src/cpu/sparc/vm/sparc.ad

Thu, 11 Aug 2011 12:08:11 -0700

author
kvn
date
Thu, 11 Aug 2011 12:08:11 -0700
changeset 3049
95134e034042
parent 3047
f1c12354c3f7
child 3052
1af104d6cf99
permissions
-rw-r--r--

7063629: use cbcond in C2 generated code on T4
Summary: Use new short branch instruction in C2 generated code.
Reviewed-by: never

     1 //
     2 // Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20 // or visit www.oracle.com if you need additional information or have any
    21 // questions.
    22 //
    23 //
    25 // SPARC Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    31 register %{
    32 //----------Architecture Description Register Definitions----------------------
    33 // General Registers
    34 // "reg_def"  name ( register save type, C convention save type,
    35 //                   ideal register type, encoding, vm name );
    36 // Register Save Types:
    37 //
    38 // NS  = No-Save:       The register allocator assumes that these registers
    39 //                      can be used without saving upon entry to the method, &
    40 //                      that they do not need to be saved at call sites.
    41 //
    42 // SOC = Save-On-Call:  The register allocator assumes that these registers
    43 //                      can be used without saving upon entry to the method,
    44 //                      but that they must be saved at call sites.
    45 //
    46 // SOE = Save-On-Entry: The register allocator assumes that these registers
    47 //                      must be saved before using them upon entry to the
    48 //                      method, but they do not need to be saved at call
    49 //                      sites.
    50 //
    51 // AS  = Always-Save:   The register allocator assumes that these registers
    52 //                      must be saved before using them upon entry to the
    53 //                      method, & that they must be saved at call sites.
    54 //
    55 // Ideal Register Type is used to determine how to save & restore a
    56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    58 //
    59 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // ----------------------------
    63 // Integer/Long Registers
    64 // ----------------------------
    66 // Need to expose the hi/lo aspect of 64-bit registers
    67 // This register set is used for both the 64-bit build and
    68 // the 32-bit build with 1-register longs.
    70 // Global Registers 0-7
    71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
    72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
    73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
    74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
    75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
    76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
    77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
    78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
    79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
    80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
    81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
    82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
    83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
    84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
    85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
    86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
    88 // Output Registers 0-7
    89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
    90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
    91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
    92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
    93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
    94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
    95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
    96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
    97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
    98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
    99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
   100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
   101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
   102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
   103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
   104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
   106 // Local Registers 0-7
   107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
   108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
   109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
   110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
   111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
   112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
   113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
   114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
   115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
   116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
   117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
   118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
   119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
   120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
   121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
   122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
   124 // Input Registers 0-7
   125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
   126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
   127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
   128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
   129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
   130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
   131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
   132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
   133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
   134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
   135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
   136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
   137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
   138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
   139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
   140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
   142 // ----------------------------
   143 // Float/Double Registers
   144 // ----------------------------
   146 // Float Registers
   147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
   148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
   149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
   150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
   151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
   152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
   153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
   154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
   155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
   156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
   157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
   158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
   159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
   160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
   161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
   162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
   163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
   164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
   165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
   166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
   167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
   168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
   169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
   170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
   171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
   172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
   173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
   174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
   175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
   176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
   177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
   178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
   180 // Double Registers
   181 // The rules of ADL require that double registers be defined in pairs.
   182 // Each pair must be two 32-bit values, but not necessarily a pair of
   183 // single float registers.  In each pair, ADLC-assigned register numbers
   184 // must be adjacent, with the lower number even.  Finally, when the
   185 // CPU stores such a register pair to memory, the word associated with
   186 // the lower ADLC-assigned number must be stored to the lower address.
   188 // These definitions specify the actual bit encodings of the sparc
   189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
   190 // wants 0-63, so we have to convert every time we want to use fp regs
   191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
   192 // 255 is a flag meaning "don't go here".
   193 // I believe we can't handle callee-save doubles D32 and up until
   194 // the place in the sparc stack crawler that asserts on the 255 is
   195 // fixed up.
   196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
   197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
   198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
   199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
   200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
   201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
   202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
   203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
   204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
   205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
   206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
   207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
   208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
   209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
   210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
   211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
   212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
   213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
   214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
   215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
   216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
   217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
   218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
   219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
   220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
   221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
   222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
   223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
   224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
   225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
   226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
   227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
   230 // ----------------------------
   231 // Special Registers
   232 // Condition Codes Flag Registers
   233 // I tried to break out ICC and XCC but it's not very pretty.
   234 // Every Sparc instruction which defs/kills one also kills the other.
   235 // Hence every compare instruction which defs one kind of flags ends
   236 // up needing a kill of the other.
   237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
   241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
   242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
   244 // ----------------------------
   245 // Specify the enum values for the registers.  These enums are only used by the
   246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
   247 // for visibility to the rest of the vm. The order of this enum influences the
   248 // register allocator so having the freedom to set this order and not be stuck
   249 // with the order that is natural for the rest of the vm is worth it.
   250 alloc_class chunk0(
   251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
   252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
   253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
   254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
   256 // Note that a register is not allocatable unless it is also mentioned
   257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
   259 alloc_class chunk1(
   260   // The first registers listed here are those most likely to be used
   261   // as temporaries.  We move F0..F7 away from the front of the list,
   262   // to reduce the likelihood of interferences with parameters and
   263   // return values.  Likewise, we avoid using F0/F1 for parameters,
   264   // since they are used for return values.
   265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
   266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
   268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
   269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
   270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
   271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
   273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
   275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
   277 //----------Architecture Description Register Classes--------------------------
   278 // Several register classes are automatically defined based upon information in
   279 // this architecture description.
   280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
   281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
   282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   283 //
   285 // G0 is not included in integer class since it has special meaning.
   286 reg_class g0_reg(R_G0);
   288 // ----------------------------
   289 // Integer Register Classes
   290 // ----------------------------
   291 // Exclusions from i_reg:
   292 // R_G0: hardwired zero
   293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
   294 // R_G6: reserved by Solaris ABI to tools
   295 // R_G7: reserved by Solaris ABI to libthread
   296 // R_O7: Used as a temp in many encodings
   297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   299 // Class for all integer registers, except the G registers.  This is used for
   300 // encodings which use G registers as temps.  The regular inputs to such
   301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
   302 // will not put an input into a temp register.
   303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   305 reg_class g1_regI(R_G1);
   306 reg_class g3_regI(R_G3);
   307 reg_class g4_regI(R_G4);
   308 reg_class o0_regI(R_O0);
   309 reg_class o7_regI(R_O7);
   311 // ----------------------------
   312 // Pointer Register Classes
   313 // ----------------------------
   314 #ifdef _LP64
   315 // 64-bit build means 64-bit pointers means hi/lo pairs
   316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   320 // Lock encodings use G3 and G4 internally
   321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
   322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   325 // Special class for storeP instructions, which can store SP or RPC to TLS.
   326 // It is also used for memory addressing, allowing direct TLS addressing.
   327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
   329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
   331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   332 // We use it to save R_G2 across calls out of Java.
   333 reg_class l7_regP(R_L7H,R_L7);
   335 // Other special pointer regs
   336 reg_class g1_regP(R_G1H,R_G1);
   337 reg_class g2_regP(R_G2H,R_G2);
   338 reg_class g3_regP(R_G3H,R_G3);
   339 reg_class g4_regP(R_G4H,R_G4);
   340 reg_class g5_regP(R_G5H,R_G5);
   341 reg_class i0_regP(R_I0H,R_I0);
   342 reg_class o0_regP(R_O0H,R_O0);
   343 reg_class o1_regP(R_O1H,R_O1);
   344 reg_class o2_regP(R_O2H,R_O2);
   345 reg_class o7_regP(R_O7H,R_O7);
   347 #else // _LP64
   348 // 32-bit build means 32-bit pointers means 1 register.
   349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
   350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   353 // Lock encodings use G3 and G4 internally
   354 reg_class lock_ptr_reg(R_G1,               R_G5,
   355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   358 // Special class for storeP instructions, which can store SP or RPC to TLS.
   359 // It is also used for memory addressing, allowing direct TLS addressing.
   360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
   361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
   362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
   364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   365 // We use it to save R_G2 across calls out of Java.
   366 reg_class l7_regP(R_L7);
   368 // Other special pointer regs
   369 reg_class g1_regP(R_G1);
   370 reg_class g2_regP(R_G2);
   371 reg_class g3_regP(R_G3);
   372 reg_class g4_regP(R_G4);
   373 reg_class g5_regP(R_G5);
   374 reg_class i0_regP(R_I0);
   375 reg_class o0_regP(R_O0);
   376 reg_class o1_regP(R_O1);
   377 reg_class o2_regP(R_O2);
   378 reg_class o7_regP(R_O7);
   379 #endif // _LP64
   382 // ----------------------------
   383 // Long Register Classes
   384 // ----------------------------
   385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
   386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
   387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
   388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
   389 #ifdef _LP64
   390 // 64-bit, longs in 1 register: use all 64-bit integer registers
   391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
   392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
   393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
   394 #endif // _LP64
   395                   );
   397 reg_class g1_regL(R_G1H,R_G1);
   398 reg_class g3_regL(R_G3H,R_G3);
   399 reg_class o2_regL(R_O2H,R_O2);
   400 reg_class o7_regL(R_O7H,R_O7);
   402 // ----------------------------
   403 // Special Class for Condition Code Flags Register
   404 reg_class int_flags(CCR);
   405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
   406 reg_class float_flag0(FCC0);
   409 // ----------------------------
   410 // Float Point Register Classes
   411 // ----------------------------
   412 // Skip F30/F31, they are reserved for mem-mem copies
   413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   415 // Paired floating point registers--they show up in the same order as the floats,
   416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
   419                    /* Use extra V9 double registers; this AD file does not support V8 */
   420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
   422                    );
   424 // Paired floating point registers--they show up in the same order as the floats,
   425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   426 // This class is usable for mis-aligned loads as happen in I2C adapters.
   427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   429 %}
   431 //----------DEFINITION BLOCK---------------------------------------------------
   432 // Define name --> value mappings to inform the ADLC of an integer valued name
   433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
   434 // Format:
   435 //        int_def  <name>         ( <int_value>, <expression>);
   436 // Generated Code in ad_<arch>.hpp
   437 //        #define  <name>   (<expression>)
   438 //        // value == <int_value>
   439 // Generated code in ad_<arch>.cpp adlc_verification()
   440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
   441 //
   442 definitions %{
   443 // The default cost (of an ALU instruction).
   444   int_def DEFAULT_COST      (    100,     100);
   445   int_def HUGE_COST         (1000000, 1000000);
   447 // Memory refs are twice as expensive as run-of-the-mill.
   448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
   450 // Branches are even more expensive.
   451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
   452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
   453 %}
   456 //----------SOURCE BLOCK-------------------------------------------------------
   457 // This is a block of C++ code which provides values, functions, and
   458 // definitions necessary in the rest of the architecture description
   459 source_hpp %{
   460 // Must be visible to the DFA in dfa_sparc.cpp
   461 extern bool can_branch_register( Node *bol, Node *cmp );
   463 // Macros to extract hi & lo halves from a long pair.
   464 // G0 is not part of any long pair, so assert on that.
   465 // Prevents accidentally using G1 instead of G0.
   466 #define LONG_HI_REG(x) (x)
   467 #define LONG_LO_REG(x) (x)
   469 %}
   471 source %{
   472 #define __ _masm.
   474 // Block initializing store
   475 #define ASI_BLK_INIT_QUAD_LDD_P    0xE2
   477 // tertiary op of a LoadP or StoreP encoding
   478 #define REGP_OP true
   480 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
   481 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
   482 static Register reg_to_register_object(int register_encoding);
   484 // Used by the DFA in dfa_sparc.cpp.
   485 // Check for being able to use a V9 branch-on-register.  Requires a
   486 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
   487 // extended.  Doesn't work following an integer ADD, for example, because of
   488 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
   489 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
   490 // replace them with zero, which could become sign-extension in a different OS
   491 // release.  There's no obvious reason why an interrupt will ever fill these
   492 // bits with non-zero junk (the registers are reloaded with standard LD
   493 // instructions which either zero-fill or sign-fill).
   494 bool can_branch_register( Node *bol, Node *cmp ) {
   495   if( !BranchOnRegister ) return false;
   496 #ifdef _LP64
   497   if( cmp->Opcode() == Op_CmpP )
   498     return true;  // No problems with pointer compares
   499 #endif
   500   if( cmp->Opcode() == Op_CmpL )
   501     return true;  // No problems with long compares
   503   if( !SparcV9RegsHiBitsZero ) return false;
   504   if( bol->as_Bool()->_test._test != BoolTest::ne &&
   505       bol->as_Bool()->_test._test != BoolTest::eq )
   506      return false;
   508   // Check for comparing against a 'safe' value.  Any operation which
   509   // clears out the high word is safe.  Thus, loads and certain shifts
   510   // are safe, as are non-negative constants.  Any operation which
   511   // preserves zero bits in the high word is safe as long as each of its
   512   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
   513   // inputs are safe.  At present, the only important case to recognize
   514   // seems to be loads.  Constants should fold away, and shifts &
   515   // logicals can use the 'cc' forms.
   516   Node *x = cmp->in(1);
   517   if( x->is_Load() ) return true;
   518   if( x->is_Phi() ) {
   519     for( uint i = 1; i < x->req(); i++ )
   520       if( !x->in(i)->is_Load() )
   521         return false;
   522     return true;
   523   }
   524   return false;
   525 }
   527 // ****************************************************************************
   529 // REQUIRED FUNCTIONALITY
   531 // !!!!! Special hack to get all type of calls to specify the byte offset
   532 //       from the start of the call to the point where the return address
   533 //       will point.
   534 //       The "return address" is the address of the call instruction, plus 8.
   536 int MachCallStaticJavaNode::ret_addr_offset() {
   537   int offset = NativeCall::instruction_size;  // call; delay slot
   538   if (_method_handle_invoke)
   539     offset += 4;  // restore SP
   540   return offset;
   541 }
   543 int MachCallDynamicJavaNode::ret_addr_offset() {
   544   int vtable_index = this->_vtable_index;
   545   if (vtable_index < 0) {
   546     // must be invalid_vtable_index, not nonvirtual_vtable_index
   547     assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
   548     return (NativeMovConstReg::instruction_size +
   549            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
   550   } else {
   551     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
   552     int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
   553     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
   554     int klass_load_size;
   555     if (UseCompressedOops) {
   556       assert(Universe::heap() != NULL, "java heap should be initialized");
   557       if (Universe::narrow_oop_base() == NULL)
   558         klass_load_size = 2*BytesPerInstWord; // see MacroAssembler::load_klass()
   559       else
   560         klass_load_size = 3*BytesPerInstWord;
   561     } else {
   562       klass_load_size = 1*BytesPerInstWord;
   563     }
   564     if( Assembler::is_simm13(v_off) ) {
   565       return klass_load_size +
   566              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
   567              NativeCall::instruction_size);  // call; delay slot
   568     } else {
   569       return klass_load_size +
   570              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
   571              NativeCall::instruction_size);  // call; delay slot
   572     }
   573   }
   574 }
   576 int MachCallRuntimeNode::ret_addr_offset() {
   577 #ifdef _LP64
   578   if (MacroAssembler::is_far_target(entry_point())) {
   579     return NativeFarCall::instruction_size;
   580   } else {
   581     return NativeCall::instruction_size;
   582   }
   583 #else
   584   return NativeCall::instruction_size;  // call; delay slot
   585 #endif
   586 }
   588 // Indicate if the safepoint node needs the polling page as an input.
   589 // Since Sparc does not have absolute addressing, it does.
   590 bool SafePointNode::needs_polling_address_input() {
   591   return true;
   592 }
   594 // emit an interrupt that is caught by the debugger (for debugging compiler)
   595 void emit_break(CodeBuffer &cbuf) {
   596   MacroAssembler _masm(&cbuf);
   597   __ breakpoint_trap();
   598 }
   600 #ifndef PRODUCT
   601 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
   602   st->print("TA");
   603 }
   604 #endif
   606 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   607   emit_break(cbuf);
   608 }
   610 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
   611   return MachNode::size(ra_);
   612 }
   614 // Traceable jump
   615 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
   616   MacroAssembler _masm(&cbuf);
   617   Register rdest = reg_to_register_object(jump_target);
   618   __ JMP(rdest, 0);
   619   __ delayed()->nop();
   620 }
   622 // Traceable jump and set exception pc
   623 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
   624   MacroAssembler _masm(&cbuf);
   625   Register rdest = reg_to_register_object(jump_target);
   626   __ JMP(rdest, 0);
   627   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
   628 }
   630 void emit_nop(CodeBuffer &cbuf) {
   631   MacroAssembler _masm(&cbuf);
   632   __ nop();
   633 }
   635 void emit_illtrap(CodeBuffer &cbuf) {
   636   MacroAssembler _masm(&cbuf);
   637   __ illtrap(0);
   638 }
   641 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
   642   assert(n->rule() != loadUB_rule, "");
   644   intptr_t offset = 0;
   645   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
   646   const Node* addr = n->get_base_and_disp(offset, adr_type);
   647   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
   648   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
   649   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   650   atype = atype->add_offset(offset);
   651   assert(disp32 == offset, "wrong disp32");
   652   return atype->_offset;
   653 }
   656 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
   657   assert(n->rule() != loadUB_rule, "");
   659   intptr_t offset = 0;
   660   Node* addr = n->in(2);
   661   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   662   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
   663     Node* a = addr->in(2/*AddPNode::Address*/);
   664     Node* o = addr->in(3/*AddPNode::Offset*/);
   665     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
   666     atype = a->bottom_type()->is_ptr()->add_offset(offset);
   667     assert(atype->isa_oop_ptr(), "still an oop");
   668   }
   669   offset = atype->is_ptr()->_offset;
   670   if (offset != Type::OffsetBot)  offset += disp32;
   671   return offset;
   672 }
   674 static inline jdouble replicate_immI(int con, int count, int width) {
   675   // Load a constant replicated "count" times with width "width"
   676   int bit_width = width * 8;
   677   jlong elt_val = con;
   678   elt_val &= (((jlong) 1) << bit_width) - 1;  // mask off sign bits
   679   jlong val = elt_val;
   680   for (int i = 0; i < count - 1; i++) {
   681     val <<= bit_width;
   682     val |= elt_val;
   683   }
   684   jdouble dval = *((jdouble*) &val);  // coerce to double type
   685   return dval;
   686 }
   688 // Standard Sparc opcode form2 field breakdown
   689 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
   690   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
   691   int op = (f30 << 30) |
   692            (f29 << 29) |
   693            (f25 << 25) |
   694            (f22 << 22) |
   695            (f20 << 20) |
   696            (f19 << 19) |
   697            (f0  <<  0);
   698   cbuf.insts()->emit_int32(op);
   699 }
   701 // Standard Sparc opcode form2 field breakdown
   702 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
   703   f0 >>= 10;           // Drop 10 bits
   704   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
   705   int op = (f30 << 30) |
   706            (f25 << 25) |
   707            (f22 << 22) |
   708            (f0  <<  0);
   709   cbuf.insts()->emit_int32(op);
   710 }
   712 // Standard Sparc opcode form3 field breakdown
   713 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
   714   int op = (f30 << 30) |
   715            (f25 << 25) |
   716            (f19 << 19) |
   717            (f14 << 14) |
   718            (f5  <<  5) |
   719            (f0  <<  0);
   720   cbuf.insts()->emit_int32(op);
   721 }
   723 // Standard Sparc opcode form3 field breakdown
   724 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
   725   simm13 &= (1<<13)-1; // Mask to 13 bits
   726   int op = (f30 << 30) |
   727            (f25 << 25) |
   728            (f19 << 19) |
   729            (f14 << 14) |
   730            (1   << 13) | // bit to indicate immediate-mode
   731            (simm13<<0);
   732   cbuf.insts()->emit_int32(op);
   733 }
   735 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
   736   simm10 &= (1<<10)-1; // Mask to 10 bits
   737   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
   738 }
   740 #ifdef ASSERT
   741 // Helper function for VerifyOops in emit_form3_mem_reg
   742 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
   743   warning("VerifyOops encountered unexpected instruction:");
   744   n->dump(2);
   745   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
   746 }
   747 #endif
   750 void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
   751                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
   753 #ifdef ASSERT
   754   // The following code implements the +VerifyOops feature.
   755   // It verifies oop values which are loaded into or stored out of
   756   // the current method activation.  +VerifyOops complements techniques
   757   // like ScavengeALot, because it eagerly inspects oops in transit,
   758   // as they enter or leave the stack, as opposed to ScavengeALot,
   759   // which inspects oops "at rest", in the stack or heap, at safepoints.
   760   // For this reason, +VerifyOops can sometimes detect bugs very close
   761   // to their point of creation.  It can also serve as a cross-check
   762   // on the validity of oop maps, when used toegether with ScavengeALot.
   764   // It would be good to verify oops at other points, especially
   765   // when an oop is used as a base pointer for a load or store.
   766   // This is presently difficult, because it is hard to know when
   767   // a base address is biased or not.  (If we had such information,
   768   // it would be easy and useful to make a two-argument version of
   769   // verify_oop which unbiases the base, and performs verification.)
