src/cpu/x86/vm/x86_32.ad

Thu, 11 Aug 2011 12:08:11 -0700

author
kvn
date
Thu, 11 Aug 2011 12:08:11 -0700
changeset 3049
95134e034042
parent 3047
f1c12354c3f7
child 3052
1af104d6cf99
permissions
-rw-r--r--

7063629: use cbcond in C2 generated code on T4
Summary: Use new short branch instruction in C2 generated code.
Reviewed-by: never

     1 //
     2 // Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20 // or visit www.oracle.com if you need additional information or have any
    21 // questions.
    22 //
    23 //
    25 // X86 Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    32 register %{
    33 //----------Architecture Description Register Definitions----------------------
    34 // General Registers
    35 // "reg_def"  name ( register save type, C convention save type,
    36 //                   ideal register type, encoding );
    37 // Register Save Types:
    38 //
    39 // NS  = No-Save:       The register allocator assumes that these registers
    40 //                      can be used without saving upon entry to the method, &
    41 //                      that they do not need to be saved at call sites.
    42 //
    43 // SOC = Save-On-Call:  The register allocator assumes that these registers
    44 //                      can be used without saving upon entry to the method,
    45 //                      but that they must be saved at call sites.
    46 //
    47 // SOE = Save-On-Entry: The register allocator assumes that these registers
    48 //                      must be saved before using them upon entry to the
    49 //                      method, but they do not need to be saved at call
    50 //                      sites.
    51 //
    52 // AS  = Always-Save:   The register allocator assumes that these registers
    53 //                      must be saved before using them upon entry to the
    54 //                      method, & that they must be saved at call sites.
    55 //
    56 // Ideal Register Type is used to determine how to save & restore a
    57 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    58 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    59 //
    60 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // General Registers
    63 // Previously set EBX, ESI, and EDI as save-on-entry for java code
    64 // Turn off SOE in java-code due to frequent use of uncommon-traps.
    65 // Now that allocator is better, turn on ESI and EDI as SOE registers.
    67 reg_def EBX(SOC, SOE, Op_RegI, 3, rbx->as_VMReg());
    68 reg_def ECX(SOC, SOC, Op_RegI, 1, rcx->as_VMReg());
    69 reg_def ESI(SOC, SOE, Op_RegI, 6, rsi->as_VMReg());
    70 reg_def EDI(SOC, SOE, Op_RegI, 7, rdi->as_VMReg());
    71 // now that adapter frames are gone EBP is always saved and restored by the prolog/epilog code
    72 reg_def EBP(NS, SOE, Op_RegI, 5, rbp->as_VMReg());
    73 reg_def EDX(SOC, SOC, Op_RegI, 2, rdx->as_VMReg());
    74 reg_def EAX(SOC, SOC, Op_RegI, 0, rax->as_VMReg());
    75 reg_def ESP( NS,  NS, Op_RegI, 4, rsp->as_VMReg());
    77 // Special Registers
    78 reg_def EFLAGS(SOC, SOC, 0, 8, VMRegImpl::Bad());
    80 // Float registers.  We treat TOS/FPR0 special.  It is invisible to the
    81 // allocator, and only shows up in the encodings.
    82 reg_def FPR0L( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
    83 reg_def FPR0H( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
    84 // Ok so here's the trick FPR1 is really st(0) except in the midst
    85 // of emission of assembly for a machnode. During the emission the fpu stack
    86 // is pushed making FPR1 == st(1) temporarily. However at any safepoint
    87 // the stack will not have this element so FPR1 == st(0) from the
    88 // oopMap viewpoint. This same weirdness with numbering causes
    89 // instruction encoding to have to play games with the register
    90 // encode to correct for this 0/1 issue. See MachSpillCopyNode::implementation
    91 // where it does flt->flt moves to see an example
    92 //
    93 reg_def FPR1L( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg());
    94 reg_def FPR1H( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg()->next());
    95 reg_def FPR2L( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg());
    96 reg_def FPR2H( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg()->next());
    97 reg_def FPR3L( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg());
    98 reg_def FPR3H( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg()->next());
    99 reg_def FPR4L( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg());
   100 reg_def FPR4H( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg()->next());
   101 reg_def FPR5L( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg());
   102 reg_def FPR5H( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg()->next());
   103 reg_def FPR6L( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg());
   104 reg_def FPR6H( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg()->next());
   105 reg_def FPR7L( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg());
   106 reg_def FPR7H( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg()->next());
   108 // XMM registers.  128-bit registers or 4 words each, labeled a-d.
   109 // Word a in each register holds a Float, words ab hold a Double.
   110 // We currently do not use the SIMD capabilities, so registers cd
   111 // are unused at the moment.
   112 reg_def XMM0a( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg());
   113 reg_def XMM0b( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg()->next());
   114 reg_def XMM1a( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg());
   115 reg_def XMM1b( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg()->next());
   116 reg_def XMM2a( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg());
   117 reg_def XMM2b( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg()->next());
   118 reg_def XMM3a( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg());
   119 reg_def XMM3b( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg()->next());
   120 reg_def XMM4a( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg());
   121 reg_def XMM4b( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg()->next());
   122 reg_def XMM5a( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg());
   123 reg_def XMM5b( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg()->next());
   124 reg_def XMM6a( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg());
   125 reg_def XMM6b( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg()->next());
   126 reg_def XMM7a( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg());
   127 reg_def XMM7b( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg()->next());
   129 // Specify priority of register selection within phases of register
   130 // allocation.  Highest priority is first.  A useful heuristic is to
   131 // give registers a low priority when they are required by machine
   132 // instructions, like EAX and EDX.  Registers which are used as
   133 // pairs must fall on an even boundary (witness the FPR#L's in this list).
   134 // For the Intel integer registers, the equivalent Long pairs are
   135 // EDX:EAX, EBX:ECX, and EDI:EBP.
   136 alloc_class chunk0( ECX,   EBX,   EBP,   EDI,   EAX,   EDX,   ESI, ESP,
   137                     FPR0L, FPR0H, FPR1L, FPR1H, FPR2L, FPR2H,
   138                     FPR3L, FPR3H, FPR4L, FPR4H, FPR5L, FPR5H,
   139                     FPR6L, FPR6H, FPR7L, FPR7H );
   141 alloc_class chunk1( XMM0a, XMM0b,
   142                     XMM1a, XMM1b,
   143                     XMM2a, XMM2b,
   144                     XMM3a, XMM3b,
   145                     XMM4a, XMM4b,
   146                     XMM5a, XMM5b,
   147                     XMM6a, XMM6b,
   148                     XMM7a, XMM7b, EFLAGS);
   151 //----------Architecture Description Register Classes--------------------------
   152 // Several register classes are automatically defined based upon information in
   153 // this architecture description.
   154 // 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
   155 // 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
   156 // 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
   157 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   158 //
   159 // Class for all registers
   160 reg_class any_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX, ESP);
   161 // Class for general registers
   162 reg_class e_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX);
   163 // Class for general registers which may be used for implicit null checks on win95
   164 // Also safe for use by tailjump. We don't want to allocate in rbp,
   165 reg_class e_reg_no_rbp(EAX, EDX, EDI, ESI, ECX, EBX);
   166 // Class of "X" registers
   167 reg_class x_reg(EBX, ECX, EDX, EAX);
   168 // Class of registers that can appear in an address with no offset.
   169 // EBP and ESP require an extra instruction byte for zero offset.
   170 // Used in fast-unlock
   171 reg_class p_reg(EDX, EDI, ESI, EBX);
   172 // Class for general registers not including ECX
   173 reg_class ncx_reg(EAX, EDX, EBP, EDI, ESI, EBX);
   174 // Class for general registers not including EAX
   175 reg_class nax_reg(EDX, EDI, ESI, ECX, EBX);
   176 // Class for general registers not including EAX or EBX.
   177 reg_class nabx_reg(EDX, EDI, ESI, ECX, EBP);
   178 // Class of EAX (for multiply and divide operations)
   179 reg_class eax_reg(EAX);
   180 // Class of EBX (for atomic add)
   181 reg_class ebx_reg(EBX);
   182 // Class of ECX (for shift and JCXZ operations and cmpLTMask)
   183 reg_class ecx_reg(ECX);
   184 // Class of EDX (for multiply and divide operations)
   185 reg_class edx_reg(EDX);
   186 // Class of EDI (for synchronization)
   187 reg_class edi_reg(EDI);
   188 // Class of ESI (for synchronization)
   189 reg_class esi_reg(ESI);
   190 // Singleton class for interpreter's stack pointer
   191 reg_class ebp_reg(EBP);
   192 // Singleton class for stack pointer
   193 reg_class sp_reg(ESP);
   194 // Singleton class for instruction pointer
   195 // reg_class ip_reg(EIP);
   196 // Singleton class for condition codes
   197 reg_class int_flags(EFLAGS);
   198 // Class of integer register pairs
   199 reg_class long_reg( EAX,EDX, ECX,EBX, EBP,EDI );
   200 // Class of integer register pairs that aligns with calling convention
   201 reg_class eadx_reg( EAX,EDX );
   202 reg_class ebcx_reg( ECX,EBX );
   203 // Not AX or DX, used in divides
   204 reg_class nadx_reg( EBX,ECX,ESI,EDI,EBP );
   206 // Floating point registers.  Notice FPR0 is not a choice.
   207 // FPR0 is not ever allocated; we use clever encodings to fake
   208 // a 2-address instructions out of Intels FP stack.
   209 reg_class flt_reg( FPR1L,FPR2L,FPR3L,FPR4L,FPR5L,FPR6L,FPR7L );
   211 // make a register class for SSE registers
   212 reg_class xmm_reg(XMM0a, XMM1a, XMM2a, XMM3a, XMM4a, XMM5a, XMM6a, XMM7a);
   214 // make a double register class for SSE2 registers
   215 reg_class xdb_reg(XMM0a,XMM0b, XMM1a,XMM1b, XMM2a,XMM2b, XMM3a,XMM3b,
   216                   XMM4a,XMM4b, XMM5a,XMM5b, XMM6a,XMM6b, XMM7a,XMM7b );
   218 reg_class dbl_reg( FPR1L,FPR1H, FPR2L,FPR2H, FPR3L,FPR3H,
   219                    FPR4L,FPR4H, FPR5L,FPR5H, FPR6L,FPR6H,
   220                    FPR7L,FPR7H );
   222 reg_class flt_reg0( FPR1L );
   223 reg_class dbl_reg0( FPR1L,FPR1H );
   224 reg_class dbl_reg1( FPR2L,FPR2H );
   225 reg_class dbl_notreg0( FPR2L,FPR2H, FPR3L,FPR3H, FPR4L,FPR4H,
   226                        FPR5L,FPR5H, FPR6L,FPR6H, FPR7L,FPR7H );
   228 // XMM6 and XMM7 could be used as temporary registers for long, float and
   229 // double values for SSE2.
   230 reg_class xdb_reg6( XMM6a,XMM6b );
   231 reg_class xdb_reg7( XMM7a,XMM7b );
   232 %}
   235 //----------SOURCE BLOCK-------------------------------------------------------
   236 // This is a block of C++ code which provides values, functions, and
   237 // definitions necessary in the rest of the architecture description
   238 source_hpp %{
   239 // Must be visible to the DFA in dfa_x86_32.cpp
   240 extern bool is_operand_hi32_zero(Node* n);
   241 %}
   243 source %{
   244 #define   RELOC_IMM32    Assembler::imm_operand
   245 #define   RELOC_DISP32   Assembler::disp32_operand
   247 #define __ _masm.
   249 // How to find the high register of a Long pair, given the low register
   250 #define   HIGH_FROM_LOW(x) ((x)+2)
   252 // These masks are used to provide 128-bit aligned bitmasks to the XMM
   253 // instructions, to allow sign-masking or sign-bit flipping.  They allow
   254 // fast versions of NegF/NegD and AbsF/AbsD.
   256 // Note: 'double' and 'long long' have 32-bits alignment on x86.
   257 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
   258   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
   259   // of 128-bits operands for SSE instructions.
   260   jlong *operand = (jlong*)(((uintptr_t)adr)&((uintptr_t)(~0xF)));
   261   // Store the value to a 128-bits operand.
   262   operand[0] = lo;
   263   operand[1] = hi;
   264   return operand;
   265 }
   267 // Buffer for 128-bits masks used by SSE instructions.
   268 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
   270 // Static initialization during VM startup.
   271 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
   272 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
   273 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
   274 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
   276 // Offset hacking within calls.
   277 static int pre_call_FPU_size() {
   278   if (Compile::current()->in_24_bit_fp_mode())
   279     return 6; // fldcw
   280   return 0;
   281 }
   283 static int preserve_SP_size() {
   284   return LP64_ONLY(1 +) 2;  // [rex,] op, rm(reg/reg)
   285 }
   287 // !!!!! Special hack to get all type of calls to specify the byte offset
   288 //       from the start of the call to the point where the return address
   289 //       will point.
   290 int MachCallStaticJavaNode::ret_addr_offset() {
   291   int offset = 5 + pre_call_FPU_size();  // 5 bytes from start of call to where return address points
   292   if (_method_handle_invoke)
   293     offset += preserve_SP_size();
   294   return offset;
   295 }
   297 int MachCallDynamicJavaNode::ret_addr_offset() {
   298   return 10 + pre_call_FPU_size();  // 10 bytes from start of call to where return address points
   299 }
   301 static int sizeof_FFree_Float_Stack_All = -1;
   303 int MachCallRuntimeNode::ret_addr_offset() {
   304   assert(sizeof_FFree_Float_Stack_All != -1, "must have been emitted already");
   305   return sizeof_FFree_Float_Stack_All + 5 + pre_call_FPU_size();
   306 }
   308 // Indicate if the safepoint node needs the polling page as an input.
   309 // Since x86 does have absolute addressing, it doesn't.
   310 bool SafePointNode::needs_polling_address_input() {
   311   return false;
   312 }
   314 //
   315 // Compute padding required for nodes which need alignment
   316 //
   318 // The address of the call instruction needs to be 4-byte aligned to
   319 // ensure that it does not span a cache line so that it can be patched.
   320 int CallStaticJavaDirectNode::compute_padding(int current_offset) const {
   321   current_offset += pre_call_FPU_size();  // skip fldcw, if any
   322   current_offset += 1;      // skip call opcode byte
   323   return round_to(current_offset, alignment_required()) - current_offset;
   324 }
   326 // The address of the call instruction needs to be 4-byte aligned to
   327 // ensure that it does not span a cache line so that it can be patched.
   328 int CallStaticJavaHandleNode::compute_padding(int current_offset) const {
   329   current_offset += pre_call_FPU_size();  // skip fldcw, if any
   330   current_offset += preserve_SP_size();   // skip mov rbp, rsp
   331   current_offset += 1;      // skip call opcode byte
   332   return round_to(current_offset, alignment_required()) - current_offset;
   333 }
   335 // The address of the call instruction needs to be 4-byte aligned to
   336 // ensure that it does not span a cache line so that it can be patched.
   337 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const {
   338   current_offset += pre_call_FPU_size();  // skip fldcw, if any
   339   current_offset += 5;      // skip MOV instruction
   340   current_offset += 1;      // skip call opcode byte
   341   return round_to(current_offset, alignment_required()) - current_offset;
   342 }
   344 #ifndef PRODUCT
   345 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream* st ) const {
   346   st->print("INT3");
   347 }
   348 #endif
   350 // EMIT_RM()
   351 void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) {
   352   unsigned char c = (unsigned char)((f1 << 6) | (f2 << 3) | f3);
   353   cbuf.insts()->emit_int8(c);
   354 }
   356 // EMIT_CC()
   357 void emit_cc(CodeBuffer &cbuf, int f1, int f2) {
   358   unsigned char c = (unsigned char)( f1 | f2 );
   359   cbuf.insts()->emit_int8(c);
   360 }
   362 // EMIT_OPCODE()
   363 void emit_opcode(CodeBuffer &cbuf, int code) {
   364   cbuf.insts()->emit_int8((unsigned char) code);
   365 }
   367 // EMIT_OPCODE() w/ relocation information
   368 void emit_opcode(CodeBuffer &cbuf, int code, relocInfo::relocType reloc, int offset = 0) {
   369   cbuf.relocate(cbuf.insts_mark() + offset, reloc);
   370   emit_opcode(cbuf, code);
   371 }
   373 // EMIT_D8()
   374 void emit_d8(CodeBuffer &cbuf, int d8) {
   375   cbuf.insts()->emit_int8((unsigned char) d8);
   376 }
   378 // EMIT_D16()
   379 void emit_d16(CodeBuffer &cbuf, int d16) {
   380   cbuf.insts()->emit_int16(d16);
   381 }
   383 // EMIT_D32()
   384 void emit_d32(CodeBuffer &cbuf, int d32) {
   385   cbuf.insts()->emit_int32(d32);
   386 }
   388 // emit 32 bit value and construct relocation entry from relocInfo::relocType
   389 void emit_d32_reloc(CodeBuffer &cbuf, int d32, relocInfo::relocType reloc,
   390         int format) {
   391   cbuf.relocate(cbuf.insts_mark(), reloc, format);
   392   cbuf.insts()->emit_int32(d32);
   393 }
   395 // emit 32 bit value and construct relocation entry from RelocationHolder
   396 void emit_d32_reloc(CodeBuffer &cbuf, int d32, RelocationHolder const& rspec,
   397         int format) {
   398 #ifdef ASSERT
   399   if (rspec.reloc()->type() == relocInfo::oop_type && d32 != 0 && d32 != (int)Universe::non_oop_word()) {
   400     assert(oop(d32)->is_oop() && (ScavengeRootsInCode || !oop(d32)->is_scavengable()), "cannot embed scavengable oops in code");
   401   }
   402 #endif
   403   cbuf.relocate(cbuf.insts_mark(), rspec, format);
   404   cbuf.insts()->emit_int32(d32);
   405 }
   407 // Access stack slot for load or store
   408 void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp) {
   409   emit_opcode( cbuf, opcode );               // (e.g., FILD   [ESP+src])
   410   if( -128 <= disp && disp <= 127 ) {
   411     emit_rm( cbuf, 0x01, rm_field, ESP_enc );  // R/M byte
   412     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
   413     emit_d8 (cbuf, disp);     // Displacement  // R/M byte
   414   } else {
   415     emit_rm( cbuf, 0x02, rm_field, ESP_enc );  // R/M byte
   416     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
   417     emit_d32(cbuf, disp);     // Displacement  // R/M byte
   418   }
   419 }
   421    // eRegI ereg, memory mem) %{    // emit_reg_mem
   422 void encode_RegMem( CodeBuffer &cbuf, int reg_encoding, int base, int index, int scale, int displace, bool displace_is_oop ) {
   423   // There is no index & no scale, use form without SIB byte
   424   if ((index == 0x4) &&
   425       (scale == 0) && (base != ESP_enc)) {
   426     // If no displacement, mode is 0x0; unless base is [EBP]
   427     if ( (displace == 0) && (base != EBP_enc) ) {
   428       emit_rm(cbuf, 0x0, reg_encoding, base);
   429     }
   430     else {                    // If 8-bit displacement, mode 0x1
   431       if ((displace >= -128) && (displace <= 127)
   432           && !(displace_is_oop) ) {
   433         emit_rm(cbuf, 0x1, reg_encoding, base);
   434         emit_d8(cbuf, displace);
   435       }
   436       else {                  // If 32-bit displacement
   437         if (base == -1) { // Special flag for absolute address
   438           emit_rm(cbuf, 0x0, reg_encoding, 0x5);
   439           // (manual lies; no SIB needed here)
   440           if ( displace_is_oop ) {
   441             emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
   442           } else {
   443             emit_d32      (cbuf, displace);
   444           }
   445         }
   446         else {                // Normal base + offset
   447           emit_rm(cbuf, 0x2, reg_encoding, base);
   448           if ( displace_is_oop ) {
   449             emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
   450           } else {
   451             emit_d32      (cbuf, displace);
   452           }
   453         }
   454       }
   455     }
   456   }
   457   else {                      // Else, encode with the SIB byte
   458     // If no displacement, mode is 0x0; unless base is [EBP]
   459     if (displace == 0 && (base != EBP_enc)) {  // If no displacement
   460       emit_rm(cbuf, 0x0, reg_encoding, 0x4);
   461       emit_rm(cbuf, scale, index, base);
   462     }
   463     else {                    // If 8-bit displacement, mode 0x1
   464       if ((displace >= -128) && (displace <= 127)
   465           && !(displace_is_oop) ) {
   466         emit_rm(cbuf, 0x1, reg_encoding, 0x4);
   467         emit_rm(cbuf, scale, index, base);
   468         emit_d8(cbuf, displace);
   469       }
   470       else {                  // If 32-bit displacement
   471         if (base == 0x04 ) {
   472           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
   473           emit_rm(cbuf, scale, index, 0x04);
   474         } else {
   475           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
   476           emit_rm(cbuf, scale, index, base);
   477         }
   478         if ( displace_is_oop ) {
   479           emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
   480         } else {
   481           emit_d32      (cbuf, displace);
   482         }
   483       }
   484     }
   485   }
   486 }
   489 void encode_Copy( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
   490   if( dst_encoding == src_encoding ) {
   491     // reg-reg copy, use an empty encoding
   492   } else {
   493     emit_opcode( cbuf, 0x8B );
   494     emit_rm(cbuf, 0x3, dst_encoding, src_encoding );
   495   }
   496 }
   498 void encode_CopyXD( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
   499   if( dst_encoding == src_encoding ) {
   500     // reg-reg copy, use an empty encoding
   501   } else {
   502     MacroAssembler _masm(&cbuf);
   504     __ movdqa(as_XMMRegister(dst_encoding), as_XMMRegister(src_encoding));
   505   }
   506 }
   509 //=============================================================================
   510 const bool Matcher::constant_table_absolute_addressing = true;
   511 const RegMask& MachConstantBaseNode::_out_RegMask = RegMask::Empty;
   513 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
   514   // Empty encoding
   515 }
   517 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
   518   return 0;
   519 }
   521 #ifndef PRODUCT
   522 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
   523   st->print("# MachConstantBaseNode (empty encoding)");
   524 }
   525 #endif
   528 //=============================================================================
   529 #ifndef PRODUCT
   530 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
   531   Compile* C = ra_->C;
   532   if( C->in_24_bit_fp_mode() ) {
   533     st->print("FLDCW  24 bit fpu control word");
   534     st->print_cr(""); st->print("\t");
   535   }
   537   int framesize = C->frame_slots() << LogBytesPerInt;
   538   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   539   // Remove two words for return addr and rbp,
   540   framesize -= 2*wordSize;
   542   // Calls to C2R adapters often do not accept exceptional returns.
   543   // We require that their callers must bang for them.  But be careful, because
   544   // some VM calls (such as call site linkage) can use several kilobytes of
   545   // stack.  But the stack safety zone should account for that.
   546   // See bugs 4446381, 4468289, 4497237.
   547   if (C->need_stack_bang(framesize)) {
   548     st->print_cr("# stack bang"); st->print("\t");
   549   }
   550   st->print_cr("PUSHL  EBP"); st->print("\t");
   552   if( VerifyStackAtCalls ) { // Majik cookie to verify stack depth
   553     st->print("PUSH   0xBADB100D\t# Majik cookie for stack depth check");
   554     st->print_cr(""); st->print("\t");
   555     framesize -= wordSize;
   556   }
   558   if ((C->in_24_bit_fp_mode() || VerifyStackAtCalls ) && framesize < 128 ) {
   559     if (framesize) {
   560       st->print("SUB    ESP,%d\t# Create frame",framesize);
   561     }
   562   } else {
   563     st->print("SUB    ESP,%d\t# Create frame",framesize);
   564   }
   565 }
   566 #endif
   569 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   570   Compile* C = ra_->C;
   572   if (UseSSE >= 2 && VerifyFPU) {
   573     MacroAssembler masm(&cbuf);
   574     masm.verify_FPU(0, "FPU stack must be clean on entry");
   575   }
   577   // WARNING: Initial instruction MUST be 5 bytes or longer so that
   578   // NativeJump::patch_verified_entry will be able to patch out the entry
   579   // code safely. The fldcw is ok at 6 bytes, the push to verify stack
   580   // depth is ok at 5 bytes, the frame allocation can be either 3 or
   581   // 6 bytes. So if we don't do the fldcw or the push then we must
   582   // use the 6 byte frame allocation even if we have no frame. :-(
   583   // If method sets FPU control word do it now
   584   if( C->in_24_bit_fp_mode() ) {
   585     MacroAssembler masm(&cbuf);
   586     masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
   587   }
   589   int framesize = C->frame_slots() << LogBytesPerInt;
   590   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   591   // Remove two words for return addr and rbp,
   592   framesize -= 2*wordSize;
   594   // Calls to C2R adapters often do not accept exceptional returns.
   595   // We require that their callers must bang for them.  But be careful, because
   596   // some VM calls (such as call site linkage) can use several kilobytes of
   597   // stack.  But the stack safety zone should account for that.
   598   // See bugs 4446381, 4468289, 4497237.
   599   if (C->need_stack_bang(framesize)) {
   600     MacroAssembler masm(&cbuf);
   601     masm.generate_stack_overflow_check(framesize);
   602   }
   604   // We always push rbp, so that on return to interpreter rbp, will be
   605   // restored correctly and we can correct the stack.
   606   emit_opcode(cbuf, 0x50 | EBP_enc);
   608   if( VerifyStackAtCalls ) { // Majik cookie to verify stack depth
   609     emit_opcode(cbuf, 0x68); // push 0xbadb100d
   610     emit_d32(cbuf, 0xbadb100d);
   611     framesize -= wordSize;
   612   }
   614   if ((C->in_24_bit_fp_mode() || VerifyStackAtCalls ) && framesize < 128 ) {
   615     if (framesize) {
   616       emit_opcode(cbuf, 0x83);   // sub  SP,#framesize
   617       emit_rm(cbuf, 0x3, 0x05, ESP_enc);
   618       emit_d8(cbuf, framesize);
   619     }
   620   } else {
   621     emit_opcode(cbuf, 0x81);   // sub  SP,#framesize
   622     emit_rm(cbuf, 0x3, 0x05, ESP_enc);
   623     emit_d32(cbuf, framesize);
   624   }
   625   C->set_frame_complete(cbuf.insts_size());
   627 #ifdef ASSERT
   628   if (VerifyStackAtCalls) {
   629     Label L;
   630     MacroAssembler masm(&cbuf);
   631     masm.push(rax);
   632     masm.mov(rax, rsp);
   633     masm.andptr(rax, StackAlignmentInBytes-1);
   634     masm.cmpptr(rax, StackAlignmentInBytes-wordSize);
   635     masm.pop(rax);
   636     masm.jcc(Assembler::equal, L);
   637     masm.stop("Stack is not properly aligned!");
   638     masm.bind(L);
   639   }
   640 #endif
   642 }
   644 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
   645   return MachNode::size(ra_); // too many variables; just compute it the hard way
   646 }
   648 int MachPrologNode::reloc() const {
   649   return 0; // a large enough number
   650 }
   652 //=============================================================================
   653 #ifndef PRODUCT
   654 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
   655   Compile *C = ra_->C;
   656   int framesize = C->frame_slots() << LogBytesPerInt;
   657   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   658   // Remove two words for return addr and rbp,
   659   framesize -= 2*wordSize;
   661   if( C->in_24_bit_fp_mode() ) {
   662     st->print("FLDCW  standard control word");
   663     st->cr(); st->print("\t");
   664   }
   665   if( framesize ) {
   666     st->print("ADD    ESP,%d\t# Destroy frame",framesize);
   667     st->cr(); st->print("\t");
   668   }
   669   st->print_cr("POPL   EBP"); st->print("\t");
   670   if( do_polling() && C->is_method_compilation() ) {
   671     st->print("TEST   PollPage,EAX\t! Poll Safepoint");
   672     st->cr(); st->print("\t");
   673   }
   674 }
   675 #endif
   677 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   678   Compile *C = ra_->C;
   680   // If method set FPU control word, restore to standard control word
   681   if( C->in_24_bit_fp_mode() ) {
   682     MacroAssembler masm(&cbuf);
   683     masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   684   }
   686   int framesize = C->frame_slots() << LogBytesPerInt;
   687   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   688   // Remove two words for return addr and rbp,
   689   framesize -= 2*wordSize;
   691   // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
   693   if( framesize >= 128 ) {
   694     emit_opcode(cbuf, 0x81); // add  SP, #framesize
   695     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
   696     emit_d32(cbuf, framesize);
   697   }
   698   else if( framesize ) {
   699     emit_opcode(cbuf, 0x83); // add  SP, #framesize
   700     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
   701     emit_d8(cbuf, framesize);
   702   }
   704   emit_opcode(cbuf, 0x58 | EBP_enc);
   706   if( do_polling() && C->is_method_compilation() ) {
   707     cbuf.relocate(cbuf.insts_end(), relocInfo::poll_return_type, 0);
   708     emit_opcode(cbuf,0x85);
   709     emit_rm(cbuf, 0x0, EAX_enc, 0x5); // EAX
   710     emit_d32(cbuf, (intptr_t)os::get_polling_page());
   711   }
   712 }
   714 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
   715   Compile *C = ra_->C;
   716   // If method set FPU control word, restore to standard control word
   717   int size = C->in_24_bit_fp_mode() ? 6 : 0;
   718   if( do_polling() && C->is_method_compilation() ) size += 6;
   720   int framesize = C->frame_slots() << LogBytesPerInt;
   721   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   722   // Remove two words for return addr and rbp,
   723   framesize -= 2*wordSize;
   725   size++; // popl rbp,
   727   if( framesize >= 128 ) {
   728     size += 6;
   729   } else {
   730     size += framesize ? 3 : 0;
   731   }
   732   return size;
   733 }
   735 int MachEpilogNode::reloc() const {
   736   return 0; // a large enough number
   737 }
   739 const Pipeline * MachEpilogNode::pipeline() const {
   740   return MachNode::pipeline_class();
   741 }
   743 int MachEpilogNode::safepoint_offset() const { return 0; }
   745 //=============================================================================
   747 enum RC { rc_bad, rc_int, rc_float, rc_xmm, rc_stack };
   748 static enum RC rc_class( OptoReg::Name reg ) {
   750   if( !OptoReg::is_valid(reg)  ) return rc_bad;
   751   if (OptoReg::is_stack(reg)) return rc_stack;
   753   VMReg r = OptoReg::as_VMReg(reg);
   754   if (r->is_Register()) return rc_int;
   755   if (r->is_FloatRegister()) {
   756     assert(UseSSE < 2, "shouldn't be used in SSE2+ mode");
   757     return rc_float;
   758   }
   759   assert(r->is_XMMRegister(), "must be");
   760   return rc_xmm;
   761 }
   763 static int impl_helper( CodeBuffer *cbuf, bool do_size, bool is_load, int offset, int reg,
   764                         int opcode, const char *op_str, int size, outputStream* st ) {
   765   if( cbuf ) {
   766     emit_opcode  (*cbuf, opcode );
   767     encode_RegMem(*cbuf, Matcher::_regEncode[reg], ESP_enc, 0x4, 0, offset, false);
   768 #ifndef PRODUCT
   769   } else if( !do_size ) {
   770     if( size != 0 ) st->print("\n\t");
   771     if( opcode == 0x8B || opcode == 0x89 ) { // MOV
   772       if( is_load ) st->print("%s   %s,[ESP + #%d]",op_str,Matcher::regName[reg],offset);
   773       else          st->print("%s   [ESP + #%d],%s",op_str,offset,Matcher::regName[reg]);
   774     } else { // FLD, FST, PUSH, POP
   775       st->print("%s [ESP + #%d]",op_str,offset);
   776     }
   777 #endif
   778   }
   779   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
   780   return size+3+offset_size;
   781 }
   783 // Helper for XMM registers.  Extra opcode bits, limited syntax.
   784 static int impl_x_helper( CodeBuffer *cbuf, bool do_size, bool is_load,
   785                          int offset, int reg_lo, int reg_hi, int size, outputStream* st ) {
   786   if( cbuf ) {
   787     if( reg_lo+1 == reg_hi ) { // double move?
   788       if( is_load && !UseXmmLoadAndClearUpper )
   789         emit_opcode(*cbuf, 0x66 ); // use 'movlpd' for load
   790       else
   791         emit_opcode(*cbuf, 0xF2 ); // use 'movsd' otherwise
   792     } else {
   793       emit_opcode(*cbuf, 0xF3 );
   794     }
   795     emit_opcode(*cbuf, 0x0F );
   796     if( reg_lo+1 == reg_hi && is_load && !UseXmmLoadAndClearUpper )
   797       emit_opcode(*cbuf, 0x12 );   // use 'movlpd' for load
   798     else
   799       emit_opcode(*cbuf, is_load ? 0x10 : 0x11 );
   800     encode_RegMem(*cbuf, Matcher::_regEncode[reg_lo], ESP_enc, 0x4, 0, offset, false);
   801 #ifndef PRODUCT
   802   } else if( !do_size ) {
   803     if( size != 0 ) st->print("\n\t");
   804     if( reg_lo+1 == reg_hi ) { // double move?
   805       if( is_load ) st->print("%s %s,[ESP + #%d]",
   806                                UseXmmLoadAndClearUpper ? "MOVSD " : "MOVLPD",
   807                                Matcher::regName[reg_lo], offset);
   808       else          st->print("MOVSD  [ESP + #%d],%s",
   809                                offset, Matcher::regName[reg_lo]);
   810     } else {
   811       if( is_load ) st->print("MOVSS  %s,[ESP + #%d]",
   812                                Matcher::regName[reg_lo], offset);
   813       else          st->print("MOVSS  [ESP + #%d],%s",
   814                                offset, Matcher::regName[reg_lo]);
   815     }
   816 #endif
   817   }
   818   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
   819   return size+5+offset_size;
   820 }
   823 static int impl_movx_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   824                             int src_hi, int dst_hi, int size, outputStream* st ) {
   825   if( UseXmmRegToRegMoveAll ) {//Use movaps,movapd to move between xmm registers
   826     if( cbuf ) {
   827       if( (src_lo+1 == src_hi && dst_lo+1 == dst_hi) ) {
   828         emit_opcode(*cbuf, 0x66 );
   829       }
   830       emit_opcode(*cbuf, 0x0F );
   831       emit_opcode(*cbuf, 0x28 );
   832       emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst_lo], Matcher::_regEncode[src_lo] );
   833 #ifndef PRODUCT
   834     } else if( !do_size ) {
   835       if( size != 0 ) st->print("\n\t");
   836       if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
   837         st->print("MOVAPD %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   838       } else {
   839         st->print("MOVAPS %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   840       }
   841 #endif
   842     }
   843     return size + ((src_lo+1 == src_hi && dst_lo+1 == dst_hi) ? 4 : 3);
   844   } else {
   845     if( cbuf ) {
   846       emit_opcode(*cbuf, (src_lo+1 == src_hi && dst_lo+1 == dst_hi) ? 0xF2 : 0xF3 );
   847       emit_opcode(*cbuf, 0x0F );
   848       emit_opcode(*cbuf, 0x10 );
   849       emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst_lo], Matcher::_regEncode[src_lo] );
   850 #ifndef PRODUCT
   851     } else if( !do_size ) {
   852       if( size != 0 ) st->print("\n\t");
   853       if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
   854         st->print("MOVSD  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   855       } else {
   856         st->print("MOVSS  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   857       }
   858 #endif
   859     }
   860     return size+4;
   861   }
   862 }
   864 static int impl_movgpr2x_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   865                             int src_hi, int dst_hi, int size, outputStream* st ) {
   866   // 32-bit
   867   if (cbuf) {
   868     emit_opcode(*cbuf, 0x66);
   869     emit_opcode(*cbuf, 0x0F);
   870     emit_opcode(*cbuf, 0x6E);
   871     emit_rm(*cbuf, 0x3, Matcher::_regEncode[dst_lo] & 7, Matcher::_regEncode[src_lo] & 7);
   872 #ifndef PRODUCT
   873   } else if (!do_size) {
   874     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
   875 #endif
   876   }
   877   return 4;
   878 }
   881 static int impl_movx2gpr_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   882                                  int src_hi, int dst_hi, int size, outputStream* st ) {
   883   // 32-bit
   884   if (cbuf) {
   885     emit_opcode(*cbuf, 0x66);
   886     emit_opcode(*cbuf, 0x0F);
   887     emit_opcode(*cbuf, 0x7E);
   888     emit_rm(*cbuf, 0x3, Matcher::_regEncode[src_lo] & 7, Matcher::_regEncode[dst_lo] & 7);
   889 #ifndef PRODUCT
   890   } else if (!do_size) {
   891     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
   892 #endif
   893   }
   894   return 4;
   895 }
   897 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int size, outputStream* st ) {
   898   if( cbuf ) {
   899     emit_opcode(*cbuf, 0x8B );
   900     emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst], Matcher::_regEncode[src] );
   901 #ifndef PRODUCT
   902   } else if( !do_size ) {
   903     if( size != 0 ) st->print("\n\t");
   904     st->print("MOV    %s,%s",Matcher::regName[dst],Matcher::regName[src]);
   905 #endif
   906   }
   907   return size+2;
   908 }
   910 static int impl_fp_store_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int src_hi, int dst_lo, int dst_hi,
   911                                  int offset, int size, outputStream* st ) {
   912   if( src_lo != FPR1L_num ) {      // Move value to top of FP stack, if not already there
   913     if( cbuf ) {
   914       emit_opcode( *cbuf, 0xD9 );  // FLD (i.e., push it)
   915       emit_d8( *cbuf, 0xC0-1+Matcher::_regEncode[src_lo] );
   916 #ifndef PRODUCT
   917     } else if( !do_size ) {
   918       if( size != 0 ) st->print("\n\t");
   919       st->print("FLD    %s",Matcher::regName[src_lo]);
   920 #endif
   921     }
   922     size += 2;
   923   }
   925   int st_op = (src_lo != FPR1L_num) ? EBX_num /*store & pop*/ : EDX_num /*store no pop*/;
   926   const char *op_str;
   927   int op;
   928   if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double store?
   929     op_str = (src_lo != FPR1L_num) ? "FSTP_D" : "FST_D ";
   930     op = 0xDD;
   931   } else {                   // 32-bit store
   932     op_str = (src_lo != FPR1L_num) ? "FSTP_S" : "FST_S ";
   933     op = 0xD9;
   934     assert( !OptoReg::is_valid(src_hi) && !OptoReg::is_valid(dst_hi), "no non-adjacent float-stores" );
   935   }
   937   return impl_helper(cbuf,do_size,false,offset,st_op,op,op_str,size, st);
   938 }
   940 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const {
   941   // Get registers to move
   942   OptoReg::Name src_second = ra_->get_reg_second(in(1));
   943   OptoReg::Name src_first = ra_->get_reg_first(in(1));
   944   OptoReg::Name dst_second = ra_->get_reg_second(this );
   945   OptoReg::Name dst_first = ra_->get_reg_first(this );
   947   enum RC src_second_rc = rc_class(src_second);
   948   enum RC src_first_rc = rc_class(src_first);
   949   enum RC dst_second_rc = rc_class(dst_second);
   950   enum RC dst_first_rc = rc_class(dst_first);
   952   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
   954   // Generate spill code!
   955   int size = 0;
   957   if( src_first == dst_first && src_second == dst_second )
   958     return size;            // Self copy, no move
   960   // --------------------------------------
   961   // Check for mem-mem move.  push/pop to move.
   962   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
   963     if( src_second == dst_first ) { // overlapping stack copy ranges
   964       assert( src_second_rc == rc_stack && dst_second_rc == rc_stack, "we only expect a stk-stk copy here" );
   965       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
   966       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
   967       src_second_rc = dst_second_rc = rc_bad;  // flag as already moved the second bits
   968     }
   969     // move low bits
   970     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),ESI_num,0xFF,"PUSH  ",size, st);
   971     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),EAX_num,0x8F,"POP   ",size, st);
   972     if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) { // mov second bits
   973       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
   974       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
   975     }
   976     return size;
   977   }
   979   // --------------------------------------
   980   // Check for integer reg-reg copy
   981   if( src_first_rc == rc_int && dst_first_rc == rc_int )
   982     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,size, st);
   984   // Check for integer store
   985   if( src_first_rc == rc_int && dst_first_rc == rc_stack )
   986     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first,0x89,"MOV ",size, st);
   988   // Check for integer load
   989   if( dst_first_rc == rc_int && src_first_rc == rc_stack )
   990     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first,0x8B,"MOV ",size, st);
   992   // Check for integer reg-xmm reg copy
   993   if( src_first_rc == rc_int && dst_first_rc == rc_xmm ) {
   994     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
   995             "no 64 bit integer-float reg moves" );
   996     return impl_movgpr2x_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
   997   }
   998   // --------------------------------------
   999   // Check for float reg-reg copy
  1000   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
  1001     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
  1002             (src_first+1 == src_second && dst_first+1 == dst_second), "no non-adjacent float-moves" );
  1003     if( cbuf ) {
  1005       // Note the mucking with the register encode to compensate for the 0/1
  1006       // indexing issue mentioned in a comment in the reg_def sections
  1007       // for FPR registers many lines above here.
  1009       if( src_first != FPR1L_num ) {
  1010         emit_opcode  (*cbuf, 0xD9 );           // FLD    ST(i)
  1011         emit_d8      (*cbuf, 0xC0+Matcher::_regEncode[src_first]-1 );
  1012         emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
  1013         emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
  1014      } else {
  1015         emit_opcode  (*cbuf, 0xDD );           // FST    ST(i)
  1016         emit_d8      (*cbuf, 0xD0+Matcher::_regEncode[dst_first]-1 );
  1018 #ifndef PRODUCT
  1019     } else if( !do_size ) {
  1020       if( size != 0 ) st->print("\n\t");
  1021       if( src_first != FPR1L_num ) st->print("FLD    %s\n\tFSTP   %s",Matcher::regName[src_first],Matcher::regName[dst_first]);
  1022       else                      st->print(             "FST    %s",                            Matcher::regName[dst_first]);
  1023 #endif
  1025     return size + ((src_first != FPR1L_num) ? 2+2 : 2);
  1028   // Check for float store
  1029   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
  1030     return impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,ra_->reg2offset(dst_first),size, st);
  1033   // Check for float load
  1034   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
  1035     int offset = ra_->reg2offset(src_first);
  1036     const char *op_str;
  1037     int op;
  1038     if( src_first+1 == src_second && dst_first+1 == dst_second ) { // double load?
  1039       op_str = "FLD_D";
  1040       op = 0xDD;
  1041     } else {                   // 32-bit load
  1042       op_str = "FLD_S";
  1043       op = 0xD9;
  1044       assert( src_second_rc == rc_bad && dst_second_rc == rc_bad, "no non-adjacent float-loads" );
  1046     if( cbuf ) {
  1047       emit_opcode  (*cbuf, op );
  1048       encode_RegMem(*cbuf, 0x0, ESP_enc, 0x4, 0, offset, false);
  1049       emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
  1050       emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
  1051 #ifndef PRODUCT
  1052     } else if( !do_size ) {
  1053       if( size != 0 ) st->print("\n\t");
  1054       st->print("%s  ST,[ESP + #%d]\n\tFSTP   %s",op_str, offset,Matcher::regName[dst_first]);
  1055 #endif
  1057     int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
  1058     return size + 3+offset_size+2;
  1061   // Check for xmm reg-reg copy
  1062   if( src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
  1063     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
  1064             (src_first+1 == src_second && dst_first+1 == dst_second),
  1065             "no non-adjacent float-moves" );
  1066     return impl_movx_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
  1069   // Check for xmm reg-integer reg copy
  1070   if( src_first_rc == rc_xmm && dst_first_rc == rc_int ) {
  1071     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
  1072             "no 64 bit float-integer reg moves" );
  1073     return impl_movx2gpr_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
  1076   // Check for xmm store
  1077   if( src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
  1078     return impl_x_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first, src_second, size, st);
  1081   // Check for float xmm load
  1082   if( dst_first_rc == rc_xmm && src_first_rc == rc_stack ) {
  1083     return impl_x_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first, dst_second, size, st);
  1086   // Copy from float reg to xmm reg
  1087   if( dst_first_rc == rc_xmm && src_first_rc == rc_float ) {
  1088     // copy to the top of stack from floating point reg
  1089     // and use LEA to preserve flags
  1090     if( cbuf ) {
  1091       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP-8]
  1092       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
  1093       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
  1094       emit_d8(*cbuf,0xF8);
  1095 #ifndef PRODUCT
  1096     } else if( !do_size ) {
  1097       if( size != 0 ) st->print("\n\t");
  1098       st->print("LEA    ESP,[ESP-8]");
  1099 #endif
  1101     size += 4;
  1103     size = impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,0,size, st);
  1105     // Copy from the temp memory to the xmm reg.
  1106     size = impl_x_helper(cbuf,do_size,true ,0,dst_first, dst_second, size, st);
  1108     if( cbuf ) {
  1109       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP+8]
  1110       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
  1111       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
  1112       emit_d8(*cbuf,0x08);
  1113 #ifndef PRODUCT
  1114     } else if( !do_size ) {
  1115       if( size != 0 ) st->print("\n\t");
  1116       st->print("LEA    ESP,[ESP+8]");
  1117 #endif
  1119     size += 4;
  1120     return size;
  1123   assert( size > 0, "missed a case" );
  1125   // --------------------------------------------------------------------
  1126   // Check for second bits still needing moving.
  1127   if( src_second == dst_second )
  1128     return size;               // Self copy; no move
  1129   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1131   // Check for second word int-int move
  1132   if( src_second_rc == rc_int && dst_second_rc == rc_int )
  1133     return impl_mov_helper(cbuf,do_size,src_second,dst_second,size, st);
  1135   // Check for second word integer store
  1136   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1137     return impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),src_second,0x89,"MOV ",size, st);
  1139   // Check for second word integer load
  1140   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1141     return impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),dst_second,0x8B,"MOV ",size, st);
  1144   Unimplemented();
  1147 #ifndef PRODUCT
  1148 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1149   implementation( NULL, ra_, false, st );
  1151 #endif
  1153 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1154   implementation( &cbuf, ra_, false, NULL );
  1157 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1158   return implementation( NULL, ra_, true, NULL );
  1161 //=============================================================================
  1162 #ifndef PRODUCT
  1163 void MachNopNode::format( PhaseRegAlloc *, outputStream* st ) const {
  1164   st->print("NOP \t# %d bytes pad for loops and calls", _count);
  1166 #endif
  1168 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  1169   MacroAssembler _masm(&cbuf);
  1170   __ nop(_count);
  1173 uint MachNopNode::size(PhaseRegAlloc *) const {
  1174   return _count;
  1178 //=============================================================================
  1179 #ifndef PRODUCT
  1180 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1181   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1182   int reg = ra_->get_reg_first(this);
  1183   st->print("LEA    %s,[ESP + #%d]",Matcher::regName[reg],offset);
  1185 #endif
  1187 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1188   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1189   int reg = ra_->get_encode(this);
  1190   if( offset >= 128 ) {
  1191     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1192     emit_rm(cbuf, 0x2, reg, 0x04);
  1193     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
  1194     emit_d32(cbuf, offset);
  1196   else {
  1197     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1198     emit_rm(cbuf, 0x1, reg, 0x04);
  1199     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
  1200     emit_d8(cbuf, offset);
  1204 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1205   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1206   if( offset >= 128 ) {
  1207     return 7;
  1209   else {
  1210     return 4;
  1214 //=============================================================================
  1216 // emit call stub, compiled java to interpreter
  1217 void emit_java_to_interp(CodeBuffer &cbuf ) {
  1218   // Stub is fixed up when the corresponding call is converted from calling
  1219   // compiled code to calling interpreted code.
  1220   // mov rbx,0
  1221   // jmp -1
  1223   address mark = cbuf.insts_mark();  // get mark within main instrs section
  1225   // Note that the code buffer's insts_mark is always relative to insts.
  1226   // That's why we must use the macroassembler to generate a stub.
  1227   MacroAssembler _masm(&cbuf);
  1229   address base =
  1230   __ start_a_stub(Compile::MAX_stubs_size);
  1231   if (base == NULL)  return;  // CodeBuffer::expand failed
  1232   // static stub relocation stores the instruction address of the call
  1233   __ relocate(static_stub_Relocation::spec(mark), RELOC_IMM32);
  1234   // static stub relocation also tags the methodOop in the code-stream.
  1235   __ movoop(rbx, (jobject)NULL);  // method is zapped till fixup time
  1236   // This is recognized as unresolved by relocs/nativeInst/ic code
  1237   __ jump(RuntimeAddress(__ pc()));
  1239   __ end_a_stub();
  1240   // Update current stubs pointer and restore insts_end.
  1242 // size of call stub, compiled java to interpretor
  1243 uint size_java_to_interp() {
  1244   return 10;  // movl; jmp
  1246 // relocation entries for call stub, compiled java to interpretor
  1247 uint reloc_java_to_interp() {
  1248   return 4;  // 3 in emit_java_to_interp + 1 in Java_Static_Call
  1251 //=============================================================================
  1252 #ifndef PRODUCT
  1253 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1254   st->print_cr(  "CMP    EAX,[ECX+4]\t# Inline cache check");
  1255   st->print_cr("\tJNE    SharedRuntime::handle_ic_miss_stub");
  1256   st->print_cr("\tNOP");
  1257   st->print_cr("\tNOP");
  1258   if( !OptoBreakpoint )
  1259     st->print_cr("\tNOP");
  1261 #endif
  1263 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1264   MacroAssembler masm(&cbuf);
  1265 #ifdef ASSERT
  1266   uint insts_size = cbuf.insts_size();
  1267 #endif
  1268   masm.cmpptr(rax, Address(rcx, oopDesc::klass_offset_in_bytes()));
  1269   masm.jump_cc(Assembler::notEqual,
  1270                RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  1271   /* WARNING these NOPs are critical so that verified entry point is properly
  1272      aligned for patching by NativeJump::patch_verified_entry() */
  1273   int nops_cnt = 2;
  1274   if( !OptoBreakpoint ) // Leave space for int3
  1275      nops_cnt += 1;
  1276   masm.nop(nops_cnt);
  1278   assert(cbuf.insts_size() - insts_size == size(ra_), "checking code size of inline cache node");
  1281 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1282   return OptoBreakpoint ? 11 : 12;
  1286 //=============================================================================
  1287 uint size_exception_handler() {
  1288   // NativeCall instruction size is the same as NativeJump.
  1289   // exception handler starts out as jump and can be patched to
  1290   // a call be deoptimization.  (4932387)
  1291   // Note that this value is also credited (in output.cpp) to
  1292   // the size of the code section.
  1293   return NativeJump::instruction_size;
  1296 // Emit exception handler code.  Stuff framesize into a register
  1297 // and call a VM stub routine.
  1298 int emit_exception_handler(CodeBuffer& cbuf) {
  1300   // Note that the code buffer's insts_mark is always relative to insts.
  1301   // That's why we must use the macroassembler to generate a handler.
  1302   MacroAssembler _masm(&cbuf);
  1303   address base =
  1304   __ start_a_stub(size_exception_handler());
  1305   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1306   int offset = __ offset();
  1307   __ jump(RuntimeAddress(OptoRuntime::exception_blob()->entry_point()));
  1308   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1309   __ end_a_stub();
  1310   return offset;
  1313 uint size_deopt_handler() {
  1314   // NativeCall instruction size is the same as NativeJump.
  1315   // exception handler starts out as jump and can be patched to
  1316   // a call be deoptimization.  (4932387)
  1317   // Note that this value is also credited (in output.cpp) to
  1318   // the size of the code section.
  1319   return 5 + NativeJump::instruction_size; // pushl(); jmp;
  1322 // Emit deopt handler code.
  1323 int emit_deopt_handler(CodeBuffer& cbuf) {
  1325   // Note that the code buffer's insts_mark is always relative to insts.
  1326   // That's why we must use the macroassembler to generate a handler.
  1327   MacroAssembler _masm(&cbuf);
  1328   address base =
  1329   __ start_a_stub(size_exception_handler());
  1330   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1331   int offset = __ offset();
  1332   InternalAddress here(__ pc());
  1333   __ pushptr(here.addr());
  1335   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
  1336   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1337   __ end_a_stub();
  1338   return offset;
  1342 const bool Matcher::match_rule_supported(int opcode) {
  1343   if (!has_match_rule(opcode))
  1344     return false;
  1346   return true;  // Per default match rules are supported.
  1349 int Matcher::regnum_to_fpu_offset(int regnum) {
  1350   return regnum - 32; // The FP registers are in the second chunk
  1353 // This is UltraSparc specific, true just means we have fast l2f conversion
  1354 const bool Matcher::convL2FSupported(void) {
  1355   return true;
  1358 // Vector width in bytes
  1359 const uint Matcher::vector_width_in_bytes(void) {
  1360   return UseSSE >= 2 ? 8 : 0;
  1363 // Vector ideal reg
  1364 const uint Matcher::vector_ideal_reg(void) {
  1365   return Op_RegD;
  1368 // Is this branch offset short enough that a short branch can be used?
  1369 //
  1370 // NOTE: If the platform does not provide any short branch variants, then
  1371 //       this method should return false for offset 0.
  1372 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
  1373   // The passed offset is relative to address of the branch.
  1374   // On 86 a branch displacement is calculated relative to address
  1375   // of a next instruction.
  1376   offset -= br_size;
  1378   // the short version of jmpConUCF2 contains multiple branches,
  1379   // making the reach slightly less
  1380   if (rule == jmpConUCF2_rule)
  1381     return (-126 <= offset && offset <= 125);
  1382   return (-128 <= offset && offset <= 127);
  1385 const bool Matcher::isSimpleConstant64(jlong value) {
  1386   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1387   return false;
  1390 // The ecx parameter to rep stos for the ClearArray node is in dwords.
  1391 const bool Matcher::init_array_count_is_in_bytes = false;
  1393 // Threshold size for cleararray.
  1394 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1396 // Should the Matcher clone shifts on addressing modes, expecting them to
  1397 // be subsumed into complex addressing expressions or compute them into
  1398 // registers?  True for Intel but false for most RISCs
  1399 const bool Matcher::clone_shift_expressions = true;
  1401 // Do we need to mask the count passed to shift instructions or does
  1402 // the cpu only look at the lower 5/6 bits anyway?
  1403 const bool Matcher::need_masked_shift_count = false;
  1405 bool Matcher::narrow_oop_use_complex_address() {
  1406   ShouldNotCallThis();
  1407   return true;
  1411 // Is it better to copy float constants, or load them directly from memory?
  1412 // Intel can load a float constant from a direct address, requiring no
  1413 // extra registers.  Most RISCs will have to materialize an address into a
  1414 // register first, so they would do better to copy the constant from stack.
  1415 const bool Matcher::rematerialize_float_constants = true;
  1417 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1418 // needed.  Else we split the double into 2 integer pieces and move it
  1419 // piece-by-piece.  Only happens when passing doubles into C code as the
  1420 // Java calling convention forces doubles to be aligned.
  1421 const bool Matcher::misaligned_doubles_ok = true;
  1424 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1425   // Get the memory operand from the node
  1426   uint numopnds = node->num_opnds();        // Virtual call for number of operands
  1427   uint skipped  = node->oper_input_base();  // Sum of leaves skipped so far
  1428   assert( idx >= skipped, "idx too low in pd_implicit_null_fixup" );
  1429   uint opcnt     = 1;                 // First operand
  1430   uint num_edges = node->_opnds[1]->num_edges(); // leaves for first operand
  1431   while( idx >= skipped+num_edges ) {
  1432     skipped += num_edges;
  1433     opcnt++;                          // Bump operand count
  1434     assert( opcnt < numopnds, "Accessing non-existent operand" );
  1435     num_edges = node->_opnds[opcnt]->num_edges(); // leaves for next operand
  1438   MachOper *memory = node->_opnds[opcnt];
  1439   MachOper *new_memory = NULL;
  1440   switch (memory->opcode()) {
  1441   case DIRECT:
  1442   case INDOFFSET32X:
  1443     // No transformation necessary.
  1444     return;
  1445   case INDIRECT:
  1446     new_memory = new (C) indirect_win95_safeOper( );
  1447     break;
  1448   case INDOFFSET8:
  1449     new_memory = new (C) indOffset8_win95_safeOper(memory->disp(NULL, NULL, 0));
  1450     break;
  1451   case INDOFFSET32:
  1452     new_memory = new (C) indOffset32_win95_safeOper(memory->disp(NULL, NULL, 0));
  1453     break;
  1454   case INDINDEXOFFSET:
  1455     new_memory = new (C) indIndexOffset_win95_safeOper(memory->disp(NULL, NULL, 0));
  1456     break;
  1457   case INDINDEXSCALE:
  1458     new_memory = new (C) indIndexScale_win95_safeOper(memory->scale());
  1459     break;
  1460   case INDINDEXSCALEOFFSET:
  1461     new_memory = new (C) indIndexScaleOffset_win95_safeOper(memory->scale(), memory->disp(NULL, NULL, 0));
  1462     break;
  1463   case LOAD_LONG_INDIRECT:
  1464   case LOAD_LONG_INDOFFSET32:
  1465     // Does not use EBP as address register, use { EDX, EBX, EDI, ESI}
  1466     return;
  1467   default:
  1468     assert(false, "unexpected memory operand in pd_implicit_null_fixup()");
  1469     return;
  1471   node->_opnds[opcnt] = new_memory;
  1474 // Advertise here if the CPU requires explicit rounding operations
  1475 // to implement the UseStrictFP mode.
  1476 const bool Matcher::strict_fp_requires_explicit_rounding = true;
  1478 // Are floats conerted to double when stored to stack during deoptimization?
  1479 // On x32 it is stored with convertion only when FPU is used for floats.
  1480 bool Matcher::float_in_double() { return (UseSSE == 0); }
  1482 // Do ints take an entire long register or just half?
  1483 const bool Matcher::int_in_long = false;
  1485 // Return whether or not this register is ever used as an argument.  This
  1486 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1487 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1488 // arguments in those registers not be available to the callee.
  1489 bool Matcher::can_be_java_arg( int reg ) {
  1490   if(  reg == ECX_num   || reg == EDX_num   ) return true;
  1491   if( (reg == XMM0a_num || reg == XMM1a_num) && UseSSE>=1 ) return true;
  1492   if( (reg == XMM0b_num || reg == XMM1b_num) && UseSSE>=2 ) return true;
  1493   return false;
  1496 bool Matcher::is_spillable_arg( int reg ) {
  1497   return can_be_java_arg(reg);
  1500 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
  1501   // Use hardware integer DIV instruction when
  1502   // it is faster than a code which use multiply.
  1503   // Only when constant divisor fits into 32 bit
  1504   // (min_jint is excluded to get only correct
  1505   // positive 32 bit values from negative).
  1506   return VM_Version::has_fast_idiv() &&
  1507          (divisor == (int)divisor && divisor != min_jint);
  1510 // Register for DIVI projection of divmodI
  1511 RegMask Matcher::divI_proj_mask() {
  1512   return EAX_REG_mask;
  1515 // Register for MODI projection of divmodI
  1516 RegMask Matcher::modI_proj_mask() {
  1517   return EDX_REG_mask;
  1520 // Register for DIVL projection of divmodL
  1521 RegMask Matcher::divL_proj_mask() {
  1522   ShouldNotReachHere();
  1523   return RegMask();
  1526 // Register for MODL projection of divmodL
  1527 RegMask Matcher::modL_proj_mask() {
  1528   ShouldNotReachHere();
  1529   return RegMask();
  1532 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  1533   return EBP_REG_mask;
  1536 // Returns true if the high 32 bits of the value is known to be zero.
  1537 bool is_operand_hi32_zero(Node* n) {
  1538   int opc = n->Opcode();
  1539   if (opc == Op_LoadUI2L) {
  1540     return true;
  1542   if (opc == Op_AndL) {
  1543     Node* o2 = n->in(2);
  1544     if (o2->is_Con() && (o2->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
  1545       return true;
  1548   if (opc == Op_ConL && (n->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
  1549     return true;
  1551   return false;
  1554 %}
  1556 //----------ENCODING BLOCK-----------------------------------------------------
  1557 // This block specifies the encoding classes used by the compiler to output
  1558 // byte streams.  Encoding classes generate functions which are called by
  1559 // Machine Instruction Nodes in order to generate the bit encoding of the
  1560 // instruction.  Operands specify their base encoding interface with the
  1561 // interface keyword.  There are currently supported four interfaces,
  1562 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  1563 // operand to generate a function which returns its register number when
  1564 // queried.   CONST_INTER causes an operand to generate a function which
  1565 // returns the value of the constant when queried.  MEMORY_INTER causes an
  1566 // operand to generate four functions which return the Base Register, the
  1567 // Index Register, the Scale Value, and the Offset Value of the operand when
  1568 // queried.  COND_INTER causes an operand to generate six functions which
  1569 // return the encoding code (ie - encoding bits for the instruction)
  1570 // associated with each basic boolean condition for a conditional instruction.
  1571 // Instructions specify two basic values for encoding.  They use the
  1572 // ins_encode keyword to specify their encoding class (which must be one of
  1573 // the class names specified in the encoding block), and they use the
  1574 // opcode keyword to specify, in order, their primary, secondary, and
  1575 // tertiary opcode.  Only the opcode sections which a particular instruction
  1576 // needs for encoding need to be specified.
  1577 encode %{
  1578   // Build emit functions for each basic byte or larger field in the intel
  1579   // encoding scheme (opcode, rm, sib, immediate), and call them from C++
  1580   // code in the enc_class source block.  Emit functions will live in the
  1581   // main source block for now.  In future, we can generalize this by
  1582   // adding a syntax that specifies the sizes of fields in an order,
  1583   // so that the adlc can build the emit functions automagically
  1585   // Emit primary opcode
  1586   enc_class OpcP %{
  1587     emit_opcode(cbuf, $primary);
  1588   %}
  1590   // Emit secondary opcode
  1591   enc_class OpcS %{
  1592     emit_opcode(cbuf, $secondary);
  1593   %}
  1595   // Emit opcode directly
  1596   enc_class Opcode(immI d8) %{
  1597     emit_opcode(cbuf, $d8$$constant);
  1598   %}
  1600   enc_class SizePrefix %{
  1601     emit_opcode(cbuf,0x66);
  1602   %}
  1604   enc_class RegReg (eRegI dst, eRegI src) %{    // RegReg(Many)
  1605     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1606   %}
  1608   enc_class OpcRegReg (immI opcode, eRegI dst, eRegI src) %{    // OpcRegReg(Many)
  1609     emit_opcode(cbuf,$opcode$$constant);
  1610     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1611   %}
  1613   enc_class mov_r32_imm0( eRegI dst ) %{
  1614     emit_opcode( cbuf, 0xB8 + $dst$$reg ); // 0xB8+ rd   -- MOV r32  ,imm32
  1615     emit_d32   ( cbuf, 0x0  );             //                         imm32==0x0
  1616   %}
  1618   enc_class cdq_enc %{
  1619     // Full implementation of Java idiv and irem; checks for
  1620     // special case as described in JVM spec., p.243 & p.271.
  1621     //
  1622     //         normal case                           special case
  1623     //
  1624     // input : rax,: dividend                         min_int
  1625     //         reg: divisor                          -1
  1626     //
  1627     // output: rax,: quotient  (= rax, idiv reg)       min_int
  1628     //         rdx: remainder (= rax, irem reg)       0
  1629     //
  1630     //  Code sequnce:
  1631     //
  1632     //  81 F8 00 00 00 80    cmp         rax,80000000h
  1633     //  0F 85 0B 00 00 00    jne         normal_case
  1634     //  33 D2                xor         rdx,edx
  1635     //  83 F9 FF             cmp         rcx,0FFh
  1636     //  0F 84 03 00 00 00    je          done
  1637     //                  normal_case:
  1638     //  99                   cdq
  1639     //  F7 F9                idiv        rax,ecx
  1640     //                  done:
  1641     //
  1642     emit_opcode(cbuf,0x81); emit_d8(cbuf,0xF8);
  1643     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);
  1644     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x80);                     // cmp rax,80000000h
  1645     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x85);
  1646     emit_opcode(cbuf,0x0B); emit_d8(cbuf,0x00);
  1647     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // jne normal_case
  1648     emit_opcode(cbuf,0x33); emit_d8(cbuf,0xD2);                     // xor rdx,edx
  1649     emit_opcode(cbuf,0x83); emit_d8(cbuf,0xF9); emit_d8(cbuf,0xFF); // cmp rcx,0FFh
  1650     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x84);
  1651     emit_opcode(cbuf,0x03); emit_d8(cbuf,0x00);
  1652     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // je done
  1653     // normal_case:
  1654     emit_opcode(cbuf,0x99);                                         // cdq
  1655     // idiv (note: must be emitted by the user of this rule)
  1656     // normal:
  1657   %}
  1659   // Dense encoding for older common ops
  1660   enc_class Opc_plus(immI opcode, eRegI reg) %{
  1661     emit_opcode(cbuf, $opcode$$constant + $reg$$reg);
  1662   %}
  1665   // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
  1666   enc_class OpcSE (immI imm) %{ // Emit primary opcode and set sign-extend bit
  1667     // Check for 8-bit immediate, and set sign extend bit in opcode
  1668     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1669       emit_opcode(cbuf, $primary | 0x02);
  1671     else {                          // If 32-bit immediate
  1672       emit_opcode(cbuf, $primary);
  1674   %}
  1676   enc_class OpcSErm (eRegI dst, immI imm) %{    // OpcSEr/m
  1677     // Emit primary opcode and set sign-extend bit
  1678     // Check for 8-bit immediate, and set sign extend bit in opcode
  1679     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1680       emit_opcode(cbuf, $primary | 0x02);    }
  1681     else {                          // If 32-bit immediate
  1682       emit_opcode(cbuf, $primary);
  1684     // Emit r/m byte with secondary opcode, after primary opcode.
  1685     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1686   %}
  1688   enc_class Con8or32 (immI imm) %{    // Con8or32(storeImmI), 8 or 32 bits
  1689     // Check for 8-bit immediate, and set sign extend bit in opcode
  1690     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1691       $$$emit8$imm$$constant;
  1693     else {                          // If 32-bit immediate
  1694       // Output immediate
  1695       $$$emit32$imm$$constant;
  1697   %}
  1699   enc_class Long_OpcSErm_Lo(eRegL dst, immL imm) %{
  1700     // Emit primary opcode and set sign-extend bit
  1701     // Check for 8-bit immediate, and set sign extend bit in opcode
  1702     int con = (int)$imm$$constant; // Throw away top bits
  1703     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
  1704     // Emit r/m byte with secondary opcode, after primary opcode.
  1705     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1706     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
  1707     else                               emit_d32(cbuf,con);
  1708   %}
  1710   enc_class Long_OpcSErm_Hi(eRegL dst, immL imm) %{
  1711     // Emit primary opcode and set sign-extend bit
  1712     // Check for 8-bit immediate, and set sign extend bit in opcode
  1713     int con = (int)($imm$$constant >> 32); // Throw away bottom bits
  1714     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
  1715     // Emit r/m byte with tertiary opcode, after primary opcode.
  1716     emit_rm(cbuf, 0x3, $tertiary, HIGH_FROM_LOW($dst$$reg));
  1717     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
  1718     else                               emit_d32(cbuf,con);
  1719   %}
  1721   enc_class OpcSReg (eRegI dst) %{    // BSWAP
  1722     emit_cc(cbuf, $secondary, $dst$$reg );
  1723   %}
  1725   enc_class bswap_long_bytes(eRegL dst) %{ // BSWAP
  1726     int destlo = $dst$$reg;
  1727     int desthi = HIGH_FROM_LOW(destlo);
  1728     // bswap lo
  1729     emit_opcode(cbuf, 0x0F);
  1730     emit_cc(cbuf, 0xC8, destlo);
  1731     // bswap hi
  1732     emit_opcode(cbuf, 0x0F);
  1733     emit_cc(cbuf, 0xC8, desthi);
  1734     // xchg lo and hi
  1735     emit_opcode(cbuf, 0x87);
  1736     emit_rm(cbuf, 0x3, destlo, desthi);
  1737   %}
  1739   enc_class RegOpc (eRegI div) %{    // IDIV, IMOD, JMP indirect, ...
  1740     emit_rm(cbuf, 0x3, $secondary, $div$$reg );
  1741   %}
  1743   enc_class enc_cmov(cmpOp cop ) %{ // CMOV
  1744     $$$emit8$primary;
  1745     emit_cc(cbuf, $secondary, $cop$$cmpcode);
  1746   %}
  1748   enc_class enc_cmov_d(cmpOp cop, regD src ) %{ // CMOV
  1749     int op = 0xDA00 + $cop$$cmpcode + ($src$$reg-1);
  1750     emit_d8(cbuf, op >> 8 );
  1751     emit_d8(cbuf, op & 255);
  1752   %}
  1754   // emulate a CMOV with a conditional branch around a MOV
  1755   enc_class enc_cmov_branch( cmpOp cop, immI brOffs ) %{ // CMOV
  1756     // Invert sense of branch from sense of CMOV
  1757     emit_cc( cbuf, 0x70, ($cop$$cmpcode^1) );
  1758     emit_d8( cbuf, $brOffs$$constant );
  1759   %}
  1761   enc_class enc_PartialSubtypeCheck( ) %{
  1762     Register Redi = as_Register(EDI_enc); // result register
  1763     Register Reax = as_Register(EAX_enc); // super class
  1764     Register Recx = as_Register(ECX_enc); // killed
  1765     Register Resi = as_Register(ESI_enc); // sub class
  1766     Label miss;
  1768     MacroAssembler _masm(&cbuf);
  1769     __ check_klass_subtype_slow_path(Resi, Reax, Recx, Redi,
  1770                                      NULL, &miss,
  1771                                      /*set_cond_codes:*/ true);
  1772     if ($primary) {
  1773       __ xorptr(Redi, Redi);
  1775     __ bind(miss);
  1776   %}
  1778   enc_class FFree_Float_Stack_All %{    // Free_Float_Stack_All
  1779     MacroAssembler masm(&cbuf);
  1780     int start = masm.offset();
  1781     if (UseSSE >= 2) {
  1782       if (VerifyFPU) {
  1783         masm.verify_FPU(0, "must be empty in SSE2+ mode");
  1785     } else {
  1786       // External c_calling_convention expects the FPU stack to be 'clean'.
  1787       // Compiled code leaves it dirty.  Do cleanup now.
