src/share/vm/opto/compile.cpp

Mon, 27 May 2013 12:56:34 +0200

author
stefank
date
Mon, 27 May 2013 12:56:34 +0200
changeset 5195
95c00927be11
parent 5110
6f3fd5150b67
child 5237
f2110083203d
child 6441
d2907f74462e
permissions
-rw-r--r--

8015428: Remove unused CDS support from StringTable
Summary: The string in StringTable is not used by CDS anymore. Remove the unnecessary code in preparation for 8015422: Large performance hit when the StringTable is walked twice in Parallel Scavenge
Reviewed-by: pliden, tschatzl, coleenp

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/macroAssembler.hpp"
    27 #include "asm/macroAssembler.inline.hpp"
    28 #include "classfile/systemDictionary.hpp"
    29 #include "code/exceptionHandlerTable.hpp"
    30 #include "code/nmethod.hpp"
    31 #include "compiler/compileLog.hpp"
    32 #include "compiler/disassembler.hpp"
    33 #include "compiler/oopMap.hpp"
    34 #include "opto/addnode.hpp"
    35 #include "opto/block.hpp"
    36 #include "opto/c2compiler.hpp"
    37 #include "opto/callGenerator.hpp"
    38 #include "opto/callnode.hpp"
    39 #include "opto/cfgnode.hpp"
    40 #include "opto/chaitin.hpp"
    41 #include "opto/compile.hpp"
    42 #include "opto/connode.hpp"
    43 #include "opto/divnode.hpp"
    44 #include "opto/escape.hpp"
    45 #include "opto/idealGraphPrinter.hpp"
    46 #include "opto/loopnode.hpp"
    47 #include "opto/machnode.hpp"
    48 #include "opto/macro.hpp"
    49 #include "opto/matcher.hpp"
    50 #include "opto/memnode.hpp"
    51 #include "opto/mulnode.hpp"
    52 #include "opto/node.hpp"
    53 #include "opto/opcodes.hpp"
    54 #include "opto/output.hpp"
    55 #include "opto/parse.hpp"
    56 #include "opto/phaseX.hpp"
    57 #include "opto/rootnode.hpp"
    58 #include "opto/runtime.hpp"
    59 #include "opto/stringopts.hpp"
    60 #include "opto/type.hpp"
    61 #include "opto/vectornode.hpp"
    62 #include "runtime/arguments.hpp"
    63 #include "runtime/signature.hpp"
    64 #include "runtime/stubRoutines.hpp"
    65 #include "runtime/timer.hpp"
    66 #include "utilities/copy.hpp"
    67 #ifdef TARGET_ARCH_MODEL_x86_32
    68 # include "adfiles/ad_x86_32.hpp"
    69 #endif
    70 #ifdef TARGET_ARCH_MODEL_x86_64
    71 # include "adfiles/ad_x86_64.hpp"
    72 #endif
    73 #ifdef TARGET_ARCH_MODEL_sparc
    74 # include "adfiles/ad_sparc.hpp"
    75 #endif
    76 #ifdef TARGET_ARCH_MODEL_zero
    77 # include "adfiles/ad_zero.hpp"
    78 #endif
    79 #ifdef TARGET_ARCH_MODEL_arm
    80 # include "adfiles/ad_arm.hpp"
    81 #endif
    82 #ifdef TARGET_ARCH_MODEL_ppc
    83 # include "adfiles/ad_ppc.hpp"
    84 #endif
    87 // -------------------- Compile::mach_constant_base_node -----------------------
    88 // Constant table base node singleton.
    89 MachConstantBaseNode* Compile::mach_constant_base_node() {
    90   if (_mach_constant_base_node == NULL) {
    91     _mach_constant_base_node = new (C) MachConstantBaseNode();
    92     _mach_constant_base_node->add_req(C->root());
    93   }
    94   return _mach_constant_base_node;
    95 }
    98 /// Support for intrinsics.
   100 // Return the index at which m must be inserted (or already exists).
   101 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
   102 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
   103 #ifdef ASSERT
   104   for (int i = 1; i < _intrinsics->length(); i++) {
   105     CallGenerator* cg1 = _intrinsics->at(i-1);
   106     CallGenerator* cg2 = _intrinsics->at(i);
   107     assert(cg1->method() != cg2->method()
   108            ? cg1->method()     < cg2->method()
   109            : cg1->is_virtual() < cg2->is_virtual(),
   110            "compiler intrinsics list must stay sorted");
   111   }
   112 #endif
   113   // Binary search sorted list, in decreasing intervals [lo, hi].
   114   int lo = 0, hi = _intrinsics->length()-1;
   115   while (lo <= hi) {
   116     int mid = (uint)(hi + lo) / 2;
   117     ciMethod* mid_m = _intrinsics->at(mid)->method();
   118     if (m < mid_m) {
   119       hi = mid-1;
   120     } else if (m > mid_m) {
   121       lo = mid+1;
   122     } else {
   123       // look at minor sort key
   124       bool mid_virt = _intrinsics->at(mid)->is_virtual();
   125       if (is_virtual < mid_virt) {
   126         hi = mid-1;
   127       } else if (is_virtual > mid_virt) {
   128         lo = mid+1;
   129       } else {
   130         return mid;  // exact match
   131       }
   132     }
   133   }
   134   return lo;  // inexact match
   135 }
   137 void Compile::register_intrinsic(CallGenerator* cg) {
   138   if (_intrinsics == NULL) {
   139     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
   140   }
   141   // This code is stolen from ciObjectFactory::insert.
   142   // Really, GrowableArray should have methods for
   143   // insert_at, remove_at, and binary_search.
   144   int len = _intrinsics->length();
   145   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
   146   if (index == len) {
   147     _intrinsics->append(cg);
   148   } else {
   149 #ifdef ASSERT
   150     CallGenerator* oldcg = _intrinsics->at(index);
   151     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
   152 #endif
   153     _intrinsics->append(_intrinsics->at(len-1));
   154     int pos;
   155     for (pos = len-2; pos >= index; pos--) {
   156       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
   157     }
   158     _intrinsics->at_put(index, cg);
   159   }
   160   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
   161 }
   163 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
   164   assert(m->is_loaded(), "don't try this on unloaded methods");
   165   if (_intrinsics != NULL) {
   166     int index = intrinsic_insertion_index(m, is_virtual);
   167     if (index < _intrinsics->length()
   168         && _intrinsics->at(index)->method() == m
   169         && _intrinsics->at(index)->is_virtual() == is_virtual) {
   170       return _intrinsics->at(index);
   171     }
   172   }
   173   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
   174   if (m->intrinsic_id() != vmIntrinsics::_none &&
   175       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
   176     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
   177     if (cg != NULL) {
   178       // Save it for next time:
   179       register_intrinsic(cg);
   180       return cg;
   181     } else {
   182       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
   183     }
   184   }
   185   return NULL;
   186 }
   188 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
   189 // in library_call.cpp.
   192 #ifndef PRODUCT
   193 // statistics gathering...
   195 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
   196 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
   198 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
   199   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
   200   int oflags = _intrinsic_hist_flags[id];
   201   assert(flags != 0, "what happened?");
   202   if (is_virtual) {
   203     flags |= _intrinsic_virtual;
   204   }
   205   bool changed = (flags != oflags);
   206   if ((flags & _intrinsic_worked) != 0) {
   207     juint count = (_intrinsic_hist_count[id] += 1);
   208     if (count == 1) {
   209       changed = true;           // first time
   210     }
   211     // increment the overall count also:
   212     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
   213   }
   214   if (changed) {
   215     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
   216       // Something changed about the intrinsic's virtuality.
   217       if ((flags & _intrinsic_virtual) != 0) {
   218         // This is the first use of this intrinsic as a virtual call.
   219         if (oflags != 0) {
   220           // We already saw it as a non-virtual, so note both cases.
   221           flags |= _intrinsic_both;
   222         }
   223       } else if ((oflags & _intrinsic_both) == 0) {
   224         // This is the first use of this intrinsic as a non-virtual
   225         flags |= _intrinsic_both;
   226       }
   227     }
   228     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
   229   }
   230   // update the overall flags also:
   231   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
   232   return changed;
   233 }
   235 static char* format_flags(int flags, char* buf) {
   236   buf[0] = 0;
   237   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
   238   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
   239   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
   240   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
   241   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
   242   if (buf[0] == 0)  strcat(buf, ",");
   243   assert(buf[0] == ',', "must be");
   244   return &buf[1];
   245 }
   247 void Compile::print_intrinsic_statistics() {
   248   char flagsbuf[100];
   249   ttyLocker ttyl;
   250   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
   251   tty->print_cr("Compiler intrinsic usage:");
   252   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
   253   if (total == 0)  total = 1;  // avoid div0 in case of no successes
   254   #define PRINT_STAT_LINE(name, c, f) \
   255     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
   256   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
   257     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
   258     int   flags = _intrinsic_hist_flags[id];
   259     juint count = _intrinsic_hist_count[id];
   260     if ((flags | count) != 0) {
   261       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
   262     }
   263   }
   264   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
   265   if (xtty != NULL)  xtty->tail("statistics");
   266 }
   268 void Compile::print_statistics() {
   269   { ttyLocker ttyl;
   270     if (xtty != NULL)  xtty->head("statistics type='opto'");
   271     Parse::print_statistics();
   272     PhaseCCP::print_statistics();
   273     PhaseRegAlloc::print_statistics();
   274     Scheduling::print_statistics();
   275     PhasePeephole::print_statistics();
   276     PhaseIdealLoop::print_statistics();
   277     if (xtty != NULL)  xtty->tail("statistics");
   278   }
   279   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
   280     // put this under its own <statistics> element.
   281     print_intrinsic_statistics();
   282   }
   283 }
   284 #endif //PRODUCT
   286 // Support for bundling info
   287 Bundle* Compile::node_bundling(const Node *n) {
   288   assert(valid_bundle_info(n), "oob");
   289   return &_node_bundling_base[n->_idx];
   290 }
   292 bool Compile::valid_bundle_info(const Node *n) {
   293   return (_node_bundling_limit > n->_idx);
   294 }
   297 void Compile::gvn_replace_by(Node* n, Node* nn) {
   298   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
   299     Node* use = n->last_out(i);
   300     bool is_in_table = initial_gvn()->hash_delete(use);
   301     uint uses_found = 0;
   302     for (uint j = 0; j < use->len(); j++) {
   303       if (use->in(j) == n) {
   304         if (j < use->req())
   305           use->set_req(j, nn);
   306         else
   307           use->set_prec(j, nn);
   308         uses_found++;
   309       }
   310     }
   311     if (is_in_table) {
   312       // reinsert into table
   313       initial_gvn()->hash_find_insert(use);
   314     }
   315     record_for_igvn(use);
   316     i -= uses_found;    // we deleted 1 or more copies of this edge
   317   }
   318 }
   321 static inline bool not_a_node(const Node* n) {
   322   if (n == NULL)                   return true;
   323   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
   324   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
   325   return false;
   326 }
   328 // Identify all nodes that are reachable from below, useful.
   329 // Use breadth-first pass that records state in a Unique_Node_List,
   330 // recursive traversal is slower.
   331 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
   332   int estimated_worklist_size = unique();
   333   useful.map( estimated_worklist_size, NULL );  // preallocate space
   335   // Initialize worklist
   336   if (root() != NULL)     { useful.push(root()); }
   337   // If 'top' is cached, declare it useful to preserve cached node
   338   if( cached_top_node() ) { useful.push(cached_top_node()); }
   340   // Push all useful nodes onto the list, breadthfirst
   341   for( uint next = 0; next < useful.size(); ++next ) {
   342     assert( next < unique(), "Unique useful nodes < total nodes");
   343     Node *n  = useful.at(next);
   344     uint max = n->len();
   345     for( uint i = 0; i < max; ++i ) {
   346       Node *m = n->in(i);
   347       if (not_a_node(m))  continue;
   348       useful.push(m);
   349     }
   350   }
   351 }
   353 // Update dead_node_list with any missing dead nodes using useful
   354 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
   355 void Compile::update_dead_node_list(Unique_Node_List &useful) {
   356   uint max_idx = unique();
   357   VectorSet& useful_node_set = useful.member_set();
   359   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
   360     // If node with index node_idx is not in useful set,
   361     // mark it as dead in dead node list.
   362     if (! useful_node_set.test(node_idx) ) {
   363       record_dead_node(node_idx);
   364     }
   365   }
   366 }
   368 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
   369   int shift = 0;
   370   for (int i = 0; i < inlines->length(); i++) {
   371     CallGenerator* cg = inlines->at(i);
   372     CallNode* call = cg->call_node();
   373     if (shift > 0) {
   374       inlines->at_put(i-shift, cg);
   375     }
   376     if (!useful.member(call)) {
   377       shift++;
   378     }
   379   }
   380   inlines->trunc_to(inlines->length()-shift);
   381 }
   383 // Disconnect all useless nodes by disconnecting those at the boundary.
   384 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
   385   uint next = 0;
   386   while (next < useful.size()) {
   387     Node *n = useful.at(next++);
   388     // Use raw traversal of out edges since this code removes out edges
   389     int max = n->outcnt();
   390     for (int j = 0; j < max; ++j) {
   391       Node* child = n->raw_out(j);
   392       if (! useful.member(child)) {
   393         assert(!child->is_top() || child != top(),
   394                "If top is cached in Compile object it is in useful list");
   395         // Only need to remove this out-edge to the useless node
   396         n->raw_del_out(j);
   397         --j;
   398         --max;
   399       }
   400     }
   401     if (n->outcnt() == 1 && n->has_special_unique_user()) {
   402       record_for_igvn(n->unique_out());
   403     }
   404   }
   405   // Remove useless macro and predicate opaq nodes
   406   for (int i = C->macro_count()-1; i >= 0; i--) {
   407     Node* n = C->macro_node(i);
   408     if (!useful.member(n)) {
   409       remove_macro_node(n);
   410     }
   411   }
   412   // Remove useless expensive node
   413   for (int i = C->expensive_count()-1; i >= 0; i--) {
   414     Node* n = C->expensive_node(i);
   415     if (!useful.member(n)) {
   416       remove_expensive_node(n);
   417     }
   418   }
   419   // clean up the late inline lists
   420   remove_useless_late_inlines(&_string_late_inlines, useful);
   421   remove_useless_late_inlines(&_boxing_late_inlines, useful);
   422   remove_useless_late_inlines(&_late_inlines, useful);
   423   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
   424 }
   426 //------------------------------frame_size_in_words-----------------------------
   427 // frame_slots in units of words
   428 int Compile::frame_size_in_words() const {
   429   // shift is 0 in LP32 and 1 in LP64
   430   const int shift = (LogBytesPerWord - LogBytesPerInt);
   431   int words = _frame_slots >> shift;
   432   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
   433   return words;
   434 }
   436 // ============================================================================
   437 //------------------------------CompileWrapper---------------------------------
   438 class CompileWrapper : public StackObj {
   439   Compile *const _compile;
   440  public:
   441   CompileWrapper(Compile* compile);
   443   ~CompileWrapper();
   444 };
   446 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
   447   // the Compile* pointer is stored in the current ciEnv:
   448   ciEnv* env = compile->env();
   449   assert(env == ciEnv::current(), "must already be a ciEnv active");
   450   assert(env->compiler_data() == NULL, "compile already active?");
   451   env->set_compiler_data(compile);
   452   assert(compile == Compile::current(), "sanity");
   454   compile->set_type_dict(NULL);
   455   compile->set_type_hwm(NULL);
   456   compile->set_type_last_size(0);
   457   compile->set_last_tf(NULL, NULL);
   458   compile->set_indexSet_arena(NULL);
   459   compile->set_indexSet_free_block_list(NULL);
   460   compile->init_type_arena();
   461   Type::Initialize(compile);
   462   _compile->set_scratch_buffer_blob(NULL);
   463   _compile->begin_method();
   464 }
   465 CompileWrapper::~CompileWrapper() {
   466   _compile->end_method();
   467   if (_compile->scratch_buffer_blob() != NULL)
   468     BufferBlob::free(_compile->scratch_buffer_blob());
   469   _compile->env()->set_compiler_data(NULL);
   470 }
   473 //----------------------------print_compile_messages---------------------------
   474 void Compile::print_compile_messages() {
   475 #ifndef PRODUCT
   476   // Check if recompiling
   477   if (_subsume_loads == false && PrintOpto) {
   478     // Recompiling without allowing machine instructions to subsume loads
   479     tty->print_cr("*********************************************************");
   480     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
   481     tty->print_cr("*********************************************************");
   482   }
   483   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
   484     // Recompiling without escape analysis
   485     tty->print_cr("*********************************************************");
   486     tty->print_cr("** Bailout: Recompile without escape analysis          **");
   487     tty->print_cr("*********************************************************");
   488   }
   489   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
   490     // Recompiling without boxing elimination
   491     tty->print_cr("*********************************************************");
   492     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
   493     tty->print_cr("*********************************************************");
   494   }
   495   if (env()->break_at_compile()) {
   496     // Open the debugger when compiling this method.