   771   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
   772   bool is_verified_oop_base  = false;
   773   bool is_verified_oop_load  = false;
   774   bool is_verified_oop_store = false;
   775   int tmp_enc = -1;
   776   if (VerifyOops && src1_enc != R_SP_enc) {
   777     // classify the op, mainly for an assert check
   778     int st_op = 0, ld_op = 0;
   779     switch (primary) {
   780     case Assembler::stb_op3:  st_op = Op_StoreB; break;
   781     case Assembler::sth_op3:  st_op = Op_StoreC; break;
   782     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
   783     case Assembler::stw_op3:  st_op = Op_StoreI; break;
   784     case Assembler::std_op3:  st_op = Op_StoreL; break;
   785     case Assembler::stf_op3:  st_op = Op_StoreF; break;
   786     case Assembler::stdf_op3: st_op = Op_StoreD; break;
   788     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
   789     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
   790     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
   791     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
   792     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
   793     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
   794     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
   795     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
   796     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
   797     case Assembler::ldub_op3: ld_op = Op_LoadB; break;
   798     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
   800     default: ShouldNotReachHere();
   801     }
   802     if (tertiary == REGP_OP) {
   803       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
   804       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
   805       else                          ShouldNotReachHere();
   806       if (st_op) {
   807         // a store
   808         // inputs are (0:control, 1:memory, 2:address, 3:value)
   809         Node* n2 = n->in(3);
   810         if (n2 != NULL) {
   811           const Type* t = n2->bottom_type();
   812           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   813         }
   814       } else {
   815         // a load
   816         const Type* t = n->bottom_type();
   817         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   818       }
   819     }
   821     if (ld_op) {
   822       // a Load
   823       // inputs are (0:control, 1:memory, 2:address)
   824       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
   825           !(n->ideal_Opcode()==Op_LoadLLocked && ld_op==Op_LoadI) &&
   826           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
   827           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
   828           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
   829           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
   830           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
   831           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
   832           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
   833           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
   834           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
   835           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
   836           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
   837           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
   838           !(n->ideal_Opcode()==Op_Load2I    && ld_op==Op_LoadD) &&
   839           !(n->ideal_Opcode()==Op_Load4C    && ld_op==Op_LoadD) &&
   840           !(n->ideal_Opcode()==Op_Load4S    && ld_op==Op_LoadD) &&
   841           !(n->ideal_Opcode()==Op_Load8B    && ld_op==Op_LoadD) &&
   842           !(n->rule() == loadUB_rule)) {
   843         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
   844       }
   845     } else if (st_op) {
   846       // a Store
   847       // inputs are (0:control, 1:memory, 2:address, 3:value)
   848       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
   849           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
   850           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
   851           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
   852           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
   853           !(n->ideal_Opcode()==Op_Store2I && st_op==Op_StoreD) &&
   854           !(n->ideal_Opcode()==Op_Store4C && st_op==Op_StoreD) &&
   855           !(n->ideal_Opcode()==Op_Store8B && st_op==Op_StoreD) &&
   856           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
   857         verify_oops_warning(n, n->ideal_Opcode(), st_op);
   858       }
   859     }
   861     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
   862       Node* addr = n->in(2);
   863       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
   864         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
   865         if (atype != NULL) {
   866           intptr_t offset = get_offset_from_base(n, atype, disp32);
   867           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
   868           if (offset != offset_2) {
   869             get_offset_from_base(n, atype, disp32);
   870             get_offset_from_base_2(n, atype, disp32);
   871           }
   872           assert(offset == offset_2, "different offsets");
   873           if (offset == disp32) {
   874             // we now know that src1 is a true oop pointer
   875             is_verified_oop_base = true;
   876             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
   877               if( primary == Assembler::ldd_op3 ) {
   878                 is_verified_oop_base = false; // Cannot 'ldd' into O7
   879               } else {
   880                 tmp_enc = dst_enc;
   881                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
   882                 assert(src1_enc != dst_enc, "");
   883               }
   884             }
   885           }
   886           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
   887                        || offset == oopDesc::mark_offset_in_bytes())) {
   888                       // loading the mark should not be allowed either, but
   889                       // we don't check this since it conflicts with InlineObjectHash
   890                       // usage of LoadINode to get the mark. We could keep the
   891                       // check if we create a new LoadMarkNode
   892             // but do not verify the object before its header is initialized
   893             ShouldNotReachHere();
   894           }
   895         }
   896       }
   897     }
   898   }
   899 #endif
   901   uint instr;
   902   instr = (Assembler::ldst_op << 30)
   903         | (dst_enc        << 25)
   904         | (primary        << 19)
   905         | (src1_enc       << 14);
   907   uint index = src2_enc;
   908   int disp = disp32;
   910   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
   911     disp += STACK_BIAS;
   913   // We should have a compiler bailout here rather than a guarantee.
   914   // Better yet would be some mechanism to handle variable-size matches correctly.
   915   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
   917   if( disp == 0 ) {
   918     // use reg-reg form
   919     // bit 13 is already zero
   920     instr |= index;
   921   } else {
   922     // use reg-imm form
   923     instr |= 0x00002000;          // set bit 13 to one
   924     instr |= disp & 0x1FFF;
   925   }
   927   cbuf.insts()->emit_int32(instr);
   929 #ifdef ASSERT
   930   {
   931     MacroAssembler _masm(&cbuf);
   932     if (is_verified_oop_base) {
   933       __ verify_oop(reg_to_register_object(src1_enc));
   934     }
   935     if (is_verified_oop_store) {
   936       __ verify_oop(reg_to_register_object(dst_enc));
   937     }
   938     if (tmp_enc != -1) {
   939       __ mov(O7, reg_to_register_object(tmp_enc));
   940     }
   941     if (is_verified_oop_load) {
   942       __ verify_oop(reg_to_register_object(dst_enc));
   943     }
   944   }
   945 #endif
   946 }
   948 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false) {
   949   // The method which records debug information at every safepoint
   950   // expects the call to be the first instruction in the snippet as
   951   // it creates a PcDesc structure which tracks the offset of a call
   952   // from the start of the codeBlob. This offset is computed as
   953   // code_end() - code_begin() of the code which has been emitted
   954   // so far.
   955   // In this particular case we have skirted around the problem by
   956   // putting the "mov" instruction in the delay slot but the problem
   957   // may bite us again at some other point and a cleaner/generic
   958   // solution using relocations would be needed.
   959   MacroAssembler _masm(&cbuf);
   960   __ set_inst_mark();
   962   // We flush the current window just so that there is a valid stack copy
   963   // the fact that the current window becomes active again instantly is
   964   // not a problem there is nothing live in it.
   966 #ifdef ASSERT
   967   int startpos = __ offset();
   968 #endif /* ASSERT */
   970   __ call((address)entry_point, rtype);
   972   if (preserve_g2)   __ delayed()->mov(G2, L7);
   973   else __ delayed()->nop();
   975   if (preserve_g2)   __ mov(L7, G2);
   977 #ifdef ASSERT
   978   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
   979 #ifdef _LP64
   980     // Trash argument dump slots.
   981     __ set(0xb0b8ac0db0b8ac0d, G1);
   982     __ mov(G1, G5);
   983     __ stx(G1, SP, STACK_BIAS + 0x80);
   984     __ stx(G1, SP, STACK_BIAS + 0x88);
   985     __ stx(G1, SP, STACK_BIAS + 0x90);
   986     __ stx(G1, SP, STACK_BIAS + 0x98);
   987     __ stx(G1, SP, STACK_BIAS + 0xA0);
   988     __ stx(G1, SP, STACK_BIAS + 0xA8);
   989 #else // _LP64
   990     // this is also a native call, so smash the first 7 stack locations,
   991     // and the various registers
   993     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
   994     // while [SP+0x44..0x58] are the argument dump slots.
   995     __ set((intptr_t)0xbaadf00d, G1);
   996     __ mov(G1, G5);
   997     __ sllx(G1, 32, G1);
   998     __ or3(G1, G5, G1);
   999     __ mov(G1, G5);
  1000     __ stx(G1, SP, 0x40);
  1001     __ stx(G1, SP, 0x48);
  1002     __ stx(G1, SP, 0x50);
  1003     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
  1004 #endif // _LP64
  1006 #endif /*ASSERT*/
  1009 //=============================================================================
  1010 // REQUIRED FUNCTIONALITY for encoding
  1011 void emit_lo(CodeBuffer &cbuf, int val) {  }
  1012 void emit_hi(CodeBuffer &cbuf, int val) {  }
  1015 //=============================================================================
  1016 const bool Matcher::constant_table_absolute_addressing = false;
  1017 const RegMask& MachConstantBaseNode::_out_RegMask = PTR_REG_mask;
  1019 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
  1020   Compile* C = ra_->C;
  1021   Compile::ConstantTable& constant_table = C->constant_table();
  1022   MacroAssembler _masm(&cbuf);
  1024   Register r = as_Register(ra_->get_encode(this));
  1025   CodeSection* cs = __ code()->consts();
  1026   int consts_size = cs->align_at_start(cs->size());
  1028   if (UseRDPCForConstantTableBase) {
  1029     // For the following RDPC logic to work correctly the consts
  1030     // section must be allocated right before the insts section.  This
  1031     // assert checks for that.  The layout and the SECT_* constants
  1032     // are defined in src/share/vm/asm/codeBuffer.hpp.
  1033     assert(CodeBuffer::SECT_CONSTS + 1 == CodeBuffer::SECT_INSTS, "must be");
  1034     int offset = __ offset();
  1035     int disp;
  1037     // If the displacement from the current PC to the constant table
  1038     // base fits into simm13 we set the constant table base to the
  1039     // current PC.
  1040     if (__ is_simm13(-(consts_size + offset))) {
  1041       constant_table.set_table_base_offset(-(consts_size + offset));
  1042       disp = 0;
  1043     } else {
  1044       // If the offset of the top constant (last entry in the table)
  1045       // fits into simm13 we set the constant table base to the actual
  1046       // table base.
  1047       if (__ is_simm13(constant_table.top_offset())) {
  1048         constant_table.set_table_base_offset(0);
  1049         disp = consts_size + offset;
  1050       } else {
  1051         // Otherwise we set the constant table base in the middle of the
  1052         // constant table.
  1053         int half_consts_size = consts_size / 2;
  1054         assert(half_consts_size * 2 == consts_size, "sanity");
  1055         constant_table.set_table_base_offset(-half_consts_size);  // table base offset gets added to the load displacement.
  1056         disp = half_consts_size + offset;
  1060     __ rdpc(r);
  1062     if (disp != 0) {
  1063       assert(r != O7, "need temporary");
  1064       __ sub(r, __ ensure_simm13_or_reg(disp, O7), r);
  1067   else {
  1068     // Materialize the constant table base.
  1069     assert(constant_table.size() == consts_size, err_msg("must be: %d == %d", constant_table.size(), consts_size));
  1070     address baseaddr = cs->start() + -(constant_table.table_base_offset());
  1071     RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
  1072     AddressLiteral base(baseaddr, rspec);
  1073     __ set(base, r);
  1077 uint MachConstantBaseNode::size(PhaseRegAlloc*) const {
  1078   if (UseRDPCForConstantTableBase) {
  1079     // This is really the worst case but generally it's only 1 instruction.
  1080     return (1 /*rdpc*/ + 1 /*sub*/ + MacroAssembler::worst_case_insts_for_set()) * BytesPerInstWord;
  1081   } else {
  1082     return MacroAssembler::worst_case_insts_for_set() * BytesPerInstWord;
  1086 #ifndef PRODUCT
  1087 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
  1088   char reg[128];
  1089   ra_->dump_register(this, reg);
  1090   if (UseRDPCForConstantTableBase) {
  1091     st->print("RDPC   %s\t! constant table base", reg);
  1092   } else {
  1093     st->print("SET    &constanttable,%s\t! constant table base", reg);
  1096 #endif
  1099 //=============================================================================
  1101 #ifndef PRODUCT
  1102 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1103   Compile* C = ra_->C;
  1105   for (int i = 0; i < OptoPrologueNops; i++) {
  1106     st->print_cr("NOP"); st->print("\t");
  1109   if( VerifyThread ) {
  1110     st->print_cr("Verify_Thread"); st->print("\t");
  1113   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1115   // Calls to C2R adapters often do not accept exceptional returns.
  1116   // We require that their callers must bang for them.  But be careful, because
  1117   // some VM calls (such as call site linkage) can use several kilobytes of
  1118   // stack.  But the stack safety zone should account for that.
  1119   // See bugs 4446381, 4468289, 4497237.
  1120   if (C->need_stack_bang(framesize)) {
  1121     st->print_cr("! stack bang"); st->print("\t");
  1124   if (Assembler::is_simm13(-framesize)) {
  1125     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
  1126   } else {
  1127     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
  1128     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
  1129     st->print   ("SAVE   R_SP,R_G3,R_SP");
  1133 #endif
  1135 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1136   Compile* C = ra_->C;
  1137   MacroAssembler _masm(&cbuf);
  1139   for (int i = 0; i < OptoPrologueNops; i++) {
  1140     __ nop();
  1143   __ verify_thread();
  1145   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1146   assert(framesize >= 16*wordSize, "must have room for reg. save area");
  1147   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
  1149   // Calls to C2R adapters often do not accept exceptional returns.
  1150   // We require that their callers must bang for them.  But be careful, because
  1151   // some VM calls (such as call site linkage) can use several kilobytes of
  1152   // stack.  But the stack safety zone should account for that.
  1153   // See bugs 4446381, 4468289, 4497237.
  1154   if (C->need_stack_bang(framesize)) {
  1155     __ generate_stack_overflow_check(framesize);
  1158   if (Assembler::is_simm13(-framesize)) {
  1159     __ save(SP, -framesize, SP);
  1160   } else {
  1161     __ sethi(-framesize & ~0x3ff, G3);
  1162     __ add(G3, -framesize & 0x3ff, G3);
  1163     __ save(SP, G3, SP);
  1165   C->set_frame_complete( __ offset() );
  1168 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
  1169   return MachNode::size(ra_);
  1172 int MachPrologNode::reloc() const {
  1173   return 10; // a large enough number
  1176 //=============================================================================
  1177 #ifndef PRODUCT
  1178 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1179   Compile* C = ra_->C;
  1181   if( do_polling() && ra_->C->is_method_compilation() ) {
  1182     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
  1183 #ifdef _LP64
  1184     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
  1185 #else
  1186     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
  1187 #endif
  1190   if( do_polling() )
  1191     st->print("RET\n\t");
  1193   st->print("RESTORE");
  1195 #endif
  1197 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1198   MacroAssembler _masm(&cbuf);
  1199   Compile* C = ra_->C;
  1201   __ verify_thread();
  1203   // If this does safepoint polling, then do it here
  1204   if( do_polling() && ra_->C->is_method_compilation() ) {
  1205     AddressLiteral polling_page(os::get_polling_page());
  1206     __ sethi(polling_page, L0);
  1207     __ relocate(relocInfo::poll_return_type);
  1208     __ ld_ptr( L0, 0, G0 );
  1211   // If this is a return, then stuff the restore in the delay slot
  1212   if( do_polling() ) {
  1213     __ ret();
  1214     __ delayed()->restore();
  1215   } else {
  1216     __ restore();
  1220 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
  1221   return MachNode::size(ra_);
  1224 int MachEpilogNode::reloc() const {
  1225   return 16; // a large enough number
  1228 const Pipeline * MachEpilogNode::pipeline() const {
  1229   return MachNode::pipeline_class();
  1232 int MachEpilogNode::safepoint_offset() const {
  1233   assert( do_polling(), "no return for this epilog node");
  1234   return MacroAssembler::insts_for_sethi(os::get_polling_page()) * BytesPerInstWord;
  1237 //=============================================================================
  1239 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
  1240 enum RC { rc_bad, rc_int, rc_float, rc_stack };
  1241 static enum RC rc_class( OptoReg::Name reg ) {
  1242   if( !OptoReg::is_valid(reg)  ) return rc_bad;
  1243   if (OptoReg::is_stack(reg)) return rc_stack;
  1244   VMReg r = OptoReg::as_VMReg(reg);
  1245   if (r->is_Register()) return rc_int;
  1246   assert(r->is_FloatRegister(), "must be");
  1247   return rc_float;
  1250 static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
  1251   if( cbuf ) {
  1252     // Better yet would be some mechanism to handle variable-size matches correctly
  1253     if (!Assembler::is_simm13(offset + STACK_BIAS)) {
  1254       ra_->C->record_method_not_compilable("unable to handle large constant offsets");
  1255     } else {
  1256       emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
  1259 #ifndef PRODUCT
  1260   else if( !do_size ) {
  1261     if( size != 0 ) st->print("\n\t");
  1262     if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
  1263     else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
  1265 #endif
  1266   return size+4;
  1269 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
  1270   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
  1271 #ifndef PRODUCT
  1272   else if( !do_size ) {
  1273     if( size != 0 ) st->print("\n\t");
  1274     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
  1276 #endif
  1277   return size+4;
  1280 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
  1281                                         PhaseRegAlloc *ra_,
  1282                                         bool do_size,
  1283                                         outputStream* st ) const {
  1284   // Get registers to move
  1285   OptoReg::Name src_second = ra_->get_reg_second(in(1));
  1286   OptoReg::Name src_first = ra_->get_reg_first(in(1));
  1287   OptoReg::Name dst_second = ra_->get_reg_second(this );
  1288   OptoReg::Name dst_first = ra_->get_reg_first(this );
  1290   enum RC src_second_rc = rc_class(src_second);
  1291   enum RC src_first_rc = rc_class(src_first);
  1292   enum RC dst_second_rc = rc_class(dst_second);
  1293   enum RC dst_first_rc = rc_class(dst_first);
  1295   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
  1297   // Generate spill code!
  1298   int size = 0;
  1300   if( src_first == dst_first && src_second == dst_second )
  1301     return size;            // Self copy, no move
  1303   // --------------------------------------
  1304   // Check for mem-mem move.  Load into unused float registers and fall into
  1305   // the float-store case.
  1306   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
  1307     int offset = ra_->reg2offset(src_first);
  1308     // Further check for aligned-adjacent pair, so we can use a double load
  1309     if( (src_first&1)==0 && src_first+1 == src_second ) {
  1310       src_second    = OptoReg::Name(R_F31_num);
  1311       src_second_rc = rc_float;
  1312       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
  1313     } else {
  1314       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
  1316     src_first    = OptoReg::Name(R_F30_num);
  1317     src_first_rc = rc_float;
  1320   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
  1321     int offset = ra_->reg2offset(src_second);
  1322     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
  1323     src_second    = OptoReg::Name(R_F31_num);
  1324     src_second_rc = rc_float;
  1327   // --------------------------------------
  1328   // Check for float->int copy; requires a trip through memory
  1329   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS < 3) {
  1330     int offset = frame::register_save_words*wordSize;
  1331     if (cbuf) {
  1332       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
  1333       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1334       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1335       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
  1337 #ifndef PRODUCT
  1338     else if (!do_size) {
  1339       if (size != 0) st->print("\n\t");
  1340       st->print(  "SUB    R_SP,16,R_SP\n");
  1341       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1342       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1343       st->print("\tADD    R_SP,16,R_SP\n");
  1345 #endif
  1346     size += 16;
  1349   // Check for float->int copy on T4
  1350   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS >= 3) {
  1351     // Further check for aligned-adjacent pair, so we can use a double move
  1352     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
  1353       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mdtox_opf,"MOVDTOX",size, st);
  1354     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mstouw_opf,"MOVSTOUW",size, st);
  1356   // Check for int->float copy on T4
  1357   if (src_first_rc == rc_int && dst_first_rc == rc_float && UseVIS >= 3) {
  1358     // Further check for aligned-adjacent pair, so we can use a double move
  1359     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
  1360       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mxtod_opf,"MOVXTOD",size, st);
  1361     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mwtos_opf,"MOVWTOS",size, st);
  1364   // --------------------------------------
  1365   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
  1366   // In such cases, I have to do the big-endian swap.  For aligned targets, the
  1367   // hardware does the flop for me.  Doubles are always aligned, so no problem
  1368   // there.  Misaligned sources only come from native-long-returns (handled
  1369   // special below).
  1370 #ifndef _LP64
  1371   if( src_first_rc == rc_int &&     // source is already big-endian
  1372       src_second_rc != rc_bad &&    // 64-bit move
  1373       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
  1374     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
  1375     // Do the big-endian flop.
  1376     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
  1377     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
  1379 #endif
  1381   // --------------------------------------
  1382   // Check for integer reg-reg copy
  1383   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
  1384 #ifndef _LP64
  1385     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
  1386       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1387       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1388       //       operand contains the least significant word of the 64-bit value and vice versa.
  1389       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
  1390       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
  1391       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
  1392       if( cbuf ) {
  1393         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
  1394         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
  1395         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
  1396 #ifndef PRODUCT
  1397       } else if( !do_size ) {
  1398         if( size != 0 ) st->print("\n\t");
  1399         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
  1400         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
  1401         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
  1402 #endif
  1404       return size+12;
  1406     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
  1407       // returning a long value in I0/I1
  1408       // a SpillCopy must be able to target a return instruction's reg_class
  1409       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1410       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1411       //       operand contains the least significant word of the 64-bit value and vice versa.