  1788       masm.empty_FPU_stack();
  1790     if (sizeof_FFree_Float_Stack_All == -1) {
  1791       sizeof_FFree_Float_Stack_All = masm.offset() - start;
  1792     } else {
  1793       assert(masm.offset() - start == sizeof_FFree_Float_Stack_All, "wrong size");
  1795   %}
  1797   enc_class Verify_FPU_For_Leaf %{
  1798     if( VerifyFPU ) {
  1799       MacroAssembler masm(&cbuf);
  1800       masm.verify_FPU( -3, "Returning from Runtime Leaf call");
  1802   %}
  1804   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime, Java_To_Runtime_Leaf
  1805     // This is the instruction starting address for relocation info.
  1806     cbuf.set_insts_mark();
  1807     $$$emit8$primary;
  1808     // CALL directly to the runtime
  1809     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1810                 runtime_call_Relocation::spec(), RELOC_IMM32 );
  1812     if (UseSSE >= 2) {
  1813       MacroAssembler _masm(&cbuf);
  1814       BasicType rt = tf()->return_type();
  1816       if ((rt == T_FLOAT || rt == T_DOUBLE) && !return_value_is_used()) {
  1817         // A C runtime call where the return value is unused.  In SSE2+
  1818         // mode the result needs to be removed from the FPU stack.  It's
  1819         // likely that this function call could be removed by the
  1820         // optimizer if the C function is a pure function.
  1821         __ ffree(0);
  1822       } else if (rt == T_FLOAT) {
  1823         __ lea(rsp, Address(rsp, -4));
  1824         __ fstp_s(Address(rsp, 0));
  1825         __ movflt(xmm0, Address(rsp, 0));
  1826         __ lea(rsp, Address(rsp,  4));
  1827       } else if (rt == T_DOUBLE) {
  1828         __ lea(rsp, Address(rsp, -8));
  1829         __ fstp_d(Address(rsp, 0));
  1830         __ movdbl(xmm0, Address(rsp, 0));
  1831         __ lea(rsp, Address(rsp,  8));
  1834   %}
  1837   enc_class pre_call_FPU %{
  1838     // If method sets FPU control word restore it here
  1839     debug_only(int off0 = cbuf.insts_size());
  1840     if( Compile::current()->in_24_bit_fp_mode() ) {
  1841       MacroAssembler masm(&cbuf);
  1842       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  1844     debug_only(int off1 = cbuf.insts_size());
  1845     assert(off1 - off0 == pre_call_FPU_size(), "correct size prediction");
  1846   %}
  1848   enc_class post_call_FPU %{
  1849     // If method sets FPU control word do it here also
  1850     if( Compile::current()->in_24_bit_fp_mode() ) {
  1851       MacroAssembler masm(&cbuf);
  1852       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
  1854   %}
  1856   enc_class preserve_SP %{
  1857     debug_only(int off0 = cbuf.insts_size());
  1858     MacroAssembler _masm(&cbuf);
  1859     // RBP is preserved across all calls, even compiled calls.
  1860     // Use it to preserve RSP in places where the callee might change the SP.
  1861     __ movptr(rbp_mh_SP_save, rsp);
  1862     debug_only(int off1 = cbuf.insts_size());
  1863     assert(off1 - off0 == preserve_SP_size(), "correct size prediction");
  1864   %}
  1866   enc_class restore_SP %{
  1867     MacroAssembler _masm(&cbuf);
  1868     __ movptr(rsp, rbp_mh_SP_save);
  1869   %}
  1871   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  1872     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  1873     // who we intended to call.
  1874     cbuf.set_insts_mark();
  1875     $$$emit8$primary;
  1876     if ( !_method ) {
  1877       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1878                      runtime_call_Relocation::spec(), RELOC_IMM32 );
  1879     } else if(_optimized_virtual) {
  1880       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1881                      opt_virtual_call_Relocation::spec(), RELOC_IMM32 );
  1882     } else {
  1883       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1884                      static_call_Relocation::spec(), RELOC_IMM32 );
  1886     if( _method ) {  // Emit stub for static call
  1887       emit_java_to_interp(cbuf);
  1889   %}
  1891   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  1892     // !!!!!
  1893     // Generate  "Mov EAX,0x00", placeholder instruction to load oop-info
  1894     // emit_call_dynamic_prologue( cbuf );
  1895     cbuf.set_insts_mark();
  1896     emit_opcode(cbuf, 0xB8 + EAX_enc);        // mov    EAX,-1
  1897     emit_d32_reloc(cbuf, (int)Universe::non_oop_word(), oop_Relocation::spec_for_immediate(), RELOC_IMM32);
  1898     address  virtual_call_oop_addr = cbuf.insts_mark();
  1899     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  1900     // who we intended to call.
  1901     cbuf.set_insts_mark();
  1902     $$$emit8$primary;
  1903     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1904                 virtual_call_Relocation::spec(virtual_call_oop_addr), RELOC_IMM32 );
  1905   %}
  1907   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  1908     int disp = in_bytes(methodOopDesc::from_compiled_offset());
  1909     assert( -128 <= disp && disp <= 127, "compiled_code_offset isn't small");
  1911     // CALL *[EAX+in_bytes(methodOopDesc::from_compiled_code_entry_point_offset())]
  1912     cbuf.set_insts_mark();
  1913     $$$emit8$primary;
  1914     emit_rm(cbuf, 0x01, $secondary, EAX_enc );  // R/M byte
  1915     emit_d8(cbuf, disp);             // Displacement
  1917   %}
  1919   enc_class Xor_Reg (eRegI dst) %{
  1920     emit_opcode(cbuf, 0x33);
  1921     emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
  1922   %}
  1924 //   Following encoding is no longer used, but may be restored if calling
  1925 //   convention changes significantly.
  1926 //   Became: Xor_Reg(EBP), Java_To_Runtime( labl )
  1927 //
  1928 //   enc_class Java_Interpreter_Call (label labl) %{    // JAVA INTERPRETER CALL
  1929 //     // int ic_reg     = Matcher::inline_cache_reg();
  1930 //     // int ic_encode  = Matcher::_regEncode[ic_reg];
  1931 //     // int imo_reg    = Matcher::interpreter_method_oop_reg();
  1932 //     // int imo_encode = Matcher::_regEncode[imo_reg];
  1933 //
  1934 //     // // Interpreter expects method_oop in EBX, currently a callee-saved register,
  1935 //     // // so we load it immediately before the call
  1936 //     // emit_opcode(cbuf, 0x8B);                     // MOV    imo_reg,ic_reg  # method_oop
  1937 //     // emit_rm(cbuf, 0x03, imo_encode, ic_encode ); // R/M byte
  1938 //
  1939 //     // xor rbp,ebp
  1940 //     emit_opcode(cbuf, 0x33);
  1941 //     emit_rm(cbuf, 0x3, EBP_enc, EBP_enc);
  1942 //
  1943 //     // CALL to interpreter.
  1944 //     cbuf.set_insts_mark();
  1945 //     $$$emit8$primary;
  1946 //     emit_d32_reloc(cbuf, ($labl$$label - (int)(cbuf.insts_end()) - 4),
  1947 //                 runtime_call_Relocation::spec(), RELOC_IMM32 );
  1948 //   %}
  1950   enc_class RegOpcImm (eRegI dst, immI8 shift) %{    // SHL, SAR, SHR
  1951     $$$emit8$primary;
  1952     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1953     $$$emit8$shift$$constant;
  1954   %}
  1956   enc_class LdImmI (eRegI dst, immI src) %{    // Load Immediate
  1957     // Load immediate does not have a zero or sign extended version
  1958     // for 8-bit immediates
  1959     emit_opcode(cbuf, 0xB8 + $dst$$reg);
  1960     $$$emit32$src$$constant;
  1961   %}
  1963   enc_class LdImmP (eRegI dst, immI src) %{    // Load Immediate
  1964     // Load immediate does not have a zero or sign extended version
  1965     // for 8-bit immediates
  1966     emit_opcode(cbuf, $primary + $dst$$reg);
  1967     $$$emit32$src$$constant;
  1968   %}
  1970   enc_class LdImmL_Lo( eRegL dst, immL src) %{    // Load Immediate
  1971     // Load immediate does not have a zero or sign extended version
  1972     // for 8-bit immediates
  1973     int dst_enc = $dst$$reg;
  1974     int src_con = $src$$constant & 0x0FFFFFFFFL;
  1975     if (src_con == 0) {
  1976       // xor dst, dst
  1977       emit_opcode(cbuf, 0x33);
  1978       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
  1979     } else {
  1980       emit_opcode(cbuf, $primary + dst_enc);
  1981       emit_d32(cbuf, src_con);
  1983   %}
  1985   enc_class LdImmL_Hi( eRegL dst, immL src) %{    // Load Immediate
  1986     // Load immediate does not have a zero or sign extended version
  1987     // for 8-bit immediates
  1988     int dst_enc = $dst$$reg + 2;
  1989     int src_con = ((julong)($src$$constant)) >> 32;
  1990     if (src_con == 0) {
  1991       // xor dst, dst
  1992       emit_opcode(cbuf, 0x33);
  1993       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
  1994     } else {
  1995       emit_opcode(cbuf, $primary + dst_enc);
  1996       emit_d32(cbuf, src_con);
  1998   %}
  2001   enc_class MovI2X_reg(regX dst, eRegI src) %{
  2002     emit_opcode(cbuf, 0x66 );     // MOVD dst,src
  2003     emit_opcode(cbuf, 0x0F );
  2004     emit_opcode(cbuf, 0x6E );
  2005     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2006   %}
  2008   enc_class MovX2I_reg(eRegI dst, regX src) %{
  2009     emit_opcode(cbuf, 0x66 );     // MOVD dst,src
  2010     emit_opcode(cbuf, 0x0F );
  2011     emit_opcode(cbuf, 0x7E );
  2012     emit_rm(cbuf, 0x3, $src$$reg, $dst$$reg);
  2013   %}
  2015   enc_class MovL2XD_reg(regXD dst, eRegL src, regXD tmp) %{
  2016     { // MOVD $dst,$src.lo
  2017       emit_opcode(cbuf,0x66);
  2018       emit_opcode(cbuf,0x0F);
  2019       emit_opcode(cbuf,0x6E);
  2020       emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2022     { // MOVD $tmp,$src.hi
  2023       emit_opcode(cbuf,0x66);
  2024       emit_opcode(cbuf,0x0F);
  2025       emit_opcode(cbuf,0x6E);
  2026       emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
  2028     { // PUNPCKLDQ $dst,$tmp
  2029       emit_opcode(cbuf,0x66);
  2030       emit_opcode(cbuf,0x0F);
  2031       emit_opcode(cbuf,0x62);
  2032       emit_rm(cbuf, 0x3, $dst$$reg, $tmp$$reg);
  2034   %}
  2036   enc_class MovXD2L_reg(eRegL dst, regXD src, regXD tmp) %{
  2037     { // MOVD $dst.lo,$src
  2038       emit_opcode(cbuf,0x66);
  2039       emit_opcode(cbuf,0x0F);
  2040       emit_opcode(cbuf,0x7E);
  2041       emit_rm(cbuf, 0x3, $src$$reg, $dst$$reg);
  2043     { // PSHUFLW $tmp,$src,0x4E  (01001110b)
  2044       emit_opcode(cbuf,0xF2);
  2045       emit_opcode(cbuf,0x0F);
  2046       emit_opcode(cbuf,0x70);
  2047       emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
  2048       emit_d8(cbuf, 0x4E);
  2050     { // MOVD $dst.hi,$tmp
  2051       emit_opcode(cbuf,0x66);
  2052       emit_opcode(cbuf,0x0F);
  2053       emit_opcode(cbuf,0x7E);
  2054       emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg));
  2056   %}
  2059   // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2060   enc_class enc_Copy( eRegI dst, eRegI src ) %{
  2061     encode_Copy( cbuf, $dst$$reg, $src$$reg );
  2062   %}
  2064   enc_class enc_CopyL_Lo( eRegI dst, eRegL src ) %{
  2065     encode_Copy( cbuf, $dst$$reg, $src$$reg );
  2066   %}
  2068   // Encode xmm reg-reg copy.  If it is useless, then empty encoding.
  2069   enc_class enc_CopyXD( RegXD dst, RegXD src ) %{
  2070     encode_CopyXD( cbuf, $dst$$reg, $src$$reg );
  2071   %}
  2073   enc_class RegReg (eRegI dst, eRegI src) %{    // RegReg(Many)
  2074     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2075   %}
  2077   enc_class RegReg_Lo(eRegL dst, eRegL src) %{    // RegReg(Many)
  2078     $$$emit8$primary;
  2079     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2080   %}
  2082   enc_class RegReg_Hi(eRegL dst, eRegL src) %{    // RegReg(Many)
  2083     $$$emit8$secondary;
  2084     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
  2085   %}
  2087   enc_class RegReg_Lo2(eRegL dst, eRegL src) %{    // RegReg(Many)
  2088     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2089   %}
  2091   enc_class RegReg_Hi2(eRegL dst, eRegL src) %{    // RegReg(Many)
  2092     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
  2093   %}
  2095   enc_class RegReg_HiLo( eRegL src, eRegI dst ) %{
  2096     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($src$$reg));
  2097   %}
  2099   enc_class Con32 (immI src) %{    // Con32(storeImmI)
  2100     // Output immediate
  2101     $$$emit32$src$$constant;
  2102   %}
  2104   enc_class Con32F_as_bits(immF src) %{        // storeF_imm
  2105     // Output Float immediate bits
  2106     jfloat jf = $src$$constant;
  2107     int    jf_as_bits = jint_cast( jf );
  2108     emit_d32(cbuf, jf_as_bits);
  2109   %}
  2111   enc_class Con32XF_as_bits(immXF src) %{      // storeX_imm
  2112     // Output Float immediate bits
  2113     jfloat jf = $src$$constant;
  2114     int    jf_as_bits = jint_cast( jf );
  2115     emit_d32(cbuf, jf_as_bits);
  2116   %}
  2118   enc_class Con16 (immI src) %{    // Con16(storeImmI)
  2119     // Output immediate
  2120     $$$emit16$src$$constant;
  2121   %}
  2123   enc_class Con_d32(immI src) %{
  2124     emit_d32(cbuf,$src$$constant);
  2125   %}
  2127   enc_class conmemref (eRegP t1) %{    // Con32(storeImmI)
  2128     // Output immediate memory reference
  2129     emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
  2130     emit_d32(cbuf, 0x00);
  2131   %}
  2133   enc_class lock_prefix( ) %{
  2134     if( os::is_MP() )
  2135       emit_opcode(cbuf,0xF0);         // [Lock]
  2136   %}
  2138   // Cmp-xchg long value.
  2139   // Note: we need to swap rbx, and rcx before and after the
  2140   //       cmpxchg8 instruction because the instruction uses
  2141   //       rcx as the high order word of the new value to store but
  2142   //       our register encoding uses rbx,.
  2143   enc_class enc_cmpxchg8(eSIRegP mem_ptr) %{
  2145     // XCHG  rbx,ecx
  2146     emit_opcode(cbuf,0x87);
  2147     emit_opcode(cbuf,0xD9);
  2148     // [Lock]
  2149     if( os::is_MP() )
  2150       emit_opcode(cbuf,0xF0);
  2151     // CMPXCHG8 [Eptr]
  2152     emit_opcode(cbuf,0x0F);
  2153     emit_opcode(cbuf,0xC7);
  2154     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
  2155     // XCHG  rbx,ecx
  2156     emit_opcode(cbuf,0x87);
  2157     emit_opcode(cbuf,0xD9);
  2158   %}
  2160   enc_class enc_cmpxchg(eSIRegP mem_ptr) %{
  2161     // [Lock]
  2162     if( os::is_MP() )
  2163       emit_opcode(cbuf,0xF0);
  2165     // CMPXCHG [Eptr]
  2166     emit_opcode(cbuf,0x0F);
  2167     emit_opcode(cbuf,0xB1);
  2168     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
  2169   %}
  2171   enc_class enc_flags_ne_to_boolean( iRegI res ) %{
  2172     int res_encoding = $res$$reg;
  2174     // MOV  res,0
  2175     emit_opcode( cbuf, 0xB8 + res_encoding);
  2176     emit_d32( cbuf, 0 );
  2177     // JNE,s  fail
  2178     emit_opcode(cbuf,0x75);
  2179     emit_d8(cbuf, 5 );
  2180     // MOV  res,1
  2181     emit_opcode( cbuf, 0xB8 + res_encoding);
  2182     emit_d32( cbuf, 1 );
  2183     // fail:
  2184   %}
  2186   enc_class set_instruction_start( ) %{
  2187     cbuf.set_insts_mark();            // Mark start of opcode for reloc info in mem operand
  2188   %}
  2190   enc_class RegMem (eRegI ereg, memory mem) %{    // emit_reg_mem
  2191     int reg_encoding = $ereg$$reg;
  2192     int base  = $mem$$base;
  2193     int index = $mem$$index;
  2194     int scale = $mem$$scale;
  2195     int displace = $mem$$disp;
  2196     bool disp_is_oop = $mem->disp_is_oop();
  2197     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2198   %}
  2200   enc_class RegMem_Hi(eRegL ereg, memory mem) %{    // emit_reg_mem
  2201     int reg_encoding = HIGH_FROM_LOW($ereg$$reg);  // Hi register of pair, computed from lo
  2202     int base  = $mem$$base;
  2203     int index = $mem$$index;
  2204     int scale = $mem$$scale;
  2205     int displace = $mem$$disp + 4;      // Offset is 4 further in memory
  2206     assert( !$mem->disp_is_oop(), "Cannot add 4 to oop" );
  2207     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, false/*disp_is_oop*/);
  2208   %}
  2210   enc_class move_long_small_shift( eRegL dst, immI_1_31 cnt ) %{
  2211     int r1, r2;
  2212     if( $tertiary == 0xA4 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
  2213     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
  2214     emit_opcode(cbuf,0x0F);
  2215     emit_opcode(cbuf,$tertiary);
  2216     emit_rm(cbuf, 0x3, r1, r2);
  2217     emit_d8(cbuf,$cnt$$constant);
  2218     emit_d8(cbuf,$primary);
  2219     emit_rm(cbuf, 0x3, $secondary, r1);
  2220     emit_d8(cbuf,$cnt$$constant);
  2221   %}
  2223   enc_class move_long_big_shift_sign( eRegL dst, immI_32_63 cnt ) %{
  2224     emit_opcode( cbuf, 0x8B ); // Move
  2225     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
  2226     if( $cnt$$constant > 32 ) { // Shift, if not by zero
  2227       emit_d8(cbuf,$primary);
  2228       emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  2229       emit_d8(cbuf,$cnt$$constant-32);
  2231     emit_d8(cbuf,$primary);
  2232     emit_rm(cbuf, 0x3, $secondary, HIGH_FROM_LOW($dst$$reg));
  2233     emit_d8(cbuf,31);
  2234   %}
  2236   enc_class move_long_big_shift_clr( eRegL dst, immI_32_63 cnt ) %{
  2237     int r1, r2;
  2238     if( $secondary == 0x5 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
  2239     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
  2241     emit_opcode( cbuf, 0x8B ); // Move r1,r2
  2242     emit_rm(cbuf, 0x3, r1, r2);
  2243     if( $cnt$$constant > 32 ) { // Shift, if not by zero
  2244       emit_opcode(cbuf,$primary);
  2245       emit_rm(cbuf, 0x3, $secondary, r1);
  2246       emit_d8(cbuf,$cnt$$constant-32);
  2248     emit_opcode(cbuf,0x33);  // XOR r2,r2
  2249     emit_rm(cbuf, 0x3, r2, r2);
  2250   %}
  2252   // Clone of RegMem but accepts an extra parameter to access each
  2253   // half of a double in memory; it never needs relocation info.
  2254   enc_class Mov_MemD_half_to_Reg (immI opcode, memory mem, immI disp_for_half, eRegI rm_reg) %{
  2255     emit_opcode(cbuf,$opcode$$constant);
  2256     int reg_encoding = $rm_reg$$reg;
  2257     int base     = $mem$$base;
  2258     int index    = $mem$$index;
  2259     int scale    = $mem$$scale;
  2260     int displace = $mem$$disp + $disp_for_half$$constant;
  2261     bool disp_is_oop = false;
  2262     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2263   %}
  2265   // !!!!! Special Custom Code used by MemMove, and stack access instructions !!!!!
  2266   //
  2267   // Clone of RegMem except the RM-byte's reg/opcode field is an ADLC-time constant
  2268   // and it never needs relocation information.
  2269   // Frequently used to move data between FPU's Stack Top and memory.
  2270   enc_class RMopc_Mem_no_oop (immI rm_opcode, memory mem) %{
  2271     int rm_byte_opcode = $rm_opcode$$constant;
  2272     int base     = $mem$$base;
  2273     int index    = $mem$$index;
  2274     int scale    = $mem$$scale;
  2275     int displace = $mem$$disp;
  2276     assert( !$mem->disp_is_oop(), "No oops here because no relo info allowed" );
  2277     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, false);
  2278   %}
  2280   enc_class RMopc_Mem (immI rm_opcode, memory mem) %{
  2281     int rm_byte_opcode = $rm_opcode$$constant;
  2282     int base     = $mem$$base;
  2283     int index    = $mem$$index;
  2284     int scale    = $mem$$scale;
  2285     int displace = $mem$$disp;
  2286     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  2287     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
  2288   %}
  2290   enc_class RegLea (eRegI dst, eRegI src0, immI src1 ) %{    // emit_reg_lea
  2291     int reg_encoding = $dst$$reg;
  2292     int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
  2293     int index        = 0x04;            // 0x04 indicates no index
  2294     int scale        = 0x00;            // 0x00 indicates no scale
  2295     int displace     = $src1$$constant; // 0x00 indicates no displacement
  2296     bool disp_is_oop = false;
  2297     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2298   %}
  2300   enc_class min_enc (eRegI dst, eRegI src) %{    // MIN
  2301     // Compare dst,src
  2302     emit_opcode(cbuf,0x3B);
  2303     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2304     // jmp dst < src around move
  2305     emit_opcode(cbuf,0x7C);
  2306     emit_d8(cbuf,2);
  2307     // move dst,src
  2308     emit_opcode(cbuf,0x8B);
  2309     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2310   %}
  2312   enc_class max_enc (eRegI dst, eRegI src) %{    // MAX
  2313     // Compare dst,src
  2314     emit_opcode(cbuf,0x3B);
  2315     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2316     // jmp dst > src around move
  2317     emit_opcode(cbuf,0x7F);
  2318     emit_d8(cbuf,2);
  2319     // move dst,src
  2320     emit_opcode(cbuf,0x8B);
  2321     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2322   %}
  2324   enc_class enc_FP_store(memory mem, regD src) %{
  2325     // If src is FPR1, we can just FST to store it.
  2326     // Else we need to FLD it to FPR1, then FSTP to store/pop it.
  2327     int reg_encoding = 0x2; // Just store
  2328     int base  = $mem$$base;
  2329     int index = $mem$$index;
  2330     int scale = $mem$$scale;
  2331     int displace = $mem$$disp;
  2332     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  2333     if( $src$$reg != FPR1L_enc ) {
  2334       reg_encoding = 0x3;  // Store & pop
  2335       emit_opcode( cbuf, 0xD9 ); // FLD (i.e., push it)
  2336       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2338     cbuf.set_insts_mark();       // Mark start of opcode for reloc info in mem operand
  2339     emit_opcode(cbuf,$primary);
  2340     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2341   %}
  2343   enc_class neg_reg(eRegI dst) %{
  2344     // NEG $dst
  2345     emit_opcode(cbuf,0xF7);
  2346     emit_rm(cbuf, 0x3, 0x03, $dst$$reg );
  2347   %}
  2349   enc_class setLT_reg(eCXRegI dst) %{
  2350     // SETLT $dst
  2351     emit_opcode(cbuf,0x0F);
  2352     emit_opcode(cbuf,0x9C);
  2353     emit_rm( cbuf, 0x3, 0x4, $dst$$reg );
  2354   %}
  2356   enc_class enc_cmpLTP(ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp) %{    // cadd_cmpLT
  2357     int tmpReg = $tmp$$reg;
  2359     // SUB $p,$q
  2360     emit_opcode(cbuf,0x2B);
  2361     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
  2362     // SBB $tmp,$tmp
  2363     emit_opcode(cbuf,0x1B);
  2364     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
  2365     // AND $tmp,$y
  2366     emit_opcode(cbuf,0x23);
  2367     emit_rm(cbuf, 0x3, tmpReg, $y$$reg);
  2368     // ADD $p,$tmp
  2369     emit_opcode(cbuf,0x03);
  2370     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
  2371   %}
  2373   enc_class enc_cmpLTP_mem(eRegI p, eRegI q, memory mem, eCXRegI tmp) %{    // cadd_cmpLT
  2374     int tmpReg = $tmp$$reg;
  2376     // SUB $p,$q
  2377     emit_opcode(cbuf,0x2B);
  2378     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
  2379     // SBB $tmp,$tmp
  2380     emit_opcode(cbuf,0x1B);
  2381     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
  2382     // AND $tmp,$y
  2383     cbuf.set_insts_mark();       // Mark start of opcode for reloc info in mem operand
  2384     emit_opcode(cbuf,0x23);
  2385     int reg_encoding = tmpReg;
  2386     int base  = $mem$$base;
  2387     int index = $mem$$index;
  2388     int scale = $mem$$scale;
  2389     int displace = $mem$$disp;
  2390     bool disp_is_oop = $mem->disp_is_oop();
  2391     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2392     // ADD $p,$tmp
  2393     emit_opcode(cbuf,0x03);
  2394     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
  2395   %}
  2397   enc_class shift_left_long( eRegL dst, eCXRegI shift ) %{
  2398     // TEST shift,32
  2399     emit_opcode(cbuf,0xF7);
  2400     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2401     emit_d32(cbuf,0x20);
  2402     // JEQ,s small
  2403     emit_opcode(cbuf, 0x74);
  2404     emit_d8(cbuf, 0x04);
  2405     // MOV    $dst.hi,$dst.lo
  2406     emit_opcode( cbuf, 0x8B );
  2407     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
  2408     // CLR    $dst.lo
  2409     emit_opcode(cbuf, 0x33);
  2410     emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
  2411 // small:
  2412     // SHLD   $dst.hi,$dst.lo,$shift
  2413     emit_opcode(cbuf,0x0F);
  2414     emit_opcode(cbuf,0xA5);
  2415     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
  2416     // SHL    $dst.lo,$shift"
  2417     emit_opcode(cbuf,0xD3);
  2418     emit_rm(cbuf, 0x3, 0x4, $dst$$reg );
  2419   %}
  2421   enc_class shift_right_long( eRegL dst, eCXRegI shift ) %{
  2422     // TEST shift,32
  2423     emit_opcode(cbuf,0xF7);
  2424     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2425     emit_d32(cbuf,0x20);
  2426     // JEQ,s small
  2427     emit_opcode(cbuf, 0x74);
  2428     emit_d8(cbuf, 0x04);
  2429     // MOV    $dst.lo,$dst.hi
  2430     emit_opcode( cbuf, 0x8B );
  2431     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
  2432     // CLR    $dst.hi
  2433     emit_opcode(cbuf, 0x33);
  2434     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($dst$$reg));
  2435 // small:
  2436     // SHRD   $dst.lo,$dst.hi,$shift
  2437     emit_opcode(cbuf,0x0F);
  2438     emit_opcode(cbuf,0xAD);
  2439     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
  2440     // SHR    $dst.hi,$shift"
  2441     emit_opcode(cbuf,0xD3);
  2442     emit_rm(cbuf, 0x3, 0x5, HIGH_FROM_LOW($dst$$reg) );
  2443   %}
  2445   enc_class shift_right_arith_long( eRegL dst, eCXRegI shift ) %{
  2446     // TEST shift,32
  2447     emit_opcode(cbuf,0xF7);
  2448     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2449     emit_d32(cbuf,0x20);
  2450     // JEQ,s small
  2451     emit_opcode(cbuf, 0x74);
  2452     emit_d8(cbuf, 0x05);
  2453     // MOV    $dst.lo,$dst.hi
  2454     emit_opcode( cbuf, 0x8B );
  2455     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
  2456     // SAR    $dst.hi,31
  2457     emit_opcode(cbuf, 0xC1);
  2458     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW($dst$$reg) );
  2459     emit_d8(cbuf, 0x1F );
  2460 // small:
  2461     // SHRD   $dst.lo,$dst.hi,$shift
  2462     emit_opcode(cbuf,0x0F);
  2463     emit_opcode(cbuf,0xAD);
  2464     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
  2465     // SAR    $dst.hi,$shift"
  2466     emit_opcode(cbuf,0xD3);
  2467     emit_rm(cbuf, 0x3, 0x7, HIGH_FROM_LOW($dst$$reg) );
  2468   %}
  2471   // ----------------- Encodings for floating point unit -----------------
  2472   // May leave result in FPU-TOS or FPU reg depending on opcodes
  2473   enc_class OpcReg_F (regF src) %{    // FMUL, FDIV
  2474     $$$emit8$primary;
  2475     emit_rm(cbuf, 0x3, $secondary, $src$$reg );
  2476   %}
  2478   // Pop argument in FPR0 with FSTP ST(0)
  2479   enc_class PopFPU() %{
  2480     emit_opcode( cbuf, 0xDD );
  2481     emit_d8( cbuf, 0xD8 );
  2482   %}
  2484   // !!!!! equivalent to Pop_Reg_F
  2485   enc_class Pop_Reg_D( regD dst ) %{
  2486     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
  2487     emit_d8( cbuf, 0xD8+$dst$$reg );
  2488   %}
  2490   enc_class Push_Reg_D( regD dst ) %{
  2491     emit_opcode( cbuf, 0xD9 );
  2492     emit_d8( cbuf, 0xC0-1+$dst$$reg );   // FLD ST(i-1)
  2493   %}
  2495   enc_class strictfp_bias1( regD dst ) %{
  2496     emit_opcode( cbuf, 0xDB );           // FLD m80real
  2497     emit_opcode( cbuf, 0x2D );
  2498     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias1() );
  2499     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
  2500     emit_opcode( cbuf, 0xC8+$dst$$reg );
  2501   %}
  2503   enc_class strictfp_bias2( regD dst ) %{
  2504     emit_opcode( cbuf, 0xDB );           // FLD m80real
  2505     emit_opcode( cbuf, 0x2D );
  2506     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias2() );
  2507     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
  2508     emit_opcode( cbuf, 0xC8+$dst$$reg );
  2509   %}
  2511   // Special case for moving an integer register to a stack slot.
  2512   enc_class OpcPRegSS( stackSlotI dst, eRegI src ) %{ // RegSS
  2513     store_to_stackslot( cbuf, $primary, $src$$reg, $dst$$disp );
  2514   %}
  2516   // Special case for moving a register to a stack slot.
  2517   enc_class RegSS( stackSlotI dst, eRegI src ) %{ // RegSS
  2518     // Opcode already emitted
  2519     emit_rm( cbuf, 0x02, $src$$reg, ESP_enc );   // R/M byte
  2520     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);          // SIB byte
  2521     emit_d32(cbuf, $dst$$disp);   // Displacement
  2522   %}
  2524   // Push the integer in stackSlot 'src' onto FP-stack
  2525   enc_class Push_Mem_I( memory src ) %{    // FILD   [ESP+src]
  2526     store_to_stackslot( cbuf, $primary, $secondary, $src$$disp );
  2527   %}
  2529   // Push the float in stackSlot 'src' onto FP-stack
  2530   enc_class Push_Mem_F( memory src ) %{    // FLD_S   [ESP+src]
  2531     store_to_stackslot( cbuf, 0xD9, 0x00, $src$$disp );
  2532   %}
  2534   // Push the double in stackSlot 'src' onto FP-stack
  2535   enc_class Push_Mem_D( memory src ) %{    // FLD_D   [ESP+src]
  2536     store_to_stackslot( cbuf, 0xDD, 0x00, $src$$disp );
  2537   %}
  2539   // Push FPU's TOS float to a stack-slot, and pop FPU-stack
  2540   enc_class Pop_Mem_F( stackSlotF dst ) %{ // FSTP_S [ESP+dst]
  2541     store_to_stackslot( cbuf, 0xD9, 0x03, $dst$$disp );
  2542   %}
  2544   // Same as Pop_Mem_F except for opcode
  2545   // Push FPU's TOS double to a stack-slot, and pop FPU-stack
  2546   enc_class Pop_Mem_D( stackSlotD dst ) %{ // FSTP_D [ESP+dst]
  2547     store_to_stackslot( cbuf, 0xDD, 0x03, $dst$$disp );
  2548   %}
  2550   enc_class Pop_Reg_F( regF dst ) %{
  2551     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
  2552     emit_d8( cbuf, 0xD8+$dst$$reg );
  2553   %}
  2555   enc_class Push_Reg_F( regF dst ) %{
  2556     emit_opcode( cbuf, 0xD9 );           // FLD    ST(i-1)
  2557     emit_d8( cbuf, 0xC0-1+$dst$$reg );
  2558   %}
  2560   // Push FPU's float to a stack-slot, and pop FPU-stack
  2561   enc_class Pop_Mem_Reg_F( stackSlotF dst, regF src ) %{
  2562     int pop = 0x02;
  2563     if ($src$$reg != FPR1L_enc) {
  2564       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
  2565       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2566       pop = 0x03;
  2568     store_to_stackslot( cbuf, 0xD9, pop, $dst$$disp ); // FST<P>_S  [ESP+dst]
  2569   %}
  2571   // Push FPU's double to a stack-slot, and pop FPU-stack
  2572   enc_class Pop_Mem_Reg_D( stackSlotD dst, regD src ) %{
  2573     int pop = 0x02;
  2574     if ($src$$reg != FPR1L_enc) {
  2575       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
  2576       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2577       pop = 0x03;
  2579     store_to_stackslot( cbuf, 0xDD, pop, $dst$$disp ); // FST<P>_D  [ESP+dst]
  2580   %}
  2582   // Push FPU's double to a FPU-stack-slot, and pop FPU-stack
  2583   enc_class Pop_Reg_Reg_D( regD dst, regF src ) %{
  2584     int pop = 0xD0 - 1; // -1 since we skip FLD
  2585     if ($src$$reg != FPR1L_enc) {
  2586       emit_opcode( cbuf, 0xD9 );         // FLD    ST(src-1)
  2587       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2588       pop = 0xD8;
  2590     emit_opcode( cbuf, 0xDD );
  2591     emit_d8( cbuf, pop+$dst$$reg );      // FST<P> ST(i)
  2592   %}
  2595   enc_class Mul_Add_F( regF dst, regF src, regF src1, regF src2 ) %{
  2596     MacroAssembler masm(&cbuf);
  2597     masm.fld_s(  $src1$$reg-1);   // nothing at TOS, load TOS from src1.reg
  2598     masm.fmul(   $src2$$reg+0);   // value at TOS
  2599     masm.fadd(   $src$$reg+0);    // value at TOS
  2600     masm.fstp_d( $dst$$reg+0);    // value at TOS, popped off after store
  2601   %}
  2604   enc_class Push_Reg_Mod_D( regD dst, regD src) %{
  2605     // load dst in FPR0
  2606     emit_opcode( cbuf, 0xD9 );
  2607     emit_d8( cbuf, 0xC0-1+$dst$$reg );
  2608     if ($src$$reg != FPR1L_enc) {
  2609       // fincstp
  2610       emit_opcode (cbuf, 0xD9);
  2611       emit_opcode (cbuf, 0xF7);
  2612       // swap src with FPR1:
  2613       // FXCH FPR1 with src
  2614       emit_opcode(cbuf, 0xD9);
  2615       emit_d8(cbuf, 0xC8-1+$src$$reg );
  2616       // fdecstp
  2617       emit_opcode (cbuf, 0xD9);
  2618       emit_opcode (cbuf, 0xF6);
  2620   %}
  2622   enc_class Push_ModD_encoding( regXD src0, regXD src1) %{
  2623     // Allocate a word
  2624     emit_opcode(cbuf,0x83);            // SUB ESP,8
  2625     emit_opcode(cbuf,0xEC);
  2626     emit_d8(cbuf,0x08);
  2628     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src1
  2629     emit_opcode  (cbuf, 0x0F );
  2630     emit_opcode  (cbuf, 0x11 );
  2631     encode_RegMem(cbuf, $src1$$reg, ESP_enc, 0x4, 0, 0, false);
  2633     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
  2634     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2636     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src0
  2637     emit_opcode  (cbuf, 0x0F );
  2638     emit_opcode  (cbuf, 0x11 );
  2639     encode_RegMem(cbuf, $src0$$reg, ESP_enc, 0x4, 0, 0, false);
  2641     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
  2642     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2644   %}
  2646   enc_class Push_ModX_encoding( regX src0, regX src1) %{
  2647     // Allocate a word
  2648     emit_opcode(cbuf,0x83);            // SUB ESP,4
  2649     emit_opcode(cbuf,0xEC);
  2650     emit_d8(cbuf,0x04);
  2652     emit_opcode  (cbuf, 0xF3 );     // MOVSS [ESP], src1
  2653     emit_opcode  (cbuf, 0x0F );
  2654     emit_opcode  (cbuf, 0x11 );
  2655     encode_RegMem(cbuf, $src1$$reg, ESP_enc, 0x4, 0, 0, false);
  2657     emit_opcode(cbuf,0xD9 );      // FLD [ESP]
  2658     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2660     emit_opcode  (cbuf, 0xF3 );     // MOVSS [ESP], src0
  2661     emit_opcode  (cbuf, 0x0F );
  2662     emit_opcode  (cbuf, 0x11 );
  2663     encode_RegMem(cbuf, $src0$$reg, ESP_enc, 0x4, 0, 0, false);
  2665     emit_opcode(cbuf,0xD9 );      // FLD [ESP]
  2666     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2668   %}
  2670   enc_class Push_ResultXD(regXD dst) %{
  2671     store_to_stackslot( cbuf, 0xDD, 0x03, 0 ); //FSTP [ESP]
  2673     // UseXmmLoadAndClearUpper ? movsd dst,[esp] : movlpd dst,[esp]
  2674     emit_opcode  (cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  2675     emit_opcode  (cbuf, 0x0F );
  2676     emit_opcode  (cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  2677     encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
  2679     emit_opcode(cbuf,0x83);    // ADD ESP,8
  2680     emit_opcode(cbuf,0xC4);
  2681     emit_d8(cbuf,0x08);
  2682   %}
  2684   enc_class Push_ResultX(regX dst, immI d8) %{
  2685     store_to_stackslot( cbuf, 0xD9, 0x03, 0 ); //FSTP_S [ESP]
  2687     emit_opcode  (cbuf, 0xF3 );     // MOVSS dst(xmm), [ESP]
  2688     emit_opcode  (cbuf, 0x0F );
  2689     emit_opcode  (cbuf, 0x10 );
  2690     encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
  2692     emit_opcode(cbuf,0x83);    // ADD ESP,d8 (4 or 8)
  2693     emit_opcode(cbuf,0xC4);
  2694     emit_d8(cbuf,$d8$$constant);
  2695   %}
  2697   enc_class Push_SrcXD(regXD src) %{
  2698     // Allocate a word
  2699     emit_opcode(cbuf,0x83);            // SUB ESP,8
  2700     emit_opcode(cbuf,0xEC);
  2701     emit_d8(cbuf,0x08);
  2703     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src
  2704     emit_opcode  (cbuf, 0x0F );
  2705     emit_opcode  (cbuf, 0x11 );
  2706     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  2708     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
  2709     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2710   %}
  2712   enc_class push_stack_temp_qword() %{
  2713     emit_opcode(cbuf,0x83);     // SUB ESP,8
  2714     emit_opcode(cbuf,0xEC);
  2715     emit_d8    (cbuf,0x08);
  2716   %}
  2718   enc_class pop_stack_temp_qword() %{
  2719     emit_opcode(cbuf,0x83);     // ADD ESP,8
  2720     emit_opcode(cbuf,0xC4);
  2721     emit_d8    (cbuf,0x08);
  2722   %}
  2724   enc_class push_xmm_to_fpr1( regXD xmm_src ) %{
  2725     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], xmm_src
  2726     emit_opcode  (cbuf, 0x0F );
  2727     emit_opcode  (cbuf, 0x11 );
  2728     encode_RegMem(cbuf, $xmm_src$$reg, ESP_enc, 0x4, 0, 0, false);
  2730     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
  2731     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2732   %}
  2734   // Compute X^Y using Intel's fast hardware instructions, if possible.
  2735   // Otherwise return a NaN.
  2736   enc_class pow_exp_core_encoding %{
  2737     // FPR1 holds Y*ln2(X).  Compute FPR1 = 2^(Y*ln2(X))
  2738     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xC0);  // fdup = fld st(0)          Q       Q
  2739     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xFC);  // frndint               int(Q)      Q
  2740     emit_opcode(cbuf,0xDC); emit_opcode(cbuf,0xE9);  // fsub st(1) -= st(0);  int(Q) frac(Q)
  2741     emit_opcode(cbuf,0xDB);                          // FISTP [ESP]           frac(Q)
  2742     emit_opcode(cbuf,0x1C);
  2743     emit_d8(cbuf,0x24);
  2744     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xF0);  // f2xm1                 2^frac(Q)-1
  2745     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xE8);  // fld1                  1 2^frac(Q)-1
  2746     emit_opcode(cbuf,0xDE); emit_opcode(cbuf,0xC1);  // faddp                 2^frac(Q)
  2747     emit_opcode(cbuf,0x8B);                          // mov rax,[esp+0]=int(Q)
  2748     encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 0, false);
  2749     emit_opcode(cbuf,0xC7);                          // mov rcx,0xFFFFF800 - overflow mask
  2750     emit_rm(cbuf, 0x3, 0x0, ECX_enc);
  2751     emit_d32(cbuf,0xFFFFF800);
  2752     emit_opcode(cbuf,0x81);                          // add rax,1023 - the double exponent bias
  2753     emit_rm(cbuf, 0x3, 0x0, EAX_enc);
  2754     emit_d32(cbuf,1023);
  2755     emit_opcode(cbuf,0x8B);                          // mov rbx,eax
  2756     emit_rm(cbuf, 0x3, EBX_enc, EAX_enc);
  2757     emit_opcode(cbuf,0xC1);                          // shl rax,20 - Slide to exponent position
  2758     emit_rm(cbuf,0x3,0x4,EAX_enc);
  2759     emit_d8(cbuf,20);
  2760     emit_opcode(cbuf,0x85);                          // test rbx,ecx - check for overflow
  2761     emit_rm(cbuf, 0x3, EBX_enc, ECX_enc);
  2762     emit_opcode(cbuf,0x0F); emit_opcode(cbuf,0x45);  // CMOVne rax,ecx - overflow; stuff NAN into EAX
  2763     emit_rm(cbuf, 0x3, EAX_enc, ECX_enc);
  2764     emit_opcode(cbuf,0x89);                          // mov [esp+4],eax - Store as part of double word
  2765     encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 4, false);
  2766     emit_opcode(cbuf,0xC7);                          // mov [esp+0],0   - [ESP] = (double)(1<<int(Q)) = 2^int(Q)
  2767     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2768     emit_d32(cbuf,0);
  2769     emit_opcode(cbuf,0xDC);                          // fmul dword st(0),[esp+0]; FPR1 = 2^int(Q)*2^frac(Q) = 2^Q
  2770     encode_RegMem(cbuf, 0x1, ESP_enc, 0x4, 0, 0, false);
  2771   %}
  2773 //   enc_class Pop_Reg_Mod_D( regD dst, regD src)
  2774 //   was replaced by Push_Result_Mod_D followed by Pop_Reg_X() or Pop_Mem_X()
  2776   enc_class Push_Result_Mod_D( regD src) %{
  2777     if ($src$$reg != FPR1L_enc) {
  2778       // fincstp
  2779       emit_opcode (cbuf, 0xD9);
  2780       emit_opcode (cbuf, 0xF7);
  2781       // FXCH FPR1 with src
  2782       emit_opcode(cbuf, 0xD9);
  2783       emit_d8(cbuf, 0xC8-1+$src$$reg );
  2784       // fdecstp
  2785       emit_opcode (cbuf, 0xD9);
  2786       emit_opcode (cbuf, 0xF6);
  2788     // // following asm replaced with Pop_Reg_F or Pop_Mem_F
  2789     // // FSTP   FPR$dst$$reg
  2790     // emit_opcode( cbuf, 0xDD );
  2791     // emit_d8( cbuf, 0xD8+$dst$$reg );
  2792   %}
  2794   enc_class fnstsw_sahf_skip_parity() %{
  2795     // fnstsw ax
  2796     emit_opcode( cbuf, 0xDF );
  2797     emit_opcode( cbuf, 0xE0 );
  2798     // sahf
  2799     emit_opcode( cbuf, 0x9E );
  2800     // jnp  ::skip
  2801     emit_opcode( cbuf, 0x7B );
  2802     emit_opcode( cbuf, 0x05 );
  2803   %}
  2805   enc_class emitModD() %{
  2806     // fprem must be iterative
  2807     // :: loop
  2808     // fprem
  2809     emit_opcode( cbuf, 0xD9 );
  2810     emit_opcode( cbuf, 0xF8 );
  2811     // wait
  2812     emit_opcode( cbuf, 0x9b );
  2813     // fnstsw ax
  2814     emit_opcode( cbuf, 0xDF );
  2815     emit_opcode( cbuf, 0xE0 );
  2816     // sahf
  2817     emit_opcode( cbuf, 0x9E );
  2818     // jp  ::loop
  2819     emit_opcode( cbuf, 0x0F );
  2820     emit_opcode( cbuf, 0x8A );
  2821     emit_opcode( cbuf, 0xF4 );
  2822     emit_opcode( cbuf, 0xFF );
  2823     emit_opcode( cbuf, 0xFF );
  2824     emit_opcode( cbuf, 0xFF );
  2825   %}
  2827   enc_class fpu_flags() %{
  2828     // fnstsw_ax
  2829     emit_opcode( cbuf, 0xDF);
  2830     emit_opcode( cbuf, 0xE0);
  2831     // test ax,0x0400
  2832     emit_opcode( cbuf, 0x66 );   // operand-size prefix for 16-bit immediate
  2833     emit_opcode( cbuf, 0xA9 );
  2834     emit_d16   ( cbuf, 0x0400 );
  2835     // // // This sequence works, but stalls for 12-16 cycles on PPro
  2836     // // test rax,0x0400
  2837     // emit_opcode( cbuf, 0xA9 );
  2838     // emit_d32   ( cbuf, 0x00000400 );
  2839     //
  2840     // jz exit (no unordered comparison)
  2841     emit_opcode( cbuf, 0x74 );
  2842     emit_d8    ( cbuf, 0x02 );
  2843     // mov ah,1 - treat as LT case (set carry flag)
  2844     emit_opcode( cbuf, 0xB4 );
  2845     emit_d8    ( cbuf, 0x01 );
  2846     // sahf
  2847     emit_opcode( cbuf, 0x9E);
  2848   %}
  2850   enc_class cmpF_P6_fixup() %{
  2851     // Fixup the integer flags in case comparison involved a NaN
  2852     //
  2853     // JNP exit (no unordered comparison, P-flag is set by NaN)
  2854     emit_opcode( cbuf, 0x7B );
  2855     emit_d8    ( cbuf, 0x03 );
  2856     // MOV AH,1 - treat as LT case (set carry flag)
  2857     emit_opcode( cbuf, 0xB4 );
  2858     emit_d8    ( cbuf, 0x01 );
  2859     // SAHF
  2860     emit_opcode( cbuf, 0x9E);
  2861     // NOP     // target for branch to avoid branch to branch
  2862     emit_opcode( cbuf, 0x90);
  2863   %}
  2865 //     fnstsw_ax();
  2866 //     sahf();
  2867 //     movl(dst, nan_result);
  2868 //     jcc(Assembler::parity, exit);
  2869 //     movl(dst, less_result);
  2870 //     jcc(Assembler::below, exit);
  2871 //     movl(dst, equal_result);
  2872 //     jcc(Assembler::equal, exit);
  2873 //     movl(dst, greater_result);
  2875 // less_result     =  1;
  2876 // greater_result  = -1;
  2877 // equal_result    = 0;
  2878 // nan_result      = -1;
  2880   enc_class CmpF_Result(eRegI dst) %{
  2881     // fnstsw_ax();
  2882     emit_opcode( cbuf, 0xDF);
  2883     emit_opcode( cbuf, 0xE0);
  2884     // sahf
  2885     emit_opcode( cbuf, 0x9E);
  2886     // movl(dst, nan_result);
  2887     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2888     emit_d32( cbuf, -1 );
  2889     // jcc(Assembler::parity, exit);
  2890     emit_opcode( cbuf, 0x7A );
  2891     emit_d8    ( cbuf, 0x13 );
  2892     // movl(dst, less_result);
  2893     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2894     emit_d32( cbuf, -1 );
  2895     // jcc(Assembler::below, exit);
  2896     emit_opcode( cbuf, 0x72 );
  2897     emit_d8    ( cbuf, 0x0C );
  2898     // movl(dst, equal_result);
  2899     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2900     emit_d32( cbuf, 0 );
  2901     // jcc(Assembler::equal, exit);
  2902     emit_opcode( cbuf, 0x74 );
  2903     emit_d8    ( cbuf, 0x05 );
  2904     // movl(dst, greater_result);
  2905     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2906     emit_d32( cbuf, 1 );
  2907   %}
  2910   // XMM version of CmpF_Result. Because the XMM compare
  2911   // instructions set the EFLAGS directly. It becomes simpler than
  2912   // the float version above.
  2913   enc_class CmpX_Result(eRegI dst) %{
  2914     MacroAssembler _masm(&cbuf);
  2915     Label nan, inc, done;
  2917     __ jccb(Assembler::parity, nan);
  2918     __ jccb(Assembler::equal,  done);
  2919     __ jccb(Assembler::above,  inc);
  2920     __ bind(nan);
  2921     __ decrement(as_Register($dst$$reg)); // NO L qqq
  2922     __ jmpb(done);
  2923     __ bind(inc);
  2924     __ increment(as_Register($dst$$reg)); // NO L qqq
  2925     __ bind(done);
  2926   %}
  2928   // Compare the longs and set flags
  2929   // BROKEN!  Do Not use as-is
  2930   enc_class cmpl_test( eRegL src1, eRegL src2 ) %{
  2931     // CMP    $src1.hi,$src2.hi
  2932     emit_opcode( cbuf, 0x3B );
  2933     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
  2934     // JNE,s  done
  2935     emit_opcode(cbuf,0x75);
  2936     emit_d8(cbuf, 2 );
  2937     // CMP    $src1.lo,$src2.lo
  2938     emit_opcode( cbuf, 0x3B );
  2939     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  2940 // done:
  2941   %}
  2943   enc_class convert_int_long( regL dst, eRegI src ) %{
  2944     // mov $dst.lo,$src
  2945     int dst_encoding = $dst$$reg;
  2946     int src_encoding = $src$$reg;
  2947     encode_Copy( cbuf, dst_encoding  , src_encoding );
  2948     // mov $dst.hi,$src
  2949     encode_Copy( cbuf, HIGH_FROM_LOW(dst_encoding), src_encoding );
  2950     // sar $dst.hi,31
  2951     emit_opcode( cbuf, 0xC1 );
  2952     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW(dst_encoding) );
  2953     emit_d8(cbuf, 0x1F );
  2954   %}
  2956   enc_class convert_long_double( eRegL src ) %{
  2957     // push $src.hi
  2958     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
  2959     // push $src.lo
  2960     emit_opcode(cbuf, 0x50+$src$$reg  );
  2961     // fild 64-bits at [SP]
  2962     emit_opcode(cbuf,0xdf);
  2963     emit_d8(cbuf, 0x6C);
  2964     emit_d8(cbuf, 0x24);
  2965     emit_d8(cbuf, 0x00);
  2966     // pop stack
  2967     emit_opcode(cbuf, 0x83); // add  SP, #8
  2968     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  2969     emit_d8(cbuf, 0x8);
  2970   %}
  2972   enc_class multiply_con_and_shift_high( eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr ) %{
  2973     // IMUL   EDX:EAX,$src1
  2974     emit_opcode( cbuf, 0xF7 );
  2975     emit_rm( cbuf, 0x3, 0x5, $src1$$reg );
  2976     // SAR    EDX,$cnt-32
  2977     int shift_count = ((int)$cnt$$constant) - 32;
  2978     if (shift_count > 0) {
  2979       emit_opcode(cbuf, 0xC1);
  2980       emit_rm(cbuf, 0x3, 7, $dst$$reg );
  2981       emit_d8(cbuf, shift_count);
  2983   %}
  2985   // this version doesn't have add sp, 8
  2986   enc_class convert_long_double2( eRegL src ) %{
  2987     // push $src.hi
  2988     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
  2989     // push $src.lo
  2990     emit_opcode(cbuf, 0x50+$src$$reg  );
  2991     // fild 64-bits at [SP]
  2992     emit_opcode(cbuf,0xdf);
  2993     emit_d8(cbuf, 0x6C);
  2994     emit_d8(cbuf, 0x24);
  2995     emit_d8(cbuf, 0x00);
  2996   %}
  2998   enc_class long_int_multiply( eADXRegL dst, nadxRegI src) %{
  2999     // Basic idea: long = (long)int * (long)int
  3000     // IMUL EDX:EAX, src
  3001     emit_opcode( cbuf, 0xF7 );
  3002     emit_rm( cbuf, 0x3, 0x5, $src$$reg);
  3003   %}
  3005   enc_class long_uint_multiply( eADXRegL dst, nadxRegI src) %{
  3006     // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
  3007     // MUL EDX:EAX, src
  3008     emit_opcode( cbuf, 0xF7 );
  3009     emit_rm( cbuf, 0x3, 0x4, $src$$reg);
  3010   %}
  3012   enc_class long_multiply( eADXRegL dst, eRegL src, eRegI tmp ) %{
  3013     // Basic idea: lo(result) = lo(x_lo * y_lo)
  3014     //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  3015     // MOV    $tmp,$src.lo
  3016     encode_Copy( cbuf, $tmp$$reg, $src$$reg );
  3017     // IMUL   $tmp,EDX
  3018     emit_opcode( cbuf, 0x0F );
  3019     emit_opcode( cbuf, 0xAF );
  3020     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  3021     // MOV    EDX,$src.hi
  3022     encode_Copy( cbuf, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg) );
  3023     // IMUL   EDX,EAX
  3024     emit_opcode( cbuf, 0x0F );
  3025     emit_opcode( cbuf, 0xAF );
  3026     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
  3027     // ADD    $tmp,EDX
  3028     emit_opcode( cbuf, 0x03 );
  3029     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  3030     // MUL   EDX:EAX,$src.lo
  3031     emit_opcode( cbuf, 0xF7 );
  3032     emit_rm( cbuf, 0x3, 0x4, $src$$reg );
  3033     // ADD    EDX,ESI
  3034     emit_opcode( cbuf, 0x03 );
  3035     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $tmp$$reg );
  3036   %}
  3038   enc_class long_multiply_con( eADXRegL dst, immL_127 src, eRegI tmp ) %{
  3039     // Basic idea: lo(result) = lo(src * y_lo)
  3040     //             hi(result) = hi(src * y_lo) + lo(src * y_hi)
  3041     // IMUL   $tmp,EDX,$src
  3042     emit_opcode( cbuf, 0x6B );
  3043     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  3044     emit_d8( cbuf, (int)$src$$constant );
  3045     // MOV    EDX,$src
  3046     emit_opcode(cbuf, 0xB8 + EDX_enc);
  3047     emit_d32( cbuf, (int)$src$$constant );
  3048     // MUL   EDX:EAX,EDX
  3049     emit_opcode( cbuf, 0xF7 );
  3050     emit_rm( cbuf, 0x3, 0x4, EDX_enc );
  3051     // ADD    EDX,ESI
  3052     emit_opcode( cbuf, 0x03 );
  3053     emit_rm( cbuf, 0x3, EDX_enc, $tmp$$reg );
  3054   %}
  3056   enc_class long_div( eRegL src1, eRegL src2 ) %{
  3057     // PUSH src1.hi
  3058     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
  3059     // PUSH src1.lo
  3060     emit_opcode(cbuf,               0x50+$src1$$reg  );
  3061     // PUSH src2.hi
  3062     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
  3063     // PUSH src2.lo
  3064     emit_opcode(cbuf,               0x50+$src2$$reg  );
  3065     // CALL directly to the runtime
  3066     cbuf.set_insts_mark();
  3067     emit_opcode(cbuf,0xE8);       // Call into runtime
  3068     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::ldiv) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3069     // Restore stack
  3070     emit_opcode(cbuf, 0x83); // add  SP, #framesize
  3071     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  3072     emit_d8(cbuf, 4*4);
  3073   %}
  3075   enc_class long_mod( eRegL src1, eRegL src2 ) %{
  3076     // PUSH src1.hi
  3077     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
  3078     // PUSH src1.lo
  3079     emit_opcode(cbuf,               0x50+$src1$$reg  );
  3080     // PUSH src2.hi
  3081     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
  3082     // PUSH src2.lo
  3083     emit_opcode(cbuf,               0x50+$src2$$reg  );
  3084     // CALL directly to the runtime
  3085     cbuf.set_insts_mark();
  3086     emit_opcode(cbuf,0xE8);       // Call into runtime
  3087     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::lrem ) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3088     // Restore stack
  3089     emit_opcode(cbuf, 0x83); // add  SP, #framesize
  3090     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  3091     emit_d8(cbuf, 4*4);
  3092   %}
  3094   enc_class long_cmp_flags0( eRegL src, eRegI tmp ) %{
  3095     // MOV   $tmp,$src.lo
  3096     emit_opcode(cbuf, 0x8B);
  3097     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
  3098     // OR    $tmp,$src.hi
  3099     emit_opcode(cbuf, 0x0B);
  3100     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
  3101   %}
  3103   enc_class long_cmp_flags1( eRegL src1, eRegL src2 ) %{
  3104     // CMP    $src1.lo,$src2.lo
  3105     emit_opcode( cbuf, 0x3B );
  3106     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  3107     // JNE,s  skip
  3108     emit_cc(cbuf, 0x70, 0x5);
  3109     emit_d8(cbuf,2);
  3110     // CMP    $src1.hi,$src2.hi
  3111     emit_opcode( cbuf, 0x3B );
  3112     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
  3113   %}
  3115   enc_class long_cmp_flags2( eRegL src1, eRegL src2, eRegI tmp ) %{
  3116     // CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits
  3117     emit_opcode( cbuf, 0x3B );
  3118     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  3119     // MOV    $tmp,$src1.hi
  3120     emit_opcode( cbuf, 0x8B );
  3121     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src1$$reg) );
  3122     // SBB   $tmp,$src2.hi\t! Compute flags for long compare
  3123     emit_opcode( cbuf, 0x1B );
  3124     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src2$$reg) );
  3125   %}
  3127   enc_class long_cmp_flags3( eRegL src, eRegI tmp ) %{
  3128     // XOR    $tmp,$tmp
  3129     emit_opcode(cbuf,0x33);  // XOR
  3130     emit_rm(cbuf,0x3, $tmp$$reg, $tmp$$reg);
  3131     // CMP    $tmp,$src.lo
  3132     emit_opcode( cbuf, 0x3B );
  3133     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg );
  3134     // SBB    $tmp,$src.hi
  3135     emit_opcode( cbuf, 0x1B );
  3136     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg) );
  3137   %}
  3139  // Sniff, sniff... smells like Gnu Superoptimizer
  3140   enc_class neg_long( eRegL dst ) %{
  3141     emit_opcode(cbuf,0xF7);    // NEG hi
  3142     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
  3143     emit_opcode(cbuf,0xF7);    // NEG lo
  3144     emit_rm    (cbuf,0x3, 0x3,               $dst$$reg );
  3145     emit_opcode(cbuf,0x83);    // SBB hi,0
  3146     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
  3147     emit_d8    (cbuf,0 );
  3148   %}
  3150   enc_class movq_ld(regXD dst, memory mem) %{
  3151     MacroAssembler _masm(&cbuf);
  3152     __ movq($dst$$XMMRegister, $mem$$Address);
  3153   %}
  3155   enc_class movq_st(memory mem, regXD src) %{
  3156     MacroAssembler _masm(&cbuf);
  3157     __ movq($mem$$Address, $src$$XMMRegister);
  3158   %}
  3160   enc_class pshufd_8x8(regX dst, regX src) %{
  3161     MacroAssembler _masm(&cbuf);
  3163     encode_CopyXD(cbuf, $dst$$reg, $src$$reg);
  3164     __ punpcklbw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg));
  3165     __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg), 0x00);
  3166   %}
  3168   enc_class pshufd_4x16(regX dst, regX src) %{
  3169     MacroAssembler _masm(&cbuf);
  3171     __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), 0x00);
  3172   %}
  3174   enc_class pshufd(regXD dst, regXD src, int mode) %{
  3175     MacroAssembler _masm(&cbuf);
  3177     __ pshufd(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), $mode);
  3178   %}
  3180   enc_class pxor(regXD dst, regXD src) %{
  3181     MacroAssembler _masm(&cbuf);
  3183     __ pxor(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg));
  3184   %}
  3186   enc_class mov_i2x(regXD dst, eRegI src) %{
  3187     MacroAssembler _masm(&cbuf);
  3189     __ movdl(as_XMMRegister($dst$$reg), as_Register($src$$reg));
  3190   %}
  3193   // Because the transitions from emitted code to the runtime
  3194   // monitorenter/exit helper stubs are so slow it's critical that
  3195   // we inline both the stack-locking fast-path and the inflated fast path.
  3196   //
  3197   // See also: cmpFastLock and cmpFastUnlock.
  3198   //
  3199   // What follows is a specialized inline transliteration of the code
  3200   // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
  3201   // another option would be to emit TrySlowEnter and TrySlowExit methods
  3202   // at startup-time.  These methods would accept arguments as
  3203   // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
  3204   // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
  3205   // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
  3206   // In practice, however, the # of lock sites is bounded and is usually small.
  3207   // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
  3208   // if the processor uses simple bimodal branch predictors keyed by EIP
  3209   // Since the helper routines would be called from multiple synchronization
  3210   // sites.
  3211   //
  3212   // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
  3213   // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
  3214   // to those specialized methods.  That'd give us a mostly platform-independent
  3215   // implementation that the JITs could optimize and inline at their pleasure.
  3216   // Done correctly, the only time we'd need to cross to native could would be
  3217   // to park() or unpark() threads.  We'd also need a few more unsafe operators
  3218   // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
  3219   // (b) explicit barriers or fence operations.
  3220   //
  3221   // TODO:
  3222   //
  3223   // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
  3224   //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
  3225   //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
  3226   //    the lock operators would typically be faster than reifying Self.
  3227   //
  3228   // *  Ideally I'd define the primitives as:
  3229   //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
  3230   //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
  3231   //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
  3232   //    Instead, we're stuck with a rather awkward and brittle register assignments below.
  3233   //    Furthermore the register assignments are overconstrained, possibly resulting in
  3234   //    sub-optimal code near the synchronization site.
  3235   //
  3236   // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
  3237   //    Alternately, use a better sp-proximity test.
  3238   //
  3239   // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
  3240   //    Either one is sufficient to uniquely identify a thread.
  3241   //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
  3242   //
  3243   // *  Intrinsify notify() and notifyAll() for the common cases where the
  3244   //    object is locked by the calling thread but the waitlist is empty.
  3245   //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
  3246   //
  3247   // *  use jccb and jmpb instead of jcc and jmp to improve code density.
  3248   //    But beware of excessive branch density on AMD Opterons.
  3249   //
  3250   // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
  3251   //    or failure of the fast-path.  If the fast-path fails then we pass
  3252   //    control to the slow-path, typically in C.  In Fast_Lock and
  3253   //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
  3254   //    will emit a conditional branch immediately after the node.
  3255   //    So we have branches to branches and lots of ICC.ZF games.
  3256   //    Instead, it might be better to have C2 pass a "FailureLabel"
  3257   //    into Fast_Lock and Fast_Unlock.  In the case of success, control
  3258   //    will drop through the node.  ICC.ZF is undefined at exit.
  3259   //    In the case of failure, the node will branch directly to the
  3260   //    FailureLabel
  3263   // obj: object to lock
  3264   // box: on-stack box address (displaced header location) - KILLED
  3265   // rax,: tmp -- KILLED
  3266   // scr: tmp -- KILLED
  3267   enc_class Fast_Lock( eRegP obj, eRegP box, eAXRegI tmp, eRegP scr ) %{
  3269     Register objReg = as_Register($obj$$reg);
  3270     Register boxReg = as_Register($box$$reg);
  3271     Register tmpReg = as_Register($tmp$$reg);
  3272     Register scrReg = as_Register($scr$$reg);
  3274     // Ensure the register assignents are disjoint
  3275     guarantee (objReg != boxReg, "") ;
  3276     guarantee (objReg != tmpReg, "") ;
  3277     guarantee (objReg != scrReg, "") ;
  3278     guarantee (boxReg != tmpReg, "") ;
  3279     guarantee (boxReg != scrReg, "") ;
  3280     guarantee (tmpReg == as_Register(EAX_enc), "") ;
  3282     MacroAssembler masm(&cbuf);
  3284     if (_counters != NULL) {
  3285       masm.atomic_incl(ExternalAddress((address) _counters->total_entry_count_addr()));
  3287     if (EmitSync & 1) {
  3288         // set box->dhw = unused_mark (3)
  3289         // Force all sync thru slow-path: slow_enter() and slow_exit() 
  3290         masm.movptr (Address(boxReg, 0), int32_t(markOopDesc::unused_mark())) ;             
  3291         masm.cmpptr (rsp, (int32_t)0) ;                        
  3292     } else 
  3293     if (EmitSync & 2) { 
  3294         Label DONE_LABEL ;           
  3295         if (UseBiasedLocking) {
  3296            // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
  3297            masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
  3300         masm.movptr(tmpReg, Address(objReg, 0)) ;          // fetch markword 
  3301         masm.orptr (tmpReg, 0x1);
  3302         masm.movptr(Address(boxReg, 0), tmpReg);           // Anticipate successful CAS 
  3303         if (os::is_MP()) { masm.lock();  }
  3304         masm.cmpxchgptr(boxReg, Address(objReg, 0));          // Updates tmpReg
  3305         masm.jcc(Assembler::equal, DONE_LABEL);
  3306         // Recursive locking
  3307         masm.subptr(tmpReg, rsp);
  3308         masm.andptr(tmpReg, (int32_t) 0xFFFFF003 );
  3309         masm.movptr(Address(boxReg, 0), tmpReg);
  3310         masm.bind(DONE_LABEL) ; 
  3311     } else {  
  3312       // Possible cases that we'll encounter in fast_lock 
  3313       // ------------------------------------------------
  3314       // * Inflated
  3315       //    -- unlocked
  3316       //    -- Locked
  3317       //       = by self
  3318       //       = by other
  3319       // * biased
  3320       //    -- by Self
  3321       //    -- by other
  3322       // * neutral
  3323       // * stack-locked
  3324       //    -- by self
  3325       //       = sp-proximity test hits
  3326       //       = sp-proximity test generates false-negative
  3327       //    -- by other
  3328       //
  3330       Label IsInflated, DONE_LABEL, PopDone ;
  3332       // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
  3333       // order to reduce the number of conditional branches in the most common cases.
  3334       // Beware -- there's a subtle invariant that fetch of the markword
  3335       // at [FETCH], below, will never observe a biased encoding (*101b).
  3336       // If this invariant is not held we risk exclusion (safety) failure.
  3337       if (UseBiasedLocking && !UseOptoBiasInlining) {
  3338         masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
  3341       masm.movptr(tmpReg, Address(objReg, 0)) ;         // [FETCH]
  3342       masm.testptr(tmpReg, 0x02) ;                      // Inflated v (Stack-locked or neutral)
  3343       masm.jccb  (Assembler::notZero, IsInflated) ;
  3345       // Attempt stack-locking ...
  3346       masm.orptr (tmpReg, 0x1);
  3347       masm.movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
  3348       if (os::is_MP()) { masm.lock();  }
  3349       masm.cmpxchgptr(boxReg, Address(objReg, 0));           // Updates tmpReg
  3350       if (_counters != NULL) {
  3351         masm.cond_inc32(Assembler::equal,
  3352                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
  3354       masm.jccb (Assembler::equal, DONE_LABEL);
  3356       // Recursive locking
  3357       masm.subptr(tmpReg, rsp);
  3358       masm.andptr(tmpReg, 0xFFFFF003 );
  3359       masm.movptr(Address(boxReg, 0), tmpReg);
  3360       if (_counters != NULL) {
  3361         masm.cond_inc32(Assembler::equal,
  3362                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
  3364       masm.jmp  (DONE_LABEL) ;
  3366       masm.bind (IsInflated) ;
  3368       // The object is inflated.
  3369       //
  3370       // TODO-FIXME: eliminate the ugly use of manifest constants:
  3371       //   Use markOopDesc::monitor_value instead of "2".
  3372       //   use markOop::unused_mark() instead of "3".
  3373       // The tmpReg value is an objectMonitor reference ORed with
  3374       // markOopDesc::monitor_value (2).   We can either convert tmpReg to an
  3375       // objectmonitor pointer by masking off the "2" bit or we can just
  3376       // use tmpReg as an objectmonitor pointer but bias the objectmonitor
  3377       // field offsets with "-2" to compensate for and annul the low-order tag bit.
  3378       //
  3379       // I use the latter as it avoids AGI stalls.
  3380       // As such, we write "mov r, [tmpReg+OFFSETOF(Owner)-2]"
  3381       // instead of "mov r, [tmpReg+OFFSETOF(Owner)]".
  3382       //
  3383       #define OFFSET_SKEWED(f) ((ObjectMonitor::f ## _offset_in_bytes())-2)
  3385       // boxReg refers to the on-stack BasicLock in the current frame.
  3386       // We'd like to write:
  3387       //   set box->_displaced_header = markOop::unused_mark().  Any non-0 value suffices.
  3388       // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
  3389       // additional latency as we have another ST in the store buffer that must drain.
  3391       if (EmitSync & 8192) { 
  3392          masm.movptr(Address(boxReg, 0), 3) ;            // results in ST-before-CAS penalty
  3393          masm.get_thread (scrReg) ; 
  3394          masm.movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2] 
  3395          masm.movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
  3396          if (os::is_MP()) { masm.lock(); } 
  3397          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
  3398       } else 
  3399       if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
  3400          masm.movptr(scrReg, boxReg) ; 
  3401          masm.movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2] 
  3403          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
  3404          if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
  3405             // prefetchw [eax + Offset(_owner)-2]
  3406             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
  3409          if ((EmitSync & 64) == 0) {
  3410            // Optimistic form: consider XORL tmpReg,tmpReg
  3411            masm.movptr(tmpReg, NULL_WORD) ; 
  3412          } else { 
  3413            // Can suffer RTS->RTO upgrades on shared or cold $ lines
  3414            // Test-And-CAS instead of CAS
  3415            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
  3416            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
  3417            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
  3420          // Appears unlocked - try to swing _owner from null to non-null.
