src/share/vm/opto/node.cpp

Wed, 20 Feb 2008 16:19:43 -0800

author
kvn
date
Wed, 20 Feb 2008 16:19:43 -0800
changeset 459
953939ef62ab
parent 435
a61af66fc99e
child 475
7c1f32ae4a20
permissions
-rw-r--r--

6614330: Node::dump(n) does not print full graph for specified depth.
Summary: A node is not processed in dump_nodes() if it was visited during processing previous inputs.
Reviewed-by: rasbold

     1 /*
     2  * Copyright 1997-2006 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_node.cpp.incl"
    28 class RegMask;
    29 // #include "phase.hpp"
    30 class PhaseTransform;
    31 class PhaseGVN;
    33 // Arena we are currently building Nodes in
    34 const uint Node::NotAMachineReg = 0xffff0000;
    36 #ifndef PRODUCT
    37 extern int nodes_created;
    38 #endif
    40 #ifdef ASSERT
    42 //-------------------------- construct_node------------------------------------
    43 // Set a breakpoint here to identify where a particular node index is built.
    44 void Node::verify_construction() {
    45   _debug_orig = NULL;
    46   int old_debug_idx = Compile::debug_idx();
    47   int new_debug_idx = old_debug_idx+1;
    48   if (new_debug_idx > 0) {
    49     // Arrange that the lowest five decimal digits of _debug_idx
    50     // will repeat thos of _idx.  In case this is somehow pathological,
    51     // we continue to assign negative numbers (!) consecutively.
    52     const int mod = 100000;
    53     int bump = (int)(_idx - new_debug_idx) % mod;
    54     if (bump < 0)  bump += mod;
    55     assert(bump >= 0 && bump < mod, "");
    56     new_debug_idx += bump;
    57   }
    58   Compile::set_debug_idx(new_debug_idx);
    59   set_debug_idx( new_debug_idx );
    60   assert(Compile::current()->unique() < (uint)MaxNodeLimit, "Node limit exceeded");
    61   if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (int)_idx == BreakAtNode)) {
    62     tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d", _idx, _debug_idx);
    63     BREAKPOINT;
    64   }
    65 #if OPTO_DU_ITERATOR_ASSERT
    66   _last_del = NULL;
    67   _del_tick = 0;
    68 #endif
    69   _hash_lock = 0;
    70 }
    73 // #ifdef ASSERT ...
    75 #if OPTO_DU_ITERATOR_ASSERT
    76 void DUIterator_Common::sample(const Node* node) {
    77   _vdui     = VerifyDUIterators;
    78   _node     = node;
    79   _outcnt   = node->_outcnt;
    80   _del_tick = node->_del_tick;
    81   _last     = NULL;
    82 }
    84 void DUIterator_Common::verify(const Node* node, bool at_end_ok) {
    85   assert(_node     == node, "consistent iterator source");
    86   assert(_del_tick == node->_del_tick, "no unexpected deletions allowed");
    87 }
    89 void DUIterator_Common::verify_resync() {
    90   // Ensure that the loop body has just deleted the last guy produced.
    91   const Node* node = _node;
    92   // Ensure that at least one copy of the last-seen edge was deleted.
    93   // Note:  It is OK to delete multiple copies of the last-seen edge.
    94   // Unfortunately, we have no way to verify that all the deletions delete
    95   // that same edge.  On this point we must use the Honor System.
    96   assert(node->_del_tick >= _del_tick+1, "must have deleted an edge");
    97   assert(node->_last_del == _last, "must have deleted the edge just produced");
    98   // We liked this deletion, so accept the resulting outcnt and tick.
    99   _outcnt   = node->_outcnt;
   100   _del_tick = node->_del_tick;
   101 }
   103 void DUIterator_Common::reset(const DUIterator_Common& that) {
   104   if (this == &that)  return;  // ignore assignment to self
   105   if (!_vdui) {
   106     // We need to initialize everything, overwriting garbage values.
   107     _last = that._last;
   108     _vdui = that._vdui;
   109   }
   110   // Note:  It is legal (though odd) for an iterator over some node x
   111   // to be reassigned to iterate over another node y.  Some doubly-nested
   112   // progress loops depend on being able to do this.
   113   const Node* node = that._node;
   114   // Re-initialize everything, except _last.
   115   _node     = node;
   116   _outcnt   = node->_outcnt;
   117   _del_tick = node->_del_tick;
   118 }
   120 void DUIterator::sample(const Node* node) {
   121   DUIterator_Common::sample(node);      // Initialize the assertion data.
   122   _refresh_tick = 0;                    // No refreshes have happened, as yet.
   123 }
   125 void DUIterator::verify(const Node* node, bool at_end_ok) {
   126   DUIterator_Common::verify(node, at_end_ok);
   127   assert(_idx      <  node->_outcnt + (uint)at_end_ok, "idx in range");
   128 }
   130 void DUIterator::verify_increment() {
   131   if (_refresh_tick & 1) {
   132     // We have refreshed the index during this loop.
   133     // Fix up _idx to meet asserts.
   134     if (_idx > _outcnt)  _idx = _outcnt;
   135   }
   136   verify(_node, true);
   137 }
   139 void DUIterator::verify_resync() {
   140   // Note:  We do not assert on _outcnt, because insertions are OK here.
   141   DUIterator_Common::verify_resync();
   142   // Make sure we are still in sync, possibly with no more out-edges:
   143   verify(_node, true);
   144 }
   146 void DUIterator::reset(const DUIterator& that) {
   147   if (this == &that)  return;  // self assignment is always a no-op
   148   assert(that._refresh_tick == 0, "assign only the result of Node::outs()");
   149   assert(that._idx          == 0, "assign only the result of Node::outs()");
   150   assert(_idx               == that._idx, "already assigned _idx");
   151   if (!_vdui) {
   152     // We need to initialize everything, overwriting garbage values.
   153     sample(that._node);
   154   } else {
   155     DUIterator_Common::reset(that);
   156     if (_refresh_tick & 1) {
   157       _refresh_tick++;                  // Clear the "was refreshed" flag.
   158     }
   159     assert(_refresh_tick < 2*100000, "DU iteration must converge quickly");
   160   }
   161 }
   163 void DUIterator::refresh() {
   164   DUIterator_Common::sample(_node);     // Re-fetch assertion data.
   165   _refresh_tick |= 1;                   // Set the "was refreshed" flag.
   166 }
   168 void DUIterator::verify_finish() {
   169   // If the loop has killed the node, do not require it to re-run.
   170   if (_node->_outcnt == 0)  _refresh_tick &= ~1;
   171   // If this assert triggers, it means that a loop used refresh_out_pos
   172   // to re-synch an iteration index, but the loop did not correctly
   173   // re-run itself, using a "while (progress)" construct.
   174   // This iterator enforces the rule that you must keep trying the loop
   175   // until it "runs clean" without any need for refreshing.
   176   assert(!(_refresh_tick & 1), "the loop must run once with no refreshing");
   177 }
   180 void DUIterator_Fast::verify(const Node* node, bool at_end_ok) {
   181   DUIterator_Common::verify(node, at_end_ok);
   182   Node** out    = node->_out;
   183   uint   cnt    = node->_outcnt;
   184   assert(cnt == _outcnt, "no insertions allowed");
   185   assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range");
   186   // This last check is carefully designed to work for NO_OUT_ARRAY.
   187 }
   189 void DUIterator_Fast::verify_limit() {
   190   const Node* node = _node;
   191   verify(node, true);
   192   assert(_outp == node->_out + node->_outcnt, "limit still correct");
   193 }
   195 void DUIterator_Fast::verify_resync() {
   196   const Node* node = _node;
   197   if (_outp == node->_out + _outcnt) {
   198     // Note that the limit imax, not the pointer i, gets updated with the
   199     // exact count of deletions.  (For the pointer it's always "--i".)
   200     assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)");
   201     // This is a limit pointer, with a name like "imax".
   202     // Fudge the _last field so that the common assert will be happy.
   203     _last = (Node*) node->_last_del;
   204     DUIterator_Common::verify_resync();
   205   } else {
   206     assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)");
   207     // A normal internal pointer.
   208     DUIterator_Common::verify_resync();
   209     // Make sure we are still in sync, possibly with no more out-edges:
   210     verify(node, true);
   211   }
   212 }
   214 void DUIterator_Fast::verify_relimit(uint n) {
   215   const Node* node = _node;
   216   assert((int)n > 0, "use imax -= n only with a positive count");
   217   // This must be a limit pointer, with a name like "imax".
   218   assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)");
   219   // The reported number of deletions must match what the node saw.
   220   assert(node->_del_tick == _del_tick + n, "must have deleted n edges");
   221   // Fudge the _last field so that the common assert will be happy.
   222   _last = (Node*) node->_last_del;
   223   DUIterator_Common::verify_resync();
   224 }
   226 void DUIterator_Fast::reset(const DUIterator_Fast& that) {
   227   assert(_outp              == that._outp, "already assigned _outp");
   228   DUIterator_Common::reset(that);
   229 }
   231 void DUIterator_Last::verify(const Node* node, bool at_end_ok) {
   232   // at_end_ok means the _outp is allowed to underflow by 1
   233   _outp += at_end_ok;
   234   DUIterator_Fast::verify(node, at_end_ok);  // check _del_tick, etc.
   235   _outp -= at_end_ok;
   236   assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes");
   237 }
   239 void DUIterator_Last::verify_limit() {
   240   // Do not require the limit address to be resynched.
