src/cpu/x86/vm/c1_Runtime1_x86.cpp

Mon, 28 May 2018 10:33:52 +0800

author
aoqi
date
Mon, 28 May 2018 10:33:52 +0800
changeset 9041
95a08233f46c
parent 8877
f04097176542
parent 7994
04ff2f6cd0eb
child 9448
73d689add964
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "c1/c1_Defs.hpp"
    28 #include "c1/c1_MacroAssembler.hpp"
    29 #include "c1/c1_Runtime1.hpp"
    30 #include "interpreter/interpreter.hpp"
    31 #include "nativeInst_x86.hpp"
    32 #include "oops/compiledICHolder.hpp"
    33 #include "oops/oop.inline.hpp"
    34 #include "prims/jvmtiExport.hpp"
    35 #include "register_x86.hpp"
    36 #include "runtime/sharedRuntime.hpp"
    37 #include "runtime/signature.hpp"
    38 #include "runtime/vframeArray.hpp"
    39 #include "utilities/macros.hpp"
    40 #include "vmreg_x86.inline.hpp"
    41 #if INCLUDE_ALL_GCS
    42 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    43 #endif
    46 // Implementation of StubAssembler
    48 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, int args_size) {
    49   // setup registers
    50   const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread); // is callee-saved register (Visual C++ calling conventions)
    51   assert(!(oop_result1->is_valid() || metadata_result->is_valid()) || oop_result1 != metadata_result, "registers must be different");
    52   assert(oop_result1 != thread && metadata_result != thread, "registers must be different");
    53   assert(args_size >= 0, "illegal args_size");
    54   bool align_stack = false;
    55 #ifdef _LP64
    56   // At a method handle call, the stack may not be properly aligned
    57   // when returning with an exception.
    58   align_stack = (stub_id() == Runtime1::handle_exception_from_callee_id);
    59 #endif
    61 #ifdef _LP64
    62   mov(c_rarg0, thread);
    63   set_num_rt_args(0); // Nothing on stack
    64 #else
    65   set_num_rt_args(1 + args_size);
    67   // push java thread (becomes first argument of C function)
    68   get_thread(thread);
    69   push(thread);
    70 #endif // _LP64
    72   int call_offset;
    73   if (!align_stack) {
    74     set_last_Java_frame(thread, noreg, rbp, NULL);
    75   } else {
    76     address the_pc = pc();
    77     call_offset = offset();
    78     set_last_Java_frame(thread, noreg, rbp, the_pc);
    79     andptr(rsp, -(StackAlignmentInBytes));    // Align stack
    80   }
    82   // do the call
    83   call(RuntimeAddress(entry));
    84   if (!align_stack) {
    85     call_offset = offset();
    86   }
    87   // verify callee-saved register
    88 #ifdef ASSERT
    89   guarantee(thread != rax, "change this code");
    90   push(rax);
    91   { Label L;
    92     get_thread(rax);
    93     cmpptr(thread, rax);
    94     jcc(Assembler::equal, L);
    95     int3();
    96     stop("StubAssembler::call_RT: rdi not callee saved?");
    97     bind(L);
    98   }
    99   pop(rax);
   100 #endif
   101   reset_last_Java_frame(thread, true);
   103   // discard thread and arguments
   104   NOT_LP64(addptr(rsp, num_rt_args()*BytesPerWord));
   106   // check for pending exceptions
   107   { Label L;
   108     cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   109     jcc(Assembler::equal, L);
   110     // exception pending => remove activation and forward to exception handler
   111     movptr(rax, Address(thread, Thread::pending_exception_offset()));
   112     // make sure that the vm_results are cleared
   113     if (oop_result1->is_valid()) {
   114       movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
   115     }
   116     if (metadata_result->is_valid()) {
   117       movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD);
   118     }
   119     if (frame_size() == no_frame_size) {
   120       leave();
   121       jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
   122     } else if (_stub_id == Runtime1::forward_exception_id) {
   123       should_not_reach_here();
   124     } else {
   125       jump(RuntimeAddress(Runtime1::entry_for(Runtime1::forward_exception_id)));
   126     }
   127     bind(L);
   128   }
   129   // get oop results if there are any and reset the values in the thread
   130   if (oop_result1->is_valid()) {
   131     get_vm_result(oop_result1, thread);
   132   }
   133   if (metadata_result->is_valid()) {
   134     get_vm_result_2(metadata_result, thread);
   135   }
   136   return call_offset;
   137 }
   140 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1) {
   141 #ifdef _LP64
   142   mov(c_rarg1, arg1);
   143 #else
   144   push(arg1);
   145 #endif // _LP64
   146   return call_RT(oop_result1, metadata_result, entry, 1);
   147 }
   150 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1, Register arg2) {
   151 #ifdef _LP64
   152   if (c_rarg1 == arg2) {
   153     if (c_rarg2 == arg1) {
   154       xchgq(arg1, arg2);
   155     } else {
   156       mov(c_rarg2, arg2);
   157       mov(c_rarg1, arg1);
   158     }
   159   } else {
   160     mov(c_rarg1, arg1);
   161     mov(c_rarg2, arg2);
   162   }
   163 #else
   164   push(arg2);
   165   push(arg1);
   166 #endif // _LP64
   167   return call_RT(oop_result1, metadata_result, entry, 2);
   168 }
   171 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1, Register arg2, Register arg3) {
   172 #ifdef _LP64
   173   // if there is any conflict use the stack
   174   if (arg1 == c_rarg2 || arg1 == c_rarg3 ||
   175       arg2 == c_rarg1 || arg1 == c_rarg3 ||
   176       arg3 == c_rarg1 || arg1 == c_rarg2) {
   177     push(arg3);
   178     push(arg2);
   179     push(arg1);
   180     pop(c_rarg1);
   181     pop(c_rarg2);
   182     pop(c_rarg3);
   183   } else {
   184     mov(c_rarg1, arg1);
   185     mov(c_rarg2, arg2);
   186     mov(c_rarg3, arg3);
   187   }
   188 #else
   189   push(arg3);
   190   push(arg2);
   191   push(arg1);
   192 #endif // _LP64
   193   return call_RT(oop_result1, metadata_result, entry, 3);
   194 }
   197 // Implementation of StubFrame
   199 class StubFrame: public StackObj {
   200  private:
   201   StubAssembler* _sasm;
   203  public:
   204   StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments);
   205   void load_argument(int offset_in_words, Register reg);
   207   ~StubFrame();
   208 };
   211 #define __ _sasm->
   213 StubFrame::StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments) {
   214   _sasm = sasm;
   215   __ set_info(name, must_gc_arguments);
   216   __ enter();
   217 }
   219 // load parameters that were stored with LIR_Assembler::store_parameter
   220 // Note: offsets for store_parameter and load_argument must match
   221 void StubFrame::load_argument(int offset_in_words, Register reg) {
   222   // rbp, + 0: link
   223   //     + 1: return address
   224   //     + 2: argument with offset 0
   225   //     + 3: argument with offset 1
   226   //     + 4: ...
   228   __ movptr(reg, Address(rbp, (offset_in_words + 2) * BytesPerWord));
   229 }
   232 StubFrame::~StubFrame() {
   233   __ leave();
   234   __ ret(0);
   235 }
   237 #undef __
   240 // Implementation of Runtime1
   242 #define __ sasm->
   244 const int float_regs_as_doubles_size_in_slots = pd_nof_fpu_regs_frame_map * 2;
   245 const int xmm_regs_as_doubles_size_in_slots = FrameMap::nof_xmm_regs * 2;
   247 // Stack layout for saving/restoring  all the registers needed during a runtime
   248 // call (this includes deoptimization)
   249 // Note: note that users of this frame may well have arguments to some runtime
   250 // while these values are on the stack. These positions neglect those arguments
   251 // but the code in save_live_registers will take the argument count into
   252 // account.
   253 //
   254 #ifdef _LP64
   255   #define SLOT2(x) x,
   256   #define SLOT_PER_WORD 2
   257 #else
   258   #define SLOT2(x)
   259   #define SLOT_PER_WORD 1
   260 #endif // _LP64
   262 enum reg_save_layout {
   263   // 64bit needs to keep stack 16 byte aligned. So we add some alignment dummies to make that
   264   // happen and will assert if the stack size we create is misaligned
   265 #ifdef _LP64
   266   align_dummy_0, align_dummy_1,
   267 #endif // _LP64
   268 #ifdef _WIN64
   269   // Windows always allocates space for it's argument registers (see
   270   // frame::arg_reg_save_area_bytes).