   497     tty->print("### Breaking when compiling: ");
   498     method()->print_short_name();
   499     tty->cr();
   500     BREAKPOINT;
   501   }
   503   if( PrintOpto ) {
   504     if (is_osr_compilation()) {
   505       tty->print("[OSR]%3d", _compile_id);
   506     } else {
   507       tty->print("%3d", _compile_id);
   508     }
   509   }
   510 #endif
   511 }
   514 //-----------------------init_scratch_buffer_blob------------------------------
   515 // Construct a temporary BufferBlob and cache it for this compile.
   516 void Compile::init_scratch_buffer_blob(int const_size) {
   517   // If there is already a scratch buffer blob allocated and the
   518   // constant section is big enough, use it.  Otherwise free the
   519   // current and allocate a new one.
   520   BufferBlob* blob = scratch_buffer_blob();
   521   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
   522     // Use the current blob.
   523   } else {
   524     if (blob != NULL) {
   525       BufferBlob::free(blob);
   526     }
   528     ResourceMark rm;
   529     _scratch_const_size = const_size;
   530     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
   531     blob = BufferBlob::create("Compile::scratch_buffer", size);
   532     // Record the buffer blob for next time.
   533     set_scratch_buffer_blob(blob);
   534     // Have we run out of code space?
   535     if (scratch_buffer_blob() == NULL) {
   536       // Let CompilerBroker disable further compilations.
   537       record_failure("Not enough space for scratch buffer in CodeCache");
   538       return;
   539     }
   540   }
   542   // Initialize the relocation buffers
   543   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
   544   set_scratch_locs_memory(locs_buf);
   545 }
   548 //-----------------------scratch_emit_size-------------------------------------
   549 // Helper function that computes size by emitting code
   550 uint Compile::scratch_emit_size(const Node* n) {
   551   // Start scratch_emit_size section.
   552   set_in_scratch_emit_size(true);
   554   // Emit into a trash buffer and count bytes emitted.
   555   // This is a pretty expensive way to compute a size,
   556   // but it works well enough if seldom used.
   557   // All common fixed-size instructions are given a size
   558   // method by the AD file.
   559   // Note that the scratch buffer blob and locs memory are
   560   // allocated at the beginning of the compile task, and
   561   // may be shared by several calls to scratch_emit_size.
   562   // The allocation of the scratch buffer blob is particularly
   563   // expensive, since it has to grab the code cache lock.
   564   BufferBlob* blob = this->scratch_buffer_blob();
   565   assert(blob != NULL, "Initialize BufferBlob at start");
   566   assert(blob->size() > MAX_inst_size, "sanity");
   567   relocInfo* locs_buf = scratch_locs_memory();
   568   address blob_begin = blob->content_begin();
   569   address blob_end   = (address)locs_buf;
   570   assert(blob->content_contains(blob_end), "sanity");
   571   CodeBuffer buf(blob_begin, blob_end - blob_begin);
   572   buf.initialize_consts_size(_scratch_const_size);
   573   buf.initialize_stubs_size(MAX_stubs_size);
   574   assert(locs_buf != NULL, "sanity");
   575   int lsize = MAX_locs_size / 3;
   576   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
   577   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
   578   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
   580   // Do the emission.
   582   Label fakeL; // Fake label for branch instructions.
   583   Label*   saveL = NULL;
   584   uint save_bnum = 0;
   585   bool is_branch = n->is_MachBranch();
   586   if (is_branch) {
   587     MacroAssembler masm(&buf);
   588     masm.bind(fakeL);
   589     n->as_MachBranch()->save_label(&saveL, &save_bnum);
   590     n->as_MachBranch()->label_set(&fakeL, 0);
   591   }
   592   n->emit(buf, this->regalloc());
   593   if (is_branch) // Restore label.
   594     n->as_MachBranch()->label_set(saveL, save_bnum);
   596   // End scratch_emit_size section.
   597   set_in_scratch_emit_size(false);
   599   return buf.insts_size();
   600 }
   603 // ============================================================================
   604 //------------------------------Compile standard-------------------------------
   605 debug_only( int Compile::_debug_idx = 100000; )
   607 // Compile a method.  entry_bci is -1 for normal compilations and indicates
   608 // the continuation bci for on stack replacement.
   611 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
   612                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing )
   613                 : Phase(Compiler),
   614                   _env(ci_env),
   615                   _log(ci_env->log()),
   616                   _compile_id(ci_env->compile_id()),
   617                   _save_argument_registers(false),
   618                   _stub_name(NULL),
   619                   _stub_function(NULL),
   620                   _stub_entry_point(NULL),
   621                   _method(target),
   622                   _entry_bci(osr_bci),
   623                   _initial_gvn(NULL),
   624                   _for_igvn(NULL),
   625                   _warm_calls(NULL),
   626                   _subsume_loads(subsume_loads),
   627                   _do_escape_analysis(do_escape_analysis),
   628                   _eliminate_boxing(eliminate_boxing),
   629                   _failure_reason(NULL),
   630                   _code_buffer("Compile::Fill_buffer"),
   631                   _orig_pc_slot(0),
   632                   _orig_pc_slot_offset_in_bytes(0),
   633                   _has_method_handle_invokes(false),
   634                   _mach_constant_base_node(NULL),
   635                   _node_bundling_limit(0),
   636                   _node_bundling_base(NULL),
   637                   _java_calls(0),
   638                   _inner_loops(0),
   639                   _scratch_const_size(-1),
   640                   _in_scratch_emit_size(false),
   641                   _dead_node_list(comp_arena()),
   642                   _dead_node_count(0),
   643 #ifndef PRODUCT
   644                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
   645                   _printer(IdealGraphPrinter::printer()),
   646 #endif
   647                   _congraph(NULL),
   648                   _late_inlines(comp_arena(), 2, 0, NULL),
   649                   _string_late_inlines(comp_arena(), 2, 0, NULL),
   650                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
   651                   _late_inlines_pos(0),
   652                   _number_of_mh_late_inlines(0),
   653                   _inlining_progress(false),
   654                   _inlining_incrementally(false),
   655                   _print_inlining_list(NULL),
   656                   _print_inlining(0) {
   657   C = this;
   659   CompileWrapper cw(this);
   660 #ifndef PRODUCT
   661   if (TimeCompiler2) {
   662     tty->print(" ");
   663     target->holder()->name()->print();
   664     tty->print(".");
   665     target->print_short_name();
   666     tty->print("  ");
   667   }
   668   TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
   669   TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
   670   bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
   671   if (!print_opto_assembly) {
   672     bool print_assembly = (PrintAssembly || _method->should_print_assembly());
   673     if (print_assembly && !Disassembler::can_decode()) {
   674       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
   675       print_opto_assembly = true;
   676     }
   677   }
   678   set_print_assembly(print_opto_assembly);
   679   set_parsed_irreducible_loop(false);
   680 #endif
   682   if (ProfileTraps) {
   683     // Make sure the method being compiled gets its own MDO,
   684     // so we can at least track the decompile_count().
   685     method()->ensure_method_data();
   686   }
   688   Init(::AliasLevel);
   691   print_compile_messages();
   693   if (UseOldInlining || PrintCompilation NOT_PRODUCT( || PrintOpto) )
   694     _ilt = InlineTree::build_inline_tree_root();
   695   else
   696     _ilt = NULL;
   698   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
   699   assert(num_alias_types() >= AliasIdxRaw, "");
   701 #define MINIMUM_NODE_HASH  1023
   702   // Node list that Iterative GVN will start with
   703   Unique_Node_List for_igvn(comp_arena());
   704   set_for_igvn(&for_igvn);
   706   // GVN that will be run immediately on new nodes
   707   uint estimated_size = method()->code_size()*4+64;
   708   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
   709   PhaseGVN gvn(node_arena(), estimated_size);
   710   set_initial_gvn(&gvn);
   712   if (PrintInlining  || PrintIntrinsics NOT_PRODUCT( || PrintOptoInlining)) {
   713     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
   714   }
   715   { // Scope for timing the parser
   716     TracePhase t3("parse", &_t_parser, true);
   718     // Put top into the hash table ASAP.
   719     initial_gvn()->transform_no_reclaim(top());
   721     // Set up tf(), start(), and find a CallGenerator.
   722     CallGenerator* cg = NULL;
   723     if (is_osr_compilation()) {
   724       const TypeTuple *domain = StartOSRNode::osr_domain();
   725       const TypeTuple *range = TypeTuple::make_range(method()->signature());
   726       init_tf(TypeFunc::make(domain, range));
   727       StartNode* s = new (this) StartOSRNode(root(), domain);
   728       initial_gvn()->set_type_bottom(s);
   729       init_start(s);
   730       cg = CallGenerator::for_osr(method(), entry_bci());
   731     } else {
   732       // Normal case.
   733       init_tf(TypeFunc::make(method()));
   734       StartNode* s = new (this) StartNode(root(), tf()->domain());
   735       initial_gvn()->set_type_bottom(s);
   736       init_start(s);
   737       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
   738         // With java.lang.ref.reference.get() we must go through the
   739         // intrinsic when G1 is enabled - even when get() is the root
   740         // method of the compile - so that, if necessary, the value in
   741         // the referent field of the reference object gets recorded by
   742         // the pre-barrier code.
   743         // Specifically, if G1 is enabled, the value in the referent
   744         // field is recorded by the G1 SATB pre barrier. This will
   745         // result in the referent being marked live and the reference
   746         // object removed from the list of discovered references during
   747         // reference processing.
   748         cg = find_intrinsic(method(), false);
   749       }
   750       if (cg == NULL) {
   751         float past_uses = method()->interpreter_invocation_count();
   752         float expected_uses = past_uses;
   753         cg = CallGenerator::for_inline(method(), expected_uses);
   754       }
   755     }
   756     if (failing())  return;
   757     if (cg == NULL) {
   758       record_method_not_compilable_all_tiers("cannot parse method");
   759       return;
   760     }
   761     JVMState* jvms = build_start_state(start(), tf());
   762     if ((jvms = cg->generate(jvms)) == NULL) {
   763       record_method_not_compilable("method parse failed");
   764       return;
   765     }
   766     GraphKit kit(jvms);
   768     if (!kit.stopped()) {
   769       // Accept return values, and transfer control we know not where.
   770       // This is done by a special, unique ReturnNode bound to root.
   771       return_values(kit.jvms());
   772     }
   774     if (kit.has_exceptions()) {
   775       // Any exceptions that escape from this call must be rethrown
   776       // to whatever caller is dynamically above us on the stack.
   777       // This is done by a special, unique RethrowNode bound to root.
   778       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
   779     }
   781     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
   783     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
   784       inline_string_calls(true);
   785     }
   787     if (failing())  return;
   789     print_method("Before RemoveUseless", 3);
   791     // Remove clutter produced by parsing.
   792     if (!failing()) {
   793       ResourceMark rm;
   794       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
   795     }
   796   }
   798   // Note:  Large methods are capped off in do_one_bytecode().
   799   if (failing())  return;
   801   // After parsing, node notes are no longer automagic.
   802   // They must be propagated by register_new_node_with_optimizer(),
   803   // clone(), or the like.
   804   set_default_node_notes(NULL);
   806   for (;;) {
   807     int successes = Inline_Warm();
   808     if (failing())  return;
   809     if (successes == 0)  break;
   810   }
   812   // Drain the list.
   813   Finish_Warm();
   814 #ifndef PRODUCT
   815   if (_printer) {
   816     _printer->print_inlining(this);
   817   }
   818 #endif
   820   if (failing())  return;
   821   NOT_PRODUCT( verify_graph_edges(); )
   823   // Now optimize
   824   Optimize();
   825   if (failing())  return;
   826   NOT_PRODUCT( verify_graph_edges(); )
   828 #ifndef PRODUCT
   829   if (PrintIdeal) {
   830     ttyLocker ttyl;  // keep the following output all in one block
   831     // This output goes directly to the tty, not the compiler log.
   832     // To enable tools to match it up with the compilation activity,
   833     // be sure to tag this tty output with the compile ID.
   834     if (xtty != NULL) {
   835       xtty->head("ideal compile_id='%d'%s", compile_id(),
   836                  is_osr_compilation()    ? " compile_kind='osr'" :
   837                  "");
   838     }
   839     root()->dump(9999);
   840     if (xtty != NULL) {
   841       xtty->tail("ideal");
   842     }
   843   }
   844 #endif
   846   // Now that we know the size of all the monitors we can add a fixed slot
   847   // for the original deopt pc.
   849   _orig_pc_slot =  fixed_slots();
   850   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
   851   set_fixed_slots(next_slot);
   853   // Now generate code
   854   Code_Gen();
   855   if (failing())  return;
   857   // Check if we want to skip execution of all compiled code.
   858   {
   859 #ifndef PRODUCT
   860     if (OptoNoExecute) {
   861       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
   862       return;
   863     }
   864     TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
   865 #endif
   867     if (is_osr_compilation()) {
   868       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
   869       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
   870     } else {
   871       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
   872       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
   873     }
   875     env()->register_method(_method, _entry_bci,
   876                            &_code_offsets,
   877                            _orig_pc_slot_offset_in_bytes,
   878                            code_buffer(),
   879                            frame_size_in_words(), _oop_map_set,
   880                            &_handler_table, &_inc_table,
   881                            compiler,
   882                            env()->comp_level(),
   883                            has_unsafe_access(),
   884                            SharedRuntime::is_wide_vector(max_vector_size())
   885                            );
   887     if (log() != NULL) // Print code cache state into compiler log
   888       log()->code_cache_state();
   889   }
   890 }
   892 //------------------------------Compile----------------------------------------
   893 // Compile a runtime stub
   894 Compile::Compile( ciEnv* ci_env,
   895                   TypeFunc_generator generator,
   896                   address stub_function,
   897                   const char *stub_name,
   898                   int is_fancy_jump,
   899                   bool pass_tls,
   900                   bool save_arg_registers,
   901                   bool return_pc )
   902   : Phase(Compiler),
   903     _env(ci_env),
   904     _log(ci_env->log()),
   905     _compile_id(0),
   906     _save_argument_registers(save_arg_registers),
   907     _method(NULL),
   908     _stub_name(stub_name),
   909     _stub_function(stub_function),
   910     _stub_entry_point(NULL),
   911     _entry_bci(InvocationEntryBci),
   912     _initial_gvn(NULL),
   913     _for_igvn(NULL),
   914     _warm_calls(NULL),
   915     _orig_pc_slot(0),
   916     _orig_pc_slot_offset_in_bytes(0),
   917     _subsume_loads(true),
   918     _do_escape_analysis(false),
   919     _eliminate_boxing(false),
   920     _failure_reason(NULL),
   921     _code_buffer("Compile::Fill_buffer"),
   922     _has_method_handle_invokes(false),
   923     _mach_constant_base_node(NULL),
   924     _node_bundling_limit(0),
   925     _node_bundling_base(NULL),
   926     _java_calls(0),
   927     _inner_loops(0),
   928 #ifndef PRODUCT
   929     _trace_opto_output(TraceOptoOutput),
   930     _printer(NULL),
   931 #endif
   932     _dead_node_list(comp_arena()),
   933     _dead_node_count(0),
   934     _congraph(NULL),
   935     _number_of_mh_late_inlines(0),
   936     _inlining_progress(false),
   937     _inlining_incrementally(false),
   938     _print_inlining_list(NULL),
   939     _print_inlining(0) {
   940   C = this;
   942 #ifndef PRODUCT
   943   TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
   944   TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
   945   set_print_assembly(PrintFrameConverterAssembly);
   946   set_parsed_irreducible_loop(false);
   947 #endif
   948   CompileWrapper cw(this);
   949   Init(/*AliasLevel=*/ 0);
   950   init_tf((*generator)());
   952   {
   953     // The following is a dummy for the sake of GraphKit::gen_stub
   954     Unique_Node_List for_igvn(comp_arena());
   955     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
   956     PhaseGVN gvn(Thread::current()->resource_area(),255);
   957     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
   958     gvn.transform_no_reclaim(top());
   960     GraphKit kit;
   961     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
   962   }
   964   NOT_PRODUCT( verify_graph_edges(); )
   965   Code_Gen();
   966   if (failing())  return;
   969   // Entry point will be accessed using compile->stub_entry_point();
   970   if (code_buffer() == NULL) {
   971     Matcher::soft_match_failure();
   972   } else {
   973     if (PrintAssembly && (WizardMode || Verbose))
   974       tty->print_cr("### Stub::%s", stub_name);
   976     if (!failing()) {
   977       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
   979       // Make the NMethod
   980       // For now we mark the frame as never safe for profile stackwalking
   981       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
   982                                                       code_buffer(),
   983                                                       CodeOffsets::frame_never_safe,
   984                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
   985                                                       frame_size_in_words(),
   986                                                       _oop_map_set,
   987                                                       save_arg_registers);
   988       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
   990       _stub_entry_point = rs->entry_point();
   991     }
   992   }
   993 }
   995 //------------------------------Init-------------------------------------------
   996 // Prepare for a single compilation
   997 void Compile::Init(int aliaslevel) {
   998   _unique  = 0;
   999   _regalloc = NULL;
  1001   _tf      = NULL;  // filled in later
  1002   _top     = NULL;  // cached later
  1003   _matcher = NULL;  // filled in later
  1004   _cfg     = NULL;  // filled in later
  1006   set_24_bit_selection_and_mode(Use24BitFP, false);
  1008   _node_note_array = NULL;
  1009   _default_node_notes = NULL;
  1011   _immutable_memory = NULL; // filled in at first inquiry
  1013   // Globally visible Nodes
  1014   // First set TOP to NULL to give safe behavior during creation of RootNode
  1015   set_cached_top_node(NULL);
  1016   set_root(new (this) RootNode());
  1017   // Now that you have a Root to point to, create the real TOP
  1018   set_cached_top_node( new (this) ConNode(Type::TOP) );
  1019   set_recent_alloc(NULL, NULL);
  1021   // Create Debug Information Recorder to record scopes, oopmaps, etc.