   241   //verify(node, true);
   242   assert(_outp == _node->_out, "limit still correct");
   243 }
   245 void DUIterator_Last::verify_step(uint num_edges) {
   246   assert((int)num_edges > 0, "need non-zero edge count for loop progress");
   247   _outcnt   -= num_edges;
   248   _del_tick += num_edges;
   249   // Make sure we are still in sync, possibly with no more out-edges:
   250   const Node* node = _node;
   251   verify(node, true);
   252   assert(node->_last_del == _last, "must have deleted the edge just produced");
   253 }
   255 #endif //OPTO_DU_ITERATOR_ASSERT
   258 #endif //ASSERT
   261 // This constant used to initialize _out may be any non-null value.
   262 // The value NULL is reserved for the top node only.
   263 #define NO_OUT_ARRAY ((Node**)-1)
   265 // This funny expression handshakes with Node::operator new
   266 // to pull Compile::current out of the new node's _out field,
   267 // and then calls a subroutine which manages most field
   268 // initializations.  The only one which is tricky is the
   269 // _idx field, which is const, and so must be initialized
   270 // by a return value, not an assignment.
   271 //
   272 // (Aren't you thankful that Java finals don't require so many tricks?)
   273 #define IDX_INIT(req) this->Init((req), (Compile*) this->_out)
   274 #ifdef _MSC_VER // the IDX_INIT hack falls foul of warning C4355
   275 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   276 #endif
   278 // Out-of-line code from node constructors.
   279 // Executed only when extra debug info. is being passed around.
   280 static void init_node_notes(Compile* C, int idx, Node_Notes* nn) {
   281   C->set_node_notes_at(idx, nn);
   282 }
   284 // Shared initialization code.
   285 inline int Node::Init(int req, Compile* C) {
   286   assert(Compile::current() == C, "must use operator new(Compile*)");
   287   int idx = C->next_unique();
   289   // If there are default notes floating around, capture them:
   290   Node_Notes* nn = C->default_node_notes();
   291   if (nn != NULL)  init_node_notes(C, idx, nn);
   293   // Note:  At this point, C is dead,
   294   // and we begin to initialize the new Node.
   296   _cnt = _max = req;
   297   _outcnt = _outmax = 0;
   298   _class_id = Class_Node;
   299   _flags = 0;
   300   _out = NO_OUT_ARRAY;
   301   return idx;
   302 }
   304 //------------------------------Node-------------------------------------------
   305 // Create a Node, with a given number of required edges.
   306 Node::Node(uint req)
   307   : _idx(IDX_INIT(req))
   308 {
   309   assert( req < (uint)(MaxNodeLimit - NodeLimitFudgeFactor), "Input limit exceeded" );
   310   debug_only( verify_construction() );
   311   NOT_PRODUCT(nodes_created++);
   312   if (req == 0) {
   313     assert( _in == (Node**)this, "Must not pass arg count to 'new'" );
   314     _in = NULL;
   315   } else {
   316     assert( _in[req-1] == this, "Must pass arg count to 'new'" );
   317     Node** to = _in;
   318     for(uint i = 0; i < req; i++) {
   319       to[i] = NULL;
   320     }
   321   }
   322 }
   324 //------------------------------Node-------------------------------------------
   325 Node::Node(Node *n0)
   326   : _idx(IDX_INIT(1))
   327 {
   328   debug_only( verify_construction() );
   329   NOT_PRODUCT(nodes_created++);
   330   // Assert we allocated space for input array already
   331   assert( _in[0] == this, "Must pass arg count to 'new'" );
   332   assert( is_not_dead(n0), "can not use dead node");
   333   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
   334 }
   336 //------------------------------Node-------------------------------------------
   337 Node::Node(Node *n0, Node *n1)
   338   : _idx(IDX_INIT(2))
   339 {
   340   debug_only( verify_construction() );
   341   NOT_PRODUCT(nodes_created++);
   342   // Assert we allocated space for input array already
   343   assert( _in[1] == this, "Must pass arg count to 'new'" );
   344   assert( is_not_dead(n0), "can not use dead node");
   345   assert( is_not_dead(n1), "can not use dead node");
   346   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
   347   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
   348 }
   350 //------------------------------Node-------------------------------------------
   351 Node::Node(Node *n0, Node *n1, Node *n2)
   352   : _idx(IDX_INIT(3))
   353 {
   354   debug_only( verify_construction() );
   355   NOT_PRODUCT(nodes_created++);
   356   // Assert we allocated space for input array already
   357   assert( _in[2] == this, "Must pass arg count to 'new'" );
   358   assert( is_not_dead(n0), "can not use dead node");
   359   assert( is_not_dead(n1), "can not use dead node");
   360   assert( is_not_dead(n2), "can not use dead node");
   361   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
   362   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
   363   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
   364 }
   366 //------------------------------Node-------------------------------------------
   367 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3)
   368   : _idx(IDX_INIT(4))
   369 {
   370   debug_only( verify_construction() );
   371   NOT_PRODUCT(nodes_created++);
   372   // Assert we allocated space for input array already
   373   assert( _in[3] == this, "Must pass arg count to 'new'" );
   374   assert( is_not_dead(n0), "can not use dead node");
   375   assert( is_not_dead(n1), "can not use dead node");
   376   assert( is_not_dead(n2), "can not use dead node");
   377   assert( is_not_dead(n3), "can not use dead node");
   378   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
   379   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
   380   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
   381   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
   382 }
   384 //------------------------------Node-------------------------------------------
   385 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4)
   386   : _idx(IDX_INIT(5))
   387 {
   388   debug_only( verify_construction() );
   389   NOT_PRODUCT(nodes_created++);
   390   // Assert we allocated space for input array already
   391   assert( _in[4] == this, "Must pass arg count to 'new'" );
   392   assert( is_not_dead(n0), "can not use dead node");
   393   assert( is_not_dead(n1), "can not use dead node");
   394   assert( is_not_dead(n2), "can not use dead node");
   395   assert( is_not_dead(n3), "can not use dead node");
   396   assert( is_not_dead(n4), "can not use dead node");
   397   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
   398   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
   399   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
   400   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
   401   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
   402 }
   404 //------------------------------Node-------------------------------------------
   405 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
   406                      Node *n4, Node *n5)
   407   : _idx(IDX_INIT(6))
   408 {
   409   debug_only( verify_construction() );
   410   NOT_PRODUCT(nodes_created++);
   411   // Assert we allocated space for input array already
   412   assert( _in[5] == this, "Must pass arg count to 'new'" );
   413   assert( is_not_dead(n0), "can not use dead node");
   414   assert( is_not_dead(n1), "can not use dead node");
   415   assert( is_not_dead(n2), "can not use dead node");
   416   assert( is_not_dead(n3), "can not use dead node");
   417   assert( is_not_dead(n4), "can not use dead node");
   418   assert( is_not_dead(n5), "can not use dead node");
   419   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
   420   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
   421   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
   422   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
   423   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
   424   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
   425 }
   427 //------------------------------Node-------------------------------------------
   428 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
   429                      Node *n4, Node *n5, Node *n6)
   430   : _idx(IDX_INIT(7))
   431 {
   432   debug_only( verify_construction() );
   433   NOT_PRODUCT(nodes_created++);
   434   // Assert we allocated space for input array already
   435   assert( _in[6] == this, "Must pass arg count to 'new'" );
   436   assert( is_not_dead(n0), "can not use dead node");
   437   assert( is_not_dead(n1), "can not use dead node");
   438   assert( is_not_dead(n2), "can not use dead node");
   439   assert( is_not_dead(n3), "can not use dead node");
   440   assert( is_not_dead(n4), "can not use dead node");
   441   assert( is_not_dead(n5), "can not use dead node");
   442   assert( is_not_dead(n6), "can not use dead node");
   443   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
   444   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
   445   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
   446   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
   447   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
   448   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
   449   _in[6] = n6; if (n6 != NULL) n6->add_out((Node *)this);
   450 }
   453 //------------------------------clone------------------------------------------
   454 // Clone a Node.
   455 Node *Node::clone() const {
   456   Compile *compile = Compile::current();
   457   uint s = size_of();           // Size of inherited Node
   458   Node *n = (Node*)compile->node_arena()->Amalloc_D(size_of() + _max*sizeof(Node*));
   459   Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s);
   460   // Set the new input pointer array
   461   n->_in = (Node**)(((char*)n)+s);
   462   // Cannot share the old output pointer array, so kill it
   463   n->_out = NO_OUT_ARRAY;
   464   // And reset the counters to 0
   465   n->_outcnt = 0;
   466   n->_outmax = 0;
   467   // Unlock this guy, since he is not in any hash table.
   468   debug_only(n->_hash_lock = 0);
   469   // Walk the old node's input list to duplicate its edges
   470   uint i;
   471   for( i = 0; i < len(); i++ ) {
   472     Node *x = in(i);
   473     n->_in[i] = x;
   474     if (x != NULL) x->add_out(n);
   475   }
   476   if (is_macro())
   477     compile->add_macro_node(n);
   479   n->set_idx(compile->next_unique()); // Get new unique index as well
   480   debug_only( n->verify_construction() );
   481   NOT_PRODUCT(nodes_created++);
   482   // Do not patch over the debug_idx of a clone, because it makes it
   483   // impossible to break on the clone's moment of creation.