  1412       OptoReg::Name tdest = dst_first;
  1414       if (src_first == dst_first) {
  1415         tdest = OptoReg::Name(R_O7_num);
  1416         size += 4;
  1419       if( cbuf ) {
  1420         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
  1421         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
  1422         // ShrL_reg_imm6
  1423         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
  1424         // ShrR_reg_imm6  src, 0, dst
  1425         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
  1426         if (tdest != dst_first) {
  1427           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
  1430 #ifndef PRODUCT
  1431       else if( !do_size ) {
  1432         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
  1433         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
  1434         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
  1435         if (tdest != dst_first) {
  1436           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
  1439 #endif // PRODUCT
  1440       return size+8;
  1442 #endif // !_LP64
  1443     // Else normal reg-reg copy
  1444     assert( src_second != dst_first, "smashed second before evacuating it" );
  1445     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
  1446     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
  1447     // This moves an aligned adjacent pair.
  1448     // See if we are done.
  1449     if( src_first+1 == src_second && dst_first+1 == dst_second )
  1450       return size;
  1453   // Check for integer store
  1454   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
  1455     int offset = ra_->reg2offset(dst_first);
  1456     // Further check for aligned-adjacent pair, so we can use a double store
  1457     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1458       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
  1459     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
  1462   // Check for integer load
  1463   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
  1464     int offset = ra_->reg2offset(src_first);
  1465     // Further check for aligned-adjacent pair, so we can use a double load
  1466     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1467       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
  1468     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1471   // Check for float reg-reg copy
  1472   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
  1473     // Further check for aligned-adjacent pair, so we can use a double move
  1474     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1475       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
  1476     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
  1479   // Check for float store
  1480   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
  1481     int offset = ra_->reg2offset(dst_first);
  1482     // Further check for aligned-adjacent pair, so we can use a double store
  1483     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1484       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
  1485     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1488   // Check for float load
  1489   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
  1490     int offset = ra_->reg2offset(src_first);
  1491     // Further check for aligned-adjacent pair, so we can use a double load
  1492     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1493       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
  1494     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
  1497   // --------------------------------------------------------------------
  1498   // Check for hi bits still needing moving.  Only happens for misaligned
  1499   // arguments to native calls.
  1500   if( src_second == dst_second )
  1501     return size;               // Self copy; no move
  1502   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1504 #ifndef _LP64
  1505   // In the LP64 build, all registers can be moved as aligned/adjacent
  1506   // pairs, so there's never any need to move the high bits separately.
  1507   // The 32-bit builds have to deal with the 32-bit ABI which can force
  1508   // all sorts of silly alignment problems.
  1510   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
  1511   // 32-bits of a 64-bit register, but are needed in low bits of another
  1512   // register (else it's a hi-bits-to-hi-bits copy which should have
  1513   // happened already as part of a 64-bit move)
  1514   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
  1515     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
  1516     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
  1517     // Shift src_second down to dst_second's low bits.
  1518     if( cbuf ) {
  1519       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1520 #ifndef PRODUCT
  1521     } else if( !do_size ) {
  1522       if( size != 0 ) st->print("\n\t");
  1523       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
  1524 #endif
  1526     return size+4;
  1529   // Check for high word integer store.  Must down-shift the hi bits
  1530   // into a temp register, then fall into the case of storing int bits.
  1531   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
  1532     // Shift src_second down to dst_second's low bits.
  1533     if( cbuf ) {
  1534       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1535 #ifndef PRODUCT
  1536     } else if( !do_size ) {
  1537       if( size != 0 ) st->print("\n\t");
  1538       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
  1539 #endif
  1541     size+=4;
  1542     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
  1545   // Check for high word integer load
  1546   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1547     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
  1549   // Check for high word integer store
  1550   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1551     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
  1553   // Check for high word float store
  1554   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
  1555     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
  1557 #endif // !_LP64
  1559   Unimplemented();
  1562 #ifndef PRODUCT
  1563 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1564   implementation( NULL, ra_, false, st );
  1566 #endif
  1568 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1569   implementation( &cbuf, ra_, false, NULL );
  1572 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1573   return implementation( NULL, ra_, true, NULL );
  1576 //=============================================================================
  1577 #ifndef PRODUCT
  1578 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
  1579   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
  1581 #endif
  1583 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  1584   MacroAssembler _masm(&cbuf);
  1585   for(int i = 0; i < _count; i += 1) {
  1586     __ nop();
  1590 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
  1591   return 4 * _count;
  1595 //=============================================================================
  1596 #ifndef PRODUCT
  1597 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1598   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1599   int reg = ra_->get_reg_first(this);
  1600   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
  1602 #endif
  1604 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1605   MacroAssembler _masm(&cbuf);
  1606   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
  1607   int reg = ra_->get_encode(this);
  1609   if (Assembler::is_simm13(offset)) {
  1610      __ add(SP, offset, reg_to_register_object(reg));
  1611   } else {
  1612      __ set(offset, O7);
  1613      __ add(SP, O7, reg_to_register_object(reg));
  1617 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1618   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
  1619   assert(ra_ == ra_->C->regalloc(), "sanity");
  1620   return ra_->C->scratch_emit_size(this);
  1623 //=============================================================================
  1625 // emit call stub, compiled java to interpretor
  1626 void emit_java_to_interp(CodeBuffer &cbuf ) {
  1628   // Stub is fixed up when the corresponding call is converted from calling
  1629   // compiled code to calling interpreted code.
  1630   // set (empty), G5
  1631   // jmp -1
  1633   address mark = cbuf.insts_mark();  // get mark within main instrs section
  1635   MacroAssembler _masm(&cbuf);
  1637   address base =
  1638   __ start_a_stub(Compile::MAX_stubs_size);
  1639   if (base == NULL)  return;  // CodeBuffer::expand failed
  1641   // static stub relocation stores the instruction address of the call
  1642   __ relocate(static_stub_Relocation::spec(mark));
  1644   __ set_oop(NULL, reg_to_register_object(Matcher::inline_cache_reg_encode()));
  1646   __ set_inst_mark();
  1647   AddressLiteral addrlit(-1);
  1648   __ JUMP(addrlit, G3, 0);
  1650   __ delayed()->nop();
  1652   // Update current stubs pointer and restore code_end.
  1653   __ end_a_stub();
  1656 // size of call stub, compiled java to interpretor
  1657 uint size_java_to_interp() {
  1658   // This doesn't need to be accurate but it must be larger or equal to
  1659   // the real size of the stub.
  1660   return (NativeMovConstReg::instruction_size +  // sethi/setlo;
  1661           NativeJump::instruction_size + // sethi; jmp; nop
  1662           (TraceJumps ? 20 * BytesPerInstWord : 0) );
  1664 // relocation entries for call stub, compiled java to interpretor
  1665 uint reloc_java_to_interp() {
  1666   return 10;  // 4 in emit_java_to_interp + 1 in Java_Static_Call
  1670 //=============================================================================
  1671 #ifndef PRODUCT
  1672 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1673   st->print_cr("\nUEP:");
  1674 #ifdef    _LP64
  1675   if (UseCompressedOops) {
  1676     assert(Universe::heap() != NULL, "java heap should be initialized");
  1677     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
  1678     st->print_cr("\tSLL    R_G5,3,R_G5");
  1679     if (Universe::narrow_oop_base() != NULL)
  1680       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
  1681   } else {
  1682     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1684   st->print_cr("\tCMP    R_G5,R_G3" );
  1685   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1686 #else  // _LP64
  1687   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1688   st->print_cr("\tCMP    R_G5,R_G3" );
  1689   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1690 #endif // _LP64
  1692 #endif
  1694 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1695   MacroAssembler _masm(&cbuf);
  1696   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
  1697   Register temp_reg   = G3;
  1698   assert( G5_ic_reg != temp_reg, "conflicting registers" );
  1700   // Load klass from receiver
  1701   __ load_klass(O0, temp_reg);
  1702   // Compare against expected klass
  1703   __ cmp(temp_reg, G5_ic_reg);
  1704   // Branch to miss code, checks xcc or icc depending
  1705   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
  1708 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1709   return MachNode::size(ra_);
  1713 //=============================================================================
  1715 uint size_exception_handler() {
  1716   if (TraceJumps) {
  1717     return (400); // just a guess
  1719   return ( NativeJump::instruction_size ); // sethi;jmp;nop
  1722 uint size_deopt_handler() {
  1723   if (TraceJumps) {
  1724     return (400); // just a guess
  1726   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
  1729 // Emit exception handler code.
  1730 int emit_exception_handler(CodeBuffer& cbuf) {
  1731   Register temp_reg = G3;
  1732   AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
  1733   MacroAssembler _masm(&cbuf);
  1735   address base =
  1736   __ start_a_stub(size_exception_handler());
  1737   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1739   int offset = __ offset();
  1741   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
  1742   __ delayed()->nop();
  1744   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1746   __ end_a_stub();
  1748   return offset;
  1751 int emit_deopt_handler(CodeBuffer& cbuf) {
  1752   // Can't use any of the current frame's registers as we may have deopted
  1753   // at a poll and everything (including G3) can be live.
  1754   Register temp_reg = L0;
  1755   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
  1756   MacroAssembler _masm(&cbuf);
  1758   address base =
  1759   __ start_a_stub(size_deopt_handler());
  1760   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1762   int offset = __ offset();
  1763   __ save_frame(0);
  1764   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
  1765   __ delayed()->restore();
  1767   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1769   __ end_a_stub();
  1770   return offset;
  1774 // Given a register encoding, produce a Integer Register object
  1775 static Register reg_to_register_object(int register_encoding) {
  1776   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
  1777   return as_Register(register_encoding);
  1780 // Given a register encoding, produce a single-precision Float Register object
  1781 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
  1782   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
  1783   return as_SingleFloatRegister(register_encoding);
  1786 // Given a register encoding, produce a double-precision Float Register object
  1787 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
  1788   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
  1789   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
  1790   return as_DoubleFloatRegister(register_encoding);
  1793 const bool Matcher::match_rule_supported(int opcode) {
  1794   if (!has_match_rule(opcode))
  1795     return false;
  1797   switch (opcode) {
  1798   case Op_CountLeadingZerosI:
  1799   case Op_CountLeadingZerosL:
  1800   case Op_CountTrailingZerosI:
  1801   case Op_CountTrailingZerosL:
  1802     if (!UsePopCountInstruction)
  1803       return false;
  1804     break;
  1807   return true;  // Per default match rules are supported.
  1810 int Matcher::regnum_to_fpu_offset(int regnum) {
  1811   return regnum - 32; // The FP registers are in the second chunk
  1814 #ifdef ASSERT
  1815 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
  1816 #endif
  1818 // Vector width in bytes
  1819 const uint Matcher::vector_width_in_bytes(void) {
  1820   return 8;
  1823 // Vector ideal reg
  1824 const uint Matcher::vector_ideal_reg(void) {
  1825   return Op_RegD;
  1828 // USII supports fxtof through the whole range of number, USIII doesn't
  1829 const bool Matcher::convL2FSupported(void) {
  1830   return VM_Version::has_fast_fxtof();
  1833 // Is this branch offset short enough that a short branch can be used?
  1834 //
  1835 // NOTE: If the platform does not provide any short branch variants, then
  1836 //       this method should return false for offset 0.
  1837 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
  1838   // The passed offset is relative to address of the branch.
  1839   // Don't need to adjust the offset.
  1840   return UseCBCond && Assembler::is_simm(offset, 12);
  1843 const bool Matcher::isSimpleConstant64(jlong value) {
  1844   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1845   // Depends on optimizations in MacroAssembler::setx.
  1846   int hi = (int)(value >> 32);
  1847   int lo = (int)(value & ~0);
  1848   return (hi == 0) || (hi == -1) || (lo == 0);
  1851 // No scaling for the parameter the ClearArray node.
  1852 const bool Matcher::init_array_count_is_in_bytes = true;
  1854 // Threshold size for cleararray.
  1855 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1857 // Should the Matcher clone shifts on addressing modes, expecting them to
  1858 // be subsumed into complex addressing expressions or compute them into
  1859 // registers?  True for Intel but false for most RISCs
  1860 const bool Matcher::clone_shift_expressions = false;
  1862 // Do we need to mask the count passed to shift instructions or does
  1863 // the cpu only look at the lower 5/6 bits anyway?
  1864 const bool Matcher::need_masked_shift_count = false;
  1866 bool Matcher::narrow_oop_use_complex_address() {
  1867   NOT_LP64(ShouldNotCallThis());
  1868   assert(UseCompressedOops, "only for compressed oops code");
  1869   return false;
  1872 // Is it better to copy float constants, or load them directly from memory?
  1873 // Intel can load a float constant from a direct address, requiring no
  1874 // extra registers.  Most RISCs will have to materialize an address into a
  1875 // register first, so they would do better to copy the constant from stack.
  1876 const bool Matcher::rematerialize_float_constants = false;
  1878 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1879 // needed.  Else we split the double into 2 integer pieces and move it
  1880 // piece-by-piece.  Only happens when passing doubles into C code as the
  1881 // Java calling convention forces doubles to be aligned.
  1882 #ifdef _LP64
  1883 const bool Matcher::misaligned_doubles_ok = true;
  1884 #else
  1885 const bool Matcher::misaligned_doubles_ok = false;
  1886 #endif
  1888 // No-op on SPARC.
  1889 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1892 // Advertise here if the CPU requires explicit rounding operations
  1893 // to implement the UseStrictFP mode.
  1894 const bool Matcher::strict_fp_requires_explicit_rounding = false;
  1896 // Are floats conerted to double when stored to stack during deoptimization?
  1897 // Sparc does not handle callee-save floats.
  1898 bool Matcher::float_in_double() { return false; }
  1900 // Do ints take an entire long register or just half?
  1901 // Note that we if-def off of _LP64.
  1902 // The relevant question is how the int is callee-saved.  In _LP64
  1903 // the whole long is written but de-opt'ing will have to extract
  1904 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
  1905 #ifdef _LP64
  1906 const bool Matcher::int_in_long = true;
  1907 #else
  1908 const bool Matcher::int_in_long = false;
  1909 #endif
  1911 // Return whether or not this register is ever used as an argument.  This
  1912 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1913 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1914 // arguments in those registers not be available to the callee.
  1915 bool Matcher::can_be_java_arg( int reg ) {
  1916   // Standard sparc 6 args in registers
  1917   if( reg == R_I0_num ||
  1918       reg == R_I1_num ||
  1919       reg == R_I2_num ||
  1920       reg == R_I3_num ||
  1921       reg == R_I4_num ||
  1922       reg == R_I5_num ) return true;
  1923 #ifdef _LP64
  1924   // 64-bit builds can pass 64-bit pointers and longs in
  1925   // the high I registers
  1926   if( reg == R_I0H_num ||
  1927       reg == R_I1H_num ||
  1928       reg == R_I2H_num ||
  1929       reg == R_I3H_num ||
  1930       reg == R_I4H_num ||
  1931       reg == R_I5H_num ) return true;
  1933   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
  1934     return true;
  1937 #else
  1938   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
  1939   // Longs cannot be passed in O regs, because O regs become I regs
  1940   // after a 'save' and I regs get their high bits chopped off on
  1941   // interrupt.
  1942   if( reg == R_G1H_num || reg == R_G1_num ) return true;
  1943   if( reg == R_G4H_num || reg == R_G4_num ) return true;
  1944 #endif
  1945   // A few float args in registers
  1946   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
  1948   return false;
  1951 bool Matcher::is_spillable_arg( int reg ) {
  1952   return can_be_java_arg(reg);
  1955 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
  1956   // Use hardware SDIVX instruction when it is
  1957   // faster than a code which use multiply.
  1958   return VM_Version::has_fast_idiv();
  1961 // Register for DIVI projection of divmodI
  1962 RegMask Matcher::divI_proj_mask() {
  1963   ShouldNotReachHere();
  1964   return RegMask();
  1967 // Register for MODI projection of divmodI
  1968 RegMask Matcher::modI_proj_mask() {
  1969   ShouldNotReachHere();
  1970   return RegMask();
  1973 // Register for DIVL projection of divmodL
  1974 RegMask Matcher::divL_proj_mask() {
  1975   ShouldNotReachHere();
  1976   return RegMask();
  1979 // Register for MODL projection of divmodL
  1980 RegMask Matcher::modL_proj_mask() {
  1981   ShouldNotReachHere();
  1982   return RegMask();
  1985 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  1986   return L7_REGP_mask;
  1989 %}
  1992 // The intptr_t operand types, defined by textual substitution.
  1993 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
  1994 #ifdef _LP64
  1995 #define immX      immL
  1996 #define immX13    immL13
  1997 #define immX13m7  immL13m7
  1998 #define iRegX     iRegL
  1999 #define g1RegX    g1RegL
  2000 #else
  2001 #define immX      immI
  2002 #define immX13    immI13
  2003 #define immX13m7  immI13m7
  2004 #define iRegX     iRegI
  2005 #define g1RegX    g1RegI
  2006 #endif
  2008 //----------ENCODING BLOCK-----------------------------------------------------
  2009 // This block specifies the encoding classes used by the compiler to output
  2010 // byte streams.  Encoding classes are parameterized macros used by
  2011 // Machine Instruction Nodes in order to generate the bit encoding of the
  2012 // instruction.  Operands specify their base encoding interface with the
  2013 // interface keyword.  There are currently supported four interfaces,
  2014 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  2015 // operand to generate a function which returns its register number when
  2016 // queried.   CONST_INTER causes an operand to generate a function which
  2017 // returns the value of the constant when queried.  MEMORY_INTER causes an
  2018 // operand to generate four functions which return the Base Register, the
  2019 // Index Register, the Scale Value, and the Offset Value of the operand when
  2020 // queried.  COND_INTER causes an operand to generate six functions which
  2021 // return the encoding code (ie - encoding bits for the instruction)
  2022 // associated with each basic boolean condition for a conditional instruction.
  2023 //
  2024 // Instructions specify two basic values for encoding.  Again, a function
  2025 // is available to check if the constant displacement is an oop. They use the
  2026 // ins_encode keyword to specify their encoding classes (which must be
  2027 // a sequence of enc_class names, and their parameters, specified in
  2028 // the encoding block), and they use the
  2029 // opcode keyword to specify, in order, their primary, secondary, and
  2030 // tertiary opcode.  Only the opcode sections which a particular instruction
  2031 // needs for encoding need to be specified.
  2032 encode %{
  2033   enc_class enc_untested %{
  2034 #ifdef ASSERT
  2035     MacroAssembler _masm(&cbuf);
  2036     __ untested("encoding");
  2037 #endif
  2038   %}
  2040   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
  2041     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
  2042                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  2043   %}
  2045   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
  2046     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2047                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  2048   %}
  2050   enc_class form3_mem_prefetch_read( memory mem ) %{
  2051     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2052                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
  2053   %}
  2055   enc_class form3_mem_prefetch_write( memory mem ) %{
  2056     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2057                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
  2058   %}
  2060   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
  2061     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
  2062     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
  2063     guarantee($mem$$index == R_G0_enc, "double index?");
  2064     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
  2065     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
  2066     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
  2067     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
  2068   %}
  2070   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
  2071     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
  2072     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
  2073     guarantee($mem$$index == R_G0_enc, "double index?");
  2074     // Load long with 2 instructions
  2075     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
  2076     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
  2077   %}
  2079   //%%% form3_mem_plus_4_reg is a hack--get rid of it
  2080   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
  2081     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
  2082     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
  2083   %}
  2085   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
  2086     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2087     if( $rs2$$reg != $rd$$reg )
  2088       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
  2089   %}
  2091   // Target lo half of long
  2092   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
  2093     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2094     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
  2095       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
  2096   %}
  2098   // Source lo half of long
  2099   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
  2100     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2101     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
  2102       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
  2103   %}
  2105   // Target hi half of long
  2106   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
  2107     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
  2108   %}
  2110   // Source lo half of long, and leave it sign extended.
  2111   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
  2112     // Sign extend low half
  2113     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
  2114   %}
  2116   // Source hi half of long, and leave it sign extended.
  2117   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
  2118     // Shift high half to low half
  2119     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
  2120   %}
  2122   // Source hi half of long
  2123   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
  2124     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2125     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
  2126       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
  2127   %}
  2129   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
  2130     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
  2131   %}
  2133   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
  2134     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
  2135     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
  2136   %}
  2138   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
  2139     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
  2140     // clear if nothing else is happening
  2141     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
  2142     // blt,a,pn done
  2143     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
  2144     // mov dst,-1 in delay slot
  2145     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2146   %}
  2148   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
  2149     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
  2150   %}
  2152   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
  2153     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
  2154   %}
  2156   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
  2157     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
  2158   %}
  2160   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
  2161     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
  2162   %}
  2164   enc_class move_return_pc_to_o1() %{
  2165     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
  2166   %}
  2168 #ifdef _LP64
  2169   /* %%% merge with enc_to_bool */
  2170   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
  2171     MacroAssembler _masm(&cbuf);
  2173     Register   src_reg = reg_to_register_object($src$$reg);
  2174     Register   dst_reg = reg_to_register_object($dst$$reg);
  2175     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
  2176   %}
  2177 #endif
  2179   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
  2180     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
  2181     MacroAssembler _masm(&cbuf);
  2183     Register   p_reg = reg_to_register_object($p$$reg);
  2184     Register   q_reg = reg_to_register_object($q$$reg);
  2185     Register   y_reg = reg_to_register_object($y$$reg);
  2186     Register tmp_reg = reg_to_register_object($tmp$$reg);
  2188     __ subcc( p_reg, q_reg,   p_reg );
  2189     __ add  ( p_reg, y_reg, tmp_reg );
  2190     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
  2191   %}
  2193   enc_class form_d2i_helper(regD src, regF dst) %{
  2194     // fcmp %fcc0,$src,$src
  2195     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2196     // branch %fcc0 not-nan, predict taken
  2197     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2198     // fdtoi $src,$dst
  2199     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
  2200     // fitos $dst,$dst (if nan)
  2201     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2202     // clear $dst (if nan)
  2203     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2204     // carry on here...