  1022   env()->set_oop_recorder(new OopRecorder(env()->arena()));
  1023   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
  1024   env()->set_dependencies(new Dependencies(env()));
  1026   _fixed_slots = 0;
  1027   set_has_split_ifs(false);
  1028   set_has_loops(has_method() && method()->has_loops()); // first approximation
  1029   set_has_stringbuilder(false);
  1030   set_has_boxed_value(false);
  1031   _trap_can_recompile = false;  // no traps emitted yet
  1032   _major_progress = true; // start out assuming good things will happen
  1033   set_has_unsafe_access(false);
  1034   set_max_vector_size(0);
  1035   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
  1036   set_decompile_count(0);
  1038   set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
  1039   set_num_loop_opts(LoopOptsCount);
  1040   set_do_inlining(Inline);
  1041   set_max_inline_size(MaxInlineSize);
  1042   set_freq_inline_size(FreqInlineSize);
  1043   set_do_scheduling(OptoScheduling);
  1044   set_do_count_invocations(false);
  1045   set_do_method_data_update(false);
  1047   if (debug_info()->recording_non_safepoints()) {
  1048     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
  1049                         (comp_arena(), 8, 0, NULL));
  1050     set_default_node_notes(Node_Notes::make(this));
  1053   // // -- Initialize types before each compile --
  1054   // // Update cached type information
  1055   // if( _method && _method->constants() )
  1056   //   Type::update_loaded_types(_method, _method->constants());
  1058   // Init alias_type map.
  1059   if (!_do_escape_analysis && aliaslevel == 3)
  1060     aliaslevel = 2;  // No unique types without escape analysis
  1061   _AliasLevel = aliaslevel;
  1062   const int grow_ats = 16;
  1063   _max_alias_types = grow_ats;
  1064   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
  1065   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
  1066   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
  1068     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
  1070   // Initialize the first few types.
  1071   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
  1072   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
  1073   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
  1074   _num_alias_types = AliasIdxRaw+1;
  1075   // Zero out the alias type cache.
  1076   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
  1077   // A NULL adr_type hits in the cache right away.  Preload the right answer.
  1078   probe_alias_cache(NULL)->_index = AliasIdxTop;
  1080   _intrinsics = NULL;
  1081   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
  1082   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
  1083   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
  1084   register_library_intrinsics();
  1087 //---------------------------init_start----------------------------------------
  1088 // Install the StartNode on this compile object.
  1089 void Compile::init_start(StartNode* s) {
  1090   if (failing())
  1091     return; // already failing
  1092   assert(s == start(), "");
  1095 StartNode* Compile::start() const {
  1096   assert(!failing(), "");
  1097   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
  1098     Node* start = root()->fast_out(i);
  1099     if( start->is_Start() )
  1100       return start->as_Start();
  1102   ShouldNotReachHere();
  1103   return NULL;
  1106 //-------------------------------immutable_memory-------------------------------------
  1107 // Access immutable memory
  1108 Node* Compile::immutable_memory() {
  1109   if (_immutable_memory != NULL) {
  1110     return _immutable_memory;
  1112   StartNode* s = start();
  1113   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
  1114     Node *p = s->fast_out(i);
  1115     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
  1116       _immutable_memory = p;
  1117       return _immutable_memory;
  1120   ShouldNotReachHere();
  1121   return NULL;
  1124 //----------------------set_cached_top_node------------------------------------
  1125 // Install the cached top node, and make sure Node::is_top works correctly.
  1126 void Compile::set_cached_top_node(Node* tn) {
  1127   if (tn != NULL)  verify_top(tn);
  1128   Node* old_top = _top;
  1129   _top = tn;
  1130   // Calling Node::setup_is_top allows the nodes the chance to adjust
  1131   // their _out arrays.
  1132   if (_top != NULL)     _top->setup_is_top();
  1133   if (old_top != NULL)  old_top->setup_is_top();
  1134   assert(_top == NULL || top()->is_top(), "");
  1137 #ifdef ASSERT
  1138 uint Compile::count_live_nodes_by_graph_walk() {
  1139   Unique_Node_List useful(comp_arena());
  1140   // Get useful node list by walking the graph.
  1141   identify_useful_nodes(useful);
  1142   return useful.size();
  1145 void Compile::print_missing_nodes() {
  1147   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
  1148   if ((_log == NULL) && (! PrintIdealNodeCount)) {
  1149     return;
  1152   // This is an expensive function. It is executed only when the user
  1153   // specifies VerifyIdealNodeCount option or otherwise knows the
  1154   // additional work that needs to be done to identify reachable nodes
  1155   // by walking the flow graph and find the missing ones using
  1156   // _dead_node_list.
  1158   Unique_Node_List useful(comp_arena());
  1159   // Get useful node list by walking the graph.
  1160   identify_useful_nodes(useful);
  1162   uint l_nodes = C->live_nodes();
  1163   uint l_nodes_by_walk = useful.size();
  1165   if (l_nodes != l_nodes_by_walk) {
  1166     if (_log != NULL) {
  1167       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
  1168       _log->stamp();
  1169       _log->end_head();
  1171     VectorSet& useful_member_set = useful.member_set();
  1172     int last_idx = l_nodes_by_walk;
  1173     for (int i = 0; i < last_idx; i++) {
  1174       if (useful_member_set.test(i)) {
  1175         if (_dead_node_list.test(i)) {
  1176           if (_log != NULL) {
  1177             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
  1179           if (PrintIdealNodeCount) {
  1180             // Print the log message to tty
  1181               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
  1182               useful.at(i)->dump();
  1186       else if (! _dead_node_list.test(i)) {
  1187         if (_log != NULL) {
  1188           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
  1190         if (PrintIdealNodeCount) {
  1191           // Print the log message to tty
  1192           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
  1196     if (_log != NULL) {
  1197       _log->tail("mismatched_nodes");
  1201 #endif
  1203 #ifndef PRODUCT
  1204 void Compile::verify_top(Node* tn) const {
  1205   if (tn != NULL) {
  1206     assert(tn->is_Con(), "top node must be a constant");
  1207     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
  1208     assert(tn->in(0) != NULL, "must have live top node");
  1211 #endif
  1214 ///-------------------Managing Per-Node Debug & Profile Info-------------------
  1216 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
  1217   guarantee(arr != NULL, "");
  1218   int num_blocks = arr->length();
  1219   if (grow_by < num_blocks)  grow_by = num_blocks;
  1220   int num_notes = grow_by * _node_notes_block_size;
  1221   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
  1222   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
  1223   while (num_notes > 0) {
  1224     arr->append(notes);
  1225     notes     += _node_notes_block_size;
  1226     num_notes -= _node_notes_block_size;
  1228   assert(num_notes == 0, "exact multiple, please");
  1231 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
  1232   if (source == NULL || dest == NULL)  return false;
  1234   if (dest->is_Con())
  1235     return false;               // Do not push debug info onto constants.
  1237 #ifdef ASSERT
  1238   // Leave a bread crumb trail pointing to the original node:
  1239   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
  1240     dest->set_debug_orig(source);
  1242 #endif
  1244   if (node_note_array() == NULL)
  1245     return false;               // Not collecting any notes now.
  1247   // This is a copy onto a pre-existing node, which may already have notes.
  1248   // If both nodes have notes, do not overwrite any pre-existing notes.
  1249   Node_Notes* source_notes = node_notes_at(source->_idx);
  1250   if (source_notes == NULL || source_notes->is_clear())  return false;
  1251   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
  1252   if (dest_notes == NULL || dest_notes->is_clear()) {
  1253     return set_node_notes_at(dest->_idx, source_notes);
  1256   Node_Notes merged_notes = (*source_notes);
  1257   // The order of operations here ensures that dest notes will win...
  1258   merged_notes.update_from(dest_notes);
  1259   return set_node_notes_at(dest->_idx, &merged_notes);
  1263 //--------------------------allow_range_check_smearing-------------------------
  1264 // Gating condition for coalescing similar range checks.
  1265 // Sometimes we try 'speculatively' replacing a series of a range checks by a
  1266 // single covering check that is at least as strong as any of them.
  1267 // If the optimization succeeds, the simplified (strengthened) range check
  1268 // will always succeed.  If it fails, we will deopt, and then give up
  1269 // on the optimization.
  1270 bool Compile::allow_range_check_smearing() const {
  1271   // If this method has already thrown a range-check,
  1272   // assume it was because we already tried range smearing
  1273   // and it failed.
  1274   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
  1275   return !already_trapped;
  1279 //------------------------------flatten_alias_type-----------------------------
  1280 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
  1281   int offset = tj->offset();
  1282   TypePtr::PTR ptr = tj->ptr();
  1284   // Known instance (scalarizable allocation) alias only with itself.
  1285   bool is_known_inst = tj->isa_oopptr() != NULL &&
  1286                        tj->is_oopptr()->is_known_instance();
  1288   // Process weird unsafe references.
  1289   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
  1290     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
  1291     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
  1292     tj = TypeOopPtr::BOTTOM;
  1293     ptr = tj->ptr();
  1294     offset = tj->offset();
  1297   // Array pointers need some flattening
  1298   const TypeAryPtr *ta = tj->isa_aryptr();
  1299   if( ta && is_known_inst ) {
  1300     if ( offset != Type::OffsetBot &&
  1301          offset > arrayOopDesc::length_offset_in_bytes() ) {
  1302       offset = Type::OffsetBot; // Flatten constant access into array body only
  1303       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
  1305   } else if( ta && _AliasLevel >= 2 ) {
  1306     // For arrays indexed by constant indices, we flatten the alias
  1307     // space to include all of the array body.  Only the header, klass
  1308     // and array length can be accessed un-aliased.
  1309     if( offset != Type::OffsetBot ) {
  1310       if( ta->const_oop() ) { // MethodData* or Method*
  1311         offset = Type::OffsetBot;   // Flatten constant access into array body
  1312         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
  1313       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
  1314         // range is OK as-is.
  1315         tj = ta = TypeAryPtr::RANGE;
  1316       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
  1317         tj = TypeInstPtr::KLASS; // all klass loads look alike
  1318         ta = TypeAryPtr::RANGE; // generic ignored junk
  1319         ptr = TypePtr::BotPTR;
  1320       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
  1321         tj = TypeInstPtr::MARK;
  1322         ta = TypeAryPtr::RANGE; // generic ignored junk
  1323         ptr = TypePtr::BotPTR;
  1324       } else {                  // Random constant offset into array body
  1325         offset = Type::OffsetBot;   // Flatten constant access into array body
  1326         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
  1329     // Arrays of fixed size alias with arrays of unknown size.
  1330     if (ta->size() != TypeInt::POS) {
  1331       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
  1332       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
  1334     // Arrays of known objects become arrays of unknown objects.
  1335     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
  1336       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
  1337       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
  1339     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
  1340       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
  1341       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
  1343     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
  1344     // cannot be distinguished by bytecode alone.
  1345     if (ta->elem() == TypeInt::BOOL) {
  1346       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
  1347       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
  1348       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
  1350     // During the 2nd round of IterGVN, NotNull castings are removed.
  1351     // Make sure the Bottom and NotNull variants alias the same.
  1352     // Also, make sure exact and non-exact variants alias the same.
  1353     if( ptr == TypePtr::NotNull || ta->klass_is_exact() ) {
  1354       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
  1358   // Oop pointers need some flattening
  1359   const TypeInstPtr *to = tj->isa_instptr();
  1360   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
  1361     ciInstanceKlass *k = to->klass()->as_instance_klass();
  1362     if( ptr == TypePtr::Constant ) {
  1363       if (to->klass() != ciEnv::current()->Class_klass() ||
  1364           offset < k->size_helper() * wordSize) {
  1365         // No constant oop pointers (such as Strings); they alias with
  1366         // unknown strings.
  1367         assert(!is_known_inst, "not scalarizable allocation");
  1368         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
  1370     } else if( is_known_inst ) {
  1371       tj = to; // Keep NotNull and klass_is_exact for instance type
  1372     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
  1373       // During the 2nd round of IterGVN, NotNull castings are removed.
  1374       // Make sure the Bottom and NotNull variants alias the same.
  1375       // Also, make sure exact and non-exact variants alias the same.
  1376       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
  1378     // Canonicalize the holder of this field
  1379     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
  1380       // First handle header references such as a LoadKlassNode, even if the
  1381       // object's klass is unloaded at compile time (4965979).
  1382       if (!is_known_inst) { // Do it only for non-instance types
  1383         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
  1385     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
  1386       // Static fields are in the space above the normal instance
  1387       // fields in the java.lang.Class instance.
  1388       if (to->klass() != ciEnv::current()->Class_klass()) {
  1389         to = NULL;
  1390         tj = TypeOopPtr::BOTTOM;
  1391         offset = tj->offset();
  1393     } else {
  1394       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
  1395       if (!k->equals(canonical_holder) || tj->offset() != offset) {
  1396         if( is_known_inst ) {
  1397           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
  1398         } else {
  1399           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
  1405   // Klass pointers to object array klasses need some flattening
  1406   const TypeKlassPtr *tk = tj->isa_klassptr();
  1407   if( tk ) {
  1408     // If we are referencing a field within a Klass, we need
  1409     // to assume the worst case of an Object.  Both exact and
  1410     // inexact types must flatten to the same alias class so
  1411     // use NotNull as the PTR.