   484   //debug_only( n->set_debug_idx( debug_idx() ) );
   486   compile->copy_node_notes_to(n, (Node*) this);
   488   // MachNode clone
   489   uint nopnds;
   490   if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) {
   491     MachNode *mach  = n->as_Mach();
   492     MachNode *mthis = this->as_Mach();
   493     // Get address of _opnd_array.
   494     // It should be the same offset since it is the clone of this node.
   495     MachOper **from = mthis->_opnds;
   496     MachOper **to = (MachOper **)((size_t)(&mach->_opnds) +
   497                     pointer_delta((const void*)from,
   498                                   (const void*)(&mthis->_opnds), 1));
   499     mach->_opnds = to;
   500     for ( uint i = 0; i < nopnds; ++i ) {
   501       to[i] = from[i]->clone(compile);
   502     }
   503   }
   504   // cloning CallNode may need to clone JVMState
   505   if (n->is_Call()) {
   506     CallNode *call = n->as_Call();
   507     call->clone_jvms();
   508   }
   509   return n;                     // Return the clone
   510 }
   512 //---------------------------setup_is_top--------------------------------------
   513 // Call this when changing the top node, to reassert the invariants
   514 // required by Node::is_top.  See Compile::set_cached_top_node.
   515 void Node::setup_is_top() {
   516   if (this == (Node*)Compile::current()->top()) {
   517     // This node has just become top.  Kill its out array.
   518     _outcnt = _outmax = 0;
   519     _out = NULL;                           // marker value for top
   520     assert(is_top(), "must be top");
   521   } else {
   522     if (_out == NULL)  _out = NO_OUT_ARRAY;
   523     assert(!is_top(), "must not be top");
   524   }
   525 }
   528 //------------------------------~Node------------------------------------------
   529 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
   530 extern int reclaim_idx ;
   531 extern int reclaim_in  ;
   532 extern int reclaim_node;
   533 void Node::destruct() {
   534   // Eagerly reclaim unique Node numberings
   535   Compile* compile = Compile::current();
   536   if ((uint)_idx+1 == compile->unique()) {
   537     compile->set_unique(compile->unique()-1);
   538 #ifdef ASSERT
   539     reclaim_idx++;
   540 #endif
   541   }
   542   // Clear debug info:
   543   Node_Notes* nn = compile->node_notes_at(_idx);
   544   if (nn != NULL)  nn->clear();
   545   // Walk the input array, freeing the corresponding output edges
   546   _cnt = _max;  // forget req/prec distinction
   547   uint i;
   548   for( i = 0; i < _max; i++ ) {
   549     set_req(i, NULL);
   550     //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim");
   551   }
   552   assert(outcnt() == 0, "deleting a node must not leave a dangling use");
   553   // See if the input array was allocated just prior to the object
   554   int edge_size = _max*sizeof(void*);
   555   int out_edge_size = _outmax*sizeof(void*);
   556   char *edge_end = ((char*)_in) + edge_size;
   557   char *out_array = (char*)(_out == NO_OUT_ARRAY? NULL: _out);
   558   char *out_edge_end = out_array + out_edge_size;
   559   int node_size = size_of();
   561   // Free the output edge array
   562   if (out_edge_size > 0) {
   563 #ifdef ASSERT
   564     if( out_edge_end == compile->node_arena()->hwm() )
   565       reclaim_in  += out_edge_size;  // count reclaimed out edges with in edges
   566 #endif
   567     compile->node_arena()->Afree(out_array, out_edge_size);
   568   }
   570   // Free the input edge array and the node itself
   571   if( edge_end == (char*)this ) {
   572 #ifdef ASSERT
   573     if( edge_end+node_size == compile->node_arena()->hwm() ) {
   574       reclaim_in  += edge_size;
   575       reclaim_node+= node_size;
   576     }
   577 #else
   578     // It was; free the input array and object all in one hit
   579     compile->node_arena()->Afree(_in,edge_size+node_size);
   580 #endif
   581   } else {
   583     // Free just the input array
   584 #ifdef ASSERT
   585     if( edge_end == compile->node_arena()->hwm() )
   586       reclaim_in  += edge_size;
   587 #endif
   588     compile->node_arena()->Afree(_in,edge_size);
   590     // Free just the object
   591 #ifdef ASSERT
   592     if( ((char*)this) + node_size == compile->node_arena()->hwm() )
   593       reclaim_node+= node_size;
   594 #else
   595     compile->node_arena()->Afree(this,node_size);
   596 #endif
   597   }
   598   if (is_macro()) {
   599     compile->remove_macro_node(this);
   600   }
   601 #ifdef ASSERT
   602   // We will not actually delete the storage, but we'll make the node unusable.
   603   *(address*)this = badAddress;  // smash the C++ vtbl, probably
   604   _in = _out = (Node**) badAddress;
   605   _max = _cnt = _outmax = _outcnt = 0;
   606 #endif
   607 }
   609 //------------------------------grow-------------------------------------------
   610 // Grow the input array, making space for more edges
   611 void Node::grow( uint len ) {
   612   Arena* arena = Compile::current()->node_arena();
   613   uint new_max = _max;
   614   if( new_max == 0 ) {
   615     _max = 4;
   616     _in = (Node**)arena->Amalloc(4*sizeof(Node*));
   617     Node** to = _in;
   618     to[0] = NULL;
   619     to[1] = NULL;
   620     to[2] = NULL;
   621     to[3] = NULL;
   622     return;
   623   }
   624   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
   625   // Trimming to limit allows a uint8 to handle up to 255 edges.
   626   // Previously I was using only powers-of-2 which peaked at 128 edges.
   627   //if( new_max >= limit ) new_max = limit-1;
   628   _in = (Node**)arena->Arealloc(_in, _max*sizeof(Node*), new_max*sizeof(Node*));
   629   Copy::zero_to_bytes(&_in[_max], (new_max-_max)*sizeof(Node*)); // NULL all new space
   630   _max = new_max;               // Record new max length
   631   // This assertion makes sure that Node::_max is wide enough to
   632   // represent the numerical value of new_max.
   633   assert(_max == new_max && _max > len, "int width of _max is too small");
   634 }
   636 //-----------------------------out_grow----------------------------------------
   637 // Grow the input array, making space for more edges
   638 void Node::out_grow( uint len ) {
   639   assert(!is_top(), "cannot grow a top node's out array");
   640   Arena* arena = Compile::current()->node_arena();
   641   uint new_max = _outmax;
   642   if( new_max == 0 ) {
   643     _outmax = 4;
   644     _out = (Node **)arena->Amalloc(4*sizeof(Node*));
   645     return;
   646   }
   647   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
   648   // Trimming to limit allows a uint8 to handle up to 255 edges.
   649   // Previously I was using only powers-of-2 which peaked at 128 edges.
   650   //if( new_max >= limit ) new_max = limit-1;
   651   assert(_out != NULL && _out != NO_OUT_ARRAY, "out must have sensible value");
   652   _out = (Node**)arena->Arealloc(_out,_outmax*sizeof(Node*),new_max*sizeof(Node*));
   653   //Copy::zero_to_bytes(&_out[_outmax], (new_max-_outmax)*sizeof(Node*)); // NULL all new space
   654   _outmax = new_max;               // Record new max length
   655   // This assertion makes sure that Node::_max is wide enough to
   656   // represent the numerical value of new_max.
   657   assert(_outmax == new_max && _outmax > len, "int width of _outmax is too small");
   658 }
   660 #ifdef ASSERT
   661 //------------------------------is_dead----------------------------------------
   662 bool Node::is_dead() const {
   663   // Mach and pinch point nodes may look like dead.
   664   if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) )
   665     return false;
   666   for( uint i = 0; i < _max; i++ )
   667     if( _in[i] != NULL )
   668       return false;
   669   dump();
   670   return true;
   671 }
   672 #endif
   674 //------------------------------add_req----------------------------------------
   675 // Add a new required input at the end
   676 void Node::add_req( Node *n ) {
   677   assert( is_not_dead(n), "can not use dead node");
   679   // Look to see if I can move precedence down one without reallocating
   680   if( (_cnt >= _max) || (in(_max-1) != NULL) )
   681     grow( _max+1 );
   683   // Find a precedence edge to move
   684   if( in(_cnt) != NULL ) {       // Next precedence edge is busy?
   685     uint i;
   686     for( i=_cnt; i<_max; i++ )
   687       if( in(i) == NULL )       // Find the NULL at end of prec edge list
   688         break;                  // There must be one, since we grew the array
   689     _in[i] = in(_cnt);          // Move prec over, making space for req edge
   690   }
   691   _in[_cnt++] = n;            // Stuff over old prec edge
   692   if (n != NULL) n->add_out((Node *)this);
   693 }
   695 //---------------------------add_req_batch-------------------------------------
   696 // Add a new required input at the end
   697 void Node::add_req_batch( Node *n, uint m ) {
   698   assert( is_not_dead(n), "can not use dead node");
   699   // check various edge cases
   700   if ((int)m <= 1) {
   701     assert((int)m >= 0, "oob");
   702     if (m != 0)  add_req(n);
   703     return;
   704   }
   706   // Look to see if I can move precedence down one without reallocating
   707   if( (_cnt+m) > _max || _in[_max-m] )
   708     grow( _max+m );
   710   // Find a precedence edge to move
   711   if( _in[_cnt] != NULL ) {     // Next precedence edge is busy?