   271   arg_reg_save_1, arg_reg_save_1H,                                                          // 0, 4
   272   arg_reg_save_2, arg_reg_save_2H,                                                          // 8, 12
   273   arg_reg_save_3, arg_reg_save_3H,                                                          // 16, 20
   274   arg_reg_save_4, arg_reg_save_4H,                                                          // 24, 28
   275 #endif // _WIN64
   276   xmm_regs_as_doubles_off,                                                                  // 32
   277   float_regs_as_doubles_off = xmm_regs_as_doubles_off + xmm_regs_as_doubles_size_in_slots,  // 160
   278   fpu_state_off = float_regs_as_doubles_off + float_regs_as_doubles_size_in_slots,          // 224
   279   // fpu_state_end_off is exclusive
   280   fpu_state_end_off = fpu_state_off + (FPUStateSizeInWords / SLOT_PER_WORD),                // 352
   281   marker = fpu_state_end_off, SLOT2(markerH)                                                // 352, 356
   282   extra_space_offset,                                                                       // 360
   283 #ifdef _LP64
   284   r15_off = extra_space_offset, r15H_off,                                                   // 360, 364
   285   r14_off, r14H_off,                                                                        // 368, 372
   286   r13_off, r13H_off,                                                                        // 376, 380
   287   r12_off, r12H_off,                                                                        // 384, 388
   288   r11_off, r11H_off,                                                                        // 392, 396
   289   r10_off, r10H_off,                                                                        // 400, 404
   290   r9_off, r9H_off,                                                                          // 408, 412
   291   r8_off, r8H_off,                                                                          // 416, 420
   292   rdi_off, rdiH_off,                                                                        // 424, 428
   293 #else
   294   rdi_off = extra_space_offset,
   295 #endif // _LP64
   296   rsi_off, SLOT2(rsiH_off)                                                                  // 432, 436
   297   rbp_off, SLOT2(rbpH_off)                                                                  // 440, 444
   298   rsp_off, SLOT2(rspH_off)                                                                  // 448, 452
   299   rbx_off, SLOT2(rbxH_off)                                                                  // 456, 460
   300   rdx_off, SLOT2(rdxH_off)                                                                  // 464, 468
   301   rcx_off, SLOT2(rcxH_off)                                                                  // 472, 476
   302   rax_off, SLOT2(raxH_off)                                                                  // 480, 484
   303   saved_rbp_off, SLOT2(saved_rbpH_off)                                                      // 488, 492
   304   return_off, SLOT2(returnH_off)                                                            // 496, 500
   305   reg_save_frame_size   // As noted: neglects any parameters to runtime                     // 504
   306 };
   310 // Save off registers which might be killed by calls into the runtime.
   311 // Tries to smart of about FP registers.  In particular we separate
   312 // saving and describing the FPU registers for deoptimization since we
   313 // have to save the FPU registers twice if we describe them and on P4
   314 // saving FPU registers which don't contain anything appears
   315 // expensive.  The deopt blob is the only thing which needs to
   316 // describe FPU registers.  In all other cases it should be sufficient
   317 // to simply save their current value.
   319 static OopMap* generate_oop_map(StubAssembler* sasm, int num_rt_args,
   320                                 bool save_fpu_registers = true) {
   322   // In 64bit all the args are in regs so there are no additional stack slots
   323   LP64_ONLY(num_rt_args = 0);
   324   LP64_ONLY(assert((reg_save_frame_size * VMRegImpl::stack_slot_size) % 16 == 0, "must be 16 byte aligned");)
   325   int frame_size_in_slots = reg_save_frame_size + num_rt_args; // args + thread
   326   sasm->set_frame_size(frame_size_in_slots / VMRegImpl::slots_per_word );
   328   // record saved value locations in an OopMap
   329   // locations are offsets from sp after runtime call; num_rt_args is number of arguments in call, including thread
   330   OopMap* map = new OopMap(frame_size_in_slots, 0);
   331   map->set_callee_saved(VMRegImpl::stack2reg(rax_off + num_rt_args), rax->as_VMReg());
   332   map->set_callee_saved(VMRegImpl::stack2reg(rcx_off + num_rt_args), rcx->as_VMReg());
   333   map->set_callee_saved(VMRegImpl::stack2reg(rdx_off + num_rt_args), rdx->as_VMReg());
   334   map->set_callee_saved(VMRegImpl::stack2reg(rbx_off + num_rt_args), rbx->as_VMReg());
   335   map->set_callee_saved(VMRegImpl::stack2reg(rsi_off + num_rt_args), rsi->as_VMReg());
   336   map->set_callee_saved(VMRegImpl::stack2reg(rdi_off + num_rt_args), rdi->as_VMReg());
   337 #ifdef _LP64
   338   map->set_callee_saved(VMRegImpl::stack2reg(r8_off + num_rt_args),  r8->as_VMReg());
   339   map->set_callee_saved(VMRegImpl::stack2reg(r9_off + num_rt_args),  r9->as_VMReg());
   340   map->set_callee_saved(VMRegImpl::stack2reg(r10_off + num_rt_args), r10->as_VMReg());
   341   map->set_callee_saved(VMRegImpl::stack2reg(r11_off + num_rt_args), r11->as_VMReg());
   342   map->set_callee_saved(VMRegImpl::stack2reg(r12_off + num_rt_args), r12->as_VMReg());
   343   map->set_callee_saved(VMRegImpl::stack2reg(r13_off + num_rt_args), r13->as_VMReg());
   344   map->set_callee_saved(VMRegImpl::stack2reg(r14_off + num_rt_args), r14->as_VMReg());
   345   map->set_callee_saved(VMRegImpl::stack2reg(r15_off + num_rt_args), r15->as_VMReg());
   347   // This is stupid but needed.
   348   map->set_callee_saved(VMRegImpl::stack2reg(raxH_off + num_rt_args), rax->as_VMReg()->next());
   349   map->set_callee_saved(VMRegImpl::stack2reg(rcxH_off + num_rt_args), rcx->as_VMReg()->next());
   350   map->set_callee_saved(VMRegImpl::stack2reg(rdxH_off + num_rt_args), rdx->as_VMReg()->next());
   351   map->set_callee_saved(VMRegImpl::stack2reg(rbxH_off + num_rt_args), rbx->as_VMReg()->next());
   352   map->set_callee_saved(VMRegImpl::stack2reg(rsiH_off + num_rt_args), rsi->as_VMReg()->next());
   353   map->set_callee_saved(VMRegImpl::stack2reg(rdiH_off + num_rt_args), rdi->as_VMReg()->next());
   355   map->set_callee_saved(VMRegImpl::stack2reg(r8H_off + num_rt_args),  r8->as_VMReg()->next());
   356   map->set_callee_saved(VMRegImpl::stack2reg(r9H_off + num_rt_args),  r9->as_VMReg()->next());
   357   map->set_callee_saved(VMRegImpl::stack2reg(r10H_off + num_rt_args), r10->as_VMReg()->next());
   358   map->set_callee_saved(VMRegImpl::stack2reg(r11H_off + num_rt_args), r11->as_VMReg()->next());
   359   map->set_callee_saved(VMRegImpl::stack2reg(r12H_off + num_rt_args), r12->as_VMReg()->next());
   360   map->set_callee_saved(VMRegImpl::stack2reg(r13H_off + num_rt_args), r13->as_VMReg()->next());
   361   map->set_callee_saved(VMRegImpl::stack2reg(r14H_off + num_rt_args), r14->as_VMReg()->next());
   362   map->set_callee_saved(VMRegImpl::stack2reg(r15H_off + num_rt_args), r15->as_VMReg()->next());
   363 #endif // _LP64
   365   if (save_fpu_registers) {
   366     if (UseSSE < 2) {
   367       int fpu_off = float_regs_as_doubles_off;
   368       for (int n = 0; n < FrameMap::nof_fpu_regs; n++) {
   369         VMReg fpu_name_0 = FrameMap::fpu_regname(n);
   370         map->set_callee_saved(VMRegImpl::stack2reg(fpu_off +     num_rt_args), fpu_name_0);
   371         // %%% This is really a waste but we'll keep things as they were for now
   372         if (true) {
   373           map->set_callee_saved(VMRegImpl::stack2reg(fpu_off + 1 + num_rt_args), fpu_name_0->next());
   374         }
   375         fpu_off += 2;
   376       }
   377       assert(fpu_off == fpu_state_off, "incorrect number of fpu stack slots");
   378     }
   380     if (UseSSE >= 2) {
   381       int xmm_off = xmm_regs_as_doubles_off;
   382       for (int n = 0; n < FrameMap::nof_xmm_regs; n++) {
   383         VMReg xmm_name_0 = as_XMMRegister(n)->as_VMReg();
   384         map->set_callee_saved(VMRegImpl::stack2reg(xmm_off +     num_rt_args), xmm_name_0);
   385         // %%% This is really a waste but we'll keep things as they were for now
   386         if (true) {
   387           map->set_callee_saved(VMRegImpl::stack2reg(xmm_off + 1 + num_rt_args), xmm_name_0->next());
   388         }
   389         xmm_off += 2;
   390       }
   391       assert(xmm_off == float_regs_as_doubles_off, "incorrect number of xmm registers");
   393     } else if (UseSSE == 1) {
   394       int xmm_off = xmm_regs_as_doubles_off;
   395       for (int n = 0; n < FrameMap::nof_xmm_regs; n++) {
   396         VMReg xmm_name_0 = as_XMMRegister(n)->as_VMReg();
   397         map->set_callee_saved(VMRegImpl::stack2reg(xmm_off +     num_rt_args), xmm_name_0);
   398         xmm_off += 2;
   399       }
   400       assert(xmm_off == float_regs_as_doubles_off, "incorrect number of xmm registers");
   401     }
   402   }
   404   return map;
   405 }
   407 static OopMap* save_live_registers(StubAssembler* sasm, int num_rt_args,
   408                                    bool save_fpu_registers = true) {
   409   __ block_comment("save_live_registers");
   411   __ pusha();         // integer registers
   413   // assert(float_regs_as_doubles_off % 2 == 0, "misaligned offset");
   414   // assert(xmm_regs_as_doubles_off % 2 == 0, "misaligned offset");
   416   __ subptr(rsp, extra_space_offset * VMRegImpl::stack_slot_size);
   418 #ifdef ASSERT
   419   __ movptr(Address(rsp, marker * VMRegImpl::stack_slot_size), (int32_t)0xfeedbeef);
   420 #endif
   422   if (save_fpu_registers) {
   423     if (UseSSE < 2) {
   424       // save FPU stack
   425       __ fnsave(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
   426       __ fwait();
   428 #ifdef ASSERT
   429       Label ok;
   430       __ cmpw(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size), StubRoutines::fpu_cntrl_wrd_std());
   431       __ jccb(Assembler::equal, ok);
   432       __ stop("corrupted control word detected");
   433       __ bind(ok);
   434 #endif
   436       // Reset the control word to guard against exceptions being unmasked
   437       // since fstp_d can cause FPU stack underflow exceptions.  Write it
   438       // into the on stack copy and then reload that to make sure that the
   439       // current and future values are correct.