  1412     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
  1414       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
  1415                                    TypeKlassPtr::OBJECT->klass(),
  1416                                    offset);
  1419     ciKlass* klass = tk->klass();
  1420     if( klass->is_obj_array_klass() ) {
  1421       ciKlass* k = TypeAryPtr::OOPS->klass();
  1422       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
  1423         k = TypeInstPtr::BOTTOM->klass();
  1424       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
  1427     // Check for precise loads from the primary supertype array and force them
  1428     // to the supertype cache alias index.  Check for generic array loads from
  1429     // the primary supertype array and also force them to the supertype cache
  1430     // alias index.  Since the same load can reach both, we need to merge
  1431     // these 2 disparate memories into the same alias class.  Since the
  1432     // primary supertype array is read-only, there's no chance of confusion
  1433     // where we bypass an array load and an array store.
  1434     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
  1435     if (offset == Type::OffsetBot ||
  1436         (offset >= primary_supers_offset &&
  1437          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
  1438         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
  1439       offset = in_bytes(Klass::secondary_super_cache_offset());
  1440       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
  1444   // Flatten all Raw pointers together.
  1445   if (tj->base() == Type::RawPtr)
  1446     tj = TypeRawPtr::BOTTOM;
  1448   if (tj->base() == Type::AnyPtr)
  1449     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
  1451   // Flatten all to bottom for now
  1452   switch( _AliasLevel ) {
  1453   case 0:
  1454     tj = TypePtr::BOTTOM;
  1455     break;
  1456   case 1:                       // Flatten to: oop, static, field or array
  1457     switch (tj->base()) {
  1458     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
  1459     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
  1460     case Type::AryPtr:   // do not distinguish arrays at all
  1461     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
  1462     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
  1463     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
  1464     default: ShouldNotReachHere();
  1466     break;
  1467   case 2:                       // No collapsing at level 2; keep all splits
  1468   case 3:                       // No collapsing at level 3; keep all splits
  1469     break;
  1470   default:
  1471     Unimplemented();
  1474   offset = tj->offset();
  1475   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
  1477   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
  1478           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
  1479           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
  1480           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
  1481           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
  1482           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
  1483           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
  1484           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
  1485   assert( tj->ptr() != TypePtr::TopPTR &&
  1486           tj->ptr() != TypePtr::AnyNull &&
  1487           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
  1488 //    assert( tj->ptr() != TypePtr::Constant ||
  1489 //            tj->base() == Type::RawPtr ||
  1490 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
  1492   return tj;
  1495 void Compile::AliasType::Init(int i, const TypePtr* at) {
  1496   _index = i;
  1497   _adr_type = at;
  1498   _field = NULL;
  1499   _is_rewritable = true; // default
  1500   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
  1501   if (atoop != NULL && atoop->is_known_instance()) {
  1502     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
  1503     _general_index = Compile::current()->get_alias_index(gt);
  1504   } else {
  1505     _general_index = 0;
  1509 //---------------------------------print_on------------------------------------
  1510 #ifndef PRODUCT
  1511 void Compile::AliasType::print_on(outputStream* st) {
  1512   if (index() < 10)
  1513         st->print("@ <%d> ", index());
  1514   else  st->print("@ <%d>",  index());
  1515   st->print(is_rewritable() ? "   " : " RO");
  1516   int offset = adr_type()->offset();
  1517   if (offset == Type::OffsetBot)
  1518         st->print(" +any");
  1519   else  st->print(" +%-3d", offset);
  1520   st->print(" in ");
  1521   adr_type()->dump_on(st);
  1522   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
  1523   if (field() != NULL && tjp) {
  1524     if (tjp->klass()  != field()->holder() ||
  1525         tjp->offset() != field()->offset_in_bytes()) {
  1526       st->print(" != ");
  1527       field()->print();
  1528       st->print(" ***");
  1533 void print_alias_types() {
  1534   Compile* C = Compile::current();
  1535   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
  1536   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
  1537     C->alias_type(idx)->print_on(tty);
  1538     tty->cr();
  1541 #endif
  1544 //----------------------------probe_alias_cache--------------------------------
  1545 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
  1546   intptr_t key = (intptr_t) adr_type;
  1547   key ^= key >> logAliasCacheSize;
  1548   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
  1552 //-----------------------------grow_alias_types--------------------------------
  1553 void Compile::grow_alias_types() {
  1554   const int old_ats  = _max_alias_types; // how many before?
  1555   const int new_ats  = old_ats;          // how many more?
  1556   const int grow_ats = old_ats+new_ats;  // how many now?
  1557   _max_alias_types = grow_ats;
  1558   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
  1559   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
  1560   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
  1561   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
  1565 //--------------------------------find_alias_type------------------------------
  1566 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
  1567   if (_AliasLevel == 0)
  1568     return alias_type(AliasIdxBot);
  1570   AliasCacheEntry* ace = probe_alias_cache(adr_type);
  1571   if (ace->_adr_type == adr_type) {
  1572     return alias_type(ace->_index);
  1575   // Handle special cases.
  1576   if (adr_type == NULL)             return alias_type(AliasIdxTop);
  1577   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
  1579   // Do it the slow way.
  1580   const TypePtr* flat = flatten_alias_type(adr_type);
  1582 #ifdef ASSERT
  1583   assert(flat == flatten_alias_type(flat), "idempotent");
  1584   assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
  1585   if (flat->isa_oopptr() && !flat->isa_klassptr()) {
  1586     const TypeOopPtr* foop = flat->is_oopptr();
  1587     // Scalarizable allocations have exact klass always.
  1588     bool exact = !foop->klass_is_exact() || foop->is_known_instance();
  1589     const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
  1590     assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
  1592   assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
  1593 #endif
  1595   int idx = AliasIdxTop;
  1596   for (int i = 0; i < num_alias_types(); i++) {
  1597     if (alias_type(i)->adr_type() == flat) {
  1598       idx = i;
  1599       break;
  1603   if (idx == AliasIdxTop) {
  1604     if (no_create)  return NULL;
  1605     // Grow the array if necessary.
  1606     if (_num_alias_types == _max_alias_types)  grow_alias_types();
  1607     // Add a new alias type.
  1608     idx = _num_alias_types++;
  1609     _alias_types[idx]->Init(idx, flat);
  1610     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
  1611     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
  1612     if (flat->isa_instptr()) {
  1613       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
  1614           && flat->is_instptr()->klass() == env()->Class_klass())
  1615         alias_type(idx)->set_rewritable(false);
  1617     if (flat->isa_klassptr()) {
  1618       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
  1619         alias_type(idx)->set_rewritable(false);
  1620       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
  1621         alias_type(idx)->set_rewritable(false);
  1622       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
  1623         alias_type(idx)->set_rewritable(false);
  1624       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
  1625         alias_type(idx)->set_rewritable(false);
  1627     // %%% (We would like to finalize JavaThread::threadObj_offset(),
  1628     // but the base pointer type is not distinctive enough to identify
  1629     // references into JavaThread.)
  1631     // Check for final fields.
  1632     const TypeInstPtr* tinst = flat->isa_instptr();
  1633     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
  1634       ciField* field;
  1635       if (tinst->const_oop() != NULL &&
  1636           tinst->klass() == ciEnv::current()->Class_klass() &&
  1637           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
  1638         // static field
  1639         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
  1640         field = k->get_field_by_offset(tinst->offset(), true);
  1641       } else {
  1642         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
  1643         field = k->get_field_by_offset(tinst->offset(), false);
  1645       assert(field == NULL ||
  1646              original_field == NULL ||
  1647              (field->holder() == original_field->holder() &&
  1648               field->offset() == original_field->offset() &&
  1649               field->is_static() == original_field->is_static()), "wrong field?");
  1650       // Set field() and is_rewritable() attributes.
  1651       if (field != NULL)  alias_type(idx)->set_field(field);
  1655   // Fill the cache for next time.
  1656   ace->_adr_type = adr_type;
  1657   ace->_index    = idx;
  1658   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
  1660   // Might as well try to fill the cache for the flattened version, too.
  1661   AliasCacheEntry* face = probe_alias_cache(flat);
  1662   if (face->_adr_type == NULL) {
  1663     face->_adr_type = flat;
  1664     face->_index    = idx;
  1665     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
  1668   return alias_type(idx);
  1672 Compile::AliasType* Compile::alias_type(ciField* field) {
  1673   const TypeOopPtr* t;
  1674   if (field->is_static())
  1675     t = TypeInstPtr::make(field->holder()->java_mirror());
  1676   else
  1677     t = TypeOopPtr::make_from_klass_raw(field->holder());
  1678   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
  1679   assert(field->is_final() == !atp->is_rewritable(), "must get the rewritable bits correct");
  1680   return atp;
  1684 //------------------------------have_alias_type--------------------------------
  1685 bool Compile::have_alias_type(const TypePtr* adr_type) {
  1686   AliasCacheEntry* ace = probe_alias_cache(adr_type);
  1687   if (ace->_adr_type == adr_type) {
  1688     return true;
  1691   // Handle special cases.
  1692   if (adr_type == NULL)             return true;
  1693   if (adr_type == TypePtr::BOTTOM)  return true;
  1695   return find_alias_type(adr_type, true, NULL) != NULL;
  1698 //-----------------------------must_alias--------------------------------------
  1699 // True if all values of the given address type are in the given alias category.
  1700 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
  1701   if (alias_idx == AliasIdxBot)         return true;  // the universal category
  1702   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
  1703   if (alias_idx == AliasIdxTop)         return false; // the empty category
  1704   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
  1706   // the only remaining possible overlap is identity
  1707   int adr_idx = get_alias_index(adr_type);
  1708   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
  1709   assert(adr_idx == alias_idx ||
  1710          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
  1711           && adr_type                       != TypeOopPtr::BOTTOM),
  1712          "should not be testing for overlap with an unsafe pointer");
  1713   return adr_idx == alias_idx;
  1716 //------------------------------can_alias--------------------------------------
  1717 // True if any values of the given address type are in the given alias category.
  1718 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
  1719   if (alias_idx == AliasIdxTop)         return false; // the empty category
  1720   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
  1721   if (alias_idx == AliasIdxBot)         return true;  // the universal category
  1722   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
  1724   // the only remaining possible overlap is identity
  1725   int adr_idx = get_alias_index(adr_type);
  1726   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
  1727   return adr_idx == alias_idx;
  1732 //---------------------------pop_warm_call-------------------------------------
  1733 WarmCallInfo* Compile::pop_warm_call() {
  1734   WarmCallInfo* wci = _warm_calls;
  1735   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
  1736   return wci;
  1739 //----------------------------Inline_Warm--------------------------------------
  1740 int Compile::Inline_Warm() {
  1741   // If there is room, try to inline some more warm call sites.
  1742   // %%% Do a graph index compaction pass when we think we're out of space?
  1743   if (!InlineWarmCalls)  return 0;
  1745   int calls_made_hot = 0;
  1746   int room_to_grow   = NodeCountInliningCutoff - unique();
  1747   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
  1748   int amount_grown   = 0;
  1749   WarmCallInfo* call;
  1750   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
  1751     int est_size = (int)call->size();
  1752     if (est_size > (room_to_grow - amount_grown)) {
  1753       // This one won't fit anyway.  Get rid of it.
  1754       call->make_cold();
  1755       continue;
  1757     call->make_hot();
  1758     calls_made_hot++;
  1759     amount_grown   += est_size;
  1760     amount_to_grow -= est_size;
  1763   if (calls_made_hot > 0)  set_major_progress();
  1764   return calls_made_hot;
  1768 //----------------------------Finish_Warm--------------------------------------
  1769 void Compile::Finish_Warm() {
  1770   if (!InlineWarmCalls)  return;
  1771   if (failing())  return;
  1772   if (warm_calls() == NULL)  return;
  1774   // Clean up loose ends, if we are out of space for inlining.
  1775   WarmCallInfo* call;
  1776   while ((call = pop_warm_call()) != NULL) {
  1777     call->make_cold();
  1781 //---------------------cleanup_loop_predicates-----------------------
  1782 // Remove the opaque nodes that protect the predicates so that all unused
  1783 // checks and uncommon_traps will be eliminated from the ideal graph
  1784 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
  1785   if (predicate_count()==0) return;
  1786   for (int i = predicate_count(); i > 0; i--) {
  1787     Node * n = predicate_opaque1_node(i-1);
  1788     assert(n->Opcode() == Op_Opaque1, "must be");
  1789     igvn.replace_node(n, n->in(1));
  1791   assert(predicate_count()==0, "should be clean!");
  1794 // StringOpts and late inlining of string methods
  1795 void Compile::inline_string_calls(bool parse_time) {
  1797     // remove useless nodes to make the usage analysis simpler
  1798     ResourceMark rm;
  1799     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
  1803     ResourceMark rm;
  1804     print_method("Before StringOpts", 3);
  1805     PhaseStringOpts pso(initial_gvn(), for_igvn());
  1806     print_method("After StringOpts", 3);
  1809   // now inline anything that we skipped the first time around
  1810   if (!parse_time) {
  1811     _late_inlines_pos = _late_inlines.length();
  1814   while (_string_late_inlines.length() > 0) {
  1815     CallGenerator* cg = _string_late_inlines.pop();
  1816     cg->do_late_inline();
  1817     if (failing())  return;
  1819   _string_late_inlines.trunc_to(0);
  1822 // Late inlining of boxing methods
  1823 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
  1824   if (_boxing_late_inlines.length() > 0) {
  1825     assert(has_boxed_value(), "inconsistent");
  1827     PhaseGVN* gvn = initial_gvn();
  1828     set_inlining_incrementally(true);
  1830     assert( igvn._worklist.size() == 0, "should be done with igvn" );
  1831     for_igvn()->clear();
  1832     gvn->replace_with(&igvn);
  1834     while (_boxing_late_inlines.length() > 0) {
  1835       CallGenerator* cg = _boxing_late_inlines.pop();
  1836       cg->do_late_inline();
  1837       if (failing())  return;
  1839     _boxing_late_inlines.trunc_to(0);
  1842       ResourceMark rm;
  1843       PhaseRemoveUseless pru(gvn, for_igvn());
  1846     igvn = PhaseIterGVN(gvn);
  1847     igvn.optimize();
  1849     set_inlining_progress(false);
  1850     set_inlining_incrementally(false);
  1854 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
  1855   assert(IncrementalInline, "incremental inlining should be on");
  1856   PhaseGVN* gvn = initial_gvn();
  1858   set_inlining_progress(false);
  1859   for_igvn()->clear();
  1860   gvn->replace_with(&igvn);
  1862   int i = 0;
  1864   for (; i <_late_inlines.length() && !inlining_progress(); i++) {
  1865     CallGenerator* cg = _late_inlines.at(i);
  1866     _late_inlines_pos = i+1;
  1867     cg->do_late_inline();
  1868     if (failing())  return;
  1870   int j = 0;
  1871   for (; i < _late_inlines.length(); i++, j++) {
  1872     _late_inlines.at_put(j, _late_inlines.at(i));
  1874   _late_inlines.trunc_to(j);
  1877     ResourceMark rm;
  1878     PhaseRemoveUseless pru(gvn, for_igvn());
  1881   igvn = PhaseIterGVN(gvn);
  1884 // Perform incremental inlining until bound on number of live nodes is reached
  1885 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
  1886   PhaseGVN* gvn = initial_gvn();
  1888   set_inlining_incrementally(true);
  1889   set_inlining_progress(true);
  1890   uint low_live_nodes = 0;
  1892   while(inlining_progress() && _late_inlines.length() > 0) {
  1894     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
  1895       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
  1896         // PhaseIdealLoop is expensive so we only try it once we are
  1897         // out of loop and we only try it again if the previous helped
  1898         // got the number of nodes down significantly
  1899         PhaseIdealLoop ideal_loop( igvn, false, true );
  1900         if (failing())  return;
  1901         low_live_nodes = live_nodes();
  1902         _major_progress = true;
  1905       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
  1906         break;
  1910     inline_incrementally_one(igvn);
  1912     if (failing())  return;
  1914     igvn.optimize();
  1916     if (failing())  return;
  1919   assert( igvn._worklist.size() == 0, "should be done with igvn" );
  1921   if (_string_late_inlines.length() > 0) {
  1922     assert(has_stringbuilder(), "inconsistent");
  1923     for_igvn()->clear();
  1924     initial_gvn()->replace_with(&igvn);
  1926     inline_string_calls(false);
  1928     if (failing())  return;
  1931       ResourceMark rm;
  1932       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
  1935     igvn = PhaseIterGVN(gvn);
  1937     igvn.optimize();
  1940   set_inlining_incrementally(false);
  1944 //------------------------------Optimize---------------------------------------
  1945 // Given a graph, optimize it.