   712     uint i;
   713     for( i=_cnt; i<_max; i++ )
   714       if( _in[i] == NULL )      // Find the NULL at end of prec edge list
   715         break;                  // There must be one, since we grew the array
   716     // Slide all the precs over by m positions (assume #prec << m).
   717     Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*)));
   718   }
   720   // Stuff over the old prec edges
   721   for(uint i=0; i<m; i++ ) {
   722     _in[_cnt++] = n;
   723   }
   725   // Insert multiple out edges on the node.
   726   if (n != NULL && !n->is_top()) {
   727     for(uint i=0; i<m; i++ ) {
   728       n->add_out((Node *)this);
   729     }
   730   }
   731 }
   733 //------------------------------del_req----------------------------------------
   734 // Delete the required edge and compact the edge array
   735 void Node::del_req( uint idx ) {
   736   // First remove corresponding def-use edge
   737   Node *n = in(idx);
   738   if (n != NULL) n->del_out((Node *)this);
   739   _in[idx] = in(--_cnt);  // Compact the array
   740   _in[_cnt] = NULL;       // NULL out emptied slot
   741 }
   743 //------------------------------ins_req----------------------------------------
   744 // Insert a new required input at the end
   745 void Node::ins_req( uint idx, Node *n ) {
   746   assert( is_not_dead(n), "can not use dead node");
   747   add_req(NULL);                // Make space
   748   assert( idx < _max, "Must have allocated enough space");
   749   // Slide over
   750   if(_cnt-idx-1 > 0) {
   751     Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*)));
   752   }
   753   _in[idx] = n;                            // Stuff over old required edge
   754   if (n != NULL) n->add_out((Node *)this); // Add reciprocal def-use edge
   755 }
   757 //-----------------------------find_edge---------------------------------------
   758 int Node::find_edge(Node* n) {
   759   for (uint i = 0; i < len(); i++) {
   760     if (_in[i] == n)  return i;
   761   }
   762   return -1;
   763 }
   765 //----------------------------replace_edge-------------------------------------
   766 int Node::replace_edge(Node* old, Node* neww) {
   767   if (old == neww)  return 0;  // nothing to do
   768   uint nrep = 0;
   769   for (uint i = 0; i < len(); i++) {
   770     if (in(i) == old) {
   771       if (i < req())
   772         set_req(i, neww);
   773       else
   774         set_prec(i, neww);
   775       nrep++;
   776     }
   777   }
   778   return nrep;
   779 }
   781 //-------------------------disconnect_inputs-----------------------------------
   782 // NULL out all inputs to eliminate incoming Def-Use edges.
   783 // Return the number of edges between 'n' and 'this'
   784 int Node::disconnect_inputs(Node *n) {
   785   int edges_to_n = 0;
   787   uint cnt = req();
   788   for( uint i = 0; i < cnt; ++i ) {
   789     if( in(i) == 0 ) continue;
   790     if( in(i) == n ) ++edges_to_n;
   791     set_req(i, NULL);
   792   }
   793   // Remove precedence edges if any exist
   794   // Note: Safepoints may have precedence edges, even during parsing
   795   if( (req() != len()) && (in(req()) != NULL) ) {
   796     uint max = len();
   797     for( uint i = 0; i < max; ++i ) {
   798       if( in(i) == 0 ) continue;
   799       if( in(i) == n ) ++edges_to_n;
   800       set_prec(i, NULL);
   801     }
   802   }
   804   // Node::destruct requires all out edges be deleted first
   805   // debug_only(destruct();)   // no reuse benefit expected
   806   return edges_to_n;
   807 }
   809 //-----------------------------uncast---------------------------------------
   810 // %%% Temporary, until we sort out CheckCastPP vs. CastPP.
   811 // Strip away casting.  (It is depth-limited.)
   812 Node* Node::uncast() const {
   813   // Should be inline:
   814   //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this;
   815   if (is_ConstraintCast() ||
   816       (is_Type() && req() == 2 && Opcode() == Op_CheckCastPP))
   817     return uncast_helper(this);
   818   else
   819     return (Node*) this;
   820 }
   822 //---------------------------uncast_helper-------------------------------------
   823 Node* Node::uncast_helper(const Node* p) {
   824   uint max_depth = 3;
   825   for (uint i = 0; i < max_depth; i++) {
   826     if (p == NULL || p->req() != 2) {
   827       break;
   828     } else if (p->is_ConstraintCast()) {
   829       p = p->in(1);
   830     } else if (p->is_Type() && p->Opcode() == Op_CheckCastPP) {
   831       p = p->in(1);
   832     } else {
   833       break;
   834     }
   835   }
   836   return (Node*) p;
   837 }
   839 //------------------------------add_prec---------------------------------------
   840 // Add a new precedence input.  Precedence inputs are unordered, with
   841 // duplicates removed and NULLs packed down at the end.
   842 void Node::add_prec( Node *n ) {
   843   assert( is_not_dead(n), "can not use dead node");
   845   // Check for NULL at end
   846   if( _cnt >= _max || in(_max-1) )
   847     grow( _max+1 );
   849   // Find a precedence edge to move
   850   uint i = _cnt;
   851   while( in(i) != NULL ) i++;
   852   _in[i] = n;                                // Stuff prec edge over NULL
   853   if ( n != NULL) n->add_out((Node *)this);  // Add mirror edge
   854 }
   856 //------------------------------rm_prec----------------------------------------
   857 // Remove a precedence input.  Precedence inputs are unordered, with
   858 // duplicates removed and NULLs packed down at the end.
   859 void Node::rm_prec( uint j ) {
   861   // Find end of precedence list to pack NULLs
   862   uint i;
   863   for( i=j; i<_max; i++ )
   864     if( !_in[i] )               // Find the NULL at end of prec edge list
   865       break;
   866   if (_in[j] != NULL) _in[j]->del_out((Node *)this);
   867   _in[j] = _in[--i];            // Move last element over removed guy
   868   _in[i] = NULL;                // NULL out last element
   869 }
   871 //------------------------------size_of----------------------------------------
   872 uint Node::size_of() const { return sizeof(*this); }
   874 //------------------------------ideal_reg--------------------------------------
   875 uint Node::ideal_reg() const { return 0; }
   877 //------------------------------jvms-------------------------------------------
   878 JVMState* Node::jvms() const { return NULL; }
   880 #ifdef ASSERT
   881 //------------------------------jvms-------------------------------------------
   882 bool Node::verify_jvms(const JVMState* using_jvms) const {
   883   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
   884     if (jvms == using_jvms)  return true;
   885   }
   886   return false;
   887 }
   889 //------------------------------init_NodeProperty------------------------------
   890 void Node::init_NodeProperty() {
   891   assert(_max_classes <= max_jushort, "too many NodeProperty classes");
   892   assert(_max_flags <= max_jushort, "too many NodeProperty flags");
   893 }
   894 #endif
   896 //------------------------------format-----------------------------------------
   897 // Print as assembly
   898 void Node::format( PhaseRegAlloc *, outputStream *st ) const {}
   899 //------------------------------emit-------------------------------------------
   900 // Emit bytes starting at parameter 'ptr'.
   901 void Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {}
   902 //------------------------------size-------------------------------------------
   903 // Size of instruction in bytes
   904 uint Node::size(PhaseRegAlloc *ra_) const { return 0; }
   906 //------------------------------CFG Construction-------------------------------
   907 // Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root,
   908 // Goto and Return.
   909 const Node *Node::is_block_proj() const { return 0; }
   911 // Minimum guaranteed type
   912 const Type *Node::bottom_type() const { return Type::BOTTOM; }
   915 //------------------------------raise_bottom_type------------------------------
   916 // Get the worst-case Type output for this Node.
   917 void Node::raise_bottom_type(const Type* new_type) {
   918   if (is_Type()) {
   919     TypeNode *n = this->as_Type();
   920     if (VerifyAliases) {
   921       assert(new_type->higher_equal(n->type()), "new type must refine old type");
   922     }
   923     n->set_type(new_type);
   924   } else if (is_Load()) {
   925     LoadNode *n = this->as_Load();
   926     if (VerifyAliases) {
   927       assert(new_type->higher_equal(n->type()), "new type must refine old type");
   928     }
   929     n->set_type(new_type);
   930   }
   931 }
   933 //------------------------------Identity---------------------------------------
   934 // Return a node that the given node is equivalent to.
   935 Node *Node::Identity( PhaseTransform * ) {
   936   return this;                  // Default to no identities
   937 }
   939 //------------------------------Value------------------------------------------
   940 // Compute a new Type for a node using the Type of the inputs.
   941 const Type *Node::Value( PhaseTransform * ) const {
   942   return bottom_type();         // Default to worst-case Type
   943 }
   945 //------------------------------Ideal------------------------------------------
   946 //
   947 // 'Idealize' the graph rooted at this Node.
   948 //
   949 // In order to be efficient and flexible there are some subtle invariants
   950 // these Ideal calls need to hold.  Running with '+VerifyIterativeGVN' checks
   951 // these invariants, although its too slow to have on by default.  If you are
   952 // hacking an Ideal call, be sure to test with +VerifyIterativeGVN!
   953 //
   954 // The Ideal call almost arbitrarily reshape the graph rooted at the 'this'
   955 // pointer.  If ANY change is made, it must return the root of the reshaped
   956 // graph - even if the root is the same Node.  Example: swapping the inputs
   957 // to an AddINode gives the same answer and same root, but you still have to
   958 // return the 'this' pointer instead of NULL.