  3421          // Ideally, I'd manifest "Self" with get_thread and then attempt
  3422          // to CAS the register containing Self into m->Owner.
  3423          // But we don't have enough registers, so instead we can either try to CAS
  3424          // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
  3425          // we later store "Self" into m->Owner.  Transiently storing a stack address
  3426          // (rsp or the address of the box) into  m->owner is harmless.
  3427          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
  3428          if (os::is_MP()) { masm.lock();  }
  3429          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
  3430          masm.movptr(Address(scrReg, 0), 3) ;          // box->_displaced_header = 3
  3431          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
  3432          masm.get_thread (scrReg) ;                    // beware: clobbers ICCs
  3433          masm.movptr(Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2), scrReg) ; 
  3434          masm.xorptr(boxReg, boxReg) ;                 // set icc.ZFlag = 1 to indicate success
  3436          // If the CAS fails we can either retry or pass control to the slow-path.  
  3437          // We use the latter tactic.  
  3438          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
  3439          // If the CAS was successful ...
  3440          //   Self has acquired the lock
  3441          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
  3442          // Intentional fall-through into DONE_LABEL ...
  3443       } else {
  3444          masm.movptr(Address(boxReg, 0), 3) ;       // results in ST-before-CAS penalty
  3445          masm.movptr(boxReg, tmpReg) ; 
  3447          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
  3448          if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
  3449             // prefetchw [eax + Offset(_owner)-2]
  3450             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
  3453          if ((EmitSync & 64) == 0) {
  3454            // Optimistic form
  3455            masm.xorptr  (tmpReg, tmpReg) ; 
  3456          } else { 
  3457            // Can suffer RTS->RTO upgrades on shared or cold $ lines
  3458            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
  3459            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
  3460            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
  3463          // Appears unlocked - try to swing _owner from null to non-null.
  3464          // Use either "Self" (in scr) or rsp as thread identity in _owner.
  3465          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
  3466          masm.get_thread (scrReg) ;
  3467          if (os::is_MP()) { masm.lock(); }
  3468          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
  3470          // If the CAS fails we can either retry or pass control to the slow-path.
  3471          // We use the latter tactic.
  3472          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
  3473          // If the CAS was successful ...
  3474          //   Self has acquired the lock
  3475          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
  3476          // Intentional fall-through into DONE_LABEL ...
  3479       // DONE_LABEL is a hot target - we'd really like to place it at the
  3480       // start of cache line by padding with NOPs.
  3481       // See the AMD and Intel software optimization manuals for the
  3482       // most efficient "long" NOP encodings.
  3483       // Unfortunately none of our alignment mechanisms suffice.
  3484       masm.bind(DONE_LABEL);
  3486       // Avoid branch-to-branch on AMD processors
  3487       // This appears to be superstition.
  3488       if (EmitSync & 32) masm.nop() ;
  3491       // At DONE_LABEL the icc ZFlag is set as follows ...
  3492       // Fast_Unlock uses the same protocol.
  3493       // ZFlag == 1 -> Success
  3494       // ZFlag == 0 -> Failure - force control through the slow-path
  3496   %}
  3498   // obj: object to unlock
  3499   // box: box address (displaced header location), killed.  Must be EAX.
  3500   // rbx,: killed tmp; cannot be obj nor box.
  3501   //
  3502   // Some commentary on balanced locking:
  3503   //
  3504   // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
  3505   // Methods that don't have provably balanced locking are forced to run in the
  3506   // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
  3507   // The interpreter provides two properties:
  3508   // I1:  At return-time the interpreter automatically and quietly unlocks any
  3509   //      objects acquired the current activation (frame).  Recall that the
  3510   //      interpreter maintains an on-stack list of locks currently held by
  3511   //      a frame.
  3512   // I2:  If a method attempts to unlock an object that is not held by the
  3513   //      the frame the interpreter throws IMSX.
  3514   //
  3515   // Lets say A(), which has provably balanced locking, acquires O and then calls B().
  3516   // B() doesn't have provably balanced locking so it runs in the interpreter.
  3517   // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
  3518   // is still locked by A().
  3519   //
  3520   // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
  3521   // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
  3522   // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
  3523   // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
  3525   enc_class Fast_Unlock( nabxRegP obj, eAXRegP box, eRegP tmp) %{
  3527     Register objReg = as_Register($obj$$reg);
  3528     Register boxReg = as_Register($box$$reg);
  3529     Register tmpReg = as_Register($tmp$$reg);
  3531     guarantee (objReg != boxReg, "") ;
  3532     guarantee (objReg != tmpReg, "") ;
  3533     guarantee (boxReg != tmpReg, "") ;
  3534     guarantee (boxReg == as_Register(EAX_enc), "") ;
  3535     MacroAssembler masm(&cbuf);
  3537     if (EmitSync & 4) {
  3538       // Disable - inhibit all inlining.  Force control through the slow-path
  3539       masm.cmpptr (rsp, 0) ; 
  3540     } else 
  3541     if (EmitSync & 8) {
  3542       Label DONE_LABEL ;
  3543       if (UseBiasedLocking) {
  3544          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  3546       // classic stack-locking code ...
  3547       masm.movptr(tmpReg, Address(boxReg, 0)) ;
  3548       masm.testptr(tmpReg, tmpReg) ;
  3549       masm.jcc   (Assembler::zero, DONE_LABEL) ;
  3550       if (os::is_MP()) { masm.lock(); }
  3551       masm.cmpxchgptr(tmpReg, Address(objReg, 0));          // Uses EAX which is box
  3552       masm.bind(DONE_LABEL);
  3553     } else {
  3554       Label DONE_LABEL, Stacked, CheckSucc, Inflated ;
  3556       // Critically, the biased locking test must have precedence over
  3557       // and appear before the (box->dhw == 0) recursive stack-lock test.
  3558       if (UseBiasedLocking && !UseOptoBiasInlining) {
  3559          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  3562       masm.cmpptr(Address(boxReg, 0), 0) ;            // Examine the displaced header
  3563       masm.movptr(tmpReg, Address(objReg, 0)) ;       // Examine the object's markword
  3564       masm.jccb  (Assembler::zero, DONE_LABEL) ;      // 0 indicates recursive stack-lock
  3566       masm.testptr(tmpReg, 0x02) ;                     // Inflated? 
  3567       masm.jccb  (Assembler::zero, Stacked) ;
  3569       masm.bind  (Inflated) ;
  3570       // It's inflated.
  3571       // Despite our balanced locking property we still check that m->_owner == Self
  3572       // as java routines or native JNI code called by this thread might
  3573       // have released the lock.
  3574       // Refer to the comments in synchronizer.cpp for how we might encode extra
  3575       // state in _succ so we can avoid fetching EntryList|cxq.
  3576       //
  3577       // I'd like to add more cases in fast_lock() and fast_unlock() --
  3578       // such as recursive enter and exit -- but we have to be wary of
  3579       // I$ bloat, T$ effects and BP$ effects.
  3580       //
  3581       // If there's no contention try a 1-0 exit.  That is, exit without
  3582       // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
  3583       // we detect and recover from the race that the 1-0 exit admits.
  3584       //
  3585       // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
  3586       // before it STs null into _owner, releasing the lock.  Updates
  3587       // to data protected by the critical section must be visible before
  3588       // we drop the lock (and thus before any other thread could acquire
  3589       // the lock and observe the fields protected by the lock).
  3590       // IA32's memory-model is SPO, so STs are ordered with respect to
  3591       // each other and there's no need for an explicit barrier (fence).
  3592       // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
  3594       masm.get_thread (boxReg) ;
  3595       if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
  3596         // prefetchw [ebx + Offset(_owner)-2]
  3597         masm.prefetchw(Address(rbx, ObjectMonitor::owner_offset_in_bytes()-2));
  3600       // Note that we could employ various encoding schemes to reduce
  3601       // the number of loads below (currently 4) to just 2 or 3.
  3602       // Refer to the comments in synchronizer.cpp.
  3603       // In practice the chain of fetches doesn't seem to impact performance, however.
  3604       if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
  3605          // Attempt to reduce branch density - AMD's branch predictor.
  3606          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
  3607          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
  3608          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
  3609          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
  3610          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
  3611          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
  3612          masm.jmpb  (DONE_LABEL) ; 
  3613       } else { 
  3614          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
  3615          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
  3616          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
  3617          masm.movptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
  3618          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
  3619          masm.jccb  (Assembler::notZero, CheckSucc) ; 
  3620          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
  3621          masm.jmpb  (DONE_LABEL) ; 
  3624       // The Following code fragment (EmitSync & 65536) improves the performance of
  3625       // contended applications and contended synchronization microbenchmarks.
  3626       // Unfortunately the emission of the code - even though not executed - causes regressions
  3627       // in scimark and jetstream, evidently because of $ effects.  Replacing the code
  3628       // with an equal number of never-executed NOPs results in the same regression.
  3629       // We leave it off by default.
  3631       if ((EmitSync & 65536) != 0) {
  3632          Label LSuccess, LGoSlowPath ;
  3634          masm.bind  (CheckSucc) ;
  3636          // Optional pre-test ... it's safe to elide this
  3637          if ((EmitSync & 16) == 0) { 
  3638             masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
  3639             masm.jccb  (Assembler::zero, LGoSlowPath) ; 
  3642          // We have a classic Dekker-style idiom:
  3643          //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
  3644          // There are a number of ways to implement the barrier:
  3645          // (1) lock:andl &m->_owner, 0
  3646          //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
  3647          //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
  3648          //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
  3649          // (2) If supported, an explicit MFENCE is appealing.
  3650          //     In older IA32 processors MFENCE is slower than lock:add or xchg
  3651          //     particularly if the write-buffer is full as might be the case if
  3652          //     if stores closely precede the fence or fence-equivalent instruction.
  3653          //     In more modern implementations MFENCE appears faster, however.
  3654          // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
  3655          //     The $lines underlying the top-of-stack should be in M-state.
  3656          //     The locked add instruction is serializing, of course.
  3657          // (4) Use xchg, which is serializing
  3658          //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
  3659          // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
  3660          //     The integer condition codes will tell us if succ was 0.
  3661          //     Since _succ and _owner should reside in the same $line and
  3662          //     we just stored into _owner, it's likely that the $line
  3663          //     remains in M-state for the lock:orl.
  3664          //
  3665          // We currently use (3), although it's likely that switching to (2)
  3666          // is correct for the future.
  3668          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
  3669          if (os::is_MP()) { 
  3670             if (VM_Version::supports_sse2() && 1 == FenceInstruction) { 
  3671               masm.mfence();
  3672             } else { 
  3673               masm.lock () ; masm.addptr(Address(rsp, 0), 0) ; 
  3676          // Ratify _succ remains non-null
  3677          masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
  3678          masm.jccb  (Assembler::notZero, LSuccess) ; 
  3680          masm.xorptr(boxReg, boxReg) ;                  // box is really EAX
  3681          if (os::is_MP()) { masm.lock(); }
  3682          masm.cmpxchgptr(rsp, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
  3683          masm.jccb  (Assembler::notEqual, LSuccess) ;
  3684          // Since we're low on registers we installed rsp as a placeholding in _owner.
  3685          // Now install Self over rsp.  This is safe as we're transitioning from
  3686          // non-null to non=null
  3687          masm.get_thread (boxReg) ;
  3688          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), boxReg) ;
  3689          // Intentional fall-through into LGoSlowPath ...
  3691          masm.bind  (LGoSlowPath) ; 
  3692          masm.orptr(boxReg, 1) ;                      // set ICC.ZF=0 to indicate failure
  3693          masm.jmpb  (DONE_LABEL) ; 
  3695          masm.bind  (LSuccess) ; 
  3696          masm.xorptr(boxReg, boxReg) ;                 // set ICC.ZF=1 to indicate success
  3697          masm.jmpb  (DONE_LABEL) ; 
  3700       masm.bind (Stacked) ;
  3701       // It's not inflated and it's not recursively stack-locked and it's not biased.
  3702       // It must be stack-locked.
  3703       // Try to reset the header to displaced header.
  3704       // The "box" value on the stack is stable, so we can reload
  3705       // and be assured we observe the same value as above.
  3706       masm.movptr(tmpReg, Address(boxReg, 0)) ;
  3707       if (os::is_MP()) {   masm.lock();    }
  3708       masm.cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses EAX which is box
  3709       // Intention fall-thru into DONE_LABEL
  3712       // DONE_LABEL is a hot target - we'd really like to place it at the
  3713       // start of cache line by padding with NOPs.
  3714       // See the AMD and Intel software optimization manuals for the
  3715       // most efficient "long" NOP encodings.
  3716       // Unfortunately none of our alignment mechanisms suffice.
  3717       if ((EmitSync & 65536) == 0) {
  3718          masm.bind (CheckSucc) ;
  3720       masm.bind(DONE_LABEL);
  3722       // Avoid branch to branch on AMD processors
  3723       if (EmitSync & 32768) { masm.nop() ; }
  3725   %}
  3728   enc_class enc_pop_rdx() %{
  3729     emit_opcode(cbuf,0x5A);
  3730   %}
  3732   enc_class enc_rethrow() %{
  3733     cbuf.set_insts_mark();
  3734     emit_opcode(cbuf, 0xE9);        // jmp    entry
  3735     emit_d32_reloc(cbuf, (int)OptoRuntime::rethrow_stub() - ((int)cbuf.insts_end())-4,
  3736                    runtime_call_Relocation::spec(), RELOC_IMM32 );
  3737   %}
  3740   // Convert a double to an int.  Java semantics require we do complex
  3741   // manglelations in the corner cases.  So we set the rounding mode to
  3742   // 'zero', store the darned double down as an int, and reset the
  3743   // rounding mode to 'nearest'.  The hardware throws an exception which
  3744   // patches up the correct value directly to the stack.
  3745   enc_class D2I_encoding( regD src ) %{
  3746     // Flip to round-to-zero mode.  We attempted to allow invalid-op
  3747     // exceptions here, so that a NAN or other corner-case value will
  3748     // thrown an exception (but normal values get converted at full speed).
  3749     // However, I2C adapters and other float-stack manglers leave pending
  3750     // invalid-op exceptions hanging.  We would have to clear them before
  3751     // enabling them and that is more expensive than just testing for the
  3752     // invalid value Intel stores down in the corner cases.
  3753     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
  3754     emit_opcode(cbuf,0x2D);
  3755     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  3756     // Allocate a word
  3757     emit_opcode(cbuf,0x83);            // SUB ESP,4
  3758     emit_opcode(cbuf,0xEC);
  3759     emit_d8(cbuf,0x04);
  3760     // Encoding assumes a double has been pushed into FPR0.
  3761     // Store down the double as an int, popping the FPU stack
  3762     emit_opcode(cbuf,0xDB);            // FISTP [ESP]
  3763     emit_opcode(cbuf,0x1C);
  3764     emit_d8(cbuf,0x24);
  3765     // Restore the rounding mode; mask the exception
  3766     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
  3767     emit_opcode(cbuf,0x2D);
  3768     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  3769         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  3770         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  3772     // Load the converted int; adjust CPU stack
  3773     emit_opcode(cbuf,0x58);       // POP EAX
  3774     emit_opcode(cbuf,0x3D);       // CMP EAX,imm
  3775     emit_d32   (cbuf,0x80000000); //         0x80000000
  3776     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  3777     emit_d8    (cbuf,0x07);       // Size of slow_call
  3778     // Push src onto stack slow-path
  3779     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
  3780     emit_d8    (cbuf,0xC0-1+$src$$reg );
  3781     // CALL directly to the runtime
  3782     cbuf.set_insts_mark();
  3783     emit_opcode(cbuf,0xE8);       // Call into runtime
  3784     emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3785     // Carry on here...
  3786   %}
  3788   enc_class D2L_encoding( regD src ) %{
  3789     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
  3790     emit_opcode(cbuf,0x2D);
  3791     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  3792     // Allocate a word
  3793     emit_opcode(cbuf,0x83);            // SUB ESP,8
  3794     emit_opcode(cbuf,0xEC);
  3795     emit_d8(cbuf,0x08);
  3796     // Encoding assumes a double has been pushed into FPR0.
  3797     // Store down the double as a long, popping the FPU stack
  3798     emit_opcode(cbuf,0xDF);            // FISTP [ESP]
  3799     emit_opcode(cbuf,0x3C);
  3800     emit_d8(cbuf,0x24);
  3801     // Restore the rounding mode; mask the exception
  3802     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
  3803     emit_opcode(cbuf,0x2D);
  3804     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  3805         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  3806         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  3808     // Load the converted int; adjust CPU stack
  3809     emit_opcode(cbuf,0x58);       // POP EAX
  3810     emit_opcode(cbuf,0x5A);       // POP EDX
  3811     emit_opcode(cbuf,0x81);       // CMP EDX,imm
  3812     emit_d8    (cbuf,0xFA);       // rdx
  3813     emit_d32   (cbuf,0x80000000); //         0x80000000
  3814     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  3815     emit_d8    (cbuf,0x07+4);     // Size of slow_call
  3816     emit_opcode(cbuf,0x85);       // TEST EAX,EAX
  3817     emit_opcode(cbuf,0xC0);       // 2/rax,/rax,
  3818     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  3819     emit_d8    (cbuf,0x07);       // Size of slow_call
  3820     // Push src onto stack slow-path
  3821     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
  3822     emit_d8    (cbuf,0xC0-1+$src$$reg );
  3823     // CALL directly to the runtime
  3824     cbuf.set_insts_mark();
  3825     emit_opcode(cbuf,0xE8);       // Call into runtime
  3826     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3827     // Carry on here...
  3828   %}
  3830   enc_class X2L_encoding( regX src ) %{
  3831     // Allocate a word
  3832     emit_opcode(cbuf,0x83);      // SUB ESP,8
  3833     emit_opcode(cbuf,0xEC);
  3834     emit_d8(cbuf,0x08);
  3836     emit_opcode  (cbuf, 0xF3 );  // MOVSS [ESP], src
  3837     emit_opcode  (cbuf, 0x0F );
  3838     emit_opcode  (cbuf, 0x11 );
  3839     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  3841     emit_opcode(cbuf,0xD9 );     // FLD_S [ESP]
  3842     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  3844     emit_opcode(cbuf,0xD9);      // FLDCW  trunc
  3845     emit_opcode(cbuf,0x2D);
  3846     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  3848     // Encoding assumes a double has been pushed into FPR0.
  3849     // Store down the double as a long, popping the FPU stack
  3850     emit_opcode(cbuf,0xDF);      // FISTP [ESP]
  3851     emit_opcode(cbuf,0x3C);
  3852     emit_d8(cbuf,0x24);
  3854     // Restore the rounding mode; mask the exception
  3855     emit_opcode(cbuf,0xD9);      // FLDCW   std/24-bit mode
  3856     emit_opcode(cbuf,0x2D);
  3857     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  3858       ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  3859       : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  3861     // Load the converted int; adjust CPU stack
  3862     emit_opcode(cbuf,0x58);      // POP EAX
  3864     emit_opcode(cbuf,0x5A);      // POP EDX
  3866     emit_opcode(cbuf,0x81);      // CMP EDX,imm
  3867     emit_d8    (cbuf,0xFA);      // rdx
  3868     emit_d32   (cbuf,0x80000000);//         0x80000000
  3870     emit_opcode(cbuf,0x75);      // JNE around_slow_call
  3871     emit_d8    (cbuf,0x13+4);    // Size of slow_call
  3873     emit_opcode(cbuf,0x85);      // TEST EAX,EAX
  3874     emit_opcode(cbuf,0xC0);      // 2/rax,/rax,
  3876     emit_opcode(cbuf,0x75);      // JNE around_slow_call
  3877     emit_d8    (cbuf,0x13);      // Size of slow_call
  3879     // Allocate a word
  3880     emit_opcode(cbuf,0x83);      // SUB ESP,4
  3881     emit_opcode(cbuf,0xEC);
  3882     emit_d8(cbuf,0x04);
  3884     emit_opcode  (cbuf, 0xF3 );  // MOVSS [ESP], src
  3885     emit_opcode  (cbuf, 0x0F );
  3886     emit_opcode  (cbuf, 0x11 );
  3887     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  3889     emit_opcode(cbuf,0xD9 );     // FLD_S [ESP]
  3890     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  3892     emit_opcode(cbuf,0x83);      // ADD ESP,4
  3893     emit_opcode(cbuf,0xC4);
  3894     emit_d8(cbuf,0x04);
  3896     // CALL directly to the runtime
  3897     cbuf.set_insts_mark();
  3898     emit_opcode(cbuf,0xE8);       // Call into runtime
  3899     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3900     // Carry on here...
  3901   %}
  3903   enc_class XD2L_encoding( regXD src ) %{
  3904     // Allocate a word
  3905     emit_opcode(cbuf,0x83);      // SUB ESP,8
  3906     emit_opcode(cbuf,0xEC);
  3907     emit_d8(cbuf,0x08);
  3909     emit_opcode  (cbuf, 0xF2 );  // MOVSD [ESP], src
  3910     emit_opcode  (cbuf, 0x0F );
  3911     emit_opcode  (cbuf, 0x11 );
  3912     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  3914     emit_opcode(cbuf,0xDD );     // FLD_D [ESP]
  3915     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  3917     emit_opcode(cbuf,0xD9);      // FLDCW  trunc
  3918     emit_opcode(cbuf,0x2D);
  3919     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  3921     // Encoding assumes a double has been pushed into FPR0.
  3922     // Store down the double as a long, popping the FPU stack
  3923     emit_opcode(cbuf,0xDF);      // FISTP [ESP]
  3924     emit_opcode(cbuf,0x3C);
  3925     emit_d8(cbuf,0x24);
  3927     // Restore the rounding mode; mask the exception
  3928     emit_opcode(cbuf,0xD9);      // FLDCW   std/24-bit mode
  3929     emit_opcode(cbuf,0x2D);
  3930     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  3931       ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  3932       : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  3934     // Load the converted int; adjust CPU stack
  3935     emit_opcode(cbuf,0x58);      // POP EAX
  3937     emit_opcode(cbuf,0x5A);      // POP EDX
  3939     emit_opcode(cbuf,0x81);      // CMP EDX,imm
  3940     emit_d8    (cbuf,0xFA);      // rdx
  3941     emit_d32   (cbuf,0x80000000); //         0x80000000
  3943     emit_opcode(cbuf,0x75);      // JNE around_slow_call
  3944     emit_d8    (cbuf,0x13+4);    // Size of slow_call
  3946     emit_opcode(cbuf,0x85);      // TEST EAX,EAX
  3947     emit_opcode(cbuf,0xC0);      // 2/rax,/rax,
  3949     emit_opcode(cbuf,0x75);      // JNE around_slow_call
  3950     emit_d8    (cbuf,0x13);      // Size of slow_call
  3952     // Push src onto stack slow-path
  3953     // Allocate a word
  3954     emit_opcode(cbuf,0x83);      // SUB ESP,8
  3955     emit_opcode(cbuf,0xEC);
  3956     emit_d8(cbuf,0x08);
  3958     emit_opcode  (cbuf, 0xF2 );  // MOVSD [ESP], src
  3959     emit_opcode  (cbuf, 0x0F );
  3960     emit_opcode  (cbuf, 0x11 );
  3961     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  3963     emit_opcode(cbuf,0xDD );     // FLD_D [ESP]
  3964     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  3966     emit_opcode(cbuf,0x83);      // ADD ESP,8
  3967     emit_opcode(cbuf,0xC4);
  3968     emit_d8(cbuf,0x08);
  3970     // CALL directly to the runtime
  3971     cbuf.set_insts_mark();
  3972     emit_opcode(cbuf,0xE8);      // Call into runtime
  3973     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3974     // Carry on here...
  3975   %}
  3977   enc_class D2X_encoding( regX dst, regD src ) %{
  3978     // Allocate a word
  3979     emit_opcode(cbuf,0x83);            // SUB ESP,4
  3980     emit_opcode(cbuf,0xEC);
  3981     emit_d8(cbuf,0x04);
  3982     int pop = 0x02;
  3983     if ($src$$reg != FPR1L_enc) {
  3984       emit_opcode( cbuf, 0xD9 );       // FLD    ST(i-1)
  3985       emit_d8( cbuf, 0xC0-1+$src$$reg );
  3986       pop = 0x03;
  3988     store_to_stackslot( cbuf, 0xD9, pop, 0 ); // FST<P>_S  [ESP]
  3990     emit_opcode  (cbuf, 0xF3 );        // MOVSS dst(xmm), [ESP]
  3991     emit_opcode  (cbuf, 0x0F );
  3992     emit_opcode  (cbuf, 0x10 );
  3993     encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
  3995     emit_opcode(cbuf,0x83);            // ADD ESP,4
  3996     emit_opcode(cbuf,0xC4);
  3997     emit_d8(cbuf,0x04);
  3998     // Carry on here...
  3999   %}
  4001   enc_class FX2I_encoding( regX src, eRegI dst ) %{
  4002     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  4004     // Compare the result to see if we need to go to the slow path
  4005     emit_opcode(cbuf,0x81);       // CMP dst,imm
  4006     emit_rm    (cbuf,0x3,0x7,$dst$$reg);
  4007     emit_d32   (cbuf,0x80000000); //         0x80000000
  4009     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  4010     emit_d8    (cbuf,0x13);       // Size of slow_call
  4011     // Store xmm to a temp memory
  4012     // location and push it onto stack.
  4014     emit_opcode(cbuf,0x83);  // SUB ESP,4
  4015     emit_opcode(cbuf,0xEC);
  4016     emit_d8(cbuf, $primary ? 0x8 : 0x4);
  4018     emit_opcode  (cbuf, $primary ? 0xF2 : 0xF3 );   // MOVSS [ESP], xmm
  4019     emit_opcode  (cbuf, 0x0F );
  4020     emit_opcode  (cbuf, 0x11 );
  4021     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  4023     emit_opcode(cbuf, $primary ? 0xDD : 0xD9 );      // FLD [ESP]
  4024     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  4026     emit_opcode(cbuf,0x83);    // ADD ESP,4
  4027     emit_opcode(cbuf,0xC4);
  4028     emit_d8(cbuf, $primary ? 0x8 : 0x4);
  4030     // CALL directly to the runtime
  4031     cbuf.set_insts_mark();
  4032     emit_opcode(cbuf,0xE8);       // Call into runtime
  4033     emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  4035     // Carry on here...
  4036   %}
  4038   enc_class X2D_encoding( regD dst, regX src ) %{
  4039     // Allocate a word
  4040     emit_opcode(cbuf,0x83);     // SUB ESP,4
  4041     emit_opcode(cbuf,0xEC);
  4042     emit_d8(cbuf,0x04);
  4044     emit_opcode  (cbuf, 0xF3 ); // MOVSS [ESP], xmm
  4045     emit_opcode  (cbuf, 0x0F );
  4046     emit_opcode  (cbuf, 0x11 );
  4047     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  4049     emit_opcode(cbuf,0xD9 );    // FLD_S [ESP]
  4050     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  4052     emit_opcode(cbuf,0x83);     // ADD ESP,4
  4053     emit_opcode(cbuf,0xC4);
  4054     emit_d8(cbuf,0x04);
  4056     // Carry on here...
  4057   %}
  4059   enc_class AbsXF_encoding(regX dst) %{
  4060     address signmask_address=(address)float_signmask_pool;
  4061     // andpd:\tANDPS  $dst,[signconst]
  4062     emit_opcode(cbuf, 0x0F);
  4063     emit_opcode(cbuf, 0x54);
  4064     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  4065     emit_d32(cbuf, (int)signmask_address);
  4066   %}
  4068   enc_class AbsXD_encoding(regXD dst) %{
  4069     address signmask_address=(address)double_signmask_pool;
  4070     // andpd:\tANDPD  $dst,[signconst]
  4071     emit_opcode(cbuf, 0x66);
  4072     emit_opcode(cbuf, 0x0F);
  4073     emit_opcode(cbuf, 0x54);
  4074     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  4075     emit_d32(cbuf, (int)signmask_address);
  4076   %}
  4078   enc_class NegXF_encoding(regX dst) %{
  4079     address signmask_address=(address)float_signflip_pool;
  4080     // andpd:\tXORPS  $dst,[signconst]
  4081     emit_opcode(cbuf, 0x0F);
  4082     emit_opcode(cbuf, 0x57);
  4083     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  4084     emit_d32(cbuf, (int)signmask_address);
  4085   %}
  4087   enc_class NegXD_encoding(regXD dst) %{
  4088     address signmask_address=(address)double_signflip_pool;
  4089     // andpd:\tXORPD  $dst,[signconst]
  4090     emit_opcode(cbuf, 0x66);
  4091     emit_opcode(cbuf, 0x0F);
  4092     emit_opcode(cbuf, 0x57);
  4093     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  4094     emit_d32(cbuf, (int)signmask_address);
  4095   %}
  4097   enc_class FMul_ST_reg( eRegF src1 ) %{
  4098     // Operand was loaded from memory into fp ST (stack top)
  4099     // FMUL   ST,$src  /* D8 C8+i */
  4100     emit_opcode(cbuf, 0xD8);
  4101     emit_opcode(cbuf, 0xC8 + $src1$$reg);
  4102   %}
  4104   enc_class FAdd_ST_reg( eRegF src2 ) %{
  4105     // FADDP  ST,src2  /* D8 C0+i */
  4106     emit_opcode(cbuf, 0xD8);
  4107     emit_opcode(cbuf, 0xC0 + $src2$$reg);
  4108     //could use FADDP  src2,fpST  /* DE C0+i */
  4109   %}
  4111   enc_class FAddP_reg_ST( eRegF src2 ) %{
  4112     // FADDP  src2,ST  /* DE C0+i */
  4113     emit_opcode(cbuf, 0xDE);
  4114     emit_opcode(cbuf, 0xC0 + $src2$$reg);
  4115   %}
  4117   enc_class subF_divF_encode( eRegF src1, eRegF src2) %{
  4118     // Operand has been loaded into fp ST (stack top)
  4119       // FSUB   ST,$src1
  4120       emit_opcode(cbuf, 0xD8);
  4121       emit_opcode(cbuf, 0xE0 + $src1$$reg);
  4123       // FDIV
  4124       emit_opcode(cbuf, 0xD8);
  4125       emit_opcode(cbuf, 0xF0 + $src2$$reg);
  4126   %}
  4128   enc_class MulFAddF (eRegF src1, eRegF src2) %{
  4129     // Operand was loaded from memory into fp ST (stack top)
  4130     // FADD   ST,$src  /* D8 C0+i */
  4131     emit_opcode(cbuf, 0xD8);
  4132     emit_opcode(cbuf, 0xC0 + $src1$$reg);
  4134     // FMUL  ST,src2  /* D8 C*+i */
  4135     emit_opcode(cbuf, 0xD8);
  4136     emit_opcode(cbuf, 0xC8 + $src2$$reg);
  4137   %}
  4140   enc_class MulFAddFreverse (eRegF src1, eRegF src2) %{
  4141     // Operand was loaded from memory into fp ST (stack top)
  4142     // FADD   ST,$src  /* D8 C0+i */
  4143     emit_opcode(cbuf, 0xD8);
  4144     emit_opcode(cbuf, 0xC0 + $src1$$reg);
  4146     // FMULP  src2,ST  /* DE C8+i */
  4147     emit_opcode(cbuf, 0xDE);
  4148     emit_opcode(cbuf, 0xC8 + $src2$$reg);
  4149   %}
  4151   // Atomically load the volatile long
  4152   enc_class enc_loadL_volatile( memory mem, stackSlotL dst ) %{
  4153     emit_opcode(cbuf,0xDF);
  4154     int rm_byte_opcode = 0x05;
  4155     int base     = $mem$$base;
  4156     int index    = $mem$$index;
  4157     int scale    = $mem$$scale;
  4158     int displace = $mem$$disp;
  4159     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4160     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
  4161     store_to_stackslot( cbuf, 0x0DF, 0x07, $dst$$disp );
  4162   %}
  4164   enc_class enc_loadLX_volatile( memory mem, stackSlotL dst, regXD tmp ) %{
  4165     { // Atomic long load
  4166       // UseXmmLoadAndClearUpper ? movsd $tmp,$mem : movlpd $tmp,$mem
  4167       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  4168       emit_opcode(cbuf,0x0F);
  4169       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  4170       int base     = $mem$$base;
  4171       int index    = $mem$$index;
  4172       int scale    = $mem$$scale;
  4173       int displace = $mem$$disp;
  4174       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4175       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4177     { // MOVSD $dst,$tmp ! atomic long store
  4178       emit_opcode(cbuf,0xF2);
  4179       emit_opcode(cbuf,0x0F);
  4180       emit_opcode(cbuf,0x11);
  4181       int base     = $dst$$base;
  4182       int index    = $dst$$index;
  4183       int scale    = $dst$$scale;
  4184       int displace = $dst$$disp;
  4185       bool disp_is_oop = $dst->disp_is_oop(); // disp-as-oop when working with static globals
  4186       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4188   %}
  4190   enc_class enc_loadLX_reg_volatile( memory mem, eRegL dst, regXD tmp ) %{
  4191     { // Atomic long load
  4192       // UseXmmLoadAndClearUpper ? movsd $tmp,$mem : movlpd $tmp,$mem
  4193       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  4194       emit_opcode(cbuf,0x0F);
  4195       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  4196       int base     = $mem$$base;
  4197       int index    = $mem$$index;
  4198       int scale    = $mem$$scale;
  4199       int displace = $mem$$disp;
  4200       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4201       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4203     { // MOVD $dst.lo,$tmp
  4204       emit_opcode(cbuf,0x66);
  4205       emit_opcode(cbuf,0x0F);
  4206       emit_opcode(cbuf,0x7E);
  4207       emit_rm(cbuf, 0x3, $tmp$$reg, $dst$$reg);
  4209     { // PSRLQ $tmp,32
  4210       emit_opcode(cbuf,0x66);
  4211       emit_opcode(cbuf,0x0F);
  4212       emit_opcode(cbuf,0x73);
  4213       emit_rm(cbuf, 0x3, 0x02, $tmp$$reg);
  4214       emit_d8(cbuf, 0x20);
  4216     { // MOVD $dst.hi,$tmp
  4217       emit_opcode(cbuf,0x66);
  4218       emit_opcode(cbuf,0x0F);
  4219       emit_opcode(cbuf,0x7E);
  4220       emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg));
  4222   %}
  4224   // Volatile Store Long.  Must be atomic, so move it into
  4225   // the FP TOS and then do a 64-bit FIST.  Has to probe the
  4226   // target address before the store (for null-ptr checks)
  4227   // so the memory operand is used twice in the encoding.
  4228   enc_class enc_storeL_volatile( memory mem, stackSlotL src ) %{
  4229     store_to_stackslot( cbuf, 0x0DF, 0x05, $src$$disp );
  4230     cbuf.set_insts_mark();            // Mark start of FIST in case $mem has an oop
  4231     emit_opcode(cbuf,0xDF);
  4232     int rm_byte_opcode = 0x07;
  4233     int base     = $mem$$base;
  4234     int index    = $mem$$index;
  4235     int scale    = $mem$$scale;
  4236     int displace = $mem$$disp;
  4237     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4238     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
  4239   %}
  4241   enc_class enc_storeLX_volatile( memory mem, stackSlotL src, regXD tmp) %{
  4242     { // Atomic long load
  4243       // UseXmmLoadAndClearUpper ? movsd $tmp,[$src] : movlpd $tmp,[$src]
  4244       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  4245       emit_opcode(cbuf,0x0F);
  4246       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  4247       int base     = $src$$base;
  4248       int index    = $src$$index;
  4249       int scale    = $src$$scale;
  4250       int displace = $src$$disp;
  4251       bool disp_is_oop = $src->disp_is_oop(); // disp-as-oop when working with static globals
  4252       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4254     cbuf.set_insts_mark();            // Mark start of MOVSD in case $mem has an oop
  4255     { // MOVSD $mem,$tmp ! atomic long store
  4256       emit_opcode(cbuf,0xF2);
  4257       emit_opcode(cbuf,0x0F);
  4258       emit_opcode(cbuf,0x11);
  4259       int base     = $mem$$base;
  4260       int index    = $mem$$index;
  4261       int scale    = $mem$$scale;
  4262       int displace = $mem$$disp;
  4263       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4264       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4266   %}
  4268   enc_class enc_storeLX_reg_volatile( memory mem, eRegL src, regXD tmp, regXD tmp2) %{
  4269     { // MOVD $tmp,$src.lo
  4270       emit_opcode(cbuf,0x66);
  4271       emit_opcode(cbuf,0x0F);
  4272       emit_opcode(cbuf,0x6E);
  4273       emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
  4275     { // MOVD $tmp2,$src.hi
  4276       emit_opcode(cbuf,0x66);
  4277       emit_opcode(cbuf,0x0F);
  4278       emit_opcode(cbuf,0x6E);
  4279       emit_rm(cbuf, 0x3, $tmp2$$reg, HIGH_FROM_LOW($src$$reg));
  4281     { // PUNPCKLDQ $tmp,$tmp2
  4282       emit_opcode(cbuf,0x66);
  4283       emit_opcode(cbuf,0x0F);
  4284       emit_opcode(cbuf,0x62);
  4285       emit_rm(cbuf, 0x3, $tmp$$reg, $tmp2$$reg);
  4287     cbuf.set_insts_mark();            // Mark start of MOVSD in case $mem has an oop
  4288     { // MOVSD $mem,$tmp ! atomic long store
  4289       emit_opcode(cbuf,0xF2);
  4290       emit_opcode(cbuf,0x0F);
  4291       emit_opcode(cbuf,0x11);
  4292       int base     = $mem$$base;
  4293       int index    = $mem$$index;
  4294       int scale    = $mem$$scale;
  4295       int displace = $mem$$disp;
  4296       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4297       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4299   %}
  4301   // Safepoint Poll.  This polls the safepoint page, and causes an
  4302   // exception if it is not readable. Unfortunately, it kills the condition code
  4303   // in the process
  4304   // We current use TESTL [spp],EDI
  4305   // A better choice might be TESTB [spp + pagesize() - CacheLineSize()],0
  4307   enc_class Safepoint_Poll() %{
  4308     cbuf.relocate(cbuf.insts_mark(), relocInfo::poll_type, 0);
  4309     emit_opcode(cbuf,0x85);
  4310     emit_rm (cbuf, 0x0, 0x7, 0x5);
  4311     emit_d32(cbuf, (intptr_t)os::get_polling_page());
  4312   %}
  4313 %}
  4316 //----------FRAME--------------------------------------------------------------
  4317 // Definition of frame structure and management information.
  4318 //
  4319 //  S T A C K   L A Y O U T    Allocators stack-slot number
  4320 //                             |   (to get allocators register number
  4321 //  G  Owned by    |        |  v    add OptoReg::stack0())
  4322 //  r   CALLER     |        |
  4323 //  o     |        +--------+      pad to even-align allocators stack-slot
  4324 //  w     V        |  pad0  |        numbers; owned by CALLER
  4325 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  4326 //  h     ^        |   in   |  5
  4327 //        |        |  args  |  4   Holes in incoming args owned by SELF
  4328 //  |     |        |        |  3
  4329 //  |     |        +--------+
  4330 //  V     |        | old out|      Empty on Intel, window on Sparc
  4331 //        |    old |preserve|      Must be even aligned.
  4332 //        |     SP-+--------+----> Matcher::_old_SP, even aligned
  4333 //        |        |   in   |  3   area for Intel ret address
  4334 //     Owned by    |preserve|      Empty on Sparc.
  4335 //       SELF      +--------+
  4336 //        |        |  pad2  |  2   pad to align old SP
  4337 //        |        +--------+  1
  4338 //        |        | locks  |  0
  4339 //        |        +--------+----> OptoReg::stack0(), even aligned
  4340 //        |        |  pad1  | 11   pad to align new SP
  4341 //        |        +--------+
  4342 //        |        |        | 10
  4343 //        |        | spills |  9   spills
  4344 //        V        |        |  8   (pad0 slot for callee)
  4345 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  4346 //        ^        |  out   |  7
  4347 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  4348 //     Owned by    +--------+
  4349 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  4350 //        |    new |preserve|      Must be even-aligned.
  4351 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  4352 //        |        |        |
  4353 //
  4354 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  4355 //         known from SELF's arguments and the Java calling convention.
  4356 //         Region 6-7 is determined per call site.
  4357 // Note 2: If the calling convention leaves holes in the incoming argument
  4358 //         area, those holes are owned by SELF.  Holes in the outgoing area
  4359 //         are owned by the CALLEE.  Holes should not be nessecary in the
  4360 //         incoming area, as the Java calling convention is completely under
  4361 //         the control of the AD file.  Doubles can be sorted and packed to
  4362 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  4363 //         varargs C calling conventions.
  4364 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  4365 //         even aligned with pad0 as needed.
  4366 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  4367 //         region 6-11 is even aligned; it may be padded out more so that
  4368 //         the region from SP to FP meets the minimum stack alignment.
  4370 frame %{
  4371   // What direction does stack grow in (assumed to be same for C & Java)
  4372   stack_direction(TOWARDS_LOW);
  4374   // These three registers define part of the calling convention
  4375   // between compiled code and the interpreter.
  4376   inline_cache_reg(EAX);                // Inline Cache Register
  4377   interpreter_method_oop_reg(EBX);      // Method Oop Register when calling interpreter
  4379   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  4380   cisc_spilling_operand_name(indOffset32);
  4382   // Number of stack slots consumed by locking an object
  4383   sync_stack_slots(1);
  4385   // Compiled code's Frame Pointer
  4386   frame_pointer(ESP);
  4387   // Interpreter stores its frame pointer in a register which is
  4388   // stored to the stack by I2CAdaptors.
  4389   // I2CAdaptors convert from interpreted java to compiled java.
  4390   interpreter_frame_pointer(EBP);
  4392   // Stack alignment requirement
  4393   // Alignment size in bytes (128-bit -> 16 bytes)
  4394   stack_alignment(StackAlignmentInBytes);
  4396   // Number of stack slots between incoming argument block and the start of
  4397   // a new frame.  The PROLOG must add this many slots to the stack.  The
  4398   // EPILOG must remove this many slots.  Intel needs one slot for
  4399   // return address and one for rbp, (must save rbp)
  4400   in_preserve_stack_slots(2+VerifyStackAtCalls);
  4402   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  4403   // for calls to C.  Supports the var-args backing area for register parms.
  4404   varargs_C_out_slots_killed(0);
  4406   // The after-PROLOG location of the return address.  Location of
  4407   // return address specifies a type (REG or STACK) and a number
  4408   // representing the register number (i.e. - use a register name) or
  4409   // stack slot.
  4410   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
  4411   // Otherwise, it is above the locks and verification slot and alignment word
  4412   return_addr(STACK - 1 +
  4413               round_to(1+VerifyStackAtCalls+
  4414               Compile::current()->fixed_slots(),
  4415               (StackAlignmentInBytes/wordSize)));
  4417   // Body of function which returns an integer array locating
  4418   // arguments either in registers or in stack slots.  Passed an array
  4419   // of ideal registers called "sig" and a "length" count.  Stack-slot
  4420   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  4421   // arguments for a CALLEE.  Incoming stack arguments are
  4422   // automatically biased by the preserve_stack_slots field above.
  4423   calling_convention %{
  4424     // No difference between ingoing/outgoing just pass false
  4425     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
  4426   %}
  4429   // Body of function which returns an integer array locating
  4430   // arguments either in registers or in stack slots.  Passed an array
  4431   // of ideal registers called "sig" and a "length" count.  Stack-slot
  4432   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  4433   // arguments for a CALLEE.  Incoming stack arguments are
  4434   // automatically biased by the preserve_stack_slots field above.
  4435   c_calling_convention %{
  4436     // This is obviously always outgoing
  4437     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
  4438   %}
  4440   // Location of C & interpreter return values
  4441   c_return_value %{
  4442     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  4443     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
  4444     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
  4446     // in SSE2+ mode we want to keep the FPU stack clean so pretend
  4447     // that C functions return float and double results in XMM0.
  4448     if( ideal_reg == Op_RegD && UseSSE>=2 )
  4449       return OptoRegPair(XMM0b_num,XMM0a_num);
  4450     if( ideal_reg == Op_RegF && UseSSE>=2 )
  4451       return OptoRegPair(OptoReg::Bad,XMM0a_num);
  4453     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  4454   %}
  4456   // Location of return values
  4457   return_value %{
  4458     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  4459     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
  4460     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
  4461     if( ideal_reg == Op_RegD && UseSSE>=2 )
  4462       return OptoRegPair(XMM0b_num,XMM0a_num);
  4463     if( ideal_reg == Op_RegF && UseSSE>=1 )
  4464       return OptoRegPair(OptoReg::Bad,XMM0a_num);
  4465     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  4466   %}
  4468 %}
  4470 //----------ATTRIBUTES---------------------------------------------------------
  4471 //----------Operand Attributes-------------------------------------------------
  4472 op_attrib op_cost(0);        // Required cost attribute
  4474 //----------Instruction Attributes---------------------------------------------
  4475 ins_attrib ins_cost(100);       // Required cost attribute
  4476 ins_attrib ins_size(8);         // Required size attribute (in bits)
  4477 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
  4478                                 // non-matching short branch variant of some
  4479                                                             // long branch?
  4480 ins_attrib ins_alignment(1);    // Required alignment attribute (must be a power of 2)
  4481                                 // specifies the alignment that some part of the instruction (not
  4482                                 // necessarily the start) requires.  If > 1, a compute_padding()
  4483                                 // function must be provided for the instruction
  4485 //----------OPERANDS-----------------------------------------------------------
  4486 // Operand definitions must precede instruction definitions for correct parsing
  4487 // in the ADLC because operands constitute user defined types which are used in
  4488 // instruction definitions.
  4490 //----------Simple Operands----------------------------------------------------
  4491 // Immediate Operands
  4492 // Integer Immediate
  4493 operand immI() %{
  4494   match(ConI);
  4496   op_cost(10);
  4497   format %{ %}
  4498   interface(CONST_INTER);
  4499 %}
  4501 // Constant for test vs zero
  4502 operand immI0() %{
  4503   predicate(n->get_int() == 0);
  4504   match(ConI);
  4506   op_cost(0);
  4507   format %{ %}
  4508   interface(CONST_INTER);
  4509 %}
  4511 // Constant for increment
  4512 operand immI1() %{
  4513   predicate(n->get_int() == 1);
  4514   match(ConI);
  4516   op_cost(0);
  4517   format %{ %}
  4518   interface(CONST_INTER);
  4519 %}
  4521 // Constant for decrement
  4522 operand immI_M1() %{
  4523   predicate(n->get_int() == -1);
  4524   match(ConI);
  4526   op_cost(0);
  4527   format %{ %}
  4528   interface(CONST_INTER);
  4529 %}
  4531 // Valid scale values for addressing modes
  4532 operand immI2() %{
  4533   predicate(0 <= n->get_int() && (n->get_int() <= 3));
  4534   match(ConI);
  4536   format %{ %}
  4537   interface(CONST_INTER);
  4538 %}
  4540 operand immI8() %{
  4541   predicate((-128 <= n->get_int()) && (n->get_int() <= 127));
  4542   match(ConI);
  4544   op_cost(5);
  4545   format %{ %}
  4546   interface(CONST_INTER);
  4547 %}
  4549 operand immI16() %{
  4550   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
  4551   match(ConI);
  4553   op_cost(10);
  4554   format %{ %}
  4555   interface(CONST_INTER);
  4556 %}
  4558 // Constant for long shifts
  4559 operand immI_32() %{
  4560   predicate( n->get_int() == 32 );
  4561   match(ConI);
  4563   op_cost(0);
  4564   format %{ %}
  4565   interface(CONST_INTER);
  4566 %}
  4568 operand immI_1_31() %{
  4569   predicate( n->get_int() >= 1 && n->get_int() <= 31 );
  4570   match(ConI);
  4572   op_cost(0);
  4573   format %{ %}
  4574   interface(CONST_INTER);
  4575 %}
  4577 operand immI_32_63() %{
  4578   predicate( n->get_int() >= 32 && n->get_int() <= 63 );
  4579   match(ConI);
  4580   op_cost(0);
  4582   format %{ %}
  4583   interface(CONST_INTER);
  4584 %}
  4586 operand immI_1() %{
  4587   predicate( n->get_int() == 1 );
  4588   match(ConI);
  4590   op_cost(0);
  4591   format %{ %}
  4592   interface(CONST_INTER);
  4593 %}
  4595 operand immI_2() %{
  4596   predicate( n->get_int() == 2 );
  4597   match(ConI);
  4599   op_cost(0);
  4600   format %{ %}
  4601   interface(CONST_INTER);
  4602 %}
  4604 operand immI_3() %{
  4605   predicate( n->get_int() == 3 );
  4606   match(ConI);
  4608   op_cost(0);
  4609   format %{ %}
  4610   interface(CONST_INTER);
  4611 %}
  4613 // Pointer Immediate
  4614 operand immP() %{
  4615   match(ConP);
  4617   op_cost(10);
  4618   format %{ %}
  4619   interface(CONST_INTER);
  4620 %}
  4622 // NULL Pointer Immediate
  4623 operand immP0() %{
  4624   predicate( n->get_ptr() == 0 );
  4625   match(ConP);
  4626   op_cost(0);
  4628   format %{ %}
  4629   interface(CONST_INTER);
  4630 %}
  4632 // Long Immediate
  4633 operand immL() %{
  4634   match(ConL);
  4636   op_cost(20);
  4637   format %{ %}
  4638   interface(CONST_INTER);
  4639 %}
  4641 // Long Immediate zero
  4642 operand immL0() %{
  4643   predicate( n->get_long() == 0L );
  4644   match(ConL);
  4645   op_cost(0);
  4647   format %{ %}
  4648   interface(CONST_INTER);
  4649 %}
  4651 // Long Immediate zero
  4652 operand immL_M1() %{
  4653   predicate( n->get_long() == -1L );
  4654   match(ConL);
  4655   op_cost(0);
  4657   format %{ %}
  4658   interface(CONST_INTER);
  4659 %}
  4661 // Long immediate from 0 to 127.
  4662 // Used for a shorter form of long mul by 10.
  4663 operand immL_127() %{
  4664   predicate((0 <= n->get_long()) && (n->get_long() <= 127));
  4665   match(ConL);
  4666   op_cost(0);
  4668   format %{ %}
  4669   interface(CONST_INTER);
  4670 %}
  4672 // Long Immediate: low 32-bit mask
  4673 operand immL_32bits() %{
  4674   predicate(n->get_long() == 0xFFFFFFFFL);
  4675   match(ConL);
  4676   op_cost(0);
  4678   format %{ %}
  4679   interface(CONST_INTER);
  4680 %}
  4682 // Long Immediate: low 32-bit mask
  4683 operand immL32() %{
  4684   predicate(n->get_long() == (int)(n->get_long()));
  4685   match(ConL);
  4686   op_cost(20);
  4688   format %{ %}
  4689   interface(CONST_INTER);
  4690 %}
  4692 //Double Immediate zero
  4693 operand immD0() %{
  4694   // Do additional (and counter-intuitive) test against NaN to work around VC++
  4695   // bug that generates code such that NaNs compare equal to 0.0
  4696   predicate( UseSSE<=1 && n->getd() == 0.0 && !g_isnan(n->getd()) );
  4697   match(ConD);
  4699   op_cost(5);
  4700   format %{ %}
  4701   interface(CONST_INTER);
  4702 %}
  4704 // Double Immediate one
  4705 operand immD1() %{
  4706   predicate( UseSSE<=1 && n->getd() == 1.0 );
  4707   match(ConD);
  4709   op_cost(5);
  4710   format %{ %}
  4711   interface(CONST_INTER);
  4712 %}
  4714 // Double Immediate
  4715 operand immD() %{
  4716   predicate(UseSSE<=1);
  4717   match(ConD);
  4719   op_cost(5);
  4720   format %{ %}
  4721   interface(CONST_INTER);
  4722 %}
  4724 operand immXD() %{
  4725   predicate(UseSSE>=2);
  4726   match(ConD);
  4728   op_cost(5);
  4729   format %{ %}
  4730   interface(CONST_INTER);
  4731 %}
  4733 // Double Immediate zero
  4734 operand immXD0() %{
  4735   // Do additional (and counter-intuitive) test against NaN to work around VC++
  4736   // bug that generates code such that NaNs compare equal to 0.0 AND do not
  4737   // compare equal to -0.0.
  4738   predicate( UseSSE>=2 && jlong_cast(n->getd()) == 0 );
  4739   match(ConD);
  4741   format %{ %}
  4742   interface(CONST_INTER);
  4743 %}
  4745 // Float Immediate zero
  4746 operand immF0() %{
  4747   predicate(UseSSE == 0 && n->getf() == 0.0F);
  4748   match(ConF);
  4750   op_cost(5);
  4751   format %{ %}
  4752   interface(CONST_INTER);
  4753 %}
  4755 // Float Immediate one
  4756 operand immF1() %{
  4757   predicate(UseSSE == 0 && n->getf() == 1.0F);
  4758   match(ConF);
  4760   op_cost(5);
  4761   format %{ %}
  4762   interface(CONST_INTER);
  4763 %}
  4765 // Float Immediate
  4766 operand immF() %{
  4767   predicate( UseSSE == 0 );
  4768   match(ConF);
  4770   op_cost(5);
  4771   format %{ %}
  4772   interface(CONST_INTER);
  4773 %}
  4775 // Float Immediate
  4776 operand immXF() %{
  4777   predicate(UseSSE >= 1);
  4778   match(ConF);
  4780   op_cost(5);
  4781   format %{ %}
  4782   interface(CONST_INTER);
  4783 %}
  4785 // Float Immediate zero.  Zero and not -0.0
  4786 operand immXF0() %{
  4787   predicate( UseSSE >= 1 && jint_cast(n->getf()) == 0 );
  4788   match(ConF);
  4790   op_cost(5);
  4791   format %{ %}
  4792   interface(CONST_INTER);
  4793 %}
  4795 // Immediates for special shifts (sign extend)
  4797 // Constants for increment
  4798 operand immI_16() %{
  4799   predicate( n->get_int() == 16 );
  4800   match(ConI);
  4802   format %{ %}
  4803   interface(CONST_INTER);
  4804 %}
  4806 operand immI_24() %{
  4807   predicate( n->get_int() == 24 );
  4808   match(ConI);
  4810   format %{ %}
  4811   interface(CONST_INTER);
  4812 %}
  4814 // Constant for byte-wide masking
  4815 operand immI_255() %{
  4816   predicate( n->get_int() == 255 );
  4817   match(ConI);
  4819   format %{ %}
  4820   interface(CONST_INTER);
  4821 %}
  4823 // Constant for short-wide masking
  4824 operand immI_65535() %{
  4825   predicate(n->get_int() == 65535);
  4826   match(ConI);
  4828   format %{ %}
  4829   interface(CONST_INTER);
  4830 %}
  4832 // Register Operands
  4833 // Integer Register
  4834 operand eRegI() %{
  4835   constraint(ALLOC_IN_RC(e_reg));
  4836   match(RegI);
  4837   match(xRegI);
  4838   match(eAXRegI);
  4839   match(eBXRegI);
  4840   match(eCXRegI);
  4841   match(eDXRegI);
  4842   match(eDIRegI);
  4843   match(eSIRegI);
  4845   format %{ %}
  4846   interface(REG_INTER);
  4847 %}
  4849 // Subset of Integer Register
  4850 operand xRegI(eRegI reg) %{
  4851   constraint(ALLOC_IN_RC(x_reg));
  4852   match(reg);
  4853   match(eAXRegI);
  4854   match(eBXRegI);
  4855   match(eCXRegI);
  4856   match(eDXRegI);
  4858   format %{ %}
  4859   interface(REG_INTER);
  4860 %}
  4862 // Special Registers
  4863 operand eAXRegI(xRegI reg) %{
  4864   constraint(ALLOC_IN_RC(eax_reg));
  4865   match(reg);
  4866   match(eRegI);
  4868   format %{ "EAX" %}
  4869   interface(REG_INTER);
  4870 %}
  4872 // Special Registers
  4873 operand eBXRegI(xRegI reg) %{
  4874   constraint(ALLOC_IN_RC(ebx_reg));
  4875   match(reg);
  4876   match(eRegI);
  4878   format %{ "EBX" %}
  4879   interface(REG_INTER);
  4880 %}
  4882 operand eCXRegI(xRegI reg) %{
  4883   constraint(ALLOC_IN_RC(ecx_reg));
  4884   match(reg);
  4885   match(eRegI);
  4887   format %{ "ECX" %}
  4888   interface(REG_INTER);
  4889 %}
  4891 operand eDXRegI(xRegI reg) %{
  4892   constraint(ALLOC_IN_RC(edx_reg));
  4893   match(reg);
  4894   match(eRegI);
  4896   format %{ "EDX" %}
  4897   interface(REG_INTER);
  4898 %}
  4900 operand eDIRegI(xRegI reg) %{
  4901   constraint(ALLOC_IN_RC(edi_reg));
  4902   match(reg);
  4903   match(eRegI);
  4905   format %{ "EDI" %}
  4906   interface(REG_INTER);
  4907 %}
  4909 operand naxRegI() %{
  4910   constraint(ALLOC_IN_RC(nax_reg));
  4911   match(RegI);
  4912   match(eCXRegI);
  4913   match(eDXRegI);
  4914   match(eSIRegI);
  4915   match(eDIRegI);
  4917   format %{ %}
  4918   interface(REG_INTER);
  4919 %}
  4921 operand nadxRegI() %{
  4922   constraint(ALLOC_IN_RC(nadx_reg));
  4923   match(RegI);
  4924   match(eBXRegI);
  4925   match(eCXRegI);
  4926   match(eSIRegI);
  4927   match(eDIRegI);
  4929   format %{ %}
  4930   interface(REG_INTER);
  4931 %}
  4933 operand ncxRegI() %{
  4934   constraint(ALLOC_IN_RC(ncx_reg));
  4935   match(RegI);
  4936   match(eAXRegI);
  4937   match(eDXRegI);
  4938   match(eSIRegI);
  4939   match(eDIRegI);
  4941   format %{ %}
  4942   interface(REG_INTER);
  4943 %}
  4945 // // This operand was used by cmpFastUnlock, but conflicted with 'object' reg
  4946 // //
  4947 operand eSIRegI(xRegI reg) %{
  4948    constraint(ALLOC_IN_RC(esi_reg));
  4949    match(reg);
  4950    match(eRegI);
  4952    format %{ "ESI" %}
  4953    interface(REG_INTER);
  4954 %}
  4956 // Pointer Register
  4957 operand anyRegP() %{
  4958   constraint(ALLOC_IN_RC(any_reg));
  4959   match(RegP);
  4960   match(eAXRegP);
  4961   match(eBXRegP);
  4962   match(eCXRegP);
  4963   match(eDIRegP);
  4964   match(eRegP);
  4966   format %{ %}
  4967   interface(REG_INTER);
  4968 %}
  4970 operand eRegP() %{
  4971   constraint(ALLOC_IN_RC(e_reg));
  4972   match(RegP);
  4973   match(eAXRegP);
  4974   match(eBXRegP);
  4975   match(eCXRegP);
  4976   match(eDIRegP);
  4978   format %{ %}
  4979   interface(REG_INTER);
  4980 %}
  4982 // On windows95, EBP is not safe to use for implicit null tests.
  4983 operand eRegP_no_EBP() %{
  4984   constraint(ALLOC_IN_RC(e_reg_no_rbp));
  4985   match(RegP);
  4986   match(eAXRegP);
  4987   match(eBXRegP);
  4988   match(eCXRegP);
  4989   match(eDIRegP);
  4991   op_cost(100);
  4992   format %{ %}
  4993   interface(REG_INTER);
  4994 %}
  4996 operand naxRegP() %{
  4997   constraint(ALLOC_IN_RC(nax_reg));
  4998   match(RegP);
  4999   match(eBXRegP);
  5000   match(eDXRegP);
  5001   match(eCXRegP);
  5002   match(eSIRegP);
  5003   match(eDIRegP);
  5005   format %{ %}
  5006   interface(REG_INTER);
  5007 %}
  5009 operand nabxRegP() %{
  5010   constraint(ALLOC_IN_RC(nabx_reg));
  5011   match(RegP);
  5012   match(eCXRegP);
  5013   match(eDXRegP);
  5014   match(eSIRegP);
  5015   match(eDIRegP);
  5017   format %{ %}
  5018   interface(REG_INTER);
  5019 %}
  5021 operand pRegP() %{
  5022   constraint(ALLOC_IN_RC(p_reg));
  5023   match(RegP);
  5024   match(eBXRegP);
  5025   match(eDXRegP);
  5026   match(eSIRegP);
  5027   match(eDIRegP);
  5029   format %{ %}
  5030   interface(REG_INTER);
  5031 %}
  5033 // Special Registers
  5034 // Return a pointer value
  5035 operand eAXRegP(eRegP reg) %{
  5036   constraint(ALLOC_IN_RC(eax_reg));
  5037   match(reg);
  5038   format %{ "EAX" %}
  5039   interface(REG_INTER);
  5040 %}
  5042 // Used in AtomicAdd
  5043 operand eBXRegP(eRegP reg) %{
  5044   constraint(ALLOC_IN_RC(ebx_reg));
  5045   match(reg);
  5046   format %{ "EBX" %}
  5047   interface(REG_INTER);
  5048 %}
  5050 // Tail-call (interprocedural jump) to interpreter
  5051 operand eCXRegP(eRegP reg) %{
  5052   constraint(ALLOC_IN_RC(ecx_reg));
  5053   match(reg);
  5054   format %{ "ECX" %}
  5055   interface(REG_INTER);
  5056 %}
  5058 operand eSIRegP(eRegP reg) %{
  5059   constraint(ALLOC_IN_RC(esi_reg));
  5060   match(reg);
  5061   format %{ "ESI" %}
  5062   interface(REG_INTER);
  5063 %}
  5065 // Used in rep stosw
  5066 operand eDIRegP(eRegP reg) %{
  5067   constraint(ALLOC_IN_RC(edi_reg));
  5068   match(reg);
  5069   format %{ "EDI" %}
  5070   interface(REG_INTER);
  5071 %}
  5073 operand eBPRegP() %{
  5074   constraint(ALLOC_IN_RC(ebp_reg));
  5075   match(RegP);
  5076   format %{ "EBP" %}
  5077   interface(REG_INTER);
  5078 %}
  5080 operand eRegL() %{
  5081   constraint(ALLOC_IN_RC(long_reg));
  5082   match(RegL);
  5083   match(eADXRegL);
  5085   format %{ %}
  5086   interface(REG_INTER);
  5087 %}
  5089 operand eADXRegL( eRegL reg ) %{
  5090   constraint(ALLOC_IN_RC(eadx_reg));
  5091   match(reg);
  5093   format %{ "EDX:EAX" %}
  5094   interface(REG_INTER);
  5095 %}
  5097 operand eBCXRegL( eRegL reg ) %{
  5098   constraint(ALLOC_IN_RC(ebcx_reg));
  5099   match(reg);
  5101   format %{ "EBX:ECX" %}
  5102   interface(REG_INTER);
  5103 %}
  5105 // Special case for integer high multiply
  5106 operand eADXRegL_low_only() %{
  5107   constraint(ALLOC_IN_RC(eadx_reg));
  5108   match(RegL);
  5110   format %{ "EAX" %}
  5111   interface(REG_INTER);
  5112 %}
  5114 // Flags register, used as output of compare instructions
  5115 operand eFlagsReg() %{
  5116   constraint(ALLOC_IN_RC(int_flags));
  5117   match(RegFlags);
  5119   format %{ "EFLAGS" %}
  5120   interface(REG_INTER);
  5121 %}
  5123 // Flags register, used as output of FLOATING POINT compare instructions
  5124 operand eFlagsRegU() %{
  5125   constraint(ALLOC_IN_RC(int_flags));
  5126   match(RegFlags);
  5128   format %{ "EFLAGS_U" %}
  5129   interface(REG_INTER);
  5130 %}
  5132 operand eFlagsRegUCF() %{
  5133   constraint(ALLOC_IN_RC(int_flags));
  5134   match(RegFlags);
  5135   predicate(false);
  5137   format %{ "EFLAGS_U_CF" %}
  5138   interface(REG_INTER);
  5139 %}
  5141 // Condition Code Register used by long compare
  5142 operand flagsReg_long_LTGE() %{
  5143   constraint(ALLOC_IN_RC(int_flags));
  5144   match(RegFlags);
  5145   format %{ "FLAGS_LTGE" %}
  5146   interface(REG_INTER);
  5147 %}
  5148 operand flagsReg_long_EQNE() %{
  5149   constraint(ALLOC_IN_RC(int_flags));
  5150   match(RegFlags);
  5151   format %{ "FLAGS_EQNE" %}
  5152   interface(REG_INTER);
  5153 %}
  5154 operand flagsReg_long_LEGT() %{
  5155   constraint(ALLOC_IN_RC(int_flags));
  5156   match(RegFlags);
  5157   format %{ "FLAGS_LEGT" %}
  5158   interface(REG_INTER);
  5159 %}
  5161 // Float register operands
  5162 operand regD() %{
  5163   predicate( UseSSE < 2 );
  5164   constraint(ALLOC_IN_RC(dbl_reg));
  5165   match(RegD);
  5166   match(regDPR1);
  5167   match(regDPR2);
  5168   format %{ %}
  5169   interface(REG_INTER);
  5170 %}
  5172 operand regDPR1(regD reg) %{
  5173   predicate( UseSSE < 2 );
  5174   constraint(ALLOC_IN_RC(dbl_reg0));
  5175   match(reg);
  5176   format %{ "FPR1" %}
  5177   interface(REG_INTER);
  5178 %}
  5180 operand regDPR2(regD reg) %{
  5181   predicate( UseSSE < 2 );
  5182   constraint(ALLOC_IN_RC(dbl_reg1));
  5183   match(reg);
  5184   format %{ "FPR2" %}
  5185   interface(REG_INTER);
  5186 %}
  5188 operand regnotDPR1(regD reg) %{
  5189   predicate( UseSSE < 2 );
  5190   constraint(ALLOC_IN_RC(dbl_notreg0));
  5191   match(reg);
  5192   format %{ %}
  5193   interface(REG_INTER);
  5194 %}
  5196 // XMM Double register operands
  5197 operand regXD() %{
  5198   predicate( UseSSE>=2 );
  5199   constraint(ALLOC_IN_RC(xdb_reg));
  5200   match(RegD);
  5201   match(regXD6);
  5202   match(regXD7);
  5203   format %{ %}
  5204   interface(REG_INTER);
  5205 %}
  5207 // XMM6 double register operands
  5208 operand regXD6(regXD reg) %{
  5209   predicate( UseSSE>=2 );
  5210   constraint(ALLOC_IN_RC(xdb_reg6));
  5211   match(reg);
  5212   format %{ "XMM6" %}
  5213   interface(REG_INTER);
  5214 %}
  5216 // XMM7 double register operands
  5217 operand regXD7(regXD reg) %{
  5218   predicate( UseSSE>=2 );
  5219   constraint(ALLOC_IN_RC(xdb_reg7));
  5220   match(reg);
  5221   format %{ "XMM7" %}
  5222   interface(REG_INTER);
  5223 %}
  5225 // Float register operands
  5226 operand regF() %{
  5227   predicate( UseSSE < 2 );
  5228   constraint(ALLOC_IN_RC(flt_reg));
  5229   match(RegF);
  5230   match(regFPR1);
  5231   format %{ %}
  5232   interface(REG_INTER);
  5233 %}
  5235 // Float register operands
  5236 operand regFPR1(regF reg) %{
  5237   predicate( UseSSE < 2 );
  5238   constraint(ALLOC_IN_RC(flt_reg0));
  5239   match(reg);
  5240   format %{ "FPR1" %}
  5241   interface(REG_INTER);
  5242 %}
  5244 // XMM register operands
  5245 operand regX() %{
  5246   predicate( UseSSE>=1 );
  5247   constraint(ALLOC_IN_RC(xmm_reg));
  5248   match(RegF);
  5249   format %{ %}
  5250   interface(REG_INTER);
  5251 %}
  5254 //----------Memory Operands----------------------------------------------------
  5255 // Direct Memory Operand
  5256 operand direct(immP addr) %{
  5257   match(addr);
  5259   format %{ "[$addr]" %}
  5260   interface(MEMORY_INTER) %{
  5261     base(0xFFFFFFFF);
  5262     index(0x4);
  5263     scale(0x0);
  5264     disp($addr);
  5265   %}
  5266 %}
  5268 // Indirect Memory Operand
  5269 operand indirect(eRegP reg) %{
  5270   constraint(ALLOC_IN_RC(e_reg));
  5271   match(reg);
  5273   format %{ "[$reg]" %}
  5274   interface(MEMORY_INTER) %{
  5275     base($reg);
  5276     index(0x4);
  5277     scale(0x0);
  5278     disp(0x0);
  5279   %}
  5280 %}
  5282 // Indirect Memory Plus Short Offset Operand
  5283 operand indOffset8(eRegP reg, immI8 off) %{
  5284   match(AddP reg off);
  5286   format %{ "[$reg + $off]" %}
  5287   interface(MEMORY_INTER) %{
  5288     base($reg);
  5289     index(0x4);
  5290     scale(0x0);
  5291     disp($off);
  5292   %}
  5293 %}
  5295 // Indirect Memory Plus Long Offset Operand
  5296 operand indOffset32(eRegP reg, immI off) %{
  5297   match(AddP reg off);
  5299   format %{ "[$reg + $off]" %}
  5300   interface(MEMORY_INTER) %{
  5301     base($reg);
  5302     index(0x4);
  5303     scale(0x0);
  5304     disp($off);
  5305   %}
  5306 %}
  5308 // Indirect Memory Plus Long Offset Operand
  5309 operand indOffset32X(eRegI reg, immP off) %{
  5310   match(AddP off reg);
  5312   format %{ "[$reg + $off]" %}
  5313   interface(MEMORY_INTER) %{
  5314     base($reg);
  5315     index(0x4);
  5316     scale(0x0);
  5317     disp($off);
  5318   %}
  5319 %}
  5321 // Indirect Memory Plus Index Register Plus Offset Operand
  5322 operand indIndexOffset(eRegP reg, eRegI ireg, immI off) %{
  5323   match(AddP (AddP reg ireg) off);
  5325   op_cost(10);
  5326   format %{"[$reg + $off + $ireg]" %}
  5327   interface(MEMORY_INTER) %{
  5328     base($reg);
  5329     index($ireg);
  5330     scale(0x0);
  5331     disp($off);
  5332   %}
  5333 %}
  5335 // Indirect Memory Plus Index Register Plus Offset Operand
  5336 operand indIndex(eRegP reg, eRegI ireg) %{
  5337   match(AddP reg ireg);
  5339   op_cost(10);
  5340   format %{"[$reg + $ireg]" %}
  5341   interface(MEMORY_INTER) %{
  5342     base($reg);
  5343     index($ireg);
  5344     scale(0x0);
  5345     disp(0x0);
  5346   %}
  5347 %}
  5349 // // -------------------------------------------------------------------------
  5350 // // 486 architecture doesn't support "scale * index + offset" with out a base
  5351 // // -------------------------------------------------------------------------
  5352 // // Scaled Memory Operands
  5353 // // Indirect Memory Times Scale Plus Offset Operand
  5354 // operand indScaleOffset(immP off, eRegI ireg, immI2 scale) %{
  5355 //   match(AddP off (LShiftI ireg scale));
  5356 //
  5357 //   op_cost(10);
  5358 //   format %{"[$off + $ireg << $scale]" %}
  5359 //   interface(MEMORY_INTER) %{
  5360 //     base(0x4);
  5361 //     index($ireg);
  5362 //     scale($scale);
  5363 //     disp($off);
  5364 //   %}
  5365 // %}
  5367 // Indirect Memory Times Scale Plus Index Register
  5368 operand indIndexScale(eRegP reg, eRegI ireg, immI2 scale) %{
  5369   match(AddP reg (LShiftI ireg scale));
  5371   op_cost(10);
  5372   format %{"[$reg + $ireg << $scale]" %}
  5373   interface(MEMORY_INTER) %{
  5374     base($reg);
  5375     index($ireg);
  5376     scale($scale);
  5377     disp(0x0);
  5378   %}
  5379 %}
  5381 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  5382 operand indIndexScaleOffset(eRegP reg, immI off, eRegI ireg, immI2 scale) %{
  5383   match(AddP (AddP reg (LShiftI ireg scale)) off);
  5385   op_cost(10);
  5386   format %{"[$reg + $off + $ireg << $scale]" %}
  5387   interface(MEMORY_INTER) %{
  5388     base($reg);
  5389     index($ireg);
  5390     scale($scale);
  5391     disp($off);
  5392   %}
  5393 %}
  5395 //----------Load Long Memory Operands------------------------------------------
  5396 // The load-long idiom will use it's address expression again after loading
  5397 // the first word of the long.  If the load-long destination overlaps with
  5398 // registers used in the addressing expression, the 2nd half will be loaded
  5399 // from a clobbered address.  Fix this by requiring that load-long use
  5400 // address registers that do not overlap with the load-long target.