  1946 void Compile::Optimize() {
  1947   TracePhase t1("optimizer", &_t_optimizer, true);
  1949 #ifndef PRODUCT
  1950   if (env()->break_at_compile()) {
  1951     BREAKPOINT;
  1954 #endif
  1956   ResourceMark rm;
  1957   int          loop_opts_cnt;
  1959   NOT_PRODUCT( verify_graph_edges(); )
  1961   print_method("After Parsing");
  1964   // Iterative Global Value Numbering, including ideal transforms
  1965   // Initialize IterGVN with types and values from parse-time GVN
  1966   PhaseIterGVN igvn(initial_gvn());
  1968     NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
  1969     igvn.optimize();
  1972   print_method("Iter GVN 1", 2);
  1974   if (failing())  return;
  1977     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
  1978     inline_incrementally(igvn);
  1981   print_method("Incremental Inline", 2);
  1983   if (failing())  return;
  1985   if (eliminate_boxing()) {
  1986     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
  1987     // Inline valueOf() methods now.
  1988     inline_boxing_calls(igvn);
  1990     print_method("Incremental Boxing Inline", 2);
  1992     if (failing())  return;
  1995   // No more new expensive nodes will be added to the list from here
  1996   // so keep only the actual candidates for optimizations.
  1997   cleanup_expensive_nodes(igvn);
  1999   // Perform escape analysis
  2000   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
  2001     if (has_loops()) {
  2002       // Cleanup graph (remove dead nodes).
  2003       TracePhase t2("idealLoop", &_t_idealLoop, true);
  2004       PhaseIdealLoop ideal_loop( igvn, false, true );
  2005       if (major_progress()) print_method("PhaseIdealLoop before EA", 2);
  2006       if (failing())  return;
  2008     ConnectionGraph::do_analysis(this, &igvn);
  2010     if (failing())  return;
  2012     // Optimize out fields loads from scalar replaceable allocations.
  2013     igvn.optimize();
  2014     print_method("Iter GVN after EA", 2);
  2016     if (failing())  return;
  2018     if (congraph() != NULL && macro_count() > 0) {
  2019       NOT_PRODUCT( TracePhase t2("macroEliminate", &_t_macroEliminate, TimeCompiler); )
  2020       PhaseMacroExpand mexp(igvn);
  2021       mexp.eliminate_macro_nodes();
  2022       igvn.set_delay_transform(false);
  2024       igvn.optimize();
  2025       print_method("Iter GVN after eliminating allocations and locks", 2);
  2027       if (failing())  return;
  2031   // Loop transforms on the ideal graph.  Range Check Elimination,
  2032   // peeling, unrolling, etc.
  2034   // Set loop opts counter
  2035   loop_opts_cnt = num_loop_opts();
  2036   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
  2038       TracePhase t2("idealLoop", &_t_idealLoop, true);
  2039       PhaseIdealLoop ideal_loop( igvn, true );
  2040       loop_opts_cnt--;
  2041       if (major_progress()) print_method("PhaseIdealLoop 1", 2);
  2042       if (failing())  return;
  2044     // Loop opts pass if partial peeling occurred in previous pass
  2045     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
  2046       TracePhase t3("idealLoop", &_t_idealLoop, true);
  2047       PhaseIdealLoop ideal_loop( igvn, false );
  2048       loop_opts_cnt--;
  2049       if (major_progress()) print_method("PhaseIdealLoop 2", 2);
  2050       if (failing())  return;
  2052     // Loop opts pass for loop-unrolling before CCP
  2053     if(major_progress() && (loop_opts_cnt > 0)) {
  2054       TracePhase t4("idealLoop", &_t_idealLoop, true);
  2055       PhaseIdealLoop ideal_loop( igvn, false );
  2056       loop_opts_cnt--;
  2057       if (major_progress()) print_method("PhaseIdealLoop 3", 2);
  2059     if (!failing()) {
  2060       // Verify that last round of loop opts produced a valid graph
  2061       NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
  2062       PhaseIdealLoop::verify(igvn);
  2065   if (failing())  return;
  2067   // Conditional Constant Propagation;
  2068   PhaseCCP ccp( &igvn );
  2069   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
  2071     TracePhase t2("ccp", &_t_ccp, true);
  2072     ccp.do_transform();
  2074   print_method("PhaseCPP 1", 2);
  2076   assert( true, "Break here to ccp.dump_old2new_map()");
  2078   // Iterative Global Value Numbering, including ideal transforms
  2080     NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
  2081     igvn = ccp;
  2082     igvn.optimize();
  2085   print_method("Iter GVN 2", 2);
  2087   if (failing())  return;
  2089   // Loop transforms on the ideal graph.  Range Check Elimination,
  2090   // peeling, unrolling, etc.
  2091   if(loop_opts_cnt > 0) {
  2092     debug_only( int cnt = 0; );
  2093     while(major_progress() && (loop_opts_cnt > 0)) {
  2094       TracePhase t2("idealLoop", &_t_idealLoop, true);
  2095       assert( cnt++ < 40, "infinite cycle in loop optimization" );
  2096       PhaseIdealLoop ideal_loop( igvn, true);
  2097       loop_opts_cnt--;
  2098       if (major_progress()) print_method("PhaseIdealLoop iterations", 2);
  2099       if (failing())  return;
  2104     // Verify that all previous optimizations produced a valid graph
  2105     // at least to this point, even if no loop optimizations were done.
  2106     NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
  2107     PhaseIdealLoop::verify(igvn);
  2111     NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
  2112     PhaseMacroExpand  mex(igvn);
  2113     if (mex.expand_macro_nodes()) {
  2114       assert(failing(), "must bail out w/ explicit message");
  2115       return;
  2119  } // (End scope of igvn; run destructor if necessary for asserts.)
  2121   dump_inlining();
  2122   // A method with only infinite loops has no edges entering loops from root
  2124     NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
  2125     if (final_graph_reshaping()) {
  2126       assert(failing(), "must bail out w/ explicit message");
  2127       return;
  2131   print_method("Optimize finished", 2);
  2135 //------------------------------Code_Gen---------------------------------------
  2136 // Given a graph, generate code for it
  2137 void Compile::Code_Gen() {
  2138   if (failing())  return;
  2140   // Perform instruction selection.  You might think we could reclaim Matcher
  2141   // memory PDQ, but actually the Matcher is used in generating spill code.
  2142   // Internals of the Matcher (including some VectorSets) must remain live
  2143   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
  2144   // set a bit in reclaimed memory.
  2146   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
  2147   // nodes.  Mapping is only valid at the root of each matched subtree.
  2148   NOT_PRODUCT( verify_graph_edges(); )
  2150   Node_List proj_list;
  2151   Matcher m(proj_list);
  2152   _matcher = &m;
  2154     TracePhase t2("matcher", &_t_matcher, true);
  2155     m.match();
  2157   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
  2158   // nodes.  Mapping is only valid at the root of each matched subtree.
  2159   NOT_PRODUCT( verify_graph_edges(); )
  2161   // If you have too many nodes, or if matching has failed, bail out
  2162   check_node_count(0, "out of nodes matching instructions");
  2163   if (failing())  return;
  2165   // Build a proper-looking CFG
  2166   PhaseCFG cfg(node_arena(), root(), m);
  2167   _cfg = &cfg;
  2169     NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
  2170     cfg.Dominators();
  2171     if (failing())  return;
  2173     NOT_PRODUCT( verify_graph_edges(); )
  2175     cfg.Estimate_Block_Frequency();
  2176     cfg.GlobalCodeMotion(m,unique(),proj_list);
  2177     if (failing())  return;
  2179     print_method("Global code motion", 2);
  2181     NOT_PRODUCT( verify_graph_edges(); )
  2183     debug_only( cfg.verify(); )
  2185   NOT_PRODUCT( verify_graph_edges(); )
  2187   PhaseChaitin regalloc(unique(), cfg, m);
  2188   _regalloc = &regalloc;
  2190     TracePhase t2("regalloc", &_t_registerAllocation, true);
  2191     // Perform register allocation.  After Chaitin, use-def chains are
  2192     // no longer accurate (at spill code) and so must be ignored.
  2193     // Node->LRG->reg mappings are still accurate.
  2194     _regalloc->Register_Allocate();
  2196     // Bail out if the allocator builds too many nodes
  2197     if (failing()) {
  2198       return;
  2202   // Prior to register allocation we kept empty basic blocks in case the
  2203   // the allocator needed a place to spill.  After register allocation we
  2204   // are not adding any new instructions.  If any basic block is empty, we
  2205   // can now safely remove it.
  2207     NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
  2208     cfg.remove_empty();
  2209     if (do_freq_based_layout()) {
  2210       PhaseBlockLayout layout(cfg);
  2211     } else {
  2212       cfg.set_loop_alignment();
  2214     cfg.fixup_flow();
  2217   // Apply peephole optimizations
  2218   if( OptoPeephole ) {
  2219     NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
  2220     PhasePeephole peep( _regalloc, cfg);
  2221     peep.do_transform();
  2224   // Convert Nodes to instruction bits in a buffer
  2226     // %%%% workspace merge brought two timers together for one job
  2227     TracePhase t2a("output", &_t_output, true);
  2228     NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
  2229     Output();
  2232   print_method("Final Code");
  2234   // He's dead, Jim.
  2235   _cfg     = (PhaseCFG*)0xdeadbeef;
  2236   _regalloc = (PhaseChaitin*)0xdeadbeef;
  2240 //------------------------------dump_asm---------------------------------------
  2241 // Dump formatted assembly
  2242 #ifndef PRODUCT
  2243 void Compile::dump_asm(int *pcs, uint pc_limit) {
  2244   bool cut_short = false;
  2245   tty->print_cr("#");
  2246   tty->print("#  ");  _tf->dump();  tty->cr();
  2247   tty->print_cr("#");
  2249   // For all blocks
  2250   int pc = 0x0;                 // Program counter
  2251   char starts_bundle = ' ';
  2252   _regalloc->dump_frame();
  2254   Node *n = NULL;
  2255   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
  2256     if (VMThread::should_terminate()) { cut_short = true; break; }
  2257     Block *b = _cfg->_blocks[i];
  2258     if (b->is_connector() && !Verbose) continue;
  2259     n = b->_nodes[0];
  2260     if (pcs && n->_idx < pc_limit)
  2261       tty->print("%3.3x   ", pcs[n->_idx]);
  2262     else
  2263       tty->print("      ");
  2264     b->dump_head( &_cfg->_bbs );
  2265     if (b->is_connector()) {
  2266       tty->print_cr("        # Empty connector block");
  2267     } else if (b->num_preds() == 2 && b->pred(1)->is_CatchProj() && b->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
  2268       tty->print_cr("        # Block is sole successor of call");
  2271     // For all instructions
  2272     Node *delay = NULL;
  2273     for( uint j = 0; j<b->_nodes.size(); j++ ) {
  2274       if (VMThread::should_terminate()) { cut_short = true; break; }
  2275       n = b->_nodes[j];
  2276       if (valid_bundle_info(n)) {
  2277         Bundle *bundle = node_bundling(n);
  2278         if (bundle->used_in_unconditional_delay()) {
  2279           delay = n;
  2280           continue;
  2282         if (bundle->starts_bundle())
  2283           starts_bundle = '+';
  2286       if (WizardMode) n->dump();
  2288       if( !n->is_Region() &&    // Dont print in the Assembly
  2289           !n->is_Phi() &&       // a few noisely useless nodes
  2290           !n->is_Proj() &&
  2291           !n->is_MachTemp() &&
  2292           !n->is_SafePointScalarObject() &&
  2293           !n->is_Catch() &&     // Would be nice to print exception table targets
  2294           !n->is_MergeMem() &&  // Not very interesting
  2295           !n->is_top() &&       // Debug info table constants
  2296           !(n->is_Con() && !n->is_Mach())// Debug info table constants
  2297           ) {
  2298         if (pcs && n->_idx < pc_limit)
  2299           tty->print("%3.3x", pcs[n->_idx]);
  2300         else
  2301           tty->print("   ");
  2302         tty->print(" %c ", starts_bundle);
  2303         starts_bundle = ' ';
  2304         tty->print("\t");
  2305         n->format(_regalloc, tty);
  2306         tty->cr();
  2309       // If we have an instruction with a delay slot, and have seen a delay,
  2310       // then back up and print it
  2311       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
  2312         assert(delay != NULL, "no unconditional delay instruction");
  2313         if (WizardMode) delay->dump();
  2315         if (node_bundling(delay)->starts_bundle())
  2316           starts_bundle = '+';
  2317         if (pcs && n->_idx < pc_limit)
  2318           tty->print("%3.3x", pcs[n->_idx]);
  2319         else
  2320           tty->print("   ");
  2321         tty->print(" %c ", starts_bundle);
  2322         starts_bundle = ' ';
  2323         tty->print("\t");
  2324         delay->format(_regalloc, tty);
  2325         tty->print_cr("");
  2326         delay = NULL;
  2329       // Dump the exception table as well
  2330       if( n->is_Catch() && (Verbose || WizardMode) ) {
  2331         // Print the exception table for this offset
  2332         _handler_table.print_subtable_for(pc);
  2336     if (pcs && n->_idx < pc_limit)
  2337       tty->print_cr("%3.3x", pcs[n->_idx]);
  2338     else
  2339       tty->print_cr("");
  2341     assert(cut_short || delay == NULL, "no unconditional delay branch");
  2343   } // End of per-block dump
  2344   tty->print_cr("");
  2346   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
  2348 #endif
  2350 //------------------------------Final_Reshape_Counts---------------------------
  2351 // This class defines counters to help identify when a method
  2352 // may/must be executed using hardware with only 24-bit precision.
  2353 struct Final_Reshape_Counts : public StackObj {
  2354   int  _call_count;             // count non-inlined 'common' calls
  2355   int  _float_count;            // count float ops requiring 24-bit precision
  2356   int  _double_count;           // count double ops requiring more precision
  2357   int  _java_call_count;        // count non-inlined 'java' calls
  2358   int  _inner_loop_count;       // count loops which need alignment
  2359   VectorSet _visited;           // Visitation flags
  2360   Node_List _tests;             // Set of IfNodes & PCTableNodes
  2362   Final_Reshape_Counts() :
  2363     _call_count(0), _float_count(0), _double_count(0),
  2364     _java_call_count(0), _inner_loop_count(0),
  2365     _visited( Thread::current()->resource_area() ) { }
  2367   void inc_call_count  () { _call_count  ++; }
  2368   void inc_float_count () { _float_count ++; }
  2369   void inc_double_count() { _double_count++; }
  2370   void inc_java_call_count() { _java_call_count++; }
  2371   void inc_inner_loop_count() { _inner_loop_count++; }
  2373   int  get_call_count  () const { return _call_count  ; }
  2374   int  get_float_count () const { return _float_count ; }
  2375   int  get_double_count() const { return _double_count; }
  2376   int  get_java_call_count() const { return _java_call_count; }
  2377   int  get_inner_loop_count() const { return _inner_loop_count; }
  2378 };
  2380 #ifdef ASSERT
  2381 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
  2382   ciInstanceKlass *k = tp->klass()->as_instance_klass();
  2383   // Make sure the offset goes inside the instance layout.
  2384   return k->contains_field_offset(tp->offset());
  2385   // Note that OffsetBot and OffsetTop are very negative.
  2387 #endif
  2389 // Eliminate trivially redundant StoreCMs and accumulate their
  2390 // precedence edges.
  2391 void Compile::eliminate_redundant_card_marks(Node* n) {
  2392   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
  2393   if (n->in(MemNode::Address)->outcnt() > 1) {
  2394     // There are multiple users of the same address so it might be
  2395     // possible to eliminate some of the StoreCMs
  2396     Node* mem = n->in(MemNode::Memory);
  2397     Node* adr = n->in(MemNode::Address);
  2398     Node* val = n->in(MemNode::ValueIn);
  2399     Node* prev = n;
  2400     bool done = false;
  2401     // Walk the chain of StoreCMs eliminating ones that match.  As
  2402     // long as it's a chain of single users then the optimization is
  2403     // safe.  Eliminating partially redundant StoreCMs would require
  2404     // cloning copies down the other paths.