   440       __ movw(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size), StubRoutines::fpu_cntrl_wrd_std());
   441       __ frstor(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
   443       // Save the FPU registers in de-opt-able form
   444       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0));
   445       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8));
   446       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16));
   447       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24));
   448       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32));
   449       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40));
   450       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48));
   451       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56));
   452     }
   454     if (UseSSE >= 2) {
   455       // save XMM registers
   456       // XMM registers can contain float or double values, but this is not known here,
   457       // so always save them as doubles.
   458       // note that float values are _not_ converted automatically, so for float values
   459       // the second word contains only garbage data.
   460       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0), xmm0);
   461       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8), xmm1);
   462       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16), xmm2);
   463       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24), xmm3);
   464       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32), xmm4);
   465       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40), xmm5);
   466       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48), xmm6);
   467       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56), xmm7);
   468 #ifdef _LP64
   469       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 64), xmm8);
   470       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 72), xmm9);
   471       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 80), xmm10);
   472       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 88), xmm11);
   473       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 96), xmm12);
   474       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 104), xmm13);
   475       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 112), xmm14);
   476       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 120), xmm15);
   477 #endif // _LP64
   478     } else if (UseSSE == 1) {
   479       // save XMM registers as float because double not supported without SSE2
   480       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0), xmm0);
   481       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8), xmm1);
   482       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16), xmm2);
   483       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24), xmm3);
   484       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32), xmm4);
   485       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40), xmm5);
   486       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48), xmm6);
   487       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56), xmm7);
   488     }
   489   }
   491   // FPU stack must be empty now
   492   __ verify_FPU(0, "save_live_registers");
   494   return generate_oop_map(sasm, num_rt_args, save_fpu_registers);
   495 }
   498 static void restore_fpu(StubAssembler* sasm, bool restore_fpu_registers = true) {
   499   if (restore_fpu_registers) {
   500     if (UseSSE >= 2) {
   501       // restore XMM registers
   502       __ movdbl(xmm0, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0));
   503       __ movdbl(xmm1, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8));
   504       __ movdbl(xmm2, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16));
   505       __ movdbl(xmm3, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24));
   506       __ movdbl(xmm4, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32));
   507       __ movdbl(xmm5, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40));
   508       __ movdbl(xmm6, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48));
   509       __ movdbl(xmm7, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56));
   510 #ifdef _LP64
   511       __ movdbl(xmm8, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 64));
   512       __ movdbl(xmm9, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 72));
   513       __ movdbl(xmm10, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 80));
   514       __ movdbl(xmm11, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 88));
   515       __ movdbl(xmm12, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 96));
   516       __ movdbl(xmm13, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 104));
   517       __ movdbl(xmm14, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 112));
   518       __ movdbl(xmm15, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 120));
   519 #endif // _LP64
   520     } else if (UseSSE == 1) {
   521       // restore XMM registers
   522       __ movflt(xmm0, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0));
   523       __ movflt(xmm1, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8));
   524       __ movflt(xmm2, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16));
   525       __ movflt(xmm3, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24));
   526       __ movflt(xmm4, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32));
   527       __ movflt(xmm5, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40));
   528       __ movflt(xmm6, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48));
   529       __ movflt(xmm7, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56));
   530     }
   532     if (UseSSE < 2) {
   533       __ frstor(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
   534     } else {
   535       // check that FPU stack is really empty
   536       __ verify_FPU(0, "restore_live_registers");
   537     }
   539   } else {
   540     // check that FPU stack is really empty
   541     __ verify_FPU(0, "restore_live_registers");
   542   }
   544 #ifdef ASSERT
   545   {
   546     Label ok;
   547     __ cmpptr(Address(rsp, marker * VMRegImpl::stack_slot_size), (int32_t)0xfeedbeef);
   548     __ jcc(Assembler::equal, ok);
   549     __ stop("bad offsets in frame");
   550     __ bind(ok);
   551   }
   552 #endif // ASSERT
   554   __ addptr(rsp, extra_space_offset * VMRegImpl::stack_slot_size);
   555 }
   558 static void restore_live_registers(StubAssembler* sasm, bool restore_fpu_registers = true) {
   559   __ block_comment("restore_live_registers");
   561   restore_fpu(sasm, restore_fpu_registers);
   562   __ popa();
   563 }
   566 static void restore_live_registers_except_rax(StubAssembler* sasm, bool restore_fpu_registers = true) {
   567   __ block_comment("restore_live_registers_except_rax");
   569   restore_fpu(sasm, restore_fpu_registers);
   571 #ifdef _LP64
   572   __ movptr(r15, Address(rsp, 0));
   573   __ movptr(r14, Address(rsp, wordSize));
   574   __ movptr(r13, Address(rsp, 2 * wordSize));
   575   __ movptr(r12, Address(rsp, 3 * wordSize));
   576   __ movptr(r11, Address(rsp, 4 * wordSize));
   577   __ movptr(r10, Address(rsp, 5 * wordSize));
   578   __ movptr(r9,  Address(rsp, 6 * wordSize));
   579   __ movptr(r8,  Address(rsp, 7 * wordSize));
   580   __ movptr(rdi, Address(rsp, 8 * wordSize));
   581   __ movptr(rsi, Address(rsp, 9 * wordSize));
   582   __ movptr(rbp, Address(rsp, 10 * wordSize));
   583   // skip rsp
   584   __ movptr(rbx, Address(rsp, 12 * wordSize));
   585   __ movptr(rdx, Address(rsp, 13 * wordSize));
   586   __ movptr(rcx, Address(rsp, 14 * wordSize));
   588   __ addptr(rsp, 16 * wordSize);
   589 #else
   591   __ pop(rdi);
   592   __ pop(rsi);
   593   __ pop(rbp);
   594   __ pop(rbx); // skip this value
   595   __ pop(rbx);
   596   __ pop(rdx);
   597   __ pop(rcx);
   598   __ addptr(rsp, BytesPerWord);
   599 #endif // _LP64
   600 }
   603 void Runtime1::initialize_pd() {
   604   // nothing to do
   605 }
   608 // target: the entry point of the method that creates and posts the exception oop
   609 // has_argument: true if the exception needs an argument (passed on stack because registers must be preserved)
   611 OopMapSet* Runtime1::generate_exception_throw(StubAssembler* sasm, address target, bool has_argument) {
   612   // preserve all registers
   613   int num_rt_args = has_argument ? 2 : 1;
   614   OopMap* oop_map = save_live_registers(sasm, num_rt_args);
   616   // now all registers are saved and can be used freely
   617   // verify that no old value is used accidentally
   618   __ invalidate_registers(true, true, true, true, true, true);
   620   // registers used by this stub
   621   const Register temp_reg = rbx;
   623   // load argument for exception that is passed as an argument into the stub
   624   if (has_argument) {
   625 #ifdef _LP64
   626     __ movptr(c_rarg1, Address(rbp, 2*BytesPerWord));
   627 #else
   628     __ movptr(temp_reg, Address(rbp, 2*BytesPerWord));
   629     __ push(temp_reg);
   630 #endif // _LP64
   631   }
   632   int call_offset = __ call_RT(noreg, noreg, target, num_rt_args - 1);
   634   OopMapSet* oop_maps = new OopMapSet();
   635   oop_maps->add_gc_map(call_offset, oop_map);
   637   __ stop("should not reach here");
   639   return oop_maps;
   640 }
   643 OopMapSet* Runtime1::generate_handle_exception(StubID id, StubAssembler *sasm) {
   644   __ block_comment("generate_handle_exception");
   646   // incoming parameters
   647   const Register exception_oop = rax;
   648   const Register exception_pc  = rdx;
   649   // other registers used in this stub
   650   const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread);
   652   // Save registers, if required.