  5402 // load-long support
  5403 operand load_long_RegP() %{
  5404   constraint(ALLOC_IN_RC(esi_reg));
  5405   match(RegP);
  5406   match(eSIRegP);
  5407   op_cost(100);
  5408   format %{  %}
  5409   interface(REG_INTER);
  5410 %}
  5412 // Indirect Memory Operand Long
  5413 operand load_long_indirect(load_long_RegP reg) %{
  5414   constraint(ALLOC_IN_RC(esi_reg));
  5415   match(reg);
  5417   format %{ "[$reg]" %}
  5418   interface(MEMORY_INTER) %{
  5419     base($reg);
  5420     index(0x4);
  5421     scale(0x0);
  5422     disp(0x0);
  5423   %}
  5424 %}
  5426 // Indirect Memory Plus Long Offset Operand
  5427 operand load_long_indOffset32(load_long_RegP reg, immI off) %{
  5428   match(AddP reg off);
  5430   format %{ "[$reg + $off]" %}
  5431   interface(MEMORY_INTER) %{
  5432     base($reg);
  5433     index(0x4);
  5434     scale(0x0);
  5435     disp($off);
  5436   %}
  5437 %}
  5439 opclass load_long_memory(load_long_indirect, load_long_indOffset32);
  5442 //----------Special Memory Operands--------------------------------------------
  5443 // Stack Slot Operand - This operand is used for loading and storing temporary
  5444 //                      values on the stack where a match requires a value to
  5445 //                      flow through memory.
  5446 operand stackSlotP(sRegP reg) %{
  5447   constraint(ALLOC_IN_RC(stack_slots));
  5448   // No match rule because this operand is only generated in matching
  5449   format %{ "[$reg]" %}
  5450   interface(MEMORY_INTER) %{
  5451     base(0x4);   // ESP
  5452     index(0x4);  // No Index
  5453     scale(0x0);  // No Scale
  5454     disp($reg);  // Stack Offset
  5455   %}
  5456 %}
  5458 operand stackSlotI(sRegI reg) %{
  5459   constraint(ALLOC_IN_RC(stack_slots));
  5460   // No match rule because this operand is only generated in matching
  5461   format %{ "[$reg]" %}
  5462   interface(MEMORY_INTER) %{
  5463     base(0x4);   // ESP
  5464     index(0x4);  // No Index
  5465     scale(0x0);  // No Scale
  5466     disp($reg);  // Stack Offset
  5467   %}
  5468 %}
  5470 operand stackSlotF(sRegF reg) %{
  5471   constraint(ALLOC_IN_RC(stack_slots));
  5472   // No match rule because this operand is only generated in matching
  5473   format %{ "[$reg]" %}
  5474   interface(MEMORY_INTER) %{
  5475     base(0x4);   // ESP
  5476     index(0x4);  // No Index
  5477     scale(0x0);  // No Scale
  5478     disp($reg);  // Stack Offset
  5479   %}
  5480 %}
  5482 operand stackSlotD(sRegD reg) %{
  5483   constraint(ALLOC_IN_RC(stack_slots));
  5484   // No match rule because this operand is only generated in matching
  5485   format %{ "[$reg]" %}
  5486   interface(MEMORY_INTER) %{
  5487     base(0x4);   // ESP
  5488     index(0x4);  // No Index
  5489     scale(0x0);  // No Scale
  5490     disp($reg);  // Stack Offset
  5491   %}
  5492 %}
  5494 operand stackSlotL(sRegL reg) %{
  5495   constraint(ALLOC_IN_RC(stack_slots));
  5496   // No match rule because this operand is only generated in matching
  5497   format %{ "[$reg]" %}
  5498   interface(MEMORY_INTER) %{
  5499     base(0x4);   // ESP
  5500     index(0x4);  // No Index
  5501     scale(0x0);  // No Scale
  5502     disp($reg);  // Stack Offset
  5503   %}
  5504 %}
  5506 //----------Memory Operands - Win95 Implicit Null Variants----------------
  5507 // Indirect Memory Operand
  5508 operand indirect_win95_safe(eRegP_no_EBP reg)
  5509 %{
  5510   constraint(ALLOC_IN_RC(e_reg));
  5511   match(reg);
  5513   op_cost(100);
  5514   format %{ "[$reg]" %}
  5515   interface(MEMORY_INTER) %{
  5516     base($reg);
  5517     index(0x4);
  5518     scale(0x0);
  5519     disp(0x0);
  5520   %}
  5521 %}
  5523 // Indirect Memory Plus Short Offset Operand
  5524 operand indOffset8_win95_safe(eRegP_no_EBP reg, immI8 off)
  5525 %{
  5526   match(AddP reg off);
  5528   op_cost(100);
  5529   format %{ "[$reg + $off]" %}
  5530   interface(MEMORY_INTER) %{
  5531     base($reg);
  5532     index(0x4);
  5533     scale(0x0);
  5534     disp($off);
  5535   %}
  5536 %}
  5538 // Indirect Memory Plus Long Offset Operand
  5539 operand indOffset32_win95_safe(eRegP_no_EBP reg, immI off)
  5540 %{
  5541   match(AddP reg off);
  5543   op_cost(100);
  5544   format %{ "[$reg + $off]" %}
  5545   interface(MEMORY_INTER) %{
  5546     base($reg);
  5547     index(0x4);
  5548     scale(0x0);
  5549     disp($off);
  5550   %}
  5551 %}
  5553 // Indirect Memory Plus Index Register Plus Offset Operand
  5554 operand indIndexOffset_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI off)
  5555 %{
  5556   match(AddP (AddP reg ireg) off);
  5558   op_cost(100);
  5559   format %{"[$reg + $off + $ireg]" %}
  5560   interface(MEMORY_INTER) %{
  5561     base($reg);
  5562     index($ireg);
  5563     scale(0x0);
  5564     disp($off);
  5565   %}
  5566 %}
  5568 // Indirect Memory Times Scale Plus Index Register
  5569 operand indIndexScale_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI2 scale)
  5570 %{
  5571   match(AddP reg (LShiftI ireg scale));
  5573   op_cost(100);
  5574   format %{"[$reg + $ireg << $scale]" %}
  5575   interface(MEMORY_INTER) %{
  5576     base($reg);
  5577     index($ireg);
  5578     scale($scale);
  5579     disp(0x0);
  5580   %}
  5581 %}
  5583 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  5584 operand indIndexScaleOffset_win95_safe(eRegP_no_EBP reg, immI off, eRegI ireg, immI2 scale)
  5585 %{
  5586   match(AddP (AddP reg (LShiftI ireg scale)) off);
  5588   op_cost(100);
  5589   format %{"[$reg + $off + $ireg << $scale]" %}
  5590   interface(MEMORY_INTER) %{
  5591     base($reg);
  5592     index($ireg);
  5593     scale($scale);
  5594     disp($off);
  5595   %}
  5596 %}
  5598 //----------Conditional Branch Operands----------------------------------------
  5599 // Comparison Op  - This is the operation of the comparison, and is limited to
  5600 //                  the following set of codes:
  5601 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  5602 //
  5603 // Other attributes of the comparison, such as unsignedness, are specified
  5604 // by the comparison instruction that sets a condition code flags register.
  5605 // That result is represented by a flags operand whose subtype is appropriate
  5606 // to the unsignedness (etc.) of the comparison.
  5607 //
  5608 // Later, the instruction which matches both the Comparison Op (a Bool) and
  5609 // the flags (produced by the Cmp) specifies the coding of the comparison op
  5610 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  5612 // Comparision Code
  5613 operand cmpOp() %{
  5614   match(Bool);
  5616   format %{ "" %}
  5617   interface(COND_INTER) %{
  5618     equal(0x4, "e");
  5619     not_equal(0x5, "ne");
  5620     less(0xC, "l");
  5621     greater_equal(0xD, "ge");
  5622     less_equal(0xE, "le");
  5623     greater(0xF, "g");
  5624   %}
  5625 %}
  5627 // Comparison Code, unsigned compare.  Used by FP also, with
  5628 // C2 (unordered) turned into GT or LT already.  The other bits
  5629 // C0 and C3 are turned into Carry & Zero flags.
  5630 operand cmpOpU() %{
  5631   match(Bool);
  5633   format %{ "" %}
  5634   interface(COND_INTER) %{
  5635     equal(0x4, "e");
  5636     not_equal(0x5, "ne");
  5637     less(0x2, "b");
  5638     greater_equal(0x3, "nb");
  5639     less_equal(0x6, "be");
  5640     greater(0x7, "nbe");
  5641   %}
  5642 %}
  5644 // Floating comparisons that don't require any fixup for the unordered case
  5645 operand cmpOpUCF() %{
  5646   match(Bool);
  5647   predicate(n->as_Bool()->_test._test == BoolTest::lt ||
  5648             n->as_Bool()->_test._test == BoolTest::ge ||
  5649             n->as_Bool()->_test._test == BoolTest::le ||
  5650             n->as_Bool()->_test._test == BoolTest::gt);
  5651   format %{ "" %}
  5652   interface(COND_INTER) %{
  5653     equal(0x4, "e");
  5654     not_equal(0x5, "ne");
  5655     less(0x2, "b");
  5656     greater_equal(0x3, "nb");
  5657     less_equal(0x6, "be");
  5658     greater(0x7, "nbe");
  5659   %}
  5660 %}
  5663 // Floating comparisons that can be fixed up with extra conditional jumps
  5664 operand cmpOpUCF2() %{
  5665   match(Bool);
  5666   predicate(n->as_Bool()->_test._test == BoolTest::ne ||
  5667             n->as_Bool()->_test._test == BoolTest::eq);
  5668   format %{ "" %}
  5669   interface(COND_INTER) %{
  5670     equal(0x4, "e");
  5671     not_equal(0x5, "ne");
  5672     less(0x2, "b");
  5673     greater_equal(0x3, "nb");
  5674     less_equal(0x6, "be");
  5675     greater(0x7, "nbe");
  5676   %}
  5677 %}
  5679 // Comparison Code for FP conditional move
  5680 operand cmpOp_fcmov() %{
  5681   match(Bool);
  5683   format %{ "" %}
  5684   interface(COND_INTER) %{
  5685     equal        (0x0C8);
  5686     not_equal    (0x1C8);
  5687     less         (0x0C0);
  5688     greater_equal(0x1C0);
  5689     less_equal   (0x0D0);
  5690     greater      (0x1D0);
  5691   %}
  5692 %}
  5694 // Comparision Code used in long compares
  5695 operand cmpOp_commute() %{
  5696   match(Bool);
  5698   format %{ "" %}
  5699   interface(COND_INTER) %{
  5700     equal(0x4, "e");
  5701     not_equal(0x5, "ne");
  5702     less(0xF, "g");
  5703     greater_equal(0xE, "le");
  5704     less_equal(0xD, "ge");
  5705     greater(0xC, "l");
  5706   %}
  5707 %}
  5709 //----------OPERAND CLASSES----------------------------------------------------
  5710 // Operand Classes are groups of operands that are used as to simplify
  5711 // instruction definitions by not requiring the AD writer to specify separate
  5712 // instructions for every form of operand when the instruction accepts
  5713 // multiple operand types with the same basic encoding and format.  The classic
  5714 // case of this is memory operands.
  5716 opclass memory(direct, indirect, indOffset8, indOffset32, indOffset32X, indIndexOffset,
  5717                indIndex, indIndexScale, indIndexScaleOffset);
  5719 // Long memory operations are encoded in 2 instructions and a +4 offset.
  5720 // This means some kind of offset is always required and you cannot use
  5721 // an oop as the offset (done when working on static globals).
  5722 opclass long_memory(direct, indirect, indOffset8, indOffset32, indIndexOffset,
  5723                     indIndex, indIndexScale, indIndexScaleOffset);
  5726 //----------PIPELINE-----------------------------------------------------------
  5727 // Rules which define the behavior of the target architectures pipeline.
  5728 pipeline %{
  5730 //----------ATTRIBUTES---------------------------------------------------------
  5731 attributes %{
  5732   variable_size_instructions;        // Fixed size instructions
  5733   max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
  5734   instruction_unit_size = 1;         // An instruction is 1 bytes long
  5735   instruction_fetch_unit_size = 16;  // The processor fetches one line
  5736   instruction_fetch_units = 1;       // of 16 bytes
  5738   // List of nop instructions
  5739   nops( MachNop );
  5740 %}
  5742 //----------RESOURCES----------------------------------------------------------
  5743 // Resources are the functional units available to the machine
  5745 // Generic P2/P3 pipeline
  5746 // 3 decoders, only D0 handles big operands; a "bundle" is the limit of
  5747 // 3 instructions decoded per cycle.
  5748 // 2 load/store ops per cycle, 1 branch, 1 FPU,
  5749 // 2 ALU op, only ALU0 handles mul/div instructions.
  5750 resources( D0, D1, D2, DECODE = D0 | D1 | D2,
  5751            MS0, MS1, MEM = MS0 | MS1,
  5752            BR, FPU,
  5753            ALU0, ALU1, ALU = ALU0 | ALU1 );
  5755 //----------PIPELINE DESCRIPTION-----------------------------------------------
  5756 // Pipeline Description specifies the stages in the machine's pipeline
  5758 // Generic P2/P3 pipeline
  5759 pipe_desc(S0, S1, S2, S3, S4, S5);
  5761 //----------PIPELINE CLASSES---------------------------------------------------
  5762 // Pipeline Classes describe the stages in which input and output are
  5763 // referenced by the hardware pipeline.
  5765 // Naming convention: ialu or fpu
  5766 // Then: _reg
  5767 // Then: _reg if there is a 2nd register
  5768 // Then: _long if it's a pair of instructions implementing a long
  5769 // Then: _fat if it requires the big decoder
  5770 //   Or: _mem if it requires the big decoder and a memory unit.
  5772 // Integer ALU reg operation
  5773 pipe_class ialu_reg(eRegI dst) %{
  5774     single_instruction;
  5775     dst    : S4(write);
  5776     dst    : S3(read);
  5777     DECODE : S0;        // any decoder
  5778     ALU    : S3;        // any alu
  5779 %}
  5781 // Long ALU reg operation
  5782 pipe_class ialu_reg_long(eRegL dst) %{
  5783     instruction_count(2);
  5784     dst    : S4(write);
  5785     dst    : S3(read);
  5786     DECODE : S0(2);     // any 2 decoders
  5787     ALU    : S3(2);     // both alus
  5788 %}
  5790 // Integer ALU reg operation using big decoder
  5791 pipe_class ialu_reg_fat(eRegI dst) %{
  5792     single_instruction;
  5793     dst    : S4(write);
  5794     dst    : S3(read);
  5795     D0     : S0;        // big decoder only
  5796     ALU    : S3;        // any alu
  5797 %}
  5799 // Long ALU reg operation using big decoder
  5800 pipe_class ialu_reg_long_fat(eRegL dst) %{
  5801     instruction_count(2);
  5802     dst    : S4(write);
  5803     dst    : S3(read);
  5804     D0     : S0(2);     // big decoder only; twice
  5805     ALU    : S3(2);     // any 2 alus
  5806 %}
  5808 // Integer ALU reg-reg operation
  5809 pipe_class ialu_reg_reg(eRegI dst, eRegI src) %{
  5810     single_instruction;
  5811     dst    : S4(write);
  5812     src    : S3(read);
  5813     DECODE : S0;        // any decoder
  5814     ALU    : S3;        // any alu
  5815 %}
  5817 // Long ALU reg-reg operation
  5818 pipe_class ialu_reg_reg_long(eRegL dst, eRegL src) %{
  5819     instruction_count(2);
  5820     dst    : S4(write);
  5821     src    : S3(read);
  5822     DECODE : S0(2);     // any 2 decoders
  5823     ALU    : S3(2);     // both alus
  5824 %}
  5826 // Integer ALU reg-reg operation
  5827 pipe_class ialu_reg_reg_fat(eRegI dst, memory src) %{
  5828     single_instruction;
  5829     dst    : S4(write);
  5830     src    : S3(read);
  5831     D0     : S0;        // big decoder only
  5832     ALU    : S3;        // any alu
  5833 %}
  5835 // Long ALU reg-reg operation
  5836 pipe_class ialu_reg_reg_long_fat(eRegL dst, eRegL src) %{
  5837     instruction_count(2);
  5838     dst    : S4(write);
  5839     src    : S3(read);
  5840     D0     : S0(2);     // big decoder only; twice
  5841     ALU    : S3(2);     // both alus
  5842 %}
  5844 // Integer ALU reg-mem operation
  5845 pipe_class ialu_reg_mem(eRegI dst, memory mem) %{
  5846     single_instruction;
  5847     dst    : S5(write);
  5848     mem    : S3(read);
  5849     D0     : S0;        // big decoder only
  5850     ALU    : S4;        // any alu
  5851     MEM    : S3;        // any mem
  5852 %}
  5854 // Long ALU reg-mem operation
  5855 pipe_class ialu_reg_long_mem(eRegL dst, load_long_memory mem) %{
  5856     instruction_count(2);
  5857     dst    : S5(write);
  5858     mem    : S3(read);
  5859     D0     : S0(2);     // big decoder only; twice
  5860     ALU    : S4(2);     // any 2 alus
  5861     MEM    : S3(2);     // both mems
  5862 %}
  5864 // Integer mem operation (prefetch)
  5865 pipe_class ialu_mem(memory mem)
  5866 %{
  5867     single_instruction;
  5868     mem    : S3(read);
  5869     D0     : S0;        // big decoder only
  5870     MEM    : S3;        // any mem
  5871 %}
  5873 // Integer Store to Memory
  5874 pipe_class ialu_mem_reg(memory mem, eRegI src) %{
  5875     single_instruction;
  5876     mem    : S3(read);
  5877     src    : S5(read);
  5878     D0     : S0;        // big decoder only
  5879     ALU    : S4;        // any alu
  5880     MEM    : S3;
  5881 %}
  5883 // Long Store to Memory
  5884 pipe_class ialu_mem_long_reg(memory mem, eRegL src) %{
  5885     instruction_count(2);
  5886     mem    : S3(read);
  5887     src    : S5(read);
  5888     D0     : S0(2);     // big decoder only; twice
  5889     ALU    : S4(2);     // any 2 alus
  5890     MEM    : S3(2);     // Both mems
  5891 %}
  5893 // Integer Store to Memory
  5894 pipe_class ialu_mem_imm(memory mem) %{
  5895     single_instruction;
  5896     mem    : S3(read);
  5897     D0     : S0;        // big decoder only
  5898     ALU    : S4;        // any alu
  5899     MEM    : S3;
  5900 %}
  5902 // Integer ALU0 reg-reg operation
  5903 pipe_class ialu_reg_reg_alu0(eRegI dst, eRegI src) %{
  5904     single_instruction;
  5905     dst    : S4(write);
  5906     src    : S3(read);
  5907     D0     : S0;        // Big decoder only
  5908     ALU0   : S3;        // only alu0
  5909 %}
  5911 // Integer ALU0 reg-mem operation
  5912 pipe_class ialu_reg_mem_alu0(eRegI dst, memory mem) %{
  5913     single_instruction;
  5914     dst    : S5(write);
  5915     mem    : S3(read);
  5916     D0     : S0;        // big decoder only
  5917     ALU0   : S4;        // ALU0 only
  5918     MEM    : S3;        // any mem
  5919 %}
  5921 // Integer ALU reg-reg operation
  5922 pipe_class ialu_cr_reg_reg(eFlagsReg cr, eRegI src1, eRegI src2) %{
  5923     single_instruction;
  5924     cr     : S4(write);
  5925     src1   : S3(read);
  5926     src2   : S3(read);
  5927     DECODE : S0;        // any decoder
  5928     ALU    : S3;        // any alu
  5929 %}
  5931 // Integer ALU reg-imm operation
  5932 pipe_class ialu_cr_reg_imm(eFlagsReg cr, eRegI src1) %{
  5933     single_instruction;
  5934     cr     : S4(write);
  5935     src1   : S3(read);
  5936     DECODE : S0;        // any decoder
  5937     ALU    : S3;        // any alu
  5938 %}
  5940 // Integer ALU reg-mem operation
  5941 pipe_class ialu_cr_reg_mem(eFlagsReg cr, eRegI src1, memory src2) %{
  5942     single_instruction;
  5943     cr     : S4(write);
  5944     src1   : S3(read);
  5945     src2   : S3(read);
  5946     D0     : S0;        // big decoder only
  5947     ALU    : S4;        // any alu
  5948     MEM    : S3;
  5949 %}
  5951 // Conditional move reg-reg
  5952 pipe_class pipe_cmplt( eRegI p, eRegI q, eRegI y ) %{
  5953     instruction_count(4);
  5954     y      : S4(read);
  5955     q      : S3(read);
  5956     p      : S3(read);
  5957     DECODE : S0(4);     // any decoder
  5958 %}
  5960 // Conditional move reg-reg
  5961 pipe_class pipe_cmov_reg( eRegI dst, eRegI src, eFlagsReg cr ) %{
  5962     single_instruction;
  5963     dst    : S4(write);
  5964     src    : S3(read);
  5965     cr     : S3(read);
  5966     DECODE : S0;        // any decoder
  5967 %}
  5969 // Conditional move reg-mem
  5970 pipe_class pipe_cmov_mem( eFlagsReg cr, eRegI dst, memory src) %{
  5971     single_instruction;
  5972     dst    : S4(write);
  5973     src    : S3(read);
  5974     cr     : S3(read);
  5975     DECODE : S0;        // any decoder
  5976     MEM    : S3;
  5977 %}
  5979 // Conditional move reg-reg long
  5980 pipe_class pipe_cmov_reg_long( eFlagsReg cr, eRegL dst, eRegL src) %{
  5981     single_instruction;
  5982     dst    : S4(write);
  5983     src    : S3(read);
  5984     cr     : S3(read);
  5985     DECODE : S0(2);     // any 2 decoders
  5986 %}
  5988 // Conditional move double reg-reg
  5989 pipe_class pipe_cmovD_reg( eFlagsReg cr, regDPR1 dst, regD src) %{
  5990     single_instruction;
  5991     dst    : S4(write);
  5992     src    : S3(read);
  5993     cr     : S3(read);
  5994     DECODE : S0;        // any decoder
  5995 %}
  5997 // Float reg-reg operation
  5998 pipe_class fpu_reg(regD dst) %{
  5999     instruction_count(2);
  6000     dst    : S3(read);
  6001     DECODE : S0(2);     // any 2 decoders
  6002     FPU    : S3;
  6003 %}
  6005 // Float reg-reg operation
  6006 pipe_class fpu_reg_reg(regD dst, regD src) %{
  6007     instruction_count(2);
  6008     dst    : S4(write);
  6009     src    : S3(read);
  6010     DECODE : S0(2);     // any 2 decoders
  6011     FPU    : S3;
  6012 %}
  6014 // Float reg-reg operation
  6015 pipe_class fpu_reg_reg_reg(regD dst, regD src1, regD src2) %{
  6016     instruction_count(3);
  6017     dst    : S4(write);
  6018     src1   : S3(read);
  6019     src2   : S3(read);
  6020     DECODE : S0(3);     // any 3 decoders
  6021     FPU    : S3(2);
  6022 %}
  6024 // Float reg-reg operation
  6025 pipe_class fpu_reg_reg_reg_reg(regD dst, regD src1, regD src2, regD src3) %{
  6026     instruction_count(4);
  6027     dst    : S4(write);
  6028     src1   : S3(read);
  6029     src2   : S3(read);
  6030     src3   : S3(read);
  6031     DECODE : S0(4);     // any 3 decoders
  6032     FPU    : S3(2);
  6033 %}
  6035 // Float reg-reg operation
  6036 pipe_class fpu_reg_mem_reg_reg(regD dst, memory src1, regD src2, regD src3) %{
  6037     instruction_count(4);
  6038     dst    : S4(write);
  6039     src1   : S3(read);
  6040     src2   : S3(read);
  6041     src3   : S3(read);
  6042     DECODE : S1(3);     // any 3 decoders
  6043     D0     : S0;        // Big decoder only
  6044     FPU    : S3(2);
  6045     MEM    : S3;
  6046 %}
  6048 // Float reg-mem operation
  6049 pipe_class fpu_reg_mem(regD dst, memory mem) %{
  6050     instruction_count(2);
  6051     dst    : S5(write);
  6052     mem    : S3(read);
  6053     D0     : S0;        // big decoder only
  6054     DECODE : S1;        // any decoder for FPU POP
  6055     FPU    : S4;
  6056     MEM    : S3;        // any mem
  6057 %}
  6059 // Float reg-mem operation
  6060 pipe_class fpu_reg_reg_mem(regD dst, regD src1, memory mem) %{
  6061     instruction_count(3);
  6062     dst    : S5(write);
  6063     src1   : S3(read);
  6064     mem    : S3(read);
  6065     D0     : S0;        // big decoder only
  6066     DECODE : S1(2);     // any decoder for FPU POP
  6067     FPU    : S4;
  6068     MEM    : S3;        // any mem
  6069 %}
  6071 // Float mem-reg operation
  6072 pipe_class fpu_mem_reg(memory mem, regD src) %{
  6073     instruction_count(2);
  6074     src    : S5(read);
  6075     mem    : S3(read);
  6076     DECODE : S0;        // any decoder for FPU PUSH
  6077     D0     : S1;        // big decoder only
  6078     FPU    : S4;
  6079     MEM    : S3;        // any mem
  6080 %}
  6082 pipe_class fpu_mem_reg_reg(memory mem, regD src1, regD src2) %{
  6083     instruction_count(3);
  6084     src1   : S3(read);
  6085     src2   : S3(read);
  6086     mem    : S3(read);
  6087     DECODE : S0(2);     // any decoder for FPU PUSH
  6088     D0     : S1;        // big decoder only
  6089     FPU    : S4;
  6090     MEM    : S3;        // any mem
  6091 %}
  6093 pipe_class fpu_mem_reg_mem(memory mem, regD src1, memory src2) %{
  6094     instruction_count(3);
  6095     src1   : S3(read);
  6096     src2   : S3(read);
  6097     mem    : S4(read);
  6098     DECODE : S0;        // any decoder for FPU PUSH
  6099     D0     : S0(2);     // big decoder only
  6100     FPU    : S4;
  6101     MEM    : S3(2);     // any mem
  6102 %}
  6104 pipe_class fpu_mem_mem(memory dst, memory src1) %{
  6105     instruction_count(2);
  6106     src1   : S3(read);
  6107     dst    : S4(read);
  6108     D0     : S0(2);     // big decoder only
  6109     MEM    : S3(2);     // any mem
  6110 %}
  6112 pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2) %{
  6113     instruction_count(3);
  6114     src1   : S3(read);
  6115     src2   : S3(read);
  6116     dst    : S4(read);
  6117     D0     : S0(3);     // big decoder only
  6118     FPU    : S4;
  6119     MEM    : S3(3);     // any mem
  6120 %}
  6122 pipe_class fpu_mem_reg_con(memory mem, regD src1) %{
  6123     instruction_count(3);
  6124     src1   : S4(read);
  6125     mem    : S4(read);
  6126     DECODE : S0;        // any decoder for FPU PUSH
  6127     D0     : S0(2);     // big decoder only
  6128     FPU    : S4;
  6129     MEM    : S3(2);     // any mem
  6130 %}
  6132 // Float load constant
  6133 pipe_class fpu_reg_con(regD dst) %{
  6134     instruction_count(2);
  6135     dst    : S5(write);
  6136     D0     : S0;        // big decoder only for the load
  6137     DECODE : S1;        // any decoder for FPU POP
  6138     FPU    : S4;
  6139     MEM    : S3;        // any mem
  6140 %}
  6142 // Float load constant
  6143 pipe_class fpu_reg_reg_con(regD dst, regD src) %{
  6144     instruction_count(3);
  6145     dst    : S5(write);
  6146     src    : S3(read);
  6147     D0     : S0;        // big decoder only for the load
  6148     DECODE : S1(2);     // any decoder for FPU POP
  6149     FPU    : S4;
  6150     MEM    : S3;        // any mem
  6151 %}
  6153 // UnConditional branch
  6154 pipe_class pipe_jmp( label labl ) %{
  6155     single_instruction;
  6156     BR   : S3;
  6157 %}
  6159 // Conditional branch
  6160 pipe_class pipe_jcc( cmpOp cmp, eFlagsReg cr, label labl ) %{
  6161     single_instruction;
  6162     cr    : S1(read);
  6163     BR    : S3;
  6164 %}
  6166 // Allocation idiom
  6167 pipe_class pipe_cmpxchg( eRegP dst, eRegP heap_ptr ) %{
  6168     instruction_count(1); force_serialization;
  6169     fixed_latency(6);
  6170     heap_ptr : S3(read);
  6171     DECODE   : S0(3);
  6172     D0       : S2;
  6173     MEM      : S3;
  6174     ALU      : S3(2);
  6175     dst      : S5(write);
  6176     BR       : S5;
  6177 %}
  6179 // Generic big/slow expanded idiom
  6180 pipe_class pipe_slow(  ) %{
  6181     instruction_count(10); multiple_bundles; force_serialization;
  6182     fixed_latency(100);
  6183     D0  : S0(2);
  6184     MEM : S3(2);
  6185 %}
  6187 // The real do-nothing guy
  6188 pipe_class empty( ) %{
  6189     instruction_count(0);
  6190 %}
  6192 // Define the class for the Nop node
  6193 define %{
  6194    MachNop = empty;
  6195 %}
  6197 %}
  6199 //----------INSTRUCTIONS-------------------------------------------------------
  6200 //
  6201 // match      -- States which machine-independent subtree may be replaced
  6202 //               by this instruction.
  6203 // ins_cost   -- The estimated cost of this instruction is used by instruction
  6204 //               selection to identify a minimum cost tree of machine
  6205 //               instructions that matches a tree of machine-independent
  6206 //               instructions.
  6207 // format     -- A string providing the disassembly for this instruction.
  6208 //               The value of an instruction's operand may be inserted
  6209 //               by referring to it with a '$' prefix.
  6210 // opcode     -- Three instruction opcodes may be provided.  These are referred
  6211 //               to within an encode class as $primary, $secondary, and $tertiary
  6212 //               respectively.  The primary opcode is commonly used to
  6213 //               indicate the type of machine instruction, while secondary
  6214 //               and tertiary are often used for prefix options or addressing
  6215 //               modes.
  6216 // ins_encode -- A list of encode classes with parameters. The encode class
  6217 //               name must have been defined in an 'enc_class' specification
  6218 //               in the encode section of the architecture description.
  6220 //----------BSWAP-Instruction--------------------------------------------------
  6221 instruct bytes_reverse_int(eRegI dst) %{
  6222   match(Set dst (ReverseBytesI dst));
  6224   format %{ "BSWAP  $dst" %}
  6225   opcode(0x0F, 0xC8);
  6226   ins_encode( OpcP, OpcSReg(dst) );
  6227   ins_pipe( ialu_reg );
  6228 %}
  6230 instruct bytes_reverse_long(eRegL dst) %{
  6231   match(Set dst (ReverseBytesL dst));
  6233   format %{ "BSWAP  $dst.lo\n\t"
  6234             "BSWAP  $dst.hi\n\t"
  6235             "XCHG   $dst.lo $dst.hi" %}
  6237   ins_cost(125);
  6238   ins_encode( bswap_long_bytes(dst) );
  6239   ins_pipe( ialu_reg_reg);
  6240 %}
  6242 instruct bytes_reverse_unsigned_short(eRegI dst) %{
  6243   match(Set dst (ReverseBytesUS dst));
  6245   format %{ "BSWAP  $dst\n\t" 
  6246             "SHR    $dst,16\n\t" %}
  6247   ins_encode %{
  6248     __ bswapl($dst$$Register);
  6249     __ shrl($dst$$Register, 16); 
  6250   %}
  6251   ins_pipe( ialu_reg );
  6252 %}
  6254 instruct bytes_reverse_short(eRegI dst) %{
  6255   match(Set dst (ReverseBytesS dst));
  6257   format %{ "BSWAP  $dst\n\t" 
  6258             "SAR    $dst,16\n\t" %}
  6259   ins_encode %{
  6260     __ bswapl($dst$$Register);
  6261     __ sarl($dst$$Register, 16); 
  6262   %}
  6263   ins_pipe( ialu_reg );
  6264 %}
  6267 //---------- Zeros Count Instructions ------------------------------------------
  6269 instruct countLeadingZerosI(eRegI dst, eRegI src, eFlagsReg cr) %{
  6270   predicate(UseCountLeadingZerosInstruction);
  6271   match(Set dst (CountLeadingZerosI src));
  6272   effect(KILL cr);
  6274   format %{ "LZCNT  $dst, $src\t# count leading zeros (int)" %}
  6275   ins_encode %{
  6276     __ lzcntl($dst$$Register, $src$$Register);
  6277   %}
  6278   ins_pipe(ialu_reg);
  6279 %}
  6281 instruct countLeadingZerosI_bsr(eRegI dst, eRegI src, eFlagsReg cr) %{
  6282   predicate(!UseCountLeadingZerosInstruction);
  6283   match(Set dst (CountLeadingZerosI src));
  6284   effect(KILL cr);
  6286   format %{ "BSR    $dst, $src\t# count leading zeros (int)\n\t"
  6287             "JNZ    skip\n\t"
  6288             "MOV    $dst, -1\n"
  6289       "skip:\n\t"
  6290             "NEG    $dst\n\t"
  6291             "ADD    $dst, 31" %}
  6292   ins_encode %{
  6293     Register Rdst = $dst$$Register;
  6294     Register Rsrc = $src$$Register;
  6295     Label skip;
  6296     __ bsrl(Rdst, Rsrc);
  6297     __ jccb(Assembler::notZero, skip);
  6298     __ movl(Rdst, -1);
  6299     __ bind(skip);
  6300     __ negl(Rdst);
  6301     __ addl(Rdst, BitsPerInt - 1);
  6302   %}
  6303   ins_pipe(ialu_reg);
  6304 %}
  6306 instruct countLeadingZerosL(eRegI dst, eRegL src, eFlagsReg cr) %{
  6307   predicate(UseCountLeadingZerosInstruction);
  6308   match(Set dst (CountLeadingZerosL src));
  6309   effect(TEMP dst, KILL cr);
  6311   format %{ "LZCNT  $dst, $src.hi\t# count leading zeros (long)\n\t"
  6312             "JNC    done\n\t"
  6313             "LZCNT  $dst, $src.lo\n\t"
  6314             "ADD    $dst, 32\n"
  6315       "done:" %}
  6316   ins_encode %{
  6317     Register Rdst = $dst$$Register;
  6318     Register Rsrc = $src$$Register;
  6319     Label done;
  6320     __ lzcntl(Rdst, HIGH_FROM_LOW(Rsrc));
  6321     __ jccb(Assembler::carryClear, done);
  6322     __ lzcntl(Rdst, Rsrc);
  6323     __ addl(Rdst, BitsPerInt);
  6324     __ bind(done);
  6325   %}
  6326   ins_pipe(ialu_reg);
  6327 %}
  6329 instruct countLeadingZerosL_bsr(eRegI dst, eRegL src, eFlagsReg cr) %{
  6330   predicate(!UseCountLeadingZerosInstruction);
  6331   match(Set dst (CountLeadingZerosL src));
  6332   effect(TEMP dst, KILL cr);
  6334   format %{ "BSR    $dst, $src.hi\t# count leading zeros (long)\n\t"
  6335             "JZ     msw_is_zero\n\t"
  6336             "ADD    $dst, 32\n\t"
  6337             "JMP    not_zero\n"
  6338       "msw_is_zero:\n\t"
  6339             "BSR    $dst, $src.lo\n\t"
  6340             "JNZ    not_zero\n\t"
  6341             "MOV    $dst, -1\n"
  6342       "not_zero:\n\t"
  6343             "NEG    $dst\n\t"
  6344             "ADD    $dst, 63\n" %}
  6345  ins_encode %{
  6346     Register Rdst = $dst$$Register;
  6347     Register Rsrc = $src$$Register;
  6348     Label msw_is_zero;
  6349     Label not_zero;
  6350     __ bsrl(Rdst, HIGH_FROM_LOW(Rsrc));
  6351     __ jccb(Assembler::zero, msw_is_zero);
  6352     __ addl(Rdst, BitsPerInt);
  6353     __ jmpb(not_zero);
  6354     __ bind(msw_is_zero);
  6355     __ bsrl(Rdst, Rsrc);
  6356     __ jccb(Assembler::notZero, not_zero);
  6357     __ movl(Rdst, -1);
  6358     __ bind(not_zero);
  6359     __ negl(Rdst);
  6360     __ addl(Rdst, BitsPerLong - 1);
  6361   %}
  6362   ins_pipe(ialu_reg);
  6363 %}
  6365 instruct countTrailingZerosI(eRegI dst, eRegI src, eFlagsReg cr) %{
  6366   match(Set dst (CountTrailingZerosI src));
  6367   effect(KILL cr);
  6369   format %{ "BSF    $dst, $src\t# count trailing zeros (int)\n\t"
  6370             "JNZ    done\n\t"
  6371             "MOV    $dst, 32\n"
  6372       "done:" %}
  6373   ins_encode %{
  6374     Register Rdst = $dst$$Register;
  6375     Label done;
  6376     __ bsfl(Rdst, $src$$Register);
  6377     __ jccb(Assembler::notZero, done);
  6378     __ movl(Rdst, BitsPerInt);
  6379     __ bind(done);
  6380   %}
  6381   ins_pipe(ialu_reg);
  6382 %}
  6384 instruct countTrailingZerosL(eRegI dst, eRegL src, eFlagsReg cr) %{
  6385   match(Set dst (CountTrailingZerosL src));
  6386   effect(TEMP dst, KILL cr);
  6388   format %{ "BSF    $dst, $src.lo\t# count trailing zeros (long)\n\t"
  6389             "JNZ    done\n\t"
  6390             "BSF    $dst, $src.hi\n\t"
  6391             "JNZ    msw_not_zero\n\t"
  6392             "MOV    $dst, 32\n"
  6393       "msw_not_zero:\n\t"
  6394             "ADD    $dst, 32\n"
  6395       "done:" %}
  6396   ins_encode %{
  6397     Register Rdst = $dst$$Register;
  6398     Register Rsrc = $src$$Register;
  6399     Label msw_not_zero;
  6400     Label done;
  6401     __ bsfl(Rdst, Rsrc);
  6402     __ jccb(Assembler::notZero, done);
  6403     __ bsfl(Rdst, HIGH_FROM_LOW(Rsrc));
  6404     __ jccb(Assembler::notZero, msw_not_zero);
  6405     __ movl(Rdst, BitsPerInt);
  6406     __ bind(msw_not_zero);
  6407     __ addl(Rdst, BitsPerInt);
  6408     __ bind(done);
  6409   %}
  6410   ins_pipe(ialu_reg);
  6411 %}
  6414 //---------- Population Count Instructions -------------------------------------
  6416 instruct popCountI(eRegI dst, eRegI src) %{
  6417   predicate(UsePopCountInstruction);
  6418   match(Set dst (PopCountI src));
  6420   format %{ "POPCNT $dst, $src" %}
  6421   ins_encode %{
  6422     __ popcntl($dst$$Register, $src$$Register);
  6423   %}
  6424   ins_pipe(ialu_reg);
  6425 %}
  6427 instruct popCountI_mem(eRegI dst, memory mem) %{
  6428   predicate(UsePopCountInstruction);
  6429   match(Set dst (PopCountI (LoadI mem)));
  6431   format %{ "POPCNT $dst, $mem" %}
  6432   ins_encode %{
  6433     __ popcntl($dst$$Register, $mem$$Address);
  6434   %}
  6435   ins_pipe(ialu_reg);
  6436 %}
  6438 // Note: Long.bitCount(long) returns an int.
  6439 instruct popCountL(eRegI dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
  6440   predicate(UsePopCountInstruction);
  6441   match(Set dst (PopCountL src));
  6442   effect(KILL cr, TEMP tmp, TEMP dst);
  6444   format %{ "POPCNT $dst, $src.lo\n\t"
  6445             "POPCNT $tmp, $src.hi\n\t"
  6446             "ADD    $dst, $tmp" %}
  6447   ins_encode %{
  6448     __ popcntl($dst$$Register, $src$$Register);
  6449     __ popcntl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
  6450     __ addl($dst$$Register, $tmp$$Register);
  6451   %}
  6452   ins_pipe(ialu_reg);
  6453 %}
  6455 // Note: Long.bitCount(long) returns an int.
  6456 instruct popCountL_mem(eRegI dst, memory mem, eRegI tmp, eFlagsReg cr) %{
  6457   predicate(UsePopCountInstruction);
  6458   match(Set dst (PopCountL (LoadL mem)));
  6459   effect(KILL cr, TEMP tmp, TEMP dst);
  6461   format %{ "POPCNT $dst, $mem\n\t"
  6462             "POPCNT $tmp, $mem+4\n\t"
  6463             "ADD    $dst, $tmp" %}
  6464   ins_encode %{
  6465     //__ popcntl($dst$$Register, $mem$$Address$$first);
  6466     //__ popcntl($tmp$$Register, $mem$$Address$$second);
  6467     __ popcntl($dst$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, false));
  6468     __ popcntl($tmp$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, false));
  6469     __ addl($dst$$Register, $tmp$$Register);
  6470   %}
  6471   ins_pipe(ialu_reg);
  6472 %}
  6475 //----------Load/Store/Move Instructions---------------------------------------
  6476 //----------Load Instructions--------------------------------------------------
  6477 // Load Byte (8bit signed)
  6478 instruct loadB(xRegI dst, memory mem) %{
  6479   match(Set dst (LoadB mem));
  6481   ins_cost(125);
  6482   format %{ "MOVSX8 $dst,$mem\t# byte" %}
  6484   ins_encode %{
  6485     __ movsbl($dst$$Register, $mem$$Address);
  6486   %}
  6488   ins_pipe(ialu_reg_mem);
  6489 %}
  6491 // Load Byte (8bit signed) into Long Register
  6492 instruct loadB2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6493   match(Set dst (ConvI2L (LoadB mem)));
  6494   effect(KILL cr);
  6496   ins_cost(375);
  6497   format %{ "MOVSX8 $dst.lo,$mem\t# byte -> long\n\t"
  6498             "MOV    $dst.hi,$dst.lo\n\t"
  6499             "SAR    $dst.hi,7" %}
  6501   ins_encode %{
  6502     __ movsbl($dst$$Register, $mem$$Address);
  6503     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  6504     __ sarl(HIGH_FROM_LOW($dst$$Register), 7); // 24+1 MSB are already signed extended.
  6505   %}
  6507   ins_pipe(ialu_reg_mem);
  6508 %}
  6510 // Load Unsigned Byte (8bit UNsigned)
  6511 instruct loadUB(xRegI dst, memory mem) %{
  6512   match(Set dst (LoadUB mem));
  6514   ins_cost(125);
  6515   format %{ "MOVZX8 $dst,$mem\t# ubyte -> int" %}
  6517   ins_encode %{
  6518     __ movzbl($dst$$Register, $mem$$Address);
  6519   %}
  6521   ins_pipe(ialu_reg_mem);
  6522 %}
  6524 // Load Unsigned Byte (8 bit UNsigned) into Long Register
  6525 instruct loadUB2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6526   match(Set dst (ConvI2L (LoadUB mem)));
  6527   effect(KILL cr);
  6529   ins_cost(250);
  6530   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte -> long\n\t"
  6531             "XOR    $dst.hi,$dst.hi" %}
  6533   ins_encode %{
  6534     Register Rdst = $dst$$Register;
  6535     __ movzbl(Rdst, $mem$$Address);
  6536     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6537   %}
  6539   ins_pipe(ialu_reg_mem);
  6540 %}
  6542 // Load Unsigned Byte (8 bit UNsigned) with mask into Long Register
  6543 instruct loadUB2L_immI8(eRegL dst, memory mem, immI8 mask, eFlagsReg cr) %{
  6544   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
  6545   effect(KILL cr);
  6547   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte & 8-bit mask -> long\n\t"
  6548             "XOR    $dst.hi,$dst.hi\n\t"
  6549             "AND    $dst.lo,$mask" %}
  6550   ins_encode %{
  6551     Register Rdst = $dst$$Register;
  6552     __ movzbl(Rdst, $mem$$Address);
  6553     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6554     __ andl(Rdst, $mask$$constant);
  6555   %}
  6556   ins_pipe(ialu_reg_mem);
  6557 %}
  6559 // Load Short (16bit signed)
  6560 instruct loadS(eRegI dst, memory mem) %{
  6561   match(Set dst (LoadS mem));
  6563   ins_cost(125);
  6564   format %{ "MOVSX  $dst,$mem\t# short" %}
  6566   ins_encode %{
  6567     __ movswl($dst$$Register, $mem$$Address);
  6568   %}
  6570   ins_pipe(ialu_reg_mem);
  6571 %}
  6573 // Load Short (16 bit signed) to Byte (8 bit signed)
  6574 instruct loadS2B(eRegI dst, memory mem, immI_24 twentyfour) %{
  6575   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  6577   ins_cost(125);
  6578   format %{ "MOVSX  $dst, $mem\t# short -> byte" %}
  6579   ins_encode %{
  6580     __ movsbl($dst$$Register, $mem$$Address);
  6581   %}
  6582   ins_pipe(ialu_reg_mem);
  6583 %}
  6585 // Load Short (16bit signed) into Long Register
  6586 instruct loadS2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6587   match(Set dst (ConvI2L (LoadS mem)));
  6588   effect(KILL cr);
  6590   ins_cost(375);
  6591   format %{ "MOVSX  $dst.lo,$mem\t# short -> long\n\t"
  6592             "MOV    $dst.hi,$dst.lo\n\t"
  6593             "SAR    $dst.hi,15" %}
  6595   ins_encode %{
  6596     __ movswl($dst$$Register, $mem$$Address);
  6597     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  6598     __ sarl(HIGH_FROM_LOW($dst$$Register), 15); // 16+1 MSB are already signed extended.
  6599   %}
  6601   ins_pipe(ialu_reg_mem);
  6602 %}
  6604 // Load Unsigned Short/Char (16bit unsigned)
  6605 instruct loadUS(eRegI dst, memory mem) %{
  6606   match(Set dst (LoadUS mem));
  6608   ins_cost(125);
  6609   format %{ "MOVZX  $dst,$mem\t# ushort/char -> int" %}
  6611   ins_encode %{
  6612     __ movzwl($dst$$Register, $mem$$Address);
  6613   %}
  6615   ins_pipe(ialu_reg_mem);
  6616 %}
  6618 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
  6619 instruct loadUS2B(eRegI dst, memory mem, immI_24 twentyfour) %{
  6620   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
  6622   ins_cost(125);
  6623   format %{ "MOVSX  $dst, $mem\t# ushort -> byte" %}
  6624   ins_encode %{
  6625     __ movsbl($dst$$Register, $mem$$Address);
  6626   %}
  6627   ins_pipe(ialu_reg_mem);
  6628 %}
  6630 // Load Unsigned Short/Char (16 bit UNsigned) into Long Register
  6631 instruct loadUS2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6632   match(Set dst (ConvI2L (LoadUS mem)));
  6633   effect(KILL cr);
  6635   ins_cost(250);
  6636   format %{ "MOVZX  $dst.lo,$mem\t# ushort/char -> long\n\t"
  6637             "XOR    $dst.hi,$dst.hi" %}
  6639   ins_encode %{
  6640     __ movzwl($dst$$Register, $mem$$Address);
  6641     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
  6642   %}
  6644   ins_pipe(ialu_reg_mem);
  6645 %}
  6647 // Load Unsigned Short/Char (16 bit UNsigned) with mask 0xFF into Long Register
  6648 instruct loadUS2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
  6649   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  6650   effect(KILL cr);
  6652   format %{ "MOVZX8 $dst.lo,$mem\t# ushort/char & 0xFF -> long\n\t"
  6653             "XOR    $dst.hi,$dst.hi" %}
  6654   ins_encode %{
  6655     Register Rdst = $dst$$Register;
  6656     __ movzbl(Rdst, $mem$$Address);
  6657     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6658   %}
  6659   ins_pipe(ialu_reg_mem);
  6660 %}
  6662 // Load Unsigned Short/Char (16 bit UNsigned) with a 16-bit mask into Long Register
  6663 instruct loadUS2L_immI16(eRegL dst, memory mem, immI16 mask, eFlagsReg cr) %{
  6664   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  6665   effect(KILL cr);
  6667   format %{ "MOVZX  $dst.lo, $mem\t# ushort/char & 16-bit mask -> long\n\t"
  6668             "XOR    $dst.hi,$dst.hi\n\t"
  6669             "AND    $dst.lo,$mask" %}
  6670   ins_encode %{
  6671     Register Rdst = $dst$$Register;
  6672     __ movzwl(Rdst, $mem$$Address);
  6673     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6674     __ andl(Rdst, $mask$$constant);
  6675   %}
  6676   ins_pipe(ialu_reg_mem);
  6677 %}
  6679 // Load Integer
  6680 instruct loadI(eRegI dst, memory mem) %{
  6681   match(Set dst (LoadI mem));
  6683   ins_cost(125);
  6684   format %{ "MOV    $dst,$mem\t# int" %}
  6686   ins_encode %{
  6687     __ movl($dst$$Register, $mem$$Address);
  6688   %}
  6690   ins_pipe(ialu_reg_mem);
  6691 %}
  6693 // Load Integer (32 bit signed) to Byte (8 bit signed)
  6694 instruct loadI2B(eRegI dst, memory mem, immI_24 twentyfour) %{
  6695   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  6697   ins_cost(125);
  6698   format %{ "MOVSX  $dst, $mem\t# int -> byte" %}
  6699   ins_encode %{
  6700     __ movsbl($dst$$Register, $mem$$Address);
  6701   %}
  6702   ins_pipe(ialu_reg_mem);
  6703 %}
  6705 // Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
  6706 instruct loadI2UB(eRegI dst, memory mem, immI_255 mask) %{
  6707   match(Set dst (AndI (LoadI mem) mask));
  6709   ins_cost(125);
  6710   format %{ "MOVZX  $dst, $mem\t# int -> ubyte" %}
  6711   ins_encode %{
  6712     __ movzbl($dst$$Register, $mem$$Address);
  6713   %}
  6714   ins_pipe(ialu_reg_mem);
  6715 %}
  6717 // Load Integer (32 bit signed) to Short (16 bit signed)
  6718 instruct loadI2S(eRegI dst, memory mem, immI_16 sixteen) %{
  6719   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  6721   ins_cost(125);
  6722   format %{ "MOVSX  $dst, $mem\t# int -> short" %}
  6723   ins_encode %{
  6724     __ movswl($dst$$Register, $mem$$Address);
  6725   %}
  6726   ins_pipe(ialu_reg_mem);
  6727 %}
  6729 // Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
  6730 instruct loadI2US(eRegI dst, memory mem, immI_65535 mask) %{
  6731   match(Set dst (AndI (LoadI mem) mask));
  6733   ins_cost(125);
  6734   format %{ "MOVZX  $dst, $mem\t# int -> ushort/char" %}
  6735   ins_encode %{
  6736     __ movzwl($dst$$Register, $mem$$Address);
  6737   %}
  6738   ins_pipe(ialu_reg_mem);
  6739 %}
  6741 // Load Integer into Long Register
  6742 instruct loadI2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6743   match(Set dst (ConvI2L (LoadI mem)));
  6744   effect(KILL cr);
  6746   ins_cost(375);
  6747   format %{ "MOV    $dst.lo,$mem\t# int -> long\n\t"
  6748             "MOV    $dst.hi,$dst.lo\n\t"
  6749             "SAR    $dst.hi,31" %}
  6751   ins_encode %{
  6752     __ movl($dst$$Register, $mem$$Address);
  6753     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  6754     __ sarl(HIGH_FROM_LOW($dst$$Register), 31);
  6755   %}
  6757   ins_pipe(ialu_reg_mem);
  6758 %}
  6760 // Load Integer with mask 0xFF into Long Register
  6761 instruct loadI2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
  6762   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  6763   effect(KILL cr);
  6765   format %{ "MOVZX8 $dst.lo,$mem\t# int & 0xFF -> long\n\t"
  6766             "XOR    $dst.hi,$dst.hi" %}
  6767   ins_encode %{
  6768     Register Rdst = $dst$$Register;
  6769     __ movzbl(Rdst, $mem$$Address);
  6770     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6771   %}
  6772   ins_pipe(ialu_reg_mem);
  6773 %}
  6775 // Load Integer with mask 0xFFFF into Long Register
  6776 instruct loadI2L_immI_65535(eRegL dst, memory mem, immI_65535 mask, eFlagsReg cr) %{
  6777   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  6778   effect(KILL cr);
  6780   format %{ "MOVZX  $dst.lo,$mem\t# int & 0xFFFF -> long\n\t"
  6781             "XOR    $dst.hi,$dst.hi" %}
  6782   ins_encode %{
  6783     Register Rdst = $dst$$Register;
  6784     __ movzwl(Rdst, $mem$$Address);
  6785     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6786   %}
  6787   ins_pipe(ialu_reg_mem);
  6788 %}
  6790 // Load Integer with 32-bit mask into Long Register
  6791 instruct loadI2L_immI(eRegL dst, memory mem, immI mask, eFlagsReg cr) %{
  6792   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  6793   effect(KILL cr);
  6795   format %{ "MOV    $dst.lo,$mem\t# int & 32-bit mask -> long\n\t"
  6796             "XOR    $dst.hi,$dst.hi\n\t"
  6797             "AND    $dst.lo,$mask" %}
  6798   ins_encode %{
  6799     Register Rdst = $dst$$Register;
  6800     __ movl(Rdst, $mem$$Address);
  6801     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6802     __ andl(Rdst, $mask$$constant);
  6803   %}
  6804   ins_pipe(ialu_reg_mem);
  6805 %}
  6807 // Load Unsigned Integer into Long Register
  6808 instruct loadUI2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6809   match(Set dst (LoadUI2L mem));
  6810   effect(KILL cr);
  6812   ins_cost(250);
  6813   format %{ "MOV    $dst.lo,$mem\t# uint -> long\n\t"
  6814             "XOR    $dst.hi,$dst.hi" %}
  6816   ins_encode %{
  6817     __ movl($dst$$Register, $mem$$Address);
  6818     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
  6819   %}
  6821   ins_pipe(ialu_reg_mem);
  6822 %}
  6824 // Load Long.  Cannot clobber address while loading, so restrict address
  6825 // register to ESI
  6826 instruct loadL(eRegL dst, load_long_memory mem) %{
  6827   predicate(!((LoadLNode*)n)->require_atomic_access());
  6828   match(Set dst (LoadL mem));
  6830   ins_cost(250);
  6831   format %{ "MOV    $dst.lo,$mem\t# long\n\t"
  6832             "MOV    $dst.hi,$mem+4" %}
  6834   ins_encode %{
  6835     Address Amemlo = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, false);
  6836     Address Amemhi = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, false);
  6837     __ movl($dst$$Register, Amemlo);
  6838     __ movl(HIGH_FROM_LOW($dst$$Register), Amemhi);
  6839   %}
  6841   ins_pipe(ialu_reg_long_mem);
  6842 %}
  6844 // Volatile Load Long.  Must be atomic, so do 64-bit FILD
  6845 // then store it down to the stack and reload on the int
  6846 // side.
  6847 instruct loadL_volatile(stackSlotL dst, memory mem) %{
  6848   predicate(UseSSE<=1 && ((LoadLNode*)n)->require_atomic_access());
  6849   match(Set dst (LoadL mem));
  6851   ins_cost(200);
  6852   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
  6853             "FISTp  $dst" %}
  6854   ins_encode(enc_loadL_volatile(mem,dst));
  6855   ins_pipe( fpu_reg_mem );
  6856 %}
  6858 instruct loadLX_volatile(stackSlotL dst, memory mem, regXD tmp) %{
  6859   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
  6860   match(Set dst (LoadL mem));
  6861   effect(TEMP tmp);
  6862   ins_cost(180);
  6863   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  6864             "MOVSD  $dst,$tmp" %}
  6865   ins_encode(enc_loadLX_volatile(mem, dst, tmp));
  6866   ins_pipe( pipe_slow );
  6867 %}
  6869 instruct loadLX_reg_volatile(eRegL dst, memory mem, regXD tmp) %{
  6870   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
  6871   match(Set dst (LoadL mem));
  6872   effect(TEMP tmp);
  6873   ins_cost(160);
  6874   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  6875             "MOVD   $dst.lo,$tmp\n\t"
  6876             "PSRLQ  $tmp,32\n\t"
  6877             "MOVD   $dst.hi,$tmp" %}
  6878   ins_encode(enc_loadLX_reg_volatile(mem, dst, tmp));
  6879   ins_pipe( pipe_slow );
  6880 %}
  6882 // Load Range
  6883 instruct loadRange(eRegI dst, memory mem) %{
  6884   match(Set dst (LoadRange mem));
  6886   ins_cost(125);
  6887   format %{ "MOV    $dst,$mem" %}
  6888   opcode(0x8B);
  6889   ins_encode( OpcP, RegMem(dst,mem));
  6890   ins_pipe( ialu_reg_mem );
  6891 %}
  6894 // Load Pointer
  6895 instruct loadP(eRegP dst, memory mem) %{
  6896   match(Set dst (LoadP mem));
  6898   ins_cost(125);
  6899   format %{ "MOV    $dst,$mem" %}
  6900   opcode(0x8B);
  6901   ins_encode( OpcP, RegMem(dst,mem));
  6902   ins_pipe( ialu_reg_mem );
  6903 %}
  6905 // Load Klass Pointer
  6906 instruct loadKlass(eRegP dst, memory mem) %{
  6907   match(Set dst (LoadKlass mem));
  6909   ins_cost(125);
  6910   format %{ "MOV    $dst,$mem" %}
  6911   opcode(0x8B);
  6912   ins_encode( OpcP, RegMem(dst,mem));
  6913   ins_pipe( ialu_reg_mem );
  6914 %}
  6916 // Load Double
  6917 instruct loadD(regD dst, memory mem) %{
  6918   predicate(UseSSE<=1);
  6919   match(Set dst (LoadD mem));
  6921   ins_cost(150);
  6922   format %{ "FLD_D  ST,$mem\n\t"
  6923             "FSTP   $dst" %}
  6924   opcode(0xDD);               /* DD /0 */
  6925   ins_encode( OpcP, RMopc_Mem(0x00,mem),
  6926               Pop_Reg_D(dst) );
  6927   ins_pipe( fpu_reg_mem );
  6928 %}
  6930 // Load Double to XMM
  6931 instruct loadXD(regXD dst, memory mem) %{
  6932   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
  6933   match(Set dst (LoadD mem));
  6934   ins_cost(145);
  6935   format %{ "MOVSD  $dst,$mem" %}
  6936   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x10), RegMem(dst,mem));
  6937   ins_pipe( pipe_slow );
  6938 %}
  6940 instruct loadXD_partial(regXD dst, memory mem) %{
  6941   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
  6942   match(Set dst (LoadD mem));
  6943   ins_cost(145);
  6944   format %{ "MOVLPD $dst,$mem" %}
  6945   ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x12), RegMem(dst,mem));
  6946   ins_pipe( pipe_slow );
  6947 %}
  6949 // Load to XMM register (single-precision floating point)
  6950 // MOVSS instruction
  6951 instruct loadX(regX dst, memory mem) %{
  6952   predicate(UseSSE>=1);
  6953   match(Set dst (LoadF mem));
  6954   ins_cost(145);
  6955   format %{ "MOVSS  $dst,$mem" %}
  6956   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), RegMem(dst,mem));
  6957   ins_pipe( pipe_slow );
  6958 %}
  6960 // Load Float
  6961 instruct loadF(regF dst, memory mem) %{
  6962   predicate(UseSSE==0);
  6963   match(Set dst (LoadF mem));
  6965   ins_cost(150);
  6966   format %{ "FLD_S  ST,$mem\n\t"
  6967             "FSTP   $dst" %}
  6968   opcode(0xD9);               /* D9 /0 */
  6969   ins_encode( OpcP, RMopc_Mem(0x00,mem),
  6970               Pop_Reg_F(dst) );
  6971   ins_pipe( fpu_reg_mem );
  6972 %}
  6974 // Load Aligned Packed Byte to XMM register
  6975 instruct loadA8B(regXD dst, memory mem) %{
  6976   predicate(UseSSE>=1);
  6977   match(Set dst (Load8B mem));
  6978   ins_cost(125);
  6979   format %{ "MOVQ  $dst,$mem\t! packed8B" %}
  6980   ins_encode( movq_ld(dst, mem));
  6981   ins_pipe( pipe_slow );
  6982 %}
  6984 // Load Aligned Packed Short to XMM register
  6985 instruct loadA4S(regXD dst, memory mem) %{
  6986   predicate(UseSSE>=1);
  6987   match(Set dst (Load4S mem));
  6988   ins_cost(125);
  6989   format %{ "MOVQ  $dst,$mem\t! packed4S" %}
  6990   ins_encode( movq_ld(dst, mem));
  6991   ins_pipe( pipe_slow );
  6992 %}
  6994 // Load Aligned Packed Char to XMM register
  6995 instruct loadA4C(regXD dst, memory mem) %{
  6996   predicate(UseSSE>=1);
  6997   match(Set dst (Load4C mem));
  6998   ins_cost(125);
  6999   format %{ "MOVQ  $dst,$mem\t! packed4C" %}
  7000   ins_encode( movq_ld(dst, mem));
  7001   ins_pipe( pipe_slow );
  7002 %}
  7004 // Load Aligned Packed Integer to XMM register
  7005 instruct load2IU(regXD dst, memory mem) %{
  7006   predicate(UseSSE>=1);
  7007   match(Set dst (Load2I mem));
  7008   ins_cost(125);
  7009   format %{ "MOVQ  $dst,$mem\t! packed2I" %}
  7010   ins_encode( movq_ld(dst, mem));
  7011   ins_pipe( pipe_slow );
  7012 %}
  7014 // Load Aligned Packed Single to XMM
  7015 instruct loadA2F(regXD dst, memory mem) %{
  7016   predicate(UseSSE>=1);
  7017   match(Set dst (Load2F mem));
  7018   ins_cost(145);
  7019   format %{ "MOVQ  $dst,$mem\t! packed2F" %}
  7020   ins_encode( movq_ld(dst, mem));
  7021   ins_pipe( pipe_slow );
  7022 %}
  7024 // Load Effective Address
  7025 instruct leaP8(eRegP dst, indOffset8 mem) %{
  7026   match(Set dst mem);
  7028   ins_cost(110);
  7029   format %{ "LEA    $dst,$mem" %}
  7030   opcode(0x8D);
  7031   ins_encode( OpcP, RegMem(dst,mem));
  7032   ins_pipe( ialu_reg_reg_fat );
  7033 %}
  7035 instruct leaP32(eRegP dst, indOffset32 mem) %{
  7036   match(Set dst mem);
  7038   ins_cost(110);
  7039   format %{ "LEA    $dst,$mem" %}
  7040   opcode(0x8D);
  7041   ins_encode( OpcP, RegMem(dst,mem));
  7042   ins_pipe( ialu_reg_reg_fat );
  7043 %}
  7045 instruct leaPIdxOff(eRegP dst, indIndexOffset mem) %{
  7046   match(Set dst mem);
  7048   ins_cost(110);
  7049   format %{ "LEA    $dst,$mem" %}
  7050   opcode(0x8D);
  7051   ins_encode( OpcP, RegMem(dst,mem));
  7052   ins_pipe( ialu_reg_reg_fat );
  7053 %}
  7055 instruct leaPIdxScale(eRegP dst, indIndexScale mem) %{
  7056   match(Set dst mem);
  7058   ins_cost(110);
  7059   format %{ "LEA    $dst,$mem" %}
  7060   opcode(0x8D);
  7061   ins_encode( OpcP, RegMem(dst,mem));
  7062   ins_pipe( ialu_reg_reg_fat );
  7063 %}
  7065 instruct leaPIdxScaleOff(eRegP dst, indIndexScaleOffset mem) %{
  7066   match(Set dst mem);
  7068   ins_cost(110);
  7069   format %{ "LEA    $dst,$mem" %}
  7070   opcode(0x8D);
  7071   ins_encode( OpcP, RegMem(dst,mem));
  7072   ins_pipe( ialu_reg_reg_fat );
  7073 %}
  7075 // Load Constant
  7076 instruct loadConI(eRegI dst, immI src) %{
  7077   match(Set dst src);
  7079   format %{ "MOV    $dst,$src" %}
  7080   ins_encode( LdImmI(dst, src) );
  7081   ins_pipe( ialu_reg_fat );
  7082 %}
  7084 // Load Constant zero
  7085 instruct loadConI0(eRegI dst, immI0 src, eFlagsReg cr) %{
  7086   match(Set dst src);
  7087   effect(KILL cr);
  7089   ins_cost(50);
  7090   format %{ "XOR    $dst,$dst" %}
  7091   opcode(0x33);  /* + rd */
  7092   ins_encode( OpcP, RegReg( dst, dst ) );
  7093   ins_pipe( ialu_reg );
  7094 %}
  7096 instruct loadConP(eRegP dst, immP src) %{
  7097   match(Set dst src);
  7099   format %{ "MOV    $dst,$src" %}
  7100   opcode(0xB8);  /* + rd */
  7101   ins_encode( LdImmP(dst, src) );
  7102   ins_pipe( ialu_reg_fat );
  7103 %}
  7105 instruct loadConL(eRegL dst, immL src, eFlagsReg cr) %{
  7106   match(Set dst src);
  7107   effect(KILL cr);
  7108   ins_cost(200);
  7109   format %{ "MOV    $dst.lo,$src.lo\n\t"
  7110             "MOV    $dst.hi,$src.hi" %}
  7111   opcode(0xB8);
  7112   ins_encode( LdImmL_Lo(dst, src), LdImmL_Hi(dst, src) );
  7113   ins_pipe( ialu_reg_long_fat );
  7114 %}
  7116 instruct loadConL0(eRegL dst, immL0 src, eFlagsReg cr) %{
  7117   match(Set dst src);
  7118   effect(KILL cr);
  7119   ins_cost(150);
  7120   format %{ "XOR    $dst.lo,$dst.lo\n\t"
  7121             "XOR    $dst.hi,$dst.hi" %}
  7122   opcode(0x33,0x33);
  7123   ins_encode( RegReg_Lo(dst,dst), RegReg_Hi(dst, dst) );
  7124   ins_pipe( ialu_reg_long );
  7125 %}
  7127 // The instruction usage is guarded by predicate in operand immF().
  7128 instruct loadConF(regF dst, immF con) %{
  7129   match(Set dst con);
  7130   ins_cost(125);
  7131   format %{ "FLD_S  ST,[$constantaddress]\t# load from constant table: float=$con\n\t"
  7132             "FSTP   $dst" %}
  7133   ins_encode %{
  7134     __ fld_s($constantaddress($con));
  7135     __ fstp_d($dst$$reg);
  7136   %}
  7137   ins_pipe(fpu_reg_con);
  7138 %}
  7140 // The instruction usage is guarded by predicate in operand immF0().
  7141 instruct loadConF0(regF dst, immF0 con) %{
  7142   match(Set dst con);
  7143   ins_cost(125);
  7144   format %{ "FLDZ   ST\n\t"
  7145             "FSTP   $dst" %}
  7146   ins_encode %{
  7147     __ fldz();
  7148     __ fstp_d($dst$$reg);
  7149   %}
  7150   ins_pipe(fpu_reg_con);
  7151 %}
  7153 // The instruction usage is guarded by predicate in operand immF1().
  7154 instruct loadConF1(regF dst, immF1 con) %{
  7155   match(Set dst con);
  7156   ins_cost(125);
  7157   format %{ "FLD1   ST\n\t"
  7158             "FSTP   $dst" %}
  7159   ins_encode %{
  7160     __ fld1();
  7161     __ fstp_d($dst$$reg);
  7162   %}
  7163   ins_pipe(fpu_reg_con);
  7164 %}
  7166 // The instruction usage is guarded by predicate in operand immXF().
  7167 instruct loadConX(regX dst, immXF con) %{
  7168   match(Set dst con);
  7169   ins_cost(125);
  7170   format %{ "MOVSS  $dst,[$constantaddress]\t# load from constant table: float=$con" %}
  7171   ins_encode %{
  7172     __ movflt($dst$$XMMRegister, $constantaddress($con));
  7173   %}
  7174   ins_pipe(pipe_slow);
  7175 %}
  7177 // The instruction usage is guarded by predicate in operand immXF0().