  2205   %}
  2207   enc_class form_d2l_helper(regD src, regD dst) %{
  2208     // fcmp %fcc0,$src,$src  check for NAN
  2209     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2210     // branch %fcc0 not-nan, predict taken
  2211     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2212     // fdtox $src,$dst   convert in delay slot
  2213     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
  2214     // fxtod $dst,$dst  (if nan)
  2215     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2216     // clear $dst (if nan)
  2217     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2218     // carry on here...
  2219   %}
  2221   enc_class form_f2i_helper(regF src, regF dst) %{
  2222     // fcmps %fcc0,$src,$src
  2223     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2224     // branch %fcc0 not-nan, predict taken
  2225     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2226     // fstoi $src,$dst
  2227     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
  2228     // fitos $dst,$dst (if nan)
  2229     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2230     // clear $dst (if nan)
  2231     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2232     // carry on here...
  2233   %}
  2235   enc_class form_f2l_helper(regF src, regD dst) %{
  2236     // fcmps %fcc0,$src,$src
  2237     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2238     // branch %fcc0 not-nan, predict taken
  2239     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2240     // fstox $src,$dst
  2241     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
  2242     // fxtod $dst,$dst (if nan)
  2243     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2244     // clear $dst (if nan)
  2245     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2246     // carry on here...
  2247   %}
  2249   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2250   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2251   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2252   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2254   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
  2256   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2257   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
  2259   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
  2260     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2261   %}
  2263   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
  2264     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2265   %}
  2267   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
  2268     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2269   %}
  2271   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
  2272     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2273   %}
  2275   enc_class form3_convI2F(regF rs2, regF rd) %{
  2276     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
  2277   %}
  2279   // Encloding class for traceable jumps
  2280   enc_class form_jmpl(g3RegP dest) %{
  2281     emit_jmpl(cbuf, $dest$$reg);
  2282   %}
  2284   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
  2285     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
  2286   %}
  2288   enc_class form2_nop() %{
  2289     emit_nop(cbuf);
  2290   %}
  2292   enc_class form2_illtrap() %{
  2293     emit_illtrap(cbuf);
  2294   %}
  2297   // Compare longs and convert into -1, 0, 1.
  2298   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
  2299     // CMP $src1,$src2
  2300     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
  2301     // blt,a,pn done
  2302     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
  2303     // mov dst,-1 in delay slot
  2304     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2305     // bgt,a,pn done
  2306     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
  2307     // mov dst,1 in delay slot
  2308     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
  2309     // CLR    $dst
  2310     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
  2311   %}
  2313   enc_class enc_PartialSubtypeCheck() %{
  2314     MacroAssembler _masm(&cbuf);
  2315     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
  2316     __ delayed()->nop();
  2317   %}
  2319   enc_class enc_bp( label labl, cmpOp cmp, flagsReg cc ) %{
  2320     MacroAssembler _masm(&cbuf);
  2321     Label* L = $labl$$label;
  2322     Assembler::Predict predict_taken =
  2323       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  2325     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  2326     __ delayed()->nop();
  2327   %}
  2329   enc_class enc_bpr( label labl, cmpOp_reg cmp, iRegI op1 ) %{
  2330     MacroAssembler _masm(&cbuf);
  2331     Label* L = $labl$$label;
  2332     Assembler::Predict predict_taken =
  2333       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  2335     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), *L);
  2336     __ delayed()->nop();
  2337   %}
  2339   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
  2340     int op = (Assembler::arith_op << 30) |
  2341              ($dst$$reg << 25) |
  2342              (Assembler::movcc_op3 << 19) |
  2343              (1 << 18) |                    // cc2 bit for 'icc'
  2344              ($cmp$$cmpcode << 14) |
  2345              (0 << 13) |                    // select register move
  2346              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
  2347              ($src$$reg << 0);
  2348     cbuf.insts()->emit_int32(op);
  2349   %}
  2351   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
  2352     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2353     int op = (Assembler::arith_op << 30) |
  2354              ($dst$$reg << 25) |
  2355              (Assembler::movcc_op3 << 19) |
  2356              (1 << 18) |                    // cc2 bit for 'icc'
  2357              ($cmp$$cmpcode << 14) |
  2358              (1 << 13) |                    // select immediate move
  2359              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
  2360              (simm11 << 0);
  2361     cbuf.insts()->emit_int32(op);
  2362   %}
  2364   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
  2365     int op = (Assembler::arith_op << 30) |
  2366              ($dst$$reg << 25) |
  2367              (Assembler::movcc_op3 << 19) |
  2368              (0 << 18) |                    // cc2 bit for 'fccX'
  2369              ($cmp$$cmpcode << 14) |
  2370              (0 << 13) |                    // select register move
  2371              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2372              ($src$$reg << 0);
  2373     cbuf.insts()->emit_int32(op);
  2374   %}
  2376   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
  2377     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2378     int op = (Assembler::arith_op << 30) |
  2379              ($dst$$reg << 25) |
  2380              (Assembler::movcc_op3 << 19) |
  2381              (0 << 18) |                    // cc2 bit for 'fccX'
  2382              ($cmp$$cmpcode << 14) |
  2383              (1 << 13) |                    // select immediate move
  2384              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2385              (simm11 << 0);
  2386     cbuf.insts()->emit_int32(op);
  2387   %}
  2389   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
  2390     int op = (Assembler::arith_op << 30) |
  2391              ($dst$$reg << 25) |
  2392              (Assembler::fpop2_op3 << 19) |
  2393              (0 << 18) |
  2394              ($cmp$$cmpcode << 14) |
  2395              (1 << 13) |                    // select register move
  2396              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
  2397              ($primary << 5) |              // select single, double or quad
  2398              ($src$$reg << 0);
  2399     cbuf.insts()->emit_int32(op);
  2400   %}
  2402   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
  2403     int op = (Assembler::arith_op << 30) |
  2404              ($dst$$reg << 25) |
  2405              (Assembler::fpop2_op3 << 19) |
  2406              (0 << 18) |
  2407              ($cmp$$cmpcode << 14) |
  2408              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
  2409              ($primary << 5) |              // select single, double or quad
  2410              ($src$$reg << 0);
  2411     cbuf.insts()->emit_int32(op);
  2412   %}
  2414   // Used by the MIN/MAX encodings.  Same as a CMOV, but
  2415   // the condition comes from opcode-field instead of an argument.
  2416   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
  2417     int op = (Assembler::arith_op << 30) |
  2418              ($dst$$reg << 25) |
  2419              (Assembler::movcc_op3 << 19) |
  2420              (1 << 18) |                    // cc2 bit for 'icc'
  2421              ($primary << 14) |
  2422              (0 << 13) |                    // select register move
  2423              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2424              ($src$$reg << 0);
  2425     cbuf.insts()->emit_int32(op);
  2426   %}
  2428   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
  2429     int op = (Assembler::arith_op << 30) |
  2430              ($dst$$reg << 25) |
  2431              (Assembler::movcc_op3 << 19) |
  2432              (6 << 16) |                    // cc2 bit for 'xcc'
  2433              ($primary << 14) |
  2434              (0 << 13) |                    // select register move
  2435              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2436              ($src$$reg << 0);
  2437     cbuf.insts()->emit_int32(op);
  2438   %}
  2440   enc_class Set13( immI13 src, iRegI rd ) %{
  2441     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
  2442   %}
  2444   enc_class SetHi22( immI src, iRegI rd ) %{
  2445     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
  2446   %}
  2448   enc_class Set32( immI src, iRegI rd ) %{
  2449     MacroAssembler _masm(&cbuf);
  2450     __ set($src$$constant, reg_to_register_object($rd$$reg));
  2451   %}
  2453   enc_class call_epilog %{
  2454     if( VerifyStackAtCalls ) {
  2455       MacroAssembler _masm(&cbuf);
  2456       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
  2457       Register temp_reg = G3;
  2458       __ add(SP, framesize, temp_reg);
  2459       __ cmp(temp_reg, FP);
  2460       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
  2462   %}
  2464   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
  2465   // to G1 so the register allocator will not have to deal with the misaligned register
  2466   // pair.
  2467   enc_class adjust_long_from_native_call %{
  2468 #ifndef _LP64
  2469     if (returns_long()) {
  2470       //    sllx  O0,32,O0
  2471       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
  2472       //    srl   O1,0,O1
  2473       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
  2474       //    or    O0,O1,G1
  2475       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
  2477 #endif
  2478   %}
  2480   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
  2481     // CALL directly to the runtime
  2482     // The user of this is responsible for ensuring that R_L7 is empty (killed).
  2483     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
  2484                     /*preserve_g2=*/true);
  2485   %}
  2487   enc_class preserve_SP %{
  2488     MacroAssembler _masm(&cbuf);
  2489     __ mov(SP, L7_mh_SP_save);
  2490   %}
  2492   enc_class restore_SP %{
  2493     MacroAssembler _masm(&cbuf);
  2494     __ mov(L7_mh_SP_save, SP);
  2495   %}
  2497   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  2498     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2499     // who we intended to call.
  2500     if ( !_method ) {
  2501       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
  2502     } else if (_optimized_virtual) {
  2503       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
  2504     } else {
  2505       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
  2507     if( _method ) {  // Emit stub for static call
  2508       emit_java_to_interp(cbuf);
  2510   %}
  2512   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  2513     MacroAssembler _masm(&cbuf);
  2514     __ set_inst_mark();
  2515     int vtable_index = this->_vtable_index;
  2516     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
  2517     if (vtable_index < 0) {
  2518       // must be invalid_vtable_index, not nonvirtual_vtable_index
  2519       assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
  2520       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2521       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
  2522       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
  2523       // !!!!!
  2524       // Generate  "set 0x01, R_G5", placeholder instruction to load oop-info
  2525       // emit_call_dynamic_prologue( cbuf );
  2526       __ set_oop((jobject)Universe::non_oop_word(), G5_ic_reg);
  2528       address  virtual_call_oop_addr = __ inst_mark();
  2529       // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2530       // who we intended to call.
  2531       __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
  2532       emit_call_reloc(cbuf, $meth$$method, relocInfo::none);
  2533     } else {
  2534       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
  2535       // Just go thru the vtable
  2536       // get receiver klass (receiver already checked for non-null)
  2537       // If we end up going thru a c2i adapter interpreter expects method in G5
  2538       int off = __ offset();
  2539       __ load_klass(O0, G3_scratch);
  2540       int klass_load_size;
  2541       if (UseCompressedOops) {
  2542         assert(Universe::heap() != NULL, "java heap should be initialized");
  2543         if (Universe::narrow_oop_base() == NULL)
  2544           klass_load_size = 2*BytesPerInstWord;
  2545         else
  2546           klass_load_size = 3*BytesPerInstWord;
  2547       } else {
  2548         klass_load_size = 1*BytesPerInstWord;
  2550       int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
  2551       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
  2552       if( __ is_simm13(v_off) ) {
  2553         __ ld_ptr(G3, v_off, G5_method);
  2554       } else {
  2555         // Generate 2 instructions
  2556         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
  2557         __ or3(G5_method, v_off & 0x3ff, G5_method);
  2558         // ld_ptr, set_hi, set
  2559         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
  2560                "Unexpected instruction size(s)");
  2561         __ ld_ptr(G3, G5_method, G5_method);
  2563       // NOTE: for vtable dispatches, the vtable entry will never be null.
  2564       // However it may very well end up in handle_wrong_method if the
  2565       // method is abstract for the particular class.
  2566       __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3_scratch);
  2567       // jump to target (either compiled code or c2iadapter)
  2568       __ jmpl(G3_scratch, G0, O7);
  2569       __ delayed()->nop();
  2571   %}
  2573   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  2574     MacroAssembler _masm(&cbuf);
  2576     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2577     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
  2578                               // we might be calling a C2I adapter which needs it.
  2580     assert(temp_reg != G5_ic_reg, "conflicting registers");
  2581     // Load nmethod
  2582     __ ld_ptr(G5_ic_reg, in_bytes(methodOopDesc::from_compiled_offset()), temp_reg);
  2584     // CALL to compiled java, indirect the contents of G3
  2585     __ set_inst_mark();
  2586     __ callr(temp_reg, G0);
  2587     __ delayed()->nop();
  2588   %}
  2590 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
  2591     MacroAssembler _masm(&cbuf);
  2592     Register Rdividend = reg_to_register_object($src1$$reg);
  2593     Register Rdivisor = reg_to_register_object($src2$$reg);
  2594     Register Rresult = reg_to_register_object($dst$$reg);
  2596     __ sra(Rdivisor, 0, Rdivisor);
  2597     __ sra(Rdividend, 0, Rdividend);
  2598     __ sdivx(Rdividend, Rdivisor, Rresult);
  2599 %}
  2601 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
  2602     MacroAssembler _masm(&cbuf);
  2604     Register Rdividend = reg_to_register_object($src1$$reg);
  2605     int divisor = $imm$$constant;
  2606     Register Rresult = reg_to_register_object($dst$$reg);
  2608     __ sra(Rdividend, 0, Rdividend);
  2609     __ sdivx(Rdividend, divisor, Rresult);
  2610 %}
  2612 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
  2613     MacroAssembler _masm(&cbuf);
  2614     Register Rsrc1 = reg_to_register_object($src1$$reg);
  2615     Register Rsrc2 = reg_to_register_object($src2$$reg);
  2616     Register Rdst  = reg_to_register_object($dst$$reg);
  2618     __ sra( Rsrc1, 0, Rsrc1 );
  2619     __ sra( Rsrc2, 0, Rsrc2 );
  2620     __ mulx( Rsrc1, Rsrc2, Rdst );
  2621     __ srlx( Rdst, 32, Rdst );
  2622 %}
  2624 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
  2625     MacroAssembler _masm(&cbuf);
  2626     Register Rdividend = reg_to_register_object($src1$$reg);
  2627     Register Rdivisor = reg_to_register_object($src2$$reg);
  2628     Register Rresult = reg_to_register_object($dst$$reg);
  2629     Register Rscratch = reg_to_register_object($scratch$$reg);
  2631     assert(Rdividend != Rscratch, "");
  2632     assert(Rdivisor  != Rscratch, "");
  2634     __ sra(Rdividend, 0, Rdividend);
  2635     __ sra(Rdivisor, 0, Rdivisor);
  2636     __ sdivx(Rdividend, Rdivisor, Rscratch);
  2637     __ mulx(Rscratch, Rdivisor, Rscratch);
  2638     __ sub(Rdividend, Rscratch, Rresult);
  2639 %}
  2641 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
  2642     MacroAssembler _masm(&cbuf);
  2644     Register Rdividend = reg_to_register_object($src1$$reg);
  2645     int divisor = $imm$$constant;
  2646     Register Rresult = reg_to_register_object($dst$$reg);
  2647     Register Rscratch = reg_to_register_object($scratch$$reg);
  2649     assert(Rdividend != Rscratch, "");
  2651     __ sra(Rdividend, 0, Rdividend);
  2652     __ sdivx(Rdividend, divisor, Rscratch);
  2653     __ mulx(Rscratch, divisor, Rscratch);
  2654     __ sub(Rdividend, Rscratch, Rresult);
  2655 %}
  2657 enc_class fabss (sflt_reg dst, sflt_reg src) %{
  2658     MacroAssembler _masm(&cbuf);
  2660     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2661     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2663     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
  2664 %}
  2666 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
  2667     MacroAssembler _masm(&cbuf);
  2669     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2670     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2672     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
  2673 %}
  2675 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
  2676     MacroAssembler _masm(&cbuf);
  2678     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2679     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2681     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
  2682 %}
  2684 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
  2685     MacroAssembler _masm(&cbuf);
  2687     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2688     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2690     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
  2691 %}
  2693 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
  2694     MacroAssembler _masm(&cbuf);
  2696     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2697     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2699     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
  2700 %}
  2702 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
  2703     MacroAssembler _masm(&cbuf);
  2705     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2706     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2708     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
  2709 %}
  2711 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
  2712     MacroAssembler _masm(&cbuf);
  2714     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2715     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2717     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
  2718 %}
  2720 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2721     MacroAssembler _masm(&cbuf);
  2723     Register Roop  = reg_to_register_object($oop$$reg);
  2724     Register Rbox  = reg_to_register_object($box$$reg);
  2725     Register Rscratch = reg_to_register_object($scratch$$reg);
  2726     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2728     assert(Roop  != Rscratch, "");
  2729     assert(Roop  != Rmark, "");
  2730     assert(Rbox  != Rscratch, "");
  2731     assert(Rbox  != Rmark, "");
  2733     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
  2734 %}
  2736 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2737     MacroAssembler _masm(&cbuf);
  2739     Register Roop  = reg_to_register_object($oop$$reg);
  2740     Register Rbox  = reg_to_register_object($box$$reg);
  2741     Register Rscratch = reg_to_register_object($scratch$$reg);
  2742     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2744     assert(Roop  != Rscratch, "");
  2745     assert(Roop  != Rmark, "");
  2746     assert(Rbox  != Rscratch, "");
  2747     assert(Rbox  != Rmark, "");
  2749     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
  2750   %}
  2752   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
  2753     MacroAssembler _masm(&cbuf);
  2754     Register Rmem = reg_to_register_object($mem$$reg);
  2755     Register Rold = reg_to_register_object($old$$reg);
  2756     Register Rnew = reg_to_register_object($new$$reg);
  2758     // casx_under_lock picks 1 of 3 encodings:
  2759     // For 32-bit pointers you get a 32-bit CAS
  2760     // For 64-bit pointers you get a 64-bit CASX
  2761     __ casn(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
  2762     __ cmp( Rold, Rnew );
  2763   %}
  2765   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
  2766     Register Rmem = reg_to_register_object($mem$$reg);
  2767     Register Rold = reg_to_register_object($old$$reg);
  2768     Register Rnew = reg_to_register_object($new$$reg);
  2770     MacroAssembler _masm(&cbuf);
  2771     __ mov(Rnew, O7);
  2772     __ casx(Rmem, Rold, O7);
  2773     __ cmp( Rold, O7 );
  2774   %}
  2776   // raw int cas, used for compareAndSwap
  2777   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
  2778     Register Rmem = reg_to_register_object($mem$$reg);
  2779     Register Rold = reg_to_register_object($old$$reg);
  2780     Register Rnew = reg_to_register_object($new$$reg);
  2782     MacroAssembler _masm(&cbuf);
  2783     __ mov(Rnew, O7);
  2784     __ cas(Rmem, Rold, O7);
  2785     __ cmp( Rold, O7 );
  2786   %}
  2788   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
  2789     Register Rres = reg_to_register_object($res$$reg);
  2791     MacroAssembler _masm(&cbuf);
  2792     __ mov(1, Rres);
  2793     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
  2794   %}
  2796   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
  2797     Register Rres = reg_to_register_object($res$$reg);
  2799     MacroAssembler _masm(&cbuf);
  2800     __ mov(1, Rres);
  2801     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
  2802   %}
  2804   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
  2805     MacroAssembler _masm(&cbuf);
  2806     Register Rdst = reg_to_register_object($dst$$reg);
  2807     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
  2808                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
  2809     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
  2810                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
  2812     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
  2813     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
  2814   %}
  2816   // Compiler ensures base is doubleword aligned and cnt is count of doublewords
  2817   enc_class enc_Clear_Array(iRegX cnt, iRegP base, iRegX temp) %{
  2818     MacroAssembler _masm(&cbuf);
  2819     Register    nof_bytes_arg   = reg_to_register_object($cnt$$reg);
  2820     Register    nof_bytes_tmp    = reg_to_register_object($temp$$reg);
  2821     Register    base_pointer_arg = reg_to_register_object($base$$reg);
  2823     Label loop;
  2824     __ mov(nof_bytes_arg, nof_bytes_tmp);
  2826     // Loop and clear, walking backwards through the array.
  2827     // nof_bytes_tmp (if >0) is always the number of bytes to zero
  2828     __ bind(loop);
  2829     __ deccc(nof_bytes_tmp, 8);
  2830     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
  2831     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
  2832     // %%%% this mini-loop must not cross a cache boundary!