   653   OopMapSet* oop_maps = new OopMapSet();
   654   OopMap* oop_map = NULL;
   655   switch (id) {
   656   case forward_exception_id:
   657     // We're handling an exception in the context of a compiled frame.
   658     // The registers have been saved in the standard places.  Perform
   659     // an exception lookup in the caller and dispatch to the handler
   660     // if found.  Otherwise unwind and dispatch to the callers
   661     // exception handler.
   662     oop_map = generate_oop_map(sasm, 1 /*thread*/);
   664     // load and clear pending exception oop into RAX
   665     __ movptr(exception_oop, Address(thread, Thread::pending_exception_offset()));
   666     __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
   668     // load issuing PC (the return address for this stub) into rdx
   669     __ movptr(exception_pc, Address(rbp, 1*BytesPerWord));
   671     // make sure that the vm_results are cleared (may be unnecessary)
   672     __ movptr(Address(thread, JavaThread::vm_result_offset()),   NULL_WORD);
   673     __ movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD);
   674     break;
   675   case handle_exception_nofpu_id:
   676   case handle_exception_id:
   677     // At this point all registers MAY be live.
   678     oop_map = save_live_registers(sasm, 1 /*thread*/, id != handle_exception_nofpu_id);
   679     break;
   680   case handle_exception_from_callee_id: {
   681     // At this point all registers except exception oop (RAX) and
   682     // exception pc (RDX) are dead.
   683     const int frame_size = 2 /*BP, return address*/ NOT_LP64(+ 1 /*thread*/) WIN64_ONLY(+ frame::arg_reg_save_area_bytes / BytesPerWord);
   684     oop_map = new OopMap(frame_size * VMRegImpl::slots_per_word, 0);
   685     sasm->set_frame_size(frame_size);
   686     WIN64_ONLY(__ subq(rsp, frame::arg_reg_save_area_bytes));
   687     break;
   688   }
   689   default:  ShouldNotReachHere();
   690   }
   692 #ifdef TIERED
   693   // C2 can leave the fpu stack dirty
   694   if (UseSSE < 2) {
   695     __ empty_FPU_stack();
   696   }
   697 #endif // TIERED
   699   // verify that only rax, and rdx is valid at this time
   700   __ invalidate_registers(false, true, true, false, true, true);
   701   // verify that rax, contains a valid exception
   702   __ verify_not_null_oop(exception_oop);
   704   // load address of JavaThread object for thread-local data
   705   NOT_LP64(__ get_thread(thread);)
   707 #ifdef ASSERT
   708   // check that fields in JavaThread for exception oop and issuing pc are
   709   // empty before writing to them
   710   Label oop_empty;
   711   __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), (int32_t) NULL_WORD);
   712   __ jcc(Assembler::equal, oop_empty);
   713   __ stop("exception oop already set");
   714   __ bind(oop_empty);
   716   Label pc_empty;
   717   __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), 0);
   718   __ jcc(Assembler::equal, pc_empty);
   719   __ stop("exception pc already set");
   720   __ bind(pc_empty);
   721 #endif
   723   // save exception oop and issuing pc into JavaThread
   724   // (exception handler will load it from here)
   725   __ movptr(Address(thread, JavaThread::exception_oop_offset()), exception_oop);
   726   __ movptr(Address(thread, JavaThread::exception_pc_offset()),  exception_pc);
   728   // patch throwing pc into return address (has bci & oop map)
   729   __ movptr(Address(rbp, 1*BytesPerWord), exception_pc);
   731   // compute the exception handler.
   732   // the exception oop and the throwing pc are read from the fields in JavaThread
   733   int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, exception_handler_for_pc));
   734   oop_maps->add_gc_map(call_offset, oop_map);
   736   // rax: handler address
   737   //      will be the deopt blob if nmethod was deoptimized while we looked up
   738   //      handler regardless of whether handler existed in the nmethod.
   740   // only rax, is valid at this time, all other registers have been destroyed by the runtime call
   741   __ invalidate_registers(false, true, true, true, true, true);
   743   // patch the return address, this stub will directly return to the exception handler
   744   __ movptr(Address(rbp, 1*BytesPerWord), rax);
   746   switch (id) {
   747   case forward_exception_id:
   748   case handle_exception_nofpu_id:
   749   case handle_exception_id:
   750     // Restore the registers that were saved at the beginning.
   751     restore_live_registers(sasm, id != handle_exception_nofpu_id);
   752     break;
   753   case handle_exception_from_callee_id:
   754     // WIN64_ONLY: No need to add frame::arg_reg_save_area_bytes to SP
   755     // since we do a leave anyway.
   757     // Pop the return address.
   758     __ leave();
   759     __ pop(rcx);
   760     __ jmp(rcx);  // jump to exception handler
   761     break;
   762   default:  ShouldNotReachHere();
   763   }
   765   return oop_maps;
   766 }
   769 void Runtime1::generate_unwind_exception(StubAssembler *sasm) {
   770   // incoming parameters
   771   const Register exception_oop = rax;
   772   // callee-saved copy of exception_oop during runtime call
   773   const Register exception_oop_callee_saved = NOT_LP64(rsi) LP64_ONLY(r14);
   774   // other registers used in this stub
   775   const Register exception_pc = rdx;
   776   const Register handler_addr = rbx;
   777   const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread);
   779   // verify that only rax, is valid at this time
   780   __ invalidate_registers(false, true, true, true, true, true);
   782 #ifdef ASSERT
   783   // check that fields in JavaThread for exception oop and issuing pc are empty
   784   NOT_LP64(__ get_thread(thread);)
   785   Label oop_empty;
   786   __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), 0);
   787   __ jcc(Assembler::equal, oop_empty);
   788   __ stop("exception oop must be empty");
   789   __ bind(oop_empty);
   791   Label pc_empty;
   792   __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), 0);
   793   __ jcc(Assembler::equal, pc_empty);
   794   __ stop("exception pc must be empty");
   795   __ bind(pc_empty);
   796 #endif
   798   // clear the FPU stack in case any FPU results are left behind
   799   __ empty_FPU_stack();
   801   // save exception_oop in callee-saved register to preserve it during runtime calls
   802   __ verify_not_null_oop(exception_oop);
   803   __ movptr(exception_oop_callee_saved, exception_oop);
   805   NOT_LP64(__ get_thread(thread);)
   806   // Get return address (is on top of stack after leave).
   807   __ movptr(exception_pc, Address(rsp, 0));
   809   // search the exception handler address of the caller (using the return address)
   810   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, exception_pc);
   811   // rax: exception handler address of the caller
   813   // Only RAX and RSI are valid at this time, all other registers have been destroyed by the call.
   814   __ invalidate_registers(false, true, true, true, false, true);
   816   // move result of call into correct register
   817   __ movptr(handler_addr, rax);
   819   // Restore exception oop to RAX (required convention of exception handler).
   820   __ movptr(exception_oop, exception_oop_callee_saved);
   822   // verify that there is really a valid exception in rax
   823   __ verify_not_null_oop(exception_oop);
   825   // get throwing pc (= return address).
   826   // rdx has been destroyed by the call, so it must be set again
   827   // the pop is also necessary to simulate the effect of a ret(0)
   828   __ pop(exception_pc);
   830   // continue at exception handler (return address removed)
   831   // note: do *not* remove arguments when unwinding the
   832   //       activation since the caller assumes having
   833   //       all arguments on the stack when entering the
   834   //       runtime to determine the exception handler
   835   //       (GC happens at call site with arguments!)
   836   // rax: exception oop
   837   // rdx: throwing pc
   838   // rbx: exception handler
   839   __ jmp(handler_addr);
   840 }
   843 OopMapSet* Runtime1::generate_patching(StubAssembler* sasm, address target) {
   844   // use the maximum number of runtime-arguments here because it is difficult to
   845   // distinguish each RT-Call.
   846   // Note: This number affects also the RT-Call in generate_handle_exception because
   847   //       the oop-map is shared for all calls.