  7178 instruct loadConX0(regX dst, immXF0 src) %{
  7179   match(Set dst src);
  7180   ins_cost(100);
  7181   format %{ "XORPS  $dst,$dst\t# float 0.0" %}
  7182   ins_encode %{
  7183     __ xorps($dst$$XMMRegister, $dst$$XMMRegister);
  7184   %}
  7185   ins_pipe(pipe_slow);
  7186 %}
  7188 // The instruction usage is guarded by predicate in operand immD().
  7189 instruct loadConD(regD dst, immD con) %{
  7190   match(Set dst con);
  7191   ins_cost(125);
  7193   format %{ "FLD_D  ST,[$constantaddress]\t# load from constant table: double=$con\n\t"
  7194             "FSTP   $dst" %}
  7195   ins_encode %{
  7196     __ fld_d($constantaddress($con));
  7197     __ fstp_d($dst$$reg);
  7198   %}
  7199   ins_pipe(fpu_reg_con);
  7200 %}
  7202 // The instruction usage is guarded by predicate in operand immD0().
  7203 instruct loadConD0(regD dst, immD0 con) %{
  7204   match(Set dst con);
  7205   ins_cost(125);
  7207   format %{ "FLDZ   ST\n\t"
  7208             "FSTP   $dst" %}
  7209   ins_encode %{
  7210     __ fldz();
  7211     __ fstp_d($dst$$reg);
  7212   %}
  7213   ins_pipe(fpu_reg_con);
  7214 %}
  7216 // The instruction usage is guarded by predicate in operand immD1().
  7217 instruct loadConD1(regD dst, immD1 con) %{
  7218   match(Set dst con);
  7219   ins_cost(125);
  7221   format %{ "FLD1   ST\n\t"
  7222             "FSTP   $dst" %}
  7223   ins_encode %{
  7224     __ fld1();
  7225     __ fstp_d($dst$$reg);
  7226   %}
  7227   ins_pipe(fpu_reg_con);
  7228 %}
  7230 // The instruction usage is guarded by predicate in operand immXD().
  7231 instruct loadConXD(regXD dst, immXD con) %{
  7232   match(Set dst con);
  7233   ins_cost(125);
  7234   format %{ "MOVSD  $dst,[$constantaddress]\t# load from constant table: double=$con" %}
  7235   ins_encode %{
  7236     __ movdbl($dst$$XMMRegister, $constantaddress($con));
  7237   %}
  7238   ins_pipe(pipe_slow);
  7239 %}
  7241 // The instruction usage is guarded by predicate in operand immXD0().
  7242 instruct loadConXD0(regXD dst, immXD0 src) %{
  7243   match(Set dst src);
  7244   ins_cost(100);
  7245   format %{ "XORPD  $dst,$dst\t# double 0.0" %}
  7246   ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x57), RegReg(dst,dst));
  7247   ins_pipe( pipe_slow );
  7248 %}
  7250 // Load Stack Slot
  7251 instruct loadSSI(eRegI dst, stackSlotI src) %{
  7252   match(Set dst src);
  7253   ins_cost(125);
  7255   format %{ "MOV    $dst,$src" %}
  7256   opcode(0x8B);
  7257   ins_encode( OpcP, RegMem(dst,src));
  7258   ins_pipe( ialu_reg_mem );
  7259 %}
  7261 instruct loadSSL(eRegL dst, stackSlotL src) %{
  7262   match(Set dst src);
  7264   ins_cost(200);
  7265   format %{ "MOV    $dst,$src.lo\n\t"
  7266             "MOV    $dst+4,$src.hi" %}
  7267   opcode(0x8B, 0x8B);
  7268   ins_encode( OpcP, RegMem( dst, src ), OpcS, RegMem_Hi( dst, src ) );
  7269   ins_pipe( ialu_mem_long_reg );
  7270 %}
  7272 // Load Stack Slot
  7273 instruct loadSSP(eRegP dst, stackSlotP src) %{
  7274   match(Set dst src);
  7275   ins_cost(125);
  7277   format %{ "MOV    $dst,$src" %}
  7278   opcode(0x8B);
  7279   ins_encode( OpcP, RegMem(dst,src));
  7280   ins_pipe( ialu_reg_mem );
  7281 %}
  7283 // Load Stack Slot
  7284 instruct loadSSF(regF dst, stackSlotF src) %{
  7285   match(Set dst src);
  7286   ins_cost(125);
  7288   format %{ "FLD_S  $src\n\t"
  7289             "FSTP   $dst" %}
  7290   opcode(0xD9);               /* D9 /0, FLD m32real */
  7291   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
  7292               Pop_Reg_F(dst) );
  7293   ins_pipe( fpu_reg_mem );
  7294 %}
  7296 // Load Stack Slot
  7297 instruct loadSSD(regD dst, stackSlotD src) %{
  7298   match(Set dst src);
  7299   ins_cost(125);
  7301   format %{ "FLD_D  $src\n\t"
  7302             "FSTP   $dst" %}
  7303   opcode(0xDD);               /* DD /0, FLD m64real */
  7304   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
  7305               Pop_Reg_D(dst) );
  7306   ins_pipe( fpu_reg_mem );
  7307 %}
  7309 // Prefetch instructions.
  7310 // Must be safe to execute with invalid address (cannot fault).
  7312 instruct prefetchr0( memory mem ) %{
  7313   predicate(UseSSE==0 && !VM_Version::supports_3dnow_prefetch());
  7314   match(PrefetchRead mem);
  7315   ins_cost(0);
  7316   size(0);
  7317   format %{ "PREFETCHR (non-SSE is empty encoding)" %}
  7318   ins_encode();
  7319   ins_pipe(empty);
  7320 %}
  7322 instruct prefetchr( memory mem ) %{
  7323   predicate(UseSSE==0 && VM_Version::supports_3dnow_prefetch() || ReadPrefetchInstr==3);
  7324   match(PrefetchRead mem);
  7325   ins_cost(100);
  7327   format %{ "PREFETCHR $mem\t! Prefetch into level 1 cache for read" %}
  7328   opcode(0x0F, 0x0d);     /* Opcode 0F 0d /0 */
  7329   ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
  7330   ins_pipe(ialu_mem);
  7331 %}
  7333 instruct prefetchrNTA( memory mem ) %{
  7334   predicate(UseSSE>=1 && ReadPrefetchInstr==0);
  7335   match(PrefetchRead mem);
  7336   ins_cost(100);
  7338   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for read" %}
  7339   opcode(0x0F, 0x18);     /* Opcode 0F 18 /0 */
  7340   ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
  7341   ins_pipe(ialu_mem);
  7342 %}
  7344 instruct prefetchrT0( memory mem ) %{
  7345   predicate(UseSSE>=1 && ReadPrefetchInstr==1);
  7346   match(PrefetchRead mem);
  7347   ins_cost(100);
  7349   format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for read" %}
  7350   opcode(0x0F, 0x18);     /* Opcode 0F 18 /1 */
  7351   ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
  7352   ins_pipe(ialu_mem);
  7353 %}
  7355 instruct prefetchrT2( memory mem ) %{
  7356   predicate(UseSSE>=1 && ReadPrefetchInstr==2);
  7357   match(PrefetchRead mem);
  7358   ins_cost(100);
  7360   format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for read" %}
  7361   opcode(0x0F, 0x18);     /* Opcode 0F 18 /3 */
  7362   ins_encode(OpcP, OpcS, RMopc_Mem(0x03,mem));
  7363   ins_pipe(ialu_mem);
  7364 %}
  7366 instruct prefetchw0( memory mem ) %{
  7367   predicate(UseSSE==0 && !VM_Version::supports_3dnow_prefetch());
  7368   match(PrefetchWrite mem);
  7369   ins_cost(0);
  7370   size(0);
  7371   format %{ "Prefetch (non-SSE is empty encoding)" %}
  7372   ins_encode();
  7373   ins_pipe(empty);
  7374 %}
  7376 instruct prefetchw( memory mem ) %{
  7377   predicate(UseSSE==0 && VM_Version::supports_3dnow_prefetch() || AllocatePrefetchInstr==3);
  7378   match( PrefetchWrite mem );
  7379   ins_cost(100);
  7381   format %{ "PREFETCHW $mem\t! Prefetch into L1 cache and mark modified" %}
  7382   opcode(0x0F, 0x0D);     /* Opcode 0F 0D /1 */
  7383   ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
  7384   ins_pipe(ialu_mem);
  7385 %}
  7387 instruct prefetchwNTA( memory mem ) %{
  7388   predicate(UseSSE>=1 && AllocatePrefetchInstr==0);
  7389   match(PrefetchWrite mem);
  7390   ins_cost(100);
  7392   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for write" %}
  7393   opcode(0x0F, 0x18);     /* Opcode 0F 18 /0 */
  7394   ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
  7395   ins_pipe(ialu_mem);
  7396 %}
  7398 instruct prefetchwT0( memory mem ) %{
  7399   predicate(UseSSE>=1 && AllocatePrefetchInstr==1);
  7400   match(PrefetchWrite mem);
  7401   ins_cost(100);
  7403   format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for write" %}
  7404   opcode(0x0F, 0x18);     /* Opcode 0F 18 /1 */
  7405   ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
  7406   ins_pipe(ialu_mem);
  7407 %}
  7409 instruct prefetchwT2( memory mem ) %{
  7410   predicate(UseSSE>=1 && AllocatePrefetchInstr==2);
  7411   match(PrefetchWrite mem);
  7412   ins_cost(100);
  7414   format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for write" %}
  7415   opcode(0x0F, 0x18);     /* Opcode 0F 18 /3 */
  7416   ins_encode(OpcP, OpcS, RMopc_Mem(0x03,mem));
  7417   ins_pipe(ialu_mem);
  7418 %}
  7420 //----------Store Instructions-------------------------------------------------
  7422 // Store Byte
  7423 instruct storeB(memory mem, xRegI src) %{
  7424   match(Set mem (StoreB mem src));
  7426   ins_cost(125);
  7427   format %{ "MOV8   $mem,$src" %}
  7428   opcode(0x88);
  7429   ins_encode( OpcP, RegMem( src, mem ) );
  7430   ins_pipe( ialu_mem_reg );
  7431 %}
  7433 // Store Char/Short
  7434 instruct storeC(memory mem, eRegI src) %{
  7435   match(Set mem (StoreC mem src));
  7437   ins_cost(125);
  7438   format %{ "MOV16  $mem,$src" %}
  7439   opcode(0x89, 0x66);
  7440   ins_encode( OpcS, OpcP, RegMem( src, mem ) );
  7441   ins_pipe( ialu_mem_reg );
  7442 %}
  7444 // Store Integer
  7445 instruct storeI(memory mem, eRegI src) %{
  7446   match(Set mem (StoreI mem src));
  7448   ins_cost(125);
  7449   format %{ "MOV    $mem,$src" %}
  7450   opcode(0x89);
  7451   ins_encode( OpcP, RegMem( src, mem ) );
  7452   ins_pipe( ialu_mem_reg );
  7453 %}
  7455 // Store Long
  7456 instruct storeL(long_memory mem, eRegL src) %{
  7457   predicate(!((StoreLNode*)n)->require_atomic_access());
  7458   match(Set mem (StoreL mem src));
  7460   ins_cost(200);
  7461   format %{ "MOV    $mem,$src.lo\n\t"
  7462             "MOV    $mem+4,$src.hi" %}
  7463   opcode(0x89, 0x89);
  7464   ins_encode( OpcP, RegMem( src, mem ), OpcS, RegMem_Hi( src, mem ) );
  7465   ins_pipe( ialu_mem_long_reg );
  7466 %}
  7468 // Store Long to Integer
  7469 instruct storeL2I(memory mem, eRegL src) %{
  7470   match(Set mem (StoreI mem (ConvL2I src)));
  7472   format %{ "MOV    $mem,$src.lo\t# long -> int" %}
  7473   ins_encode %{
  7474     __ movl($mem$$Address, $src$$Register);
  7475   %}
  7476   ins_pipe(ialu_mem_reg);
  7477 %}
  7479 // Volatile Store Long.  Must be atomic, so move it into
  7480 // the FP TOS and then do a 64-bit FIST.  Has to probe the
  7481 // target address before the store (for null-ptr checks)
  7482 // so the memory operand is used twice in the encoding.
  7483 instruct storeL_volatile(memory mem, stackSlotL src, eFlagsReg cr ) %{
  7484   predicate(UseSSE<=1 && ((StoreLNode*)n)->require_atomic_access());
  7485   match(Set mem (StoreL mem src));
  7486   effect( KILL cr );
  7487   ins_cost(400);
  7488   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  7489             "FILD   $src\n\t"
  7490             "FISTp  $mem\t # 64-bit atomic volatile long store" %}
  7491   opcode(0x3B);
  7492   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeL_volatile(mem,src));
  7493   ins_pipe( fpu_reg_mem );
  7494 %}
  7496 instruct storeLX_volatile(memory mem, stackSlotL src, regXD tmp, eFlagsReg cr) %{
  7497   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
  7498   match(Set mem (StoreL mem src));
  7499   effect( TEMP tmp, KILL cr );
  7500   ins_cost(380);
  7501   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  7502             "MOVSD  $tmp,$src\n\t"
  7503             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
  7504   opcode(0x3B);
  7505   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeLX_volatile(mem, src, tmp));
  7506   ins_pipe( pipe_slow );
  7507 %}
  7509 instruct storeLX_reg_volatile(memory mem, eRegL src, regXD tmp2, regXD tmp, eFlagsReg cr) %{
  7510   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
  7511   match(Set mem (StoreL mem src));
  7512   effect( TEMP tmp2 , TEMP tmp, KILL cr );
  7513   ins_cost(360);
  7514   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  7515             "MOVD   $tmp,$src.lo\n\t"
  7516             "MOVD   $tmp2,$src.hi\n\t"
  7517             "PUNPCKLDQ $tmp,$tmp2\n\t"
  7518             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
  7519   opcode(0x3B);
  7520   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeLX_reg_volatile(mem, src, tmp, tmp2));
  7521   ins_pipe( pipe_slow );
  7522 %}
  7524 // Store Pointer; for storing unknown oops and raw pointers
  7525 instruct storeP(memory mem, anyRegP src) %{
  7526   match(Set mem (StoreP mem src));
  7528   ins_cost(125);
  7529   format %{ "MOV    $mem,$src" %}
  7530   opcode(0x89);
  7531   ins_encode( OpcP, RegMem( src, mem ) );
  7532   ins_pipe( ialu_mem_reg );
  7533 %}
  7535 // Store Integer Immediate
  7536 instruct storeImmI(memory mem, immI src) %{
  7537   match(Set mem (StoreI mem src));
  7539   ins_cost(150);
  7540   format %{ "MOV    $mem,$src" %}
  7541   opcode(0xC7);               /* C7 /0 */
  7542   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
  7543   ins_pipe( ialu_mem_imm );
  7544 %}
  7546 // Store Short/Char Immediate
  7547 instruct storeImmI16(memory mem, immI16 src) %{
  7548   predicate(UseStoreImmI16);
  7549   match(Set mem (StoreC mem src));
  7551   ins_cost(150);
  7552   format %{ "MOV16  $mem,$src" %}
  7553   opcode(0xC7);     /* C7 /0 Same as 32 store immediate with prefix */
  7554   ins_encode( SizePrefix, OpcP, RMopc_Mem(0x00,mem),  Con16( src ));
  7555   ins_pipe( ialu_mem_imm );
  7556 %}
  7558 // Store Pointer Immediate; null pointers or constant oops that do not
  7559 // need card-mark barriers.
  7560 instruct storeImmP(memory mem, immP src) %{
  7561   match(Set mem (StoreP mem src));
  7563   ins_cost(150);
  7564   format %{ "MOV    $mem,$src" %}
  7565   opcode(0xC7);               /* C7 /0 */
  7566   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
  7567   ins_pipe( ialu_mem_imm );
  7568 %}
  7570 // Store Byte Immediate
  7571 instruct storeImmB(memory mem, immI8 src) %{
  7572   match(Set mem (StoreB mem src));
  7574   ins_cost(150);
  7575   format %{ "MOV8   $mem,$src" %}
  7576   opcode(0xC6);               /* C6 /0 */
  7577   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
  7578   ins_pipe( ialu_mem_imm );
  7579 %}
  7581 // Store Aligned Packed Byte XMM register to memory
  7582 instruct storeA8B(memory mem, regXD src) %{
  7583   predicate(UseSSE>=1);
  7584   match(Set mem (Store8B mem src));
  7585   ins_cost(145);
  7586   format %{ "MOVQ  $mem,$src\t! packed8B" %}
  7587   ins_encode( movq_st(mem, src));
  7588   ins_pipe( pipe_slow );
  7589 %}
  7591 // Store Aligned Packed Char/Short XMM register to memory
  7592 instruct storeA4C(memory mem, regXD src) %{
  7593   predicate(UseSSE>=1);
  7594   match(Set mem (Store4C mem src));
  7595   ins_cost(145);
  7596   format %{ "MOVQ  $mem,$src\t! packed4C" %}
  7597   ins_encode( movq_st(mem, src));
  7598   ins_pipe( pipe_slow );
  7599 %}
  7601 // Store Aligned Packed Integer XMM register to memory
  7602 instruct storeA2I(memory mem, regXD src) %{
  7603   predicate(UseSSE>=1);
  7604   match(Set mem (Store2I mem src));
  7605   ins_cost(145);
  7606   format %{ "MOVQ  $mem,$src\t! packed2I" %}
  7607   ins_encode( movq_st(mem, src));
  7608   ins_pipe( pipe_slow );
  7609 %}
  7611 // Store CMS card-mark Immediate
  7612 instruct storeImmCM(memory mem, immI8 src) %{
  7613   match(Set mem (StoreCM mem src));
  7615   ins_cost(150);
  7616   format %{ "MOV8   $mem,$src\t! CMS card-mark imm0" %}
  7617   opcode(0xC6);               /* C6 /0 */
  7618   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
  7619   ins_pipe( ialu_mem_imm );
  7620 %}
  7622 // Store Double
  7623 instruct storeD( memory mem, regDPR1 src) %{
  7624   predicate(UseSSE<=1);
  7625   match(Set mem (StoreD mem src));
  7627   ins_cost(100);
  7628   format %{ "FST_D  $mem,$src" %}
  7629   opcode(0xDD);       /* DD /2 */
  7630   ins_encode( enc_FP_store(mem,src) );
  7631   ins_pipe( fpu_mem_reg );
  7632 %}
  7634 // Store double does rounding on x86
  7635 instruct storeD_rounded( memory mem, regDPR1 src) %{
  7636   predicate(UseSSE<=1);
  7637   match(Set mem (StoreD mem (RoundDouble src)));
  7639   ins_cost(100);
  7640   format %{ "FST_D  $mem,$src\t# round" %}
  7641   opcode(0xDD);       /* DD /2 */
  7642   ins_encode( enc_FP_store(mem,src) );
  7643   ins_pipe( fpu_mem_reg );
  7644 %}
  7646 // Store XMM register to memory (double-precision floating points)
  7647 // MOVSD instruction
  7648 instruct storeXD(memory mem, regXD src) %{
  7649   predicate(UseSSE>=2);
  7650   match(Set mem (StoreD mem src));
  7651   ins_cost(95);
  7652   format %{ "MOVSD  $mem,$src" %}
  7653   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x11), RegMem(src, mem));
  7654   ins_pipe( pipe_slow );
  7655 %}
  7657 // Store XMM register to memory (single-precision floating point)
  7658 // MOVSS instruction
  7659 instruct storeX(memory mem, regX src) %{
  7660   predicate(UseSSE>=1);
  7661   match(Set mem (StoreF mem src));
  7662   ins_cost(95);
  7663   format %{ "MOVSS  $mem,$src" %}
  7664   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x11), RegMem(src, mem));
  7665   ins_pipe( pipe_slow );
  7666 %}
  7668 // Store Aligned Packed Single Float XMM register to memory
  7669 instruct storeA2F(memory mem, regXD src) %{
  7670   predicate(UseSSE>=1);
  7671   match(Set mem (Store2F mem src));
  7672   ins_cost(145);
  7673   format %{ "MOVQ  $mem,$src\t! packed2F" %}
  7674   ins_encode( movq_st(mem, src));
  7675   ins_pipe( pipe_slow );
  7676 %}
  7678 // Store Float
  7679 instruct storeF( memory mem, regFPR1 src) %{
  7680   predicate(UseSSE==0);
  7681   match(Set mem (StoreF mem src));
  7683   ins_cost(100);
  7684   format %{ "FST_S  $mem,$src" %}
  7685   opcode(0xD9);       /* D9 /2 */
  7686   ins_encode( enc_FP_store(mem,src) );
  7687   ins_pipe( fpu_mem_reg );
  7688 %}
  7690 // Store Float does rounding on x86
  7691 instruct storeF_rounded( memory mem, regFPR1 src) %{
  7692   predicate(UseSSE==0);
  7693   match(Set mem (StoreF mem (RoundFloat src)));
  7695   ins_cost(100);
  7696   format %{ "FST_S  $mem,$src\t# round" %}
  7697   opcode(0xD9);       /* D9 /2 */
  7698   ins_encode( enc_FP_store(mem,src) );
  7699   ins_pipe( fpu_mem_reg );
  7700 %}
  7702 // Store Float does rounding on x86
  7703 instruct storeF_Drounded( memory mem, regDPR1 src) %{
  7704   predicate(UseSSE<=1);
  7705   match(Set mem (StoreF mem (ConvD2F src)));
  7707   ins_cost(100);
  7708   format %{ "FST_S  $mem,$src\t# D-round" %}
  7709   opcode(0xD9);       /* D9 /2 */
  7710   ins_encode( enc_FP_store(mem,src) );
  7711   ins_pipe( fpu_mem_reg );
  7712 %}
  7714 // Store immediate Float value (it is faster than store from FPU register)
  7715 // The instruction usage is guarded by predicate in operand immF().
  7716 instruct storeF_imm( memory mem, immF src) %{
  7717   match(Set mem (StoreF mem src));
  7719   ins_cost(50);
  7720   format %{ "MOV    $mem,$src\t# store float" %}
  7721   opcode(0xC7);               /* C7 /0 */
  7722   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32F_as_bits( src ));
  7723   ins_pipe( ialu_mem_imm );
  7724 %}
  7726 // Store immediate Float value (it is faster than store from XMM register)
  7727 // The instruction usage is guarded by predicate in operand immXF().
  7728 instruct storeX_imm( memory mem, immXF src) %{
  7729   match(Set mem (StoreF mem src));
  7731   ins_cost(50);
  7732   format %{ "MOV    $mem,$src\t# store float" %}
  7733   opcode(0xC7);               /* C7 /0 */
  7734   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32XF_as_bits( src ));
  7735   ins_pipe( ialu_mem_imm );
  7736 %}
  7738 // Store Integer to stack slot
  7739 instruct storeSSI(stackSlotI dst, eRegI src) %{
  7740   match(Set dst src);
  7742   ins_cost(100);
  7743   format %{ "MOV    $dst,$src" %}
  7744   opcode(0x89);
  7745   ins_encode( OpcPRegSS( dst, src ) );
  7746   ins_pipe( ialu_mem_reg );
  7747 %}
  7749 // Store Integer to stack slot
  7750 instruct storeSSP(stackSlotP dst, eRegP src) %{
  7751   match(Set dst src);
  7753   ins_cost(100);
  7754   format %{ "MOV    $dst,$src" %}
  7755   opcode(0x89);
  7756   ins_encode( OpcPRegSS( dst, src ) );
  7757   ins_pipe( ialu_mem_reg );
  7758 %}
  7760 // Store Long to stack slot
  7761 instruct storeSSL(stackSlotL dst, eRegL src) %{
  7762   match(Set dst src);
  7764   ins_cost(200);
  7765   format %{ "MOV    $dst,$src.lo\n\t"
  7766             "MOV    $dst+4,$src.hi" %}
  7767   opcode(0x89, 0x89);
  7768   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
  7769   ins_pipe( ialu_mem_long_reg );
  7770 %}
  7772 //----------MemBar Instructions-----------------------------------------------
  7773 // Memory barrier flavors
  7775 instruct membar_acquire() %{
  7776   match(MemBarAcquire);
  7777   ins_cost(400);
  7779   size(0);
  7780   format %{ "MEMBAR-acquire ! (empty encoding)" %}
  7781   ins_encode();
  7782   ins_pipe(empty);
  7783 %}
  7785 instruct membar_acquire_lock() %{
  7786   match(MemBarAcquireLock);
  7787   ins_cost(0);
  7789   size(0);
  7790   format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
  7791   ins_encode( );
  7792   ins_pipe(empty);
  7793 %}
  7795 instruct membar_release() %{
  7796   match(MemBarRelease);
  7797   ins_cost(400);
  7799   size(0);
  7800   format %{ "MEMBAR-release ! (empty encoding)" %}
  7801   ins_encode( );
  7802   ins_pipe(empty);
  7803 %}
  7805 instruct membar_release_lock() %{
  7806   match(MemBarReleaseLock);
  7807   ins_cost(0);
  7809   size(0);
  7810   format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
  7811   ins_encode( );
  7812   ins_pipe(empty);
  7813 %}
  7815 instruct membar_volatile(eFlagsReg cr) %{
  7816   match(MemBarVolatile);
  7817   effect(KILL cr);
  7818   ins_cost(400);
  7820   format %{ 
  7821     $$template
  7822     if (os::is_MP()) {
  7823       $$emit$$"LOCK ADDL [ESP + #0], 0\t! membar_volatile"
  7824     } else {
  7825       $$emit$$"MEMBAR-volatile ! (empty encoding)"
  7827   %}
  7828   ins_encode %{
  7829     __ membar(Assembler::StoreLoad);
  7830   %}
  7831   ins_pipe(pipe_slow);
  7832 %}
  7834 instruct unnecessary_membar_volatile() %{
  7835   match(MemBarVolatile);
  7836   predicate(Matcher::post_store_load_barrier(n));
  7837   ins_cost(0);
  7839   size(0);
  7840   format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
  7841   ins_encode( );
  7842   ins_pipe(empty);
  7843 %}
  7845 //----------Move Instructions--------------------------------------------------
  7846 instruct castX2P(eAXRegP dst, eAXRegI src) %{
  7847   match(Set dst (CastX2P src));
  7848   format %{ "# X2P  $dst, $src" %}
  7849   ins_encode( /*empty encoding*/ );
  7850   ins_cost(0);
  7851   ins_pipe(empty);
  7852 %}
  7854 instruct castP2X(eRegI dst, eRegP src ) %{
  7855   match(Set dst (CastP2X src));
  7856   ins_cost(50);
  7857   format %{ "MOV    $dst, $src\t# CastP2X" %}
  7858   ins_encode( enc_Copy( dst, src) );
  7859   ins_pipe( ialu_reg_reg );
  7860 %}
  7862 //----------Conditional Move---------------------------------------------------
  7863 // Conditional move
  7864 instruct cmovI_reg(eRegI dst, eRegI src, eFlagsReg cr, cmpOp cop ) %{
  7865   predicate(VM_Version::supports_cmov() );
  7866   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7867   ins_cost(200);
  7868   format %{ "CMOV$cop $dst,$src" %}
  7869   opcode(0x0F,0x40);
  7870   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7871   ins_pipe( pipe_cmov_reg );
  7872 %}
  7874 instruct cmovI_regU( cmpOpU cop, eFlagsRegU cr, eRegI dst, eRegI src ) %{
  7875   predicate(VM_Version::supports_cmov() );
  7876   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7877   ins_cost(200);
  7878   format %{ "CMOV$cop $dst,$src" %}
  7879   opcode(0x0F,0x40);
  7880   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7881   ins_pipe( pipe_cmov_reg );
  7882 %}
  7884 instruct cmovI_regUCF( cmpOpUCF cop, eFlagsRegUCF cr, eRegI dst, eRegI src ) %{
  7885   predicate(VM_Version::supports_cmov() );
  7886   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7887   ins_cost(200);
  7888   expand %{
  7889     cmovI_regU(cop, cr, dst, src);
  7890   %}
  7891 %}
  7893 // Conditional move
  7894 instruct cmovI_mem(cmpOp cop, eFlagsReg cr, eRegI dst, memory src) %{
  7895   predicate(VM_Version::supports_cmov() );
  7896   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7897   ins_cost(250);
  7898   format %{ "CMOV$cop $dst,$src" %}
  7899   opcode(0x0F,0x40);
  7900   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7901   ins_pipe( pipe_cmov_mem );
  7902 %}
  7904 // Conditional move
  7905 instruct cmovI_memU(cmpOpU cop, eFlagsRegU cr, eRegI dst, memory src) %{
  7906   predicate(VM_Version::supports_cmov() );
  7907   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7908   ins_cost(250);
  7909   format %{ "CMOV$cop $dst,$src" %}
  7910   opcode(0x0F,0x40);
  7911   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7912   ins_pipe( pipe_cmov_mem );
  7913 %}
  7915 instruct cmovI_memUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegI dst, memory src) %{
  7916   predicate(VM_Version::supports_cmov() );
  7917   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7918   ins_cost(250);
  7919   expand %{
  7920     cmovI_memU(cop, cr, dst, src);
  7921   %}
  7922 %}
  7924 // Conditional move
  7925 instruct cmovP_reg(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
  7926   predicate(VM_Version::supports_cmov() );
  7927   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7928   ins_cost(200);
  7929   format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7930   opcode(0x0F,0x40);
  7931   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7932   ins_pipe( pipe_cmov_reg );
  7933 %}
  7935 // Conditional move (non-P6 version)
  7936 // Note:  a CMoveP is generated for  stubs and native wrappers
  7937 //        regardless of whether we are on a P6, so we
  7938 //        emulate a cmov here
  7939 instruct cmovP_reg_nonP6(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
  7940   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7941   ins_cost(300);
  7942   format %{ "Jn$cop   skip\n\t"
  7943           "MOV    $dst,$src\t# pointer\n"
  7944       "skip:" %}
  7945   opcode(0x8b);
  7946   ins_encode( enc_cmov_branch(cop, 0x2), OpcP, RegReg(dst, src));
  7947   ins_pipe( pipe_cmov_reg );
  7948 %}
  7950 // Conditional move
  7951 instruct cmovP_regU(cmpOpU cop, eFlagsRegU cr, eRegP dst, eRegP src ) %{
  7952   predicate(VM_Version::supports_cmov() );
  7953   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7954   ins_cost(200);
  7955   format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7956   opcode(0x0F,0x40);
  7957   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7958   ins_pipe( pipe_cmov_reg );
  7959 %}
  7961 instruct cmovP_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegP dst, eRegP src ) %{
  7962   predicate(VM_Version::supports_cmov() );
  7963   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7964   ins_cost(200);
  7965   expand %{
  7966     cmovP_regU(cop, cr, dst, src);
  7967   %}
  7968 %}
  7970 // DISABLED: Requires the ADLC to emit a bottom_type call that
  7971 // correctly meets the two pointer arguments; one is an incoming
  7972 // register but the other is a memory operand.  ALSO appears to
  7973 // be buggy with implicit null checks.
  7974 //
  7975 //// Conditional move
  7976 //instruct cmovP_mem(cmpOp cop, eFlagsReg cr, eRegP dst, memory src) %{
  7977 //  predicate(VM_Version::supports_cmov() );
  7978 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
  7979 //  ins_cost(250);
  7980 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7981 //  opcode(0x0F,0x40);
  7982 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7983 //  ins_pipe( pipe_cmov_mem );
  7984 //%}
  7985 //
  7986 //// Conditional move
  7987 //instruct cmovP_memU(cmpOpU cop, eFlagsRegU cr, eRegP dst, memory src) %{
  7988 //  predicate(VM_Version::supports_cmov() );
  7989 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
  7990 //  ins_cost(250);
  7991 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7992 //  opcode(0x0F,0x40);
  7993 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7994 //  ins_pipe( pipe_cmov_mem );
  7995 //%}
  7997 // Conditional move
  7998 instruct fcmovD_regU(cmpOp_fcmov cop, eFlagsRegU cr, regDPR1 dst, regD src) %{
  7999   predicate(UseSSE<=1);
  8000   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  8001   ins_cost(200);
  8002   format %{ "FCMOV$cop $dst,$src\t# double" %}
  8003   opcode(0xDA);
  8004   ins_encode( enc_cmov_d(cop,src) );
  8005   ins_pipe( pipe_cmovD_reg );
  8006 %}
  8008 // Conditional move
  8009 instruct fcmovF_regU(cmpOp_fcmov cop, eFlagsRegU cr, regFPR1 dst, regF src) %{
  8010   predicate(UseSSE==0);
  8011   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  8012   ins_cost(200);
  8013   format %{ "FCMOV$cop $dst,$src\t# float" %}
  8014   opcode(0xDA);
  8015   ins_encode( enc_cmov_d(cop,src) );
  8016   ins_pipe( pipe_cmovD_reg );
  8017 %}
  8019 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
  8020 instruct fcmovD_regS(cmpOp cop, eFlagsReg cr, regD dst, regD src) %{
  8021   predicate(UseSSE<=1);
  8022   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  8023   ins_cost(200);
  8024   format %{ "Jn$cop   skip\n\t"
  8025             "MOV    $dst,$src\t# double\n"
  8026       "skip:" %}
  8027   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
  8028   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_D(src), OpcP, RegOpc(dst) );
  8029   ins_pipe( pipe_cmovD_reg );
  8030 %}
  8032 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
  8033 instruct fcmovF_regS(cmpOp cop, eFlagsReg cr, regF dst, regF src) %{
  8034   predicate(UseSSE==0);
  8035   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  8036   ins_cost(200);
  8037   format %{ "Jn$cop    skip\n\t"
  8038             "MOV    $dst,$src\t# float\n"
  8039       "skip:" %}
  8040   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
  8041   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_F(src), OpcP, RegOpc(dst) );
  8042   ins_pipe( pipe_cmovD_reg );
  8043 %}
  8045 // No CMOVE with SSE/SSE2
  8046 instruct fcmovX_regS(cmpOp cop, eFlagsReg cr, regX dst, regX src) %{
  8047   predicate (UseSSE>=1);
  8048   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  8049   ins_cost(200);
  8050   format %{ "Jn$cop   skip\n\t"
  8051             "MOVSS  $dst,$src\t# float\n"
  8052       "skip:" %}
  8053   ins_encode %{
  8054     Label skip;
  8055     // Invert sense of branch from sense of CMOV
  8056     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  8057     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
  8058     __ bind(skip);
  8059   %}
  8060   ins_pipe( pipe_slow );
  8061 %}
  8063 // No CMOVE with SSE/SSE2
  8064 instruct fcmovXD_regS(cmpOp cop, eFlagsReg cr, regXD dst, regXD src) %{
  8065   predicate (UseSSE>=2);
  8066   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  8067   ins_cost(200);
  8068   format %{ "Jn$cop   skip\n\t"
  8069             "MOVSD  $dst,$src\t# float\n"
  8070       "skip:" %}
  8071   ins_encode %{
  8072     Label skip;
  8073     // Invert sense of branch from sense of CMOV
  8074     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  8075     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
  8076     __ bind(skip);
  8077   %}
  8078   ins_pipe( pipe_slow );
  8079 %}
  8081 // unsigned version
  8082 instruct fcmovX_regU(cmpOpU cop, eFlagsRegU cr, regX dst, regX src) %{
  8083   predicate (UseSSE>=1);
  8084   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  8085   ins_cost(200);
  8086   format %{ "Jn$cop   skip\n\t"
  8087             "MOVSS  $dst,$src\t# float\n"
  8088       "skip:" %}
  8089   ins_encode %{
  8090     Label skip;
  8091     // Invert sense of branch from sense of CMOV
  8092     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  8093     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
  8094     __ bind(skip);
  8095   %}
  8096   ins_pipe( pipe_slow );
  8097 %}
  8099 instruct fcmovX_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regX dst, regX src) %{
  8100   predicate (UseSSE>=1);
  8101   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  8102   ins_cost(200);
  8103   expand %{
  8104     fcmovX_regU(cop, cr, dst, src);
  8105   %}
  8106 %}
  8108 // unsigned version
  8109 instruct fcmovXD_regU(cmpOpU cop, eFlagsRegU cr, regXD dst, regXD src) %{
  8110   predicate (UseSSE>=2);
  8111   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  8112   ins_cost(200);
  8113   format %{ "Jn$cop   skip\n\t"
  8114             "MOVSD  $dst,$src\t# float\n"
  8115       "skip:" %}
  8116   ins_encode %{
  8117     Label skip;
  8118     // Invert sense of branch from sense of CMOV
  8119     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  8120     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
  8121     __ bind(skip);
  8122   %}
  8123   ins_pipe( pipe_slow );
  8124 %}
  8126 instruct fcmovXD_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regXD dst, regXD src) %{
  8127   predicate (UseSSE>=2);
  8128   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  8129   ins_cost(200);
  8130   expand %{
  8131     fcmovXD_regU(cop, cr, dst, src);
  8132   %}
  8133 %}
  8135 instruct cmovL_reg(cmpOp cop, eFlagsReg cr, eRegL dst, eRegL src) %{
  8136   predicate(VM_Version::supports_cmov() );
  8137   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  8138   ins_cost(200);
  8139   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
  8140             "CMOV$cop $dst.hi,$src.hi" %}
  8141   opcode(0x0F,0x40);
  8142   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
  8143   ins_pipe( pipe_cmov_reg_long );
  8144 %}
  8146 instruct cmovL_regU(cmpOpU cop, eFlagsRegU cr, eRegL dst, eRegL src) %{
  8147   predicate(VM_Version::supports_cmov() );
  8148   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  8149   ins_cost(200);
  8150   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
  8151             "CMOV$cop $dst.hi,$src.hi" %}
  8152   opcode(0x0F,0x40);
  8153   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
  8154   ins_pipe( pipe_cmov_reg_long );
  8155 %}
  8157 instruct cmovL_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegL dst, eRegL src) %{
  8158   predicate(VM_Version::supports_cmov() );
  8159   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  8160   ins_cost(200);
  8161   expand %{
  8162     cmovL_regU(cop, cr, dst, src);
  8163   %}
  8164 %}
  8166 //----------Arithmetic Instructions--------------------------------------------
  8167 //----------Addition Instructions----------------------------------------------
  8168 // Integer Addition Instructions
  8169 instruct addI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8170   match(Set dst (AddI dst src));
  8171   effect(KILL cr);
  8173   size(2);
  8174   format %{ "ADD    $dst,$src" %}
  8175   opcode(0x03);
  8176   ins_encode( OpcP, RegReg( dst, src) );
  8177   ins_pipe( ialu_reg_reg );
  8178 %}
  8180 instruct addI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  8181   match(Set dst (AddI dst src));
  8182   effect(KILL cr);
  8184   format %{ "ADD    $dst,$src" %}
  8185   opcode(0x81, 0x00); /* /0 id */
  8186   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8187   ins_pipe( ialu_reg );
  8188 %}
  8190 instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
  8191   predicate(UseIncDec);
  8192   match(Set dst (AddI dst src));
  8193   effect(KILL cr);
  8195   size(1);
  8196   format %{ "INC    $dst" %}
  8197   opcode(0x40); /*  */
  8198   ins_encode( Opc_plus( primary, dst ) );
  8199   ins_pipe( ialu_reg );
  8200 %}
  8202 instruct leaI_eReg_immI(eRegI dst, eRegI src0, immI src1) %{
  8203   match(Set dst (AddI src0 src1));
  8204   ins_cost(110);
  8206   format %{ "LEA    $dst,[$src0 + $src1]" %}
  8207   opcode(0x8D); /* 0x8D /r */
  8208   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
  8209   ins_pipe( ialu_reg_reg );
  8210 %}
  8212 instruct leaP_eReg_immI(eRegP dst, eRegP src0, immI src1) %{
  8213   match(Set dst (AddP src0 src1));
  8214   ins_cost(110);
  8216   format %{ "LEA    $dst,[$src0 + $src1]\t# ptr" %}
  8217   opcode(0x8D); /* 0x8D /r */
  8218   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
  8219   ins_pipe( ialu_reg_reg );
  8220 %}
  8222 instruct decI_eReg(eRegI dst, immI_M1 src, eFlagsReg cr) %{
  8223   predicate(UseIncDec);
  8224   match(Set dst (AddI dst src));
  8225   effect(KILL cr);
  8227   size(1);
  8228   format %{ "DEC    $dst" %}
  8229   opcode(0x48); /*  */
  8230   ins_encode( Opc_plus( primary, dst ) );
  8231   ins_pipe( ialu_reg );
  8232 %}
  8234 instruct addP_eReg(eRegP dst, eRegI src, eFlagsReg cr) %{
  8235   match(Set dst (AddP dst src));
  8236   effect(KILL cr);
  8238   size(2);
  8239   format %{ "ADD    $dst,$src" %}
  8240   opcode(0x03);
  8241   ins_encode( OpcP, RegReg( dst, src) );
  8242   ins_pipe( ialu_reg_reg );
  8243 %}
  8245 instruct addP_eReg_imm(eRegP dst, immI src, eFlagsReg cr) %{
  8246   match(Set dst (AddP dst src));
  8247   effect(KILL cr);
  8249   format %{ "ADD    $dst,$src" %}
  8250   opcode(0x81,0x00); /* Opcode 81 /0 id */
  8251   // ins_encode( RegImm( dst, src) );
  8252   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8253   ins_pipe( ialu_reg );
  8254 %}
  8256 instruct addI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  8257   match(Set dst (AddI dst (LoadI src)));
  8258   effect(KILL cr);
  8260   ins_cost(125);
  8261   format %{ "ADD    $dst,$src" %}
  8262   opcode(0x03);
  8263   ins_encode( OpcP, RegMem( dst, src) );
  8264   ins_pipe( ialu_reg_mem );
  8265 %}
  8267 instruct addI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  8268   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  8269   effect(KILL cr);
  8271   ins_cost(150);
  8272   format %{ "ADD    $dst,$src" %}
  8273   opcode(0x01);  /* Opcode 01 /r */
  8274   ins_encode( OpcP, RegMem( src, dst ) );
  8275   ins_pipe( ialu_mem_reg );
  8276 %}
  8278 // Add Memory with Immediate
  8279 instruct addI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  8280   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  8281   effect(KILL cr);
  8283   ins_cost(125);
  8284   format %{ "ADD    $dst,$src" %}
  8285   opcode(0x81);               /* Opcode 81 /0 id */
  8286   ins_encode( OpcSE( src ), RMopc_Mem(0x00,dst), Con8or32( src ) );
  8287   ins_pipe( ialu_mem_imm );
  8288 %}
  8290 instruct incI_mem(memory dst, immI1 src, eFlagsReg cr) %{
  8291   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  8292   effect(KILL cr);
  8294   ins_cost(125);
  8295   format %{ "INC    $dst" %}
  8296   opcode(0xFF);               /* Opcode FF /0 */
  8297   ins_encode( OpcP, RMopc_Mem(0x00,dst));
  8298   ins_pipe( ialu_mem_imm );
  8299 %}
  8301 instruct decI_mem(memory dst, immI_M1 src, eFlagsReg cr) %{
  8302   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  8303   effect(KILL cr);
  8305   ins_cost(125);
  8306   format %{ "DEC    $dst" %}
  8307   opcode(0xFF);               /* Opcode FF /1 */
  8308   ins_encode( OpcP, RMopc_Mem(0x01,dst));
  8309   ins_pipe( ialu_mem_imm );
  8310 %}
  8313 instruct checkCastPP( eRegP dst ) %{
  8314   match(Set dst (CheckCastPP dst));
  8316   size(0);
  8317   format %{ "#checkcastPP of $dst" %}
  8318   ins_encode( /*empty encoding*/ );
  8319   ins_pipe( empty );
  8320 %}
  8322 instruct castPP( eRegP dst ) %{
  8323   match(Set dst (CastPP dst));
  8324   format %{ "#castPP of $dst" %}
  8325   ins_encode( /*empty encoding*/ );
  8326   ins_pipe( empty );
  8327 %}
  8329 instruct castII( eRegI dst ) %{
  8330   match(Set dst (CastII dst));
  8331   format %{ "#castII of $dst" %}
  8332   ins_encode( /*empty encoding*/ );
  8333   ins_cost(0);
  8334   ins_pipe( empty );
  8335 %}
  8338 // Load-locked - same as a regular pointer load when used with compare-swap
  8339 instruct loadPLocked(eRegP dst, memory mem) %{
  8340   match(Set dst (LoadPLocked mem));
  8342   ins_cost(125);
  8343   format %{ "MOV    $dst,$mem\t# Load ptr. locked" %}
  8344   opcode(0x8B);
  8345   ins_encode( OpcP, RegMem(dst,mem));
  8346   ins_pipe( ialu_reg_mem );
  8347 %}
  8349 // LoadLong-locked - same as a volatile long load when used with compare-swap
  8350 instruct loadLLocked(stackSlotL dst, load_long_memory mem) %{
  8351   predicate(UseSSE<=1);
  8352   match(Set dst (LoadLLocked mem));
  8354   ins_cost(200);
  8355   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
  8356             "FISTp  $dst" %}
  8357   ins_encode(enc_loadL_volatile(mem,dst));
  8358   ins_pipe( fpu_reg_mem );
  8359 %}
  8361 instruct loadLX_Locked(stackSlotL dst, load_long_memory mem, regXD tmp) %{
  8362   predicate(UseSSE>=2);
  8363   match(Set dst (LoadLLocked mem));
  8364   effect(TEMP tmp);
  8365   ins_cost(180);
  8366   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  8367             "MOVSD  $dst,$tmp" %}
  8368   ins_encode(enc_loadLX_volatile(mem, dst, tmp));
  8369   ins_pipe( pipe_slow );
  8370 %}
  8372 instruct loadLX_reg_Locked(eRegL dst, load_long_memory mem, regXD tmp) %{
  8373   predicate(UseSSE>=2);
  8374   match(Set dst (LoadLLocked mem));
  8375   effect(TEMP tmp);
  8376   ins_cost(160);
  8377   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  8378             "MOVD   $dst.lo,$tmp\n\t"
  8379             "PSRLQ  $tmp,32\n\t"
  8380             "MOVD   $dst.hi,$tmp" %}
  8381   ins_encode(enc_loadLX_reg_volatile(mem, dst, tmp));
  8382   ins_pipe( pipe_slow );
  8383 %}
  8385 // Conditional-store of the updated heap-top.
  8386 // Used during allocation of the shared heap.
  8387 // Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
  8388 instruct storePConditional( memory heap_top_ptr, eAXRegP oldval, eRegP newval, eFlagsReg cr ) %{
  8389   match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
  8390   // EAX is killed if there is contention, but then it's also unused.
  8391   // In the common case of no contention, EAX holds the new oop address.
  8392   format %{ "CMPXCHG $heap_top_ptr,$newval\t# If EAX==$heap_top_ptr Then store $newval into $heap_top_ptr" %}
  8393   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval,heap_top_ptr) );
  8394   ins_pipe( pipe_cmpxchg );
  8395 %}
  8397 // Conditional-store of an int value.
  8398 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG on Intel.
  8399 instruct storeIConditional( memory mem, eAXRegI oldval, eRegI newval, eFlagsReg cr ) %{
  8400   match(Set cr (StoreIConditional mem (Binary oldval newval)));
  8401   effect(KILL oldval);
  8402   format %{ "CMPXCHG $mem,$newval\t# If EAX==$mem Then store $newval into $mem" %}
  8403   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval, mem) );
  8404   ins_pipe( pipe_cmpxchg );
  8405 %}
  8407 // Conditional-store of a long value.
  8408 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG8 on Intel.
  8409 instruct storeLConditional( memory mem, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
  8410   match(Set cr (StoreLConditional mem (Binary oldval newval)));
  8411   effect(KILL oldval);
  8412   format %{ "XCHG   EBX,ECX\t# correct order for CMPXCHG8 instruction\n\t"
  8413             "CMPXCHG8 $mem,ECX:EBX\t# If EDX:EAX==$mem Then store ECX:EBX into $mem\n\t"
  8414             "XCHG   EBX,ECX"
  8415   %}
  8416   ins_encode %{
  8417     // Note: we need to swap rbx, and rcx before and after the
  8418     //       cmpxchg8 instruction because the instruction uses
  8419     //       rcx as the high order word of the new value to store but
  8420     //       our register encoding uses rbx.
  8421     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
  8422     if( os::is_MP() )
  8423       __ lock();
  8424     __ cmpxchg8($mem$$Address);
  8425     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
  8426   %}
  8427   ins_pipe( pipe_cmpxchg );
  8428 %}
  8430 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  8432 instruct compareAndSwapL( eRegI res, eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
  8433   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  8434   effect(KILL cr, KILL oldval);
  8435   format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EDX:EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  8436             "MOV    $res,0\n\t"
  8437             "JNE,s  fail\n\t"
  8438             "MOV    $res,1\n"
  8439           "fail:" %}
  8440   ins_encode( enc_cmpxchg8(mem_ptr),
  8441               enc_flags_ne_to_boolean(res) );
  8442   ins_pipe( pipe_cmpxchg );
  8443 %}
  8445 instruct compareAndSwapP( eRegI res,  pRegP mem_ptr, eAXRegP oldval, eCXRegP newval, eFlagsReg cr) %{
  8446   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  8447   effect(KILL cr, KILL oldval);
  8448   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  8449             "MOV    $res,0\n\t"
  8450             "JNE,s  fail\n\t"
  8451             "MOV    $res,1\n"
  8452           "fail:" %}
  8453   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
  8454   ins_pipe( pipe_cmpxchg );
  8455 %}
  8457 instruct compareAndSwapI( eRegI res, pRegP mem_ptr, eAXRegI oldval, eCXRegI newval, eFlagsReg cr) %{
  8458   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  8459   effect(KILL cr, KILL oldval);
  8460   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  8461             "MOV    $res,0\n\t"
  8462             "JNE,s  fail\n\t"
  8463             "MOV    $res,1\n"
  8464           "fail:" %}
  8465   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
  8466   ins_pipe( pipe_cmpxchg );
  8467 %}
  8469 //----------Subtraction Instructions-------------------------------------------
  8470 // Integer Subtraction Instructions
  8471 instruct subI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8472   match(Set dst (SubI dst src));
  8473   effect(KILL cr);
  8475   size(2);
  8476   format %{ "SUB    $dst,$src" %}
  8477   opcode(0x2B);
  8478   ins_encode( OpcP, RegReg( dst, src) );
  8479   ins_pipe( ialu_reg_reg );
  8480 %}
  8482 instruct subI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  8483   match(Set dst (SubI dst src));
  8484   effect(KILL cr);
  8486   format %{ "SUB    $dst,$src" %}
  8487   opcode(0x81,0x05);  /* Opcode 81 /5 */
  8488   // ins_encode( RegImm( dst, src) );
  8489   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8490   ins_pipe( ialu_reg );
  8491 %}
  8493 instruct subI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  8494   match(Set dst (SubI dst (LoadI src)));
  8495   effect(KILL cr);
  8497   ins_cost(125);
  8498   format %{ "SUB    $dst,$src" %}
  8499   opcode(0x2B);
  8500   ins_encode( OpcP, RegMem( dst, src) );
  8501   ins_pipe( ialu_reg_mem );
  8502 %}
  8504 instruct subI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  8505   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
  8506   effect(KILL cr);
  8508   ins_cost(150);
  8509   format %{ "SUB    $dst,$src" %}
  8510   opcode(0x29);  /* Opcode 29 /r */
  8511   ins_encode( OpcP, RegMem( src, dst ) );
  8512   ins_pipe( ialu_mem_reg );
  8513 %}
  8515 // Subtract from a pointer
  8516 instruct subP_eReg(eRegP dst, eRegI src, immI0 zero, eFlagsReg cr) %{
  8517   match(Set dst (AddP dst (SubI zero src)));
  8518   effect(KILL cr);
  8520   size(2);
  8521   format %{ "SUB    $dst,$src" %}
  8522   opcode(0x2B);
  8523   ins_encode( OpcP, RegReg( dst, src) );
  8524   ins_pipe( ialu_reg_reg );
  8525 %}
  8527 instruct negI_eReg(eRegI dst, immI0 zero, eFlagsReg cr) %{
  8528   match(Set dst (SubI zero dst));
  8529   effect(KILL cr);
  8531   size(2);
  8532   format %{ "NEG    $dst" %}
  8533   opcode(0xF7,0x03);  // Opcode F7 /3
  8534   ins_encode( OpcP, RegOpc( dst ) );
  8535   ins_pipe( ialu_reg );
  8536 %}
  8539 //----------Multiplication/Division Instructions-------------------------------
  8540 // Integer Multiplication Instructions
  8541 // Multiply Register
  8542 instruct mulI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8543   match(Set dst (MulI dst src));
  8544   effect(KILL cr);
  8546   size(3);
  8547   ins_cost(300);
  8548   format %{ "IMUL   $dst,$src" %}
  8549   opcode(0xAF, 0x0F);
  8550   ins_encode( OpcS, OpcP, RegReg( dst, src) );
  8551   ins_pipe( ialu_reg_reg_alu0 );
  8552 %}
  8554 // Multiply 32-bit Immediate
  8555 instruct mulI_eReg_imm(eRegI dst, eRegI src, immI imm, eFlagsReg cr) %{
  8556   match(Set dst (MulI src imm));
  8557   effect(KILL cr);
  8559   ins_cost(300);
  8560   format %{ "IMUL   $dst,$src,$imm" %}
  8561   opcode(0x69);  /* 69 /r id */
  8562   ins_encode( OpcSE(imm), RegReg( dst, src ), Con8or32( imm ) );
  8563   ins_pipe( ialu_reg_reg_alu0 );
  8564 %}
  8566 instruct loadConL_low_only(eADXRegL_low_only dst, immL32 src, eFlagsReg cr) %{
  8567   match(Set dst src);
  8568   effect(KILL cr);
  8570   // Note that this is artificially increased to make it more expensive than loadConL
  8571   ins_cost(250);
  8572   format %{ "MOV    EAX,$src\t// low word only" %}
  8573   opcode(0xB8);
  8574   ins_encode( LdImmL_Lo(dst, src) );
  8575   ins_pipe( ialu_reg_fat );
  8576 %}
  8578 // Multiply by 32-bit Immediate, taking the shifted high order results
  8579 //  (special case for shift by 32)
  8580 instruct mulI_imm_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32 cnt, eFlagsReg cr) %{
  8581   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
  8582   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
  8583              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
  8584              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
  8585   effect(USE src1, KILL cr);
  8587   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
  8588   ins_cost(0*100 + 1*400 - 150);
  8589   format %{ "IMUL   EDX:EAX,$src1" %}
  8590   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
  8591   ins_pipe( pipe_slow );
  8592 %}
  8594 // Multiply by 32-bit Immediate, taking the shifted high order results
  8595 instruct mulI_imm_RShift_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr) %{
  8596   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
  8597   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
  8598              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
  8599              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
  8600   effect(USE src1, KILL cr);
  8602   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
  8603   ins_cost(1*100 + 1*400 - 150);
  8604   format %{ "IMUL   EDX:EAX,$src1\n\t"
  8605             "SAR    EDX,$cnt-32" %}
  8606   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
  8607   ins_pipe( pipe_slow );
  8608 %}
  8610 // Multiply Memory 32-bit Immediate
  8611 instruct mulI_mem_imm(eRegI dst, memory src, immI imm, eFlagsReg cr) %{
  8612   match(Set dst (MulI (LoadI src) imm));
  8613   effect(KILL cr);
  8615   ins_cost(300);
  8616   format %{ "IMUL   $dst,$src,$imm" %}
  8617   opcode(0x69);  /* 69 /r id */
  8618   ins_encode( OpcSE(imm), RegMem( dst, src ), Con8or32( imm ) );
  8619   ins_pipe( ialu_reg_mem_alu0 );
  8620 %}
  8622 // Multiply Memory
  8623 instruct mulI(eRegI dst, memory src, eFlagsReg cr) %{
  8624   match(Set dst (MulI dst (LoadI src)));
  8625   effect(KILL cr);
  8627   ins_cost(350);
  8628   format %{ "IMUL   $dst,$src" %}
  8629   opcode(0xAF, 0x0F);
  8630   ins_encode( OpcS, OpcP, RegMem( dst, src) );
  8631   ins_pipe( ialu_reg_mem_alu0 );
  8632 %}
  8634 // Multiply Register Int to Long
  8635 instruct mulI2L(eADXRegL dst, eAXRegI src, nadxRegI src1, eFlagsReg flags) %{
  8636   // Basic Idea: long = (long)int * (long)int
  8637   match(Set dst (MulL (ConvI2L src) (ConvI2L src1)));
  8638   effect(DEF dst, USE src, USE src1, KILL flags);
  8640   ins_cost(300);
  8641   format %{ "IMUL   $dst,$src1" %}
  8643   ins_encode( long_int_multiply( dst, src1 ) );
  8644   ins_pipe( ialu_reg_reg_alu0 );
  8645 %}
  8647 instruct mulIS_eReg(eADXRegL dst, immL_32bits mask, eFlagsReg flags, eAXRegI src, nadxRegI src1) %{
  8648   // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
  8649   match(Set dst (MulL (AndL (ConvI2L src) mask) (AndL (ConvI2L src1) mask)));
  8650   effect(KILL flags);
  8652   ins_cost(300);
  8653   format %{ "MUL    $dst,$src1" %}
  8655   ins_encode( long_uint_multiply(dst, src1) );
  8656   ins_pipe( ialu_reg_reg_alu0 );
  8657 %}
  8659 // Multiply Register Long
  8660 instruct mulL_eReg(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
  8661   match(Set dst (MulL dst src));
  8662   effect(KILL cr, TEMP tmp);
  8663   ins_cost(4*100+3*400);
  8664 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8665 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  8666   format %{ "MOV    $tmp,$src.lo\n\t"
  8667             "IMUL   $tmp,EDX\n\t"
  8668             "MOV    EDX,$src.hi\n\t"
  8669             "IMUL   EDX,EAX\n\t"
  8670             "ADD    $tmp,EDX\n\t"
  8671             "MUL    EDX:EAX,$src.lo\n\t"
  8672             "ADD    EDX,$tmp" %}
  8673   ins_encode( long_multiply( dst, src, tmp ) );
  8674   ins_pipe( pipe_slow );
  8675 %}
  8677 // Multiply Register Long where the left operand's high 32 bits are zero
  8678 instruct mulL_eReg_lhi0(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
  8679   predicate(is_operand_hi32_zero(n->in(1)));
  8680   match(Set dst (MulL dst src));
  8681   effect(KILL cr, TEMP tmp);
  8682   ins_cost(2*100+2*400);
  8683 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8684 //             hi(result) = hi(x_lo * y_lo) + lo(x_lo * y_hi) where lo(x_hi * y_lo) = 0 because x_hi = 0
  8685   format %{ "MOV    $tmp,$src.hi\n\t"
  8686             "IMUL   $tmp,EAX\n\t"
  8687             "MUL    EDX:EAX,$src.lo\n\t"
  8688             "ADD    EDX,$tmp" %}
  8689   ins_encode %{
  8690     __ movl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
  8691     __ imull($tmp$$Register, rax);
  8692     __ mull($src$$Register);
  8693     __ addl(rdx, $tmp$$Register);
  8694   %}
  8695   ins_pipe( pipe_slow );
  8696 %}
  8698 // Multiply Register Long where the right operand's high 32 bits are zero
  8699 instruct mulL_eReg_rhi0(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
  8700   predicate(is_operand_hi32_zero(n->in(2)));
  8701   match(Set dst (MulL dst src));
  8702   effect(KILL cr, TEMP tmp);
  8703   ins_cost(2*100+2*400);
  8704 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8705 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) where lo(x_lo * y_hi) = 0 because y_hi = 0
  8706   format %{ "MOV    $tmp,$src.lo\n\t"
  8707             "IMUL   $tmp,EDX\n\t"
  8708             "MUL    EDX:EAX,$src.lo\n\t"
  8709             "ADD    EDX,$tmp" %}
  8710   ins_encode %{
  8711     __ movl($tmp$$Register, $src$$Register);
  8712     __ imull($tmp$$Register, rdx);
  8713     __ mull($src$$Register);
  8714     __ addl(rdx, $tmp$$Register);
  8715   %}
  8716   ins_pipe( pipe_slow );
  8717 %}
  8719 // Multiply Register Long where the left and the right operands' high 32 bits are zero
  8720 instruct mulL_eReg_hi0(eADXRegL dst, eRegL src, eFlagsReg cr) %{
  8721   predicate(is_operand_hi32_zero(n->in(1)) && is_operand_hi32_zero(n->in(2)));
  8722   match(Set dst (MulL dst src));
  8723   effect(KILL cr);
  8724   ins_cost(1*400);
  8725 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8726 //             hi(result) = hi(x_lo * y_lo) where lo(x_hi * y_lo) = 0 and lo(x_lo * y_hi) = 0 because x_hi = 0 and y_hi = 0
  8727   format %{ "MUL    EDX:EAX,$src.lo\n\t" %}
  8728   ins_encode %{
  8729     __ mull($src$$Register);
  8730   %}
  8731   ins_pipe( pipe_slow );
  8732 %}
  8734 // Multiply Register Long by small constant
  8735 instruct mulL_eReg_con(eADXRegL dst, immL_127 src, eRegI tmp, eFlagsReg cr) %{
  8736   match(Set dst (MulL dst src));
  8737   effect(KILL cr, TEMP tmp);
  8738   ins_cost(2*100+2*400);
  8739   size(12);
  8740 // Basic idea: lo(result) = lo(src * EAX)
  8741 //             hi(result) = hi(src * EAX) + lo(src * EDX)
  8742   format %{ "IMUL   $tmp,EDX,$src\n\t"
  8743             "MOV    EDX,$src\n\t"
  8744             "MUL    EDX\t# EDX*EAX -> EDX:EAX\n\t"
  8745             "ADD    EDX,$tmp" %}
  8746   ins_encode( long_multiply_con( dst, src, tmp ) );
  8747   ins_pipe( pipe_slow );
  8748 %}
  8750 // Integer DIV with Register
  8751 instruct divI_eReg(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
  8752   match(Set rax (DivI rax div));
  8753   effect(KILL rdx, KILL cr);
  8754   size(26);
  8755   ins_cost(30*100+10*100);
  8756   format %{ "CMP    EAX,0x80000000\n\t"
  8757             "JNE,s  normal\n\t"
  8758             "XOR    EDX,EDX\n\t"
  8759             "CMP    ECX,-1\n\t"
  8760             "JE,s   done\n"
  8761     "normal: CDQ\n\t"
  8762             "IDIV   $div\n\t"
  8763     "done:"        %}
  8764   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8765   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  8766   ins_pipe( ialu_reg_reg_alu0 );
  8767 %}
  8769 // Divide Register Long
  8770 instruct divL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
  8771   match(Set dst (DivL src1 src2));
  8772   effect( KILL cr, KILL cx, KILL bx );
  8773   ins_cost(10000);
  8774   format %{ "PUSH   $src1.hi\n\t"
  8775             "PUSH   $src1.lo\n\t"
  8776             "PUSH   $src2.hi\n\t"
  8777             "PUSH   $src2.lo\n\t"
  8778             "CALL   SharedRuntime::ldiv\n\t"
  8779             "ADD    ESP,16" %}
  8780   ins_encode( long_div(src1,src2) );
  8781   ins_pipe( pipe_slow );
  8782 %}
  8784 // Integer DIVMOD with Register, both quotient and mod results
  8785 instruct divModI_eReg_divmod(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
  8786   match(DivModI rax div);
  8787   effect(KILL cr);
  8788   size(26);
  8789   ins_cost(30*100+10*100);
  8790   format %{ "CMP    EAX,0x80000000\n\t"
  8791             "JNE,s  normal\n\t"
  8792             "XOR    EDX,EDX\n\t"
  8793             "CMP    ECX,-1\n\t"
  8794             "JE,s   done\n"
  8795     "normal: CDQ\n\t"
  8796             "IDIV   $div\n\t"
  8797     "done:"        %}
  8798   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8799   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  8800   ins_pipe( pipe_slow );
  8801 %}
  8803 // Integer MOD with Register
  8804 instruct modI_eReg(eDXRegI rdx, eAXRegI rax, eCXRegI div, eFlagsReg cr) %{
  8805   match(Set rdx (ModI rax div));
  8806   effect(KILL rax, KILL cr);
  8808   size(26);
  8809   ins_cost(300);
  8810   format %{ "CDQ\n\t"
  8811             "IDIV   $div" %}
  8812   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8813   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  8814   ins_pipe( ialu_reg_reg_alu0 );
  8815 %}
  8817 // Remainder Register Long
  8818 instruct modL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
  8819   match(Set dst (ModL src1 src2));
  8820   effect( KILL cr, KILL cx, KILL bx );
  8821   ins_cost(10000);
  8822   format %{ "PUSH   $src1.hi\n\t"
  8823             "PUSH   $src1.lo\n\t"
  8824             "PUSH   $src2.hi\n\t"
  8825             "PUSH   $src2.lo\n\t"
  8826             "CALL   SharedRuntime::lrem\n\t"
  8827             "ADD    ESP,16" %}
  8828   ins_encode( long_mod(src1,src2) );
  8829   ins_pipe( pipe_slow );
  8830 %}
  8832 // Divide Register Long (no special case since divisor != -1)
  8833 instruct divL_eReg_imm32( eADXRegL dst, immL32 imm, eRegI tmp, eRegI tmp2, eFlagsReg cr ) %{
  8834   match(Set dst (DivL dst imm));
  8835   effect( TEMP tmp, TEMP tmp2, KILL cr );
  8836   ins_cost(1000);
  8837   format %{ "MOV    $tmp,abs($imm) # ldiv EDX:EAX,$imm\n\t"
  8838             "XOR    $tmp2,$tmp2\n\t"
  8839             "CMP    $tmp,EDX\n\t"
  8840             "JA,s   fast\n\t"
  8841             "MOV    $tmp2,EAX\n\t"
  8842             "MOV    EAX,EDX\n\t"
  8843             "MOV    EDX,0\n\t"
  8844             "JLE,s  pos\n\t"
  8845             "LNEG   EAX : $tmp2\n\t"
  8846             "DIV    $tmp # unsigned division\n\t"
  8847             "XCHG   EAX,$tmp2\n\t"
  8848             "DIV    $tmp\n\t"
  8849             "LNEG   $tmp2 : EAX\n\t"
  8850             "JMP,s  done\n"
  8851     "pos:\n\t"
  8852             "DIV    $tmp\n\t"
  8853             "XCHG   EAX,$tmp2\n"
  8854     "fast:\n\t"
  8855             "DIV    $tmp\n"
  8856     "done:\n\t"
  8857             "MOV    EDX,$tmp2\n\t"
  8858             "NEG    EDX:EAX # if $imm < 0" %}
  8859   ins_encode %{
  8860     int con = (int)$imm$$constant;
  8861     assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
  8862     int pcon = (con > 0) ? con : -con;
  8863     Label Lfast, Lpos, Ldone;
  8865     __ movl($tmp$$Register, pcon);
  8866     __ xorl($tmp2$$Register,$tmp2$$Register);
  8867     __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
  8868     __ jccb(Assembler::above, Lfast); // result fits into 32 bit
  8870     __ movl($tmp2$$Register, $dst$$Register); // save
  8871     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
  8872     __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
  8873     __ jccb(Assembler::lessEqual, Lpos); // result is positive
  8875     // Negative dividend.
  8876     // convert value to positive to use unsigned division
  8877     __ lneg($dst$$Register, $tmp2$$Register);
  8878     __ divl($tmp$$Register);
  8879     __ xchgl($dst$$Register, $tmp2$$Register);
  8880     __ divl($tmp$$Register);
  8881     // revert result back to negative
  8882     __ lneg($tmp2$$Register, $dst$$Register);
  8883     __ jmpb(Ldone);
  8885     __ bind(Lpos);
  8886     __ divl($tmp$$Register); // Use unsigned division
  8887     __ xchgl($dst$$Register, $tmp2$$Register);
  8888     // Fallthrow for final divide, tmp2 has 32 bit hi result
  8890     __ bind(Lfast);
  8891     // fast path: src is positive
  8892     __ divl($tmp$$Register); // Use unsigned division
  8894     __ bind(Ldone);
  8895     __ movl(HIGH_FROM_LOW($dst$$Register),$tmp2$$Register);
  8896     if (con < 0) {
  8897       __ lneg(HIGH_FROM_LOW($dst$$Register), $dst$$Register);
  8899   %}
  8900   ins_pipe( pipe_slow );
  8901 %}
  8903 // Remainder Register Long (remainder fit into 32 bits)
  8904 instruct modL_eReg_imm32( eADXRegL dst, immL32 imm, eRegI tmp, eRegI tmp2, eFlagsReg cr ) %{
  8905   match(Set dst (ModL dst imm));
  8906   effect( TEMP tmp, TEMP tmp2, KILL cr );
  8907   ins_cost(1000);
  8908   format %{ "MOV    $tmp,abs($imm) # lrem EDX:EAX,$imm\n\t"
  8909             "CMP    $tmp,EDX\n\t"
  8910             "JA,s   fast\n\t"
  8911             "MOV    $tmp2,EAX\n\t"
  8912             "MOV    EAX,EDX\n\t"
  8913             "MOV    EDX,0\n\t"
  8914             "JLE,s  pos\n\t"
  8915             "LNEG   EAX : $tmp2\n\t"
  8916             "DIV    $tmp # unsigned division\n\t"
  8917             "MOV    EAX,$tmp2\n\t"
  8918             "DIV    $tmp\n\t"
  8919             "NEG    EDX\n\t"
  8920             "JMP,s  done\n"
  8921     "pos:\n\t"
  8922             "DIV    $tmp\n\t"
  8923             "MOV    EAX,$tmp2\n"
  8924     "fast:\n\t"
  8925             "DIV    $tmp\n"
  8926     "done:\n\t"
  8927             "MOV    EAX,EDX\n\t"
  8928             "SAR    EDX,31\n\t" %}
  8929   ins_encode %{
  8930     int con = (int)$imm$$constant;
  8931     assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
  8932     int pcon = (con > 0) ? con : -con;
  8933     Label  Lfast, Lpos, Ldone;
  8935     __ movl($tmp$$Register, pcon);
  8936     __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
  8937     __ jccb(Assembler::above, Lfast); // src is positive and result fits into 32 bit
  8939     __ movl($tmp2$$Register, $dst$$Register); // save
  8940     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
  8941     __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
  8942     __ jccb(Assembler::lessEqual, Lpos); // result is positive
  8944     // Negative dividend.