  2833   %}
  2836   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
  2837     Label Ldone, Lloop;
  2838     MacroAssembler _masm(&cbuf);
  2840     Register   str1_reg = reg_to_register_object($str1$$reg);
  2841     Register   str2_reg = reg_to_register_object($str2$$reg);
  2842     Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
  2843     Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
  2844     Register result_reg = reg_to_register_object($result$$reg);
  2846     assert(result_reg != str1_reg &&
  2847            result_reg != str2_reg &&
  2848            result_reg != cnt1_reg &&
  2849            result_reg != cnt2_reg ,
  2850            "need different registers");
  2852     // Compute the minimum of the string lengths(str1_reg) and the
  2853     // difference of the string lengths (stack)
  2855     // See if the lengths are different, and calculate min in str1_reg.
  2856     // Stash diff in O7 in case we need it for a tie-breaker.
  2857     Label Lskip;
  2858     __ subcc(cnt1_reg, cnt2_reg, O7);
  2859     __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2860     __ br(Assembler::greater, true, Assembler::pt, Lskip);
  2861     // cnt2 is shorter, so use its count:
  2862     __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2863     __ bind(Lskip);
  2865     // reallocate cnt1_reg, cnt2_reg, result_reg
  2866     // Note:  limit_reg holds the string length pre-scaled by 2
  2867     Register limit_reg =   cnt1_reg;
  2868     Register  chr2_reg =   cnt2_reg;
  2869     Register  chr1_reg = result_reg;
  2870     // str{12} are the base pointers
  2872     // Is the minimum length zero?
  2873     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
  2874     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2875     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2877     // Load first characters
  2878     __ lduh(str1_reg, 0, chr1_reg);
  2879     __ lduh(str2_reg, 0, chr2_reg);
  2881     // Compare first characters
  2882     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2883     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
  2884     assert(chr1_reg == result_reg, "result must be pre-placed");
  2885     __ delayed()->nop();
  2888       // Check after comparing first character to see if strings are equivalent
  2889       Label LSkip2;
  2890       // Check if the strings start at same location
  2891       __ cmp(str1_reg, str2_reg);
  2892       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
  2893       __ delayed()->nop();
  2895       // Check if the length difference is zero (in O7)
  2896       __ cmp(G0, O7);
  2897       __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2898       __ delayed()->mov(G0, result_reg);  // result is zero
  2900       // Strings might not be equal
  2901       __ bind(LSkip2);
  2904     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
  2905     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2906     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2908     // Shift str1_reg and str2_reg to the end of the arrays, negate limit
  2909     __ add(str1_reg, limit_reg, str1_reg);
  2910     __ add(str2_reg, limit_reg, str2_reg);
  2911     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
  2913     // Compare the rest of the characters
  2914     __ lduh(str1_reg, limit_reg, chr1_reg);
  2915     __ bind(Lloop);
  2916     // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2917     __ lduh(str2_reg, limit_reg, chr2_reg);
  2918     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2919     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
  2920     assert(chr1_reg == result_reg, "result must be pre-placed");
  2921     __ delayed()->inccc(limit_reg, sizeof(jchar));
  2922     // annul LDUH if branch is not taken to prevent access past end of string
  2923     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
  2924     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2926     // If strings are equal up to min length, return the length difference.
  2927     __ mov(O7, result_reg);
  2929     // Otherwise, return the difference between the first mismatched chars.
  2930     __ bind(Ldone);
  2931   %}
  2933 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
  2934     Label Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
  2935     MacroAssembler _masm(&cbuf);
  2937     Register   str1_reg = reg_to_register_object($str1$$reg);
  2938     Register   str2_reg = reg_to_register_object($str2$$reg);
  2939     Register    cnt_reg = reg_to_register_object($cnt$$reg);
  2940     Register   tmp1_reg = O7;
  2941     Register result_reg = reg_to_register_object($result$$reg);
  2943     assert(result_reg != str1_reg &&
  2944            result_reg != str2_reg &&
  2945            result_reg !=  cnt_reg &&
  2946            result_reg != tmp1_reg ,
  2947            "need different registers");
  2949     __ cmp(str1_reg, str2_reg); //same char[] ?
  2950     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  2951     __ delayed()->add(G0, 1, result_reg);
  2953     __ cmp_zero_and_br(Assembler::zero, cnt_reg, Ldone, true, Assembler::pn);
  2954     __ delayed()->add(G0, 1, result_reg); // count == 0
  2956     //rename registers
  2957     Register limit_reg =    cnt_reg;
  2958     Register  chr1_reg = result_reg;
  2959     Register  chr2_reg =   tmp1_reg;
  2961     //check for alignment and position the pointers to the ends
  2962     __ or3(str1_reg, str2_reg, chr1_reg);
  2963     __ andcc(chr1_reg, 0x3, chr1_reg);
  2964     // notZero means at least one not 4-byte aligned.
  2965     // We could optimize the case when both arrays are not aligned
  2966     // but it is not frequent case and it requires additional checks.
  2967     __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
  2968     __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
  2970     // Compare char[] arrays aligned to 4 bytes.
  2971     __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
  2972                           chr1_reg, chr2_reg, Ldone);
  2973     __ ba(Ldone);
  2974     __ delayed()->add(G0, 1, result_reg);
  2976     // char by char compare
  2977     __ bind(Lchar);
  2978     __ add(str1_reg, limit_reg, str1_reg);
  2979     __ add(str2_reg, limit_reg, str2_reg);
  2980     __ neg(limit_reg); //negate count
  2982     __ lduh(str1_reg, limit_reg, chr1_reg);
  2983     // Lchar_loop
  2984     __ bind(Lchar_loop);
  2985     __ lduh(str2_reg, limit_reg, chr2_reg);
  2986     __ cmp(chr1_reg, chr2_reg);
  2987     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
  2988     __ delayed()->mov(G0, result_reg); //not equal
  2989     __ inccc(limit_reg, sizeof(jchar));
  2990     // annul LDUH if branch is not taken to prevent access past end of string
  2991     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
  2992     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2994     __ add(G0, 1, result_reg);  //equal
  2996     __ bind(Ldone);
  2997   %}
  2999 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
  3000     Label Lvector, Ldone, Lloop;
  3001     MacroAssembler _masm(&cbuf);
  3003     Register   ary1_reg = reg_to_register_object($ary1$$reg);
  3004     Register   ary2_reg = reg_to_register_object($ary2$$reg);
  3005     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
  3006     Register   tmp2_reg = O7;
  3007     Register result_reg = reg_to_register_object($result$$reg);
  3009     int length_offset  = arrayOopDesc::length_offset_in_bytes();
  3010     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
  3012     // return true if the same array
  3013     __ cmp(ary1_reg, ary2_reg);
  3014     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  3015     __ delayed()->add(G0, 1, result_reg); // equal
  3017     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
  3018     __ delayed()->mov(G0, result_reg);    // not equal
  3020     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
  3021     __ delayed()->mov(G0, result_reg);    // not equal
  3023     //load the lengths of arrays
  3024     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
  3025     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
  3027     // return false if the two arrays are not equal length
  3028     __ cmp(tmp1_reg, tmp2_reg);
  3029     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
  3030     __ delayed()->mov(G0, result_reg);     // not equal
  3032     __ cmp_zero_and_br(Assembler::zero, tmp1_reg, Ldone, true, Assembler::pn);
  3033     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
  3035     // load array addresses
  3036     __ add(ary1_reg, base_offset, ary1_reg);
  3037     __ add(ary2_reg, base_offset, ary2_reg);
  3039     // renaming registers
  3040     Register chr1_reg  =  result_reg; // for characters in ary1
  3041     Register chr2_reg  =  tmp2_reg;   // for characters in ary2
  3042     Register limit_reg =  tmp1_reg;   // length
  3044     // set byte count
  3045     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
  3047     // Compare char[] arrays aligned to 4 bytes.
  3048     __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
  3049                           chr1_reg, chr2_reg, Ldone);
  3050     __ add(G0, 1, result_reg); // equals
  3052     __ bind(Ldone);
  3053   %}
  3055   enc_class enc_rethrow() %{
  3056     cbuf.set_insts_mark();
  3057     Register temp_reg = G3;
  3058     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
  3059     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
  3060     MacroAssembler _masm(&cbuf);
  3061 #ifdef ASSERT
  3062     __ save_frame(0);
  3063     AddressLiteral last_rethrow_addrlit(&last_rethrow);
  3064     __ sethi(last_rethrow_addrlit, L1);
  3065     Address addr(L1, last_rethrow_addrlit.low10());
  3066     __ get_pc(L2);
  3067     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
  3068     __ st_ptr(L2, addr);
  3069     __ restore();
  3070 #endif
  3071     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
  3072     __ delayed()->nop();
  3073   %}
  3075   enc_class emit_mem_nop() %{
  3076     // Generates the instruction LDUXA [o6,g0],#0x82,g0
  3077     cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
  3078   %}
  3080   enc_class emit_fadd_nop() %{
  3081     // Generates the instruction FMOVS f31,f31
  3082     cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
  3083   %}
  3085   enc_class emit_br_nop() %{
  3086     // Generates the instruction BPN,PN .
  3087     cbuf.insts()->emit_int32((unsigned int) 0x00400000);
  3088   %}
  3090   enc_class enc_membar_acquire %{
  3091     MacroAssembler _masm(&cbuf);
  3092     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
  3093   %}
  3095   enc_class enc_membar_release %{
  3096     MacroAssembler _masm(&cbuf);
  3097     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
  3098   %}
  3100   enc_class enc_membar_volatile %{
  3101     MacroAssembler _masm(&cbuf);
  3102     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  3103   %}
  3105   enc_class enc_repl8b( iRegI src, iRegL dst ) %{
  3106     MacroAssembler _masm(&cbuf);
  3107     Register src_reg = reg_to_register_object($src$$reg);
  3108     Register dst_reg = reg_to_register_object($dst$$reg);
  3109     __ sllx(src_reg, 56, dst_reg);
  3110     __ srlx(dst_reg,  8, O7);
  3111     __ or3 (dst_reg, O7, dst_reg);
  3112     __ srlx(dst_reg, 16, O7);
  3113     __ or3 (dst_reg, O7, dst_reg);
  3114     __ srlx(dst_reg, 32, O7);
  3115     __ or3 (dst_reg, O7, dst_reg);
  3116   %}
  3118   enc_class enc_repl4b( iRegI src, iRegL dst ) %{
  3119     MacroAssembler _masm(&cbuf);
  3120     Register src_reg = reg_to_register_object($src$$reg);
  3121     Register dst_reg = reg_to_register_object($dst$$reg);
  3122     __ sll(src_reg, 24, dst_reg);
  3123     __ srl(dst_reg,  8, O7);
  3124     __ or3(dst_reg, O7, dst_reg);
  3125     __ srl(dst_reg, 16, O7);
  3126     __ or3(dst_reg, O7, dst_reg);
  3127   %}
  3129   enc_class enc_repl4s( iRegI src, iRegL dst ) %{
  3130     MacroAssembler _masm(&cbuf);
  3131     Register src_reg = reg_to_register_object($src$$reg);
  3132     Register dst_reg = reg_to_register_object($dst$$reg);
  3133     __ sllx(src_reg, 48, dst_reg);
  3134     __ srlx(dst_reg, 16, O7);
  3135     __ or3 (dst_reg, O7, dst_reg);
  3136     __ srlx(dst_reg, 32, O7);
  3137     __ or3 (dst_reg, O7, dst_reg);
  3138   %}
  3140   enc_class enc_repl2i( iRegI src, iRegL dst ) %{
  3141     MacroAssembler _masm(&cbuf);
  3142     Register src_reg = reg_to_register_object($src$$reg);
  3143     Register dst_reg = reg_to_register_object($dst$$reg);
  3144     __ sllx(src_reg, 32, dst_reg);
  3145     __ srlx(dst_reg, 32, O7);
  3146     __ or3 (dst_reg, O7, dst_reg);
  3147   %}
  3149 %}
  3151 //----------FRAME--------------------------------------------------------------
  3152 // Definition of frame structure and management information.
  3153 //
  3154 //  S T A C K   L A Y O U T    Allocators stack-slot number
  3155 //                             |   (to get allocators register number
  3156 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
  3157 //  r   CALLER     |        |
  3158 //  o     |        +--------+      pad to even-align allocators stack-slot
  3159 //  w     V        |  pad0  |        numbers; owned by CALLER
  3160 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  3161 //  h     ^        |   in   |  5
  3162 //        |        |  args  |  4   Holes in incoming args owned by SELF
  3163 //  |     |        |        |  3
  3164 //  |     |        +--------+
  3165 //  V     |        | old out|      Empty on Intel, window on Sparc
  3166 //        |    old |preserve|      Must be even aligned.
  3167 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
  3168 //        |        |   in   |  3   area for Intel ret address
  3169 //     Owned by    |preserve|      Empty on Sparc.
  3170 //       SELF      +--------+
  3171 //        |        |  pad2  |  2   pad to align old SP
  3172 //        |        +--------+  1
  3173 //        |        | locks  |  0
  3174 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
  3175 //        |        |  pad1  | 11   pad to align new SP
  3176 //        |        +--------+
  3177 //        |        |        | 10
  3178 //        |        | spills |  9   spills
  3179 //        V        |        |  8   (pad0 slot for callee)
  3180 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  3181 //        ^        |  out   |  7
  3182 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  3183 //     Owned by    +--------+
  3184 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  3185 //        |    new |preserve|      Must be even-aligned.
  3186 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  3187 //        |        |        |
  3188 //
  3189 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  3190 //         known from SELF's arguments and the Java calling convention.
  3191 //         Region 6-7 is determined per call site.
  3192 // Note 2: If the calling convention leaves holes in the incoming argument
  3193 //         area, those holes are owned by SELF.  Holes in the outgoing area
  3194 //         are owned by the CALLEE.  Holes should not be nessecary in the
  3195 //         incoming area, as the Java calling convention is completely under
  3196 //         the control of the AD file.  Doubles can be sorted and packed to
  3197 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  3198 //         varargs C calling conventions.
  3199 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  3200 //         even aligned with pad0 as needed.
  3201 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  3202 //         region 6-11 is even aligned; it may be padded out more so that
  3203 //         the region from SP to FP meets the minimum stack alignment.
  3205 frame %{
  3206   // What direction does stack grow in (assumed to be same for native & Java)
  3207   stack_direction(TOWARDS_LOW);
  3209   // These two registers define part of the calling convention
  3210   // between compiled code and the interpreter.
  3211   inline_cache_reg(R_G5);                // Inline Cache Register or methodOop for I2C
  3212   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
  3214   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  3215   cisc_spilling_operand_name(indOffset);
  3217   // Number of stack slots consumed by a Monitor enter
  3218 #ifdef _LP64
  3219   sync_stack_slots(2);
  3220 #else
  3221   sync_stack_slots(1);
  3222 #endif
  3224   // Compiled code's Frame Pointer
  3225   frame_pointer(R_SP);
  3227   // Stack alignment requirement
  3228   stack_alignment(StackAlignmentInBytes);
  3229   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
  3230   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
  3232   // Number of stack slots between incoming argument block and the start of
  3233   // a new frame.  The PROLOG must add this many slots to the stack.  The
  3234   // EPILOG must remove this many slots.
  3235   in_preserve_stack_slots(0);
  3237   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  3238   // for calls to C.  Supports the var-args backing area for register parms.
  3239   // ADLC doesn't support parsing expressions, so I folded the math by hand.
  3240 #ifdef _LP64
  3241   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
  3242   varargs_C_out_slots_killed(12);
  3243 #else
  3244   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
  3245   varargs_C_out_slots_killed( 7);
  3246 #endif
  3248   // The after-PROLOG location of the return address.  Location of
  3249   // return address specifies a type (REG or STACK) and a number
  3250   // representing the register number (i.e. - use a register name) or
  3251   // stack slot.
  3252   return_addr(REG R_I7);          // Ret Addr is in register I7
  3254   // Body of function which returns an OptoRegs array locating
  3255   // arguments either in registers or in stack slots for calling
  3256   // java
  3257   calling_convention %{
  3258     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
  3260   %}
  3262   // Body of function which returns an OptoRegs array locating
  3263   // arguments either in registers or in stack slots for callin
  3264   // C.
  3265   c_calling_convention %{
  3266     // This is obviously always outgoing
  3267     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
  3268   %}
  3270   // Location of native (C/C++) and interpreter return values.  This is specified to
  3271   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
  3272   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
  3273   // to and from the register pairs is done by the appropriate call and epilog
  3274   // opcodes.  This simplifies the register allocator.
  3275   c_return_value %{
  3276     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3277 #ifdef     _LP64
  3278     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3279     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3280     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3281     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3282 #else  // !_LP64
  3283     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3284     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3285     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3286     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3287 #endif
  3288     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3289                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3290   %}
  3292   // Location of compiled Java return values.  Same as C
  3293   return_value %{
  3294     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3295 #ifdef     _LP64
  3296     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3297     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3298     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3299     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3300 #else  // !_LP64
  3301     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3302     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3303     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3304     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3305 #endif
  3306     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3307                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3308   %}
  3310 %}
  3313 //----------ATTRIBUTES---------------------------------------------------------
  3314 //----------Operand Attributes-------------------------------------------------
  3315 op_attrib op_cost(1);          // Required cost attribute
  3317 //----------Instruction Attributes---------------------------------------------
  3318 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
  3319 ins_attrib ins_size(32);           // Required size attribute (in bits)
  3320 ins_attrib ins_avoid_back_to_back(0); // instruction should not be generated back to back
  3321 ins_attrib ins_short_branch(0);    // Required flag: is this instruction a
  3322                                    // non-matching short branch variant of some
  3323                                                             // long branch?
  3325 //----------OPERANDS-----------------------------------------------------------
  3326 // Operand definitions must precede instruction definitions for correct parsing
  3327 // in the ADLC because operands constitute user defined types which are used in
  3328 // instruction definitions.
  3330 //----------Simple Operands----------------------------------------------------
  3331 // Immediate Operands
  3332 // Integer Immediate: 32-bit
  3333 operand immI() %{
  3334   match(ConI);
  3336   op_cost(0);
  3337   // formats are generated automatically for constants and base registers
  3338   format %{ %}
  3339   interface(CONST_INTER);
  3340 %}
  3342 // Integer Immediate: 8-bit
  3343 operand immI8() %{
  3344   predicate(Assembler::is_simm(n->get_int(), 8));
  3345   match(ConI);
  3346   op_cost(0);
  3347   format %{ %}
  3348   interface(CONST_INTER);
  3349 %}
  3351 // Integer Immediate: 13-bit
  3352 operand immI13() %{
  3353   predicate(Assembler::is_simm13(n->get_int()));
  3354   match(ConI);
  3355   op_cost(0);
  3357   format %{ %}
  3358   interface(CONST_INTER);
  3359 %}
  3361 // Integer Immediate: 13-bit minus 7
  3362 operand immI13m7() %{
  3363   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
  3364   match(ConI);
  3365   op_cost(0);
  3367   format %{ %}
  3368   interface(CONST_INTER);
  3369 %}
  3371 // Integer Immediate: 16-bit
  3372 operand immI16() %{
  3373   predicate(Assembler::is_simm(n->get_int(), 16));
  3374   match(ConI);
  3375   op_cost(0);
  3376   format %{ %}
  3377   interface(CONST_INTER);
  3378 %}
  3380 // Unsigned (positive) Integer Immediate: 13-bit
  3381 operand immU13() %{
  3382   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
  3383   match(ConI);
  3384   op_cost(0);
  3386   format %{ %}
  3387   interface(CONST_INTER);
  3388 %}
  3390 // Integer Immediate: 6-bit
  3391 operand immU6() %{
  3392   predicate(n->get_int() >= 0 && n->get_int() <= 63);
  3393   match(ConI);
  3394   op_cost(0);
  3395   format %{ %}
  3396   interface(CONST_INTER);
  3397 %}
  3399 // Integer Immediate: 11-bit
  3400 operand immI11() %{
  3401   predicate(Assembler::is_simm(n->get_int(),11));
  3402   match(ConI);
  3403   op_cost(0);
  3404   format %{ %}
  3405   interface(CONST_INTER);
  3406 %}
  3408 // Integer Immediate: 5-bit
  3409 operand immI5() %{
  3410   predicate(Assembler::is_simm(n->get_int(), 5));
  3411   match(ConI);
  3412   op_cost(0);
  3413   format %{ %}
  3414   interface(CONST_INTER);
  3415 %}
  3417 // Integer Immediate: 0-bit
  3418 operand immI0() %{
  3419   predicate(n->get_int() == 0);
  3420   match(ConI);
  3421   op_cost(0);
  3423   format %{ %}
  3424   interface(CONST_INTER);
  3425 %}
  3427 // Integer Immediate: the value 10
  3428 operand immI10() %{
  3429   predicate(n->get_int() == 10);
  3430   match(ConI);
  3431   op_cost(0);
  3433   format %{ %}
  3434   interface(CONST_INTER);
  3435 %}
  3437 // Integer Immediate: the values 0-31
  3438 operand immU5() %{
  3439   predicate(n->get_int() >= 0 && n->get_int() <= 31);
  3440   match(ConI);
  3441   op_cost(0);
  3443   format %{ %}
  3444   interface(CONST_INTER);
  3445 %}
  3447 // Integer Immediate: the values 1-31
  3448 operand immI_1_31() %{
  3449   predicate(n->get_int() >= 1 && n->get_int() <= 31);
  3450   match(ConI);
  3451   op_cost(0);
  3453   format %{ %}
  3454   interface(CONST_INTER);
  3455 %}
  3457 // Integer Immediate: the values 32-63
  3458 operand immI_32_63() %{
  3459   predicate(n->get_int() >= 32 && n->get_int() <= 63);
  3460   match(ConI);
  3461   op_cost(0);
  3463   format %{ %}
  3464   interface(CONST_INTER);
  3465 %}
  3467 // Immediates for special shifts (sign extend)
  3469 // Integer Immediate: the value 16
  3470 operand immI_16() %{
  3471   predicate(n->get_int() == 16);
  3472   match(ConI);
  3473   op_cost(0);
  3475   format %{ %}
  3476   interface(CONST_INTER);
  3477 %}
  3479 // Integer Immediate: the value 24
  3480 operand immI_24() %{
  3481   predicate(n->get_int() == 24);
  3482   match(ConI);
  3483   op_cost(0);
  3485   format %{ %}
  3486   interface(CONST_INTER);
  3487 %}
  3489 // Integer Immediate: the value 255
  3490 operand immI_255() %{
  3491   predicate( n->get_int() == 255 );
  3492   match(ConI);
  3493   op_cost(0);
  3495   format %{ %}
  3496   interface(CONST_INTER);
  3497 %}
  3499 // Integer Immediate: the value 65535
  3500 operand immI_65535() %{
  3501   predicate(n->get_int() == 65535);
  3502   match(ConI);
  3503   op_cost(0);
  3505   format %{ %}
  3506   interface(CONST_INTER);
  3507 %}
  3509 // Long Immediate: the value FF
  3510 operand immL_FF() %{
  3511   predicate( n->get_long() == 0xFFL );
  3512   match(ConL);
  3513   op_cost(0);
  3515   format %{ %}
  3516   interface(CONST_INTER);
  3517 %}
  3519 // Long Immediate: the value FFFF
  3520 operand immL_FFFF() %{
  3521   predicate( n->get_long() == 0xFFFFL );
  3522   match(ConL);
  3523   op_cost(0);
  3525   format %{ %}
  3526   interface(CONST_INTER);
  3527 %}
  3529 // Pointer Immediate: 32 or 64-bit
  3530 operand immP() %{
  3531   match(ConP);
  3533   op_cost(5);
  3534   // formats are generated automatically for constants and base registers
  3535   format %{ %}
  3536   interface(CONST_INTER);
  3537 %}
  3539 #ifdef _LP64
  3540 // Pointer Immediate: 64-bit
  3541 operand immP_set() %{
  3542   predicate(!VM_Version::is_niagara_plus());
  3543   match(ConP);
  3545   op_cost(5);
  3546   // formats are generated automatically for constants and base registers
  3547   format %{ %}
  3548   interface(CONST_INTER);
  3549 %}
  3551 // Pointer Immediate: 64-bit
  3552 // From Niagara2 processors on a load should be better than materializing.