  2405     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
  2406       if (adr == mem->in(MemNode::Address) &&
  2407           val == mem->in(MemNode::ValueIn)) {
  2408         // redundant StoreCM
  2409         if (mem->req() > MemNode::OopStore) {
  2410           // Hasn't been processed by this code yet.
  2411           n->add_prec(mem->in(MemNode::OopStore));
  2412         } else {
  2413           // Already converted to precedence edge
  2414           for (uint i = mem->req(); i < mem->len(); i++) {
  2415             // Accumulate any precedence edges
  2416             if (mem->in(i) != NULL) {
  2417               n->add_prec(mem->in(i));
  2420           // Everything above this point has been processed.
  2421           done = true;
  2423         // Eliminate the previous StoreCM
  2424         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
  2425         assert(mem->outcnt() == 0, "should be dead");
  2426         mem->disconnect_inputs(NULL, this);
  2427       } else {
  2428         prev = mem;
  2430       mem = prev->in(MemNode::Memory);
  2435 //------------------------------final_graph_reshaping_impl----------------------
  2436 // Implement items 1-5 from final_graph_reshaping below.
  2437 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
  2439   if ( n->outcnt() == 0 ) return; // dead node
  2440   uint nop = n->Opcode();
  2442   // Check for 2-input instruction with "last use" on right input.
  2443   // Swap to left input.  Implements item (2).
  2444   if( n->req() == 3 &&          // two-input instruction
  2445       n->in(1)->outcnt() > 1 && // left use is NOT a last use
  2446       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
  2447       n->in(2)->outcnt() == 1 &&// right use IS a last use
  2448       !n->in(2)->is_Con() ) {   // right use is not a constant
  2449     // Check for commutative opcode
  2450     switch( nop ) {
  2451     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
  2452     case Op_MaxI:  case Op_MinI:
  2453     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
  2454     case Op_AndL:  case Op_XorL:  case Op_OrL:
  2455     case Op_AndI:  case Op_XorI:  case Op_OrI: {
  2456       // Move "last use" input to left by swapping inputs
  2457       n->swap_edges(1, 2);
  2458       break;
  2460     default:
  2461       break;
  2465 #ifdef ASSERT
  2466   if( n->is_Mem() ) {
  2467     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
  2468     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
  2469             // oop will be recorded in oop map if load crosses safepoint
  2470             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
  2471                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
  2472             "raw memory operations should have control edge");
  2474 #endif
  2475   // Count FPU ops and common calls, implements item (3)
  2476   switch( nop ) {
  2477   // Count all float operations that may use FPU
  2478   case Op_AddF:
  2479   case Op_SubF:
  2480   case Op_MulF:
  2481   case Op_DivF:
  2482   case Op_NegF:
  2483   case Op_ModF:
  2484   case Op_ConvI2F:
  2485   case Op_ConF:
  2486   case Op_CmpF:
  2487   case Op_CmpF3:
  2488   // case Op_ConvL2F: // longs are split into 32-bit halves
  2489     frc.inc_float_count();
  2490     break;
  2492   case Op_ConvF2D:
  2493   case Op_ConvD2F:
  2494     frc.inc_float_count();
  2495     frc.inc_double_count();
  2496     break;
  2498   // Count all double operations that may use FPU
  2499   case Op_AddD:
  2500   case Op_SubD:
  2501   case Op_MulD:
  2502   case Op_DivD:
  2503   case Op_NegD:
  2504   case Op_ModD:
  2505   case Op_ConvI2D:
  2506   case Op_ConvD2I:
  2507   // case Op_ConvL2D: // handled by leaf call
  2508   // case Op_ConvD2L: // handled by leaf call
  2509   case Op_ConD:
  2510   case Op_CmpD:
  2511   case Op_CmpD3:
  2512     frc.inc_double_count();
  2513     break;
  2514   case Op_Opaque1:              // Remove Opaque Nodes before matching
  2515   case Op_Opaque2:              // Remove Opaque Nodes before matching
  2516     n->subsume_by(n->in(1), this);
  2517     break;
  2518   case Op_CallStaticJava:
  2519   case Op_CallJava:
  2520   case Op_CallDynamicJava:
  2521     frc.inc_java_call_count(); // Count java call site;
  2522   case Op_CallRuntime:
  2523   case Op_CallLeaf:
  2524   case Op_CallLeafNoFP: {
  2525     assert( n->is_Call(), "" );
  2526     CallNode *call = n->as_Call();
  2527     // Count call sites where the FP mode bit would have to be flipped.
  2528     // Do not count uncommon runtime calls:
  2529     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
  2530     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
  2531     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
  2532       frc.inc_call_count();   // Count the call site
  2533     } else {                  // See if uncommon argument is shared
  2534       Node *n = call->in(TypeFunc::Parms);
  2535       int nop = n->Opcode();
  2536       // Clone shared simple arguments to uncommon calls, item (1).
  2537       if( n->outcnt() > 1 &&
  2538           !n->is_Proj() &&
  2539           nop != Op_CreateEx &&
  2540           nop != Op_CheckCastPP &&
  2541           nop != Op_DecodeN &&
  2542           nop != Op_DecodeNKlass &&
  2543           !n->is_Mem() ) {
  2544         Node *x = n->clone();
  2545         call->set_req( TypeFunc::Parms, x );
  2548     break;
  2551   case Op_StoreD:
  2552   case Op_LoadD:
  2553   case Op_LoadD_unaligned:
  2554     frc.inc_double_count();
  2555     goto handle_mem;
  2556   case Op_StoreF:
  2557   case Op_LoadF:
  2558     frc.inc_float_count();
  2559     goto handle_mem;
  2561   case Op_StoreCM:
  2563       // Convert OopStore dependence into precedence edge
  2564       Node* prec = n->in(MemNode::OopStore);
  2565       n->del_req(MemNode::OopStore);
  2566       n->add_prec(prec);
  2567       eliminate_redundant_card_marks(n);
  2570     // fall through
  2572   case Op_StoreB:
  2573   case Op_StoreC:
  2574   case Op_StorePConditional:
  2575   case Op_StoreI:
  2576   case Op_StoreL:
  2577   case Op_StoreIConditional:
  2578   case Op_StoreLConditional:
  2579   case Op_CompareAndSwapI:
  2580   case Op_CompareAndSwapL:
  2581   case Op_CompareAndSwapP:
  2582   case Op_CompareAndSwapN:
  2583   case Op_GetAndAddI:
  2584   case Op_GetAndAddL:
  2585   case Op_GetAndSetI:
  2586   case Op_GetAndSetL:
  2587   case Op_GetAndSetP:
  2588   case Op_GetAndSetN:
  2589   case Op_StoreP:
  2590   case Op_StoreN:
  2591   case Op_StoreNKlass:
  2592   case Op_LoadB:
  2593   case Op_LoadUB:
  2594   case Op_LoadUS:
  2595   case Op_LoadI:
  2596   case Op_LoadKlass:
  2597   case Op_LoadNKlass:
  2598   case Op_LoadL:
  2599   case Op_LoadL_unaligned:
  2600   case Op_LoadPLocked:
  2601   case Op_LoadP:
  2602   case Op_LoadN:
  2603   case Op_LoadRange:
  2604   case Op_LoadS: {
  2605   handle_mem:
  2606 #ifdef ASSERT
  2607     if( VerifyOptoOopOffsets ) {
  2608       assert( n->is_Mem(), "" );
  2609       MemNode *mem  = (MemNode*)n;
  2610       // Check to see if address types have grounded out somehow.
  2611       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
  2612       assert( !tp || oop_offset_is_sane(tp), "" );
  2614 #endif
  2615     break;
  2618   case Op_AddP: {               // Assert sane base pointers
  2619     Node *addp = n->in(AddPNode::Address);
  2620     assert( !addp->is_AddP() ||
  2621             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
  2622             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
  2623             "Base pointers must match" );
  2624 #ifdef _LP64
  2625     if ((UseCompressedOops || UseCompressedKlassPointers) &&
  2626         addp->Opcode() == Op_ConP &&
  2627         addp == n->in(AddPNode::Base) &&
  2628         n->in(AddPNode::Offset)->is_Con()) {
  2629       // Use addressing with narrow klass to load with offset on x86.
  2630       // On sparc loading 32-bits constant and decoding it have less
  2631       // instructions (4) then load 64-bits constant (7).
  2632       // Do this transformation here since IGVN will convert ConN back to ConP.
  2633       const Type* t = addp->bottom_type();
  2634       if (t->isa_oopptr() || t->isa_klassptr()) {
  2635         Node* nn = NULL;
  2637         int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
  2639         // Look for existing ConN node of the same exact type.
  2640         Node* r  = root();
  2641         uint cnt = r->outcnt();
  2642         for (uint i = 0; i < cnt; i++) {
  2643           Node* m = r->raw_out(i);
  2644           if (m!= NULL && m->Opcode() == op &&
  2645               m->bottom_type()->make_ptr() == t) {
  2646             nn = m;
  2647             break;
  2650         if (nn != NULL) {
  2651           // Decode a narrow oop to match address
  2652           // [R12 + narrow_oop_reg<<3 + offset]
  2653           if (t->isa_oopptr()) {
  2654             nn = new (this) DecodeNNode(nn, t);
  2655           } else {
  2656             nn = new (this) DecodeNKlassNode(nn, t);
  2658           n->set_req(AddPNode::Base, nn);
  2659           n->set_req(AddPNode::Address, nn);
  2660           if (addp->outcnt() == 0) {
  2661             addp->disconnect_inputs(NULL, this);
  2666 #endif
  2667     break;
  2670 #ifdef _LP64
  2671   case Op_CastPP:
  2672     if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
  2673       Node* in1 = n->in(1);
  2674       const Type* t = n->bottom_type();
  2675       Node* new_in1 = in1->clone();
  2676       new_in1->as_DecodeN()->set_type(t);
  2678       if (!Matcher::narrow_oop_use_complex_address()) {
  2679         //
  2680         // x86, ARM and friends can handle 2 adds in addressing mode
  2681         // and Matcher can fold a DecodeN node into address by using
  2682         // a narrow oop directly and do implicit NULL check in address:
  2683         //
  2684         // [R12 + narrow_oop_reg<<3 + offset]
  2685         // NullCheck narrow_oop_reg
  2686         //
  2687         // On other platforms (Sparc) we have to keep new DecodeN node and
  2688         // use it to do implicit NULL check in address:
  2689         //
  2690         // decode_not_null narrow_oop_reg, base_reg
  2691         // [base_reg + offset]
  2692         // NullCheck base_reg
  2693         //
  2694         // Pin the new DecodeN node to non-null path on these platform (Sparc)
  2695         // to keep the information to which NULL check the new DecodeN node
  2696         // corresponds to use it as value in implicit_null_check().
  2697         //
  2698         new_in1->set_req(0, n->in(0));
  2701       n->subsume_by(new_in1, this);
  2702       if (in1->outcnt() == 0) {
  2703         in1->disconnect_inputs(NULL, this);
  2706     break;
  2708   case Op_CmpP:
  2709     // Do this transformation here to preserve CmpPNode::sub() and
  2710     // other TypePtr related Ideal optimizations (for example, ptr nullness).
  2711     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
  2712       Node* in1 = n->in(1);
  2713       Node* in2 = n->in(2);
  2714       if (!in1->is_DecodeNarrowPtr()) {
  2715         in2 = in1;
  2716         in1 = n->in(2);
  2718       assert(in1->is_DecodeNarrowPtr(), "sanity");
  2720       Node* new_in2 = NULL;
  2721       if (in2->is_DecodeNarrowPtr()) {
  2722         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
  2723         new_in2 = in2->in(1);
  2724       } else if (in2->Opcode() == Op_ConP) {
  2725         const Type* t = in2->bottom_type();
  2726         if (t == TypePtr::NULL_PTR) {
  2727           assert(in1->is_DecodeN(), "compare klass to null?");
  2728           // Don't convert CmpP null check into CmpN if compressed
  2729           // oops implicit null check is not generated.
  2730           // This will allow to generate normal oop implicit null check.
  2731           if (Matcher::gen_narrow_oop_implicit_null_checks())
  2732             new_in2 = ConNode::make(this, TypeNarrowOop::NULL_PTR);
  2733           //
  2734           // This transformation together with CastPP transformation above
  2735           // will generated code for implicit NULL checks for compressed oops.
  2736           //
  2737           // The original code after Optimize()
  2738           //
  2739           //    LoadN memory, narrow_oop_reg
  2740           //    decode narrow_oop_reg, base_reg
  2741           //    CmpP base_reg, NULL
  2742           //    CastPP base_reg // NotNull
  2743           //    Load [base_reg + offset], val_reg
  2744           //
  2745           // after these transformations will be
  2746           //
  2747           //    LoadN memory, narrow_oop_reg
  2748           //    CmpN narrow_oop_reg, NULL
  2749           //    decode_not_null narrow_oop_reg, base_reg
  2750           //    Load [base_reg + offset], val_reg
  2751           //
  2752           // and the uncommon path (== NULL) will use narrow_oop_reg directly
  2753           // since narrow oops can be used in debug info now (see the code in
  2754           // final_graph_reshaping_walk()).
  2755           //
  2756           // At the end the code will be matched to
  2757           // on x86:
  2758           //
  2759           //    Load_narrow_oop memory, narrow_oop_reg
  2760           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
  2761           //    NullCheck narrow_oop_reg
  2762           //
  2763           // and on sparc:
  2764           //
  2765           //    Load_narrow_oop memory, narrow_oop_reg
  2766           //    decode_not_null narrow_oop_reg, base_reg
  2767           //    Load [base_reg + offset], val_reg
  2768           //    NullCheck base_reg
  2769           //
  2770         } else if (t->isa_oopptr()) {
  2771           new_in2 = ConNode::make(this, t->make_narrowoop());
  2772         } else if (t->isa_klassptr()) {
  2773           new_in2 = ConNode::make(this, t->make_narrowklass());
  2776       if (new_in2 != NULL) {
  2777         Node* cmpN = new (this) CmpNNode(in1->in(1), new_in2);
  2778         n->subsume_by(cmpN, this);
  2779         if (in1->outcnt() == 0) {
  2780           in1->disconnect_inputs(NULL, this);
  2782         if (in2->outcnt() == 0) {
  2783           in2->disconnect_inputs(NULL, this);
  2787     break;
  2789   case Op_DecodeN:
  2790   case Op_DecodeNKlass:
  2791     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
  2792     // DecodeN could be pinned when it can't be fold into
  2793     // an address expression, see the code for Op_CastPP above.
  2794     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
  2795     break;
  2797   case Op_EncodeP:
  2798   case Op_EncodePKlass: {
  2799     Node* in1 = n->in(1);
  2800     if (in1->is_DecodeNarrowPtr()) {
  2801       n->subsume_by(in1->in(1), this);
  2802     } else if (in1->Opcode() == Op_ConP) {
  2803       const Type* t = in1->bottom_type();
  2804       if (t == TypePtr::NULL_PTR) {
  2805         assert(t->isa_oopptr(), "null klass?");
  2806         n->subsume_by(ConNode::make(this, TypeNarrowOop::NULL_PTR), this);
  2807       } else if (t->isa_oopptr()) {
  2808         n->subsume_by(ConNode::make(this, t->make_narrowoop()), this);
  2809       } else if (t->isa_klassptr()) {
  2810         n->subsume_by(ConNode::make(this, t->make_narrowklass()), this);
  2813     if (in1->outcnt() == 0) {
  2814       in1->disconnect_inputs(NULL, this);
  2816     break;
  2819   case Op_Proj: {
  2820     if (OptimizeStringConcat) {
  2821       ProjNode* p = n->as_Proj();
  2822       if (p->_is_io_use) {
  2823         // Separate projections were used for the exception path which
  2824         // are normally removed by a late inline.  If it wasn't inlined
  2825         // then they will hang around and should just be replaced with
  2826         // the original one.
  2827         Node* proj = NULL;
  2828         // Replace with just one
  2829         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
  2830           Node *use = i.get();
  2831           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
  2832             proj = use;
  2833             break;
  2836         assert(proj != NULL, "must be found");
  2837         p->subsume_by(proj, this);
  2840     break;
  2843   case Op_Phi:
  2844     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
  2845       // The EncodeP optimization may create Phi with the same edges
  2846       // for all paths. It is not handled well by Register Allocator.