  8945     // convert value to positive to use unsigned division
  8946     __ lneg($dst$$Register, $tmp2$$Register);
  8947     __ divl($tmp$$Register);
  8948     __ movl($dst$$Register, $tmp2$$Register);
  8949     __ divl($tmp$$Register);
  8950     // revert remainder back to negative
  8951     __ negl(HIGH_FROM_LOW($dst$$Register));
  8952     __ jmpb(Ldone);
  8954     __ bind(Lpos);
  8955     __ divl($tmp$$Register);
  8956     __ movl($dst$$Register, $tmp2$$Register);
  8958     __ bind(Lfast);
  8959     // fast path: src is positive
  8960     __ divl($tmp$$Register);
  8962     __ bind(Ldone);
  8963     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
  8964     __ sarl(HIGH_FROM_LOW($dst$$Register), 31); // result sign
  8966   %}
  8967   ins_pipe( pipe_slow );
  8968 %}
  8970 // Integer Shift Instructions
  8971 // Shift Left by one
  8972 instruct shlI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  8973   match(Set dst (LShiftI dst shift));
  8974   effect(KILL cr);
  8976   size(2);
  8977   format %{ "SHL    $dst,$shift" %}
  8978   opcode(0xD1, 0x4);  /* D1 /4 */
  8979   ins_encode( OpcP, RegOpc( dst ) );
  8980   ins_pipe( ialu_reg );
  8981 %}
  8983 // Shift Left by 8-bit immediate
  8984 instruct salI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
  8985   match(Set dst (LShiftI dst shift));
  8986   effect(KILL cr);
  8988   size(3);
  8989   format %{ "SHL    $dst,$shift" %}
  8990   opcode(0xC1, 0x4);  /* C1 /4 ib */
  8991   ins_encode( RegOpcImm( dst, shift) );
  8992   ins_pipe( ialu_reg );
  8993 %}
  8995 // Shift Left by variable
  8996 instruct salI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8997   match(Set dst (LShiftI dst shift));
  8998   effect(KILL cr);
  9000   size(2);
  9001   format %{ "SHL    $dst,$shift" %}
  9002   opcode(0xD3, 0x4);  /* D3 /4 */
  9003   ins_encode( OpcP, RegOpc( dst ) );
  9004   ins_pipe( ialu_reg_reg );
  9005 %}
  9007 // Arithmetic shift right by one
  9008 instruct sarI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  9009   match(Set dst (RShiftI dst shift));
  9010   effect(KILL cr);
  9012   size(2);
  9013   format %{ "SAR    $dst,$shift" %}
  9014   opcode(0xD1, 0x7);  /* D1 /7 */
  9015   ins_encode( OpcP, RegOpc( dst ) );
  9016   ins_pipe( ialu_reg );
  9017 %}
  9019 // Arithmetic shift right by one
  9020 instruct sarI_mem_1(memory dst, immI1 shift, eFlagsReg cr) %{
  9021   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  9022   effect(KILL cr);
  9023   format %{ "SAR    $dst,$shift" %}
  9024   opcode(0xD1, 0x7);  /* D1 /7 */
  9025   ins_encode( OpcP, RMopc_Mem(secondary,dst) );
  9026   ins_pipe( ialu_mem_imm );
  9027 %}
  9029 // Arithmetic Shift Right by 8-bit immediate
  9030 instruct sarI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
  9031   match(Set dst (RShiftI dst shift));
  9032   effect(KILL cr);
  9034   size(3);
  9035   format %{ "SAR    $dst,$shift" %}
  9036   opcode(0xC1, 0x7);  /* C1 /7 ib */
  9037   ins_encode( RegOpcImm( dst, shift ) );
  9038   ins_pipe( ialu_mem_imm );
  9039 %}
  9041 // Arithmetic Shift Right by 8-bit immediate
  9042 instruct sarI_mem_imm(memory dst, immI8 shift, eFlagsReg cr) %{
  9043   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  9044   effect(KILL cr);
  9046   format %{ "SAR    $dst,$shift" %}
  9047   opcode(0xC1, 0x7);  /* C1 /7 ib */
  9048   ins_encode( OpcP, RMopc_Mem(secondary, dst ), Con8or32( shift ) );
  9049   ins_pipe( ialu_mem_imm );
  9050 %}
  9052 // Arithmetic Shift Right by variable
  9053 instruct sarI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
  9054   match(Set dst (RShiftI dst shift));
  9055   effect(KILL cr);
  9057   size(2);
  9058   format %{ "SAR    $dst,$shift" %}
  9059   opcode(0xD3, 0x7);  /* D3 /7 */
  9060   ins_encode( OpcP, RegOpc( dst ) );
  9061   ins_pipe( ialu_reg_reg );
  9062 %}
  9064 // Logical shift right by one
  9065 instruct shrI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  9066   match(Set dst (URShiftI dst shift));
  9067   effect(KILL cr);
  9069   size(2);
  9070   format %{ "SHR    $dst,$shift" %}
  9071   opcode(0xD1, 0x5);  /* D1 /5 */
  9072   ins_encode( OpcP, RegOpc( dst ) );
  9073   ins_pipe( ialu_reg );
  9074 %}
  9076 // Logical Shift Right by 8-bit immediate
  9077 instruct shrI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
  9078   match(Set dst (URShiftI dst shift));
  9079   effect(KILL cr);
  9081   size(3);
  9082   format %{ "SHR    $dst,$shift" %}
  9083   opcode(0xC1, 0x5);  /* C1 /5 ib */
  9084   ins_encode( RegOpcImm( dst, shift) );
  9085   ins_pipe( ialu_reg );
  9086 %}
  9089 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
  9090 // This idiom is used by the compiler for the i2b bytecode.
  9091 instruct i2b(eRegI dst, xRegI src, immI_24 twentyfour) %{
  9092   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
  9094   size(3);
  9095   format %{ "MOVSX  $dst,$src :8" %}
  9096   ins_encode %{
  9097     __ movsbl($dst$$Register, $src$$Register);
  9098   %}
  9099   ins_pipe(ialu_reg_reg);
  9100 %}
  9102 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
  9103 // This idiom is used by the compiler the i2s bytecode.
  9104 instruct i2s(eRegI dst, xRegI src, immI_16 sixteen) %{
  9105   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
  9107   size(3);
  9108   format %{ "MOVSX  $dst,$src :16" %}
  9109   ins_encode %{
  9110     __ movswl($dst$$Register, $src$$Register);
  9111   %}
  9112   ins_pipe(ialu_reg_reg);
  9113 %}
  9116 // Logical Shift Right by variable
  9117 instruct shrI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
  9118   match(Set dst (URShiftI dst shift));
  9119   effect(KILL cr);
  9121   size(2);
  9122   format %{ "SHR    $dst,$shift" %}
  9123   opcode(0xD3, 0x5);  /* D3 /5 */
  9124   ins_encode( OpcP, RegOpc( dst ) );
  9125   ins_pipe( ialu_reg_reg );
  9126 %}
  9129 //----------Logical Instructions-----------------------------------------------
  9130 //----------Integer Logical Instructions---------------------------------------
  9131 // And Instructions
  9132 // And Register with Register
  9133 instruct andI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  9134   match(Set dst (AndI dst src));
  9135   effect(KILL cr);
  9137   size(2);
  9138   format %{ "AND    $dst,$src" %}
  9139   opcode(0x23);
  9140   ins_encode( OpcP, RegReg( dst, src) );
  9141   ins_pipe( ialu_reg_reg );
  9142 %}
  9144 // And Register with Immediate
  9145 instruct andI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  9146   match(Set dst (AndI dst src));
  9147   effect(KILL cr);
  9149   format %{ "AND    $dst,$src" %}
  9150   opcode(0x81,0x04);  /* Opcode 81 /4 */
  9151   // ins_encode( RegImm( dst, src) );
  9152   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  9153   ins_pipe( ialu_reg );
  9154 %}
  9156 // And Register with Memory
  9157 instruct andI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  9158   match(Set dst (AndI dst (LoadI src)));
  9159   effect(KILL cr);
  9161   ins_cost(125);
  9162   format %{ "AND    $dst,$src" %}
  9163   opcode(0x23);
  9164   ins_encode( OpcP, RegMem( dst, src) );
  9165   ins_pipe( ialu_reg_mem );
  9166 %}
  9168 // And Memory with Register
  9169 instruct andI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  9170   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
  9171   effect(KILL cr);
  9173   ins_cost(150);
  9174   format %{ "AND    $dst,$src" %}
  9175   opcode(0x21);  /* Opcode 21 /r */
  9176   ins_encode( OpcP, RegMem( src, dst ) );
  9177   ins_pipe( ialu_mem_reg );
  9178 %}
  9180 // And Memory with Immediate
  9181 instruct andI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  9182   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
  9183   effect(KILL cr);
  9185   ins_cost(125);
  9186   format %{ "AND    $dst,$src" %}
  9187   opcode(0x81, 0x4);  /* Opcode 81 /4 id */
  9188   // ins_encode( MemImm( dst, src) );
  9189   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  9190   ins_pipe( ialu_mem_imm );
  9191 %}
  9193 // Or Instructions
  9194 // Or Register with Register
  9195 instruct orI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  9196   match(Set dst (OrI dst src));
  9197   effect(KILL cr);
  9199   size(2);
  9200   format %{ "OR     $dst,$src" %}
  9201   opcode(0x0B);
  9202   ins_encode( OpcP, RegReg( dst, src) );
  9203   ins_pipe( ialu_reg_reg );
  9204 %}
  9206 instruct orI_eReg_castP2X(eRegI dst, eRegP src, eFlagsReg cr) %{
  9207   match(Set dst (OrI dst (CastP2X src)));
  9208   effect(KILL cr);
  9210   size(2);
  9211   format %{ "OR     $dst,$src" %}
  9212   opcode(0x0B);
  9213   ins_encode( OpcP, RegReg( dst, src) );
  9214   ins_pipe( ialu_reg_reg );
  9215 %}
  9218 // Or Register with Immediate
  9219 instruct orI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  9220   match(Set dst (OrI dst src));
  9221   effect(KILL cr);
  9223   format %{ "OR     $dst,$src" %}
  9224   opcode(0x81,0x01);  /* Opcode 81 /1 id */
  9225   // ins_encode( RegImm( dst, src) );
  9226   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  9227   ins_pipe( ialu_reg );
  9228 %}
  9230 // Or Register with Memory
  9231 instruct orI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  9232   match(Set dst (OrI dst (LoadI src)));
  9233   effect(KILL cr);
  9235   ins_cost(125);
  9236   format %{ "OR     $dst,$src" %}
  9237   opcode(0x0B);
  9238   ins_encode( OpcP, RegMem( dst, src) );
  9239   ins_pipe( ialu_reg_mem );
  9240 %}
  9242 // Or Memory with Register
  9243 instruct orI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  9244   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
  9245   effect(KILL cr);
  9247   ins_cost(150);
  9248   format %{ "OR     $dst,$src" %}
  9249   opcode(0x09);  /* Opcode 09 /r */
  9250   ins_encode( OpcP, RegMem( src, dst ) );
  9251   ins_pipe( ialu_mem_reg );
  9252 %}
  9254 // Or Memory with Immediate
  9255 instruct orI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  9256   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
  9257   effect(KILL cr);
  9259   ins_cost(125);
  9260   format %{ "OR     $dst,$src" %}
  9261   opcode(0x81,0x1);  /* Opcode 81 /1 id */
  9262   // ins_encode( MemImm( dst, src) );
  9263   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  9264   ins_pipe( ialu_mem_imm );
  9265 %}
  9267 // ROL/ROR
  9268 // ROL expand
  9269 instruct rolI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  9270   effect(USE_DEF dst, USE shift, KILL cr);
  9272   format %{ "ROL    $dst, $shift" %}
  9273   opcode(0xD1, 0x0); /* Opcode D1 /0 */
  9274   ins_encode( OpcP, RegOpc( dst ));
  9275   ins_pipe( ialu_reg );
  9276 %}
  9278 instruct rolI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{
  9279   effect(USE_DEF dst, USE shift, KILL cr);
  9281   format %{ "ROL    $dst, $shift" %}
  9282   opcode(0xC1, 0x0); /*Opcode /C1  /0  */
  9283   ins_encode( RegOpcImm(dst, shift) );
  9284   ins_pipe(ialu_reg);
  9285 %}
  9287 instruct rolI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr) %{
  9288   effect(USE_DEF dst, USE shift, KILL cr);
  9290   format %{ "ROL    $dst, $shift" %}
  9291   opcode(0xD3, 0x0);    /* Opcode D3 /0 */
  9292   ins_encode(OpcP, RegOpc(dst));
  9293   ins_pipe( ialu_reg_reg );
  9294 %}
  9295 // end of ROL expand
  9297 // ROL 32bit by one once
  9298 instruct rolI_eReg_i1(eRegI dst, immI1 lshift, immI_M1 rshift, eFlagsReg cr) %{
  9299   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
  9301   expand %{
  9302     rolI_eReg_imm1(dst, lshift, cr);
  9303   %}
  9304 %}
  9306 // ROL 32bit var by imm8 once
  9307 instruct rolI_eReg_i8(eRegI dst, immI8 lshift, immI8 rshift, eFlagsReg cr) %{
  9308   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  9309   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
  9311   expand %{
  9312     rolI_eReg_imm8(dst, lshift, cr);
  9313   %}
  9314 %}
  9316 // ROL 32bit var by var once
  9317 instruct rolI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
  9318   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
  9320   expand %{
  9321     rolI_eReg_CL(dst, shift, cr);
  9322   %}
  9323 %}
  9325 // ROL 32bit var by var once
  9326 instruct rolI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
  9327   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
  9329   expand %{
  9330     rolI_eReg_CL(dst, shift, cr);
  9331   %}
  9332 %}
  9334 // ROR expand
  9335 instruct rorI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  9336   effect(USE_DEF dst, USE shift, KILL cr);
  9338   format %{ "ROR    $dst, $shift" %}
  9339   opcode(0xD1,0x1);  /* Opcode D1 /1 */
  9340   ins_encode( OpcP, RegOpc( dst ) );
  9341   ins_pipe( ialu_reg );
  9342 %}
  9344 instruct rorI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{
  9345   effect (USE_DEF dst, USE shift, KILL cr);
  9347   format %{ "ROR    $dst, $shift" %}
  9348   opcode(0xC1, 0x1); /* Opcode /C1 /1 ib */
  9349   ins_encode( RegOpcImm(dst, shift) );
  9350   ins_pipe( ialu_reg );
  9351 %}
  9353 instruct rorI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr)%{
  9354   effect(USE_DEF dst, USE shift, KILL cr);
  9356   format %{ "ROR    $dst, $shift" %}
  9357   opcode(0xD3, 0x1);    /* Opcode D3 /1 */
  9358   ins_encode(OpcP, RegOpc(dst));
  9359   ins_pipe( ialu_reg_reg );
  9360 %}
  9361 // end of ROR expand
  9363 // ROR right once
  9364 instruct rorI_eReg_i1(eRegI dst, immI1 rshift, immI_M1 lshift, eFlagsReg cr) %{
  9365   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
  9367   expand %{
  9368     rorI_eReg_imm1(dst, rshift, cr);
  9369   %}
  9370 %}
  9372 // ROR 32bit by immI8 once
  9373 instruct rorI_eReg_i8(eRegI dst, immI8 rshift, immI8 lshift, eFlagsReg cr) %{
  9374   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  9375   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
  9377   expand %{
  9378     rorI_eReg_imm8(dst, rshift, cr);
  9379   %}
  9380 %}
  9382 // ROR 32bit var by var once
  9383 instruct rorI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
  9384   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
  9386   expand %{
  9387     rorI_eReg_CL(dst, shift, cr);
  9388   %}
  9389 %}
  9391 // ROR 32bit var by var once
  9392 instruct rorI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
  9393   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
  9395   expand %{
  9396     rorI_eReg_CL(dst, shift, cr);
  9397   %}
  9398 %}
  9400 // Xor Instructions
  9401 // Xor Register with Register
  9402 instruct xorI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  9403   match(Set dst (XorI dst src));
  9404   effect(KILL cr);
  9406   size(2);
  9407   format %{ "XOR    $dst,$src" %}
  9408   opcode(0x33);
  9409   ins_encode( OpcP, RegReg( dst, src) );
  9410   ins_pipe( ialu_reg_reg );
  9411 %}
  9413 // Xor Register with Immediate -1
  9414 instruct xorI_eReg_im1(eRegI dst, immI_M1 imm) %{
  9415   match(Set dst (XorI dst imm));  
  9417   size(2);
  9418   format %{ "NOT    $dst" %}  
  9419   ins_encode %{
  9420      __ notl($dst$$Register);
  9421   %}
  9422   ins_pipe( ialu_reg );
  9423 %}
  9425 // Xor Register with Immediate
  9426 instruct xorI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  9427   match(Set dst (XorI dst src));
  9428   effect(KILL cr);
  9430   format %{ "XOR    $dst,$src" %}
  9431   opcode(0x81,0x06);  /* Opcode 81 /6 id */
  9432   // ins_encode( RegImm( dst, src) );
  9433   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  9434   ins_pipe( ialu_reg );
  9435 %}
  9437 // Xor Register with Memory
  9438 instruct xorI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  9439   match(Set dst (XorI dst (LoadI src)));
  9440   effect(KILL cr);
  9442   ins_cost(125);
  9443   format %{ "XOR    $dst,$src" %}
  9444   opcode(0x33);
  9445   ins_encode( OpcP, RegMem(dst, src) );
  9446   ins_pipe( ialu_reg_mem );
  9447 %}
  9449 // Xor Memory with Register
  9450 instruct xorI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  9451   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
  9452   effect(KILL cr);
  9454   ins_cost(150);
  9455   format %{ "XOR    $dst,$src" %}
  9456   opcode(0x31);  /* Opcode 31 /r */
  9457   ins_encode( OpcP, RegMem( src, dst ) );
  9458   ins_pipe( ialu_mem_reg );
  9459 %}
  9461 // Xor Memory with Immediate
  9462 instruct xorI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  9463   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
  9464   effect(KILL cr);
  9466   ins_cost(125);
  9467   format %{ "XOR    $dst,$src" %}
  9468   opcode(0x81,0x6);  /* Opcode 81 /6 id */
  9469   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  9470   ins_pipe( ialu_mem_imm );
  9471 %}
  9473 //----------Convert Int to Boolean---------------------------------------------
  9475 instruct movI_nocopy(eRegI dst, eRegI src) %{
  9476   effect( DEF dst, USE src );
  9477   format %{ "MOV    $dst,$src" %}
  9478   ins_encode( enc_Copy( dst, src) );
  9479   ins_pipe( ialu_reg_reg );
  9480 %}
  9482 instruct ci2b( eRegI dst, eRegI src, eFlagsReg cr ) %{
  9483   effect( USE_DEF dst, USE src, KILL cr );
  9485   size(4);
  9486   format %{ "NEG    $dst\n\t"
  9487             "ADC    $dst,$src" %}
  9488   ins_encode( neg_reg(dst),
  9489               OpcRegReg(0x13,dst,src) );
  9490   ins_pipe( ialu_reg_reg_long );
  9491 %}
  9493 instruct convI2B( eRegI dst, eRegI src, eFlagsReg cr ) %{
  9494   match(Set dst (Conv2B src));
  9496   expand %{
  9497     movI_nocopy(dst,src);
  9498     ci2b(dst,src,cr);
  9499   %}
  9500 %}
  9502 instruct movP_nocopy(eRegI dst, eRegP src) %{
  9503   effect( DEF dst, USE src );
  9504   format %{ "MOV    $dst,$src" %}
  9505   ins_encode( enc_Copy( dst, src) );
  9506   ins_pipe( ialu_reg_reg );
  9507 %}
  9509 instruct cp2b( eRegI dst, eRegP src, eFlagsReg cr ) %{
  9510   effect( USE_DEF dst, USE src, KILL cr );
  9511   format %{ "NEG    $dst\n\t"
  9512             "ADC    $dst,$src" %}
  9513   ins_encode( neg_reg(dst),
  9514               OpcRegReg(0x13,dst,src) );
  9515   ins_pipe( ialu_reg_reg_long );
  9516 %}
  9518 instruct convP2B( eRegI dst, eRegP src, eFlagsReg cr ) %{
  9519   match(Set dst (Conv2B src));
  9521   expand %{
  9522     movP_nocopy(dst,src);
  9523     cp2b(dst,src,cr);
  9524   %}
  9525 %}
  9527 instruct cmpLTMask( eCXRegI dst, ncxRegI p, ncxRegI q, eFlagsReg cr ) %{
  9528   match(Set dst (CmpLTMask p q));
  9529   effect( KILL cr );
  9530   ins_cost(400);
  9532   // SETlt can only use low byte of EAX,EBX, ECX, or EDX as destination
  9533   format %{ "XOR    $dst,$dst\n\t"
  9534             "CMP    $p,$q\n\t"
  9535             "SETlt  $dst\n\t"
  9536             "NEG    $dst" %}
  9537   ins_encode( OpcRegReg(0x33,dst,dst),
  9538               OpcRegReg(0x3B,p,q),
  9539               setLT_reg(dst), neg_reg(dst) );
  9540   ins_pipe( pipe_slow );
  9541 %}
  9543 instruct cmpLTMask0( eRegI dst, immI0 zero, eFlagsReg cr ) %{
  9544   match(Set dst (CmpLTMask dst zero));
  9545   effect( DEF dst, KILL cr );
  9546   ins_cost(100);
  9548   format %{ "SAR    $dst,31" %}
  9549   opcode(0xC1, 0x7);  /* C1 /7 ib */
  9550   ins_encode( RegOpcImm( dst, 0x1F ) );
  9551   ins_pipe( ialu_reg );
  9552 %}
  9555 instruct cadd_cmpLTMask( ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp, eFlagsReg cr ) %{
  9556   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  9557   effect( KILL tmp, KILL cr );
  9558   ins_cost(400);
  9559   // annoyingly, $tmp has no edges so you cant ask for it in
  9560   // any format or encoding
  9561   format %{ "SUB    $p,$q\n\t"
  9562             "SBB    ECX,ECX\n\t"
  9563             "AND    ECX,$y\n\t"
  9564             "ADD    $p,ECX" %}
  9565   ins_encode( enc_cmpLTP(p,q,y,tmp) );
  9566   ins_pipe( pipe_cmplt );
  9567 %}
  9569 /* If I enable this, I encourage spilling in the inner loop of compress.
  9570 instruct cadd_cmpLTMask_mem( ncxRegI p, ncxRegI q, memory y, eCXRegI tmp, eFlagsReg cr ) %{
  9571   match(Set p (AddI (AndI (CmpLTMask p q) (LoadI y)) (SubI p q)));
  9572   effect( USE_KILL tmp, KILL cr );
  9573   ins_cost(400);
  9575   format %{ "SUB    $p,$q\n\t"
  9576             "SBB    ECX,ECX\n\t"
  9577             "AND    ECX,$y\n\t"
  9578             "ADD    $p,ECX" %}
  9579   ins_encode( enc_cmpLTP_mem(p,q,y,tmp) );
  9580 %}
  9581 */
  9583 //----------Long Instructions------------------------------------------------
  9584 // Add Long Register with Register
  9585 instruct addL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9586   match(Set dst (AddL dst src));
  9587   effect(KILL cr);
  9588   ins_cost(200);
  9589   format %{ "ADD    $dst.lo,$src.lo\n\t"
  9590             "ADC    $dst.hi,$src.hi" %}
  9591   opcode(0x03, 0x13);
  9592   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
  9593   ins_pipe( ialu_reg_reg_long );
  9594 %}
  9596 // Add Long Register with Immediate
  9597 instruct addL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9598   match(Set dst (AddL dst src));
  9599   effect(KILL cr);
  9600   format %{ "ADD    $dst.lo,$src.lo\n\t"
  9601             "ADC    $dst.hi,$src.hi" %}
  9602   opcode(0x81,0x00,0x02);  /* Opcode 81 /0, 81 /2 */
  9603   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9604   ins_pipe( ialu_reg_long );
  9605 %}
  9607 // Add Long Register with Memory
  9608 instruct addL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9609   match(Set dst (AddL dst (LoadL mem)));
  9610   effect(KILL cr);
  9611   ins_cost(125);
  9612   format %{ "ADD    $dst.lo,$mem\n\t"
  9613             "ADC    $dst.hi,$mem+4" %}
  9614   opcode(0x03, 0x13);
  9615   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9616   ins_pipe( ialu_reg_long_mem );
  9617 %}
  9619 // Subtract Long Register with Register.
  9620 instruct subL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9621   match(Set dst (SubL dst src));
  9622   effect(KILL cr);
  9623   ins_cost(200);
  9624   format %{ "SUB    $dst.lo,$src.lo\n\t"
  9625             "SBB    $dst.hi,$src.hi" %}
  9626   opcode(0x2B, 0x1B);
  9627   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
  9628   ins_pipe( ialu_reg_reg_long );
  9629 %}
  9631 // Subtract Long Register with Immediate
  9632 instruct subL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9633   match(Set dst (SubL dst src));
  9634   effect(KILL cr);
  9635   format %{ "SUB    $dst.lo,$src.lo\n\t"
  9636             "SBB    $dst.hi,$src.hi" %}
  9637   opcode(0x81,0x05,0x03);  /* Opcode 81 /5, 81 /3 */
  9638   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9639   ins_pipe( ialu_reg_long );
  9640 %}
  9642 // Subtract Long Register with Memory
  9643 instruct subL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9644   match(Set dst (SubL dst (LoadL mem)));
  9645   effect(KILL cr);
  9646   ins_cost(125);
  9647   format %{ "SUB    $dst.lo,$mem\n\t"
  9648             "SBB    $dst.hi,$mem+4" %}
  9649   opcode(0x2B, 0x1B);
  9650   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9651   ins_pipe( ialu_reg_long_mem );
  9652 %}
  9654 instruct negL_eReg(eRegL dst, immL0 zero, eFlagsReg cr) %{
  9655   match(Set dst (SubL zero dst));
  9656   effect(KILL cr);
  9657   ins_cost(300);
  9658   format %{ "NEG    $dst.hi\n\tNEG    $dst.lo\n\tSBB    $dst.hi,0" %}
  9659   ins_encode( neg_long(dst) );
  9660   ins_pipe( ialu_reg_reg_long );
  9661 %}
  9663 // And Long Register with Register
  9664 instruct andL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9665   match(Set dst (AndL dst src));
  9666   effect(KILL cr);
  9667   format %{ "AND    $dst.lo,$src.lo\n\t"
  9668             "AND    $dst.hi,$src.hi" %}
  9669   opcode(0x23,0x23);
  9670   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9671   ins_pipe( ialu_reg_reg_long );
  9672 %}
  9674 // And Long Register with Immediate
  9675 instruct andL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9676   match(Set dst (AndL dst src));
  9677   effect(KILL cr);
  9678   format %{ "AND    $dst.lo,$src.lo\n\t"
  9679             "AND    $dst.hi,$src.hi" %}
  9680   opcode(0x81,0x04,0x04);  /* Opcode 81 /4, 81 /4 */
  9681   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9682   ins_pipe( ialu_reg_long );
  9683 %}
  9685 // And Long Register with Memory
  9686 instruct andL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9687   match(Set dst (AndL dst (LoadL mem)));
  9688   effect(KILL cr);
  9689   ins_cost(125);
  9690   format %{ "AND    $dst.lo,$mem\n\t"
  9691             "AND    $dst.hi,$mem+4" %}
  9692   opcode(0x23, 0x23);
  9693   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9694   ins_pipe( ialu_reg_long_mem );
  9695 %}
  9697 // Or Long Register with Register
  9698 instruct orl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9699   match(Set dst (OrL dst src));
  9700   effect(KILL cr);
  9701   format %{ "OR     $dst.lo,$src.lo\n\t"
  9702             "OR     $dst.hi,$src.hi" %}
  9703   opcode(0x0B,0x0B);
  9704   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9705   ins_pipe( ialu_reg_reg_long );
  9706 %}
  9708 // Or Long Register with Immediate
  9709 instruct orl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9710   match(Set dst (OrL dst src));
  9711   effect(KILL cr);
  9712   format %{ "OR     $dst.lo,$src.lo\n\t"
  9713             "OR     $dst.hi,$src.hi" %}
  9714   opcode(0x81,0x01,0x01);  /* Opcode 81 /1, 81 /1 */
  9715   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9716   ins_pipe( ialu_reg_long );
  9717 %}
  9719 // Or Long Register with Memory
  9720 instruct orl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9721   match(Set dst (OrL dst (LoadL mem)));
  9722   effect(KILL cr);
  9723   ins_cost(125);
  9724   format %{ "OR     $dst.lo,$mem\n\t"
  9725             "OR     $dst.hi,$mem+4" %}
  9726   opcode(0x0B,0x0B);
  9727   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9728   ins_pipe( ialu_reg_long_mem );
  9729 %}
  9731 // Xor Long Register with Register
  9732 instruct xorl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9733   match(Set dst (XorL dst src));
  9734   effect(KILL cr);
  9735   format %{ "XOR    $dst.lo,$src.lo\n\t"
  9736             "XOR    $dst.hi,$src.hi" %}
  9737   opcode(0x33,0x33);
  9738   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9739   ins_pipe( ialu_reg_reg_long );
  9740 %}
  9742 // Xor Long Register with Immediate -1
  9743 instruct xorl_eReg_im1(eRegL dst, immL_M1 imm) %{
  9744   match(Set dst (XorL dst imm));  
  9745   format %{ "NOT    $dst.lo\n\t"
  9746             "NOT    $dst.hi" %}
  9747   ins_encode %{
  9748      __ notl($dst$$Register);
  9749      __ notl(HIGH_FROM_LOW($dst$$Register));
  9750   %}
  9751   ins_pipe( ialu_reg_long );
  9752 %}
  9754 // Xor Long Register with Immediate
  9755 instruct xorl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9756   match(Set dst (XorL dst src));
  9757   effect(KILL cr);
  9758   format %{ "XOR    $dst.lo,$src.lo\n\t"
  9759             "XOR    $dst.hi,$src.hi" %}
  9760   opcode(0x81,0x06,0x06);  /* Opcode 81 /6, 81 /6 */
  9761   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9762   ins_pipe( ialu_reg_long );
  9763 %}
  9765 // Xor Long Register with Memory
  9766 instruct xorl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9767   match(Set dst (XorL dst (LoadL mem)));
  9768   effect(KILL cr);
  9769   ins_cost(125);
  9770   format %{ "XOR    $dst.lo,$mem\n\t"
  9771             "XOR    $dst.hi,$mem+4" %}
  9772   opcode(0x33,0x33);
  9773   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9774   ins_pipe( ialu_reg_long_mem );
  9775 %}
  9777 // Shift Left Long by 1
  9778 instruct shlL_eReg_1(eRegL dst, immI_1 cnt, eFlagsReg cr) %{
  9779   predicate(UseNewLongLShift);
  9780   match(Set dst (LShiftL dst cnt));
  9781   effect(KILL cr);
  9782   ins_cost(100);
  9783   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9784             "ADC    $dst.hi,$dst.hi" %}
  9785   ins_encode %{
  9786     __ addl($dst$$Register,$dst$$Register);
  9787     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9788   %}
  9789   ins_pipe( ialu_reg_long );
  9790 %}
  9792 // Shift Left Long by 2
  9793 instruct shlL_eReg_2(eRegL dst, immI_2 cnt, eFlagsReg cr) %{
  9794   predicate(UseNewLongLShift);
  9795   match(Set dst (LShiftL dst cnt));
  9796   effect(KILL cr);
  9797   ins_cost(100);
  9798   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9799             "ADC    $dst.hi,$dst.hi\n\t" 
  9800             "ADD    $dst.lo,$dst.lo\n\t"
  9801             "ADC    $dst.hi,$dst.hi" %}
  9802   ins_encode %{
  9803     __ addl($dst$$Register,$dst$$Register);
  9804     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9805     __ addl($dst$$Register,$dst$$Register);
  9806     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9807   %}
  9808   ins_pipe( ialu_reg_long );
  9809 %}
  9811 // Shift Left Long by 3
  9812 instruct shlL_eReg_3(eRegL dst, immI_3 cnt, eFlagsReg cr) %{
  9813   predicate(UseNewLongLShift);
  9814   match(Set dst (LShiftL dst cnt));
  9815   effect(KILL cr);
  9816   ins_cost(100);
  9817   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9818             "ADC    $dst.hi,$dst.hi\n\t" 
  9819             "ADD    $dst.lo,$dst.lo\n\t"
  9820             "ADC    $dst.hi,$dst.hi\n\t" 
  9821             "ADD    $dst.lo,$dst.lo\n\t"
  9822             "ADC    $dst.hi,$dst.hi" %}
  9823   ins_encode %{
  9824     __ addl($dst$$Register,$dst$$Register);
  9825     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9826     __ addl($dst$$Register,$dst$$Register);
  9827     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9828     __ addl($dst$$Register,$dst$$Register);
  9829     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9830   %}
  9831   ins_pipe( ialu_reg_long );
  9832 %}
  9834 // Shift Left Long by 1-31
  9835 instruct shlL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9836   match(Set dst (LShiftL dst cnt));
  9837   effect(KILL cr);
  9838   ins_cost(200);
  9839   format %{ "SHLD   $dst.hi,$dst.lo,$cnt\n\t"
  9840             "SHL    $dst.lo,$cnt" %}
  9841   opcode(0xC1, 0x4, 0xA4);  /* 0F/A4, then C1 /4 ib */
  9842   ins_encode( move_long_small_shift(dst,cnt) );
  9843   ins_pipe( ialu_reg_long );
  9844 %}
  9846 // Shift Left Long by 32-63
  9847 instruct shlL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9848   match(Set dst (LShiftL dst cnt));
  9849   effect(KILL cr);
  9850   ins_cost(300);
  9851   format %{ "MOV    $dst.hi,$dst.lo\n"
  9852           "\tSHL    $dst.hi,$cnt-32\n"
  9853           "\tXOR    $dst.lo,$dst.lo" %}
  9854   opcode(0xC1, 0x4);  /* C1 /4 ib */
  9855   ins_encode( move_long_big_shift_clr(dst,cnt) );
  9856   ins_pipe( ialu_reg_long );
  9857 %}
  9859 // Shift Left Long by variable
  9860 instruct salL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9861   match(Set dst (LShiftL dst shift));
  9862   effect(KILL cr);
  9863   ins_cost(500+200);
  9864   size(17);
  9865   format %{ "TEST   $shift,32\n\t"
  9866             "JEQ,s  small\n\t"
  9867             "MOV    $dst.hi,$dst.lo\n\t"
  9868             "XOR    $dst.lo,$dst.lo\n"
  9869     "small:\tSHLD   $dst.hi,$dst.lo,$shift\n\t"
  9870             "SHL    $dst.lo,$shift" %}
  9871   ins_encode( shift_left_long( dst, shift ) );
  9872   ins_pipe( pipe_slow );
  9873 %}
  9875 // Shift Right Long by 1-31
  9876 instruct shrL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9877   match(Set dst (URShiftL dst cnt));
  9878   effect(KILL cr);
  9879   ins_cost(200);
  9880   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
  9881             "SHR    $dst.hi,$cnt" %}
  9882   opcode(0xC1, 0x5, 0xAC);  /* 0F/AC, then C1 /5 ib */
  9883   ins_encode( move_long_small_shift(dst,cnt) );
  9884   ins_pipe( ialu_reg_long );
  9885 %}
  9887 // Shift Right Long by 32-63
  9888 instruct shrL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9889   match(Set dst (URShiftL dst cnt));
  9890   effect(KILL cr);
  9891   ins_cost(300);
  9892   format %{ "MOV    $dst.lo,$dst.hi\n"
  9893           "\tSHR    $dst.lo,$cnt-32\n"
  9894           "\tXOR    $dst.hi,$dst.hi" %}
  9895   opcode(0xC1, 0x5);  /* C1 /5 ib */
  9896   ins_encode( move_long_big_shift_clr(dst,cnt) );
  9897   ins_pipe( ialu_reg_long );
  9898 %}
  9900 // Shift Right Long by variable
  9901 instruct shrL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9902   match(Set dst (URShiftL dst shift));
  9903   effect(KILL cr);
  9904   ins_cost(600);
  9905   size(17);
  9906   format %{ "TEST   $shift,32\n\t"
  9907             "JEQ,s  small\n\t"
  9908             "MOV    $dst.lo,$dst.hi\n\t"
  9909             "XOR    $dst.hi,$dst.hi\n"
  9910     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
  9911             "SHR    $dst.hi,$shift" %}
  9912   ins_encode( shift_right_long( dst, shift ) );
  9913   ins_pipe( pipe_slow );
  9914 %}
  9916 // Shift Right Long by 1-31
  9917 instruct sarL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9918   match(Set dst (RShiftL dst cnt));
  9919   effect(KILL cr);
  9920   ins_cost(200);
  9921   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
  9922             "SAR    $dst.hi,$cnt" %}
  9923   opcode(0xC1, 0x7, 0xAC);  /* 0F/AC, then C1 /7 ib */
  9924   ins_encode( move_long_small_shift(dst,cnt) );
  9925   ins_pipe( ialu_reg_long );
  9926 %}
  9928 // Shift Right Long by 32-63
  9929 instruct sarL_eReg_32_63( eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9930   match(Set dst (RShiftL dst cnt));
  9931   effect(KILL cr);
  9932   ins_cost(300);
  9933   format %{ "MOV    $dst.lo,$dst.hi\n"
  9934           "\tSAR    $dst.lo,$cnt-32\n"
  9935           "\tSAR    $dst.hi,31" %}
  9936   opcode(0xC1, 0x7);  /* C1 /7 ib */
  9937   ins_encode( move_long_big_shift_sign(dst,cnt) );
  9938   ins_pipe( ialu_reg_long );
  9939 %}
  9941 // Shift Right arithmetic Long by variable
  9942 instruct sarL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9943   match(Set dst (RShiftL dst shift));
  9944   effect(KILL cr);
  9945   ins_cost(600);
  9946   size(18);
  9947   format %{ "TEST   $shift,32\n\t"
  9948             "JEQ,s  small\n\t"
  9949             "MOV    $dst.lo,$dst.hi\n\t"
  9950             "SAR    $dst.hi,31\n"
  9951     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
  9952             "SAR    $dst.hi,$shift" %}
  9953   ins_encode( shift_right_arith_long( dst, shift ) );
  9954   ins_pipe( pipe_slow );
  9955 %}
  9958 //----------Double Instructions------------------------------------------------
  9959 // Double Math
  9961 // Compare & branch
  9963 // P6 version of float compare, sets condition codes in EFLAGS
  9964 instruct cmpD_cc_P6(eFlagsRegU cr, regD src1, regD src2, eAXRegI rax) %{
  9965   predicate(VM_Version::supports_cmov() && UseSSE <=1);
  9966   match(Set cr (CmpD src1 src2));
  9967   effect(KILL rax);
  9968   ins_cost(150);
  9969   format %{ "FLD    $src1\n\t"
  9970             "FUCOMIP ST,$src2  // P6 instruction\n\t"
  9971             "JNP    exit\n\t"
  9972             "MOV    ah,1       // saw a NaN, set CF\n\t"
  9973             "SAHF\n"
  9974      "exit:\tNOP               // avoid branch to branch" %}
  9975   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
  9976   ins_encode( Push_Reg_D(src1),
  9977               OpcP, RegOpc(src2),
  9978               cmpF_P6_fixup );
  9979   ins_pipe( pipe_slow );
  9980 %}
  9982 instruct cmpD_cc_P6CF(eFlagsRegUCF cr, regD src1, regD src2) %{
  9983   predicate(VM_Version::supports_cmov() && UseSSE <=1);
  9984   match(Set cr (CmpD src1 src2));
  9985   ins_cost(150);
  9986   format %{ "FLD    $src1\n\t"
  9987             "FUCOMIP ST,$src2  // P6 instruction" %}
  9988   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
  9989   ins_encode( Push_Reg_D(src1),
  9990               OpcP, RegOpc(src2));
  9991   ins_pipe( pipe_slow );
  9992 %}
  9994 // Compare & branch
  9995 instruct cmpD_cc(eFlagsRegU cr, regD src1, regD src2, eAXRegI rax) %{
  9996   predicate(UseSSE<=1);
  9997   match(Set cr (CmpD src1 src2));
  9998   effect(KILL rax);
  9999   ins_cost(200);
 10000   format %{ "FLD    $src1\n\t"
 10001             "FCOMp  $src2\n\t"
 10002             "FNSTSW AX\n\t"
 10003             "TEST   AX,0x400\n\t"
 10004             "JZ,s   flags\n\t"
 10005             "MOV    AH,1\t# unordered treat as LT\n"
 10006     "flags:\tSAHF" %}
 10007   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
 10008   ins_encode( Push_Reg_D(src1),
 10009               OpcP, RegOpc(src2),
 10010               fpu_flags);
 10011   ins_pipe( pipe_slow );
 10012 %}
 10014 // Compare vs zero into -1,0,1
 10015 instruct cmpD_0(eRegI dst, regD src1, immD0 zero, eAXRegI rax, eFlagsReg cr) %{
 10016   predicate(UseSSE<=1);
 10017   match(Set dst (CmpD3 src1 zero));
 10018   effect(KILL cr, KILL rax);
 10019   ins_cost(280);
 10020   format %{ "FTSTD  $dst,$src1" %}
 10021   opcode(0xE4, 0xD9);
 10022   ins_encode( Push_Reg_D(src1),
 10023               OpcS, OpcP, PopFPU,
 10024               CmpF_Result(dst));
 10025   ins_pipe( pipe_slow );
 10026 %}
 10028 // Compare into -1,0,1
 10029 instruct cmpD_reg(eRegI dst, regD src1, regD src2, eAXRegI rax, eFlagsReg cr) %{
 10030   predicate(UseSSE<=1);
 10031   match(Set dst (CmpD3 src1 src2));
 10032   effect(KILL cr, KILL rax);
 10033   ins_cost(300);
 10034   format %{ "FCMPD  $dst,$src1,$src2" %}
 10035   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
 10036   ins_encode( Push_Reg_D(src1),
 10037               OpcP, RegOpc(src2),
 10038               CmpF_Result(dst));
 10039   ins_pipe( pipe_slow );
 10040 %}
 10042 // float compare and set condition codes in EFLAGS by XMM regs
 10043 instruct cmpXD_cc(eFlagsRegU cr, regXD dst, regXD src, eAXRegI rax) %{
 10044   predicate(UseSSE>=2);
 10045   match(Set cr (CmpD dst src));
 10046   effect(KILL rax);
 10047   ins_cost(125);
 10048   format %{ "COMISD $dst,$src\n"
 10049           "\tJNP    exit\n"
 10050           "\tMOV    ah,1       // saw a NaN, set CF\n"
 10051           "\tSAHF\n"
 10052      "exit:\tNOP               // avoid branch to branch" %}
 10053   opcode(0x66, 0x0F, 0x2F);
 10054   ins_encode(OpcP, OpcS, Opcode(tertiary), RegReg(dst, src), cmpF_P6_fixup);
 10055   ins_pipe( pipe_slow );
 10056 %}
 10058 instruct cmpXD_ccCF(eFlagsRegUCF cr, regXD dst, regXD src) %{
 10059   predicate(UseSSE>=2);
 10060   match(Set cr (CmpD dst src));
 10061   ins_cost(100);
 10062   format %{ "COMISD $dst,$src" %}
 10063   opcode(0x66, 0x0F, 0x2F);
 10064   ins_encode(OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
 10065   ins_pipe( pipe_slow );
 10066 %}
 10068 // float compare and set condition codes in EFLAGS by XMM regs
 10069 instruct cmpXD_ccmem(eFlagsRegU cr, regXD dst, memory src, eAXRegI rax) %{
 10070   predicate(UseSSE>=2);
 10071   match(Set cr (CmpD dst (LoadD src)));
 10072   effect(KILL rax);
 10073   ins_cost(145);
 10074   format %{ "COMISD $dst,$src\n"
 10075           "\tJNP    exit\n"
 10076           "\tMOV    ah,1       // saw a NaN, set CF\n"
 10077           "\tSAHF\n"
 10078      "exit:\tNOP               // avoid branch to branch" %}
 10079   opcode(0x66, 0x0F, 0x2F);
 10080   ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(dst, src), cmpF_P6_fixup);
 10081   ins_pipe( pipe_slow );
 10082 %}
 10084 instruct cmpXD_ccmemCF(eFlagsRegUCF cr, regXD dst, memory src) %{
 10085   predicate(UseSSE>=2);
 10086   match(Set cr (CmpD dst (LoadD src)));
 10087   ins_cost(100);
 10088   format %{ "COMISD $dst,$src" %}
 10089   opcode(0x66, 0x0F, 0x2F);
 10090   ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(dst, src));
 10091   ins_pipe( pipe_slow );
 10092 %}
 10094 // Compare into -1,0,1 in XMM
 10095 instruct cmpXD_reg(eRegI dst, regXD src1, regXD src2, eFlagsReg cr) %{
 10096   predicate(UseSSE>=2);
 10097   match(Set dst (CmpD3 src1 src2));
 10098   effect(KILL cr);
 10099   ins_cost(255);
 10100   format %{ "XOR    $dst,$dst\n"
 10101           "\tCOMISD $src1,$src2\n"
 10102           "\tJP,s   nan\n"
 10103           "\tJEQ,s  exit\n"
 10104           "\tJA,s   inc\n"
 10105       "nan:\tDEC    $dst\n"
 10106           "\tJMP,s  exit\n"
 10107       "inc:\tINC    $dst\n"
 10108       "exit:"
 10109                 %}
 10110   opcode(0x66, 0x0F, 0x2F);
 10111   ins_encode(Xor_Reg(dst), OpcP, OpcS, Opcode(tertiary), RegReg(src1, src2),
 10112              CmpX_Result(dst));
 10113   ins_pipe( pipe_slow );
 10114 %}
 10116 // Compare into -1,0,1 in XMM and memory
 10117 instruct cmpXD_regmem(eRegI dst, regXD src1, memory mem, eFlagsReg cr) %{
 10118   predicate(UseSSE>=2);
 10119   match(Set dst (CmpD3 src1 (LoadD mem)));
 10120   effect(KILL cr);
 10121   ins_cost(275);
 10122   format %{ "COMISD $src1,$mem\n"
 10123           "\tMOV    $dst,0\t\t# do not blow flags\n"
 10124           "\tJP,s   nan\n"
 10125           "\tJEQ,s  exit\n"
 10126           "\tJA,s   inc\n"
 10127       "nan:\tDEC    $dst\n"
 10128           "\tJMP,s  exit\n"
 10129       "inc:\tINC    $dst\n"
 10130       "exit:"
 10131                 %}
 10132   opcode(0x66, 0x0F, 0x2F);
 10133   ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(src1, mem),
 10134              LdImmI(dst,0x0), CmpX_Result(dst));
 10135   ins_pipe( pipe_slow );
 10136 %}
 10139 instruct subD_reg(regD dst, regD src) %{
 10140   predicate (UseSSE <=1);
 10141   match(Set dst (SubD dst src));
 10143   format %{ "FLD    $src\n\t"
 10144             "DSUBp  $dst,ST" %}
 10145   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
 10146   ins_cost(150);
 10147   ins_encode( Push_Reg_D(src),
 10148               OpcP, RegOpc(dst) );
 10149   ins_pipe( fpu_reg_reg );
 10150 %}
 10152 instruct subD_reg_round(stackSlotD dst, regD src1, regD src2) %{
 10153   predicate (UseSSE <=1);
 10154   match(Set dst (RoundDouble (SubD src1 src2)));
 10155   ins_cost(250);
 10157   format %{ "FLD    $src2\n\t"
 10158             "DSUB   ST,$src1\n\t"
 10159             "FSTP_D $dst\t# D-round" %}
 10160   opcode(0xD8, 0x5);
 10161   ins_encode( Push_Reg_D(src2),
 10162               OpcP, RegOpc(src1), Pop_Mem_D(dst) );
 10163   ins_pipe( fpu_mem_reg_reg );
 10164 %}
 10167 instruct subD_reg_mem(regD dst, memory src) %{
 10168   predicate (UseSSE <=1);
 10169   match(Set dst (SubD dst (LoadD src)));
 10170   ins_cost(150);
 10172   format %{ "FLD    $src\n\t"
 10173             "DSUBp  $dst,ST" %}
 10174   opcode(0xDE, 0x5, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
 10175   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
 10176               OpcP, RegOpc(dst) );
 10177   ins_pipe( fpu_reg_mem );
 10178 %}
 10180 instruct absD_reg(regDPR1 dst, regDPR1 src) %{
 10181   predicate (UseSSE<=1);
 10182   match(Set dst (AbsD src));
 10183   ins_cost(100);
 10184   format %{ "FABS" %}
 10185   opcode(0xE1, 0xD9);
 10186   ins_encode( OpcS, OpcP );
 10187   ins_pipe( fpu_reg_reg );
 10188 %}
 10190 instruct absXD_reg( regXD dst ) %{
 10191   predicate(UseSSE>=2);
 10192   match(Set dst (AbsD dst));
 10193   format %{ "ANDPD  $dst,[0x7FFFFFFFFFFFFFFF]\t# ABS D by sign masking" %}
 10194   ins_encode( AbsXD_encoding(dst));
 10195   ins_pipe( pipe_slow );
 10196 %}
 10198 instruct negD_reg(regDPR1 dst, regDPR1 src) %{
 10199   predicate(UseSSE<=1);
 10200   match(Set dst (NegD src));
 10201   ins_cost(100);
 10202   format %{ "FCHS" %}
 10203   opcode(0xE0, 0xD9);
 10204   ins_encode( OpcS, OpcP );
 10205   ins_pipe( fpu_reg_reg );
 10206 %}
 10208 instruct negXD_reg( regXD dst ) %{
 10209   predicate(UseSSE>=2);
 10210   match(Set dst (NegD dst));
 10211   format %{ "XORPD  $dst,[0x8000000000000000]\t# CHS D by sign flipping" %}
 10212   ins_encode %{
 10213      __ xorpd($dst$$XMMRegister,
 10214               ExternalAddress((address)double_signflip_pool));
 10215   %}
 10216   ins_pipe( pipe_slow );
 10217 %}
 10219 instruct addD_reg(regD dst, regD src) %{
 10220   predicate(UseSSE<=1);
 10221   match(Set dst (AddD dst src));
 10222   format %{ "FLD    $src\n\t"
 10223             "DADD   $dst,ST" %}
 10224   size(4);
 10225   ins_cost(150);
 10226   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
 10227   ins_encode( Push_Reg_D(src),
 10228               OpcP, RegOpc(dst) );
 10229   ins_pipe( fpu_reg_reg );
 10230 %}
 10233 instruct addD_reg_round(stackSlotD dst, regD src1, regD src2) %{
 10234   predicate(UseSSE<=1);
 10235   match(Set dst (RoundDouble (AddD src1 src2)));
 10236   ins_cost(250);
 10238   format %{ "FLD    $src2\n\t"
 10239             "DADD   ST,$src1\n\t"
 10240             "FSTP_D $dst\t# D-round" %}
 10241   opcode(0xD8, 0x0); /* D8 C0+i or D8 /0*/
 10242   ins_encode( Push_Reg_D(src2),
 10243               OpcP, RegOpc(src1), Pop_Mem_D(dst) );
 10244   ins_pipe( fpu_mem_reg_reg );
 10245 %}
 10248 instruct addD_reg_mem(regD dst, memory src) %{
 10249   predicate(UseSSE<=1);
 10250   match(Set dst (AddD dst (LoadD src)));
 10251   ins_cost(150);
 10253   format %{ "FLD    $src\n\t"
 10254             "DADDp  $dst,ST" %}
 10255   opcode(0xDE, 0x0, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
 10256   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
 10257               OpcP, RegOpc(dst) );
 10258   ins_pipe( fpu_reg_mem );
 10259 %}
 10261 // add-to-memory
 10262 instruct addD_mem_reg(memory dst, regD src) %{
 10263   predicate(UseSSE<=1);
 10264   match(Set dst (StoreD dst (RoundDouble (AddD (LoadD dst) src))));
 10265   ins_cost(150);
 10267   format %{ "FLD_D  $dst\n\t"
 10268             "DADD   ST,$src\n\t"
 10269             "FST_D  $dst" %}
 10270   opcode(0xDD, 0x0);
 10271   ins_encode( Opcode(0xDD), RMopc_Mem(0x00,dst),
 10272               Opcode(0xD8), RegOpc(src),
 10273               set_instruction_start,
 10274               Opcode(0xDD), RMopc_Mem(0x03,dst) );
 10275   ins_pipe( fpu_reg_mem );
 10276 %}
 10278 instruct addD_reg_imm1(regD dst, immD1 con) %{
 10279   predicate(UseSSE<=1);
 10280   match(Set dst (AddD dst con));
 10281   ins_cost(125);
 10282   format %{ "FLD1\n\t"
 10283             "DADDp  $dst,ST" %}
 10284   ins_encode %{
 10285     __ fld1();
 10286     __ faddp($dst$$reg);
 10287   %}
 10288   ins_pipe(fpu_reg);
 10289 %}
 10291 instruct addD_reg_imm(regD dst, immD con) %{
 10292   predicate(UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
 10293   match(Set dst (AddD dst con));
 10294   ins_cost(200);
 10295   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
 10296             "DADDp  $dst,ST" %}
 10297   ins_encode %{
 10298     __ fld_d($constantaddress($con));
 10299     __ faddp($dst$$reg);
 10300   %}
 10301   ins_pipe(fpu_reg_mem);
 10302 %}
 10304 instruct addD_reg_imm_round(stackSlotD dst, regD src, immD con) %{
 10305   predicate(UseSSE<=1 && _kids[0]->_kids[1]->_leaf->getd() != 0.0 && _kids[0]->_kids[1]->_leaf->getd() != 1.0 );
 10306   match(Set dst (RoundDouble (AddD src con)));
 10307   ins_cost(200);
 10308   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
 10309             "DADD   ST,$src\n\t"
 10310             "FSTP_D $dst\t# D-round" %}
 10311   ins_encode %{
 10312     __ fld_d($constantaddress($con));
 10313     __ fadd($src$$reg);
 10314     __ fstp_d(Address(rsp, $dst$$disp));
 10315   %}
 10316   ins_pipe(fpu_mem_reg_con);
 10317 %}
 10319 // Add two double precision floating point values in xmm
 10320 instruct addXD_reg(regXD dst, regXD src) %{
 10321   predicate(UseSSE>=2);
 10322   match(Set dst (AddD dst src));
 10323   format %{ "ADDSD  $dst,$src" %}
 10324   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), RegReg(dst, src));
 10325   ins_pipe( pipe_slow );
 10326 %}
 10328 instruct addXD_imm(regXD dst, immXD con) %{
 10329   predicate(UseSSE>=2);
 10330   match(Set dst (AddD dst con));
 10331   format %{ "ADDSD  $dst,[$constantaddress]\t# load from constant table: double=$con" %}
 10332   ins_encode %{
 10333     __ addsd($dst$$XMMRegister, $constantaddress($con));
 10334   %}
 10335   ins_pipe(pipe_slow);
 10336 %}
 10338 instruct addXD_mem(regXD dst, memory mem) %{
 10339   predicate(UseSSE>=2);
 10340   match(Set dst (AddD dst (LoadD mem)));
 10341   format %{ "ADDSD  $dst,$mem" %}
 10342   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), RegMem(dst,mem));
 10343   ins_pipe( pipe_slow );
 10344 %}
 10346 // Sub two double precision floating point values in xmm
 10347 instruct subXD_reg(regXD dst, regXD src) %{
 10348   predicate(UseSSE>=2);
 10349   match(Set dst (SubD dst src));
 10350   format %{ "SUBSD  $dst,$src" %}
 10351   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), RegReg(dst, src));
 10352   ins_pipe( pipe_slow );
 10353 %}
 10355 instruct subXD_imm(regXD dst, immXD con) %{
 10356   predicate(UseSSE>=2);
 10357   match(Set dst (SubD dst con));
 10358   format %{ "SUBSD  $dst,[$constantaddress]\t# load from constant table: double=$con" %}
 10359   ins_encode %{
 10360     __ subsd($dst$$XMMRegister, $constantaddress($con));
 10361   %}
 10362   ins_pipe(pipe_slow);
 10363 %}
 10365 instruct subXD_mem(regXD dst, memory mem) %{
 10366   predicate(UseSSE>=2);
 10367   match(Set dst (SubD dst (LoadD mem)));
 10368   format %{ "SUBSD  $dst,$mem" %}
 10369   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), RegMem(dst,mem));
 10370   ins_pipe( pipe_slow );
 10371 %}
 10373 // Mul two double precision floating point values in xmm
 10374 instruct mulXD_reg(regXD dst, regXD src) %{
 10375   predicate(UseSSE>=2);
 10376   match(Set dst (MulD dst src));
 10377   format %{ "MULSD  $dst,$src" %}
 10378   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), RegReg(dst, src));
 10379   ins_pipe( pipe_slow );
 10380 %}
 10382 instruct mulXD_imm(regXD dst, immXD con) %{
 10383   predicate(UseSSE>=2);
 10384   match(Set dst (MulD dst con));
 10385   format %{ "MULSD  $dst,[$constantaddress]\t# load from constant table: double=$con" %}
 10386   ins_encode %{
 10387     __ mulsd($dst$$XMMRegister, $constantaddress($con));
 10388   %}
 10389   ins_pipe(pipe_slow);
 10390 %}
 10392 instruct mulXD_mem(regXD dst, memory mem) %{
 10393   predicate(UseSSE>=2);
 10394   match(Set dst (MulD dst (LoadD mem)));
 10395   format %{ "MULSD  $dst,$mem" %}
 10396   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), RegMem(dst,mem));
 10397   ins_pipe( pipe_slow );
 10398 %}
 10400 // Div two double precision floating point values in xmm
 10401 instruct divXD_reg(regXD dst, regXD src) %{
 10402   predicate(UseSSE>=2);
 10403   match(Set dst (DivD dst src));
 10404   format %{ "DIVSD  $dst,$src" %}
 10405   opcode(0xF2, 0x0F, 0x5E);
 10406   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), RegReg(dst, src));
 10407   ins_pipe( pipe_slow );
 10408 %}
 10410 instruct divXD_imm(regXD dst, immXD con) %{
 10411   predicate(UseSSE>=2);
 10412   match(Set dst (DivD dst con));
 10413   format %{ "DIVSD  $dst,[$constantaddress]\t# load from constant table: double=$con" %}
 10414   ins_encode %{
 10415     __ divsd($dst$$XMMRegister, $constantaddress($con));
 10416   %}
 10417   ins_pipe(pipe_slow);
 10418 %}
 10420 instruct divXD_mem(regXD dst, memory mem) %{
 10421   predicate(UseSSE>=2);
 10422   match(Set dst (DivD dst (LoadD mem)));
 10423   format %{ "DIVSD  $dst,$mem" %}
 10424   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), RegMem(dst,mem));
 10425   ins_pipe( pipe_slow );
 10426 %}
 10429 instruct mulD_reg(regD dst, regD src) %{
 10430   predicate(UseSSE<=1);
 10431   match(Set dst (MulD dst src));
 10432   format %{ "FLD    $src\n\t"
 10433             "DMULp  $dst,ST" %}
 10434   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
 10435   ins_cost(150);
 10436   ins_encode( Push_Reg_D(src),
 10437               OpcP, RegOpc(dst) );
 10438   ins_pipe( fpu_reg_reg );
 10439 %}
 10441 // Strict FP instruction biases argument before multiply then
 10442 // biases result to avoid double rounding of subnormals.
 10443 //
 10444 // scale arg1 by multiplying arg1 by 2^(-15360)
 10445 // load arg2
 10446 // multiply scaled arg1 by arg2
 10447 // rescale product by 2^(15360)
 10448 //
 10449 instruct strictfp_mulD_reg(regDPR1 dst, regnotDPR1 src) %{
 10450   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
 10451   match(Set dst (MulD dst src));
 10452   ins_cost(1);   // Select this instruction for all strict FP double multiplies
 10454   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
 10455             "DMULp  $dst,ST\n\t"
 10456             "FLD    $src\n\t"
 10457             "DMULp  $dst,ST\n\t"
 10458             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
 10459             "DMULp  $dst,ST\n\t" %}
 10460   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
 10461   ins_encode( strictfp_bias1(dst),
 10462               Push_Reg_D(src),
 10463               OpcP, RegOpc(dst),
 10464               strictfp_bias2(dst) );
 10465   ins_pipe( fpu_reg_reg );
 10466 %}
 10468 instruct mulD_reg_imm(regD dst, immD con) %{
 10469   predicate( UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
 10470   match(Set dst (MulD dst con));
 10471   ins_cost(200);
 10472   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
 10473             "DMULp  $dst,ST" %}
 10474   ins_encode %{
 10475     __ fld_d($constantaddress($con));
 10476     __ fmulp($dst$$reg);
 10477   %}
 10478   ins_pipe(fpu_reg_mem);
 10479 %}
 10482 instruct mulD_reg_mem(regD dst, memory src) %{
 10483   predicate( UseSSE<=1 );
 10484   match(Set dst (MulD dst (LoadD src)));
 10485   ins_cost(200);
 10486   format %{ "FLD_D  $src\n\t"
 10487             "DMULp  $dst,ST" %}
 10488   opcode(0xDE, 0x1, 0xDD); /* DE C8+i or DE /1*/  /* LoadD  DD /0 */
 10489   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
 10490               OpcP, RegOpc(dst) );
 10491   ins_pipe( fpu_reg_mem );
 10492 %}
 10494 //
 10495 // Cisc-alternate to reg-reg multiply
 10496 instruct mulD_reg_mem_cisc(regD dst, regD src, memory mem) %{
 10497   predicate( UseSSE<=1 );
 10498   match(Set dst (MulD src (LoadD mem)));
 10499   ins_cost(250);
 10500   format %{ "FLD_D  $mem\n\t"
 10501             "DMUL   ST,$src\n\t"
 10502             "FSTP_D $dst" %}
 10503   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadD D9 /0 */
 10504   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem),
 10505               OpcReg_F(src),
 10506               Pop_Reg_D(dst) );
 10507   ins_pipe( fpu_reg_reg_mem );
 10508 %}
 10511 // MACRO3 -- addD a mulD
 10512 // This instruction is a '2-address' instruction in that the result goes
 10513 // back to src2.  This eliminates a move from the macro; possibly the
 10514 // register allocator will have to add it back (and maybe not).
 10515 instruct addD_mulD_reg(regD src2, regD src1, regD src0) %{
 10516   predicate( UseSSE<=1 );
 10517   match(Set src2 (AddD (MulD src0 src1) src2));
 10518   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
 10519             "DMUL   ST,$src1\n\t"
 10520             "DADDp  $src2,ST" %}
 10521   ins_cost(250);
 10522   opcode(0xDD); /* LoadD DD /0 */
 10523   ins_encode( Push_Reg_F(src0),
 10524               FMul_ST_reg(src1),
 10525               FAddP_reg_ST(src2) );
 10526   ins_pipe( fpu_reg_reg_reg );
 10527 %}
 10530 // MACRO3 -- subD a mulD
 10531 instruct subD_mulD_reg(regD src2, regD src1, regD src0) %{
 10532   predicate( UseSSE<=1 );
 10533   match(Set src2 (SubD (MulD src0 src1) src2));
 10534   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
 10535             "DMUL   ST,$src1\n\t"
 10536             "DSUBRp $src2,ST" %}
 10537   ins_cost(250);
 10538   ins_encode( Push_Reg_F(src0),
 10539               FMul_ST_reg(src1),
 10540               Opcode(0xDE), Opc_plus(0xE0,src2));
 10541   ins_pipe( fpu_reg_reg_reg );
 10542 %}
 10545 instruct divD_reg(regD dst, regD src) %{
 10546   predicate( UseSSE<=1 );
 10547   match(Set dst (DivD dst src));
 10549   format %{ "FLD    $src\n\t"
 10550             "FDIVp  $dst,ST" %}
 10551   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 10552   ins_cost(150);
 10553   ins_encode( Push_Reg_D(src),
 10554               OpcP, RegOpc(dst) );
 10555   ins_pipe( fpu_reg_reg );
 10556 %}
 10558 // Strict FP instruction biases argument before division then
 10559 // biases result, to avoid double rounding of subnormals.