   848   const int num_rt_args = 2;  // thread + dummy
   850   DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
   851   assert(deopt_blob != NULL, "deoptimization blob must have been created");
   853   OopMap* oop_map = save_live_registers(sasm, num_rt_args);
   855 #ifdef _LP64
   856   const Register thread = r15_thread;
   857   // No need to worry about dummy
   858   __ mov(c_rarg0, thread);
   859 #else
   860   __ push(rax); // push dummy
   862   const Register thread = rdi; // is callee-saved register (Visual C++ calling conventions)
   863   // push java thread (becomes first argument of C function)
   864   __ get_thread(thread);
   865   __ push(thread);
   866 #endif // _LP64
   867   __ set_last_Java_frame(thread, noreg, rbp, NULL);
   868   // do the call
   869   __ call(RuntimeAddress(target));
   870   OopMapSet* oop_maps = new OopMapSet();
   871   oop_maps->add_gc_map(__ offset(), oop_map);
   872   // verify callee-saved register
   873 #ifdef ASSERT
   874   guarantee(thread != rax, "change this code");
   875   __ push(rax);
   876   { Label L;
   877     __ get_thread(rax);
   878     __ cmpptr(thread, rax);
   879     __ jcc(Assembler::equal, L);
   880     __ stop("StubAssembler::call_RT: rdi/r15 not callee saved?");
   881     __ bind(L);
   882   }
   883   __ pop(rax);
   884 #endif
   885   __ reset_last_Java_frame(thread, true);
   886 #ifndef _LP64
   887   __ pop(rcx); // discard thread arg
   888   __ pop(rcx); // discard dummy
   889 #endif // _LP64
   891   // check for pending exceptions
   892   { Label L;
   893     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   894     __ jcc(Assembler::equal, L);
   895     // exception pending => remove activation and forward to exception handler
   897     __ testptr(rax, rax);                                   // have we deoptimized?
   898     __ jump_cc(Assembler::equal,
   899                RuntimeAddress(Runtime1::entry_for(Runtime1::forward_exception_id)));
   901     // the deopt blob expects exceptions in the special fields of
   902     // JavaThread, so copy and clear pending exception.
   904     // load and clear pending exception
   905     __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
   906     __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
   908     // check that there is really a valid exception
   909     __ verify_not_null_oop(rax);
   911     // load throwing pc: this is the return address of the stub
   912     __ movptr(rdx, Address(rsp, return_off * VMRegImpl::stack_slot_size));
   914 #ifdef ASSERT
   915     // check that fields in JavaThread for exception oop and issuing pc are empty
   916     Label oop_empty;
   917     __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
   918     __ jcc(Assembler::equal, oop_empty);
   919     __ stop("exception oop must be empty");
   920     __ bind(oop_empty);
   922     Label pc_empty;
   923     __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
   924     __ jcc(Assembler::equal, pc_empty);
   925     __ stop("exception pc must be empty");
   926     __ bind(pc_empty);
   927 #endif
   929     // store exception oop and throwing pc to JavaThread
   930     __ movptr(Address(thread, JavaThread::exception_oop_offset()), rax);
   931     __ movptr(Address(thread, JavaThread::exception_pc_offset()), rdx);
   933     restore_live_registers(sasm);
   935     __ leave();
   936     __ addptr(rsp, BytesPerWord);  // remove return address from stack
   938     // Forward the exception directly to deopt blob. We can blow no
   939     // registers and must leave throwing pc on the stack.  A patch may
   940     // have values live in registers so the entry point with the
   941     // exception in tls.
   942     __ jump(RuntimeAddress(deopt_blob->unpack_with_exception_in_tls()));
   944     __ bind(L);
   945   }
   948   // Runtime will return true if the nmethod has been deoptimized during
   949   // the patching process. In that case we must do a deopt reexecute instead.
   951   Label reexecuteEntry, cont;
   953   __ testptr(rax, rax);                                 // have we deoptimized?
   954   __ jcc(Assembler::equal, cont);                       // no
   956   // Will reexecute. Proper return address is already on the stack we just restore
   957   // registers, pop all of our frame but the return address and jump to the deopt blob
   958   restore_live_registers(sasm);
   959   __ leave();
   960   __ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
   962   __ bind(cont);
   963   restore_live_registers(sasm);
   964   __ leave();
   965   __ ret(0);
   967   return oop_maps;
   968 }
   971 OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
   973   // for better readability
   974   const bool must_gc_arguments = true;
   975   const bool dont_gc_arguments = false;
   977   // default value; overwritten for some optimized stubs that are called from methods that do not use the fpu
   978   bool save_fpu_registers = true;
   980   // stub code & info for the different stubs
   981   OopMapSet* oop_maps = NULL;
   982   switch (id) {
   983     case forward_exception_id:
   984       {
   985         oop_maps = generate_handle_exception(id, sasm);
   986         __ leave();
   987         __ ret(0);
   988       }
   989       break;
   991     case new_instance_id:
   992     case fast_new_instance_id:
   993     case fast_new_instance_init_check_id:
   994       {
   995         Register klass = rdx; // Incoming
   996         Register obj   = rax; // Result
   998         if (id == new_instance_id) {
   999           __ set_info("new_instance", dont_gc_arguments);
  1000         } else if (id == fast_new_instance_id) {
  1001           __ set_info("fast new_instance", dont_gc_arguments);
  1002         } else {
  1003           assert(id == fast_new_instance_init_check_id, "bad StubID");
  1004           __ set_info("fast new_instance init check", dont_gc_arguments);
  1007         if ((id == fast_new_instance_id || id == fast_new_instance_init_check_id) &&
  1008             UseTLAB && FastTLABRefill) {
  1009           Label slow_path;
  1010           Register obj_size = rcx;
  1011           Register t1       = rbx;
  1012           Register t2       = rsi;
  1013           assert_different_registers(klass, obj, obj_size, t1, t2);
  1015           __ push(rdi);
  1016           __ push(rbx);
  1018           if (id == fast_new_instance_init_check_id) {
  1019             // make sure the klass is initialized
  1020             __ cmpb(Address(klass, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized);
  1021             __ jcc(Assembler::notEqual, slow_path);
  1024 #ifdef ASSERT
  1025           // assert object can be fast path allocated
  1027             Label ok, not_ok;
  1028             __ movl(obj_size, Address(klass, Klass::layout_helper_offset()));
  1029             __ cmpl(obj_size, 0);  // make sure it's an instance (LH > 0)
  1030             __ jcc(Assembler::lessEqual, not_ok);
  1031             __ testl(obj_size, Klass::_lh_instance_slow_path_bit);
  1032             __ jcc(Assembler::zero, ok);
  1033             __ bind(not_ok);
  1034             __ stop("assert(can be fast path allocated)");
  1035             __ should_not_reach_here();
  1036             __ bind(ok);
  1038 #endif // ASSERT
  1040           // if we got here then the TLAB allocation failed, so try
  1041           // refilling the TLAB or allocating directly from eden.
  1042           Label retry_tlab, try_eden;
  1043           const Register thread =
  1044             __ tlab_refill(retry_tlab, try_eden, slow_path); // does not destroy rdx (klass), returns rdi
  1046           __ bind(retry_tlab);
  1048           // get the instance size (size is postive so movl is fine for 64bit)
  1049           __ movl(obj_size, Address(klass, Klass::layout_helper_offset()));
  1051           __ tlab_allocate(obj, obj_size, 0, t1, t2, slow_path);
  1053           __ initialize_object(obj, klass, obj_size, 0, t1, t2);
  1054           __ verify_oop(obj);
  1055           __ pop(rbx);
  1056           __ pop(rdi);
  1057           __ ret(0);
  1059           __ bind(try_eden);
  1060           // get the instance size (size is postive so movl is fine for 64bit)
  1061           __ movl(obj_size, Address(klass, Klass::layout_helper_offset()));
  1063           __ eden_allocate(obj, obj_size, 0, t1, slow_path);
  1064           __ incr_allocated_bytes(thread, obj_size, 0);
  1066           __ initialize_object(obj, klass, obj_size, 0, t1, t2);
  1067           __ verify_oop(obj);
  1068           __ pop(rbx);
  1069           __ pop(rdi);
  1070           __ ret(0);
  1072           __ bind(slow_path);
  1073           __ pop(rbx);
  1074           __ pop(rdi);
  1077         __ enter();
  1078         OopMap* map = save_live_registers(sasm, 2);
  1079         int call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_instance), klass);
  1080         oop_maps = new OopMapSet();
  1081         oop_maps->add_gc_map(call_offset, map);
  1082         restore_live_registers_except_rax(sasm);
  1083         __ verify_oop(obj);
  1084         __ leave();
  1085         __ ret(0);
  1087         // rax,: new instance
  1090       break;
  1092     case counter_overflow_id:
  1094         Register bci = rax, method = rbx;
  1095         __ enter();
  1096         OopMap* map = save_live_registers(sasm, 3);
  1097         // Retrieve bci
  1098         __ movl(bci, Address(rbp, 2*BytesPerWord));
  1099         // And a pointer to the Method*
  1100         __ movptr(method, Address(rbp, 3*BytesPerWord));
  1101         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, counter_overflow), bci, method);
  1102         oop_maps = new OopMapSet();
  1103         oop_maps->add_gc_map(call_offset, map);
  1104         restore_live_registers(sasm);
  1105         __ leave();
  1106         __ ret(0);
  1108       break;
  1110     case new_type_array_id:
  1111     case new_object_array_id:
  1113         Register length   = rbx; // Incoming
  1114         Register klass    = rdx; // Incoming
  1115         Register obj      = rax; // Result
  1117         if (id == new_type_array_id) {
  1118           __ set_info("new_type_array", dont_gc_arguments);
  1119         } else {
  1120           __ set_info("new_object_array", dont_gc_arguments);
  1123 #ifdef ASSERT
  1124         // assert object type is really an array of the proper kind
  1126           Label ok;
  1127           Register t0 = obj;
  1128           __ movl(t0, Address(klass, Klass::layout_helper_offset()));
  1129           __ sarl(t0, Klass::_lh_array_tag_shift);
  1130           int tag = ((id == new_type_array_id)
  1131                      ? Klass::_lh_array_tag_type_value
  1132                      : Klass::_lh_array_tag_obj_value);
  1133           __ cmpl(t0, tag);
  1134           __ jcc(Assembler::equal, ok);
  1135           __ stop("assert(is an array klass)");
  1136           __ should_not_reach_here();
  1137           __ bind(ok);
  1139 #endif // ASSERT
  1141         if (UseTLAB && FastTLABRefill) {
  1142           Register arr_size = rsi;
  1143           Register t1       = rcx;  // must be rcx for use as shift count
  1144           Register t2       = rdi;
  1145           Label slow_path;
  1146           assert_different_registers(length, klass, obj, arr_size, t1, t2);
  1148           // check that array length is small enough for fast path.