  2847       Node* unique_in = n->in(1);
  2848       assert(unique_in != NULL, "");
  2849       uint cnt = n->req();
  2850       for (uint i = 2; i < cnt; i++) {
  2851         Node* m = n->in(i);
  2852         assert(m != NULL, "");
  2853         if (unique_in != m)
  2854           unique_in = NULL;
  2856       if (unique_in != NULL) {
  2857         n->subsume_by(unique_in, this);
  2860     break;
  2862 #endif
  2864   case Op_ModI:
  2865     if (UseDivMod) {
  2866       // Check if a%b and a/b both exist
  2867       Node* d = n->find_similar(Op_DivI);
  2868       if (d) {
  2869         // Replace them with a fused divmod if supported
  2870         if (Matcher::has_match_rule(Op_DivModI)) {
  2871           DivModINode* divmod = DivModINode::make(this, n);
  2872           d->subsume_by(divmod->div_proj(), this);
  2873           n->subsume_by(divmod->mod_proj(), this);
  2874         } else {
  2875           // replace a%b with a-((a/b)*b)
  2876           Node* mult = new (this) MulINode(d, d->in(2));
  2877           Node* sub  = new (this) SubINode(d->in(1), mult);
  2878           n->subsume_by(sub, this);
  2882     break;
  2884   case Op_ModL:
  2885     if (UseDivMod) {
  2886       // Check if a%b and a/b both exist
  2887       Node* d = n->find_similar(Op_DivL);
  2888       if (d) {
  2889         // Replace them with a fused divmod if supported
  2890         if (Matcher::has_match_rule(Op_DivModL)) {
  2891           DivModLNode* divmod = DivModLNode::make(this, n);
  2892           d->subsume_by(divmod->div_proj(), this);
  2893           n->subsume_by(divmod->mod_proj(), this);
  2894         } else {
  2895           // replace a%b with a-((a/b)*b)
  2896           Node* mult = new (this) MulLNode(d, d->in(2));
  2897           Node* sub  = new (this) SubLNode(d->in(1), mult);
  2898           n->subsume_by(sub, this);
  2902     break;
  2904   case Op_LoadVector:
  2905   case Op_StoreVector:
  2906     break;
  2908   case Op_PackB:
  2909   case Op_PackS:
  2910   case Op_PackI:
  2911   case Op_PackF:
  2912   case Op_PackL:
  2913   case Op_PackD:
  2914     if (n->req()-1 > 2) {
  2915       // Replace many operand PackNodes with a binary tree for matching
  2916       PackNode* p = (PackNode*) n;
  2917       Node* btp = p->binary_tree_pack(this, 1, n->req());
  2918       n->subsume_by(btp, this);
  2920     break;
  2921   case Op_Loop:
  2922   case Op_CountedLoop:
  2923     if (n->as_Loop()->is_inner_loop()) {
  2924       frc.inc_inner_loop_count();
  2926     break;
  2927   case Op_LShiftI:
  2928   case Op_RShiftI:
  2929   case Op_URShiftI:
  2930   case Op_LShiftL:
  2931   case Op_RShiftL:
  2932   case Op_URShiftL:
  2933     if (Matcher::need_masked_shift_count) {
  2934       // The cpu's shift instructions don't restrict the count to the
  2935       // lower 5/6 bits. We need to do the masking ourselves.
  2936       Node* in2 = n->in(2);
  2937       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
  2938       const TypeInt* t = in2->find_int_type();
  2939       if (t != NULL && t->is_con()) {
  2940         juint shift = t->get_con();
  2941         if (shift > mask) { // Unsigned cmp
  2942           n->set_req(2, ConNode::make(this, TypeInt::make(shift & mask)));
  2944       } else {
  2945         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
  2946           Node* shift = new (this) AndINode(in2, ConNode::make(this, TypeInt::make(mask)));
  2947           n->set_req(2, shift);
  2950       if (in2->outcnt() == 0) { // Remove dead node
  2951         in2->disconnect_inputs(NULL, this);
  2954     break;
  2955   case Op_MemBarStoreStore:
  2956   case Op_MemBarRelease:
  2957     // Break the link with AllocateNode: it is no longer useful and
  2958     // confuses register allocation.
  2959     if (n->req() > MemBarNode::Precedent) {
  2960       n->set_req(MemBarNode::Precedent, top());
  2962     break;
  2963   default:
  2964     assert( !n->is_Call(), "" );
  2965     assert( !n->is_Mem(), "" );
  2966     break;
  2969   // Collect CFG split points
  2970   if (n->is_MultiBranch())
  2971     frc._tests.push(n);
  2974 //------------------------------final_graph_reshaping_walk---------------------
  2975 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
  2976 // requires that the walk visits a node's inputs before visiting the node.
  2977 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
  2978   ResourceArea *area = Thread::current()->resource_area();
  2979   Unique_Node_List sfpt(area);
  2981   frc._visited.set(root->_idx); // first, mark node as visited
  2982   uint cnt = root->req();
  2983   Node *n = root;
  2984   uint  i = 0;
  2985   while (true) {
  2986     if (i < cnt) {
  2987       // Place all non-visited non-null inputs onto stack
  2988       Node* m = n->in(i);
  2989       ++i;
  2990       if (m != NULL && !frc._visited.test_set(m->_idx)) {
  2991         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL)
  2992           sfpt.push(m);
  2993         cnt = m->req();
  2994         nstack.push(n, i); // put on stack parent and next input's index
  2995         n = m;
  2996         i = 0;
  2998     } else {
  2999       // Now do post-visit work
  3000       final_graph_reshaping_impl( n, frc );
  3001       if (nstack.is_empty())
  3002         break;             // finished
  3003       n = nstack.node();   // Get node from stack
  3004       cnt = n->req();
  3005       i = nstack.index();
  3006       nstack.pop();        // Shift to the next node on stack
  3010   // Skip next transformation if compressed oops are not used.
  3011   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
  3012       (!UseCompressedOops && !UseCompressedKlassPointers))
  3013     return;
  3015   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
  3016   // It could be done for an uncommon traps or any safepoints/calls
  3017   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
  3018   while (sfpt.size() > 0) {
  3019     n = sfpt.pop();
  3020     JVMState *jvms = n->as_SafePoint()->jvms();
  3021     assert(jvms != NULL, "sanity");
  3022     int start = jvms->debug_start();
  3023     int end   = n->req();
  3024     bool is_uncommon = (n->is_CallStaticJava() &&
  3025                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
  3026     for (int j = start; j < end; j++) {
  3027       Node* in = n->in(j);
  3028       if (in->is_DecodeNarrowPtr()) {
  3029         bool safe_to_skip = true;
  3030         if (!is_uncommon ) {
  3031           // Is it safe to skip?
  3032           for (uint i = 0; i < in->outcnt(); i++) {
  3033             Node* u = in->raw_out(i);
  3034             if (!u->is_SafePoint() ||
  3035                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
  3036               safe_to_skip = false;
  3040         if (safe_to_skip) {
  3041           n->set_req(j, in->in(1));
  3043         if (in->outcnt() == 0) {
  3044           in->disconnect_inputs(NULL, this);
  3051 //------------------------------final_graph_reshaping--------------------------
  3052 // Final Graph Reshaping.
  3053 //
  3054 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
  3055 //     and not commoned up and forced early.  Must come after regular
  3056 //     optimizations to avoid GVN undoing the cloning.  Clone constant
  3057 //     inputs to Loop Phis; these will be split by the allocator anyways.
  3058 //     Remove Opaque nodes.
  3059 // (2) Move last-uses by commutative operations to the left input to encourage
  3060 //     Intel update-in-place two-address operations and better register usage
  3061 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
  3062 //     calls canonicalizing them back.
  3063 // (3) Count the number of double-precision FP ops, single-precision FP ops
  3064 //     and call sites.  On Intel, we can get correct rounding either by
  3065 //     forcing singles to memory (requires extra stores and loads after each
  3066 //     FP bytecode) or we can set a rounding mode bit (requires setting and
  3067 //     clearing the mode bit around call sites).  The mode bit is only used
  3068 //     if the relative frequency of single FP ops to calls is low enough.
  3069 //     This is a key transform for SPEC mpeg_audio.
  3070 // (4) Detect infinite loops; blobs of code reachable from above but not
  3071 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
  3072 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
  3073 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
  3074 //     Detection is by looking for IfNodes where only 1 projection is
  3075 //     reachable from below or CatchNodes missing some targets.
  3076 // (5) Assert for insane oop offsets in debug mode.
  3078 bool Compile::final_graph_reshaping() {
  3079   // an infinite loop may have been eliminated by the optimizer,
  3080   // in which case the graph will be empty.
  3081   if (root()->req() == 1) {
  3082     record_method_not_compilable("trivial infinite loop");
  3083     return true;
  3086   // Expensive nodes have their control input set to prevent the GVN
  3087   // from freely commoning them. There's no GVN beyond this point so
  3088   // no need to keep the control input. We want the expensive nodes to
  3089   // be freely moved to the least frequent code path by gcm.
  3090   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
  3091   for (int i = 0; i < expensive_count(); i++) {
  3092     _expensive_nodes->at(i)->set_req(0, NULL);
  3095   Final_Reshape_Counts frc;
  3097   // Visit everybody reachable!
  3098   // Allocate stack of size C->unique()/2 to avoid frequent realloc
  3099   Node_Stack nstack(unique() >> 1);
  3100   final_graph_reshaping_walk(nstack, root(), frc);
  3102   // Check for unreachable (from below) code (i.e., infinite loops).
  3103   for( uint i = 0; i < frc._tests.size(); i++ ) {
  3104     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
  3105     // Get number of CFG targets.
  3106     // Note that PCTables include exception targets after calls.
  3107     uint required_outcnt = n->required_outcnt();
  3108     if (n->outcnt() != required_outcnt) {
  3109       // Check for a few special cases.  Rethrow Nodes never take the
  3110       // 'fall-thru' path, so expected kids is 1 less.
  3111       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
  3112         if (n->in(0)->in(0)->is_Call()) {
  3113           CallNode *call = n->in(0)->in(0)->as_Call();
  3114           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
  3115             required_outcnt--;      // Rethrow always has 1 less kid
  3116           } else if (call->req() > TypeFunc::Parms &&
  3117                      call->is_CallDynamicJava()) {
  3118             // Check for null receiver. In such case, the optimizer has
  3119             // detected that the virtual call will always result in a null
  3120             // pointer exception. The fall-through projection of this CatchNode
  3121             // will not be populated.
  3122             Node *arg0 = call->in(TypeFunc::Parms);
  3123             if (arg0->is_Type() &&
  3124                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
  3125               required_outcnt--;
  3127           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
  3128                      call->req() > TypeFunc::Parms+1 &&
  3129                      call->is_CallStaticJava()) {
  3130             // Check for negative array length. In such case, the optimizer has
  3131             // detected that the allocation attempt will always result in an
  3132             // exception. There is no fall-through projection of this CatchNode .
  3133             Node *arg1 = call->in(TypeFunc::Parms+1);
  3134             if (arg1->is_Type() &&
  3135                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
  3136               required_outcnt--;
  3141       // Recheck with a better notion of 'required_outcnt'
  3142       if (n->outcnt() != required_outcnt) {
  3143         record_method_not_compilable("malformed control flow");
  3144         return true;            // Not all targets reachable!
  3147     // Check that I actually visited all kids.  Unreached kids
  3148     // must be infinite loops.
  3149     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
  3150       if (!frc._visited.test(n->fast_out(j)->_idx)) {
  3151         record_method_not_compilable("infinite loop");
  3152         return true;            // Found unvisited kid; must be unreach
  3156   // If original bytecodes contained a mixture of floats and doubles
  3157   // check if the optimizer has made it homogenous, item (3).
  3158   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
  3159       frc.get_float_count() > 32 &&
  3160       frc.get_double_count() == 0 &&
  3161       (10 * frc.get_call_count() < frc.get_float_count()) ) {
  3162     set_24_bit_selection_and_mode( false,  true );
  3165   set_java_calls(frc.get_java_call_count());
  3166   set_inner_loops(frc.get_inner_loop_count());
  3168   // No infinite loops, no reason to bail out.
  3169   return false;
  3172 //-----------------------------too_many_traps----------------------------------
  3173 // Report if there are too many traps at the current method and bci.
  3174 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
  3175 bool Compile::too_many_traps(ciMethod* method,
  3176                              int bci,
  3177                              Deoptimization::DeoptReason reason) {
  3178   ciMethodData* md = method->method_data();
  3179   if (md->is_empty()) {
  3180     // Assume the trap has not occurred, or that it occurred only
  3181     // because of a transient condition during start-up in the interpreter.
  3182     return false;
  3184   if (md->has_trap_at(bci, reason) != 0) {
  3185     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
  3186     // Also, if there are multiple reasons, or if there is no per-BCI record,
  3187     // assume the worst.
  3188     if (log())
  3189       log()->elem("observe trap='%s' count='%d'",
  3190                   Deoptimization::trap_reason_name(reason),
  3191                   md->trap_count(reason));
  3192     return true;
  3193   } else {
  3194     // Ignore method/bci and see if there have been too many globally.
  3195     return too_many_traps(reason, md);
  3199 // Less-accurate variant which does not require a method and bci.
  3200 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
  3201                              ciMethodData* logmd) {
  3202  if (trap_count(reason) >= (uint)PerMethodTrapLimit) {
  3203     // Too many traps globally.
  3204     // Note that we use cumulative trap_count, not just md->trap_count.
  3205     if (log()) {
  3206       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
  3207       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
  3208                   Deoptimization::trap_reason_name(reason),
  3209                   mcount, trap_count(reason));
  3211     return true;
  3212   } else {
  3213     // The coast is clear.
  3214     return false;
  3218 //--------------------------too_many_recompiles--------------------------------
  3219 // Report if there are too many recompiles at the current method and bci.
  3220 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
  3221 // Is not eager to return true, since this will cause the compiler to use
  3222 // Action_none for a trap point, to avoid too many recompilations.
  3223 bool Compile::too_many_recompiles(ciMethod* method,
  3224                                   int bci,
  3225                                   Deoptimization::DeoptReason reason) {
  3226   ciMethodData* md = method->method_data();
  3227   if (md->is_empty()) {
  3228     // Assume the trap has not occurred, or that it occurred only
  3229     // because of a transient condition during start-up in the interpreter.
  3230     return false;
  3232   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
  3233   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
  3234   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
  3235   Deoptimization::DeoptReason per_bc_reason
  3236     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
  3237   if ((per_bc_reason == Deoptimization::Reason_none
  3238        || md->has_trap_at(bci, reason) != 0)
  3239       // The trap frequency measure we care about is the recompile count:
  3240       && md->trap_recompiled_at(bci)
  3241       && md->overflow_recompile_count() >= bc_cutoff) {
  3242     // Do not emit a trap here if it has already caused recompilations.
  3243     // Also, if there are multiple reasons, or if there is no per-BCI record,
  3244     // assume the worst.
  3245     if (log())
  3246       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
  3247                   Deoptimization::trap_reason_name(reason),
  3248                   md->trap_count(reason),
  3249                   md->overflow_recompile_count());
  3250     return true;
  3251   } else if (trap_count(reason) != 0
  3252              && decompile_count() >= m_cutoff) {
  3253     // Too many recompiles globally, and we have seen this sort of trap.
  3254     // Use cumulative decompile_count, not just md->decompile_count.
  3255     if (log())
  3256       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
  3257                   Deoptimization::trap_reason_name(reason),
  3258                   md->trap_count(reason), trap_count(reason),
  3259                   md->decompile_count(), decompile_count());
  3260     return true;
  3261   } else {
  3262     // The coast is clear.
  3263     return false;
  3268 #ifndef PRODUCT
  3269 //------------------------------verify_graph_edges---------------------------
  3270 // Walk the Graph and verify that there is a one-to-one correspondence
  3271 // between Use-Def edges and Def-Use edges in the graph.