 10560 //
 10561 // scale dividend by multiplying dividend by 2^(-15360)
 10562 // load divisor
 10563 // divide scaled dividend by divisor
 10564 // rescale quotient by 2^(15360)
 10565 //
 10566 instruct strictfp_divD_reg(regDPR1 dst, regnotDPR1 src) %{
 10567   predicate (UseSSE<=1);
 10568   match(Set dst (DivD dst src));
 10569   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
 10570   ins_cost(01);
 10572   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
 10573             "DMULp  $dst,ST\n\t"
 10574             "FLD    $src\n\t"
 10575             "FDIVp  $dst,ST\n\t"
 10576             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
 10577             "DMULp  $dst,ST\n\t" %}
 10578   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 10579   ins_encode( strictfp_bias1(dst),
 10580               Push_Reg_D(src),
 10581               OpcP, RegOpc(dst),
 10582               strictfp_bias2(dst) );
 10583   ins_pipe( fpu_reg_reg );
 10584 %}
 10586 instruct divD_reg_round(stackSlotD dst, regD src1, regD src2) %{
 10587   predicate( UseSSE<=1 && !(Compile::current()->has_method() && Compile::current()->method()->is_strict()) );
 10588   match(Set dst (RoundDouble (DivD src1 src2)));
 10590   format %{ "FLD    $src1\n\t"
 10591             "FDIV   ST,$src2\n\t"
 10592             "FSTP_D $dst\t# D-round" %}
 10593   opcode(0xD8, 0x6); /* D8 F0+i or D8 /6 */
 10594   ins_encode( Push_Reg_D(src1),
 10595               OpcP, RegOpc(src2), Pop_Mem_D(dst) );
 10596   ins_pipe( fpu_mem_reg_reg );
 10597 %}
 10600 instruct modD_reg(regD dst, regD src, eAXRegI rax, eFlagsReg cr) %{
 10601   predicate(UseSSE<=1);
 10602   match(Set dst (ModD dst src));
 10603   effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
 10605   format %{ "DMOD   $dst,$src" %}
 10606   ins_cost(250);
 10607   ins_encode(Push_Reg_Mod_D(dst, src),
 10608               emitModD(),
 10609               Push_Result_Mod_D(src),
 10610               Pop_Reg_D(dst));
 10611   ins_pipe( pipe_slow );
 10612 %}
 10614 instruct modXD_reg(regXD dst, regXD src0, regXD src1, eAXRegI rax, eFlagsReg cr) %{
 10615   predicate(UseSSE>=2);
 10616   match(Set dst (ModD src0 src1));
 10617   effect(KILL rax, KILL cr);
 10619   format %{ "SUB    ESP,8\t # DMOD\n"
 10620           "\tMOVSD  [ESP+0],$src1\n"
 10621           "\tFLD_D  [ESP+0]\n"
 10622           "\tMOVSD  [ESP+0],$src0\n"
 10623           "\tFLD_D  [ESP+0]\n"
 10624      "loop:\tFPREM\n"
 10625           "\tFWAIT\n"
 10626           "\tFNSTSW AX\n"
 10627           "\tSAHF\n"
 10628           "\tJP     loop\n"
 10629           "\tFSTP_D [ESP+0]\n"
 10630           "\tMOVSD  $dst,[ESP+0]\n"
 10631           "\tADD    ESP,8\n"
 10632           "\tFSTP   ST0\t # Restore FPU Stack"
 10633     %}
 10634   ins_cost(250);
 10635   ins_encode( Push_ModD_encoding(src0, src1), emitModD(), Push_ResultXD(dst), PopFPU);
 10636   ins_pipe( pipe_slow );
 10637 %}
 10639 instruct sinD_reg(regDPR1 dst, regDPR1 src) %{
 10640   predicate (UseSSE<=1);
 10641   match(Set dst (SinD src));
 10642   ins_cost(1800);
 10643   format %{ "DSIN   $dst" %}
 10644   opcode(0xD9, 0xFE);
 10645   ins_encode( OpcP, OpcS );
 10646   ins_pipe( pipe_slow );
 10647 %}
 10649 instruct sinXD_reg(regXD dst, eFlagsReg cr) %{
 10650   predicate (UseSSE>=2);
 10651   match(Set dst (SinD dst));
 10652   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
 10653   ins_cost(1800);
 10654   format %{ "DSIN   $dst" %}
 10655   opcode(0xD9, 0xFE);
 10656   ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
 10657   ins_pipe( pipe_slow );
 10658 %}
 10660 instruct cosD_reg(regDPR1 dst, regDPR1 src) %{
 10661   predicate (UseSSE<=1);
 10662   match(Set dst (CosD src));
 10663   ins_cost(1800);
 10664   format %{ "DCOS   $dst" %}
 10665   opcode(0xD9, 0xFF);
 10666   ins_encode( OpcP, OpcS );
 10667   ins_pipe( pipe_slow );
 10668 %}
 10670 instruct cosXD_reg(regXD dst, eFlagsReg cr) %{
 10671   predicate (UseSSE>=2);
 10672   match(Set dst (CosD dst));
 10673   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
 10674   ins_cost(1800);
 10675   format %{ "DCOS   $dst" %}
 10676   opcode(0xD9, 0xFF);
 10677   ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
 10678   ins_pipe( pipe_slow );
 10679 %}
 10681 instruct tanD_reg(regDPR1 dst, regDPR1 src) %{
 10682   predicate (UseSSE<=1);
 10683   match(Set dst(TanD src));
 10684   format %{ "DTAN   $dst" %}
 10685   ins_encode( Opcode(0xD9), Opcode(0xF2),    // fptan
 10686               Opcode(0xDD), Opcode(0xD8));   // fstp st
 10687   ins_pipe( pipe_slow );
 10688 %}
 10690 instruct tanXD_reg(regXD dst, eFlagsReg cr) %{
 10691   predicate (UseSSE>=2);
 10692   match(Set dst(TanD dst));
 10693   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
 10694   format %{ "DTAN   $dst" %}
 10695   ins_encode( Push_SrcXD(dst),
 10696               Opcode(0xD9), Opcode(0xF2),    // fptan
 10697               Opcode(0xDD), Opcode(0xD8),   // fstp st
 10698               Push_ResultXD(dst) );
 10699   ins_pipe( pipe_slow );
 10700 %}
 10702 instruct atanD_reg(regD dst, regD src) %{
 10703   predicate (UseSSE<=1);
 10704   match(Set dst(AtanD dst src));
 10705   format %{ "DATA   $dst,$src" %}
 10706   opcode(0xD9, 0xF3);
 10707   ins_encode( Push_Reg_D(src),
 10708               OpcP, OpcS, RegOpc(dst) );
 10709   ins_pipe( pipe_slow );
 10710 %}
 10712 instruct atanXD_reg(regXD dst, regXD src, eFlagsReg cr) %{
 10713   predicate (UseSSE>=2);
 10714   match(Set dst(AtanD dst src));
 10715   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
 10716   format %{ "DATA   $dst,$src" %}
 10717   opcode(0xD9, 0xF3);
 10718   ins_encode( Push_SrcXD(src),
 10719               OpcP, OpcS, Push_ResultXD(dst) );
 10720   ins_pipe( pipe_slow );
 10721 %}
 10723 instruct sqrtD_reg(regD dst, regD src) %{
 10724   predicate (UseSSE<=1);
 10725   match(Set dst (SqrtD src));
 10726   format %{ "DSQRT  $dst,$src" %}
 10727   opcode(0xFA, 0xD9);
 10728   ins_encode( Push_Reg_D(src),
 10729               OpcS, OpcP, Pop_Reg_D(dst) );
 10730   ins_pipe( pipe_slow );
 10731 %}
 10733 instruct powD_reg(regD X, regDPR1 Y, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
 10734   predicate (UseSSE<=1);
 10735   match(Set Y (PowD X Y));  // Raise X to the Yth power
 10736   effect(KILL rax, KILL rbx, KILL rcx);
 10737   format %{ "SUB    ESP,8\t\t# Fast-path POW encoding\n\t"
 10738             "FLD_D  $X\n\t"
 10739             "FYL2X  \t\t\t# Q=Y*ln2(X)\n\t"
 10741             "FDUP   \t\t\t# Q Q\n\t"
 10742             "FRNDINT\t\t\t# int(Q) Q\n\t"
 10743             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
 10744             "FISTP  dword [ESP]\n\t"
 10745             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
 10746             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
 10747             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
 10748             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
 10749             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
 10750             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
 10751             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
 10752             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
 10753             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
 10754             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
 10755             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
 10756             "MOV    [ESP+0],0\n\t"
 10757             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
 10759             "ADD    ESP,8"
 10760              %}
 10761   ins_encode( push_stack_temp_qword,
 10762               Push_Reg_D(X),
 10763               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10764               pow_exp_core_encoding,
 10765               pop_stack_temp_qword);
 10766   ins_pipe( pipe_slow );
 10767 %}
 10769 instruct powXD_reg(regXD dst, regXD src0, regXD src1, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx ) %{
 10770   predicate (UseSSE>=2);
 10771   match(Set dst (PowD src0 src1));  // Raise src0 to the src1'th power
 10772   effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx );
 10773   format %{ "SUB    ESP,8\t\t# Fast-path POW encoding\n\t"
 10774             "MOVSD  [ESP],$src1\n\t"
 10775             "FLD    FPR1,$src1\n\t"
 10776             "MOVSD  [ESP],$src0\n\t"
 10777             "FLD    FPR1,$src0\n\t"
 10778             "FYL2X  \t\t\t# Q=Y*ln2(X)\n\t"
 10780             "FDUP   \t\t\t# Q Q\n\t"
 10781             "FRNDINT\t\t\t# int(Q) Q\n\t"
 10782             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
 10783             "FISTP  dword [ESP]\n\t"
 10784             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
 10785             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
 10786             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
 10787             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
 10788             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
 10789             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
 10790             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
 10791             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
 10792             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
 10793             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
 10794             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
 10795             "MOV    [ESP+0],0\n\t"
 10796             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
 10798             "FST_D  [ESP]\n\t"
 10799             "MOVSD  $dst,[ESP]\n\t"
 10800             "ADD    ESP,8"
 10801              %}
 10802   ins_encode( push_stack_temp_qword,
 10803               push_xmm_to_fpr1(src1),
 10804               push_xmm_to_fpr1(src0),
 10805               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10806               pow_exp_core_encoding,
 10807               Push_ResultXD(dst) );
 10808   ins_pipe( pipe_slow );
 10809 %}
 10812 instruct expD_reg(regDPR1 dpr1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
 10813   predicate (UseSSE<=1);
 10814   match(Set dpr1 (ExpD dpr1));
 10815   effect(KILL rax, KILL rbx, KILL rcx);
 10816   format %{ "SUB    ESP,8\t\t# Fast-path EXP encoding"
 10817             "FLDL2E \t\t\t# Ld log2(e) X\n\t"
 10818             "FMULP  \t\t\t# Q=X*log2(e)\n\t"
 10820             "FDUP   \t\t\t# Q Q\n\t"
 10821             "FRNDINT\t\t\t# int(Q) Q\n\t"
 10822             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
 10823             "FISTP  dword [ESP]\n\t"
 10824             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
 10825             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
 10826             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
 10827             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
 10828             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
 10829             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
 10830             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
 10831             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
 10832             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
 10833             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
 10834             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
 10835             "MOV    [ESP+0],0\n\t"
 10836             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
 10838             "ADD    ESP,8"
 10839              %}
 10840   ins_encode( push_stack_temp_qword,
 10841               Opcode(0xD9), Opcode(0xEA),   // fldl2e
 10842               Opcode(0xDE), Opcode(0xC9),   // fmulp
 10843               pow_exp_core_encoding,
 10844               pop_stack_temp_qword);
 10845   ins_pipe( pipe_slow );
 10846 %}
 10848 instruct expXD_reg(regXD dst, regXD src, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
 10849   predicate (UseSSE>=2);
 10850   match(Set dst (ExpD src));
 10851   effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx);
 10852   format %{ "SUB    ESP,8\t\t# Fast-path EXP encoding\n\t"
 10853             "MOVSD  [ESP],$src\n\t"
 10854             "FLDL2E \t\t\t# Ld log2(e) X\n\t"
 10855             "FMULP  \t\t\t# Q=X*log2(e) X\n\t"
 10857             "FDUP   \t\t\t# Q Q\n\t"
 10858             "FRNDINT\t\t\t# int(Q) Q\n\t"
 10859             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
 10860             "FISTP  dword [ESP]\n\t"
 10861             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
 10862             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
 10863             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
 10864             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
 10865             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
 10866             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
 10867             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
 10868             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
 10869             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
 10870             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
 10871             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
 10872             "MOV    [ESP+0],0\n\t"
 10873             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
 10875             "FST_D  [ESP]\n\t"
 10876             "MOVSD  $dst,[ESP]\n\t"
 10877             "ADD    ESP,8"
 10878              %}
 10879   ins_encode( Push_SrcXD(src),
 10880               Opcode(0xD9), Opcode(0xEA),   // fldl2e
 10881               Opcode(0xDE), Opcode(0xC9),   // fmulp
 10882               pow_exp_core_encoding,
 10883               Push_ResultXD(dst) );
 10884   ins_pipe( pipe_slow );
 10885 %}
 10889 instruct log10D_reg(regDPR1 dst, regDPR1 src) %{
 10890   predicate (UseSSE<=1);
 10891   // The source Double operand on FPU stack
 10892   match(Set dst (Log10D src));
 10893   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
 10894   // fxch         ; swap ST(0) with ST(1)
 10895   // fyl2x        ; compute log_10(2) * log_2(x)
 10896   format %{ "FLDLG2 \t\t\t#Log10\n\t"
 10897             "FXCH   \n\t"
 10898             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
 10899          %}
 10900   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
 10901               Opcode(0xD9), Opcode(0xC9),   // fxch
 10902               Opcode(0xD9), Opcode(0xF1));  // fyl2x
 10904   ins_pipe( pipe_slow );
 10905 %}
 10907 instruct log10XD_reg(regXD dst, regXD src, eFlagsReg cr) %{
 10908   predicate (UseSSE>=2);
 10909   effect(KILL cr);
 10910   match(Set dst (Log10D src));
 10911   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
 10912   // fyl2x        ; compute log_10(2) * log_2(x)
 10913   format %{ "FLDLG2 \t\t\t#Log10\n\t"
 10914             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
 10915          %}
 10916   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
 10917               Push_SrcXD(src),
 10918               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10919               Push_ResultXD(dst));
 10921   ins_pipe( pipe_slow );
 10922 %}
 10924 instruct logD_reg(regDPR1 dst, regDPR1 src) %{
 10925   predicate (UseSSE<=1);
 10926   // The source Double operand on FPU stack
 10927   match(Set dst (LogD src));
 10928   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
 10929   // fxch         ; swap ST(0) with ST(1)
 10930   // fyl2x        ; compute log_e(2) * log_2(x)
 10931   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
 10932             "FXCH   \n\t"
 10933             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
 10934          %}
 10935   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
 10936               Opcode(0xD9), Opcode(0xC9),   // fxch
 10937               Opcode(0xD9), Opcode(0xF1));  // fyl2x
 10939   ins_pipe( pipe_slow );
 10940 %}
 10942 instruct logXD_reg(regXD dst, regXD src, eFlagsReg cr) %{
 10943   predicate (UseSSE>=2);
 10944   effect(KILL cr);
 10945   // The source and result Double operands in XMM registers
 10946   match(Set dst (LogD src));
 10947   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
 10948   // fyl2x        ; compute log_e(2) * log_2(x)
 10949   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
 10950             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
 10951          %}
 10952   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
 10953               Push_SrcXD(src),
 10954               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10955               Push_ResultXD(dst));
 10956   ins_pipe( pipe_slow );
 10957 %}
 10959 //-------------Float Instructions-------------------------------
 10960 // Float Math
 10962 // Code for float compare:
 10963 //     fcompp();
 10964 //     fwait(); fnstsw_ax();
 10965 //     sahf();
 10966 //     movl(dst, unordered_result);
 10967 //     jcc(Assembler::parity, exit);
 10968 //     movl(dst, less_result);
 10969 //     jcc(Assembler::below, exit);
 10970 //     movl(dst, equal_result);
 10971 //     jcc(Assembler::equal, exit);
 10972 //     movl(dst, greater_result);
 10973 //   exit:
 10975 // P6 version of float compare, sets condition codes in EFLAGS
 10976 instruct cmpF_cc_P6(eFlagsRegU cr, regF src1, regF src2, eAXRegI rax) %{
 10977   predicate(VM_Version::supports_cmov() && UseSSE == 0);
 10978   match(Set cr (CmpF src1 src2));
 10979   effect(KILL rax);
 10980   ins_cost(150);
 10981   format %{ "FLD    $src1\n\t"
 10982             "FUCOMIP ST,$src2  // P6 instruction\n\t"
 10983             "JNP    exit\n\t"
 10984             "MOV    ah,1       // saw a NaN, set CF (treat as LT)\n\t"
 10985             "SAHF\n"
 10986      "exit:\tNOP               // avoid branch to branch" %}
 10987   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
 10988   ins_encode( Push_Reg_D(src1),
 10989               OpcP, RegOpc(src2),
 10990               cmpF_P6_fixup );
 10991   ins_pipe( pipe_slow );
 10992 %}
 10994 instruct cmpF_cc_P6CF(eFlagsRegUCF cr, regF src1, regF src2) %{
 10995   predicate(VM_Version::supports_cmov() && UseSSE == 0);
 10996   match(Set cr (CmpF src1 src2));
 10997   ins_cost(100);
 10998   format %{ "FLD    $src1\n\t"
 10999             "FUCOMIP ST,$src2  // P6 instruction" %}
 11000   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
 11001   ins_encode( Push_Reg_D(src1),
 11002               OpcP, RegOpc(src2));
 11003   ins_pipe( pipe_slow );
 11004 %}
 11007 // Compare & branch
 11008 instruct cmpF_cc(eFlagsRegU cr, regF src1, regF src2, eAXRegI rax) %{
 11009   predicate(UseSSE == 0);
 11010   match(Set cr (CmpF src1 src2));
 11011   effect(KILL rax);
 11012   ins_cost(200);
 11013   format %{ "FLD    $src1\n\t"
 11014             "FCOMp  $src2\n\t"
 11015             "FNSTSW AX\n\t"
 11016             "TEST   AX,0x400\n\t"
 11017             "JZ,s   flags\n\t"
 11018             "MOV    AH,1\t# unordered treat as LT\n"
 11019     "flags:\tSAHF" %}
 11020   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
 11021   ins_encode( Push_Reg_D(src1),
 11022               OpcP, RegOpc(src2),
 11023               fpu_flags);
 11024   ins_pipe( pipe_slow );
 11025 %}
 11027 // Compare vs zero into -1,0,1
 11028 instruct cmpF_0(eRegI dst, regF src1, immF0 zero, eAXRegI rax, eFlagsReg cr) %{
 11029   predicate(UseSSE == 0);
 11030   match(Set dst (CmpF3 src1 zero));
 11031   effect(KILL cr, KILL rax);
 11032   ins_cost(280);
 11033   format %{ "FTSTF  $dst,$src1" %}
 11034   opcode(0xE4, 0xD9);
 11035   ins_encode( Push_Reg_D(src1),
 11036               OpcS, OpcP, PopFPU,
 11037               CmpF_Result(dst));
 11038   ins_pipe( pipe_slow );
 11039 %}
 11041 // Compare into -1,0,1
 11042 instruct cmpF_reg(eRegI dst, regF src1, regF src2, eAXRegI rax, eFlagsReg cr) %{
 11043   predicate(UseSSE == 0);
 11044   match(Set dst (CmpF3 src1 src2));
 11045   effect(KILL cr, KILL rax);
 11046   ins_cost(300);
 11047   format %{ "FCMPF  $dst,$src1,$src2" %}
 11048   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
 11049   ins_encode( Push_Reg_D(src1),
 11050               OpcP, RegOpc(src2),
 11051               CmpF_Result(dst));
 11052   ins_pipe( pipe_slow );
 11053 %}
 11055 // float compare and set condition codes in EFLAGS by XMM regs
 11056 instruct cmpX_cc(eFlagsRegU cr, regX dst, regX src, eAXRegI rax) %{
 11057   predicate(UseSSE>=1);
 11058   match(Set cr (CmpF dst src));
 11059   effect(KILL rax);
 11060   ins_cost(145);
 11061   format %{ "COMISS $dst,$src\n"
 11062           "\tJNP    exit\n"
 11063           "\tMOV    ah,1       // saw a NaN, set CF\n"
 11064           "\tSAHF\n"
 11065      "exit:\tNOP               // avoid branch to branch" %}
 11066   opcode(0x0F, 0x2F);
 11067   ins_encode(OpcP, OpcS, RegReg(dst, src), cmpF_P6_fixup);
 11068   ins_pipe( pipe_slow );
 11069 %}
 11071 instruct cmpX_ccCF(eFlagsRegUCF cr, regX dst, regX src) %{
 11072   predicate(UseSSE>=1);
 11073   match(Set cr (CmpF dst src));
 11074   ins_cost(100);
 11075   format %{ "COMISS $dst,$src" %}
 11076   opcode(0x0F, 0x2F);
 11077   ins_encode(OpcP, OpcS, RegReg(dst, src));
 11078   ins_pipe( pipe_slow );
 11079 %}
 11081 // float compare and set condition codes in EFLAGS by XMM regs
 11082 instruct cmpX_ccmem(eFlagsRegU cr, regX dst, memory src, eAXRegI rax) %{
 11083   predicate(UseSSE>=1);
 11084   match(Set cr (CmpF dst (LoadF src)));
 11085   effect(KILL rax);
 11086   ins_cost(165);
 11087   format %{ "COMISS $dst,$src\n"
 11088           "\tJNP    exit\n"
 11089           "\tMOV    ah,1       // saw a NaN, set CF\n"
 11090           "\tSAHF\n"
 11091      "exit:\tNOP               // avoid branch to branch" %}
 11092   opcode(0x0F, 0x2F);
 11093   ins_encode(OpcP, OpcS, RegMem(dst, src), cmpF_P6_fixup);
 11094   ins_pipe( pipe_slow );
 11095 %}
 11097 instruct cmpX_ccmemCF(eFlagsRegUCF cr, regX dst, memory src) %{
 11098   predicate(UseSSE>=1);
 11099   match(Set cr (CmpF dst (LoadF src)));
 11100   ins_cost(100);
 11101   format %{ "COMISS $dst,$src" %}
 11102   opcode(0x0F, 0x2F);
 11103   ins_encode(OpcP, OpcS, RegMem(dst, src));
 11104   ins_pipe( pipe_slow );
 11105 %}
 11107 // Compare into -1,0,1 in XMM
 11108 instruct cmpX_reg(eRegI dst, regX src1, regX src2, eFlagsReg cr) %{
 11109   predicate(UseSSE>=1);
 11110   match(Set dst (CmpF3 src1 src2));
 11111   effect(KILL cr);
 11112   ins_cost(255);
 11113   format %{ "XOR    $dst,$dst\n"
 11114           "\tCOMISS $src1,$src2\n"
 11115           "\tJP,s   nan\n"
 11116           "\tJEQ,s  exit\n"
 11117           "\tJA,s   inc\n"
 11118       "nan:\tDEC    $dst\n"
 11119           "\tJMP,s  exit\n"
 11120       "inc:\tINC    $dst\n"
 11121       "exit:"
 11122                 %}
 11123   opcode(0x0F, 0x2F);
 11124   ins_encode(Xor_Reg(dst), OpcP, OpcS, RegReg(src1, src2), CmpX_Result(dst));
 11125   ins_pipe( pipe_slow );
 11126 %}
 11128 // Compare into -1,0,1 in XMM and memory
 11129 instruct cmpX_regmem(eRegI dst, regX src1, memory mem, eFlagsReg cr) %{
 11130   predicate(UseSSE>=1);
 11131   match(Set dst (CmpF3 src1 (LoadF mem)));
 11132   effect(KILL cr);
 11133   ins_cost(275);
 11134   format %{ "COMISS $src1,$mem\n"
 11135           "\tMOV    $dst,0\t\t# do not blow flags\n"
 11136           "\tJP,s   nan\n"
 11137           "\tJEQ,s  exit\n"
 11138           "\tJA,s   inc\n"
 11139       "nan:\tDEC    $dst\n"
 11140           "\tJMP,s  exit\n"
 11141       "inc:\tINC    $dst\n"
 11142       "exit:"
 11143                 %}
 11144   opcode(0x0F, 0x2F);
 11145   ins_encode(OpcP, OpcS, RegMem(src1, mem), LdImmI(dst,0x0), CmpX_Result(dst));
 11146   ins_pipe( pipe_slow );
 11147 %}
 11149 // Spill to obtain 24-bit precision
 11150 instruct subF24_reg(stackSlotF dst, regF src1, regF src2) %{
 11151   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11152   match(Set dst (SubF src1 src2));
 11154   format %{ "FSUB   $dst,$src1 - $src2" %}
 11155   opcode(0xD8, 0x4); /* D8 E0+i or D8 /4 mod==0x3 ;; result in TOS */
 11156   ins_encode( Push_Reg_F(src1),
 11157               OpcReg_F(src2),
 11158               Pop_Mem_F(dst) );
 11159   ins_pipe( fpu_mem_reg_reg );
 11160 %}
 11161 //
 11162 // This instruction does not round to 24-bits
 11163 instruct subF_reg(regF dst, regF src) %{
 11164   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11165   match(Set dst (SubF dst src));
 11167   format %{ "FSUB   $dst,$src" %}
 11168   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
 11169   ins_encode( Push_Reg_F(src),
 11170               OpcP, RegOpc(dst) );
 11171   ins_pipe( fpu_reg_reg );
 11172 %}
 11174 // Spill to obtain 24-bit precision
 11175 instruct addF24_reg(stackSlotF dst, regF src1, regF src2) %{
 11176   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11177   match(Set dst (AddF src1 src2));
 11179   format %{ "FADD   $dst,$src1,$src2" %}
 11180   opcode(0xD8, 0x0); /* D8 C0+i */
 11181   ins_encode( Push_Reg_F(src2),
 11182               OpcReg_F(src1),
 11183               Pop_Mem_F(dst) );
 11184   ins_pipe( fpu_mem_reg_reg );
 11185 %}
 11186 //
 11187 // This instruction does not round to 24-bits
 11188 instruct addF_reg(regF dst, regF src) %{
 11189   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11190   match(Set dst (AddF dst src));
 11192   format %{ "FLD    $src\n\t"
 11193             "FADDp  $dst,ST" %}
 11194   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
 11195   ins_encode( Push_Reg_F(src),
 11196               OpcP, RegOpc(dst) );
 11197   ins_pipe( fpu_reg_reg );
 11198 %}
 11200 // Add two single precision floating point values in xmm
 11201 instruct addX_reg(regX dst, regX src) %{
 11202   predicate(UseSSE>=1);
 11203   match(Set dst (AddF dst src));
 11204   format %{ "ADDSS  $dst,$src" %}
 11205   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), RegReg(dst, src));
 11206   ins_pipe( pipe_slow );
 11207 %}
 11209 instruct addX_imm(regX dst, immXF con) %{
 11210   predicate(UseSSE>=1);
 11211   match(Set dst (AddF dst con));
 11212   format %{ "ADDSS  $dst,[$constantaddress]\t# load from constant table: float=$con" %}
 11213   ins_encode %{
 11214     __ addss($dst$$XMMRegister, $constantaddress($con));
 11215   %}
 11216   ins_pipe(pipe_slow);
 11217 %}
 11219 instruct addX_mem(regX dst, memory mem) %{
 11220   predicate(UseSSE>=1);
 11221   match(Set dst (AddF dst (LoadF mem)));
 11222   format %{ "ADDSS  $dst,$mem" %}
 11223   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), RegMem(dst, mem));
 11224   ins_pipe( pipe_slow );
 11225 %}
 11227 // Subtract two single precision floating point values in xmm
 11228 instruct subX_reg(regX dst, regX src) %{
 11229   predicate(UseSSE>=1);
 11230   match(Set dst (SubF dst src));
 11231   format %{ "SUBSS  $dst,$src" %}
 11232   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), RegReg(dst, src));
 11233   ins_pipe( pipe_slow );
 11234 %}
 11236 instruct subX_imm(regX dst, immXF con) %{
 11237   predicate(UseSSE>=1);
 11238   match(Set dst (SubF dst con));
 11239   format %{ "SUBSS  $dst,[$constantaddress]\t# load from constant table: float=$con" %}
 11240   ins_encode %{
 11241     __ subss($dst$$XMMRegister, $constantaddress($con));
 11242   %}
 11243   ins_pipe(pipe_slow);
 11244 %}
 11246 instruct subX_mem(regX dst, memory mem) %{
 11247   predicate(UseSSE>=1);
 11248   match(Set dst (SubF dst (LoadF mem)));
 11249   format %{ "SUBSS  $dst,$mem" %}
 11250   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), RegMem(dst,mem));
 11251   ins_pipe( pipe_slow );
 11252 %}
 11254 // Multiply two single precision floating point values in xmm
 11255 instruct mulX_reg(regX dst, regX src) %{
 11256   predicate(UseSSE>=1);
 11257   match(Set dst (MulF dst src));
 11258   format %{ "MULSS  $dst,$src" %}
 11259   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), RegReg(dst, src));
 11260   ins_pipe( pipe_slow );
 11261 %}
 11263 instruct mulX_imm(regX dst, immXF con) %{
 11264   predicate(UseSSE>=1);
 11265   match(Set dst (MulF dst con));
 11266   format %{ "MULSS  $dst,[$constantaddress]\t# load from constant table: float=$con" %}
 11267   ins_encode %{
 11268     __ mulss($dst$$XMMRegister, $constantaddress($con));
 11269   %}
 11270   ins_pipe(pipe_slow);
 11271 %}
 11273 instruct mulX_mem(regX dst, memory mem) %{
 11274   predicate(UseSSE>=1);
 11275   match(Set dst (MulF dst (LoadF mem)));
 11276   format %{ "MULSS  $dst,$mem" %}
 11277   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), RegMem(dst,mem));
 11278   ins_pipe( pipe_slow );
 11279 %}
 11281 // Divide two single precision floating point values in xmm
 11282 instruct divX_reg(regX dst, regX src) %{
 11283   predicate(UseSSE>=1);
 11284   match(Set dst (DivF dst src));
 11285   format %{ "DIVSS  $dst,$src" %}
 11286   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), RegReg(dst, src));
 11287   ins_pipe( pipe_slow );
 11288 %}
 11290 instruct divX_imm(regX dst, immXF con) %{
 11291   predicate(UseSSE>=1);
 11292   match(Set dst (DivF dst con));
 11293   format %{ "DIVSS  $dst,[$constantaddress]\t# load from constant table: float=$con" %}
 11294   ins_encode %{
 11295     __ divss($dst$$XMMRegister, $constantaddress($con));
 11296   %}
 11297   ins_pipe(pipe_slow);
 11298 %}
 11300 instruct divX_mem(regX dst, memory mem) %{
 11301   predicate(UseSSE>=1);
 11302   match(Set dst (DivF dst (LoadF mem)));
 11303   format %{ "DIVSS  $dst,$mem" %}
 11304   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), RegMem(dst,mem));
 11305   ins_pipe( pipe_slow );
 11306 %}
 11308 // Get the square root of a single precision floating point values in xmm
 11309 instruct sqrtX_reg(regX dst, regX src) %{
 11310   predicate(UseSSE>=1);
 11311   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
 11312   format %{ "SQRTSS $dst,$src" %}
 11313   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x51), RegReg(dst, src));
 11314   ins_pipe( pipe_slow );
 11315 %}
 11317 instruct sqrtX_mem(regX dst, memory mem) %{
 11318   predicate(UseSSE>=1);
 11319   match(Set dst (ConvD2F (SqrtD (ConvF2D (LoadF mem)))));
 11320   format %{ "SQRTSS $dst,$mem" %}
 11321   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x51), RegMem(dst, mem));
 11322   ins_pipe( pipe_slow );
 11323 %}
 11325 // Get the square root of a double precision floating point values in xmm
 11326 instruct sqrtXD_reg(regXD dst, regXD src) %{
 11327   predicate(UseSSE>=2);
 11328   match(Set dst (SqrtD src));
 11329   format %{ "SQRTSD $dst,$src" %}
 11330   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x51), RegReg(dst, src));
 11331   ins_pipe( pipe_slow );
 11332 %}
 11334 instruct sqrtXD_mem(regXD dst, memory mem) %{
 11335   predicate(UseSSE>=2);
 11336   match(Set dst (SqrtD (LoadD mem)));
 11337   format %{ "SQRTSD $dst,$mem" %}
 11338   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x51), RegMem(dst, mem));
 11339   ins_pipe( pipe_slow );
 11340 %}
 11342 instruct absF_reg(regFPR1 dst, regFPR1 src) %{
 11343   predicate(UseSSE==0);
 11344   match(Set dst (AbsF src));
 11345   ins_cost(100);
 11346   format %{ "FABS" %}
 11347   opcode(0xE1, 0xD9);
 11348   ins_encode( OpcS, OpcP );
 11349   ins_pipe( fpu_reg_reg );
 11350 %}
 11352 instruct absX_reg(regX dst ) %{
 11353   predicate(UseSSE>=1);
 11354   match(Set dst (AbsF dst));
 11355   format %{ "ANDPS  $dst,[0x7FFFFFFF]\t# ABS F by sign masking" %}
 11356   ins_encode( AbsXF_encoding(dst));
 11357   ins_pipe( pipe_slow );
 11358 %}
 11360 instruct negF_reg(regFPR1 dst, regFPR1 src) %{
 11361   predicate(UseSSE==0);
 11362   match(Set dst (NegF src));
 11363   ins_cost(100);
 11364   format %{ "FCHS" %}
 11365   opcode(0xE0, 0xD9);
 11366   ins_encode( OpcS, OpcP );
 11367   ins_pipe( fpu_reg_reg );
 11368 %}
 11370 instruct negX_reg( regX dst ) %{
 11371   predicate(UseSSE>=1);
 11372   match(Set dst (NegF dst));
 11373   format %{ "XORPS  $dst,[0x80000000]\t# CHS F by sign flipping" %}
 11374   ins_encode( NegXF_encoding(dst));
 11375   ins_pipe( pipe_slow );
 11376 %}
 11378 // Cisc-alternate to addF_reg
 11379 // Spill to obtain 24-bit precision
 11380 instruct addF24_reg_mem(stackSlotF dst, regF src1, memory src2) %{
 11381   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11382   match(Set dst (AddF src1 (LoadF src2)));
 11384   format %{ "FLD    $src2\n\t"
 11385             "FADD   ST,$src1\n\t"
 11386             "FSTP_S $dst" %}
 11387   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 11388   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 11389               OpcReg_F(src1),
 11390               Pop_Mem_F(dst) );
 11391   ins_pipe( fpu_mem_reg_mem );
 11392 %}
 11393 //
 11394 // Cisc-alternate to addF_reg
 11395 // This instruction does not round to 24-bits
 11396 instruct addF_reg_mem(regF dst, memory src) %{
 11397   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11398   match(Set dst (AddF dst (LoadF src)));
 11400   format %{ "FADD   $dst,$src" %}
 11401   opcode(0xDE, 0x0, 0xD9); /* DE C0+i or DE /0*/  /* LoadF  D9 /0 */
 11402   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
 11403               OpcP, RegOpc(dst) );
 11404   ins_pipe( fpu_reg_mem );
 11405 %}
 11407 // // Following two instructions for _222_mpegaudio
 11408 // Spill to obtain 24-bit precision
 11409 instruct addF24_mem_reg(stackSlotF dst, regF src2, memory src1 ) %{
 11410   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11411   match(Set dst (AddF src1 src2));
 11413   format %{ "FADD   $dst,$src1,$src2" %}
 11414   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 11415   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src1),
 11416               OpcReg_F(src2),
 11417               Pop_Mem_F(dst) );
 11418   ins_pipe( fpu_mem_reg_mem );
 11419 %}
 11421 // Cisc-spill variant
 11422 // Spill to obtain 24-bit precision
 11423 instruct addF24_mem_cisc(stackSlotF dst, memory src1, memory src2) %{
 11424   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11425   match(Set dst (AddF src1 (LoadF src2)));
 11427   format %{ "FADD   $dst,$src1,$src2 cisc" %}
 11428   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 11429   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 11430               set_instruction_start,
 11431               OpcP, RMopc_Mem(secondary,src1),
 11432               Pop_Mem_F(dst) );
 11433   ins_pipe( fpu_mem_mem_mem );
 11434 %}
 11436 // Spill to obtain 24-bit precision
 11437 instruct addF24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
 11438   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11439   match(Set dst (AddF src1 src2));
 11441   format %{ "FADD   $dst,$src1,$src2" %}
 11442   opcode(0xD8, 0x0, 0xD9); /* D8 /0 */  /* LoadF  D9 /0 */
 11443   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 11444               set_instruction_start,
 11445               OpcP, RMopc_Mem(secondary,src1),
 11446               Pop_Mem_F(dst) );
 11447   ins_pipe( fpu_mem_mem_mem );
 11448 %}
 11451 // Spill to obtain 24-bit precision
 11452 instruct addF24_reg_imm(stackSlotF dst, regF src, immF con) %{
 11453   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11454   match(Set dst (AddF src con));
 11455   format %{ "FLD    $src\n\t"
 11456             "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 11457             "FSTP_S $dst"  %}
 11458   ins_encode %{
 11459     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 11460     __ fadd_s($constantaddress($con));
 11461     __ fstp_s(Address(rsp, $dst$$disp));
 11462   %}
 11463   ins_pipe(fpu_mem_reg_con);
 11464 %}
 11465 //
 11466 // This instruction does not round to 24-bits
 11467 instruct addF_reg_imm(regF dst, regF src, immF con) %{
 11468   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11469   match(Set dst (AddF src con));
 11470   format %{ "FLD    $src\n\t"
 11471             "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 11472             "FSTP   $dst"  %}
 11473   ins_encode %{
 11474     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 11475     __ fadd_s($constantaddress($con));
 11476     __ fstp_d($dst$$reg);
 11477   %}
 11478   ins_pipe(fpu_reg_reg_con);
 11479 %}
 11481 // Spill to obtain 24-bit precision
 11482 instruct mulF24_reg(stackSlotF dst, regF src1, regF src2) %{
 11483   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11484   match(Set dst (MulF src1 src2));
 11486   format %{ "FLD    $src1\n\t"
 11487             "FMUL   $src2\n\t"
 11488             "FSTP_S $dst"  %}
 11489   opcode(0xD8, 0x1); /* D8 C8+i or D8 /1 ;; result in TOS */
 11490   ins_encode( Push_Reg_F(src1),
 11491               OpcReg_F(src2),
 11492               Pop_Mem_F(dst) );
 11493   ins_pipe( fpu_mem_reg_reg );
 11494 %}
 11495 //
 11496 // This instruction does not round to 24-bits
 11497 instruct mulF_reg(regF dst, regF src1, regF src2) %{
 11498   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11499   match(Set dst (MulF src1 src2));
 11501   format %{ "FLD    $src1\n\t"
 11502             "FMUL   $src2\n\t"
 11503             "FSTP_S $dst"  %}
 11504   opcode(0xD8, 0x1); /* D8 C8+i */
 11505   ins_encode( Push_Reg_F(src2),
 11506               OpcReg_F(src1),
 11507               Pop_Reg_F(dst) );
 11508   ins_pipe( fpu_reg_reg_reg );
 11509 %}
 11512 // Spill to obtain 24-bit precision
 11513 // Cisc-alternate to reg-reg multiply
 11514 instruct mulF24_reg_mem(stackSlotF dst, regF src1, memory src2) %{
 11515   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11516   match(Set dst (MulF src1 (LoadF src2)));
 11518   format %{ "FLD_S  $src2\n\t"
 11519             "FMUL   $src1\n\t"
 11520             "FSTP_S $dst"  %}
 11521   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or DE /1*/  /* LoadF D9 /0 */
 11522   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 11523               OpcReg_F(src1),
 11524               Pop_Mem_F(dst) );
 11525   ins_pipe( fpu_mem_reg_mem );
 11526 %}
 11527 //
 11528 // This instruction does not round to 24-bits
 11529 // Cisc-alternate to reg-reg multiply
 11530 instruct mulF_reg_mem(regF dst, regF src1, memory src2) %{
 11531   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11532   match(Set dst (MulF src1 (LoadF src2)));
 11534   format %{ "FMUL   $dst,$src1,$src2" %}
 11535   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadF D9 /0 */
 11536   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 11537               OpcReg_F(src1),
 11538               Pop_Reg_F(dst) );
 11539   ins_pipe( fpu_reg_reg_mem );
 11540 %}
 11542 // Spill to obtain 24-bit precision
 11543 instruct mulF24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
 11544   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11545   match(Set dst (MulF src1 src2));
 11547   format %{ "FMUL   $dst,$src1,$src2" %}
 11548   opcode(0xD8, 0x1, 0xD9); /* D8 /1 */  /* LoadF D9 /0 */
 11549   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 11550               set_instruction_start,
 11551               OpcP, RMopc_Mem(secondary,src1),
 11552               Pop_Mem_F(dst) );
 11553   ins_pipe( fpu_mem_mem_mem );
 11554 %}
 11556 // Spill to obtain 24-bit precision
 11557 instruct mulF24_reg_imm(stackSlotF dst, regF src, immF con) %{
 11558   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11559   match(Set dst (MulF src con));
 11561   format %{ "FLD    $src\n\t"
 11562             "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 11563             "FSTP_S $dst"  %}
 11564   ins_encode %{
 11565     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 11566     __ fmul_s($constantaddress($con));
 11567     __ fstp_s(Address(rsp, $dst$$disp));
 11568   %}
 11569   ins_pipe(fpu_mem_reg_con);
 11570 %}
 11571 //
 11572 // This instruction does not round to 24-bits
 11573 instruct mulF_reg_imm(regF dst, regF src, immF con) %{
 11574   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11575   match(Set dst (MulF src con));
 11577   format %{ "FLD    $src\n\t"
 11578             "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 11579             "FSTP   $dst"  %}
 11580   ins_encode %{
 11581     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 11582     __ fmul_s($constantaddress($con));
 11583     __ fstp_d($dst$$reg);
 11584   %}
 11585   ins_pipe(fpu_reg_reg_con);
 11586 %}
 11589 //
 11590 // MACRO1 -- subsume unshared load into mulF
 11591 // This instruction does not round to 24-bits
 11592 instruct mulF_reg_load1(regF dst, regF src, memory mem1 ) %{
 11593   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11594   match(Set dst (MulF (LoadF mem1) src));
 11596   format %{ "FLD    $mem1    ===MACRO1===\n\t"
 11597             "FMUL   ST,$src\n\t"
 11598             "FSTP   $dst" %}
 11599   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or D8 /1 */  /* LoadF D9 /0 */
 11600   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem1),
 11601               OpcReg_F(src),
 11602               Pop_Reg_F(dst) );
 11603   ins_pipe( fpu_reg_reg_mem );
 11604 %}
 11605 //
 11606 // MACRO2 -- addF a mulF which subsumed an unshared load
 11607 // This instruction does not round to 24-bits
 11608 instruct addF_mulF_reg_load1(regF dst, memory mem1, regF src1, regF src2) %{
 11609   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11610   match(Set dst (AddF (MulF (LoadF mem1) src1) src2));
 11611   ins_cost(95);
 11613   format %{ "FLD    $mem1     ===MACRO2===\n\t"
 11614             "FMUL   ST,$src1  subsume mulF left load\n\t"
 11615             "FADD   ST,$src2\n\t"
 11616             "FSTP   $dst" %}
 11617   opcode(0xD9); /* LoadF D9 /0 */
 11618   ins_encode( OpcP, RMopc_Mem(0x00,mem1),
 11619               FMul_ST_reg(src1),
 11620               FAdd_ST_reg(src2),
 11621               Pop_Reg_F(dst) );
 11622   ins_pipe( fpu_reg_mem_reg_reg );
 11623 %}
 11625 // MACRO3 -- addF a mulF
 11626 // This instruction does not round to 24-bits.  It is a '2-address'
 11627 // instruction in that the result goes back to src2.  This eliminates
 11628 // a move from the macro; possibly the register allocator will have
 11629 // to add it back (and maybe not).
 11630 instruct addF_mulF_reg(regF src2, regF src1, regF src0) %{
 11631   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11632   match(Set src2 (AddF (MulF src0 src1) src2));
 11634   format %{ "FLD    $src0     ===MACRO3===\n\t"
 11635             "FMUL   ST,$src1\n\t"
 11636             "FADDP  $src2,ST" %}
 11637   opcode(0xD9); /* LoadF D9 /0 */
 11638   ins_encode( Push_Reg_F(src0),
 11639               FMul_ST_reg(src1),
 11640               FAddP_reg_ST(src2) );
 11641   ins_pipe( fpu_reg_reg_reg );
 11642 %}
 11644 // MACRO4 -- divF subF
 11645 // This instruction does not round to 24-bits
 11646 instruct subF_divF_reg(regF dst, regF src1, regF src2, regF src3) %{
 11647   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11648   match(Set dst (DivF (SubF src2 src1) src3));
 11650   format %{ "FLD    $src2   ===MACRO4===\n\t"
 11651             "FSUB   ST,$src1\n\t"
 11652             "FDIV   ST,$src3\n\t"
 11653             "FSTP  $dst" %}
 11654   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 11655   ins_encode( Push_Reg_F(src2),
 11656               subF_divF_encode(src1,src3),
 11657               Pop_Reg_F(dst) );
 11658   ins_pipe( fpu_reg_reg_reg_reg );
 11659 %}
 11661 // Spill to obtain 24-bit precision
 11662 instruct divF24_reg(stackSlotF dst, regF src1, regF src2) %{
 11663   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11664   match(Set dst (DivF src1 src2));
 11666   format %{ "FDIV   $dst,$src1,$src2" %}
 11667   opcode(0xD8, 0x6); /* D8 F0+i or DE /6*/
 11668   ins_encode( Push_Reg_F(src1),
 11669               OpcReg_F(src2),
 11670               Pop_Mem_F(dst) );
 11671   ins_pipe( fpu_mem_reg_reg );
 11672 %}
 11673 //
 11674 // This instruction does not round to 24-bits
 11675 instruct divF_reg(regF dst, regF src) %{
 11676   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11677   match(Set dst (DivF dst src));
 11679   format %{ "FDIV   $dst,$src" %}
 11680   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 11681   ins_encode( Push_Reg_F(src),
 11682               OpcP, RegOpc(dst) );
 11683   ins_pipe( fpu_reg_reg );
 11684 %}
 11687 // Spill to obtain 24-bit precision
 11688 instruct modF24_reg(stackSlotF dst, regF src1, regF src2, eAXRegI rax, eFlagsReg cr) %{
 11689   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 11690   match(Set dst (ModF src1 src2));
 11691   effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
 11693   format %{ "FMOD   $dst,$src1,$src2" %}
 11694   ins_encode( Push_Reg_Mod_D(src1, src2),
 11695               emitModD(),
 11696               Push_Result_Mod_D(src2),
 11697               Pop_Mem_F(dst));
 11698   ins_pipe( pipe_slow );
 11699 %}
 11700 //
 11701 // This instruction does not round to 24-bits
 11702 instruct modF_reg(regF dst, regF src, eAXRegI rax, eFlagsReg cr) %{
 11703   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11704   match(Set dst (ModF dst src));
 11705   effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
 11707   format %{ "FMOD   $dst,$src" %}
 11708   ins_encode(Push_Reg_Mod_D(dst, src),
 11709               emitModD(),
 11710               Push_Result_Mod_D(src),
 11711               Pop_Reg_F(dst));
 11712   ins_pipe( pipe_slow );
 11713 %}
 11715 instruct modX_reg(regX dst, regX src0, regX src1, eAXRegI rax, eFlagsReg cr) %{
 11716   predicate(UseSSE>=1);
 11717   match(Set dst (ModF src0 src1));
 11718   effect(KILL rax, KILL cr);
 11719   format %{ "SUB    ESP,4\t # FMOD\n"
 11720           "\tMOVSS  [ESP+0],$src1\n"
 11721           "\tFLD_S  [ESP+0]\n"
 11722           "\tMOVSS  [ESP+0],$src0\n"
 11723           "\tFLD_S  [ESP+0]\n"
 11724      "loop:\tFPREM\n"
 11725           "\tFWAIT\n"
 11726           "\tFNSTSW AX\n"
 11727           "\tSAHF\n"
 11728           "\tJP     loop\n"
 11729           "\tFSTP_S [ESP+0]\n"
 11730           "\tMOVSS  $dst,[ESP+0]\n"
 11731           "\tADD    ESP,4\n"
 11732           "\tFSTP   ST0\t # Restore FPU Stack"
 11733     %}
 11734   ins_cost(250);
 11735   ins_encode( Push_ModX_encoding(src0, src1), emitModD(), Push_ResultX(dst,0x4), PopFPU);
 11736   ins_pipe( pipe_slow );
 11737 %}
 11740 //----------Arithmetic Conversion Instructions---------------------------------
 11741 // The conversions operations are all Alpha sorted.  Please keep it that way!
 11743 instruct roundFloat_mem_reg(stackSlotF dst, regF src) %{
 11744   predicate(UseSSE==0);
 11745   match(Set dst (RoundFloat src));
 11746   ins_cost(125);
 11747   format %{ "FST_S  $dst,$src\t# F-round" %}
 11748   ins_encode( Pop_Mem_Reg_F(dst, src) );
 11749   ins_pipe( fpu_mem_reg );
 11750 %}
 11752 instruct roundDouble_mem_reg(stackSlotD dst, regD src) %{
 11753   predicate(UseSSE<=1);
 11754   match(Set dst (RoundDouble src));
 11755   ins_cost(125);
 11756   format %{ "FST_D  $dst,$src\t# D-round" %}
 11757   ins_encode( Pop_Mem_Reg_D(dst, src) );
 11758   ins_pipe( fpu_mem_reg );
 11759 %}
 11761 // Force rounding to 24-bit precision and 6-bit exponent
 11762 instruct convD2F_reg(stackSlotF dst, regD src) %{
 11763   predicate(UseSSE==0);
 11764   match(Set dst (ConvD2F src));
 11765   format %{ "FST_S  $dst,$src\t# F-round" %}
 11766   expand %{
 11767     roundFloat_mem_reg(dst,src);
 11768   %}
 11769 %}
 11771 // Force rounding to 24-bit precision and 6-bit exponent
 11772 instruct convD2X_reg(regX dst, regD src, eFlagsReg cr) %{
 11773   predicate(UseSSE==1);
 11774   match(Set dst (ConvD2F src));
 11775   effect( KILL cr );
 11776   format %{ "SUB    ESP,4\n\t"
 11777             "FST_S  [ESP],$src\t# F-round\n\t"
 11778             "MOVSS  $dst,[ESP]\n\t"
 11779             "ADD ESP,4" %}
 11780   ins_encode( D2X_encoding(dst, src) );
 11781   ins_pipe( pipe_slow );
 11782 %}
 11784 // Force rounding double precision to single precision
 11785 instruct convXD2X_reg(regX dst, regXD src) %{
 11786   predicate(UseSSE>=2);
 11787   match(Set dst (ConvD2F src));
 11788   format %{ "CVTSD2SS $dst,$src\t# F-round" %}
 11789   opcode(0xF2, 0x0F, 0x5A);
 11790   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
 11791   ins_pipe( pipe_slow );
 11792 %}
 11794 instruct convF2D_reg_reg(regD dst, regF src) %{
 11795   predicate(UseSSE==0);
 11796   match(Set dst (ConvF2D src));
 11797   format %{ "FST_S  $dst,$src\t# D-round" %}
 11798   ins_encode( Pop_Reg_Reg_D(dst, src));
 11799   ins_pipe( fpu_reg_reg );
 11800 %}
 11802 instruct convF2D_reg(stackSlotD dst, regF src) %{
 11803   predicate(UseSSE==1);
 11804   match(Set dst (ConvF2D src));
 11805   format %{ "FST_D  $dst,$src\t# D-round" %}
 11806   expand %{
 11807     roundDouble_mem_reg(dst,src);
 11808   %}
 11809 %}
 11811 instruct convX2D_reg(regD dst, regX src, eFlagsReg cr) %{
 11812   predicate(UseSSE==1);
 11813   match(Set dst (ConvF2D src));
 11814   effect( KILL cr );
 11815   format %{ "SUB    ESP,4\n\t"
 11816             "MOVSS  [ESP] $src\n\t"
 11817             "FLD_S  [ESP]\n\t"
 11818             "ADD    ESP,4\n\t"
 11819             "FSTP   $dst\t# D-round" %}
 11820   ins_encode( X2D_encoding(dst, src), Pop_Reg_D(dst));
 11821   ins_pipe( pipe_slow );
 11822 %}
 11824 instruct convX2XD_reg(regXD dst, regX src) %{
 11825   predicate(UseSSE>=2);
 11826   match(Set dst (ConvF2D src));
 11827   format %{ "CVTSS2SD $dst,$src\t# D-round" %}
 11828   opcode(0xF3, 0x0F, 0x5A);
 11829   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
 11830   ins_pipe( pipe_slow );
 11831 %}
 11833 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
 11834 instruct convD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regD src, eFlagsReg cr ) %{
 11835   predicate(UseSSE<=1);
 11836   match(Set dst (ConvD2I src));
 11837   effect( KILL tmp, KILL cr );
 11838   format %{ "FLD    $src\t# Convert double to int \n\t"
 11839             "FLDCW  trunc mode\n\t"
 11840             "SUB    ESP,4\n\t"
 11841             "FISTp  [ESP + #0]\n\t"
 11842             "FLDCW  std/24-bit mode\n\t"
 11843             "POP    EAX\n\t"
 11844             "CMP    EAX,0x80000000\n\t"
 11845             "JNE,s  fast\n\t"
 11846             "FLD_D  $src\n\t"
 11847             "CALL   d2i_wrapper\n"
 11848       "fast:" %}
 11849   ins_encode( Push_Reg_D(src), D2I_encoding(src) );
 11850   ins_pipe( pipe_slow );
 11851 %}
 11853 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
 11854 instruct convXD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regXD src, eFlagsReg cr ) %{
 11855   predicate(UseSSE>=2);
 11856   match(Set dst (ConvD2I src));
 11857   effect( KILL tmp, KILL cr );
 11858   format %{ "CVTTSD2SI $dst, $src\n\t"
 11859             "CMP    $dst,0x80000000\n\t"
 11860             "JNE,s  fast\n\t"
 11861             "SUB    ESP, 8\n\t"
 11862             "MOVSD  [ESP], $src\n\t"
 11863             "FLD_D  [ESP]\n\t"
 11864             "ADD    ESP, 8\n\t"
 11865             "CALL   d2i_wrapper\n"
 11866       "fast:" %}
 11867   opcode(0x1); // double-precision conversion
 11868   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x2C), FX2I_encoding(src,dst));
 11869   ins_pipe( pipe_slow );
 11870 %}
 11872 instruct convD2L_reg_reg( eADXRegL dst, regD src, eFlagsReg cr ) %{
 11873   predicate(UseSSE<=1);
 11874   match(Set dst (ConvD2L src));
 11875   effect( KILL cr );
 11876   format %{ "FLD    $src\t# Convert double to long\n\t"
 11877             "FLDCW  trunc mode\n\t"
 11878             "SUB    ESP,8\n\t"
 11879             "FISTp  [ESP + #0]\n\t"
 11880             "FLDCW  std/24-bit mode\n\t"
 11881             "POP    EAX\n\t"
 11882             "POP    EDX\n\t"
 11883             "CMP    EDX,0x80000000\n\t"
 11884             "JNE,s  fast\n\t"
 11885             "TEST   EAX,EAX\n\t"
 11886             "JNE,s  fast\n\t"
 11887             "FLD    $src\n\t"
 11888             "CALL   d2l_wrapper\n"
 11889       "fast:" %}
 11890   ins_encode( Push_Reg_D(src),  D2L_encoding(src) );
 11891   ins_pipe( pipe_slow );
 11892 %}
 11894 // XMM lacks a float/double->long conversion, so use the old FPU stack.
 11895 instruct convXD2L_reg_reg( eADXRegL dst, regXD src, eFlagsReg cr ) %{
 11896   predicate (UseSSE>=2);
 11897   match(Set dst (ConvD2L src));
 11898   effect( KILL cr );
 11899   format %{ "SUB    ESP,8\t# Convert double to long\n\t"
 11900             "MOVSD  [ESP],$src\n\t"
 11901             "FLD_D  [ESP]\n\t"
 11902             "FLDCW  trunc mode\n\t"
 11903             "FISTp  [ESP + #0]\n\t"
 11904             "FLDCW  std/24-bit mode\n\t"
 11905             "POP    EAX\n\t"
 11906             "POP    EDX\n\t"
 11907             "CMP    EDX,0x80000000\n\t"
 11908             "JNE,s  fast\n\t"
 11909             "TEST   EAX,EAX\n\t"
 11910             "JNE,s  fast\n\t"
 11911             "SUB    ESP,8\n\t"
 11912             "MOVSD  [ESP],$src\n\t"
 11913             "FLD_D  [ESP]\n\t"
 11914             "CALL   d2l_wrapper\n"
 11915       "fast:" %}
 11916   ins_encode( XD2L_encoding(src) );
 11917   ins_pipe( pipe_slow );
 11918 %}
 11920 // Convert a double to an int.  Java semantics require we do complex
 11921 // manglations in the corner cases.  So we set the rounding mode to
 11922 // 'zero', store the darned double down as an int, and reset the
 11923 // rounding mode to 'nearest'.  The hardware stores a flag value down
 11924 // if we would overflow or converted a NAN; we check for this and
 11925 // and go the slow path if needed.
 11926 instruct convF2I_reg_reg(eAXRegI dst, eDXRegI tmp, regF src, eFlagsReg cr ) %{
 11927   predicate(UseSSE==0);
 11928   match(Set dst (ConvF2I src));
 11929   effect( KILL tmp, KILL cr );
 11930   format %{ "FLD    $src\t# Convert float to int \n\t"
 11931             "FLDCW  trunc mode\n\t"
 11932             "SUB    ESP,4\n\t"
 11933             "FISTp  [ESP + #0]\n\t"
 11934             "FLDCW  std/24-bit mode\n\t"
 11935             "POP    EAX\n\t"
 11936             "CMP    EAX,0x80000000\n\t"
 11937             "JNE,s  fast\n\t"
 11938             "FLD    $src\n\t"
 11939             "CALL   d2i_wrapper\n"
 11940       "fast:" %}
 11941   // D2I_encoding works for F2I
 11942   ins_encode( Push_Reg_F(src), D2I_encoding(src) );
 11943   ins_pipe( pipe_slow );
 11944 %}
 11946 // Convert a float in xmm to an int reg.
 11947 instruct convX2I_reg(eAXRegI dst, eDXRegI tmp, regX src, eFlagsReg cr ) %{
 11948   predicate(UseSSE>=1);
 11949   match(Set dst (ConvF2I src));
 11950   effect( KILL tmp, KILL cr );
 11951   format %{ "CVTTSS2SI $dst, $src\n\t"
 11952             "CMP    $dst,0x80000000\n\t"
 11953             "JNE,s  fast\n\t"
 11954             "SUB    ESP, 4\n\t"
 11955             "MOVSS  [ESP], $src\n\t"
 11956             "FLD    [ESP]\n\t"
 11957             "ADD    ESP, 4\n\t"
 11958             "CALL   d2i_wrapper\n"
 11959       "fast:" %}
 11960   opcode(0x0); // single-precision conversion
 11961   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x2C), FX2I_encoding(src,dst));
 11962   ins_pipe( pipe_slow );
 11963 %}
 11965 instruct convF2L_reg_reg( eADXRegL dst, regF src, eFlagsReg cr ) %{
 11966   predicate(UseSSE==0);
 11967   match(Set dst (ConvF2L src));
 11968   effect( KILL cr );
 11969   format %{ "FLD    $src\t# Convert float to long\n\t"
 11970             "FLDCW  trunc mode\n\t"
 11971             "SUB    ESP,8\n\t"
 11972             "FISTp  [ESP + #0]\n\t"
 11973             "FLDCW  std/24-bit mode\n\t"
 11974             "POP    EAX\n\t"
 11975             "POP    EDX\n\t"
 11976             "CMP    EDX,0x80000000\n\t"
 11977             "JNE,s  fast\n\t"
 11978             "TEST   EAX,EAX\n\t"
 11979             "JNE,s  fast\n\t"
 11980             "FLD    $src\n\t"
 11981             "CALL   d2l_wrapper\n"
 11982       "fast:" %}
 11983   // D2L_encoding works for F2L
 11984   ins_encode( Push_Reg_F(src), D2L_encoding(src) );
 11985   ins_pipe( pipe_slow );
 11986 %}
 11988 // XMM lacks a float/double->long conversion, so use the old FPU stack.
 11989 instruct convX2L_reg_reg( eADXRegL dst, regX src, eFlagsReg cr ) %{
 11990   predicate (UseSSE>=1);
 11991   match(Set dst (ConvF2L src));
 11992   effect( KILL cr );
 11993   format %{ "SUB    ESP,8\t# Convert float to long\n\t"
 11994             "MOVSS  [ESP],$src\n\t"
 11995             "FLD_S  [ESP]\n\t"
 11996             "FLDCW  trunc mode\n\t"
 11997             "FISTp  [ESP + #0]\n\t"
 11998             "FLDCW  std/24-bit mode\n\t"
 11999             "POP    EAX\n\t"
 12000             "POP    EDX\n\t"
 12001             "CMP    EDX,0x80000000\n\t"
 12002             "JNE,s  fast\n\t"
 12003             "TEST   EAX,EAX\n\t"
 12004             "JNE,s  fast\n\t"
 12005             "SUB    ESP,4\t# Convert float to long\n\t"
 12006             "MOVSS  [ESP],$src\n\t"
 12007             "FLD_S  [ESP]\n\t"
 12008             "ADD    ESP,4\n\t"
 12009             "CALL   d2l_wrapper\n"
 12010       "fast:" %}
 12011   ins_encode( X2L_encoding(src) );
 12012   ins_pipe( pipe_slow );
 12013 %}
 12015 instruct convI2D_reg(regD dst, stackSlotI src) %{
 12016   predicate( UseSSE<=1 );
 12017   match(Set dst (ConvI2D src));
 12018   format %{ "FILD   $src\n\t"
 12019             "FSTP   $dst" %}
 12020   opcode(0xDB, 0x0);  /* DB /0 */
 12021   ins_encode(Push_Mem_I(src), Pop_Reg_D(dst));
 12022   ins_pipe( fpu_reg_mem );
 12023 %}
 12025 instruct convI2XD_reg(regXD dst, eRegI src) %{
 12026   predicate( UseSSE>=2 && !UseXmmI2D );
 12027   match(Set dst (ConvI2D src));
 12028   format %{ "CVTSI2SD $dst,$src" %}
 12029   opcode(0xF2, 0x0F, 0x2A);
 12030   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
 12031   ins_pipe( pipe_slow );
 12032 %}
 12034 instruct convI2XD_mem(regXD dst, memory mem) %{
 12035   predicate( UseSSE>=2 );
 12036   match(Set dst (ConvI2D (LoadI mem)));
 12037   format %{ "CVTSI2SD $dst,$mem" %}
 12038   opcode(0xF2, 0x0F, 0x2A);
 12039   ins_encode( OpcP, OpcS, Opcode(tertiary), RegMem(dst, mem));
 12040   ins_pipe( pipe_slow );
 12041 %}
 12043 instruct convXI2XD_reg(regXD dst, eRegI src)
 12044 %{
 12045   predicate( UseSSE>=2 && UseXmmI2D );
 12046   match(Set dst (ConvI2D src));
 12048   format %{ "MOVD  $dst,$src\n\t"
 12049             "CVTDQ2PD $dst,$dst\t# i2d" %}
 12050   ins_encode %{
 12051     __ movdl($dst$$XMMRegister, $src$$Register);
 12052     __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
 12053   %}
 12054   ins_pipe(pipe_slow); // XXX
 12055 %}
 12057 instruct convI2D_mem(regD dst, memory mem) %{
 12058   predicate( UseSSE<=1 && !Compile::current()->select_24_bit_instr());
 12059   match(Set dst (ConvI2D (LoadI mem)));
 12060   format %{ "FILD   $mem\n\t"
 12061             "FSTP   $dst" %}
 12062   opcode(0xDB);      /* DB /0 */
 12063   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 12064               Pop_Reg_D(dst));
 12065   ins_pipe( fpu_reg_mem );
 12066 %}
 12068 // Convert a byte to a float; no rounding step needed.
 12069 instruct conv24I2F_reg(regF dst, stackSlotI src) %{
 12070   predicate( UseSSE==0 && n->in(1)->Opcode() == Op_AndI && n->in(1)->in(2)->is_Con() && n->in(1)->in(2)->get_int() == 255 );
 12071   match(Set dst (ConvI2F src));
 12072   format %{ "FILD   $src\n\t"
 12073             "FSTP   $dst" %}
 12075   opcode(0xDB, 0x0);  /* DB /0 */
 12076   ins_encode(Push_Mem_I(src), Pop_Reg_F(dst));
 12077   ins_pipe( fpu_reg_mem );
 12078 %}
 12080 // In 24-bit mode, force exponent rounding by storing back out
 12081 instruct convI2F_SSF(stackSlotF dst, stackSlotI src) %{
 12082   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 12083   match(Set dst (ConvI2F src));
 12084   ins_cost(200);
 12085   format %{ "FILD   $src\n\t"
 12086             "FSTP_S $dst" %}
 12087   opcode(0xDB, 0x0);  /* DB /0 */
 12088   ins_encode( Push_Mem_I(src),
 12089               Pop_Mem_F(dst));
 12090   ins_pipe( fpu_mem_mem );
 12091 %}
 12093 // In 24-bit mode, force exponent rounding by storing back out
 12094 instruct convI2F_SSF_mem(stackSlotF dst, memory mem) %{
 12095   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 12096   match(Set dst (ConvI2F (LoadI mem)));
 12097   ins_cost(200);
 12098   format %{ "FILD   $mem\n\t"
 12099             "FSTP_S $dst" %}
 12100   opcode(0xDB);  /* DB /0 */
 12101   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 12102               Pop_Mem_F(dst));
 12103   ins_pipe( fpu_mem_mem );
 12104 %}
 12106 // This instruction does not round to 24-bits
 12107 instruct convI2F_reg(regF dst, stackSlotI src) %{
 12108   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 12109   match(Set dst (ConvI2F src));
 12110   format %{ "FILD   $src\n\t"
 12111             "FSTP   $dst" %}
 12112   opcode(0xDB, 0x0);  /* DB /0 */
 12113   ins_encode( Push_Mem_I(src),
 12114               Pop_Reg_F(dst));
 12115   ins_pipe( fpu_reg_mem );
 12116 %}
 12118 // This instruction does not round to 24-bits
 12119 instruct convI2F_mem(regF dst, memory mem) %{
 12120   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 12121   match(Set dst (ConvI2F (LoadI mem)));
 12122   format %{ "FILD   $mem\n\t"
 12123             "FSTP   $dst" %}
 12124   opcode(0xDB);      /* DB /0 */
 12125   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 12126               Pop_Reg_F(dst));
 12127   ins_pipe( fpu_reg_mem );
 12128 %}
 12130 // Convert an int to a float in xmm; no rounding step needed.