  1149           __ cmpl(length, C1_MacroAssembler::max_array_allocation_length);
  1150           __ jcc(Assembler::above, slow_path);
  1152           // if we got here then the TLAB allocation failed, so try
  1153           // refilling the TLAB or allocating directly from eden.
  1154           Label retry_tlab, try_eden;
  1155           const Register thread =
  1156             __ tlab_refill(retry_tlab, try_eden, slow_path); // preserves rbx & rdx, returns rdi
  1158           __ bind(retry_tlab);
  1160           // get the allocation size: round_up(hdr + length << (layout_helper & 0x1F))
  1161           // since size is positive movl does right thing on 64bit
  1162           __ movl(t1, Address(klass, Klass::layout_helper_offset()));
  1163           // since size is postive movl does right thing on 64bit
  1164           __ movl(arr_size, length);
  1165           assert(t1 == rcx, "fixed register usage");
  1166           __ shlptr(arr_size /* by t1=rcx, mod 32 */);
  1167           __ shrptr(t1, Klass::_lh_header_size_shift);
  1168           __ andptr(t1, Klass::_lh_header_size_mask);
  1169           __ addptr(arr_size, t1);
  1170           __ addptr(arr_size, MinObjAlignmentInBytesMask); // align up
  1171           __ andptr(arr_size, ~MinObjAlignmentInBytesMask);
  1173           __ tlab_allocate(obj, arr_size, 0, t1, t2, slow_path);  // preserves arr_size
  1175           __ initialize_header(obj, klass, length, t1, t2);
  1176           __ movb(t1, Address(klass, in_bytes(Klass::layout_helper_offset()) + (Klass::_lh_header_size_shift / BitsPerByte)));
  1177           assert(Klass::_lh_header_size_shift % BitsPerByte == 0, "bytewise");
  1178           assert(Klass::_lh_header_size_mask <= 0xFF, "bytewise");
  1179           __ andptr(t1, Klass::_lh_header_size_mask);
  1180           __ subptr(arr_size, t1);  // body length
  1181           __ addptr(t1, obj);       // body start
  1182           __ initialize_body(t1, arr_size, 0, t2);
  1183           __ verify_oop(obj);
  1184           __ ret(0);
  1186           __ bind(try_eden);
  1187           // get the allocation size: round_up(hdr + length << (layout_helper & 0x1F))
  1188           // since size is positive movl does right thing on 64bit
  1189           __ movl(t1, Address(klass, Klass::layout_helper_offset()));
  1190           // since size is postive movl does right thing on 64bit
  1191           __ movl(arr_size, length);
  1192           assert(t1 == rcx, "fixed register usage");
  1193           __ shlptr(arr_size /* by t1=rcx, mod 32 */);
  1194           __ shrptr(t1, Klass::_lh_header_size_shift);
  1195           __ andptr(t1, Klass::_lh_header_size_mask);
  1196           __ addptr(arr_size, t1);
  1197           __ addptr(arr_size, MinObjAlignmentInBytesMask); // align up
  1198           __ andptr(arr_size, ~MinObjAlignmentInBytesMask);
  1200           __ eden_allocate(obj, arr_size, 0, t1, slow_path);  // preserves arr_size
  1201           __ incr_allocated_bytes(thread, arr_size, 0);
  1203           __ initialize_header(obj, klass, length, t1, t2);
  1204           __ movb(t1, Address(klass, in_bytes(Klass::layout_helper_offset()) + (Klass::_lh_header_size_shift / BitsPerByte)));
  1205           assert(Klass::_lh_header_size_shift % BitsPerByte == 0, "bytewise");
  1206           assert(Klass::_lh_header_size_mask <= 0xFF, "bytewise");
  1207           __ andptr(t1, Klass::_lh_header_size_mask);
  1208           __ subptr(arr_size, t1);  // body length
  1209           __ addptr(t1, obj);       // body start
  1210           __ initialize_body(t1, arr_size, 0, t2);
  1211           __ verify_oop(obj);
  1212           __ ret(0);
  1214           __ bind(slow_path);
  1217         __ enter();
  1218         OopMap* map = save_live_registers(sasm, 3);
  1219         int call_offset;
  1220         if (id == new_type_array_id) {
  1221           call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_type_array), klass, length);
  1222         } else {
  1223           call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_object_array), klass, length);
  1226         oop_maps = new OopMapSet();
  1227         oop_maps->add_gc_map(call_offset, map);
  1228         restore_live_registers_except_rax(sasm);
  1230         __ verify_oop(obj);
  1231         __ leave();
  1232         __ ret(0);
  1234         // rax,: new array
  1236       break;
  1238     case new_multi_array_id:
  1239       { StubFrame f(sasm, "new_multi_array", dont_gc_arguments);
  1240         // rax,: klass
  1241         // rbx,: rank
  1242         // rcx: address of 1st dimension
  1243         OopMap* map = save_live_registers(sasm, 4);
  1244         int call_offset = __ call_RT(rax, noreg, CAST_FROM_FN_PTR(address, new_multi_array), rax, rbx, rcx);
  1246         oop_maps = new OopMapSet();
  1247         oop_maps->add_gc_map(call_offset, map);
  1248         restore_live_registers_except_rax(sasm);
  1250         // rax,: new multi array
  1251         __ verify_oop(rax);
  1253       break;
  1255     case register_finalizer_id:
  1257         __ set_info("register_finalizer", dont_gc_arguments);
  1259         // This is called via call_runtime so the arguments
  1260         // will be place in C abi locations
  1262 #ifdef _LP64
  1263         __ verify_oop(c_rarg0);
  1264         __ mov(rax, c_rarg0);
  1265 #else
  1266         // The object is passed on the stack and we haven't pushed a
  1267         // frame yet so it's one work away from top of stack.
  1268         __ movptr(rax, Address(rsp, 1 * BytesPerWord));
  1269         __ verify_oop(rax);
  1270 #endif // _LP64
  1272         // load the klass and check the has finalizer flag
  1273         Label register_finalizer;
  1274         Register t = rsi;
  1275         __ load_klass(t, rax);
  1276         __ movl(t, Address(t, Klass::access_flags_offset()));
  1277         __ testl(t, JVM_ACC_HAS_FINALIZER);
  1278         __ jcc(Assembler::notZero, register_finalizer);
  1279         __ ret(0);
  1281         __ bind(register_finalizer);
  1282         __ enter();
  1283         OopMap* oop_map = save_live_registers(sasm, 2 /*num_rt_args */);
  1284         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, SharedRuntime::register_finalizer), rax);
  1285         oop_maps = new OopMapSet();
  1286         oop_maps->add_gc_map(call_offset, oop_map);
  1288         // Now restore all the live registers
  1289         restore_live_registers(sasm);
  1291         __ leave();
  1292         __ ret(0);
  1294       break;
  1296     case throw_range_check_failed_id:
  1297       { StubFrame f(sasm, "range_check_failed", dont_gc_arguments);
  1298         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_range_check_exception), true);
  1300       break;
  1302     case throw_index_exception_id:
  1303       { StubFrame f(sasm, "index_range_check_failed", dont_gc_arguments);
  1304         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_index_exception), true);
  1306       break;
  1308     case throw_div0_exception_id:
  1309       { StubFrame f(sasm, "throw_div0_exception", dont_gc_arguments);
  1310         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_div0_exception), false);
  1312       break;
  1314     case throw_null_pointer_exception_id:
  1315       { StubFrame f(sasm, "throw_null_pointer_exception", dont_gc_arguments);
  1316         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_null_pointer_exception), false);
  1318       break;
  1320     case handle_exception_nofpu_id:
  1321     case handle_exception_id:
  1322       { StubFrame f(sasm, "handle_exception", dont_gc_arguments);
  1323         oop_maps = generate_handle_exception(id, sasm);
  1325       break;
  1327     case handle_exception_from_callee_id:
  1328       { StubFrame f(sasm, "handle_exception_from_callee", dont_gc_arguments);
  1329         oop_maps = generate_handle_exception(id, sasm);
  1331       break;
  1333     case unwind_exception_id:
  1334       { __ set_info("unwind_exception", dont_gc_arguments);
  1335         // note: no stubframe since we are about to leave the current
  1336         //       activation and we are calling a leaf VM function only.