  3272 void Compile::verify_graph_edges(bool no_dead_code) {
  3273   if (VerifyGraphEdges) {
  3274     ResourceArea *area = Thread::current()->resource_area();
  3275     Unique_Node_List visited(area);
  3276     // Call recursive graph walk to check edges
  3277     _root->verify_edges(visited);
  3278     if (no_dead_code) {
  3279       // Now make sure that no visited node is used by an unvisited node.
  3280       bool dead_nodes = 0;
  3281       Unique_Node_List checked(area);
  3282       while (visited.size() > 0) {
  3283         Node* n = visited.pop();
  3284         checked.push(n);
  3285         for (uint i = 0; i < n->outcnt(); i++) {
  3286           Node* use = n->raw_out(i);
  3287           if (checked.member(use))  continue;  // already checked
  3288           if (visited.member(use))  continue;  // already in the graph
  3289           if (use->is_Con())        continue;  // a dead ConNode is OK
  3290           // At this point, we have found a dead node which is DU-reachable.
  3291           if (dead_nodes++ == 0)
  3292             tty->print_cr("*** Dead nodes reachable via DU edges:");
  3293           use->dump(2);
  3294           tty->print_cr("---");
  3295           checked.push(use);  // No repeats; pretend it is now checked.
  3298       assert(dead_nodes == 0, "using nodes must be reachable from root");
  3302 #endif
  3304 // The Compile object keeps track of failure reasons separately from the ciEnv.
  3305 // This is required because there is not quite a 1-1 relation between the
  3306 // ciEnv and its compilation task and the Compile object.  Note that one
  3307 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
  3308 // to backtrack and retry without subsuming loads.  Other than this backtracking
  3309 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
  3310 // by the logic in C2Compiler.
  3311 void Compile::record_failure(const char* reason) {
  3312   if (log() != NULL) {
  3313     log()->elem("failure reason='%s' phase='compile'", reason);
  3315   if (_failure_reason == NULL) {
  3316     // Record the first failure reason.
  3317     _failure_reason = reason;
  3319   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
  3320     C->print_method(_failure_reason);
  3322   _root = NULL;  // flush the graph, too
  3325 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
  3326   : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false),
  3327     _phase_name(name), _dolog(dolog)
  3329   if (dolog) {
  3330     C = Compile::current();
  3331     _log = C->log();
  3332   } else {
  3333     C = NULL;
  3334     _log = NULL;
  3336   if (_log != NULL) {
  3337     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
  3338     _log->stamp();
  3339     _log->end_head();
  3343 Compile::TracePhase::~TracePhase() {
  3345   C = Compile::current();
  3346   if (_dolog) {
  3347     _log = C->log();
  3348   } else {
  3349     _log = NULL;
  3352 #ifdef ASSERT
  3353   if (PrintIdealNodeCount) {
  3354     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
  3355                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
  3358   if (VerifyIdealNodeCount) {
  3359     Compile::current()->print_missing_nodes();
  3361 #endif
  3363   if (_log != NULL) {
  3364     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
  3368 //=============================================================================
  3369 // Two Constant's are equal when the type and the value are equal.
  3370 bool Compile::Constant::operator==(const Constant& other) {
  3371   if (type()          != other.type()         )  return false;
  3372   if (can_be_reused() != other.can_be_reused())  return false;
  3373   // For floating point values we compare the bit pattern.
  3374   switch (type()) {
  3375   case T_FLOAT:   return (_v._value.i == other._v._value.i);
  3376   case T_LONG:
  3377   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
  3378   case T_OBJECT:
  3379   case T_ADDRESS: return (_v._value.l == other._v._value.l);
  3380   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
  3381   case T_METADATA: return (_v._metadata == other._v._metadata);
  3382   default: ShouldNotReachHere();
  3384   return false;
  3387 static int type_to_size_in_bytes(BasicType t) {
  3388   switch (t) {
  3389   case T_LONG:    return sizeof(jlong  );
  3390   case T_FLOAT:   return sizeof(jfloat );
  3391   case T_DOUBLE:  return sizeof(jdouble);
  3392   case T_METADATA: return sizeof(Metadata*);
  3393     // We use T_VOID as marker for jump-table entries (labels) which
  3394     // need an internal word relocation.
  3395   case T_VOID:
  3396   case T_ADDRESS:
  3397   case T_OBJECT:  return sizeof(jobject);
  3400   ShouldNotReachHere();
  3401   return -1;
  3404 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
  3405   // sort descending
  3406   if (a->freq() > b->freq())  return -1;
  3407   if (a->freq() < b->freq())  return  1;
  3408   return 0;
  3411 void Compile::ConstantTable::calculate_offsets_and_size() {
  3412   // First, sort the array by frequencies.
  3413   _constants.sort(qsort_comparator);
  3415 #ifdef ASSERT
  3416   // Make sure all jump-table entries were sorted to the end of the
  3417   // array (they have a negative frequency).
  3418   bool found_void = false;
  3419   for (int i = 0; i < _constants.length(); i++) {
  3420     Constant con = _constants.at(i);
  3421     if (con.type() == T_VOID)
  3422       found_void = true;  // jump-tables
  3423     else
  3424       assert(!found_void, "wrong sorting");
  3426 #endif
  3428   int offset = 0;
  3429   for (int i = 0; i < _constants.length(); i++) {
  3430     Constant* con = _constants.adr_at(i);
  3432     // Align offset for type.
  3433     int typesize = type_to_size_in_bytes(con->type());
  3434     offset = align_size_up(offset, typesize);
  3435     con->set_offset(offset);   // set constant's offset
  3437     if (con->type() == T_VOID) {
  3438       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
  3439       offset = offset + typesize * n->outcnt();  // expand jump-table
  3440     } else {
  3441       offset = offset + typesize;
  3445   // Align size up to the next section start (which is insts; see
  3446   // CodeBuffer::align_at_start).
  3447   assert(_size == -1, "already set?");
  3448   _size = align_size_up(offset, CodeEntryAlignment);
  3451 void Compile::ConstantTable::emit(CodeBuffer& cb) {
  3452   MacroAssembler _masm(&cb);
  3453   for (int i = 0; i < _constants.length(); i++) {
  3454     Constant con = _constants.at(i);
  3455     address constant_addr;
  3456     switch (con.type()) {
  3457     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
  3458     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
  3459     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
  3460     case T_OBJECT: {
  3461       jobject obj = con.get_jobject();
  3462       int oop_index = _masm.oop_recorder()->find_index(obj);
  3463       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
  3464       break;
  3466     case T_ADDRESS: {
  3467       address addr = (address) con.get_jobject();
  3468       constant_addr = _masm.address_constant(addr);
  3469       break;
  3471     // We use T_VOID as marker for jump-table entries (labels) which
  3472     // need an internal word relocation.
  3473     case T_VOID: {
  3474       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
  3475       // Fill the jump-table with a dummy word.  The real value is
  3476       // filled in later in fill_jump_table.
  3477       address dummy = (address) n;
  3478       constant_addr = _masm.address_constant(dummy);
  3479       // Expand jump-table
  3480       for (uint i = 1; i < n->outcnt(); i++) {
  3481         address temp_addr = _masm.address_constant(dummy + i);
  3482         assert(temp_addr, "consts section too small");
  3484       break;
  3486     case T_METADATA: {
  3487       Metadata* obj = con.get_metadata();
  3488       int metadata_index = _masm.oop_recorder()->find_index(obj);
  3489       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
  3490       break;
  3492     default: ShouldNotReachHere();
  3494     assert(constant_addr, "consts section too small");
  3495     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(), err_msg_res("must be: %d == %d", constant_addr - _masm.code()->consts()->start(), con.offset()));
  3499 int Compile::ConstantTable::find_offset(Constant& con) const {
  3500   int idx = _constants.find(con);
  3501   assert(idx != -1, "constant must be in constant table");
  3502   int offset = _constants.at(idx).offset();
  3503   assert(offset != -1, "constant table not emitted yet?");
  3504   return offset;
  3507 void Compile::ConstantTable::add(Constant& con) {
  3508   if (con.can_be_reused()) {
  3509     int idx = _constants.find(con);
  3510     if (idx != -1 && _constants.at(idx).can_be_reused()) {
  3511       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
  3512       return;
  3515   (void) _constants.append(con);
  3518 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
  3519   Block* b = Compile::current()->cfg()->_bbs[n->_idx];
  3520   Constant con(type, value, b->_freq);
  3521   add(con);
  3522   return con;
  3525 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
  3526   Constant con(metadata);
  3527   add(con);
  3528   return con;
  3531 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
  3532   jvalue value;
  3533   BasicType type = oper->type()->basic_type();
  3534   switch (type) {
  3535   case T_LONG:    value.j = oper->constantL(); break;
  3536   case T_FLOAT:   value.f = oper->constantF(); break;
  3537   case T_DOUBLE:  value.d = oper->constantD(); break;
  3538   case T_OBJECT:
  3539   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
  3540   case T_METADATA: return add((Metadata*)oper->constant()); break;
  3541   default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
  3543   return add(n, type, value);
  3546 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
  3547   jvalue value;
  3548   // We can use the node pointer here to identify the right jump-table
  3549   // as this method is called from Compile::Fill_buffer right before
  3550   // the MachNodes are emitted and the jump-table is filled (means the
  3551   // MachNode pointers do not change anymore).
  3552   value.l = (jobject) n;
  3553   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
  3554   add(con);
  3555   return con;
  3558 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
  3559   // If called from Compile::scratch_emit_size do nothing.
  3560   if (Compile::current()->in_scratch_emit_size())  return;
  3562   assert(labels.is_nonempty(), "must be");
  3563   assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
  3565   // Since MachConstantNode::constant_offset() also contains
  3566   // table_base_offset() we need to subtract the table_base_offset()
  3567   // to get the plain offset into the constant table.
  3568   int offset = n->constant_offset() - table_base_offset();
  3570   MacroAssembler _masm(&cb);
  3571   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
  3573   for (uint i = 0; i < n->outcnt(); i++) {
  3574     address* constant_addr = &jump_table_base[i];
  3575     assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, *constant_addr, (((address) n) + i)));
  3576     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
  3577     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
  3581 void Compile::dump_inlining() {
  3582   if (PrintInlining || PrintIntrinsics NOT_PRODUCT( || PrintOptoInlining)) {
  3583     // Print inlining message for candidates that we couldn't inline
  3584     // for lack of space or non constant receiver
  3585     for (int i = 0; i < _late_inlines.length(); i++) {
  3586       CallGenerator* cg = _late_inlines.at(i);
  3587       cg->print_inlining_late("live nodes > LiveNodeCountInliningCutoff");
  3589     Unique_Node_List useful;
  3590     useful.push(root());
  3591     for (uint next = 0; next < useful.size(); ++next) {
  3592       Node* n  = useful.at(next);
  3593       if (n->is_Call() && n->as_Call()->generator() != NULL && n->as_Call()->generator()->call_node() == n) {
  3594         CallNode* call = n->as_Call();
  3595         CallGenerator* cg = call->generator();
  3596         cg->print_inlining_late("receiver not constant");
  3598       uint max = n->len();
  3599       for ( uint i = 0; i < max; ++i ) {
  3600         Node *m = n->in(i);
  3601         if ( m == NULL ) continue;
  3602         useful.push(m);
  3605     for (int i = 0; i < _print_inlining_list->length(); i++) {
  3606       tty->print(_print_inlining_list->at(i).ss()->as_string());
  3611 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
  3612   if (n1->Opcode() < n2->Opcode())      return -1;
  3613   else if (n1->Opcode() > n2->Opcode()) return 1;
  3615   assert(n1->req() == n2->req(), err_msg_res("can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()));
  3616   for (uint i = 1; i < n1->req(); i++) {
  3617     if (n1->in(i) < n2->in(i))      return -1;
  3618     else if (n1->in(i) > n2->in(i)) return 1;
  3621   return 0;
  3624 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
  3625   Node* n1 = *n1p;
  3626   Node* n2 = *n2p;
  3628   return cmp_expensive_nodes(n1, n2);
  3631 void Compile::sort_expensive_nodes() {
  3632   if (!expensive_nodes_sorted()) {
  3633     _expensive_nodes->sort(cmp_expensive_nodes);
  3637 bool Compile::expensive_nodes_sorted() const {
  3638   for (int i = 1; i < _expensive_nodes->length(); i++) {
  3639     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
  3640       return false;
  3643   return true;
  3646 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
  3647   if (_expensive_nodes->length() == 0) {
  3648     return false;
  3651   assert(OptimizeExpensiveOps, "optimization off?");
  3653   // Take this opportunity to remove dead nodes from the list
  3654   int j = 0;
  3655   for (int i = 0; i < _expensive_nodes->length(); i++) {
  3656     Node* n = _expensive_nodes->at(i);
  3657     if (!n->is_unreachable(igvn)) {
  3658       assert(n->is_expensive(), "should be expensive");
  3659       _expensive_nodes->at_put(j, n);
  3660       j++;
  3663   _expensive_nodes->trunc_to(j);
  3665   // Then sort the list so that similar nodes are next to each other
  3666   // and check for at least two nodes of identical kind with same data
  3667   // inputs.
  3668   sort_expensive_nodes();
  3670   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
  3671     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
  3672       return true;
  3676   return false;
  3679 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
  3680   if (_expensive_nodes->length() == 0) {
  3681     return;
  3684   assert(OptimizeExpensiveOps, "optimization off?");
  3686   // Sort to bring similar nodes next to each other and clear the
  3687   // control input of nodes for which there's only a single copy.
  3688   sort_expensive_nodes();
  3690   int j = 0;
  3691   int identical = 0;
  3692   int i = 0;
  3693   for (; i < _expensive_nodes->length()-1; i++) {
  3694     assert(j <= i, "can't write beyond current index");
  3695     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
  3696       identical++;
  3697       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
  3698       continue;
  3700     if (identical > 0) {
  3701       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
  3702       identical = 0;
  3703     } else {
  3704       Node* n = _expensive_nodes->at(i);
  3705       igvn.hash_delete(n);
  3706       n->set_req(0, NULL);
  3707       igvn.hash_insert(n);
  3710   if (identical > 0) {
  3711     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
  3712   } else if (_expensive_nodes->length() >= 1) {
  3713     Node* n = _expensive_nodes->at(i);
  3714     igvn.hash_delete(n);
  3715     n->set_req(0, NULL);
  3716     igvn.hash_insert(n);
  3718   _expensive_nodes->trunc_to(j);
  3721 void Compile::add_expensive_node(Node * n) {
  3722   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
  3723   assert(n->is_expensive(), "expensive nodes with non-null control here only");
  3724   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
  3725   if (OptimizeExpensiveOps) {
  3726     _expensive_nodes->append(n);
  3727   } else {
  3728     // Clear control input and let IGVN optimize expensive nodes if
  3729     // OptimizeExpensiveOps is off.
  3730     n->set_req(0, NULL);
  3734 // Auxiliary method to support randomized stressing/fuzzing.
  3735 //
  3736 // This method can be called the arbitrary number of times, with current count
  3737 // as the argument. The logic allows selecting a single candidate from the
  3738 // running list of candidates as follows:
  3739 //    int count = 0;
  3740 //    Cand* selected = null;
  3741 //    while(cand = cand->next()) {
  3742 //      if (randomized_select(++count)) {
  3743 //        selected = cand;
  3744 //      }
  3745 //    }
  3746 //
  3747 // Including count equalizes the chances any candidate is "selected".
  3748 // This is useful when we don't have the complete list of candidates to choose
  3749 // from uniformly. In this case, we need to adjust the randomicity of the
  3750 // selection, or else we will end up biasing the selection towards the latter
  3751 // candidates.
  3752 //
  3753 // Quick back-envelope calculation shows that for the list of n candidates
  3754 // the equal probability for the candidate to persist as "best" can be
  3755 // achieved by replacing it with "next" k-th candidate with the probability
  3756 // of 1/k. It can be easily shown that by the end of the run, the
  3757 // probability for any candidate is converged to 1/n, thus giving the
  3758 // uniform distribution among all the candidates.
  3759 //
  3760 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
  3761 #define RANDOMIZED_DOMAIN_POW 29
  3762 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
  3763 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
  3764 bool Compile::randomized_select(int count) {
  3765   assert(count > 0, "only positive");
  3766   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);

mercurial