned up by CCP or the loop opts, but the last
    83     // IterGVN can always make more that are not cleaned up.  Highly unlikely
    84     // except in ZKM.jar, where endless irreducible loops cause the loop opts
    85     // to not get run.
    86     //
    87     // Having found unreachable loops, we have made a bad RPO _block layout.
    88     // We can re-run the above DFS pass with the correct number of blocks,
    89     // and hack the Tarjan algorithm below to be robust in the presence of
    90     // such dead loops (as was done for the NTarjan code farther below).
    91     // Since this situation is so unlikely, instead I've decided to bail out.
    92     // CNC 7/24/2001
    93     C->record_method_not_compilable("unreachable loop");
    94     return;
    95   }
    96   _blocks._cnt = _num_blocks;
    98   // Tarjan is using 1-based arrays, so these are some initialize flags
    99   tarjan[0]._size = tarjan[0]._semi = 0;
   100   tarjan[0]._label = &tarjan[0];
   102   uint i;
   103   for( i=_num_blocks; i>=2; i-- ) { // For all vertices in DFS order
   104     Tarjan *w = &tarjan[i];     // Get vertex from DFS
   106     // Step 2:
   107     Node *whead = w->_block->head();
   108     for( uint j=1; j < whead->req(); j++ ) {
   109       Block *b = _bbs[whead->in(j)->_idx];
   110       Tarjan *vx = &tarjan[b->_pre_order];
   111       Tarjan *u = vx->EVAL();
   112       if( u->_semi < w->_semi )
   113         w->_semi = u->_semi;
   114     }
   116     // w is added to a bucket here, and only here.
   117     // Thus w is in at most one bucket and the sum of all bucket sizes is O(n).
   118     // Thus bucket can be a linked list.
   119     // Thus we do not need a small integer name for each Block.
   120     w->_bucket = tarjan[w->_semi]._bucket;
   121     tarjan[w->_semi]._bucket = w;
   123     w->_parent->LINK( w, &tarjan[0] );
   125     // Step 3:
   126     for( Tarjan *vx = w->_parent->_bucket; vx; vx = vx->_bucket ) {
   127       Tarjan *u = vx->EVAL();
   128       vx->_dom = (u->_semi < vx->_semi) ? u : w->_parent;
   129     }
   130   }
   132   // Step 4:
   133   for( i=2; i <= _num_blocks; i++ ) {
   134     Tarjan *w = &tarjan[i];
   135     if( w->_dom != &tarjan[w->_semi] )
   136       w->_dom = w->_dom->_dom;
   137     w->_dom_next = w->_dom_child = NULL;  // Initialize for building tree later
   138   }
   139   // No immediate dominator for the root
   140   Tarjan *w = &tarjan[_broot->_pre_order];
   141   w->_dom = NULL;
   142   w->_dom_next = w->_dom_child = NULL;  // Initialize for building tree later
   144   // Convert the dominator tree array into my kind of graph
   145   for( i=1; i<=_num_blocks;i++){// For all Tarjan vertices
   146     Tarjan *t = &tarjan[i];     // Handy access
   147     Tarjan *tdom = t->_dom;     // Handy access to immediate dominator
   148     if( tdom )  {               // Root has no immediate dominator
   149       t->_block->_idom = tdom->_block; // Set immediate dominator
   150       t->_dom_next = tdom->_dom_child; // Make me a sibling of parent's child
   151       tdom->_dom_child = t;     // Make me a child of my parent
   152     } else
   153       t->_block->_idom = NULL;  // Root
   154   }
   155   w->setdepth( _num_blocks+1 ); // Set depth in dominator tree
   157 }
   159 //----------------------------Block_Stack--------------------------------------
   160 class Block_Stack {
   161   private:
   162     struct Block_Descr {
   163       Block  *block;     // Block
   164       int    index;      // Index of block's successor pushed on stack
   165       int    freq_idx;   // Index of block's most frequent successor
   166     };
   167     Block_Descr *_stack_top;
   168     Block_Descr *_stack_max;
   169     Block_Descr *_stack;
   170     Tarjan *_tarjan;
   171     uint most_frequent_successor( Block *b );
   172   public:
   173     Block_Stack(Tarjan *tarjan, int size) : _tarjan(tarjan) {
   174       _stack = NEW_RESOURCE_ARRAY(Block_Descr, size);
   175       _stack_max = _stack + size;
   176       _stack_top = _stack - 1; // stack is empty
   177     }
   178     void push(uint pre_order, Block *b) {
   179       Tarjan *t = &_tarjan[pre_order]; // Fast local access
   180       b->_pre_order = pre_order;    // Flag as visited
   181       t->_block = b;                // Save actual block
   182       t->_semi = pre_order;         // Block to DFS map
   183       t->_label = t;                // DFS to vertex map
   184       t->_ancestor = NULL;          // Fast LINK & EVAL setup
   185       t->_child = &_tarjan[0];      // Sentenial
   186       t->_size = 1;
   187       t->_bucket = NULL;
   188       if (pre_order == 1)
   189         t->_parent = NULL;          // first block doesn't have parent
   190       else {
   191         // Save parent (current top block on stack) in DFS
   192         t->_parent = &_tarjan[_stack_top->block->_pre_order];
   193       }
   194       // Now put this block on stack
   195       ++_stack_top;
   196       assert(_stack_top < _stack_max, ""); // assert if stack have to grow
   197       _stack_top->block  = b;
   198       _stack_top->index  = -1;
   199       // Find the index into b->succs[] array of the most frequent successor.