  1337         generate_unwind_exception(sasm);
  1339       break;
  1341     case throw_array_store_exception_id:
  1342       { StubFrame f(sasm, "throw_array_store_exception", dont_gc_arguments);
  1343         // tos + 0: link
  1344         //     + 1: return address
  1345         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_array_store_exception), true);
  1347       break;
  1349     case throw_class_cast_exception_id:
  1350       { StubFrame f(sasm, "throw_class_cast_exception", dont_gc_arguments);
  1351         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_class_cast_exception), true);
  1353       break;
  1355     case throw_incompatible_class_change_error_id:
  1356       { StubFrame f(sasm, "throw_incompatible_class_cast_exception", dont_gc_arguments);
  1357         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_incompatible_class_change_error), false);
  1359       break;
  1361     case slow_subtype_check_id:
  1363         // Typical calling sequence:
  1364         // __ push(klass_RInfo);  // object klass or other subclass
  1365         // __ push(sup_k_RInfo);  // array element klass or other superclass
  1366         // __ call(slow_subtype_check);
  1367         // Note that the subclass is pushed first, and is therefore deepest.
  1368         // Previous versions of this code reversed the names 'sub' and 'super'.
  1369         // This was operationally harmless but made the code unreadable.
  1370         enum layout {
  1371           rax_off, SLOT2(raxH_off)
  1372           rcx_off, SLOT2(rcxH_off)
  1373           rsi_off, SLOT2(rsiH_off)
  1374           rdi_off, SLOT2(rdiH_off)
  1375           // saved_rbp_off, SLOT2(saved_rbpH_off)
  1376           return_off, SLOT2(returnH_off)
  1377           sup_k_off, SLOT2(sup_kH_off)
  1378           klass_off, SLOT2(superH_off)
  1379           framesize,
  1380           result_off = klass_off  // deepest argument is also the return value
  1381         };
  1383         __ set_info("slow_subtype_check", dont_gc_arguments);
  1384         __ push(rdi);
  1385         __ push(rsi);
  1386         __ push(rcx);
  1387         __ push(rax);
  1389         // This is called by pushing args and not with C abi
  1390         __ movptr(rsi, Address(rsp, (klass_off) * VMRegImpl::stack_slot_size)); // subclass
  1391         __ movptr(rax, Address(rsp, (sup_k_off) * VMRegImpl::stack_slot_size)); // superclass
  1393         Label miss;
  1394         __ check_klass_subtype_slow_path(rsi, rax, rcx, rdi, NULL, &miss);
  1396         // fallthrough on success:
  1397         __ movptr(Address(rsp, (result_off) * VMRegImpl::stack_slot_size), 1); // result
  1398         __ pop(rax);
  1399         __ pop(rcx);
  1400         __ pop(rsi);
  1401         __ pop(rdi);
  1402         __ ret(0);
  1404         __ bind(miss);
  1405         __ movptr(Address(rsp, (result_off) * VMRegImpl::stack_slot_size), NULL_WORD); // result
  1406         __ pop(rax);
  1407         __ pop(rcx);
  1408         __ pop(rsi);
  1409         __ pop(rdi);
  1410         __ ret(0);
  1412       break;
  1414     case monitorenter_nofpu_id:
  1415       save_fpu_registers = false;
  1416       // fall through
  1417     case monitorenter_id:
  1419         StubFrame f(sasm, "monitorenter", dont_gc_arguments);
  1420         OopMap* map = save_live_registers(sasm, 3, save_fpu_registers);
  1422         // Called with store_parameter and not C abi
  1424         f.load_argument(1, rax); // rax,: object
  1425         f.load_argument(0, rbx); // rbx,: lock address
  1427         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorenter), rax, rbx);
  1429         oop_maps = new OopMapSet();
  1430         oop_maps->add_gc_map(call_offset, map);
  1431         restore_live_registers(sasm, save_fpu_registers);
  1433       break;
  1435     case monitorexit_nofpu_id:
  1436       save_fpu_registers = false;
  1437       // fall through
  1438     case monitorexit_id:
  1440         StubFrame f(sasm, "monitorexit", dont_gc_arguments);
  1441         OopMap* map = save_live_registers(sasm, 2, save_fpu_registers);
  1443         // Called with store_parameter and not C abi
  1445         f.load_argument(0, rax); // rax,: lock address
  1447         // note: really a leaf routine but must setup last java sp
  1448         //       => use call_RT for now (speed can be improved by
  1449         //       doing last java sp setup manually)
  1450         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorexit), rax);
  1452         oop_maps = new OopMapSet();
  1453         oop_maps->add_gc_map(call_offset, map);
  1454         restore_live_registers(sasm, save_fpu_registers);
  1456       break;
  1458     case deoptimize_id:
  1460         StubFrame f(sasm, "deoptimize", dont_gc_arguments);
  1461         const int num_rt_args = 1;  // thread
  1462         OopMap* oop_map = save_live_registers(sasm, num_rt_args);
  1463         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, deoptimize));
  1464         oop_maps = new OopMapSet();
  1465         oop_maps->add_gc_map(call_offset, oop_map);
  1466         restore_live_registers(sasm);
  1467         DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
  1468         assert(deopt_blob != NULL, "deoptimization blob must have been created");
  1469         __ leave();
  1470         __ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
  1472       break;
  1474     case access_field_patching_id:
  1475       { StubFrame f(sasm, "access_field_patching", dont_gc_arguments);
  1476         // we should set up register map
  1477         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, access_field_patching));
  1479       break;
  1481     case load_klass_patching_id:
  1482       { StubFrame f(sasm, "load_klass_patching", dont_gc_arguments);
  1483         // we should set up register map
  1484         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_klass_patching));
  1486       break;
  1488     case load_mirror_patching_id:
  1489       { StubFrame f(sasm, "load_mirror_patching", dont_gc_arguments);
  1490         // we should set up register map
  1491         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_mirror_patching));
  1493       break;
  1495     case load_appendix_patching_id:
  1496       { StubFrame f(sasm, "load_appendix_patching", dont_gc_arguments);
  1497         // we should set up register map
  1498         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_appendix_patching));
  1500       break;
  1502     case dtrace_object_alloc_id:
  1503       { // rax,: object
  1504         StubFrame f(sasm, "dtrace_object_alloc", dont_gc_arguments);
  1505         // we can't gc here so skip the oopmap but make sure that all
  1506         // the live registers get saved.
  1507         save_live_registers(sasm, 1);
  1509         __ NOT_LP64(push(rax)) LP64_ONLY(mov(c_rarg0, rax));
  1510         __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc)));
  1511         NOT_LP64(__ pop(rax));
  1513         restore_live_registers(sasm);
  1515       break;
  1517     case fpu2long_stub_id:
  1519         // rax, and rdx are destroyed, but should be free since the result is returned there
  1520         // preserve rsi,ecx
  1521         __ push(rsi);
  1522         __ push(rcx);
  1523         LP64_ONLY(__ push(rdx);)
  1525         // check for NaN
  1526         Label return0, do_return, return_min_jlong, do_convert;
  1528         Address value_high_word(rsp, wordSize + 4);
  1529         Address value_low_word(rsp, wordSize);
  1530         Address result_high_word(rsp, 3*wordSize + 4);
  1531         Address result_low_word(rsp, 3*wordSize);
  1533         __ subptr(rsp, 32);                    // more than enough on 32bit
  1534         __ fst_d(value_low_word);
  1535         __ movl(rax, value_high_word);
  1536         __ andl(rax, 0x7ff00000);
  1537         __ cmpl(rax, 0x7ff00000);
  1538         __ jcc(Assembler::notEqual, do_convert);
  1539         __ movl(rax, value_high_word);
  1540         __ andl(rax, 0xfffff);
  1541         __ orl(rax, value_low_word);
  1542         __ jcc(Assembler::notZero, return0);
  1544         __ bind(do_convert);
  1545         __ fnstcw(Address(rsp, 0));
  1546         __ movzwl(rax, Address(rsp, 0));
  1547         __ orl(rax, 0xc00);
  1548         __ movw(Address(rsp, 2), rax);
  1549         __ fldcw(Address(rsp, 2));
  1550         __ fwait();
  1551         __ fistp_d(result_low_word);
  1552         __ fldcw(Address(rsp, 0));
  1553         __ fwait();
  1554         // This gets the entire long in rax on 64bit
  1555         __ movptr(rax, result_low_word);
  1556         // testing of high bits
  1557         __ movl(rdx, result_high_word);
  1558         __ mov(rcx, rax);
  1559         // What the heck is the point of the next instruction???