   959 //
   960 // You cannot return an OLD Node, except for the 'this' pointer.  Use the
   961 // Identity call to return an old Node; basically if Identity can find
   962 // another Node have the Ideal call make no change and return NULL.
   963 // Example: AddINode::Ideal must check for add of zero; in this case it
   964 // returns NULL instead of doing any graph reshaping.
   965 //
   966 // You cannot modify any old Nodes except for the 'this' pointer.  Due to
   967 // sharing there may be other users of the old Nodes relying on their current
   968 // semantics.  Modifying them will break the other users.
   969 // Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for
   970 // "X+3" unchanged in case it is shared.
   971 //
   972 // If you modify the 'this' pointer's inputs, you must use 'set_req' with
   973 // def-use info.  If you are making a new Node (either as the new root or
   974 // some new internal piece) you must NOT use set_req with def-use info.
   975 // You can make a new Node with either 'new' or 'clone'.  In either case,
   976 // def-use info is (correctly) not generated.
   977 // Example: reshape "(X+3)+4" into "X+7":
   978 //    set_req(1,in(1)->in(1) /* grab X */, du /* must use DU on 'this' */);
   979 //    set_req(2,phase->intcon(7),du);
   980 //    return this;
   981 // Example: reshape "X*4" into "X<<1"
   982 //    return new (C,3) LShiftINode( in(1), phase->intcon(1) );
   983 //
   984 // You must call 'phase->transform(X)' on any new Nodes X you make, except
   985 // for the returned root node.  Example: reshape "X*31" with "(X<<5)-1".
   986 //    Node *shift=phase->transform(new(C,3)LShiftINode(in(1),phase->intcon(5)));
   987 //    return new (C,3) AddINode(shift, phase->intcon(-1));
   988 //
   989 // When making a Node for a constant use 'phase->makecon' or 'phase->intcon'.
   990 // These forms are faster than 'phase->transform(new (C,1) ConNode())' and Do
   991 // The Right Thing with def-use info.
   992 //
   993 // You cannot bury the 'this' Node inside of a graph reshape.  If the reshaped
   994 // graph uses the 'this' Node it must be the root.  If you want a Node with
   995 // the same Opcode as the 'this' pointer use 'clone'.
   996 //
   997 Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) {
   998   return NULL;                  // Default to being Ideal already
   999 }
  1001 // Some nodes have specific Ideal subgraph transformations only if they are
  1002 // unique users of specific nodes. Such nodes should be put on IGVN worklist
  1003 // for the transformations to happen.
  1004 bool Node::has_special_unique_user() const {
  1005   assert(outcnt() == 1, "match only for unique out");
  1006   Node* n = unique_out();
  1007   int op  = Opcode();
  1008   if( this->is_Store() ) {
  1009     // Condition for back-to-back stores folding.
  1010     return n->Opcode() == op && n->in(MemNode::Memory) == this;
  1011   } else if( op == Op_AddL ) {
  1012     // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
  1013     return n->Opcode() == Op_ConvL2I && n->in(1) == this;
  1014   } else if( op == Op_SubI || op == Op_SubL ) {
  1015     // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y)
  1016     return n->Opcode() == op && n->in(2) == this;
  1018   return false;
  1019 };
  1021 //------------------------------remove_dead_region-----------------------------
  1022 // This control node is dead.  Follow the subgraph below it making everything
  1023 // using it dead as well.  This will happen normally via the usual IterGVN
  1024 // worklist but this call is more efficient.  Do not update use-def info
  1025 // inside the dead region, just at the borders.
  1026 static bool kill_dead_code( Node *dead, PhaseIterGVN *igvn ) {
  1027   // Con's are a popular node to re-hit in the hash table again.
  1028   if( dead->is_Con() ) return false;
  1030   // Can't put ResourceMark here since igvn->_worklist uses the same arena
  1031   // for verify pass with +VerifyOpto and we add/remove elements in it here.
  1032   Node_List  nstack(Thread::current()->resource_area());
  1034   Node *top = igvn->C->top();
  1035   bool progress = false;
  1036   nstack.push(dead);
  1038   while (nstack.size() > 0) {
  1039     dead = nstack.pop();
  1040     if (dead->outcnt() > 0) {
  1041       // Keep dead node on stack until all uses are processed.
  1042       nstack.push(dead);
  1043       // For all Users of the Dead...    ;-)
  1044       for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) {
  1045         Node* use = dead->last_out(k);
  1046         igvn->hash_delete(use);       // Yank from hash table prior to mod
  1047         if (use->in(0) == dead) {     // Found another dead node
  1048           assert (!use->is_Con(), "Control for Con node should be Root node.")
  1049           use->set_req(0, top);       // Cut dead edge to prevent processing
  1050           nstack.push(use);           // the dead node again.
  1051         } else {                      // Else found a not-dead user
  1052           for (uint j = 1; j < use->req(); j++) {
  1053             if (use->in(j) == dead) { // Turn all dead inputs into TOP
  1054               use->set_req(j, top);
  1057           igvn->_worklist.push(use);
  1059         // Refresh the iterator, since any number of kills might have happened.
  1060         k = dead->last_outs(kmin);
  1062     } else { // (dead->outcnt() == 0)
  1063       // Done with outputs.
  1064       igvn->hash_delete(dead);
  1065       igvn->_worklist.remove(dead);
  1066       igvn->set_type(dead, Type::TOP);
  1067       if (dead->is_macro()) {
  1068         igvn->C->remove_macro_node(dead);
  1070       // Kill all inputs to the dead guy
  1071       for (uint i=0; i < dead->req(); i++) {
  1072         Node *n = dead->in(i);      // Get input to dead guy
  1073         if (n != NULL && !n->is_top()) { // Input is valid?
  1074           progress = true;
  1075           dead->set_req(i, top);    // Smash input away
  1076           if (n->outcnt() == 0) {   // Input also goes dead?
  1077             if (!n->is_Con())
  1078               nstack.push(n);       // Clear it out as well
  1079           } else if (n->outcnt() == 1 &&
  1080                      n->has_special_unique_user()) {
  1081             igvn->add_users_to_worklist( n );
  1082           } else if (n->outcnt() <= 2 && n->is_Store()) {
  1083             // Push store's uses on worklist to enable folding optimization for
  1084             // store/store and store/load to the same address.
  1085             // The restriction (outcnt() <= 2) is the same as in set_req_X()
  1086             // and remove_globally_dead_node().
  1087             igvn->add_users_to_worklist( n );
  1091     } // (dead->outcnt() == 0)
  1092   }   // while (nstack.size() > 0) for outputs
  1093   return progress;
  1096 //------------------------------remove_dead_region-----------------------------
  1097 bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) {
  1098   Node *n = in(0);
  1099   if( !n ) return false;
  1100   // Lost control into this guy?  I.e., it became unreachable?
  1101   // Aggressively kill all unreachable code.
  1102   if (can_reshape && n->is_top()) {
  1103     return kill_dead_code(this, phase->is_IterGVN());
  1106   if( n->is_Region() && n->as_Region()->is_copy() ) {
  1107     Node *m = n->nonnull_req();
  1108     set_req(0, m);
  1109     return true;
  1111   return false;
  1114 //------------------------------Ideal_DU_postCCP-------------------------------
  1115 // Idealize graph, using DU info.  Must clone result into new-space
  1116 Node *Node::Ideal_DU_postCCP( PhaseCCP * ) {
  1117   return NULL;                 // Default to no change
  1120 //------------------------------hash-------------------------------------------
  1121 // Hash function over Nodes.
  1122 uint Node::hash() const {
  1123   uint sum = 0;
  1124   for( uint i=0; i<_cnt; i++ )  // Add in all inputs
  1125     sum = (sum<<1)-(uintptr_t)in(i);        // Ignore embedded NULLs
  1126   return (sum>>2) + _cnt + Opcode();
  1129 //------------------------------cmp--------------------------------------------
  1130 // Compare special parts of simple Nodes
  1131 uint Node::cmp( const Node &n ) const {
  1132   return 1;                     // Must be same
  1135 //------------------------------rematerialize-----------------------------------
  1136 // Should we clone rather than spill this instruction?
  1137 bool Node::rematerialize() const {
  1138   if ( is_Mach() )
  1139     return this->as_Mach()->rematerialize();
  1140   else
  1141     return (_flags & Flag_rematerialize) != 0;
  1144 //------------------------------needs_anti_dependence_check---------------------
  1145 // Nodes which use memory without consuming it, hence need antidependences.
  1146 bool Node::needs_anti_dependence_check() const {
  1147   if( req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0 )
  1148     return false;
  1149   else
  1150     return in(1)->bottom_type()->has_memory();
  1154 // Get an integer constant from a ConNode (or CastIINode).
  1155 // Return a default value if there is no apparent constant here.
  1156 const TypeInt* Node::find_int_type() const {
  1157   if (this->is_Type()) {
  1158     return this->as_Type()->type()->isa_int();
  1159   } else if (this->is_Con()) {
  1160     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
  1161     return this->bottom_type()->isa_int();
  1163   return NULL;
  1166 // Get a pointer constant from a ConstNode.
  1167 // Returns the constant if it is a pointer ConstNode
  1168 intptr_t Node::get_ptr() const {
  1169   assert( Opcode() == Op_ConP, "" );
  1170   return ((ConPNode*)this)->type()->is_ptr()->get_con();
  1173 // Get a long constant from a ConNode.