   200       _stack_top->freq_idx = most_frequent_successor(b); // freq_idx >= 0
   201     }
   202     Block* pop() { Block* b = _stack_top->block; _stack_top--; return b; }
   203     bool is_nonempty() { return (_stack_top >= _stack); }
   204     bool last_successor() { return (_stack_top->index == _stack_top->freq_idx); }
   205     Block* next_successor()  {
   206       int i = _stack_top->index;
   207       i++;
   208       if (i == _stack_top->freq_idx) i++;
   209       if (i >= (int)(_stack_top->block->_num_succs)) {
   210         i = _stack_top->freq_idx;   // process most frequent successor last
   211       }
   212       _stack_top->index = i;
   213       return _stack_top->block->_succs[ i ];
   214     }
   215 };
   217 //-------------------------most_frequent_successor-----------------------------
   218 // Find the index into the b->succs[] array of the most frequent successor.
   219 uint Block_Stack::most_frequent_successor( Block *b ) {
   220   uint freq_idx = 0;
   221   int eidx = b->end_idx();
   222   Node *n = b->_nodes[eidx];
   223   int op = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : n->Opcode();
   224   switch( op ) {
   225   case Op_CountedLoopEnd:
   226   case Op_If: {               // Split frequency amongst children
   227     float prob = n->as_MachIf()->_prob;
   228     // Is succ[0] the TRUE branch or the FALSE branch?
   229     if( b->_nodes[eidx+1]->Opcode() == Op_IfFalse )
   230       prob = 1.0f - prob;
   231     freq_idx = prob < PROB_FAIR;      // freq=1 for succ[0] < 0.5 prob
   232     break;
   233   }
   234   case Op_Catch:                // Split frequency amongst children
   235     for( freq_idx = 0; freq_idx < b->_num_succs; freq_idx++ )
   236       if( b->_nodes[eidx+1+freq_idx]->as_CatchProj()->_con == CatchProjNode::fall_through_index )
   237         break;
   238     // Handle case of no fall-thru (e.g., check-cast MUST throw an exception)
   239     if( freq_idx == b->_num_succs ) freq_idx = 0;
   240     break;
   241     // Currently there is no support for finding out the most
   242     // frequent successor for jumps, so lets just make it the first one
   243   case Op_Jump:
   244   case Op_Root:
   245   case Op_Goto:
   246   case Op_NeverBranch:
   247     freq_idx = 0;               // fall thru
   248     break;
   249   case Op_TailCall:
   250   case Op_TailJump:
   251   case Op_Return:
   252   case Op_Halt:
   253   case Op_Rethrow:
   254     break;
   255   default:
   256     ShouldNotReachHere();
   257   }
   258   return freq_idx;
   259 }
   261 //------------------------------DFS--------------------------------------------
   262 // Perform DFS search.  Setup 'vertex' as DFS to vertex mapping.  Setup
   263 // 'semi' as vertex to DFS mapping.  Set 'parent' to DFS parent.
   264 uint PhaseCFG::DFS( Tarjan *tarjan ) {
   265   Block *b = _broot;
   266   uint pre_order = 1;
   267   // Allocate stack of size _num_blocks+1 to avoid frequent realloc
   268   Block_Stack bstack(tarjan, _num_blocks+1);
   270   // Push on stack the state for the first block
   271   bstack.push(pre_order, b);
   272   ++pre_order;
   274   while (bstack.is_nonempty()) {
   275     if (!bstack.last_successor()) {
   276       // Walk over all successors in pre-order (DFS).