  1560         __ xorl(rcx, 0x0);
  1561         __ movl(rsi, 0x80000000);
  1562         __ xorl(rsi, rdx);
  1563         __ orl(rcx, rsi);
  1564         __ jcc(Assembler::notEqual, do_return);
  1565         __ fldz();
  1566         __ fcomp_d(value_low_word);
  1567         __ fnstsw_ax();
  1568 #ifdef _LP64
  1569         __ testl(rax, 0x4100);  // ZF & CF == 0
  1570         __ jcc(Assembler::equal, return_min_jlong);
  1571 #else
  1572         __ sahf();
  1573         __ jcc(Assembler::above, return_min_jlong);
  1574 #endif // _LP64
  1575         // return max_jlong
  1576 #ifndef _LP64
  1577         __ movl(rdx, 0x7fffffff);
  1578         __ movl(rax, 0xffffffff);
  1579 #else
  1580         __ mov64(rax, CONST64(0x7fffffffffffffff));
  1581 #endif // _LP64
  1582         __ jmp(do_return);
  1584         __ bind(return_min_jlong);
  1585 #ifndef _LP64
  1586         __ movl(rdx, 0x80000000);
  1587         __ xorl(rax, rax);
  1588 #else
  1589         __ mov64(rax, CONST64(0x8000000000000000));
  1590 #endif // _LP64
  1591         __ jmp(do_return);
  1593         __ bind(return0);
  1594         __ fpop();
  1595 #ifndef _LP64
  1596         __ xorptr(rdx,rdx);
  1597         __ xorptr(rax,rax);
  1598 #else
  1599         __ xorptr(rax, rax);
  1600 #endif // _LP64
  1602         __ bind(do_return);
  1603         __ addptr(rsp, 32);
  1604         LP64_ONLY(__ pop(rdx);)
  1605         __ pop(rcx);
  1606         __ pop(rsi);
  1607         __ ret(0);
  1609       break;
  1611 #if INCLUDE_ALL_GCS
  1612     case g1_pre_barrier_slow_id:
  1614         StubFrame f(sasm, "g1_pre_barrier", dont_gc_arguments);
  1615         // arg0 : previous value of memory
  1617         BarrierSet* bs = Universe::heap()->barrier_set();
  1618         if (bs->kind() != BarrierSet::G1SATBCTLogging) {
  1619           __ movptr(rax, (int)id);
  1620           __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), rax);
  1621           __ should_not_reach_here();
  1622           break;
  1624         __ push(rax);
  1625         __ push(rdx);
  1627         const Register pre_val = rax;
  1628         const Register thread = NOT_LP64(rax) LP64_ONLY(r15_thread);
  1629         const Register tmp = rdx;
  1631         NOT_LP64(__ get_thread(thread);)
  1633         Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  1634                                              PtrQueue::byte_offset_of_active()));
  1636         Address queue_index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  1637                                              PtrQueue::byte_offset_of_index()));
  1638         Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  1639                                         PtrQueue::byte_offset_of_buf()));
  1642         Label done;
  1643         Label runtime;
  1645         // Can we store original value in the thread's buffer?
  1647 #ifdef _LP64
  1648         __ movslq(tmp, queue_index);
  1649         __ cmpq(tmp, 0);
  1650 #else
  1651         __ cmpl(queue_index, 0);
  1652 #endif
  1653         __ jcc(Assembler::equal, runtime);
  1654 #ifdef _LP64
  1655         __ subq(tmp, wordSize);
  1656         __ movl(queue_index, tmp);
  1657         __ addq(tmp, buffer);
  1658 #else
  1659         __ subl(queue_index, wordSize);
  1660         __ movl(tmp, buffer);
  1661         __ addl(tmp, queue_index);
  1662 #endif
  1664         // prev_val (rax)
  1665         f.load_argument(0, pre_val);
  1666         __ movptr(Address(tmp, 0), pre_val);
  1667         __ jmp(done);
  1669         __ bind(runtime);
  1670         __ push(rcx);
  1671 #ifdef _LP64
  1672         __ push(r8);
  1673         __ push(r9);
  1674         __ push(r10);
  1675         __ push(r11);
  1676 #  ifndef _WIN64
  1677         __ push(rdi);
  1678         __ push(rsi);
  1679 #  endif
  1680 #endif
  1681         // load the pre-value
  1682         f.load_argument(0, rcx);
  1683         __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), rcx, thread);
  1684 #ifdef _LP64
  1685 #  ifndef _WIN64
  1686         __ pop(rsi);
  1687         __ pop(rdi);
  1688 #  endif
  1689         __ pop(r11);
  1690         __ pop(r10);
  1691         __ pop(r9);
  1692         __ pop(r8);
  1693 #endif
  1694         __ pop(rcx);
  1695         __ bind(done);
  1697         __ pop(rdx);
  1698         __ pop(rax);
  1700       break;
  1702     case g1_post_barrier_slow_id:
  1704         StubFrame f(sasm, "g1_post_barrier", dont_gc_arguments);
  1707         // arg0: store_address
  1708         Address store_addr(rbp, 2*BytesPerWord);
  1710         BarrierSet* bs = Universe::heap()->barrier_set();
  1711         CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  1712         assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  1714         Label done;
  1715         Label runtime;
  1717         // At this point we know new_value is non-NULL and the new_value crosses regions.
  1718         // Must check to see if card is already dirty
  1720         const Register thread = NOT_LP64(rax) LP64_ONLY(r15_thread);
  1722         Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  1723                                              PtrQueue::byte_offset_of_index()));
  1724         Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  1725                                         PtrQueue::byte_offset_of_buf()));
  1727         __ push(rax);
  1728         __ push(rcx);
  1730         const Register cardtable = rax;
  1731         const Register card_addr = rcx;
  1733         f.load_argument(0, card_addr);
  1734         __ shrptr(card_addr, CardTableModRefBS::card_shift);
  1735         // Do not use ExternalAddress to load 'byte_map_base', since 'byte_map_base' is NOT
  1736         // a valid address and therefore is not properly handled by the relocation code.
  1737         __ movptr(cardtable, (intptr_t)ct->byte_map_base);
  1738         __ addptr(card_addr, cardtable);
  1740         NOT_LP64(__ get_thread(thread);)
  1742         __ cmpb(Address(card_addr, 0), (int)G1SATBCardTableModRefBS::g1_young_card_val());
  1743         __ jcc(Assembler::equal, done);
  1745         __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
  1746         __ cmpb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
  1747         __ jcc(Assembler::equal, done);
  1749         // storing region crossing non-NULL, card is clean.
  1750         // dirty card and log.
  1752         __ movb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
  1754         __ cmpl(queue_index, 0);
  1755         __ jcc(Assembler::equal, runtime);
  1756         __ subl(queue_index, wordSize);
  1758         const Register buffer_addr = rbx;
  1759         __ push(rbx);
  1761         __ movptr(buffer_addr, buffer);
  1763 #ifdef _LP64
  1764         __ movslq(rscratch1, queue_index);
  1765         __ addptr(buffer_addr, rscratch1);
  1766 #else
  1767         __ addptr(buffer_addr, queue_index);
  1768 #endif
  1769         __ movptr(Address(buffer_addr, 0), card_addr);
  1771         __ pop(rbx);
  1772         __ jmp(done);
  1774         __ bind(runtime);
  1775         __ push(rdx);
  1776 #ifdef _LP64
  1777         __ push(r8);
  1778         __ push(r9);
  1779         __ push(r10);
  1780         __ push(r11);
  1781 #  ifndef _WIN64
  1782         __ push(rdi);
  1783         __ push(rsi);
  1784 #  endif
  1785 #endif
  1786         __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
  1787 #ifdef _LP64
  1788 #  ifndef _WIN64
  1789         __ pop(rsi);
  1790         __ pop(rdi);
  1791 #  endif
  1792         __ pop(r11);
  1793         __ pop(r10);
  1794         __ pop(r9);
  1795         __ pop(r8);
  1796 #endif
  1797         __ pop(rdx);
  1798         __ bind(done);
  1800         __ pop(rcx);
  1801         __ pop(rax);
  1804       break;
  1805 #endif // INCLUDE_ALL_GCS
  1807     case predicate_failed_trap_id:
  1809         StubFrame f(sasm, "predicate_failed_trap", dont_gc_arguments);
  1811         OopMap* map = save_live_registers(sasm, 1);
  1813         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, predicate_failed_trap));
  1814         oop_maps = new OopMapSet();
  1815         oop_maps->add_gc_map(call_offset, map);
  1816         restore_live_registers(sasm);
  1817         __ leave();
  1818         DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
  1819         assert(deopt_blob != NULL, "deoptimization blob must have been created");
  1821         __ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
  1823       break;
  1825     default:
  1826       { StubFrame f(sasm, "unimplemented entry", dont_gc_arguments);
  1827         __ movptr(rax, (int)id);
  1828         __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), rax);
  1829         __ should_not_reach_here();
  1831       break;
  1833   return oop_maps;
  1836 #undef __
  1838 const char *Runtime1::pd_name_for_address(address entry) {
  1839   return "<unknown function>";

mercurial