  3553 operand immP_load() %{
  3554   predicate(VM_Version::is_niagara_plus() && (n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set(n->get_ptr()) > 3)));
  3555   match(ConP);
  3557   op_cost(5);
  3558   // formats are generated automatically for constants and base registers
  3559   format %{ %}
  3560   interface(CONST_INTER);
  3561 %}
  3563 // Pointer Immediate: 64-bit
  3564 operand immP_no_oop_cheap() %{
  3565   predicate(VM_Version::is_niagara_plus() && !n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set(n->get_ptr()) <= 3));
  3566   match(ConP);
  3568   op_cost(5);
  3569   // formats are generated automatically for constants and base registers
  3570   format %{ %}
  3571   interface(CONST_INTER);
  3572 %}
  3573 #endif
  3575 operand immP13() %{
  3576   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
  3577   match(ConP);
  3578   op_cost(0);
  3580   format %{ %}
  3581   interface(CONST_INTER);
  3582 %}
  3584 operand immP0() %{
  3585   predicate(n->get_ptr() == 0);
  3586   match(ConP);
  3587   op_cost(0);
  3589   format %{ %}
  3590   interface(CONST_INTER);
  3591 %}
  3593 operand immP_poll() %{
  3594   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
  3595   match(ConP);
  3597   // formats are generated automatically for constants and base registers
  3598   format %{ %}
  3599   interface(CONST_INTER);
  3600 %}
  3602 // Pointer Immediate
  3603 operand immN()
  3604 %{
  3605   match(ConN);
  3607   op_cost(10);
  3608   format %{ %}
  3609   interface(CONST_INTER);
  3610 %}
  3612 // NULL Pointer Immediate
  3613 operand immN0()
  3614 %{
  3615   predicate(n->get_narrowcon() == 0);
  3616   match(ConN);
  3618   op_cost(0);
  3619   format %{ %}
  3620   interface(CONST_INTER);
  3621 %}
  3623 operand immL() %{
  3624   match(ConL);
  3625   op_cost(40);
  3626   // formats are generated automatically for constants and base registers
  3627   format %{ %}
  3628   interface(CONST_INTER);
  3629 %}
  3631 operand immL0() %{
  3632   predicate(n->get_long() == 0L);
  3633   match(ConL);
  3634   op_cost(0);
  3635   // formats are generated automatically for constants and base registers
  3636   format %{ %}
  3637   interface(CONST_INTER);
  3638 %}
  3640 // Integer Immediate: 5-bit
  3641 operand immL5() %{
  3642   predicate(n->get_long() == (int)n->get_long() && Assembler::is_simm((int)n->get_long(), 5));
  3643   match(ConL);
  3644   op_cost(0);
  3645   format %{ %}
  3646   interface(CONST_INTER);
  3647 %}
  3649 // Long Immediate: 13-bit
  3650 operand immL13() %{
  3651   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
  3652   match(ConL);
  3653   op_cost(0);
  3655   format %{ %}
  3656   interface(CONST_INTER);
  3657 %}
  3659 // Long Immediate: 13-bit minus 7
  3660 operand immL13m7() %{
  3661   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
  3662   match(ConL);
  3663   op_cost(0);
  3665   format %{ %}
  3666   interface(CONST_INTER);
  3667 %}
  3669 // Long Immediate: low 32-bit mask
  3670 operand immL_32bits() %{
  3671   predicate(n->get_long() == 0xFFFFFFFFL);
  3672   match(ConL);
  3673   op_cost(0);
  3675   format %{ %}
  3676   interface(CONST_INTER);
  3677 %}
  3679 // Long Immediate: cheap (materialize in <= 3 instructions)
  3680 operand immL_cheap() %{
  3681   predicate(!VM_Version::is_niagara_plus() || MacroAssembler::insts_for_set64(n->get_long()) <= 3);
  3682   match(ConL);
  3683   op_cost(0);
  3685   format %{ %}
  3686   interface(CONST_INTER);
  3687 %}
  3689 // Long Immediate: expensive (materialize in > 3 instructions)
  3690 operand immL_expensive() %{
  3691   predicate(VM_Version::is_niagara_plus() && MacroAssembler::insts_for_set64(n->get_long()) > 3);
  3692   match(ConL);
  3693   op_cost(0);
  3695   format %{ %}
  3696   interface(CONST_INTER);
  3697 %}
  3699 // Double Immediate
  3700 operand immD() %{
  3701   match(ConD);
  3703   op_cost(40);
  3704   format %{ %}
  3705   interface(CONST_INTER);
  3706 %}
  3708 operand immD0() %{
  3709 #ifdef _LP64
  3710   // on 64-bit architectures this comparision is faster
  3711   predicate(jlong_cast(n->getd()) == 0);
  3712 #else
  3713   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
  3714 #endif
  3715   match(ConD);
  3717   op_cost(0);
  3718   format %{ %}
  3719   interface(CONST_INTER);
  3720 %}
  3722 // Float Immediate
  3723 operand immF() %{
  3724   match(ConF);
  3726   op_cost(20);
  3727   format %{ %}
  3728   interface(CONST_INTER);
  3729 %}
  3731 // Float Immediate: 0
  3732 operand immF0() %{
  3733   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
  3734   match(ConF);
  3736   op_cost(0);
  3737   format %{ %}
  3738   interface(CONST_INTER);
  3739 %}
  3741 // Integer Register Operands
  3742 // Integer Register
  3743 operand iRegI() %{
  3744   constraint(ALLOC_IN_RC(int_reg));
  3745   match(RegI);
  3747   match(notemp_iRegI);
  3748   match(g1RegI);
  3749   match(o0RegI);
  3750   match(iRegIsafe);
  3752   format %{ %}
  3753   interface(REG_INTER);
  3754 %}
  3756 operand notemp_iRegI() %{
  3757   constraint(ALLOC_IN_RC(notemp_int_reg));
  3758   match(RegI);
  3760   match(o0RegI);
  3762   format %{ %}
  3763   interface(REG_INTER);
  3764 %}
  3766 operand o0RegI() %{
  3767   constraint(ALLOC_IN_RC(o0_regI));
  3768   match(iRegI);
  3770   format %{ %}
  3771   interface(REG_INTER);
  3772 %}
  3774 // Pointer Register
  3775 operand iRegP() %{
  3776   constraint(ALLOC_IN_RC(ptr_reg));
  3777   match(RegP);
  3779   match(lock_ptr_RegP);
  3780   match(g1RegP);
  3781   match(g2RegP);
  3782   match(g3RegP);
  3783   match(g4RegP);
  3784   match(i0RegP);
  3785   match(o0RegP);
  3786   match(o1RegP);
  3787   match(l7RegP);
  3789   format %{ %}
  3790   interface(REG_INTER);
  3791 %}
  3793 operand sp_ptr_RegP() %{
  3794   constraint(ALLOC_IN_RC(sp_ptr_reg));
  3795   match(RegP);
  3796   match(iRegP);
  3798   format %{ %}
  3799   interface(REG_INTER);
  3800 %}
  3802 operand lock_ptr_RegP() %{
  3803   constraint(ALLOC_IN_RC(lock_ptr_reg));
  3804   match(RegP);
  3805   match(i0RegP);
  3806   match(o0RegP);
  3807   match(o1RegP);
  3808   match(l7RegP);
  3810   format %{ %}
  3811   interface(REG_INTER);
  3812 %}
  3814 operand g1RegP() %{
  3815   constraint(ALLOC_IN_RC(g1_regP));
  3816   match(iRegP);
  3818   format %{ %}
  3819   interface(REG_INTER);
  3820 %}
  3822 operand g2RegP() %{
  3823   constraint(ALLOC_IN_RC(g2_regP));
  3824   match(iRegP);
  3826   format %{ %}
  3827   interface(REG_INTER);
  3828 %}
  3830 operand g3RegP() %{
  3831   constraint(ALLOC_IN_RC(g3_regP));
  3832   match(iRegP);
  3834   format %{ %}
  3835   interface(REG_INTER);
  3836 %}
  3838 operand g1RegI() %{
  3839   constraint(ALLOC_IN_RC(g1_regI));
  3840   match(iRegI);
  3842   format %{ %}
  3843   interface(REG_INTER);
  3844 %}
  3846 operand g3RegI() %{
  3847   constraint(ALLOC_IN_RC(g3_regI));
  3848   match(iRegI);
  3850   format %{ %}
  3851   interface(REG_INTER);
  3852 %}
  3854 operand g4RegI() %{
  3855   constraint(ALLOC_IN_RC(g4_regI));
  3856   match(iRegI);
  3858   format %{ %}
  3859   interface(REG_INTER);
  3860 %}
  3862 operand g4RegP() %{
  3863   constraint(ALLOC_IN_RC(g4_regP));
  3864   match(iRegP);
  3866   format %{ %}
  3867   interface(REG_INTER);
  3868 %}
  3870 operand i0RegP() %{
  3871   constraint(ALLOC_IN_RC(i0_regP));
  3872   match(iRegP);
  3874   format %{ %}
  3875   interface(REG_INTER);
  3876 %}
  3878 operand o0RegP() %{
  3879   constraint(ALLOC_IN_RC(o0_regP));
  3880   match(iRegP);
  3882   format %{ %}
  3883   interface(REG_INTER);
  3884 %}
  3886 operand o1RegP() %{
  3887   constraint(ALLOC_IN_RC(o1_regP));
  3888   match(iRegP);
  3890   format %{ %}
  3891   interface(REG_INTER);
  3892 %}
  3894 operand o2RegP() %{
  3895   constraint(ALLOC_IN_RC(o2_regP));
  3896   match(iRegP);
  3898   format %{ %}
  3899   interface(REG_INTER);
  3900 %}
  3902 operand o7RegP() %{
  3903   constraint(ALLOC_IN_RC(o7_regP));
  3904   match(iRegP);
  3906   format %{ %}
  3907   interface(REG_INTER);
  3908 %}
  3910 operand l7RegP() %{
  3911   constraint(ALLOC_IN_RC(l7_regP));
  3912   match(iRegP);
  3914   format %{ %}
  3915   interface(REG_INTER);
  3916 %}
  3918 operand o7RegI() %{
  3919   constraint(ALLOC_IN_RC(o7_regI));
  3920   match(iRegI);
  3922   format %{ %}
  3923   interface(REG_INTER);
  3924 %}
  3926 operand iRegN() %{
  3927   constraint(ALLOC_IN_RC(int_reg));
  3928   match(RegN);
  3930   format %{ %}
  3931   interface(REG_INTER);
  3932 %}
  3934 // Long Register
  3935 operand iRegL() %{
  3936   constraint(ALLOC_IN_RC(long_reg));
  3937   match(RegL);
  3939   format %{ %}
  3940   interface(REG_INTER);
  3941 %}
  3943 operand o2RegL() %{
  3944   constraint(ALLOC_IN_RC(o2_regL));
  3945   match(iRegL);
  3947   format %{ %}
  3948   interface(REG_INTER);
  3949 %}
  3951 operand o7RegL() %{
  3952   constraint(ALLOC_IN_RC(o7_regL));
  3953   match(iRegL);
  3955   format %{ %}
  3956   interface(REG_INTER);
  3957 %}
  3959 operand g1RegL() %{
  3960   constraint(ALLOC_IN_RC(g1_regL));
  3961   match(iRegL);
  3963   format %{ %}
  3964   interface(REG_INTER);
  3965 %}
  3967 operand g3RegL() %{
  3968   constraint(ALLOC_IN_RC(g3_regL));
  3969   match(iRegL);
  3971   format %{ %}
  3972   interface(REG_INTER);
  3973 %}
  3975 // Int Register safe
  3976 // This is 64bit safe
  3977 operand iRegIsafe() %{
  3978   constraint(ALLOC_IN_RC(long_reg));
  3980   match(iRegI);
  3982   format %{ %}
  3983   interface(REG_INTER);
  3984 %}
  3986 // Condition Code Flag Register
  3987 operand flagsReg() %{
  3988   constraint(ALLOC_IN_RC(int_flags));
  3989   match(RegFlags);
  3991   format %{ "ccr" %} // both ICC and XCC
  3992   interface(REG_INTER);
  3993 %}
  3995 // Condition Code Register, unsigned comparisons.
  3996 operand flagsRegU() %{
  3997   constraint(ALLOC_IN_RC(int_flags));
  3998   match(RegFlags);
  4000   format %{ "icc_U" %}
  4001   interface(REG_INTER);
  4002 %}
  4004 // Condition Code Register, pointer comparisons.
  4005 operand flagsRegP() %{
  4006   constraint(ALLOC_IN_RC(int_flags));
  4007   match(RegFlags);
  4009 #ifdef _LP64
  4010   format %{ "xcc_P" %}
  4011 #else
  4012   format %{ "icc_P" %}
  4013 #endif
  4014   interface(REG_INTER);
  4015 %}
  4017 // Condition Code Register, long comparisons.
  4018 operand flagsRegL() %{
  4019   constraint(ALLOC_IN_RC(int_flags));
  4020   match(RegFlags);
  4022   format %{ "xcc_L" %}
  4023   interface(REG_INTER);
  4024 %}
  4026 // Condition Code Register, floating comparisons, unordered same as "less".
  4027 operand flagsRegF() %{
  4028   constraint(ALLOC_IN_RC(float_flags));
  4029   match(RegFlags);
  4030   match(flagsRegF0);
  4032   format %{ %}
  4033   interface(REG_INTER);
  4034 %}
  4036 operand flagsRegF0() %{
  4037   constraint(ALLOC_IN_RC(float_flag0));
  4038   match(RegFlags);
  4040   format %{ %}
  4041   interface(REG_INTER);
  4042 %}
  4045 // Condition Code Flag Register used by long compare
  4046 operand flagsReg_long_LTGE() %{
  4047   constraint(ALLOC_IN_RC(int_flags));
  4048   match(RegFlags);
  4049   format %{ "icc_LTGE" %}
  4050   interface(REG_INTER);
  4051 %}
  4052 operand flagsReg_long_EQNE() %{
  4053   constraint(ALLOC_IN_RC(int_flags));
  4054   match(RegFlags);
  4055   format %{ "icc_EQNE" %}
  4056   interface(REG_INTER);
  4057 %}
  4058 operand flagsReg_long_LEGT() %{
  4059   constraint(ALLOC_IN_RC(int_flags));
  4060   match(RegFlags);
  4061   format %{ "icc_LEGT" %}
  4062   interface(REG_INTER);
  4063 %}
  4066 operand regD() %{
  4067   constraint(ALLOC_IN_RC(dflt_reg));
  4068   match(RegD);
  4070   match(regD_low);
  4072   format %{ %}
  4073   interface(REG_INTER);
  4074 %}
  4076 operand regF() %{
  4077   constraint(ALLOC_IN_RC(sflt_reg));
  4078   match(RegF);
  4080   format %{ %}
  4081   interface(REG_INTER);
  4082 %}
  4084 operand regD_low() %{
  4085   constraint(ALLOC_IN_RC(dflt_low_reg));
  4086   match(regD);
  4088   format %{ %}
  4089   interface(REG_INTER);
  4090 %}
  4092 // Special Registers
  4094 // Method Register
  4095 operand inline_cache_regP(iRegP reg) %{
  4096   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
  4097   match(reg);
  4098   format %{ %}
  4099   interface(REG_INTER);
  4100 %}
  4102 operand interpreter_method_oop_regP(iRegP reg) %{
  4103   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
  4104   match(reg);
  4105   format %{ %}
  4106   interface(REG_INTER);
  4107 %}
  4110 //----------Complex Operands---------------------------------------------------
  4111 // Indirect Memory Reference
  4112 operand indirect(sp_ptr_RegP reg) %{
  4113   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4114   match(reg);
  4116   op_cost(100);
  4117   format %{ "[$reg]" %}
  4118   interface(MEMORY_INTER) %{
  4119     base($reg);
  4120     index(0x0);
  4121     scale(0x0);
  4122     disp(0x0);
  4123   %}
  4124 %}
  4126 // Indirect with simm13 Offset
  4127 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
  4128   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4129   match(AddP reg offset);
  4131   op_cost(100);
  4132   format %{ "[$reg + $offset]" %}
  4133   interface(MEMORY_INTER) %{
  4134     base($reg);
  4135     index(0x0);
  4136     scale(0x0);
  4137     disp($offset);
  4138   %}
  4139 %}
  4141 // Indirect with simm13 Offset minus 7
  4142 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
  4143   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4144   match(AddP reg offset);
  4146   op_cost(100);
  4147   format %{ "[$reg + $offset]" %}
  4148   interface(MEMORY_INTER) %{
  4149     base($reg);
  4150     index(0x0);
  4151     scale(0x0);
  4152     disp($offset);
  4153   %}
  4154 %}
  4156 // Note:  Intel has a swapped version also, like this:
  4157 //operand indOffsetX(iRegI reg, immP offset) %{
  4158 //  constraint(ALLOC_IN_RC(int_reg));
  4159 //  match(AddP offset reg);
  4160 //
  4161 //  op_cost(100);
  4162 //  format %{ "[$reg + $offset]" %}
  4163 //  interface(MEMORY_INTER) %{
  4164 //    base($reg);
  4165 //    index(0x0);
  4166 //    scale(0x0);
  4167 //    disp($offset);
  4168 //  %}
  4169 //%}
  4170 //// However, it doesn't make sense for SPARC, since
  4171 // we have no particularly good way to embed oops in
  4172 // single instructions.
  4174 // Indirect with Register Index
  4175 operand indIndex(iRegP addr, iRegX index) %{
  4176   constraint(ALLOC_IN_RC(ptr_reg));
  4177   match(AddP addr index);
  4179   op_cost(100);
  4180   format %{ "[$addr + $index]" %}
  4181   interface(MEMORY_INTER) %{
  4182     base($addr);
  4183     index($index);
  4184     scale(0x0);
  4185     disp(0x0);
  4186   %}
  4187 %}
  4189 //----------Special Memory Operands--------------------------------------------
  4190 // Stack Slot Operand - This operand is used for loading and storing temporary
  4191 //                      values on the stack where a match requires a value to
  4192 //                      flow through memory.