   277       Block *s = bstack.next_successor();
   278       if (s->_pre_order == 0) { // Check for no-pre-order, not-visited
   279         // Push on stack the state of successor
   280         bstack.push(pre_order, s);
   281         ++pre_order;
   282       }
   283     }
   284     else {
   285       // Build a reverse post-order in the CFG _blocks array
   286       Block *stack_top = bstack.pop();
   287       stack_top->_rpo = --_rpo_ctr;
   288       _blocks.map(stack_top->_rpo, stack_top);
   289     }
   290   }
   291   return pre_order;
   292 }
   294 //------------------------------COMPRESS---------------------------------------
   295 void Tarjan::COMPRESS()
   296 {
   297   assert( _ancestor != 0, "" );
   298   if( _ancestor->_ancestor != 0 ) {
   299     _ancestor->COMPRESS( );
   300     if( _ancestor->_label->_semi < _label->_semi )
   301       _label = _ancestor->_label;
   302     _ancestor = _ancestor->_ancestor;
   303   }
   304 }
   306 //------------------------------EVAL-------------------------------------------
   307 Tarjan *Tarjan::EVAL() {
   308   if( !_ancestor ) return _label;
   309   COMPRESS();
   310   return (_ancestor->_label->_semi >= _label->_semi) ? _label : _ancestor->_label;
   311 }
   313 //------------------------------LINK-------------------------------------------
   314 void Tarjan::LINK( Tarjan *w, Tarjan *tarjan0 ) {
   315   Tarjan *s = w;
   316   while( w->_label->_semi < s->_child->_label->_semi ) {
   317     if( s->_size + s->_child->_child->_size >= (s->_child->_size << 1) ) {
   318       s->_child->_ancestor = s;
   319       s->_child = s->_child->_child;
   320     } else {
   321       s->_child->_size = s->_size;
   322       s = s->_ancestor = s->_child;
   323     }
   324   }
   325   s->_label = w->_label;
   326   _size += w->_size;
   327   if( _size < (w->_size << 1) ) {
   328     Tarjan *tmp = s; s = _child; _child = tmp;
   329   }
   330   while( s != tarjan0 ) {
   331     s->_ancestor = this;
   332     s = s->_child;
   333   }
   334 }
   336 //------------------------------setdepth---------------------------------------
   337 void Tarjan::setdepth( uint stack_size ) {
   338   Tarjan **top  = NEW_RESOURCE_ARRAY(Tarjan*, stack_size);
   339   Tarjan **next = top;
   340   Tarjan **last;
   341   uint depth = 0;
   342   *top = this;
   343   ++top;
   344   do {
   345     // next level
   346     ++depth;
   347     last = top;
   348     do {
   349       // Set current depth for all tarjans on this level
   350       Tarjan *t = *next;     // next tarjan from stack
   351       ++next;
   352       do {
   353         t->_block->_dom_depth = depth; // Set depth in dominator tree
   354         Tarjan *dom_child = t->_dom_child;
   355         t = t->_dom_next;    // next tarjan
   356         if (dom_child != NULL) {
   357           *top = dom_child;  // save child on stack
   358           ++top;
   359         }
   360       } while (t != NULL);
   361     } while (next < last);
   362   } while (last < top);
   363 }
   365 //*********************** DOMINATORS ON THE SEA OF NODES***********************
   366 //------------------------------NTarjan----------------------------------------
   367 // A data structure that holds all the information needed to find dominators.
   368 struct NTarjan {
   369   Node *_control;               // Control node associated with this info
   371   uint _semi;                   // Semi-dominators
   372   uint _size;                   // Used for faster LINK and EVAL
   373   NTarjan *_parent;             // Parent in DFS
   374   NTarjan *_label;              // Used for LINK and EVAL
   375   NTarjan *_ancestor;           // Used for LINK and EVAL
   376   NTarjan *_child;              // Used for faster LINK and EVAL
   377   NTarjan *_dom;                // Parent in dominator tree (immediate dom)
   378   NTarjan *_bucket;             // Set of vertices with given semidominator
   380   NTarjan *_dom_child;          // Child in dominator tree
   381   NTarjan *_dom_next;           // Next in dominator tree
   383   // Perform DFS search.