  1174 // Return a default value if there is no apparent constant here.
  1175 const TypeLong* Node::find_long_type() const {
  1176   if (this->is_Type()) {
  1177     return this->as_Type()->type()->isa_long();
  1178   } else if (this->is_Con()) {
  1179     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
  1180     return this->bottom_type()->isa_long();
  1182   return NULL;
  1185 // Get a double constant from a ConstNode.
  1186 // Returns the constant if it is a double ConstNode
  1187 jdouble Node::getd() const {
  1188   assert( Opcode() == Op_ConD, "" );
  1189   return ((ConDNode*)this)->type()->is_double_constant()->getd();
  1192 // Get a float constant from a ConstNode.
  1193 // Returns the constant if it is a float ConstNode
  1194 jfloat Node::getf() const {
  1195   assert( Opcode() == Op_ConF, "" );
  1196   return ((ConFNode*)this)->type()->is_float_constant()->getf();
  1199 #ifndef PRODUCT
  1201 //----------------------------NotANode----------------------------------------
  1202 // Used in debugging code to avoid walking across dead or uninitialized edges.
  1203 static inline bool NotANode(const Node* n) {
  1204   if (n == NULL)                   return true;
  1205   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
  1206   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
  1207   return false;
  1211 //------------------------------find------------------------------------------
  1212 // Find a neighbor of this Node with the given _idx
  1213 // If idx is negative, find its absolute value, following both _in and _out.
  1214 static void find_recur( Node* &result, Node *n, int idx, bool only_ctrl,
  1215                         VectorSet &old_space, VectorSet &new_space ) {
  1216   int node_idx = (idx >= 0) ? idx : -idx;
  1217   if (NotANode(n))  return;  // Gracefully handle NULL, -1, 0xabababab, etc.
  1218   // Contained in new_space or old_space?
  1219   VectorSet *v = Compile::current()->node_arena()->contains(n) ? &new_space : &old_space;
  1220   if( v->test(n->_idx) ) return;
  1221   if( (int)n->_idx == node_idx
  1222       debug_only(|| n->debug_idx() == node_idx) ) {
  1223     if (result != NULL)
  1224       tty->print("find: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n",
  1225                  (uintptr_t)result, (uintptr_t)n, node_idx);
  1226     result = n;
  1228   v->set(n->_idx);
  1229   for( uint i=0; i<n->len(); i++ ) {
  1230     if( only_ctrl && !(n->is_Region()) && (n->Opcode() != Op_Root) && (i != TypeFunc::Control) ) continue;
  1231     find_recur( result, n->in(i), idx, only_ctrl, old_space, new_space );
  1233   // Search along forward edges also:
  1234   if (idx < 0 && !only_ctrl) {
  1235     for( uint j=0; j<n->outcnt(); j++ ) {
  1236       find_recur( result, n->raw_out(j), idx, only_ctrl, old_space, new_space );
  1239 #ifdef ASSERT
  1240   // Search along debug_orig edges last:
  1241   for (Node* orig = n->debug_orig(); orig != NULL; orig = orig->debug_orig()) {
  1242     if (NotANode(orig))  break;
  1243     find_recur( result, orig, idx, only_ctrl, old_space, new_space );
  1245 #endif //ASSERT
  1248 // call this from debugger:
  1249 Node* find_node(Node* n, int idx) {
  1250   return n->find(idx);
  1253 //------------------------------find-------------------------------------------
  1254 Node* Node::find(int idx) const {
  1255   ResourceArea *area = Thread::current()->resource_area();
  1256   VectorSet old_space(area), new_space(area);
  1257   Node* result = NULL;
  1258   find_recur( result, (Node*) this, idx, false, old_space, new_space );
  1259   return result;
  1262 //------------------------------find_ctrl--------------------------------------
  1263 // Find an ancestor to this node in the control history with given _idx
  1264 Node* Node::find_ctrl(int idx) const {
  1265   ResourceArea *area = Thread::current()->resource_area();
  1266   VectorSet old_space(area), new_space(area);
  1267   Node* result = NULL;
  1268   find_recur( result, (Node*) this, idx, true, old_space, new_space );
  1269   return result;
  1271 #endif
  1275 #ifndef PRODUCT
  1276 int Node::_in_dump_cnt = 0;
  1278 // -----------------------------Name-------------------------------------------
  1279 extern const char *NodeClassNames[];
  1280 const char *Node::Name() const { return NodeClassNames[Opcode()]; }
  1282 static bool is_disconnected(const Node* n) {
  1283   for (uint i = 0; i < n->req(); i++) {
  1284     if (n->in(i) != NULL)  return false;
  1286   return true;
  1289 #ifdef ASSERT
  1290 static void dump_orig(Node* orig) {
  1291   Compile* C = Compile::current();
  1292   if (NotANode(orig))  orig = NULL;
  1293   if (orig != NULL && !C->node_arena()->contains(orig))  orig = NULL;
  1294   if (orig == NULL)  return;
  1295   tty->print(" !orig=");
  1296   Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops
  1297   if (NotANode(fast))  fast = NULL;
  1298   while (orig != NULL) {
  1299     bool discon = is_disconnected(orig);  // if discon, print [123] else 123
  1300     if (discon)  tty->print("[");
  1301     if (!Compile::current()->node_arena()->contains(orig))
  1302       tty->print("o");
  1303     tty->print("%d", orig->_idx);
  1304     if (discon)  tty->print("]");
  1305     orig = orig->debug_orig();
  1306     if (NotANode(orig))  orig = NULL;
  1307     if (orig != NULL && !C->node_arena()->contains(orig))  orig = NULL;
  1308     if (orig != NULL)  tty->print(",");
  1309     if (fast != NULL) {
  1310       // Step fast twice for each single step of orig:
  1311       fast = fast->debug_orig();
  1312       if (NotANode(fast))  fast = NULL;
  1313       if (fast != NULL && fast != orig) {
  1314         fast = fast->debug_orig();
  1315         if (NotANode(fast))  fast = NULL;
  1317       if (fast == orig) {
  1318         tty->print("...");
  1319         break;
  1325 void Node::set_debug_orig(Node* orig) {
  1326   _debug_orig = orig;
  1327   if (BreakAtNode == 0)  return;
  1328   if (NotANode(orig))  orig = NULL;
  1329   int trip = 10;
  1330   while (orig != NULL) {
  1331     if (orig->debug_idx() == BreakAtNode || (int)orig->_idx == BreakAtNode) {
  1332       tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d orig._idx=%d orig._debug_idx=%d",
  1333                     this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx());
  1334       BREAKPOINT;
  1336     orig = orig->debug_orig();
  1337     if (NotANode(orig))  orig = NULL;
  1338     if (trip-- <= 0)  break;
  1341 #endif //ASSERT
  1343 //------------------------------dump------------------------------------------
  1344 // Dump a Node
  1345 void Node::dump() const {
  1346   Compile* C = Compile::current();
  1347   bool is_new = C->node_arena()->contains(this);
  1348   _in_dump_cnt++;
  1349   tty->print("%c%d\t%s\t=== ",
  1350              is_new ? ' ' : 'o', _idx, Name());
  1352   // Dump the required and precedence inputs
  1353   dump_req();
  1354   dump_prec();
  1355   // Dump the outputs
  1356   dump_out();
  1358   if (is_disconnected(this)) {
  1359 #ifdef ASSERT
  1360     tty->print("  [%d]",debug_idx());
  1361     dump_orig(debug_orig());
  1362 #endif
  1363     tty->cr();
  1364     _in_dump_cnt--;
  1365     return;                     // don't process dead nodes
  1368   // Dump node-specific info
  1369   dump_spec(tty);
  1370 #ifdef ASSERT
  1371   // Dump the non-reset _debug_idx
  1372   if( Verbose && WizardMode ) {
  1373     tty->print("  [%d]",debug_idx());
  1375 #endif
  1377   const Type *t = bottom_type();
  1379   if (t != NULL && (t->isa_instptr() || t->isa_klassptr())) {
  1380     const TypeInstPtr  *toop = t->isa_instptr();
  1381     const TypeKlassPtr *tkls = t->isa_klassptr();
  1382     ciKlass*           klass = toop ? toop->klass() : (tkls ? tkls->klass() : NULL );
  1383     if( klass && klass->is_loaded() && klass->is_interface() ) {
  1384       tty->print("  Interface:");
  1385     } else if( toop ) {
  1386       tty->print("  Oop:");
  1387     } else if( tkls ) {
  1388       tty->print("  Klass:");
  1390     t->dump();
  1391   } else if( t == Type::MEMORY ) {
  1392     tty->print("  Memory:");
  1393     MemNode::dump_adr_type(this, adr_type(), tty);
  1394   } else if( Verbose || WizardMode ) {
  1395     tty->print("  Type:");
  1396     if( t ) {
  1397       t->dump();
  1398     } else {
  1399       tty->print("no type");
  1402   if (is_new) {
  1403     debug_only(dump_orig(debug_orig()));
  1404     Node_Notes* nn = C->node_notes_at(_idx);
  1405     if (nn != NULL && !nn->is_clear()) {
  1406       if (nn->jvms() != NULL) {
  1407         tty->print(" !jvms:");
  1408         nn->jvms()->dump_spec(tty);
  1412   tty->cr();
  1413   _in_dump_cnt--;
  1416 //------------------------------dump_req--------------------------------------
  1417 void Node::dump_req() const {
  1418   // Dump the required input edges
  1419   for (uint i = 0; i < req(); i++) {    // For all required inputs
  1420     Node* d = in(i);
  1421     if (d == NULL) {
  1422       tty->print("_ ");
  1423     } else if (NotANode(d)) {
  1424       tty->print("NotANode ");  // uninitialized, sentinel, garbage, etc.