  4193 operand stackSlotI(sRegI reg) %{
  4194   constraint(ALLOC_IN_RC(stack_slots));
  4195   op_cost(100);
  4196   //match(RegI);
  4197   format %{ "[$reg]" %}
  4198   interface(MEMORY_INTER) %{
  4199     base(0xE);   // R_SP
  4200     index(0x0);
  4201     scale(0x0);
  4202     disp($reg);  // Stack Offset
  4203   %}
  4204 %}
  4206 operand stackSlotP(sRegP reg) %{
  4207   constraint(ALLOC_IN_RC(stack_slots));
  4208   op_cost(100);
  4209   //match(RegP);
  4210   format %{ "[$reg]" %}
  4211   interface(MEMORY_INTER) %{
  4212     base(0xE);   // R_SP
  4213     index(0x0);
  4214     scale(0x0);
  4215     disp($reg);  // Stack Offset
  4216   %}
  4217 %}
  4219 operand stackSlotF(sRegF reg) %{
  4220   constraint(ALLOC_IN_RC(stack_slots));
  4221   op_cost(100);
  4222   //match(RegF);
  4223   format %{ "[$reg]" %}
  4224   interface(MEMORY_INTER) %{
  4225     base(0xE);   // R_SP
  4226     index(0x0);
  4227     scale(0x0);
  4228     disp($reg);  // Stack Offset
  4229   %}
  4230 %}
  4231 operand stackSlotD(sRegD reg) %{
  4232   constraint(ALLOC_IN_RC(stack_slots));
  4233   op_cost(100);
  4234   //match(RegD);
  4235   format %{ "[$reg]" %}
  4236   interface(MEMORY_INTER) %{
  4237     base(0xE);   // R_SP
  4238     index(0x0);
  4239     scale(0x0);
  4240     disp($reg);  // Stack Offset
  4241   %}
  4242 %}
  4243 operand stackSlotL(sRegL reg) %{
  4244   constraint(ALLOC_IN_RC(stack_slots));
  4245   op_cost(100);
  4246   //match(RegL);
  4247   format %{ "[$reg]" %}
  4248   interface(MEMORY_INTER) %{
  4249     base(0xE);   // R_SP
  4250     index(0x0);
  4251     scale(0x0);
  4252     disp($reg);  // Stack Offset
  4253   %}
  4254 %}
  4256 // Operands for expressing Control Flow
  4257 // NOTE:  Label is a predefined operand which should not be redefined in
  4258 //        the AD file.  It is generically handled within the ADLC.
  4260 //----------Conditional Branch Operands----------------------------------------
  4261 // Comparison Op  - This is the operation of the comparison, and is limited to
  4262 //                  the following set of codes:
  4263 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  4264 //
  4265 // Other attributes of the comparison, such as unsignedness, are specified
  4266 // by the comparison instruction that sets a condition code flags register.
  4267 // That result is represented by a flags operand whose subtype is appropriate
  4268 // to the unsignedness (etc.) of the comparison.
  4269 //
  4270 // Later, the instruction which matches both the Comparison Op (a Bool) and
  4271 // the flags (produced by the Cmp) specifies the coding of the comparison op
  4272 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  4274 operand cmpOp() %{
  4275   match(Bool);
  4277   format %{ "" %}
  4278   interface(COND_INTER) %{
  4279     equal(0x1);
  4280     not_equal(0x9);
  4281     less(0x3);
  4282     greater_equal(0xB);
  4283     less_equal(0x2);
  4284     greater(0xA);
  4285   %}
  4286 %}
  4288 // Comparison Op, unsigned
  4289 operand cmpOpU() %{
  4290   match(Bool);
  4292   format %{ "u" %}
  4293   interface(COND_INTER) %{
  4294     equal(0x1);
  4295     not_equal(0x9);
  4296     less(0x5);
  4297     greater_equal(0xD);
  4298     less_equal(0x4);
  4299     greater(0xC);
  4300   %}
  4301 %}
  4303 // Comparison Op, pointer (same as unsigned)
  4304 operand cmpOpP() %{
  4305   match(Bool);
  4307   format %{ "p" %}
  4308   interface(COND_INTER) %{
  4309     equal(0x1);
  4310     not_equal(0x9);
  4311     less(0x5);
  4312     greater_equal(0xD);
  4313     less_equal(0x4);
  4314     greater(0xC);
  4315   %}
  4316 %}
  4318 // Comparison Op, branch-register encoding
  4319 operand cmpOp_reg() %{
  4320   match(Bool);
  4322   format %{ "" %}
  4323   interface(COND_INTER) %{
  4324     equal        (0x1);
  4325     not_equal    (0x5);
  4326     less         (0x3);
  4327     greater_equal(0x7);
  4328     less_equal   (0x2);
  4329     greater      (0x6);
  4330   %}
  4331 %}
  4333 // Comparison Code, floating, unordered same as less
  4334 operand cmpOpF() %{
  4335   match(Bool);
  4337   format %{ "fl" %}
  4338   interface(COND_INTER) %{
  4339     equal(0x9);
  4340     not_equal(0x1);
  4341     less(0x3);
  4342     greater_equal(0xB);
  4343     less_equal(0xE);
  4344     greater(0x6);
  4345   %}
  4346 %}
  4348 // Used by long compare
  4349 operand cmpOp_commute() %{
  4350   match(Bool);
  4352   format %{ "" %}
  4353   interface(COND_INTER) %{
  4354     equal(0x1);
  4355     not_equal(0x9);
  4356     less(0xA);
  4357     greater_equal(0x2);
  4358     less_equal(0xB);
  4359     greater(0x3);
  4360   %}
  4361 %}
  4363 //----------OPERAND CLASSES----------------------------------------------------
  4364 // Operand Classes are groups of operands that are used to simplify
  4365 // instruction definitions by not requiring the AD writer to specify separate
  4366 // instructions for every form of operand when the instruction accepts
  4367 // multiple operand types with the same basic encoding and format.  The classic
  4368 // case of this is memory operands.
  4369 opclass memory( indirect, indOffset13, indIndex );
  4370 opclass indIndexMemory( indIndex );
  4372 //----------PIPELINE-----------------------------------------------------------
  4373 pipeline %{
  4375 //----------ATTRIBUTES---------------------------------------------------------
  4376 attributes %{
  4377   fixed_size_instructions;           // Fixed size instructions
  4378   branch_has_delay_slot;             // Branch has delay slot following
  4379   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
  4380   instruction_unit_size = 4;         // An instruction is 4 bytes long
  4381   instruction_fetch_unit_size = 16;  // The processor fetches one line
  4382   instruction_fetch_units = 1;       // of 16 bytes
  4384   // List of nop instructions
  4385   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
  4386 %}
  4388 //----------RESOURCES----------------------------------------------------------
  4389 // Resources are the functional units available to the machine
  4390 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
  4392 //----------PIPELINE DESCRIPTION-----------------------------------------------
  4393 // Pipeline Description specifies the stages in the machine's pipeline
  4395 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
  4397 //----------PIPELINE CLASSES---------------------------------------------------
  4398 // Pipeline Classes describe the stages in which input and output are
  4399 // referenced by the hardware pipeline.
  4401 // Integer ALU reg-reg operation
  4402 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4403     single_instruction;
  4404     dst   : E(write);
  4405     src1  : R(read);
  4406     src2  : R(read);
  4407     IALU  : R;
  4408 %}
  4410 // Integer ALU reg-reg long operation
  4411 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  4412     instruction_count(2);
  4413     dst   : E(write);
  4414     src1  : R(read);
  4415     src2  : R(read);
  4416     IALU  : R;
  4417     IALU  : R;
  4418 %}
  4420 // Integer ALU reg-reg long dependent operation
  4421 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
  4422     instruction_count(1); multiple_bundles;
  4423     dst   : E(write);
  4424     src1  : R(read);
  4425     src2  : R(read);
  4426     cr    : E(write);
  4427     IALU  : R(2);
  4428 %}
  4430 // Integer ALU reg-imm operaion
  4431 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4432     single_instruction;
  4433     dst   : E(write);
  4434     src1  : R(read);
  4435     IALU  : R;
  4436 %}
  4438 // Integer ALU reg-reg operation with condition code
  4439 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
  4440     single_instruction;
  4441     dst   : E(write);
  4442     cr    : E(write);
  4443     src1  : R(read);
  4444     src2  : R(read);
  4445     IALU  : R;
  4446 %}
  4448 // Integer ALU reg-imm operation with condition code
  4449 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
  4450     single_instruction;
  4451     dst   : E(write);
  4452     cr    : E(write);
  4453     src1  : R(read);
  4454     IALU  : R;
  4455 %}
  4457 // Integer ALU zero-reg operation
  4458 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  4459     single_instruction;
  4460     dst   : E(write);
  4461     src2  : R(read);
  4462     IALU  : R;
  4463 %}
  4465 // Integer ALU zero-reg operation with condition code only
  4466 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
  4467     single_instruction;
  4468     cr    : E(write);
  4469     src   : R(read);
  4470     IALU  : R;
  4471 %}
  4473 // Integer ALU reg-reg operation with condition code only
  4474 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4475     single_instruction;
  4476     cr    : E(write);
  4477     src1  : R(read);
  4478     src2  : R(read);
  4479     IALU  : R;
  4480 %}
  4482 // Integer ALU reg-imm operation with condition code only
  4483 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4484     single_instruction;
  4485     cr    : E(write);
  4486     src1  : R(read);
  4487     IALU  : R;
  4488 %}
  4490 // Integer ALU reg-reg-zero operation with condition code only
  4491 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
  4492     single_instruction;
  4493     cr    : E(write);
  4494     src1  : R(read);
  4495     src2  : R(read);
  4496     IALU  : R;
  4497 %}
  4499 // Integer ALU reg-imm-zero operation with condition code only
  4500 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
  4501     single_instruction;
  4502     cr    : E(write);
  4503     src1  : R(read);
  4504     IALU  : R;
  4505 %}
  4507 // Integer ALU reg-reg operation with condition code, src1 modified
  4508 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4509     single_instruction;
  4510     cr    : E(write);
  4511     src1  : E(write);
  4512     src1  : R(read);
  4513     src2  : R(read);
  4514     IALU  : R;
  4515 %}
  4517 // Integer ALU reg-imm operation with condition code, src1 modified
  4518 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4519     single_instruction;
  4520     cr    : E(write);
  4521     src1  : E(write);
  4522     src1  : R(read);
  4523     IALU  : R;
  4524 %}
  4526 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
  4527     multiple_bundles;
  4528     dst   : E(write)+4;
  4529     cr    : E(write);
  4530     src1  : R(read);
  4531     src2  : R(read);
  4532     IALU  : R(3);
  4533     BR    : R(2);
  4534 %}
  4536 // Integer ALU operation
  4537 pipe_class ialu_none(iRegI dst) %{
  4538     single_instruction;
  4539     dst   : E(write);
  4540     IALU  : R;
  4541 %}
  4543 // Integer ALU reg operation
  4544 pipe_class ialu_reg(iRegI dst, iRegI src) %{
  4545     single_instruction; may_have_no_code;
  4546     dst   : E(write);
  4547     src   : R(read);
  4548     IALU  : R;
  4549 %}
  4551 // Integer ALU reg conditional operation
  4552 // This instruction has a 1 cycle stall, and cannot execute
  4553 // in the same cycle as the instruction setting the condition
  4554 // code. We kludge this by pretending to read the condition code
  4555 // 1 cycle earlier, and by marking the functional units as busy
  4556 // for 2 cycles with the result available 1 cycle later than
  4557 // is really the case.
  4558 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
  4559     single_instruction;
  4560     op2_out : C(write);
  4561     op1     : R(read);
  4562     cr      : R(read);       // This is really E, with a 1 cycle stall
  4563     BR      : R(2);
  4564     MS      : R(2);
  4565 %}
  4567 #ifdef _LP64
  4568 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
  4569     instruction_count(1); multiple_bundles;
  4570     dst     : C(write)+1;
  4571     src     : R(read)+1;
  4572     IALU    : R(1);
  4573     BR      : E(2);
  4574     MS      : E(2);
  4575 %}
  4576 #endif
  4578 // Integer ALU reg operation
  4579 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
  4580     single_instruction; may_have_no_code;
  4581     dst   : E(write);
  4582     src   : R(read);
  4583     IALU  : R;
  4584 %}
  4585 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
  4586     single_instruction; may_have_no_code;
  4587     dst   : E(write);
  4588     src   : R(read);
  4589     IALU  : R;
  4590 %}
  4592 // Two integer ALU reg operations
  4593 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
  4594     instruction_count(2);
  4595     dst   : E(write);
  4596     src   : R(read);
  4597     A0    : R;
  4598     A1    : R;
  4599 %}
  4601 // Two integer ALU reg operations
  4602 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
  4603     instruction_count(2); may_have_no_code;
  4604     dst   : E(write);
  4605     src   : R(read);
  4606     A0    : R;
  4607     A1    : R;
  4608 %}
  4610 // Integer ALU imm operation
  4611 pipe_class ialu_imm(iRegI dst, immI13 src) %{
  4612     single_instruction;
  4613     dst   : E(write);
  4614     IALU  : R;
  4615 %}
  4617 // Integer ALU reg-reg with carry operation
  4618 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
  4619     single_instruction;
  4620     dst   : E(write);
  4621     src1  : R(read);
  4622     src2  : R(read);
  4623     IALU  : R;
  4624 %}
  4626 // Integer ALU cc operation
  4627 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
  4628     single_instruction;
  4629     dst   : E(write);
  4630     cc    : R(read);
  4631     IALU  : R;
  4632 %}
  4634 // Integer ALU cc / second IALU operation
  4635 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
  4636     instruction_count(1); multiple_bundles;
  4637     dst   : E(write)+1;
  4638     src   : R(read);
  4639     IALU  : R;
  4640 %}
  4642 // Integer ALU cc / second IALU operation
  4643 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
  4644     instruction_count(1); multiple_bundles;
  4645     dst   : E(write)+1;
  4646     p     : R(read);
  4647     q     : R(read);
  4648     IALU  : R;
  4649 %}
  4651 // Integer ALU hi-lo-reg operation
  4652 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
  4653     instruction_count(1); multiple_bundles;
  4654     dst   : E(write)+1;
  4655     IALU  : R(2);
  4656 %}
  4658 // Float ALU hi-lo-reg operation (with temp)
  4659 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
  4660     instruction_count(1); multiple_bundles;
  4661     dst   : E(write)+1;
  4662     IALU  : R(2);
  4663 %}
  4665 // Long Constant
  4666 pipe_class loadConL( iRegL dst, immL src ) %{
  4667     instruction_count(2); multiple_bundles;
  4668     dst   : E(write)+1;
  4669     IALU  : R(2);
  4670     IALU  : R(2);
  4671 %}
  4673 // Pointer Constant
  4674 pipe_class loadConP( iRegP dst, immP src ) %{
  4675     instruction_count(0); multiple_bundles;
  4676     fixed_latency(6);
  4677 %}
  4679 // Polling Address
  4680 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
  4681 #ifdef _LP64
  4682     instruction_count(0); multiple_bundles;
  4683     fixed_latency(6);
  4684 #else
  4685     dst   : E(write);
  4686     IALU  : R;
  4687 #endif
  4688 %}
  4690 // Long Constant small
  4691 pipe_class loadConLlo( iRegL dst, immL src ) %{
  4692     instruction_count(2);
  4693     dst   : E(write);
  4694     IALU  : R;
  4695     IALU  : R;
  4696 %}
  4698 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
  4699 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
  4700     instruction_count(1); multiple_bundles;
  4701     src   : R(read);
  4702     dst   : M(write)+1;
  4703     IALU  : R;
  4704     MS    : E;
  4705 %}
  4707 // Integer ALU nop operation
  4708 pipe_class ialu_nop() %{
  4709     single_instruction;
  4710     IALU  : R;
  4711 %}
  4713 // Integer ALU nop operation
  4714 pipe_class ialu_nop_A0() %{
  4715     single_instruction;
  4716     A0    : R;
  4717 %}
  4719 // Integer ALU nop operation
  4720 pipe_class ialu_nop_A1() %{
  4721     single_instruction;
  4722     A1    : R;
  4723 %}
  4725 // Integer Multiply reg-reg operation
  4726 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4727     single_instruction;
  4728     dst   : E(write);
  4729     src1  : R(read);
  4730     src2  : R(read);
  4731     MS    : R(5);
  4732 %}
  4734 // Integer Multiply reg-imm operation
  4735 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4736     single_instruction;
  4737     dst   : E(write);
  4738     src1  : R(read);
  4739     MS    : R(5);
  4740 %}
  4742 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4743     single_instruction;
  4744     dst   : E(write)+4;
  4745     src1  : R(read);
  4746     src2  : R(read);
  4747     MS    : R(6);
  4748 %}
  4750 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4751     single_instruction;
  4752     dst   : E(write)+4;
  4753     src1  : R(read);
  4754     MS    : R(6);
  4755 %}
  4757 // Integer Divide reg-reg
  4758 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
  4759     instruction_count(1); multiple_bundles;
  4760     dst   : E(write);
  4761     temp  : E(write);
  4762     src1  : R(read);
  4763     src2  : R(read);
  4764     temp  : R(read);
  4765     MS    : R(38);
  4766 %}
  4768 // Integer Divide reg-imm
  4769 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
  4770     instruction_count(1); multiple_bundles;
  4771     dst   : E(write);
  4772     temp  : E(write);
  4773     src1  : R(read);
  4774     temp  : R(read);
  4775     MS    : R(38);
  4776 %}
  4778 // Long Divide
  4779 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4780     dst  : E(write)+71;
  4781     src1 : R(read);
  4782     src2 : R(read)+1;
  4783     MS   : R(70);
  4784 %}
  4786 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4787     dst  : E(write)+71;
  4788     src1 : R(read);
  4789     MS   : R(70);
  4790 %}
  4792 // Floating Point Add Float
  4793 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
  4794     single_instruction;
  4795     dst   : X(write);
  4796     src1  : E(read);
  4797     src2  : E(read);
  4798     FA    : R;
  4799 %}
  4801 // Floating Point Add Double
  4802 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
  4803     single_instruction;
  4804     dst   : X(write);
  4805     src1  : E(read);
  4806     src2  : E(read);
  4807     FA    : R;
  4808 %}
  4810 // Floating Point Conditional Move based on integer flags
  4811 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
  4812     single_instruction;
  4813     dst   : X(write);
  4814     src   : E(read);
  4815     cr    : R(read);
  4816     FA    : R(2);
  4817     BR    : R(2);
  4818 %}
  4820 // Floating Point Conditional Move based on integer flags
  4821 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
  4822     single_instruction;
  4823     dst   : X(write);
  4824     src   : E(read);
  4825     cr    : R(read);
  4826     FA    : R(2);
  4827     BR    : R(2);
  4828 %}
  4830 // Floating Point Multiply Float
  4831 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
  4832     single_instruction;
  4833     dst   : X(write);
  4834     src1  : E(read);
  4835     src2  : E(read);
  4836     FM    : R;
  4837 %}
  4839 // Floating Point Multiply Double
  4840 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
  4841     single_instruction;
  4842     dst   : X(write);
  4843     src1  : E(read);
  4844     src2  : E(read);
  4845     FM    : R;
  4846 %}
  4848 // Floating Point Divide Float
  4849 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
  4850     single_instruction;
  4851     dst   : X(write);
  4852     src1  : E(read);
  4853     src2  : E(read);
  4854     FM    : R;
  4855     FDIV  : C(14);
  4856 %}
  4858 // Floating Point Divide Double
  4859 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
  4860     single_instruction;
  4861     dst   : X(write);
  4862     src1  : E(read);
  4863     src2  : E(read);
  4864     FM    : R;
  4865     FDIV  : C(17);
  4866 %}
  4868 // Floating Point Move/Negate/Abs Float
  4869 pipe_class faddF_reg(regF dst, regF src) %{
  4870     single_instruction;
  4871     dst   : W(write);
  4872     src   : E(read);
  4873     FA    : R(1);
  4874 %}
  4876 // Floating Point Move/Negate/Abs Double
  4877 pipe_class faddD_reg(regD dst, regD src) %{
  4878     single_instruction;
  4879     dst   : W(write);
  4880     src   : E(read);
  4881     FA    : R;
  4882 %}