   384   // Setup 'vertex' as DFS to vertex mapping.
   385   // Setup 'semi' as vertex to DFS mapping.
   386   // Set 'parent' to DFS parent.
   387   static int DFS( NTarjan *ntarjan, VectorSet &visited, PhaseIdealLoop *pil, uint *dfsorder );
   388   void setdepth( uint size, uint *dom_depth );
   390   // Fast union-find work
   391   void COMPRESS();
   392   NTarjan *EVAL(void);
   393   void LINK( NTarjan *w, NTarjan *ntarjan0 );
   394 #ifndef PRODUCT
   395   void dump(int offset) const;
   396 #endif
   397 };
   399 //------------------------------Dominator--------------------------------------
   400 // Compute the dominator tree of the sea of nodes.  This version walks all CFG
   401 // nodes (using the is_CFG() call) and places them in a dominator tree.  Thus,
   402 // it needs a count of the CFG nodes for the mapping table. This is the
   403 // Lengauer & Tarjan O(E-alpha(E,V)) algorithm.
   404 void PhaseIdealLoop::Dominators() {
   405   ResourceMark rm;
   406   // Setup mappings from my Graph to Tarjan's stuff and back
   407   // Note: Tarjan uses 1-based arrays
   408   NTarjan *ntarjan = NEW_RESOURCE_ARRAY(NTarjan,C->unique()+1);
   409   // Initialize _control field for fast reference
   410   int i;
   411   for( i= C->unique()-1; i>=0; i-- )
   412     ntarjan[i]._control = NULL;
   414   // Store the DFS order for the main loop
   415   uint *dfsorder = NEW_RESOURCE_ARRAY(uint,C->unique()+1);
   416   memset(dfsorder, max_uint, (C->unique()+1) * sizeof(uint));
   418   // Tarjan's algorithm, almost verbatim:
   419   // Step 1:
   420   VectorSet visited(Thread::current()->resource_area());
   421   int dfsnum = NTarjan::DFS( ntarjan, visited, this, dfsorder);
   423   // Tarjan is using 1-based arrays, so these are some initialize flags
   424   ntarjan[0]._size = ntarjan[0]._semi = 0;
   425   ntarjan[0]._label = &ntarjan[0];
   427   for( i = dfsnum-1; i>1; i-- ) {        // For all nodes in reverse DFS order
   428     NTarjan *w = &ntarjan[i];            // Get Node from DFS
   429     assert(w->_control != NULL,"bad DFS walk");
   431     // Step 2:
   432     Node *whead = w->_control;
   433     for( uint j=0; j < whead->req(); j++ ) { // For each predecessor
   434       if( whead->in(j) == NULL || !whead->in(j)->is_CFG() )
   435         continue;                            // Only process control nodes
   436       uint b = dfsorder[whead->in(j)->_idx];
   437       if(b == max_uint) continue;
   438       NTarjan *vx = &ntarjan[b];
   439       NTarjan *u = vx->EVAL();
   440       if( u->_semi < w->_semi )
   441         w->_semi = u->_semi;
   442     }
   444     // w is added to a bucket here, and only here.
   445     // Thus w is in at most one bucket and the sum of all bucket sizes is O(n).
   446     // Thus bucket can be a linked list.
   447     w->_bucket = ntarjan[w->_semi]._bucket;
   448     ntarjan[w->_semi]._bucket = w;
   450     w->_parent->LINK( w, &ntarjan[0] );
   452     // Step 3:
   453     for( NTarjan *vx = w->_parent->_bucket; vx; vx = vx->_bucket ) {
   454       NTarjan *u = vx->EVAL();
   455       vx->_dom = (u->_semi < vx->_semi) ? u : w->_parent;
   456     }
   458     // Cleanup any unreachable loops now.  Unreachable loops are loops that
   459     // flow into the main graph (and hence into ROOT) but are not reachable
   460     // from above.  Such code is dead, but requires a global pass to detect
   461     // it; this global pass was the 'build_loop_tree' pass run just prior.