 12131 instruct convI2X_reg(regX dst, eRegI src) %{
 12132   predicate( UseSSE==1 || UseSSE>=2 && !UseXmmI2F );
 12133   match(Set dst (ConvI2F src));
 12134   format %{ "CVTSI2SS $dst, $src" %}
 12136   opcode(0xF3, 0x0F, 0x2A);  /* F3 0F 2A /r */
 12137   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
 12138   ins_pipe( pipe_slow );
 12139 %}
 12141  instruct convXI2X_reg(regX dst, eRegI src)
 12142 %{
 12143   predicate( UseSSE>=2 && UseXmmI2F );
 12144   match(Set dst (ConvI2F src));
 12146   format %{ "MOVD  $dst,$src\n\t"
 12147             "CVTDQ2PS $dst,$dst\t# i2f" %}
 12148   ins_encode %{
 12149     __ movdl($dst$$XMMRegister, $src$$Register);
 12150     __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
 12151   %}
 12152   ins_pipe(pipe_slow); // XXX
 12153 %}
 12155 instruct convI2L_reg( eRegL dst, eRegI src, eFlagsReg cr) %{
 12156   match(Set dst (ConvI2L src));
 12157   effect(KILL cr);
 12158   ins_cost(375);
 12159   format %{ "MOV    $dst.lo,$src\n\t"
 12160             "MOV    $dst.hi,$src\n\t"
 12161             "SAR    $dst.hi,31" %}
 12162   ins_encode(convert_int_long(dst,src));
 12163   ins_pipe( ialu_reg_reg_long );
 12164 %}
 12166 // Zero-extend convert int to long
 12167 instruct convI2L_reg_zex(eRegL dst, eRegI src, immL_32bits mask, eFlagsReg flags ) %{
 12168   match(Set dst (AndL (ConvI2L src) mask) );
 12169   effect( KILL flags );
 12170   ins_cost(250);
 12171   format %{ "MOV    $dst.lo,$src\n\t"
 12172             "XOR    $dst.hi,$dst.hi" %}
 12173   opcode(0x33); // XOR
 12174   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
 12175   ins_pipe( ialu_reg_reg_long );
 12176 %}
 12178 // Zero-extend long
 12179 instruct zerox_long(eRegL dst, eRegL src, immL_32bits mask, eFlagsReg flags ) %{
 12180   match(Set dst (AndL src mask) );
 12181   effect( KILL flags );
 12182   ins_cost(250);
 12183   format %{ "MOV    $dst.lo,$src.lo\n\t"
 12184             "XOR    $dst.hi,$dst.hi\n\t" %}
 12185   opcode(0x33); // XOR
 12186   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
 12187   ins_pipe( ialu_reg_reg_long );
 12188 %}
 12190 instruct convL2D_reg( stackSlotD dst, eRegL src, eFlagsReg cr) %{
 12191   predicate (UseSSE<=1);
 12192   match(Set dst (ConvL2D src));
 12193   effect( KILL cr );
 12194   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
 12195             "PUSH   $src.lo\n\t"
 12196             "FILD   ST,[ESP + #0]\n\t"
 12197             "ADD    ESP,8\n\t"
 12198             "FSTP_D $dst\t# D-round" %}
 12199   opcode(0xDF, 0x5);  /* DF /5 */
 12200   ins_encode(convert_long_double(src), Pop_Mem_D(dst));
 12201   ins_pipe( pipe_slow );
 12202 %}
 12204 instruct convL2XD_reg( regXD dst, eRegL src, eFlagsReg cr) %{
 12205   predicate (UseSSE>=2);
 12206   match(Set dst (ConvL2D src));
 12207   effect( KILL cr );
 12208   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
 12209             "PUSH   $src.lo\n\t"
 12210             "FILD_D [ESP]\n\t"
 12211             "FSTP_D [ESP]\n\t"
 12212             "MOVSD  $dst,[ESP]\n\t"
 12213             "ADD    ESP,8" %}
 12214   opcode(0xDF, 0x5);  /* DF /5 */
 12215   ins_encode(convert_long_double2(src), Push_ResultXD(dst));
 12216   ins_pipe( pipe_slow );
 12217 %}
 12219 instruct convL2X_reg( regX dst, eRegL src, eFlagsReg cr) %{
 12220   predicate (UseSSE>=1);
 12221   match(Set dst (ConvL2F src));
 12222   effect( KILL cr );
 12223   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
 12224             "PUSH   $src.lo\n\t"
 12225             "FILD_D [ESP]\n\t"
 12226             "FSTP_S [ESP]\n\t"
 12227             "MOVSS  $dst,[ESP]\n\t"
 12228             "ADD    ESP,8" %}
 12229   opcode(0xDF, 0x5);  /* DF /5 */
 12230   ins_encode(convert_long_double2(src), Push_ResultX(dst,0x8));
 12231   ins_pipe( pipe_slow );
 12232 %}
 12234 instruct convL2F_reg( stackSlotF dst, eRegL src, eFlagsReg cr) %{
 12235   match(Set dst (ConvL2F src));
 12236   effect( KILL cr );
 12237   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
 12238             "PUSH   $src.lo\n\t"
 12239             "FILD   ST,[ESP + #0]\n\t"
 12240             "ADD    ESP,8\n\t"
 12241             "FSTP_S $dst\t# F-round" %}
 12242   opcode(0xDF, 0x5);  /* DF /5 */
 12243   ins_encode(convert_long_double(src), Pop_Mem_F(dst));
 12244   ins_pipe( pipe_slow );
 12245 %}
 12247 instruct convL2I_reg( eRegI dst, eRegL src ) %{
 12248   match(Set dst (ConvL2I src));
 12249   effect( DEF dst, USE src );
 12250   format %{ "MOV    $dst,$src.lo" %}
 12251   ins_encode(enc_CopyL_Lo(dst,src));
 12252   ins_pipe( ialu_reg_reg );
 12253 %}
 12256 instruct MoveF2I_stack_reg(eRegI dst, stackSlotF src) %{
 12257   match(Set dst (MoveF2I src));
 12258   effect( DEF dst, USE src );
 12259   ins_cost(100);
 12260   format %{ "MOV    $dst,$src\t# MoveF2I_stack_reg" %}
 12261   opcode(0x8B);
 12262   ins_encode( OpcP, RegMem(dst,src));
 12263   ins_pipe( ialu_reg_mem );
 12264 %}
 12266 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
 12267   predicate(UseSSE==0);
 12268   match(Set dst (MoveF2I src));
 12269   effect( DEF dst, USE src );
 12271   ins_cost(125);
 12272   format %{ "FST_S  $dst,$src\t# MoveF2I_reg_stack" %}
 12273   ins_encode( Pop_Mem_Reg_F(dst, src) );
 12274   ins_pipe( fpu_mem_reg );
 12275 %}
 12277 instruct MoveF2I_reg_stack_sse(stackSlotI dst, regX src) %{
 12278   predicate(UseSSE>=1);
 12279   match(Set dst (MoveF2I src));
 12280   effect( DEF dst, USE src );
 12282   ins_cost(95);
 12283   format %{ "MOVSS  $dst,$src\t# MoveF2I_reg_stack_sse" %}
 12284   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x11), RegMem(src, dst));
 12285   ins_pipe( pipe_slow );
 12286 %}
 12288 instruct MoveF2I_reg_reg_sse(eRegI dst, regX src) %{
 12289   predicate(UseSSE>=2);
 12290   match(Set dst (MoveF2I src));
 12291   effect( DEF dst, USE src );
 12292   ins_cost(85);
 12293   format %{ "MOVD   $dst,$src\t# MoveF2I_reg_reg_sse" %}
 12294   ins_encode( MovX2I_reg(dst, src));
 12295   ins_pipe( pipe_slow );
 12296 %}
 12298 instruct MoveI2F_reg_stack(stackSlotF dst, eRegI src) %{
 12299   match(Set dst (MoveI2F src));
 12300   effect( DEF dst, USE src );
 12302   ins_cost(100);
 12303   format %{ "MOV    $dst,$src\t# MoveI2F_reg_stack" %}
 12304   opcode(0x89);
 12305   ins_encode( OpcPRegSS( dst, src ) );
 12306   ins_pipe( ialu_mem_reg );
 12307 %}
 12310 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
 12311   predicate(UseSSE==0);
 12312   match(Set dst (MoveI2F src));
 12313   effect(DEF dst, USE src);
 12315   ins_cost(125);
 12316   format %{ "FLD_S  $src\n\t"
 12317             "FSTP   $dst\t# MoveI2F_stack_reg" %}
 12318   opcode(0xD9);               /* D9 /0, FLD m32real */
 12319   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
 12320               Pop_Reg_F(dst) );
 12321   ins_pipe( fpu_reg_mem );
 12322 %}
 12324 instruct MoveI2F_stack_reg_sse(regX dst, stackSlotI src) %{
 12325   predicate(UseSSE>=1);
 12326   match(Set dst (MoveI2F src));
 12327   effect( DEF dst, USE src );
 12329   ins_cost(95);
 12330   format %{ "MOVSS  $dst,$src\t# MoveI2F_stack_reg_sse" %}
 12331   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), RegMem(dst,src));
 12332   ins_pipe( pipe_slow );
 12333 %}
 12335 instruct MoveI2F_reg_reg_sse(regX dst, eRegI src) %{
 12336   predicate(UseSSE>=2);
 12337   match(Set dst (MoveI2F src));
 12338   effect( DEF dst, USE src );
 12340   ins_cost(85);
 12341   format %{ "MOVD   $dst,$src\t# MoveI2F_reg_reg_sse" %}
 12342   ins_encode( MovI2X_reg(dst, src) );
 12343   ins_pipe( pipe_slow );
 12344 %}
 12346 instruct MoveD2L_stack_reg(eRegL dst, stackSlotD src) %{
 12347   match(Set dst (MoveD2L src));
 12348   effect(DEF dst, USE src);
 12350   ins_cost(250);
 12351   format %{ "MOV    $dst.lo,$src\n\t"
 12352             "MOV    $dst.hi,$src+4\t# MoveD2L_stack_reg" %}
 12353   opcode(0x8B, 0x8B);
 12354   ins_encode( OpcP, RegMem(dst,src), OpcS, RegMem_Hi(dst,src));
 12355   ins_pipe( ialu_mem_long_reg );
 12356 %}
 12358 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
 12359   predicate(UseSSE<=1);
 12360   match(Set dst (MoveD2L src));
 12361   effect(DEF dst, USE src);
 12363   ins_cost(125);
 12364   format %{ "FST_D  $dst,$src\t# MoveD2L_reg_stack" %}
 12365   ins_encode( Pop_Mem_Reg_D(dst, src) );
 12366   ins_pipe( fpu_mem_reg );
 12367 %}
 12369 instruct MoveD2L_reg_stack_sse(stackSlotL dst, regXD src) %{
 12370   predicate(UseSSE>=2);
 12371   match(Set dst (MoveD2L src));
 12372   effect(DEF dst, USE src);
 12373   ins_cost(95);
 12375   format %{ "MOVSD  $dst,$src\t# MoveD2L_reg_stack_sse" %}
 12376   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x11), RegMem(src,dst));
 12377   ins_pipe( pipe_slow );
 12378 %}
 12380 instruct MoveD2L_reg_reg_sse(eRegL dst, regXD src, regXD tmp) %{
 12381   predicate(UseSSE>=2);
 12382   match(Set dst (MoveD2L src));
 12383   effect(DEF dst, USE src, TEMP tmp);
 12384   ins_cost(85);
 12385   format %{ "MOVD   $dst.lo,$src\n\t"
 12386             "PSHUFLW $tmp,$src,0x4E\n\t"
 12387             "MOVD   $dst.hi,$tmp\t# MoveD2L_reg_reg_sse" %}
 12388   ins_encode( MovXD2L_reg(dst, src, tmp) );
 12389   ins_pipe( pipe_slow );
 12390 %}
 12392 instruct MoveL2D_reg_stack(stackSlotD dst, eRegL src) %{
 12393   match(Set dst (MoveL2D src));
 12394   effect(DEF dst, USE src);
 12396   ins_cost(200);
 12397   format %{ "MOV    $dst,$src.lo\n\t"
 12398             "MOV    $dst+4,$src.hi\t# MoveL2D_reg_stack" %}
 12399   opcode(0x89, 0x89);
 12400   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
 12401   ins_pipe( ialu_mem_long_reg );
 12402 %}
 12405 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
 12406   predicate(UseSSE<=1);
 12407   match(Set dst (MoveL2D src));
 12408   effect(DEF dst, USE src);
 12409   ins_cost(125);
 12411   format %{ "FLD_D  $src\n\t"
 12412             "FSTP   $dst\t# MoveL2D_stack_reg" %}
 12413   opcode(0xDD);               /* DD /0, FLD m64real */
 12414   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
 12415               Pop_Reg_D(dst) );
 12416   ins_pipe( fpu_reg_mem );
 12417 %}
 12420 instruct MoveL2D_stack_reg_sse(regXD dst, stackSlotL src) %{
 12421   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
 12422   match(Set dst (MoveL2D src));
 12423   effect(DEF dst, USE src);
 12425   ins_cost(95);
 12426   format %{ "MOVSD  $dst,$src\t# MoveL2D_stack_reg_sse" %}
 12427   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x10), RegMem(dst,src));
 12428   ins_pipe( pipe_slow );
 12429 %}
 12431 instruct MoveL2D_stack_reg_sse_partial(regXD dst, stackSlotL src) %{
 12432   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
 12433   match(Set dst (MoveL2D src));
 12434   effect(DEF dst, USE src);
 12436   ins_cost(95);
 12437   format %{ "MOVLPD $dst,$src\t# MoveL2D_stack_reg_sse" %}
 12438   ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x12), RegMem(dst,src));
 12439   ins_pipe( pipe_slow );
 12440 %}
 12442 instruct MoveL2D_reg_reg_sse(regXD dst, eRegL src, regXD tmp) %{
 12443   predicate(UseSSE>=2);
 12444   match(Set dst (MoveL2D src));
 12445   effect(TEMP dst, USE src, TEMP tmp);
 12446   ins_cost(85);
 12447   format %{ "MOVD   $dst,$src.lo\n\t"
 12448             "MOVD   $tmp,$src.hi\n\t"
 12449             "PUNPCKLDQ $dst,$tmp\t# MoveL2D_reg_reg_sse" %}
 12450   ins_encode( MovL2XD_reg(dst, src, tmp) );
 12451   ins_pipe( pipe_slow );
 12452 %}
 12454 // Replicate scalar to packed byte (1 byte) values in xmm
 12455 instruct Repl8B_reg(regXD dst, regXD src) %{
 12456   predicate(UseSSE>=2);
 12457   match(Set dst (Replicate8B src));
 12458   format %{ "MOVDQA  $dst,$src\n\t"
 12459             "PUNPCKLBW $dst,$dst\n\t"
 12460             "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
 12461   ins_encode( pshufd_8x8(dst, src));
 12462   ins_pipe( pipe_slow );
 12463 %}
 12465 // Replicate scalar to packed byte (1 byte) values in xmm
 12466 instruct Repl8B_eRegI(regXD dst, eRegI src) %{
 12467   predicate(UseSSE>=2);
 12468   match(Set dst (Replicate8B src));
 12469   format %{ "MOVD    $dst,$src\n\t"
 12470             "PUNPCKLBW $dst,$dst\n\t"
 12471             "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
 12472   ins_encode( mov_i2x(dst, src), pshufd_8x8(dst, dst));
 12473   ins_pipe( pipe_slow );
 12474 %}
 12476 // Replicate scalar zero to packed byte (1 byte) values in xmm
 12477 instruct Repl8B_immI0(regXD dst, immI0 zero) %{
 12478   predicate(UseSSE>=2);
 12479   match(Set dst (Replicate8B zero));
 12480   format %{ "PXOR  $dst,$dst\t! replicate8B" %}
 12481   ins_encode( pxor(dst, dst));
 12482   ins_pipe( fpu_reg_reg );
 12483 %}
 12485 // Replicate scalar to packed shore (2 byte) values in xmm
 12486 instruct Repl4S_reg(regXD dst, regXD src) %{
 12487   predicate(UseSSE>=2);
 12488   match(Set dst (Replicate4S src));
 12489   format %{ "PSHUFLW $dst,$src,0x00\t! replicate4S" %}
 12490   ins_encode( pshufd_4x16(dst, src));
 12491   ins_pipe( fpu_reg_reg );
 12492 %}
 12494 // Replicate scalar to packed shore (2 byte) values in xmm
 12495 instruct Repl4S_eRegI(regXD dst, eRegI src) %{
 12496   predicate(UseSSE>=2);
 12497   match(Set dst (Replicate4S src));
 12498   format %{ "MOVD    $dst,$src\n\t"
 12499             "PSHUFLW $dst,$dst,0x00\t! replicate4S" %}
 12500   ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
 12501   ins_pipe( fpu_reg_reg );
 12502 %}
 12504 // Replicate scalar zero to packed short (2 byte) values in xmm
 12505 instruct Repl4S_immI0(regXD dst, immI0 zero) %{
 12506   predicate(UseSSE>=2);
 12507   match(Set dst (Replicate4S zero));
 12508   format %{ "PXOR  $dst,$dst\t! replicate4S" %}
 12509   ins_encode( pxor(dst, dst));
 12510   ins_pipe( fpu_reg_reg );
 12511 %}
 12513 // Replicate scalar to packed char (2 byte) values in xmm
 12514 instruct Repl4C_reg(regXD dst, regXD src) %{
 12515   predicate(UseSSE>=2);
 12516   match(Set dst (Replicate4C src));
 12517   format %{ "PSHUFLW $dst,$src,0x00\t! replicate4C" %}
 12518   ins_encode( pshufd_4x16(dst, src));
 12519   ins_pipe( fpu_reg_reg );
 12520 %}
 12522 // Replicate scalar to packed char (2 byte) values in xmm
 12523 instruct Repl4C_eRegI(regXD dst, eRegI src) %{
 12524   predicate(UseSSE>=2);
 12525   match(Set dst (Replicate4C src));
 12526   format %{ "MOVD    $dst,$src\n\t"
 12527             "PSHUFLW $dst,$dst,0x00\t! replicate4C" %}
 12528   ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
 12529   ins_pipe( fpu_reg_reg );
 12530 %}
 12532 // Replicate scalar zero to packed char (2 byte) values in xmm
 12533 instruct Repl4C_immI0(regXD dst, immI0 zero) %{
 12534   predicate(UseSSE>=2);
 12535   match(Set dst (Replicate4C zero));
 12536   format %{ "PXOR  $dst,$dst\t! replicate4C" %}
 12537   ins_encode( pxor(dst, dst));
 12538   ins_pipe( fpu_reg_reg );
 12539 %}
 12541 // Replicate scalar to packed integer (4 byte) values in xmm
 12542 instruct Repl2I_reg(regXD dst, regXD src) %{
 12543   predicate(UseSSE>=2);
 12544   match(Set dst (Replicate2I src));
 12545   format %{ "PSHUFD $dst,$src,0x00\t! replicate2I" %}
 12546   ins_encode( pshufd(dst, src, 0x00));
 12547   ins_pipe( fpu_reg_reg );
 12548 %}
 12550 // Replicate scalar to packed integer (4 byte) values in xmm
 12551 instruct Repl2I_eRegI(regXD dst, eRegI src) %{
 12552   predicate(UseSSE>=2);
 12553   match(Set dst (Replicate2I src));
 12554   format %{ "MOVD   $dst,$src\n\t"
 12555             "PSHUFD $dst,$dst,0x00\t! replicate2I" %}
 12556   ins_encode( mov_i2x(dst, src), pshufd(dst, dst, 0x00));
 12557   ins_pipe( fpu_reg_reg );
 12558 %}
 12560 // Replicate scalar zero to packed integer (2 byte) values in xmm
 12561 instruct Repl2I_immI0(regXD dst, immI0 zero) %{
 12562   predicate(UseSSE>=2);
 12563   match(Set dst (Replicate2I zero));
 12564   format %{ "PXOR  $dst,$dst\t! replicate2I" %}
 12565   ins_encode( pxor(dst, dst));
 12566   ins_pipe( fpu_reg_reg );
 12567 %}
 12569 // Replicate scalar to packed single precision floating point values in xmm
 12570 instruct Repl2F_reg(regXD dst, regXD src) %{
 12571   predicate(UseSSE>=2);
 12572   match(Set dst (Replicate2F src));
 12573   format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
 12574   ins_encode( pshufd(dst, src, 0xe0));
 12575   ins_pipe( fpu_reg_reg );
 12576 %}
 12578 // Replicate scalar to packed single precision floating point values in xmm
 12579 instruct Repl2F_regX(regXD dst, regX src) %{
 12580   predicate(UseSSE>=2);
 12581   match(Set dst (Replicate2F src));
 12582   format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
 12583   ins_encode( pshufd(dst, src, 0xe0));
 12584   ins_pipe( fpu_reg_reg );
 12585 %}
 12587 // Replicate scalar to packed single precision floating point values in xmm
 12588 instruct Repl2F_immXF0(regXD dst, immXF0 zero) %{
 12589   predicate(UseSSE>=2);
 12590   match(Set dst (Replicate2F zero));
 12591   format %{ "PXOR  $dst,$dst\t! replicate2F" %}
 12592   ins_encode( pxor(dst, dst));
 12593   ins_pipe( fpu_reg_reg );
 12594 %}
 12596 // =======================================================================
 12597 // fast clearing of an array
 12598 instruct rep_stos(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
 12599   match(Set dummy (ClearArray cnt base));
 12600   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
 12601   format %{ "SHL    ECX,1\t# Convert doublewords to words\n\t"
 12602             "XOR    EAX,EAX\n\t"
 12603             "REP STOS\t# store EAX into [EDI++] while ECX--" %}
 12604   opcode(0,0x4);
 12605   ins_encode( Opcode(0xD1), RegOpc(ECX),
 12606               OpcRegReg(0x33,EAX,EAX),
 12607               Opcode(0xF3), Opcode(0xAB) );
 12608   ins_pipe( pipe_slow );
 12609 %}
 12611 instruct string_compare(eDIRegP str1, eCXRegI cnt1, eSIRegP str2, eDXRegI cnt2,
 12612                         eAXRegI result, regXD tmp1, eFlagsReg cr) %{
 12613   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
 12614   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
 12616   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
 12617   ins_encode %{
 12618     __ string_compare($str1$$Register, $str2$$Register,
 12619                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
 12620                       $tmp1$$XMMRegister);
 12621   %}
 12622   ins_pipe( pipe_slow );
 12623 %}
 12625 // fast string equals
 12626 instruct string_equals(eDIRegP str1, eSIRegP str2, eCXRegI cnt, eAXRegI result,
 12627                        regXD tmp1, regXD tmp2, eBXRegI tmp3, eFlagsReg cr) %{
 12628   match(Set result (StrEquals (Binary str1 str2) cnt));
 12629   effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp3, KILL cr);
 12631   format %{ "String Equals $str1,$str2,$cnt -> $result    // KILL $tmp1, $tmp2, $tmp3" %}
 12632   ins_encode %{
 12633     __ char_arrays_equals(false, $str1$$Register, $str2$$Register,
 12634                           $cnt$$Register, $result$$Register, $tmp3$$Register,
 12635                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
 12636   %}
 12637   ins_pipe( pipe_slow );
 12638 %}
 12640 // fast search of substring with known size.
 12641 instruct string_indexof_con(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, immI int_cnt2,
 12642                             eBXRegI result, regXD vec, eAXRegI cnt2, eCXRegI tmp, eFlagsReg cr) %{
 12643   predicate(UseSSE42Intrinsics);
 12644   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
 12645   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, KILL cnt2, KILL tmp, KILL cr);
 12647   format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result   // KILL $vec, $cnt1, $cnt2, $tmp" %}
 12648   ins_encode %{
 12649     int icnt2 = (int)$int_cnt2$$constant;
 12650     if (icnt2 >= 8) {
 12651       // IndexOf for constant substrings with size >= 8 elements
 12652       // which don't need to be loaded through stack.
 12653       __ string_indexofC8($str1$$Register, $str2$$Register,
 12654                           $cnt1$$Register, $cnt2$$Register,
 12655                           icnt2, $result$$Register,
 12656                           $vec$$XMMRegister, $tmp$$Register);
 12657     } else {
 12658       // Small strings are loaded through stack if they cross page boundary.
 12659       __ string_indexof($str1$$Register, $str2$$Register,
 12660                         $cnt1$$Register, $cnt2$$Register,
 12661                         icnt2, $result$$Register,
 12662                         $vec$$XMMRegister, $tmp$$Register);
 12664   %}
 12665   ins_pipe( pipe_slow );
 12666 %}
 12668 instruct string_indexof(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, eAXRegI cnt2,
 12669                         eBXRegI result, regXD vec, eCXRegI tmp, eFlagsReg cr) %{
 12670   predicate(UseSSE42Intrinsics);
 12671   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
 12672   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp, KILL cr);
 12674   format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result   // KILL all" %}
 12675   ins_encode %{
 12676     __ string_indexof($str1$$Register, $str2$$Register,
 12677                       $cnt1$$Register, $cnt2$$Register,
 12678                       (-1), $result$$Register,
 12679                       $vec$$XMMRegister, $tmp$$Register);
 12680   %}
 12681   ins_pipe( pipe_slow );
 12682 %}
 12684 // fast array equals
 12685 instruct array_equals(eDIRegP ary1, eSIRegP ary2, eAXRegI result,
 12686                       regXD tmp1, regXD tmp2, eCXRegI tmp3, eBXRegI tmp4, eFlagsReg cr)
 12687 %{
 12688   match(Set result (AryEq ary1 ary2));
 12689   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
 12690   //ins_cost(300);
 12692   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
 12693   ins_encode %{
 12694     __ char_arrays_equals(true, $ary1$$Register, $ary2$$Register,
 12695                           $tmp3$$Register, $result$$Register, $tmp4$$Register,
 12696                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
 12697   %}
 12698   ins_pipe( pipe_slow );
 12699 %}
 12701 //----------Control Flow Instructions------------------------------------------
 12702 // Signed compare Instructions
 12703 instruct compI_eReg(eFlagsReg cr, eRegI op1, eRegI op2) %{
 12704   match(Set cr (CmpI op1 op2));
 12705   effect( DEF cr, USE op1, USE op2 );
 12706   format %{ "CMP    $op1,$op2" %}
 12707   opcode(0x3B);  /* Opcode 3B /r */
 12708   ins_encode( OpcP, RegReg( op1, op2) );
 12709   ins_pipe( ialu_cr_reg_reg );
 12710 %}
 12712 instruct compI_eReg_imm(eFlagsReg cr, eRegI op1, immI op2) %{
 12713   match(Set cr (CmpI op1 op2));
 12714   effect( DEF cr, USE op1 );
 12715   format %{ "CMP    $op1,$op2" %}
 12716   opcode(0x81,0x07);  /* Opcode 81 /7 */
 12717   // ins_encode( RegImm( op1, op2) );  /* Was CmpImm */
 12718   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 12719   ins_pipe( ialu_cr_reg_imm );
 12720 %}
 12722 // Cisc-spilled version of cmpI_eReg
 12723 instruct compI_eReg_mem(eFlagsReg cr, eRegI op1, memory op2) %{
 12724   match(Set cr (CmpI op1 (LoadI op2)));
 12726   format %{ "CMP    $op1,$op2" %}
 12727   ins_cost(500);
 12728   opcode(0x3B);  /* Opcode 3B /r */
 12729   ins_encode( OpcP, RegMem( op1, op2) );
 12730   ins_pipe( ialu_cr_reg_mem );
 12731 %}
 12733 instruct testI_reg( eFlagsReg cr, eRegI src, immI0 zero ) %{
 12734   match(Set cr (CmpI src zero));
 12735   effect( DEF cr, USE src );
 12737   format %{ "TEST   $src,$src" %}
 12738   opcode(0x85);
 12739   ins_encode( OpcP, RegReg( src, src ) );
 12740   ins_pipe( ialu_cr_reg_imm );
 12741 %}
 12743 instruct testI_reg_imm( eFlagsReg cr, eRegI src, immI con, immI0 zero ) %{
 12744   match(Set cr (CmpI (AndI src con) zero));
 12746   format %{ "TEST   $src,$con" %}
 12747   opcode(0xF7,0x00);
 12748   ins_encode( OpcP, RegOpc(src), Con32(con) );
 12749   ins_pipe( ialu_cr_reg_imm );
 12750 %}
 12752 instruct testI_reg_mem( eFlagsReg cr, eRegI src, memory mem, immI0 zero ) %{
 12753   match(Set cr (CmpI (AndI src mem) zero));
 12755   format %{ "TEST   $src,$mem" %}
 12756   opcode(0x85);
 12757   ins_encode( OpcP, RegMem( src, mem ) );
 12758   ins_pipe( ialu_cr_reg_mem );
 12759 %}
 12761 // Unsigned compare Instructions; really, same as signed except they
 12762 // produce an eFlagsRegU instead of eFlagsReg.
 12763 instruct compU_eReg(eFlagsRegU cr, eRegI op1, eRegI op2) %{
 12764   match(Set cr (CmpU op1 op2));
 12766   format %{ "CMPu   $op1,$op2" %}
 12767   opcode(0x3B);  /* Opcode 3B /r */
 12768   ins_encode( OpcP, RegReg( op1, op2) );
 12769   ins_pipe( ialu_cr_reg_reg );
 12770 %}
 12772 instruct compU_eReg_imm(eFlagsRegU cr, eRegI op1, immI op2) %{
 12773   match(Set cr (CmpU op1 op2));
 12775   format %{ "CMPu   $op1,$op2" %}
 12776   opcode(0x81,0x07);  /* Opcode 81 /7 */
 12777   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 12778   ins_pipe( ialu_cr_reg_imm );
 12779 %}
 12781 // // Cisc-spilled version of cmpU_eReg
 12782 instruct compU_eReg_mem(eFlagsRegU cr, eRegI op1, memory op2) %{
 12783   match(Set cr (CmpU op1 (LoadI op2)));
 12785   format %{ "CMPu   $op1,$op2" %}
 12786   ins_cost(500);
 12787   opcode(0x3B);  /* Opcode 3B /r */
 12788   ins_encode( OpcP, RegMem( op1, op2) );
 12789   ins_pipe( ialu_cr_reg_mem );
 12790 %}
 12792 // // Cisc-spilled version of cmpU_eReg
 12793 //instruct compU_mem_eReg(eFlagsRegU cr, memory op1, eRegI op2) %{
 12794 //  match(Set cr (CmpU (LoadI op1) op2));
 12795 //
 12796 //  format %{ "CMPu   $op1,$op2" %}
 12797 //  ins_cost(500);
 12798 //  opcode(0x39);  /* Opcode 39 /r */
 12799 //  ins_encode( OpcP, RegMem( op1, op2) );
 12800 //%}
 12802 instruct testU_reg( eFlagsRegU cr, eRegI src, immI0 zero ) %{
 12803   match(Set cr (CmpU src zero));
 12805   format %{ "TESTu  $src,$src" %}
 12806   opcode(0x85);
 12807   ins_encode( OpcP, RegReg( src, src ) );
 12808   ins_pipe( ialu_cr_reg_imm );
 12809 %}
 12811 // Unsigned pointer compare Instructions
 12812 instruct compP_eReg(eFlagsRegU cr, eRegP op1, eRegP op2) %{
 12813   match(Set cr (CmpP op1 op2));
 12815   format %{ "CMPu   $op1,$op2" %}
 12816   opcode(0x3B);  /* Opcode 3B /r */
 12817   ins_encode( OpcP, RegReg( op1, op2) );
 12818   ins_pipe( ialu_cr_reg_reg );
 12819 %}
 12821 instruct compP_eReg_imm(eFlagsRegU cr, eRegP op1, immP op2) %{
 12822   match(Set cr (CmpP op1 op2));
 12824   format %{ "CMPu   $op1,$op2" %}
 12825   opcode(0x81,0x07);  /* Opcode 81 /7 */
 12826   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 12827   ins_pipe( ialu_cr_reg_imm );
 12828 %}
 12830 // // Cisc-spilled version of cmpP_eReg
 12831 instruct compP_eReg_mem(eFlagsRegU cr, eRegP op1, memory op2) %{
 12832   match(Set cr (CmpP op1 (LoadP op2)));
 12834   format %{ "CMPu   $op1,$op2" %}
 12835   ins_cost(500);
 12836   opcode(0x3B);  /* Opcode 3B /r */
 12837   ins_encode( OpcP, RegMem( op1, op2) );
 12838   ins_pipe( ialu_cr_reg_mem );
 12839 %}
 12841 // // Cisc-spilled version of cmpP_eReg
 12842 //instruct compP_mem_eReg(eFlagsRegU cr, memory op1, eRegP op2) %{
 12843 //  match(Set cr (CmpP (LoadP op1) op2));
 12844 //
 12845 //  format %{ "CMPu   $op1,$op2" %}
 12846 //  ins_cost(500);
 12847 //  opcode(0x39);  /* Opcode 39 /r */
 12848 //  ins_encode( OpcP, RegMem( op1, op2) );
 12849 //%}
 12851 // Compare raw pointer (used in out-of-heap check).
 12852 // Only works because non-oop pointers must be raw pointers
 12853 // and raw pointers have no anti-dependencies.
 12854 instruct compP_mem_eReg( eFlagsRegU cr, eRegP op1, memory op2 ) %{
 12855   predicate( !n->in(2)->in(2)->bottom_type()->isa_oop_ptr() );
 12856   match(Set cr (CmpP op1 (LoadP op2)));
 12858   format %{ "CMPu   $op1,$op2" %}
 12859   opcode(0x3B);  /* Opcode 3B /r */
 12860   ins_encode( OpcP, RegMem( op1, op2) );
 12861   ins_pipe( ialu_cr_reg_mem );
 12862 %}
 12864 //
 12865 // This will generate a signed flags result. This should be ok
 12866 // since any compare to a zero should be eq/neq.
 12867 instruct testP_reg( eFlagsReg cr, eRegP src, immP0 zero ) %{
 12868   match(Set cr (CmpP src zero));
 12870   format %{ "TEST   $src,$src" %}
 12871   opcode(0x85);
 12872   ins_encode( OpcP, RegReg( src, src ) );
 12873   ins_pipe( ialu_cr_reg_imm );
 12874 %}
 12876 // Cisc-spilled version of testP_reg
 12877 // This will generate a signed flags result. This should be ok
 12878 // since any compare to a zero should be eq/neq.
 12879 instruct testP_Reg_mem( eFlagsReg cr, memory op, immI0 zero ) %{
 12880   match(Set cr (CmpP (LoadP op) zero));
 12882   format %{ "TEST   $op,0xFFFFFFFF" %}
 12883   ins_cost(500);
 12884   opcode(0xF7);               /* Opcode F7 /0 */
 12885   ins_encode( OpcP, RMopc_Mem(0x00,op), Con_d32(0xFFFFFFFF) );
 12886   ins_pipe( ialu_cr_reg_imm );
 12887 %}
 12889 // Yanked all unsigned pointer compare operations.
 12890 // Pointer compares are done with CmpP which is already unsigned.
 12892 //----------Max and Min--------------------------------------------------------
 12893 // Min Instructions
 12894 ////
 12895 //   *** Min and Max using the conditional move are slower than the
 12896 //   *** branch version on a Pentium III.
 12897 // // Conditional move for min
 12898 //instruct cmovI_reg_lt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
 12899 //  effect( USE_DEF op2, USE op1, USE cr );
 12900 //  format %{ "CMOVlt $op2,$op1\t! min" %}
 12901 //  opcode(0x4C,0x0F);
 12902 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 12903 //  ins_pipe( pipe_cmov_reg );
 12904 //%}
 12905 //
 12906 //// Min Register with Register (P6 version)
 12907 //instruct minI_eReg_p6( eRegI op1, eRegI op2 ) %{
 12908 //  predicate(VM_Version::supports_cmov() );
 12909 //  match(Set op2 (MinI op1 op2));
 12910 //  ins_cost(200);
 12911 //  expand %{
 12912 //    eFlagsReg cr;
 12913 //    compI_eReg(cr,op1,op2);
 12914 //    cmovI_reg_lt(op2,op1,cr);
 12915 //  %}
 12916 //%}
 12918 // Min Register with Register (generic version)
 12919 instruct minI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{
 12920   match(Set dst (MinI dst src));
 12921   effect(KILL flags);
 12922   ins_cost(300);
 12924   format %{ "MIN    $dst,$src" %}
 12925   opcode(0xCC);
 12926   ins_encode( min_enc(dst,src) );
 12927   ins_pipe( pipe_slow );
 12928 %}
 12930 // Max Register with Register
 12931 //   *** Min and Max using the conditional move are slower than the
 12932 //   *** branch version on a Pentium III.
 12933 // // Conditional move for max
 12934 //instruct cmovI_reg_gt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
 12935 //  effect( USE_DEF op2, USE op1, USE cr );
 12936 //  format %{ "CMOVgt $op2,$op1\t! max" %}
 12937 //  opcode(0x4F,0x0F);
 12938 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 12939 //  ins_pipe( pipe_cmov_reg );
 12940 //%}
 12941 //
 12942 // // Max Register with Register (P6 version)
 12943 //instruct maxI_eReg_p6( eRegI op1, eRegI op2 ) %{
 12944 //  predicate(VM_Version::supports_cmov() );
 12945 //  match(Set op2 (MaxI op1 op2));
 12946 //  ins_cost(200);
 12947 //  expand %{
 12948 //    eFlagsReg cr;
 12949 //    compI_eReg(cr,op1,op2);
 12950 //    cmovI_reg_gt(op2,op1,cr);
 12951 //  %}
 12952 //%}
 12954 // Max Register with Register (generic version)
 12955 instruct maxI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{
 12956   match(Set dst (MaxI dst src));
 12957   effect(KILL flags);
 12958   ins_cost(300);
 12960   format %{ "MAX    $dst,$src" %}
 12961   opcode(0xCC);
 12962   ins_encode( max_enc(dst,src) );
 12963   ins_pipe( pipe_slow );
 12964 %}
 12966 // ============================================================================
 12967 // Counted Loop limit node which represents exact final iterator value.
 12968 // Note: the resulting value should fit into integer range since
 12969 // counted loops have limit check on overflow.
 12970 instruct loopLimit_eReg(eAXRegI limit, nadxRegI init, immI stride, eDXRegI limit_hi, nadxRegI tmp, eFlagsReg flags) %{
 12971   match(Set limit (LoopLimit (Binary init limit) stride));
 12972   effect(TEMP limit_hi, TEMP tmp, KILL flags);
 12973   ins_cost(300);
 12975   format %{ "loopLimit $init,$limit,$stride  # $limit = $init + $stride *( $limit - $init + $stride -1)/ $stride, kills $limit_hi" %}
 12976   ins_encode %{
 12977     int strd = (int)$stride$$constant;
 12978     assert(strd != 1 && strd != -1, "sanity");
 12979     int m1 = (strd > 0) ? 1 : -1;
 12980     // Convert limit to long (EAX:EDX)
 12981     __ cdql();
 12982     // Convert init to long (init:tmp)
 12983     __ movl($tmp$$Register, $init$$Register);
 12984     __ sarl($tmp$$Register, 31);
 12985     // $limit - $init
 12986     __ subl($limit$$Register, $init$$Register);
 12987     __ sbbl($limit_hi$$Register, $tmp$$Register);
 12988     // + ($stride - 1)
 12989     if (strd > 0) {
 12990       __ addl($limit$$Register, (strd - 1));
 12991       __ adcl($limit_hi$$Register, 0);
 12992       __ movl($tmp$$Register, strd);
 12993     } else {
 12994       __ addl($limit$$Register, (strd + 1));
 12995       __ adcl($limit_hi$$Register, -1);
 12996       __ lneg($limit_hi$$Register, $limit$$Register);
 12997       __ movl($tmp$$Register, -strd);
 12999     // signed devision: (EAX:EDX) / pos_stride
 13000     __ idivl($tmp$$Register);
 13001     if (strd < 0) {
 13002       // restore sign
 13003       __ negl($tmp$$Register);
 13005     // (EAX) * stride
 13006     __ mull($tmp$$Register);
 13007     // + init (ignore upper bits)
 13008     __ addl($limit$$Register, $init$$Register);
 13009   %}
 13010   ins_pipe( pipe_slow );
 13011 %}
 13013 // ============================================================================
 13014 // Branch Instructions
 13015 // Jump Table
 13016 instruct jumpXtnd(eRegI switch_val) %{
 13017   match(Jump switch_val);
 13018   ins_cost(350);
 13019   format %{  "JMP    [$constantaddress](,$switch_val,1)\n\t" %}
 13020   ins_encode %{
 13021     // Jump to Address(table_base + switch_reg)
 13022     Address index(noreg, $switch_val$$Register, Address::times_1);
 13023     __ jump(ArrayAddress($constantaddress, index));
 13024   %}
 13025   ins_pipe(pipe_jmp);
 13026 %}
 13028 // Jump Direct - Label defines a relative address from JMP+1
 13029 instruct jmpDir(label labl) %{
 13030   match(Goto);
 13031   effect(USE labl);
 13033   ins_cost(300);
 13034   format %{ "JMP    $labl" %}
 13035   size(5);
 13036   ins_encode %{
 13037     Label* L = $labl$$label;
 13038     __ jmp(*L, false); // Always long jump
 13039   %}
 13040   ins_pipe( pipe_jmp );
 13041 %}
 13043 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 13044 instruct jmpCon(cmpOp cop, eFlagsReg cr, label labl) %{
 13045   match(If cop cr);
 13046   effect(USE labl);
 13048   ins_cost(300);
 13049   format %{ "J$cop    $labl" %}
 13050   size(6);
 13051   ins_encode %{
 13052     Label* L = $labl$$label;
 13053     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 13054   %}
 13055   ins_pipe( pipe_jcc );
 13056 %}
 13058 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 13059 instruct jmpLoopEnd(cmpOp cop, eFlagsReg cr, label labl) %{
 13060   match(CountedLoopEnd cop cr);
 13061   effect(USE labl);
 13063   ins_cost(300);
 13064   format %{ "J$cop    $labl\t# Loop end" %}
 13065   size(6);
 13066   ins_encode %{
 13067     Label* L = $labl$$label;
 13068     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 13069   %}
 13070   ins_pipe( pipe_jcc );
 13071 %}
 13073 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 13074 instruct jmpLoopEndU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 13075   match(CountedLoopEnd cop cmp);
 13076   effect(USE labl);
 13078   ins_cost(300);
 13079   format %{ "J$cop,u  $labl\t# Loop end" %}
 13080   size(6);
 13081   ins_encode %{
 13082     Label* L = $labl$$label;
 13083     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 13084   %}
 13085   ins_pipe( pipe_jcc );
 13086 %}
 13088 instruct jmpLoopEndUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 13089   match(CountedLoopEnd cop cmp);
 13090   effect(USE labl);
 13092   ins_cost(200);
 13093   format %{ "J$cop,u  $labl\t# Loop end" %}
 13094   size(6);
 13095   ins_encode %{
 13096     Label* L = $labl$$label;
 13097     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 13098   %}
 13099   ins_pipe( pipe_jcc );
 13100 %}
 13102 // Jump Direct Conditional - using unsigned comparison
 13103 instruct jmpConU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 13104   match(If cop cmp);
 13105   effect(USE labl);
 13107   ins_cost(300);
 13108   format %{ "J$cop,u  $labl" %}
 13109   size(6);
 13110   ins_encode %{
 13111     Label* L = $labl$$label;
 13112     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 13113   %}
 13114   ins_pipe(pipe_jcc);
 13115 %}
 13117 instruct jmpConUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 13118   match(If cop cmp);
 13119   effect(USE labl);
 13121   ins_cost(200);
 13122   format %{ "J$cop,u  $labl" %}
 13123   size(6);
 13124   ins_encode %{
 13125     Label* L = $labl$$label;
 13126     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 13127   %}
 13128   ins_pipe(pipe_jcc);
 13129 %}
 13131 instruct jmpConUCF2(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
 13132   match(If cop cmp);
 13133   effect(USE labl);
 13135   ins_cost(200);
 13136   format %{ $$template
 13137     if ($cop$$cmpcode == Assembler::notEqual) {
 13138       $$emit$$"JP,u   $labl\n\t"
 13139       $$emit$$"J$cop,u   $labl"
 13140     } else {
 13141       $$emit$$"JP,u   done\n\t"
 13142       $$emit$$"J$cop,u   $labl\n\t"
 13143       $$emit$$"done:"
 13145   %}
 13146   ins_encode %{
 13147     Label* l = $labl$$label;
 13148     if ($cop$$cmpcode == Assembler::notEqual) {
 13149       __ jcc(Assembler::parity, *l, false);
 13150       __ jcc(Assembler::notEqual, *l, false);
 13151     } else if ($cop$$cmpcode == Assembler::equal) {
 13152       Label done;
 13153       __ jccb(Assembler::parity, done);
 13154       __ jcc(Assembler::equal, *l, false);
 13155       __ bind(done);
 13156     } else {
 13157        ShouldNotReachHere();
 13159   %}
 13160   ins_pipe(pipe_jcc);
 13161 %}
 13163 // ============================================================================
 13164 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
 13165 // array for an instance of the superklass.  Set a hidden internal cache on a
 13166 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
 13167 // NZ for a miss or zero for a hit.  The encoding ALSO sets flags.
 13168 instruct partialSubtypeCheck( eDIRegP result, eSIRegP sub, eAXRegP super, eCXRegI rcx, eFlagsReg cr ) %{
 13169   match(Set result (PartialSubtypeCheck sub super));
 13170   effect( KILL rcx, KILL cr );
 13172   ins_cost(1100);  // slightly larger than the next version
 13173   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
 13174             "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
 13175             "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
 13176             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
 13177             "JNE,s  miss\t\t# Missed: EDI not-zero\n\t"
 13178             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache\n\t"
 13179             "XOR    $result,$result\t\t Hit: EDI zero\n\t"
 13180      "miss:\t" %}
 13182   opcode(0x1); // Force a XOR of EDI
 13183   ins_encode( enc_PartialSubtypeCheck() );
 13184   ins_pipe( pipe_slow );
 13185 %}
 13187 instruct partialSubtypeCheck_vs_Zero( eFlagsReg cr, eSIRegP sub, eAXRegP super, eCXRegI rcx, eDIRegP result, immP0 zero ) %{
 13188   match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
 13189   effect( KILL rcx, KILL result );
 13191   ins_cost(1000);
 13192   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
 13193             "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
 13194             "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
 13195             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
 13196             "JNE,s  miss\t\t# Missed: flags NZ\n\t"
 13197             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache, flags Z\n\t"
 13198      "miss:\t" %}
 13200   opcode(0x0);  // No need to XOR EDI
 13201   ins_encode( enc_PartialSubtypeCheck() );
 13202   ins_pipe( pipe_slow );
 13203 %}
 13205 // ============================================================================
 13206 // Branch Instructions -- short offset versions
 13207 //
 13208 // These instructions are used to replace jumps of a long offset (the default
 13209 // match) with jumps of a shorter offset.  These instructions are all tagged
 13210 // with the ins_short_branch attribute, which causes the ADLC to suppress the
 13211 // match rules in general matching.  Instead, the ADLC generates a conversion
 13212 // method in the MachNode which can be used to do in-place replacement of the
 13213 // long variant with the shorter variant.  The compiler will determine if a
 13214 // branch can be taken by the is_short_branch_offset() predicate in the machine
 13215 // specific code section of the file.
 13217 // Jump Direct - Label defines a relative address from JMP+1
 13218 instruct jmpDir_short(label labl) %{
 13219   match(Goto);
 13220   effect(USE labl);
 13222   ins_cost(300);
 13223   format %{ "JMP,s  $labl" %}
 13224   size(2);
 13225   ins_encode %{
 13226     Label* L = $labl$$label;
 13227     __ jmpb(*L);
 13228   %}
 13229   ins_pipe( pipe_jmp );
 13230   ins_short_branch(1);
 13231 %}
 13233 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 13234 instruct jmpCon_short(cmpOp cop, eFlagsReg cr, label labl) %{
 13235   match(If cop cr);
 13236   effect(USE labl);
 13238   ins_cost(300);
 13239   format %{ "J$cop,s  $labl" %}
 13240   size(2);
 13241   ins_encode %{
 13242     Label* L = $labl$$label;
 13243     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 13244   %}
 13245   ins_pipe( pipe_jcc );
 13246   ins_short_branch(1);
 13247 %}
 13249 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 13250 instruct jmpLoopEnd_short(cmpOp cop, eFlagsReg cr, label labl) %{
 13251   match(CountedLoopEnd cop cr);
 13252   effect(USE labl);
 13254   ins_cost(300);
 13255   format %{ "J$cop,s  $labl\t# Loop end" %}
 13256   size(2);
 13257   ins_encode %{
 13258     Label* L = $labl$$label;
 13259     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 13260   %}
 13261   ins_pipe( pipe_jcc );
 13262   ins_short_branch(1);
 13263 %}
 13265 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 13266 instruct jmpLoopEndU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 13267   match(CountedLoopEnd cop cmp);
 13268   effect(USE labl);
 13270   ins_cost(300);
 13271   format %{ "J$cop,us $labl\t# Loop end" %}
 13272   size(2);
 13273   ins_encode %{
 13274     Label* L = $labl$$label;
 13275     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 13276   %}
 13277   ins_pipe( pipe_jcc );
 13278   ins_short_branch(1);
 13279 %}
 13281 instruct jmpLoopEndUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 13282   match(CountedLoopEnd cop cmp);
 13283   effect(USE labl);
 13285   ins_cost(300);
 13286   format %{ "J$cop,us $labl\t# Loop end" %}
 13287   size(2);
 13288   ins_encode %{
 13289     Label* L = $labl$$label;
 13290     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 13291   %}
 13292   ins_pipe( pipe_jcc );
 13293   ins_short_branch(1);
 13294 %}
 13296 // Jump Direct Conditional - using unsigned comparison
 13297 instruct jmpConU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 13298   match(If cop cmp);
 13299   effect(USE labl);
 13301   ins_cost(300);
 13302   format %{ "J$cop,us $labl" %}
 13303   size(2);
 13304   ins_encode %{
 13305     Label* L = $labl$$label;
 13306     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 13307   %}
 13308   ins_pipe( pipe_jcc );
 13309   ins_short_branch(1);
 13310 %}
 13312 instruct jmpConUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 13313   match(If cop cmp);
 13314   effect(USE labl);
 13316   ins_cost(300);
 13317   format %{ "J$cop,us $labl" %}
 13318   size(2);
 13319   ins_encode %{
 13320     Label* L = $labl$$label;
 13321     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 13322   %}
 13323   ins_pipe( pipe_jcc );
 13324   ins_short_branch(1);
 13325 %}
 13327 instruct jmpConUCF2_short(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
 13328   match(If cop cmp);
 13329   effect(USE labl);
 13331   ins_cost(300);
 13332   format %{ $$template
 13333     if ($cop$$cmpcode == Assembler::notEqual) {
 13334       $$emit$$"JP,u,s   $labl\n\t"
 13335       $$emit$$"J$cop,u,s   $labl"
 13336     } else {
 13337       $$emit$$"JP,u,s   done\n\t"
 13338       $$emit$$"J$cop,u,s  $labl\n\t"
 13339       $$emit$$"done:"
 13341   %}
 13342   size(4);
 13343   ins_encode %{
 13344     Label* l = $labl$$label;
 13345     if ($cop$$cmpcode == Assembler::notEqual) {
 13346       __ jccb(Assembler::parity, *l);
 13347       __ jccb(Assembler::notEqual, *l);
 13348     } else if ($cop$$cmpcode == Assembler::equal) {
 13349       Label done;
 13350       __ jccb(Assembler::parity, done);
 13351       __ jccb(Assembler::equal, *l);
 13352       __ bind(done);
 13353     } else {
 13354        ShouldNotReachHere();
 13356   %}
 13357   ins_pipe(pipe_jcc);
 13358   ins_short_branch(1);
 13359 %}
 13361 // ============================================================================
 13362 // Long Compare
 13363 //
 13364 // Currently we hold longs in 2 registers.  Comparing such values efficiently
 13365 // is tricky.  The flavor of compare used depends on whether we are testing
 13366 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
 13367 // The GE test is the negated LT test.  The LE test can be had by commuting
 13368 // the operands (yielding a GE test) and then negating; negate again for the
 13369 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
 13370 // NE test is negated from that.
 13372 // Due to a shortcoming in the ADLC, it mixes up expressions like:
 13373 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
 13374 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
 13375 // are collapsed internally in the ADLC's dfa-gen code.  The match for
 13376 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
 13377 // foo match ends up with the wrong leaf.  One fix is to not match both
 13378 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
 13379 // both forms beat the trinary form of long-compare and both are very useful
 13380 // on Intel which has so few registers.
 13382 // Manifest a CmpL result in an integer register.  Very painful.
 13383 // This is the test to avoid.
 13384 instruct cmpL3_reg_reg(eSIRegI dst, eRegL src1, eRegL src2, eFlagsReg flags ) %{
 13385   match(Set dst (CmpL3 src1 src2));
 13386   effect( KILL flags );
 13387   ins_cost(1000);
 13388   format %{ "XOR    $dst,$dst\n\t"
 13389             "CMP    $src1.hi,$src2.hi\n\t"
 13390             "JLT,s  m_one\n\t"
 13391             "JGT,s  p_one\n\t"
 13392             "CMP    $src1.lo,$src2.lo\n\t"
 13393             "JB,s   m_one\n\t"
 13394             "JEQ,s  done\n"
 13395     "p_one:\tINC    $dst\n\t"
 13396             "JMP,s  done\n"
 13397     "m_one:\tDEC    $dst\n"
 13398      "done:" %}
 13399   ins_encode %{
 13400     Label p_one, m_one, done;
 13401     __ xorptr($dst$$Register, $dst$$Register);
 13402     __ cmpl(HIGH_FROM_LOW($src1$$Register), HIGH_FROM_LOW($src2$$Register));
 13403     __ jccb(Assembler::less,    m_one);
 13404     __ jccb(Assembler::greater, p_one);
 13405     __ cmpl($src1$$Register, $src2$$Register);
 13406     __ jccb(Assembler::below,   m_one);
 13407     __ jccb(Assembler::equal,   done);
 13408     __ bind(p_one);
 13409     __ incrementl($dst$$Register);
 13410     __ jmpb(done);
 13411     __ bind(m_one);
 13412     __ decrementl($dst$$Register);
 13413     __ bind(done);
 13414   %}
 13415   ins_pipe( pipe_slow );
 13416 %}
 13418 //======
 13419 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
 13420 // compares.  Can be used for LE or GT compares by reversing arguments.
 13421 // NOT GOOD FOR EQ/NE tests.
 13422 instruct cmpL_zero_flags_LTGE( flagsReg_long_LTGE flags, eRegL src, immL0 zero ) %{
 13423   match( Set flags (CmpL src zero ));
 13424   ins_cost(100);
 13425   format %{ "TEST   $src.hi,$src.hi" %}
 13426   opcode(0x85);
 13427   ins_encode( OpcP, RegReg_Hi2( src, src ) );
 13428   ins_pipe( ialu_cr_reg_reg );
 13429 %}
 13431 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
 13432 // compares.  Can be used for LE or GT compares by reversing arguments.
 13433 // NOT GOOD FOR EQ/NE tests.
 13434 instruct cmpL_reg_flags_LTGE( flagsReg_long_LTGE flags, eRegL src1, eRegL src2, eRegI tmp ) %{
 13435   match( Set flags (CmpL src1 src2 ));
 13436   effect( TEMP tmp );
 13437   ins_cost(300);
 13438   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
 13439             "MOV    $tmp,$src1.hi\n\t"
 13440             "SBB    $tmp,$src2.hi\t! Compute flags for long compare" %}
 13441   ins_encode( long_cmp_flags2( src1, src2, tmp ) );
 13442   ins_pipe( ialu_cr_reg_reg );
 13443 %}
 13445 // Long compares reg < zero/req OR reg >= zero/req.
 13446 // Just a wrapper for a normal branch, plus the predicate test.
 13447 instruct cmpL_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, label labl) %{
 13448   match(If cmp flags);
 13449   effect(USE labl);
 13450   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 13451   expand %{
 13452     jmpCon(cmp,flags,labl);    // JLT or JGE...
 13453   %}
 13454 %}
 13456 // Compare 2 longs and CMOVE longs.
 13457 instruct cmovLL_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, eRegL src) %{
 13458   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 13459   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 13460   ins_cost(400);
 13461   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13462             "CMOV$cmp $dst.hi,$src.hi" %}
 13463   opcode(0x0F,0x40);
 13464   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 13465   ins_pipe( pipe_cmov_reg_long );
 13466 %}
 13468 instruct cmovLL_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, load_long_memory src) %{
 13469   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 13470   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 13471   ins_cost(500);
 13472   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13473             "CMOV$cmp $dst.hi,$src.hi" %}
 13474   opcode(0x0F,0x40);
 13475   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 13476   ins_pipe( pipe_cmov_reg_long );
 13477 %}
 13479 // Compare 2 longs and CMOVE ints.
 13480 instruct cmovII_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, eRegI src) %{
 13481   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 13482   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 13483   ins_cost(200);
 13484   format %{ "CMOV$cmp $dst,$src" %}
 13485   opcode(0x0F,0x40);
 13486   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13487   ins_pipe( pipe_cmov_reg );
 13488 %}
 13490 instruct cmovII_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, memory src) %{
 13491   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 13492   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 13493   ins_cost(250);
 13494   format %{ "CMOV$cmp $dst,$src" %}
 13495   opcode(0x0F,0x40);
 13496   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 13497   ins_pipe( pipe_cmov_mem );
 13498 %}
 13500 // Compare 2 longs and CMOVE ints.
 13501 instruct cmovPP_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegP dst, eRegP src) %{
 13502   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 13503   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 13504   ins_cost(200);
 13505   format %{ "CMOV$cmp $dst,$src" %}
 13506   opcode(0x0F,0x40);
 13507   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13508   ins_pipe( pipe_cmov_reg );
 13509 %}
 13511 // Compare 2 longs and CMOVE doubles
 13512 instruct cmovDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regD dst, regD src) %{
 13513   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 13514   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13515   ins_cost(200);
 13516   expand %{
 13517     fcmovD_regS(cmp,flags,dst,src);
 13518   %}
 13519 %}
 13521 // Compare 2 longs and CMOVE doubles
 13522 instruct cmovXDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regXD dst, regXD src) %{
 13523   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 13524   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13525   ins_cost(200);
 13526   expand %{
 13527     fcmovXD_regS(cmp,flags,dst,src);
 13528   %}
 13529 %}
 13531 instruct cmovFF_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regF dst, regF src) %{
 13532   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 13533   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13534   ins_cost(200);
 13535   expand %{
 13536     fcmovF_regS(cmp,flags,dst,src);
 13537   %}
 13538 %}
 13540 instruct cmovXX_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regX dst, regX src) %{
 13541   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 13542   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13543   ins_cost(200);
 13544   expand %{
 13545     fcmovX_regS(cmp,flags,dst,src);
 13546   %}
 13547 %}
 13549 //======
 13550 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
 13551 instruct cmpL_zero_flags_EQNE( flagsReg_long_EQNE flags, eRegL src, immL0 zero, eRegI tmp ) %{
 13552   match( Set flags (CmpL src zero ));
 13553   effect(TEMP tmp);
 13554   ins_cost(200);
 13555   format %{ "MOV    $tmp,$src.lo\n\t"
 13556             "OR     $tmp,$src.hi\t! Long is EQ/NE 0?" %}
 13557   ins_encode( long_cmp_flags0( src, tmp ) );
 13558   ins_pipe( ialu_reg_reg_long );
 13559 %}
 13561 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
 13562 instruct cmpL_reg_flags_EQNE( flagsReg_long_EQNE flags, eRegL src1, eRegL src2 ) %{
 13563   match( Set flags (CmpL src1 src2 ));
 13564   ins_cost(200+300);
 13565   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
 13566             "JNE,s  skip\n\t"
 13567             "CMP    $src1.hi,$src2.hi\n\t"
 13568      "skip:\t" %}
 13569   ins_encode( long_cmp_flags1( src1, src2 ) );
 13570   ins_pipe( ialu_cr_reg_reg );
 13571 %}
 13573 // Long compare reg == zero/reg OR reg != zero/reg
 13574 // Just a wrapper for a normal branch, plus the predicate test.
 13575 instruct cmpL_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, label labl) %{
 13576   match(If cmp flags);
 13577   effect(USE labl);
 13578   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13579   expand %{
 13580     jmpCon(cmp,flags,labl);    // JEQ or JNE...
 13581   %}
 13582 %}
 13584 // Compare 2 longs and CMOVE longs.
 13585 instruct cmovLL_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, eRegL src) %{
 13586   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 13587   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 13588   ins_cost(400);
 13589   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13590             "CMOV$cmp $dst.hi,$src.hi" %}
 13591   opcode(0x0F,0x40);
 13592   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 13593   ins_pipe( pipe_cmov_reg_long );
 13594 %}
 13596 instruct cmovLL_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, load_long_memory src) %{
 13597   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 13598   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 13599   ins_cost(500);
 13600   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13601             "CMOV$cmp $dst.hi,$src.hi" %}
 13602   opcode(0x0F,0x40);
 13603   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 13604   ins_pipe( pipe_cmov_reg_long );
 13605 %}
 13607 // Compare 2 longs and CMOVE ints.
 13608 instruct cmovII_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, eRegI src) %{
 13609   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 13610   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 13611   ins_cost(200);
 13612   format %{ "CMOV$cmp $dst,$src" %}
 13613   opcode(0x0F,0x40);
 13614   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13615   ins_pipe( pipe_cmov_reg );
 13616 %}
 13618 instruct cmovII_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, memory src) %{
 13619   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 13620   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 13621   ins_cost(250);
 13622   format %{ "CMOV$cmp $dst,$src" %}
 13623   opcode(0x0F,0x40);
 13624   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 13625   ins_pipe( pipe_cmov_mem );
 13626 %}
 13628 // Compare 2 longs and CMOVE ints.
 13629 instruct cmovPP_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegP dst, eRegP src) %{
 13630   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 13631   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 13632   ins_cost(200);
 13633   format %{ "CMOV$cmp $dst,$src" %}
 13634   opcode(0x0F,0x40);
 13635   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13636   ins_pipe( pipe_cmov_reg );
 13637 %}
 13639 // Compare 2 longs and CMOVE doubles
 13640 instruct cmovDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regD dst, regD src) %{
 13641   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13642   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13643   ins_cost(200);
 13644   expand %{
 13645     fcmovD_regS(cmp,flags,dst,src);
 13646   %}
 13647 %}
 13649 // Compare 2 longs and CMOVE doubles
 13650 instruct cmovXDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regXD dst, regXD src) %{
 13651   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13652   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13653   ins_cost(200);
 13654   expand %{
 13655     fcmovXD_regS(cmp,flags,dst,src);
 13656   %}
 13657 %}
 13659 instruct cmovFF_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regF dst, regF src) %{
 13660   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13661   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13662   ins_cost(200);
 13663   expand %{
 13664     fcmovF_regS(cmp,flags,dst,src);
 13665   %}
 13666 %}
 13668 instruct cmovXX_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regX dst, regX src) %{
 13669   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13670   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13671   ins_cost(200);
 13672   expand %{
 13673     fcmovX_regS(cmp,flags,dst,src);
 13674   %}
 13675 %}
 13677 //======
 13678 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
 13679 // Same as cmpL_reg_flags_LEGT except must negate src
 13680 instruct cmpL_zero_flags_LEGT( flagsReg_long_LEGT flags, eRegL src, immL0 zero, eRegI tmp ) %{
 13681   match( Set flags (CmpL src zero ));
 13682   effect( TEMP tmp );
 13683   ins_cost(300);
 13684   format %{ "XOR    $tmp,$tmp\t# Long compare for -$src < 0, use commuted test\n\t"
 13685             "CMP    $tmp,$src.lo\n\t"
 13686             "SBB    $tmp,$src.hi\n\t" %}
 13687   ins_encode( long_cmp_flags3(src, tmp) );
 13688   ins_pipe( ialu_reg_reg_long );
 13689 %}
 13691 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
 13692 // Same as cmpL_reg_flags_LTGE except operands swapped.  Swapping operands
 13693 // requires a commuted test to get the same result.
 13694 instruct cmpL_reg_flags_LEGT( flagsReg_long_LEGT flags, eRegL src1, eRegL src2, eRegI tmp ) %{
 13695   match( Set flags (CmpL src1 src2 ));
 13696   effect( TEMP tmp );
 13697   ins_cost(300);
 13698   format %{ "CMP    $src2.lo,$src1.lo\t! Long compare, swapped operands, use with commuted test\n\t"
 13699             "MOV    $tmp,$src2.hi\n\t"
 13700             "SBB    $tmp,$src1.hi\t! Compute flags for long compare" %}
 13701   ins_encode( long_cmp_flags2( src2, src1, tmp ) );
 13702   ins_pipe( ialu_cr_reg_reg );
 13703 %}
 13705 // Long compares reg < zero/req OR reg >= zero/req.
 13706 // Just a wrapper for a normal branch, plus the predicate test
 13707 instruct cmpL_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, label labl) %{
 13708   match(If cmp flags);
 13709   effect(USE labl);
 13710   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le );
 13711   ins_cost(300);
 13712   expand %{
 13713     jmpCon(cmp,flags,labl);    // JGT or JLE...
 13714   %}
 13715 %}
 13717 // Compare 2 longs and CMOVE longs.
 13718 instruct cmovLL_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, eRegL src) %{
 13719   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 13720   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13721   ins_cost(400);
 13722   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13723             "CMOV$cmp $dst.hi,$src.hi" %}
 13724   opcode(0x0F,0x40);
 13725   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 13726   ins_pipe( pipe_cmov_reg_long );
 13727 %}
 13729 instruct cmovLL_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, load_long_memory src) %{
 13730   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 13731   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13732   ins_cost(500);
 13733   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13734             "CMOV$cmp $dst.hi,$src.hi+4" %}
 13735   opcode(0x0F,0x40);
 13736   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 13737   ins_pipe( pipe_cmov_reg_long );
 13738 %}
 13740 // Compare 2 longs and CMOVE ints.
 13741 instruct cmovII_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, eRegI src) %{
 13742   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13743   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 13744   ins_cost(200);
 13745   format %{ "CMOV$cmp $dst,$src" %}
 13746   opcode(0x0F,0x40);
 13747   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13748   ins_pipe( pipe_cmov_reg );
 13749 %}
 13751 instruct cmovII_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, memory src) %{
 13752   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13753   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 13754   ins_cost(250);
 13755   format %{ "CMOV$cmp $dst,$src" %}
 13756   opcode(0x0F,0x40);
 13757   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 13758   ins_pipe( pipe_cmov_mem );
 13759 %}
 13761 // Compare 2 longs and CMOVE ptrs.
 13762 instruct cmovPP_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegP dst, eRegP src) %{
 13763   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13764   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 13765   ins_cost(200);
 13766   format %{ "CMOV$cmp $dst,$src" %}
 13767   opcode(0x0F,0x40);
 13768   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13769   ins_pipe( pipe_cmov_reg );
 13770 %}
 13772 // Compare 2 longs and CMOVE doubles
 13773 instruct cmovDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regD dst, regD src) %{
 13774   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13775   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13776   ins_cost(200);
 13777   expand %{
 13778     fcmovD_regS(cmp,flags,dst,src);
 13779   %}
 13780 %}
 13782 // Compare 2 longs and CMOVE doubles
 13783 instruct cmovXDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regXD dst, regXD src) %{
 13784   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13785   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13786   ins_cost(200);
 13787   expand %{
 13788     fcmovXD_regS(cmp,flags,dst,src);
 13789   %}
 13790 %}
 13792 instruct cmovFF_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regF dst, regF src) %{
 13793   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13794   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13795   ins_cost(200);
 13796   expand %{
 13797     fcmovF_regS(cmp,flags,dst,src);
 13798   %}
 13799 %}
 13802 instruct cmovXX_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regX dst, regX src) %{
 13803   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13804   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13805   ins_cost(200);
 13806   expand %{
 13807     fcmovX_regS(cmp,flags,dst,src);
 13808   %}
 13809 %}
 13812 // ============================================================================
 13813 // Procedure Call/Return Instructions
 13814 // Call Java Static Instruction
 13815 // Note: If this code changes, the corresponding ret_addr_offset() and
 13816 //       compute_padding() functions will have to be adjusted.
 13817 instruct CallStaticJavaDirect(method meth) %{
 13818   match(CallStaticJava);
 13819   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
 13820   effect(USE meth);
 13822   ins_cost(300);
 13823   format %{ "CALL,static " %}
 13824   opcode(0xE8); /* E8 cd */
 13825   ins_encode( pre_call_FPU,
 13826               Java_Static_Call( meth ),
 13827               call_epilog,
 13828               post_call_FPU );
 13829   ins_pipe( pipe_slow );
 13830   ins_alignment(4);
 13831 %}
 13833 // Call Java Static Instruction (method handle version)
 13834 // Note: If this code changes, the corresponding ret_addr_offset() and
 13835 //       compute_padding() functions will have to be adjusted.
 13836 instruct CallStaticJavaHandle(method meth, eBPRegP ebp_mh_SP_save) %{
 13837   match(CallStaticJava);
 13838   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
 13839   effect(USE meth);
 13840   // EBP is saved by all callees (for interpreter stack correction).
 13841   // We use it here for a similar purpose, in {preserve,restore}_SP.
 13843   ins_cost(300);
 13844   format %{ "CALL,static/MethodHandle " %}
 13845   opcode(0xE8); /* E8 cd */
 13846   ins_encode( pre_call_FPU,
 13847               preserve_SP,
 13848               Java_Static_Call( meth ),
 13849               restore_SP,
 13850               call_epilog,
 13851               post_call_FPU );
 13852   ins_pipe( pipe_slow );
 13853   ins_alignment(4);
 13854 %}
 13856 // Call Java Dynamic Instruction
 13857 // Note: If this code changes, the corresponding ret_addr_offset() and
 13858 //       compute_padding() functions will have to be adjusted.
 13859 instruct CallDynamicJavaDirect(method meth) %{
 13860   match(CallDynamicJava);
 13861   effect(USE meth);
 13863   ins_cost(300);
 13864   format %{ "MOV    EAX,(oop)-1\n\t"
 13865             "CALL,dynamic" %}
 13866   opcode(0xE8); /* E8 cd */
 13867   ins_encode( pre_call_FPU,
 13868               Java_Dynamic_Call( meth ),
 13869               call_epilog,
 13870               post_call_FPU );
 13871   ins_pipe( pipe_slow );
 13872   ins_alignment(4);
 13873 %}
 13875 // Call Runtime Instruction
 13876 instruct CallRuntimeDirect(method meth) %{
 13877   match(CallRuntime );
 13878   effect(USE meth);
 13880   ins_cost(300);
 13881   format %{ "CALL,runtime " %}
 13882   opcode(0xE8); /* E8 cd */
 13883   // Use FFREEs to clear entries in float stack
 13884   ins_encode( pre_call_FPU,
 13885               FFree_Float_Stack_All,
 13886               Java_To_Runtime( meth ),
 13887               post_call_FPU );
 13888   ins_pipe( pipe_slow );
 13889 %}
 13891 // Call runtime without safepoint
 13892 instruct CallLeafDirect(method meth) %{
 13893   match(CallLeaf);
 13894   effect(USE meth);
 13896   ins_cost(300);
 13897   format %{ "CALL_LEAF,runtime " %}
 13898   opcode(0xE8); /* E8 cd */
 13899   ins_encode( pre_call_FPU,
 13900               FFree_Float_Stack_All,
 13901               Java_To_Runtime( meth ),
 13902               Verify_FPU_For_Leaf, post_call_FPU );
 13903   ins_pipe( pipe_slow );
 13904 %}
 13906 instruct CallLeafNoFPDirect(method meth) %{
 13907   match(CallLeafNoFP);
 13908   effect(USE meth);
 13910   ins_cost(300);
 13911   format %{ "CALL_LEAF_NOFP,runtime " %}
 13912   opcode(0xE8); /* E8 cd */
 13913   ins_encode(Java_To_Runtime(meth));
 13914   ins_pipe( pipe_slow );
 13915 %}
 13918 // Return Instruction
 13919 // Remove the return address & jump to it.
 13920 instruct Ret() %{
 13921   match(Return);
 13922   format %{ "RET" %}
 13923   opcode(0xC3);
 13924   ins_encode(OpcP);
 13925   ins_pipe( pipe_jmp );
 13926 %}
 13928 // Tail Call; Jump from runtime stub to Java code.
 13929 // Also known as an 'interprocedural jump'.
 13930 // Target of jump will eventually return to caller.
 13931 // TailJump below removes the return address.
 13932 instruct TailCalljmpInd(eRegP_no_EBP jump_target, eBXRegP method_oop) %{
 13933   match(TailCall jump_target method_oop );
 13934   ins_cost(300);
 13935   format %{ "JMP    $jump_target \t# EBX holds method oop" %}
 13936   opcode(0xFF, 0x4);  /* Opcode FF /4 */
 13937   ins_encode( OpcP, RegOpc(jump_target) );
 13938   ins_pipe( pipe_jmp );
 13939 %}
 13942 // Tail Jump; remove the return address; jump to target.
 13943 // TailCall above leaves the return address around.
 13944 instruct tailjmpInd(eRegP_no_EBP jump_target, eAXRegP ex_oop) %{
 13945   match( TailJump jump_target ex_oop );
 13946   ins_cost(300);
 13947   format %{ "POP    EDX\t# pop return address into dummy\n\t"
 13948             "JMP    $jump_target " %}
 13949   opcode(0xFF, 0x4);  /* Opcode FF /4 */
 13950   ins_encode( enc_pop_rdx,
 13951               OpcP, RegOpc(jump_target) );
 13952   ins_pipe( pipe_jmp );
 13953 %}
 13955 // Create exception oop: created by stack-crawling runtime code.
 13956 // Created exception is now available to this handler, and is setup
 13957 // just prior to jumping to this handler.  No code emitted.
 13958 instruct CreateException( eAXRegP ex_oop )
 13959 %{
 13960   match(Set ex_oop (CreateEx));
 13962   size(0);
 13963   // use the following format syntax
 13964   format %{ "# exception oop is in EAX; no code emitted" %}
 13965   ins_encode();
 13966   ins_pipe( empty );
 13967 %}
 13970 // Rethrow exception:
 13971 // The exception oop will come in the first argument position.
 13972 // Then JUMP (not call) to the rethrow stub code.
 13973 instruct RethrowException()
 13974 %{
 13975   match(Rethrow);
 13977   // use the following format syntax
 13978   format %{ "JMP    rethrow_stub" %}
 13979   ins_encode(enc_rethrow);
 13980   ins_pipe( pipe_jmp );
 13981 %}
 13983 // inlined locking and unlocking
 13986 instruct cmpFastLock( eFlagsReg cr, eRegP object, eRegP box, eAXRegI tmp, eRegP scr) %{
 13987   match( Set cr (FastLock object box) );
 13988   effect( TEMP tmp, TEMP scr );
 13989   ins_cost(300);
 13990   format %{ "FASTLOCK $object, $box KILLS $tmp,$scr" %}
 13991   ins_encode( Fast_Lock(object,box,tmp,scr) );
 13992   ins_pipe( pipe_slow );
 13993 %}
 13995 instruct cmpFastUnlock( eFlagsReg cr, eRegP object, eAXRegP box, eRegP tmp ) %{
 13996   match( Set cr (FastUnlock object box) );
 13997   effect( TEMP tmp );
 13998   ins_cost(300);
 13999   format %{ "FASTUNLOCK $object, $box, $tmp" %}
 14000   ins_encode( Fast_Unlock(object,box,tmp) );
 14001   ins_pipe( pipe_slow );
 14002 %}
 14006 // ============================================================================
 14007 // Safepoint Instruction
 14008 instruct safePoint_poll(eFlagsReg cr) %{
 14009   match(SafePoint);
 14010   effect(KILL cr);
 14012   // TODO-FIXME: we currently poll at offset 0 of the safepoint polling page.
 14013   // On SPARC that might be acceptable as we can generate the address with
 14014   // just a sethi, saving an or.  By polling at offset 0 we can end up
 14015   // putting additional pressure on the index-0 in the D$.  Because of
 14016   // alignment (just like the situation at hand) the lower indices tend
 14017   // to see more traffic.  It'd be better to change the polling address
 14018   // to offset 0 of the last $line in the polling page.
 14020   format %{ "TSTL   #polladdr,EAX\t! Safepoint: poll for GC" %}
 14021   ins_cost(125);
 14022   size(6) ;
 14023   ins_encode( Safepoint_Poll() );
 14024   ins_pipe( ialu_reg_mem );
 14025 %}
 14027 //----------PEEPHOLE RULES-----------------------------------------------------
 14028 // These must follow all instruction definitions as they use the names
 14029 // defined in the instructions definitions.
 14030 //
 14031 // peepmatch ( root_instr_name [preceding_instruction]* );
 14032 //
 14033 // peepconstraint %{
 14034 // (instruction_number.operand_name relational_op instruction_number.operand_name
 14035 //  [, ...] );
 14036 // // instruction numbers are zero-based using left to right order in peepmatch
 14037 //
 14038 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
 14039 // // provide an instruction_number.operand_name for each operand that appears
 14040 // // in the replacement instruction's match rule
 14041 //
 14042 // ---------VM FLAGS---------------------------------------------------------
 14043 //
 14044 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 14045 //
 14046 // Each peephole rule is given an identifying number starting with zero and
 14047 // increasing by one in the order seen by the parser.  An individual peephole
 14048 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 14049 // on the command-line.
 14050 //
 14051 // ---------CURRENT LIMITATIONS----------------------------------------------
 14052 //
 14053 // Only match adjacent instructions in same basic block
 14054 // Only equality constraints
 14055 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 14056 // Only one replacement instruction
 14057 //
 14058 // ---------EXAMPLE----------------------------------------------------------
 14059 //
 14060 // // pertinent parts of existing instructions in architecture description
 14061 // instruct movI(eRegI dst, eRegI src) %{
 14062 //   match(Set dst (CopyI src));
 14063 // %}
 14064 //
 14065 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
 14066 //   match(Set dst (AddI dst src));
 14067 //   effect(KILL cr);
 14068 // %}
 14069 //
 14070 // // Change (inc mov) to lea
 14071 // peephole %{
 14072 //   // increment preceeded by register-register move
 14073 //   peepmatch ( incI_eReg movI );
 14074 //   // require that the destination register of the increment
 14075 //   // match the destination register of the move
 14076 //   peepconstraint ( 0.dst == 1.dst );
 14077 //   // construct a replacement instruction that sets
 14078 //   // the destination to ( move's source register + one )
 14079 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 14080 // %}
 14081 //
 14082 // Implementation no longer uses movX instructions since
 14083 // machine-independent system no longer uses CopyX nodes.
 14084 //
 14085 // peephole %{
 14086 //   peepmatch ( incI_eReg movI );
 14087 //   peepconstraint ( 0.dst == 1.dst );
 14088 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 14089 // %}
 14090 //
 14091 // peephole %{
 14092 //   peepmatch ( decI_eReg movI );
 14093 //   peepconstraint ( 0.dst == 1.dst );
 14094 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 14095 // %}
 14096 //
 14097 // peephole %{
 14098 //   peepmatch ( addI_eReg_imm movI );
 14099 //   peepconstraint ( 0.dst == 1.dst );
 14100 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 14101 // %}
 14102 //
 14103 // peephole %{
 14104 //   peepmatch ( addP_eReg_imm movP );
 14105 //   peepconstraint ( 0.dst == 1.dst );
 14106 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
 14107 // %}
 14109 // // Change load of spilled value to only a spill
 14110 // instruct storeI(memory mem, eRegI src) %{
 14111 //   match(Set mem (StoreI mem src));
 14112 // %}
 14113 //
 14114 // instruct loadI(eRegI dst, memory mem) %{
 14115 //   match(Set dst (LoadI mem));
 14116 // %}
 14117 //
 14118 peephole %{
 14119   peepmatch ( loadI storeI );
 14120   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 14121   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 14122 %}
 14124 //----------SMARTSPILL RULES---------------------------------------------------
 14125 // These must follow all instruction definitions as they use the names
 14126 // defined in the instructions definitions.

mercurial