  1425     } else {
  1426       tty->print("%c%d ", Compile::current()->node_arena()->contains(d) ? ' ' : 'o', d->_idx);
  1432 //------------------------------dump_prec-------------------------------------
  1433 void Node::dump_prec() const {
  1434   // Dump the precedence edges
  1435   int any_prec = 0;
  1436   for (uint i = req(); i < len(); i++) {       // For all precedence inputs
  1437     Node* p = in(i);
  1438     if (p != NULL) {
  1439       if( !any_prec++ ) tty->print(" |");
  1440       if (NotANode(p)) { tty->print("NotANode "); continue; }
  1441       tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
  1446 //------------------------------dump_out--------------------------------------
  1447 void Node::dump_out() const {
  1448   // Delimit the output edges
  1449   tty->print(" [[");
  1450   // Dump the output edges
  1451   for (uint i = 0; i < _outcnt; i++) {    // For all outputs
  1452     Node* u = _out[i];
  1453     if (u == NULL) {
  1454       tty->print("_ ");
  1455     } else if (NotANode(u)) {
  1456       tty->print("NotANode ");
  1457     } else {
  1458       tty->print("%c%d ", Compile::current()->node_arena()->contains(u) ? ' ' : 'o', u->_idx);
  1461   tty->print("]] ");
  1464 //------------------------------dump_nodes-------------------------------------
  1466 // Helper class  for dump_nodes. Wraps an old and new VectorSet.
  1467 class OldNewVectorSet : public StackObj {
  1468    Arena*    _node_arena;
  1469    VectorSet _old_vset, _new_vset;
  1470    VectorSet* select(Node* n) {
  1471      return _node_arena->contains(n) ? &_new_vset : &_old_vset;
  1473   public:
  1474   OldNewVectorSet(Arena* node_arena, ResourceArea* area) :
  1475      _node_arena(node_arena),
  1476      _old_vset(area), _new_vset(area) {}
  1478   void set(Node* n)      { select(n)->set(n->_idx); }
  1479   bool test_set(Node* n) { return select(n)->test_set(n->_idx) != 0; }
  1480   bool test(Node* n)     { return select(n)->test(n->_idx) != 0; }
  1481   void del(Node* n)      { (*select(n)) >>= n->_idx; }
  1482 };
  1485 static void dump_nodes(const Node* start, int d, bool only_ctrl) {
  1486   Node* s = (Node*)start; // remove const
  1487   if (NotANode(s)) return;
  1489   uint depth = (uint)ABS(d);
  1490   int direction = d;
  1491   Compile* C = Compile::current();
  1492   ResourceArea *area = Thread::current()->resource_area();
  1493   Node_Stack      stack(area, MIN2(depth, C->unique() >> 1));
  1494   OldNewVectorSet dumped(C->node_arena(), area);
  1495   OldNewVectorSet on_stack(C->node_arena(), area);
  1497   on_stack.set(s);
  1498   stack.push(s, 0);
  1499   if (direction < 0) {
  1500     dumped.set(s);
  1501     s->dump();
  1504   // Do a depth first walk over edges
  1505   while (stack.is_nonempty()) {
  1506     Node* tp  = stack.node();
  1507     uint  idx = stack.index();
  1508     uint  limit;
  1509     // Limit depth
  1510     if (stack.size() < depth) {
  1511       limit = direction > 0 ? tp->len() : tp->outcnt();
  1512     } else {
  1513       limit = 0; // reached depth limit.
  1515     if (idx >= limit) {
  1516       // no more arcs to visit
  1517       if (direction > 0 && !dumped.test_set(tp)) tp->dump();
  1518       on_stack.del(tp);
  1519       stack.pop();
  1520     } else {
  1521       // process the "idx"th arc
  1522       stack.set_index(idx + 1);
  1523       Node* n = direction > 0 ? tp->in(idx) : tp->raw_out(idx);
  1525       if (NotANode(n))  continue;
  1526       // do not recurse through top or the root (would reach unrelated stuff)
  1527       if (n->is_Root() || n->is_top())  continue;
  1528       if (only_ctrl && !n->is_CFG()) continue;
  1530       if (!on_stack.test(n)) { // forward arc
  1531         if (direction < 0 && !dumped.test_set(n)) n->dump();
  1532         stack.push(n, 0);
  1533         on_stack.set(n);
  1534       } else {  // back or cross arc
  1535         // print loop if there are no phis or regions in the mix
  1536         bool found_loop_breaker = false;
  1537         int k;
  1538         for (k = stack.size() - 1; k >= 0; k--) {
  1539           Node* m = stack.node_at(k);
  1540           if (m->is_Phi() || m->is_Region() || m->is_Root() || m->is_Start()) {
  1541             found_loop_breaker = true;
  1542             break;
  1544           if (m == n) // Found loop head
  1545             break;
  1547         assert(k >= 0, "n must be on stack");
  1549         if (!found_loop_breaker) {
  1550           tty->print("# %s LOOP FOUND:", only_ctrl ? "CONTROL" : "DATA");
  1551           for (int i = stack.size() - 1; i >= k; i--) {
  1552             Node* m = stack.node_at(i);
  1553             bool mnew = C->node_arena()->contains(m);
  1554             tty->print(" %s%d:%s", (mnew? "": "o"), m->_idx, m->Name());
  1555             if (i != 0) tty->print(direction > 0? " <-": " ->");
  1557           tty->cr();
  1564 //------------------------------dump-------------------------------------------
  1565 void Node::dump(int d) const {
  1566   dump_nodes(this, d, false);
  1569 //------------------------------dump_ctrl--------------------------------------
  1570 // Dump a Node's control history to depth
  1571 void Node::dump_ctrl(int d) const {
  1572   dump_nodes(this, d, true);
  1575 // VERIFICATION CODE
  1576 // For each input edge to a node (ie - for each Use-Def edge), verify that
  1577 // there is a corresponding Def-Use edge.
  1578 //------------------------------verify_edges-----------------------------------
  1579 void Node::verify_edges(Unique_Node_List &visited) {
  1580   uint i, j, idx;
  1581   int  cnt;
  1582   Node *n;
  1584   // Recursive termination test
  1585   if (visited.member(this))  return;
  1586   visited.push(this);
  1588   // Walk over all input edges, checking for correspondance
  1589   for( i = 0; i < len(); i++ ) {
  1590     n = in(i);
  1591     if (n != NULL && !n->is_top()) {
  1592       // Count instances of (Node *)this
  1593       cnt = 0;
  1594       for (idx = 0; idx < n->_outcnt; idx++ ) {
  1595         if (n->_out[idx] == (Node *)this)  cnt++;
  1597       assert( cnt > 0,"Failed to find Def-Use edge." );
  1598       // Check for duplicate edges
  1599       // walk the input array downcounting the input edges to n
  1600       for( j = 0; j < len(); j++ ) {
  1601         if( in(j) == n ) cnt--;
  1603       assert( cnt == 0,"Mismatched edge count.");
  1604     } else if (n == NULL) {
  1605       assert(i >= req() || i == 0 || is_Region() || is_Phi(), "only regions or phis have null data edges");
  1606     } else {
  1607       assert(n->is_top(), "sanity");
  1608       // Nothing to check.
  1611   // Recursive walk over all input edges
  1612   for( i = 0; i < len(); i++ ) {
  1613     n = in(i);
  1614     if( n != NULL )
  1615       in(i)->verify_edges(visited);
  1619 //------------------------------verify_recur-----------------------------------
  1620 static const Node *unique_top = NULL;
  1622 void Node::verify_recur(const Node *n, int verify_depth,
  1623                         VectorSet &old_space, VectorSet &new_space) {
  1624   if ( verify_depth == 0 )  return;
  1625   if (verify_depth > 0)  --verify_depth;
  1627   Compile* C = Compile::current();
  1629   // Contained in new_space or old_space?
  1630   VectorSet *v = C->node_arena()->contains(n) ? &new_space : &old_space;
  1631   // Check for visited in the proper space.  Numberings are not unique
  1632   // across spaces so we need a seperate VectorSet for each space.