   462     if( !_verify_only && whead->is_Region() ) {
   463       for( uint i = 1; i < whead->req(); i++ ) {
   464         if (!has_node(whead->in(i))) {
   465           // Kill dead input path
   466           assert( !visited.test(whead->in(i)->_idx),
   467                   "input with no loop must be dead" );
   468           _igvn.delete_input_of(whead, i);
   469           for (DUIterator_Fast jmax, j = whead->fast_outs(jmax); j < jmax; j++) {
   470             Node* p = whead->fast_out(j);
   471             if( p->is_Phi() ) {
   472               _igvn.delete_input_of(p, i);
   473             }
   474           }
   475           i--;                  // Rerun same iteration
   476         } // End of if dead input path
   477       } // End of for all input paths
   478     } // End if if whead is a Region
   479   } // End of for all Nodes in reverse DFS order
   481   // Step 4:
   482   for( i=2; i < dfsnum; i++ ) { // DFS order
   483     NTarjan *w = &ntarjan[i];
   484     assert(w->_control != NULL,"Bad DFS walk");
   485     if( w->_dom != &ntarjan[w->_semi] )
   486       w->_dom = w->_dom->_dom;
   487     w->_dom_next = w->_dom_child = NULL;  // Initialize for building tree later
   488   }
   489   // No immediate dominator for the root
   490   NTarjan *w = &ntarjan[dfsorder[C->root()->_idx]];
   491   w->_dom = NULL;
   492   w->_parent = NULL;
   493   w->_dom_next = w->_dom_child = NULL;  // Initialize for building tree later
   495   // Convert the dominator tree array into my kind of graph
   496   for( i=1; i<dfsnum; i++ ) {          // For all Tarjan vertices
   497     NTarjan *t = &ntarjan[i];          // Handy access
   498     assert(t->_control != NULL,"Bad DFS walk");
   499     NTarjan *tdom = t->_dom;           // Handy access to immediate dominator
   500     if( tdom )  {                      // Root has no immediate dominator
   501       _idom[t->_control->_idx] = tdom->_control; // Set immediate dominator
   502       t->_dom_next = tdom->_dom_child; // Make me a sibling of parent's child
   503       tdom->_dom_child = t;            // Make me a child of my parent
   504     } else
   505       _idom[C->root()->_idx] = NULL; // Root
   506   }
   507   w->setdepth( C->unique()+1, _dom_depth ); // Set depth in dominator tree
   508   // Pick up the 'top' node as well
   509   _idom     [C->top()->_idx] = C->root();
   510   _dom_depth[C->top()->_idx] = 1;
   512   // Debug Print of Dominator tree
   513   if( PrintDominators ) {
   514 #ifndef PRODUCT
   515     w->dump(0);
   516 #endif
   517   }
   518 }
   520 //------------------------------DFS--------------------------------------------
   521 // Perform DFS search.  Setup 'vertex' as DFS to vertex mapping.  Setup
   522 // 'semi' as vertex to DFS mapping.  Set 'parent' to DFS parent.
   523 int NTarjan::DFS( NTarjan *ntarjan, VectorSet &visited, PhaseIdealLoop *pil, uint *dfsorder) {
   524   // Allocate stack of size C->unique()/8 to avoid frequent realloc
   525   GrowableArray <Node *> dfstack(pil->C->unique() >> 3);
   526   Node *b = pil->C->root();
   527   int dfsnum = 1;
   528   dfsorder[b->_idx] = dfsnum; // Cache parent's dfsnum for a later use
   529   dfstack.push(b);
   531   while (dfstack.is_nonempty()) {
   532     b = dfstack.pop();
   533     if( !visited.test_set(b->_idx) ) { // Test node and flag it as visited
   534       NTarjan *w = &ntarjan[dfsnum];
   535       // Only fully process control nodes
   536       w->_control = b;                 // Save actual node
   537       // Use parent's cached dfsnum to identify "Parent in DFS"
   538       w->_parent = &ntarjan[dfsorder[b->_idx]];
   539       dfsorder[b->_idx] = dfsnum;      // Save DFS order info
   540       w->_semi = dfsnum;               // Node to DFS map
   541       w->_label = w;                   // DFS to vertex map
   542       w->_ancestor = NULL;             // Fast LINK & EVAL setup
   543       w->_child = &ntarjan[0];         // Sentinal
   544       w->_size = 1;
   545       w->_bucket = NULL;
   547       // Need DEF-USE info for this pass
   548       for ( int i = b->outcnt(); i-- > 0; ) { // Put on stack backwards
   549         Node* s = b->raw_out(i);       // Get a use
   550         // CFG nodes only and not dead stuff
   551         if( s->is_CFG() && pil->has_node(s) && !visited.test(s->_idx) ) {
   552           dfsorder[s->_idx] = dfsnum;  // Cache parent's dfsnum for a later use
   553           dfstack.push(s);
   554         }
   555       }
   556       dfsnum++;  // update after parent's dfsnum has been cached.
   557     }
   558   }
   560   return dfsnum;
   561 }
   563 //------------------------------COMPRESS---------------------------------------
   564 void NTarjan::COMPRESS()
   565 {
   566   assert( _ancestor != 0, "" );
   567   if( _ancestor->_ancestor != 0 ) {
   568     _ancestor->COMPRESS( );
   569     if( _ancestor->_label->_semi < _label->_semi )
   570       _label = _ancestor->_label;
   571     _ancestor = _ancestor->_ancestor;
   572   }
   573 }
   575 //------------------------------EVAL-------------------------------------------
   576 NTarjan *NTarjan::EVAL() {
   577   if( !_ancestor ) return _label;
   578   COMPRESS();
   579   return (_ancestor->_label->_semi >= _label->_semi) ? _label : _ancestor->_label;
   580 }
   582 //------------------------------LINK-------------------------------------------
   583 void NTarjan::LINK( NTarjan *w, NTarjan *ntarjan0 ) {
   584   NTarjan *s = w;
   585   while( w->_label->_semi < s->_child->_label->_semi ) {
   586     if( s->_size + s->_child->_child->_size >= (s->_child->_size << 1) ) {
   587       s->_child->_ancestor = s;
   588       s->_child = s->_child->_child;
   589     } else {
   590       s->_child->_size = s->_size;
   591       s = s->_ancestor = s->_child;
   592     }
   593   }
   594   s->_label = w->_label;
   595   _size += w->_size;
   596   if( _size < (w->_size << 1) ) {
   597     NTarjan *tmp = s; s = _child; _child = tmp;
   598   }
   599   while( s != ntarjan0 ) {
   600     s->_ancestor = this;
   601     s = s->_child;
   602   }
   603 }
   605 //------------------------------setdepth---------------------------------------
   606 void NTarjan::setdepth( uint stack_size, uint *dom_depth ) {
   607   NTarjan **top  = NEW_RESOURCE_ARRAY(NTarjan*, stack_size);
   608   NTarjan **next = top;
   609   NTarjan **last;
   610   uint depth = 0;
   611   *top = this;
   612   ++top;
   613   do {
   614     // next level
   615     ++depth;
   616     last = top;
   617     do {
   618       // Set current depth for all tarjans on this level
   619       NTarjan *t = *next;    // next tarjan from stack
   620       ++next;
   621       do {
   622         dom_depth[t->_control->_idx] = depth; // Set depth in dominator tree
   623         NTarjan *dom_child = t->_dom_child;
   624         t = t->_dom_next;    // next tarjan
   625         if (dom_child != NULL) {
   626           *top = dom_child;  // save child on stack
   627           ++top;
   628         }
   629       } while (t != NULL);
   630     } while (next < last);
   631   } while (last < top);
   632 }
   634 //------------------------------dump-------------------------------------------
   635 #ifndef PRODUCT
   636 void NTarjan::dump(int offset) const {
   637   // Dump the data from this node
   638   int i;
   639   for(i = offset; i >0; i--)  // Use indenting for tree structure
   640     tty->print("  ");
   641   tty->print("Dominator Node: ");
   642   _control->dump();               // Control node for this dom node
   643   tty->print("\n");
   644   for(i = offset; i >0; i--)      // Use indenting for tree structure
   645     tty->print("  ");
   646   tty->print("semi:%d, size:%d\n",_semi, _size);
   647   for(i = offset; i >0; i--)      // Use indenting for tree structure
   648     tty->print("  ");
   649   tty->print("DFS Parent: ");
   650   if(_parent != NULL)
   651     _parent->_control->dump();    // Parent in DFS
   652   tty->print("\n");
   653   for(i = offset; i >0; i--)      // Use indenting for tree structure
   654     tty->print("  ");
   655   tty->print("Dom Parent: ");
   656   if(_dom != NULL)
   657     _dom->_control->dump();       // Parent in Dominator Tree
   658   tty->print("\n");
   660   // Recurse over remaining tree
   661   if( _dom_child ) _dom_child->dump(offset+2);   // Children in dominator tree
   662   if( _dom_next  ) _dom_next ->dump(offset  );   // Siblings in dominator tree
   664 }
   665 #endif

mercurial