  1633   if( v->test_set(n->_idx) ) return;
  1635   if (n->is_Con() && n->bottom_type() == Type::TOP) {
  1636     if (C->cached_top_node() == NULL)
  1637       C->set_cached_top_node((Node*)n);
  1638     assert(C->cached_top_node() == n, "TOP node must be unique");
  1641   for( uint i = 0; i < n->len(); i++ ) {
  1642     Node *x = n->in(i);
  1643     if (!x || x->is_top()) continue;
  1645     // Verify my input has a def-use edge to me
  1646     if (true /*VerifyDefUse*/) {
  1647       // Count use-def edges from n to x
  1648       int cnt = 0;
  1649       for( uint j = 0; j < n->len(); j++ )
  1650         if( n->in(j) == x )
  1651           cnt++;
  1652       // Count def-use edges from x to n
  1653       uint max = x->_outcnt;
  1654       for( uint k = 0; k < max; k++ )
  1655         if (x->_out[k] == n)
  1656           cnt--;
  1657       assert( cnt == 0, "mismatched def-use edge counts" );
  1660     verify_recur(x, verify_depth, old_space, new_space);
  1665 //------------------------------verify-----------------------------------------
  1666 // Check Def-Use info for my subgraph
  1667 void Node::verify() const {
  1668   Compile* C = Compile::current();
  1669   Node* old_top = C->cached_top_node();
  1670   ResourceMark rm;
  1671   ResourceArea *area = Thread::current()->resource_area();
  1672   VectorSet old_space(area), new_space(area);
  1673   verify_recur(this, -1, old_space, new_space);
  1674   C->set_cached_top_node(old_top);
  1676 #endif
  1679 //------------------------------walk-------------------------------------------
  1680 // Graph walk, with both pre-order and post-order functions
  1681 void Node::walk(NFunc pre, NFunc post, void *env) {
  1682   VectorSet visited(Thread::current()->resource_area()); // Setup for local walk
  1683   walk_(pre, post, env, visited);
  1686 void Node::walk_(NFunc pre, NFunc post, void *env, VectorSet &visited) {
  1687   if( visited.test_set(_idx) ) return;
  1688   pre(*this,env);               // Call the pre-order walk function
  1689   for( uint i=0; i<_max; i++ )
  1690     if( in(i) )                 // Input exists and is not walked?
  1691       in(i)->walk_(pre,post,env,visited); // Walk it with pre & post functions
  1692   post(*this,env);              // Call the post-order walk function
  1695 void Node::nop(Node &, void*) {}
  1697 //------------------------------Registers--------------------------------------
  1698 // Do we Match on this edge index or not?  Generally false for Control
  1699 // and true for everything else.  Weird for calls & returns.
  1700 uint Node::match_edge(uint idx) const {
  1701   return idx;                   // True for other than index 0 (control)
  1704 // Register classes are defined for specific machines
  1705 const RegMask &Node::out_RegMask() const {
  1706   ShouldNotCallThis();
  1707   return *(new RegMask());
  1710 const RegMask &Node::in_RegMask(uint) const {
  1711   ShouldNotCallThis();
  1712   return *(new RegMask());
  1715 //=============================================================================
  1716 //-----------------------------------------------------------------------------
  1717 void Node_Array::reset( Arena *new_arena ) {
  1718   _a->Afree(_nodes,_max*sizeof(Node*));
  1719   _max   = 0;
  1720   _nodes = NULL;
  1721   _a     = new_arena;
  1724 //------------------------------clear------------------------------------------
  1725 // Clear all entries in _nodes to NULL but keep storage
  1726 void Node_Array::clear() {
  1727   Copy::zero_to_bytes( _nodes, _max*sizeof(Node*) );
  1730 //-----------------------------------------------------------------------------
  1731 void Node_Array::grow( uint i ) {
  1732   if( !_max ) {
  1733     _max = 1;
  1734     _nodes = (Node**)_a->Amalloc( _max * sizeof(Node*) );
  1735     _nodes[0] = NULL;
  1737   uint old = _max;
  1738   while( i >= _max ) _max <<= 1;        // Double to fit
  1739   _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*));
  1740   Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) );
  1743 //-----------------------------------------------------------------------------
  1744 void Node_Array::insert( uint i, Node *n ) {
  1745   if( _nodes[_max-1] ) grow(_max);      // Get more space if full
  1746   Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i+1], ((_max-i-1)*sizeof(Node*)));
  1747   _nodes[i] = n;
  1750 //-----------------------------------------------------------------------------
  1751 void Node_Array::remove( uint i ) {
  1752   Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i+1], (HeapWord*)&_nodes[i], ((_max-i-1)*sizeof(Node*)));
  1753   _nodes[_max-1] = NULL;
  1756 //-----------------------------------------------------------------------------
  1757 void Node_Array::sort( C_sort_func_t func) {
  1758   qsort( _nodes, _max, sizeof( Node* ), func );
  1761 //-----------------------------------------------------------------------------
  1762 void Node_Array::dump() const {
  1763 #ifndef PRODUCT
  1764   for( uint i = 0; i < _max; i++ ) {
  1765     Node *nn = _nodes[i];
  1766     if( nn != NULL ) {
  1767       tty->print("%5d--> ",i); nn->dump();
  1770 #endif
  1773 //--------------------------is_iteratively_computed------------------------------
  1774 // Operation appears to be iteratively computed (such as an induction variable)
  1775 // It is possible for this operation to return false for a loop-varying
  1776 // value, if it appears (by local graph inspection) to be computed by a simple conditional.
  1777 bool Node::is_iteratively_computed() {
  1778   if (ideal_reg()) { // does operation have a result register?
  1779     for (uint i = 1; i < req(); i++) {
  1780       Node* n = in(i);
  1781       if (n != NULL && n->is_Phi()) {
  1782         for (uint j = 1; j < n->req(); j++) {
  1783           if (n->in(j) == this) {
  1784             return true;
  1790   return false;
  1793 //--------------------------find_similar------------------------------
  1794 // Return a node with opcode "opc" and same inputs as "this" if one can
  1795 // be found; Otherwise return NULL;
  1796 Node* Node::find_similar(int opc) {
  1797   if (req() >= 2) {
  1798     Node* def = in(1);
  1799     if (def && def->outcnt() >= 2) {
  1800       for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) {
  1801         Node* use = def->fast_out(i);
  1802         if (use->Opcode() == opc &&
  1803             use->req() == req()) {
  1804           uint j;
  1805           for (j = 0; j < use->req(); j++) {
  1806             if (use->in(j) != in(j)) {
  1807               break;
  1810           if (j == use->req()) {
  1811             return use;
  1817   return NULL;
  1821 //--------------------------unique_ctrl_out------------------------------
  1822 // Return the unique control out if only one. Null if none or more than one.
  1823 Node* Node::unique_ctrl_out() {
  1824   Node* found = NULL;
  1825   for (uint i = 0; i < outcnt(); i++) {
  1826     Node* use = raw_out(i);
  1827     if (use->is_CFG() && use != this) {
  1828       if (found != NULL) return NULL;
  1829       found = use;
  1832   return found;
  1835 //=============================================================================
  1836 //------------------------------yank-------------------------------------------
  1837 // Find and remove
  1838 void Node_List::yank( Node *n ) {
  1839   uint i;
  1840   for( i = 0; i < _cnt; i++ )
  1841     if( _nodes[i] == n )
  1842       break;
  1844   if( i < _cnt )
  1845     _nodes[i] = _nodes[--_cnt];
  1848 //------------------------------dump-------------------------------------------
  1849 void Node_List::dump() const {
  1850 #ifndef PRODUCT
  1851   for( uint i = 0; i < _cnt; i++ )
  1852     if( _nodes[i] ) {
  1853       tty->print("%5d--> ",i);
  1854       _nodes[i]->dump();
  1856 #endif
  1859 //=============================================================================
  1860 //------------------------------remove-----------------------------------------
  1861 void Unique_Node_List::remove( Node *n ) {
  1862   if( _in_worklist[n->_idx] ) {
  1863     for( uint i = 0; i < size(); i++ )
  1864       if( _nodes[i] == n ) {
  1865         map(i,Node_List::pop());
  1866         _in_worklist >>= n->_idx;
  1867         return;
  1869     ShouldNotReachHere();
  1873 //-----------------------remove_useless_nodes----------------------------------
  1874 // Remove useless nodes from worklist
  1875 void Unique_Node_List::remove_useless_nodes(VectorSet &useful) {
  1877   for( uint i = 0; i < size(); ++i ) {
  1878     Node *n = at(i);
  1879     assert( n != NULL, "Did not expect null entries in worklist");
  1880     if( ! useful.test(n->_idx) ) {
  1881       _in_worklist >>= n->_idx;
  1882       map(i,Node_List::pop());
  1883       // Node *replacement = Node_List::pop();
  1884       // if( i != size() ) { // Check if removing last entry
  1885       //   _nodes[i] = replacement;
  1886       // }
  1887       --i;  // Visit popped node
  1888       // If it was last entry, loop terminates since size() was also reduced
  1893 //=============================================================================
  1894 void Node_Stack::grow() {
  1895   size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top
  1896   size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode));
  1897   size_t max = old_max << 1;             // max * 2
  1898   _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max);
  1899   _inode_max = _inodes + max;
  1900   _inode_top = _inodes + old_top;        // restore _top
  1903 //=============================================================================
  1904 uint TypeNode::size_of() const { return sizeof(*this); }
  1905 #ifndef PRODUCT
  1906 void TypeNode::dump_spec(outputStream *st) const {
  1907   if( !Verbose && !WizardMode ) {
  1908     // standard dump does this in Verbose and WizardMode
  1909     st->print(" #"); _type->dump_on(st);
  1912 #endif
  1913 uint TypeNode::hash() const {
  1914   return Node::hash() + _type->hash();
  1916 uint TypeNode::cmp( const Node &n ) const
  1917 { return !Type::cmp( _type, ((TypeNode&)n)._type ); }
  1918 const Type *TypeNode::bottom_type() const { return _type; }
  1919 const Type *TypeNode::Value( PhaseTransform * ) const { return _type; }
  1921 //------------------------------ideal_reg--------------------------------------
  1922 uint TypeNode::ideal_reg() const {
  1923   return Matcher::base2reg[_type->base()];

mercurial