  4884 // Floating Point Convert F->D
  4885 pipe_class fcvtF2D(regD dst, regF src) %{
  4886     single_instruction;
  4887     dst   : X(write);
  4888     src   : E(read);
  4889     FA    : R;
  4890 %}
  4892 // Floating Point Convert I->D
  4893 pipe_class fcvtI2D(regD dst, regF src) %{
  4894     single_instruction;
  4895     dst   : X(write);
  4896     src   : E(read);
  4897     FA    : R;
  4898 %}
  4900 // Floating Point Convert LHi->D
  4901 pipe_class fcvtLHi2D(regD dst, regD src) %{
  4902     single_instruction;
  4903     dst   : X(write);
  4904     src   : E(read);
  4905     FA    : R;
  4906 %}
  4908 // Floating Point Convert L->D
  4909 pipe_class fcvtL2D(regD dst, regF src) %{
  4910     single_instruction;
  4911     dst   : X(write);
  4912     src   : E(read);
  4913     FA    : R;
  4914 %}
  4916 // Floating Point Convert L->F
  4917 pipe_class fcvtL2F(regD dst, regF src) %{
  4918     single_instruction;
  4919     dst   : X(write);
  4920     src   : E(read);
  4921     FA    : R;
  4922 %}
  4924 // Floating Point Convert D->F
  4925 pipe_class fcvtD2F(regD dst, regF src) %{
  4926     single_instruction;
  4927     dst   : X(write);
  4928     src   : E(read);
  4929     FA    : R;
  4930 %}
  4932 // Floating Point Convert I->L
  4933 pipe_class fcvtI2L(regD dst, regF src) %{
  4934     single_instruction;
  4935     dst   : X(write);
  4936     src   : E(read);
  4937     FA    : R;
  4938 %}
  4940 // Floating Point Convert D->F
  4941 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
  4942     instruction_count(1); multiple_bundles;
  4943     dst   : X(write)+6;
  4944     src   : E(read);
  4945     FA    : R;
  4946 %}
  4948 // Floating Point Convert D->L
  4949 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
  4950     instruction_count(1); multiple_bundles;
  4951     dst   : X(write)+6;
  4952     src   : E(read);
  4953     FA    : R;
  4954 %}
  4956 // Floating Point Convert F->I
  4957 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
  4958     instruction_count(1); multiple_bundles;
  4959     dst   : X(write)+6;
  4960     src   : E(read);
  4961     FA    : R;
  4962 %}
  4964 // Floating Point Convert F->L
  4965 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
  4966     instruction_count(1); multiple_bundles;
  4967     dst   : X(write)+6;
  4968     src   : E(read);
  4969     FA    : R;
  4970 %}
  4972 // Floating Point Convert I->F
  4973 pipe_class fcvtI2F(regF dst, regF src) %{
  4974     single_instruction;
  4975     dst   : X(write);
  4976     src   : E(read);
  4977     FA    : R;
  4978 %}
  4980 // Floating Point Compare
  4981 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
  4982     single_instruction;
  4983     cr    : X(write);
  4984     src1  : E(read);
  4985     src2  : E(read);
  4986     FA    : R;
  4987 %}
  4989 // Floating Point Compare
  4990 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
  4991     single_instruction;
  4992     cr    : X(write);
  4993     src1  : E(read);
  4994     src2  : E(read);
  4995     FA    : R;
  4996 %}
  4998 // Floating Add Nop
  4999 pipe_class fadd_nop() %{
  5000     single_instruction;
  5001     FA  : R;
  5002 %}
  5004 // Integer Store to Memory
  5005 pipe_class istore_mem_reg(memory mem, iRegI src) %{
  5006     single_instruction;
  5007     mem   : R(read);
  5008     src   : C(read);
  5009     MS    : R;
  5010 %}
  5012 // Integer Store to Memory
  5013 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
  5014     single_instruction;
  5015     mem   : R(read);
  5016     src   : C(read);
  5017     MS    : R;
  5018 %}
  5020 // Integer Store Zero to Memory
  5021 pipe_class istore_mem_zero(memory mem, immI0 src) %{
  5022     single_instruction;
  5023     mem   : R(read);
  5024     MS    : R;
  5025 %}
  5027 // Special Stack Slot Store
  5028 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
  5029     single_instruction;
  5030     stkSlot : R(read);
  5031     src     : C(read);
  5032     MS      : R;
  5033 %}
  5035 // Special Stack Slot Store
  5036 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
  5037     instruction_count(2); multiple_bundles;
  5038     stkSlot : R(read);
  5039     src     : C(read);
  5040     MS      : R(2);
  5041 %}
  5043 // Float Store
  5044 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
  5045     single_instruction;
  5046     mem : R(read);
  5047     src : C(read);
  5048     MS  : R;
  5049 %}
  5051 // Float Store
  5052 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
  5053     single_instruction;
  5054     mem : R(read);
  5055     MS  : R;
  5056 %}
  5058 // Double Store
  5059 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
  5060     instruction_count(1);
  5061     mem : R(read);
  5062     src : C(read);
  5063     MS  : R;
  5064 %}
  5066 // Double Store
  5067 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
  5068     single_instruction;
  5069     mem : R(read);
  5070     MS  : R;
  5071 %}
  5073 // Special Stack Slot Float Store
  5074 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
  5075     single_instruction;
  5076     stkSlot : R(read);
  5077     src     : C(read);
  5078     MS      : R;
  5079 %}
  5081 // Special Stack Slot Double Store
  5082 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
  5083     single_instruction;
  5084     stkSlot : R(read);
  5085     src     : C(read);
  5086     MS      : R;
  5087 %}
  5089 // Integer Load (when sign bit propagation not needed)
  5090 pipe_class iload_mem(iRegI dst, memory mem) %{
  5091     single_instruction;
  5092     mem : R(read);
  5093     dst : C(write);
  5094     MS  : R;
  5095 %}
  5097 // Integer Load from stack operand
  5098 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
  5099     single_instruction;
  5100     mem : R(read);
  5101     dst : C(write);
  5102     MS  : R;
  5103 %}
  5105 // Integer Load (when sign bit propagation or masking is needed)
  5106 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
  5107     single_instruction;
  5108     mem : R(read);
  5109     dst : M(write);
  5110     MS  : R;
  5111 %}
  5113 // Float Load
  5114 pipe_class floadF_mem(regF dst, memory mem) %{
  5115     single_instruction;
  5116     mem : R(read);
  5117     dst : M(write);
  5118     MS  : R;
  5119 %}
  5121 // Float Load
  5122 pipe_class floadD_mem(regD dst, memory mem) %{
  5123     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
  5124     mem : R(read);
  5125     dst : M(write);
  5126     MS  : R;
  5127 %}
  5129 // Float Load
  5130 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
  5131     single_instruction;
  5132     stkSlot : R(read);
  5133     dst : M(write);
  5134     MS  : R;
  5135 %}
  5137 // Float Load
  5138 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
  5139     single_instruction;
  5140     stkSlot : R(read);
  5141     dst : M(write);
  5142     MS  : R;
  5143 %}
  5145 // Memory Nop
  5146 pipe_class mem_nop() %{
  5147     single_instruction;
  5148     MS  : R;
  5149 %}
  5151 pipe_class sethi(iRegP dst, immI src) %{
  5152     single_instruction;
  5153     dst  : E(write);
  5154     IALU : R;
  5155 %}
  5157 pipe_class loadPollP(iRegP poll) %{
  5158     single_instruction;
  5159     poll : R(read);
  5160     MS   : R;
  5161 %}
  5163 pipe_class br(Universe br, label labl) %{
  5164     single_instruction_with_delay_slot;
  5165     BR  : R;
  5166 %}
  5168 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
  5169     single_instruction_with_delay_slot;
  5170     cr    : E(read);
  5171     BR    : R;
  5172 %}
  5174 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
  5175     single_instruction_with_delay_slot;
  5176     op1 : E(read);
  5177     BR  : R;
  5178     MS  : R;
  5179 %}
  5181 // Compare and branch
  5182 pipe_class cmp_br_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl, flagsReg cr) %{
  5183     instruction_count(2); has_delay_slot;
  5184     cr    : E(write);
  5185     src1  : R(read);
  5186     src2  : R(read);
  5187     IALU  : R;
  5188     BR    : R;
  5189 %}
  5191 // Compare and branch
  5192 pipe_class cmp_br_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI13 src2, label labl, flagsReg cr) %{
  5193     instruction_count(2); has_delay_slot;
  5194     cr    : E(write);
  5195     src1  : R(read);
  5196     IALU  : R;
  5197     BR    : R;
  5198 %}
  5200 // Compare and branch using cbcond
  5201 pipe_class cbcond_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl) %{
  5202     single_instruction;
  5203     src1  : E(read);
  5204     src2  : E(read);
  5205     IALU  : R;
  5206     BR    : R;
  5207 %}
  5209 // Compare and branch using cbcond
  5210 pipe_class cbcond_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI5 src2, label labl) %{
  5211     single_instruction;
  5212     src1  : E(read);
  5213     IALU  : R;
  5214     BR    : R;
  5215 %}
  5217 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
  5218     single_instruction_with_delay_slot;
  5219     cr    : E(read);
  5220     BR    : R;
  5221 %}
  5223 pipe_class br_nop() %{
  5224     single_instruction;
  5225     BR  : R;
  5226 %}
  5228 pipe_class simple_call(method meth) %{
  5229     instruction_count(2); multiple_bundles; force_serialization;
  5230     fixed_latency(100);
  5231     BR  : R(1);
  5232     MS  : R(1);
  5233     A0  : R(1);
  5234 %}
  5236 pipe_class compiled_call(method meth) %{
  5237     instruction_count(1); multiple_bundles; force_serialization;
  5238     fixed_latency(100);
  5239     MS  : R(1);
  5240 %}
  5242 pipe_class call(method meth) %{
  5243     instruction_count(0); multiple_bundles; force_serialization;
  5244     fixed_latency(100);
  5245 %}
  5247 pipe_class tail_call(Universe ignore, label labl) %{
  5248     single_instruction; has_delay_slot;
  5249     fixed_latency(100);
  5250     BR  : R(1);
  5251     MS  : R(1);
  5252 %}
  5254 pipe_class ret(Universe ignore) %{
  5255     single_instruction; has_delay_slot;
  5256     BR  : R(1);
  5257     MS  : R(1);
  5258 %}
  5260 pipe_class ret_poll(g3RegP poll) %{
  5261     instruction_count(3); has_delay_slot;
  5262     poll : E(read);
  5263     MS   : R;
  5264 %}
  5266 // The real do-nothing guy
  5267 pipe_class empty( ) %{
  5268     instruction_count(0);
  5269 %}
  5271 pipe_class long_memory_op() %{
  5272     instruction_count(0); multiple_bundles; force_serialization;
  5273     fixed_latency(25);
  5274     MS  : R(1);
  5275 %}
  5277 // Check-cast
  5278 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
  5279     array : R(read);
  5280     match  : R(read);
  5281     IALU   : R(2);
  5282     BR     : R(2);
  5283     MS     : R;
  5284 %}
  5286 // Convert FPU flags into +1,0,-1
  5287 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
  5288     src1  : E(read);
  5289     src2  : E(read);
  5290     dst   : E(write);
  5291     FA    : R;
  5292     MS    : R(2);
  5293     BR    : R(2);
  5294 %}
  5296 // Compare for p < q, and conditionally add y
  5297 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
  5298     p     : E(read);
  5299     q     : E(read);
  5300     y     : E(read);
  5301     IALU  : R(3)
  5302 %}
  5304 // Perform a compare, then move conditionally in a branch delay slot.
  5305 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
  5306     src2   : E(read);
  5307     srcdst : E(read);
  5308     IALU   : R;
  5309     BR     : R;
  5310 %}
  5312 // Define the class for the Nop node
  5313 define %{
  5314    MachNop = ialu_nop;
  5315 %}
  5317 %}
  5319 //----------INSTRUCTIONS-------------------------------------------------------
  5321 //------------Special Stack Slot instructions - no match rules-----------------
  5322 instruct stkI_to_regF(regF dst, stackSlotI src) %{
  5323   // No match rule to avoid chain rule match.
  5324   effect(DEF dst, USE src);
  5325   ins_cost(MEMORY_REF_COST);
  5326   size(4);
  5327   format %{ "LDF    $src,$dst\t! stkI to regF" %}
  5328   opcode(Assembler::ldf_op3);
  5329   ins_encode(simple_form3_mem_reg(src, dst));
  5330   ins_pipe(floadF_stk);
  5331 %}
  5333 instruct stkL_to_regD(regD dst, stackSlotL src) %{
  5334   // No match rule to avoid chain rule match.
  5335   effect(DEF dst, USE src);
  5336   ins_cost(MEMORY_REF_COST);
  5337   size(4);
  5338   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
  5339   opcode(Assembler::lddf_op3);
  5340   ins_encode(simple_form3_mem_reg(src, dst));
  5341   ins_pipe(floadD_stk);
  5342 %}
  5344 instruct regF_to_stkI(stackSlotI dst, regF src) %{
  5345   // No match rule to avoid chain rule match.
  5346   effect(DEF dst, USE src);
  5347   ins_cost(MEMORY_REF_COST);
  5348   size(4);
  5349   format %{ "STF    $src,$dst\t! regF to stkI" %}
  5350   opcode(Assembler::stf_op3);
  5351   ins_encode(simple_form3_mem_reg(dst, src));
  5352   ins_pipe(fstoreF_stk_reg);
  5353 %}
  5355 instruct regD_to_stkL(stackSlotL dst, regD src) %{
  5356   // No match rule to avoid chain rule match.
  5357   effect(DEF dst, USE src);
  5358   ins_cost(MEMORY_REF_COST);
  5359   size(4);
  5360   format %{ "STDF   $src,$dst\t! regD to stkL" %}
  5361   opcode(Assembler::stdf_op3);
  5362   ins_encode(simple_form3_mem_reg(dst, src));
  5363   ins_pipe(fstoreD_stk_reg);
  5364 %}
  5366 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
  5367   effect(DEF dst, USE src);
  5368   ins_cost(MEMORY_REF_COST*2);
  5369   size(8);
  5370   format %{ "STW    $src,$dst.hi\t! long\n\t"
  5371             "STW    R_G0,$dst.lo" %}
  5372   opcode(Assembler::stw_op3);
  5373   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
  5374   ins_pipe(lstoreI_stk_reg);
  5375 %}
  5377 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
  5378   // No match rule to avoid chain rule match.
  5379   effect(DEF dst, USE src);
  5380   ins_cost(MEMORY_REF_COST);
  5381   size(4);
  5382   format %{ "STX    $src,$dst\t! regL to stkD" %}
  5383   opcode(Assembler::stx_op3);
  5384   ins_encode(simple_form3_mem_reg( dst, src ) );
  5385   ins_pipe(istore_stk_reg);
  5386 %}
  5388 //---------- Chain stack slots between similar types --------
  5390 // Load integer from stack slot
  5391 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
  5392   match(Set dst src);
  5393   ins_cost(MEMORY_REF_COST);
  5395   size(4);
  5396   format %{ "LDUW   $src,$dst\t!stk" %}
  5397   opcode(Assembler::lduw_op3);
  5398   ins_encode(simple_form3_mem_reg( src, dst ) );
  5399   ins_pipe(iload_mem);
  5400 %}
  5402 // Store integer to stack slot
  5403 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
  5404   match(Set dst src);
  5405   ins_cost(MEMORY_REF_COST);
  5407   size(4);
  5408   format %{ "STW    $src,$dst\t!stk" %}
  5409   opcode(Assembler::stw_op3);
  5410   ins_encode(simple_form3_mem_reg( dst, src ) );
  5411   ins_pipe(istore_mem_reg);
  5412 %}
  5414 // Load long from stack slot
  5415 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
  5416   match(Set dst src);
  5418   ins_cost(MEMORY_REF_COST);
  5419   size(4);
  5420   format %{ "LDX    $src,$dst\t! long" %}
  5421   opcode(Assembler::ldx_op3);
  5422   ins_encode(simple_form3_mem_reg( src, dst ) );
  5423   ins_pipe(iload_mem);
  5424 %}
  5426 // Store long to stack slot
  5427 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
  5428   match(Set dst src);
  5430   ins_cost(MEMORY_REF_COST);
  5431   size(4);
  5432   format %{ "STX    $src,$dst\t! long" %}
  5433   opcode(Assembler::stx_op3);
  5434   ins_encode(simple_form3_mem_reg( dst, src ) );
  5435   ins_pipe(istore_mem_reg);
  5436 %}
  5438 #ifdef _LP64
  5439 // Load pointer from stack slot, 64-bit encoding
  5440 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5441   match(Set dst src);
  5442   ins_cost(MEMORY_REF_COST);
  5443   size(4);
  5444   format %{ "LDX    $src,$dst\t!ptr" %}
  5445   opcode(Assembler::ldx_op3);
  5446   ins_encode(simple_form3_mem_reg( src, dst ) );
  5447   ins_pipe(iload_mem);
  5448 %}
  5450 // Store pointer to stack slot
  5451 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5452   match(Set dst src);
  5453   ins_cost(MEMORY_REF_COST);
  5454   size(4);
  5455   format %{ "STX    $src,$dst\t!ptr" %}
  5456   opcode(Assembler::stx_op3);
  5457   ins_encode(simple_form3_mem_reg( dst, src ) );
  5458   ins_pipe(istore_mem_reg);
  5459 %}
  5460 #else // _LP64
  5461 // Load pointer from stack slot, 32-bit encoding
  5462 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5463   match(Set dst src);
  5464   ins_cost(MEMORY_REF_COST);
  5465   format %{ "LDUW   $src,$dst\t!ptr" %}
  5466   opcode(Assembler::lduw_op3, Assembler::ldst_op);
  5467   ins_encode(simple_form3_mem_reg( src, dst ) );
  5468   ins_pipe(iload_mem);
  5469 %}
  5471 // Store pointer to stack slot
  5472 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5473   match(Set dst src);
  5474   ins_cost(MEMORY_REF_COST);
  5475   format %{ "STW    $src,$dst\t!ptr" %}
  5476   opcode(Assembler::stw_op3, Assembler::ldst_op);
  5477   ins_encode(simple_form3_mem_reg( dst, src ) );
  5478   ins_pipe(istore_mem_reg);
  5479 %}
  5480 #endif // _LP64
  5482 //------------Special Nop instructions for bundling - no match rules-----------
  5483 // Nop using the A0 functional unit
  5484 instruct Nop_A0() %{
  5485   ins_cost(0);
  5487   format %{ "NOP    ! Alu Pipeline" %}
  5488   opcode(Assembler::or_op3, Assembler::arith_op);
  5489   ins_encode( form2_nop() );
  5490   ins_pipe(ialu_nop_A0);
  5491 %}
  5493 // Nop using the A1 functional unit
  5494 instruct Nop_A1( ) %{
  5495   ins_cost(0);
  5497   format %{ "NOP    ! Alu Pipeline" %}
  5498   opcode(Assembler::or_op3, Assembler::arith_op);
  5499   ins_encode( form2_nop() );
  5500   ins_pipe(ialu_nop_A1);
  5501 %}
  5503 // Nop using the memory functional unit
  5504 instruct Nop_MS( ) %{
  5505   ins_cost(0);
  5507   format %{ "NOP    ! Memory Pipeline" %}
  5508   ins_encode( emit_mem_nop );
  5509   ins_pipe(mem_nop);
  5510 %}
  5512 // Nop using the floating add functional unit
  5513 instruct Nop_FA( ) %{
  5514   ins_cost(0);
  5516   format %{ "NOP    ! Floating Add Pipeline" %}
  5517   ins_encode( emit_fadd_nop );
  5518   ins_pipe(fadd_nop);
  5519 %}
  5521 // Nop using the branch functional unit
  5522 instruct Nop_BR( ) %{
  5523   ins_cost(0);
  5525   format %{ "NOP    ! Branch Pipeline" %}
  5526   ins_encode( emit_br_nop );
  5527   ins_pipe(br_nop);
  5528 %}
  5530 //----------Load/Store/Move Instructions---------------------------------------
  5531 //----------Load Instructions--------------------------------------------------
  5532 // Load Byte (8bit signed)
  5533 instruct loadB(iRegI dst, memory mem) %{
  5534   match(Set dst (LoadB mem));
  5535   ins_cost(MEMORY_REF_COST);
  5537   size(4);
  5538   format %{ "LDSB   $mem,$dst\t! byte" %}
  5539   ins_encode %{
  5540     __ ldsb($mem$$Address, $dst$$Register);
  5541   %}
  5542   ins_pipe(iload_mask_mem);
  5543 %}
  5545 // Load Byte (8bit signed) into a Long Register
  5546 instruct loadB2L(iRegL dst, memory mem) %{
  5547   match(Set dst (ConvI2L (LoadB mem)));
  5548   ins_cost(MEMORY_REF_COST);
  5550   size(4);
  5551   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
  5552   ins_encode %{
  5553     __ ldsb($mem$$Address, $dst$$Register);
  5554   %}
  5555   ins_pipe(iload_mask_mem);
  5556 %}
  5558 // Load Unsigned Byte (8bit UNsigned) into an int reg
  5559 instruct loadUB(iRegI dst, memory mem) %{
  5560   match(Set dst (LoadUB mem));
  5561   ins_cost(MEMORY_REF_COST);
  5563   size(4);
  5564   format %{ "LDUB   $mem,$dst\t! ubyte" %}
  5565   ins_encode %{
  5566     __ ldub($mem$$Address, $dst$$Register);
  5567   %}
  5568   ins_pipe(iload_mem);
  5569 %}
  5571 // Load Unsigned Byte (8bit UNsigned) into a Long Register
  5572 instruct loadUB2L(iRegL dst, memory mem) %{
  5573   match(Set dst (ConvI2L (LoadUB mem)));
  5574   ins_cost(MEMORY_REF_COST);
  5576   size(4);
  5577   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
  5578   ins_encode %{
  5579     __ ldub($mem$$Address, $dst$$Register);
  5580   %}
  5581   ins_pipe(iload_mem);
  5582 %}
  5584 // Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
  5585 instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
  5586   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
  5587   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5589   size(2*4);
  5590   format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
  5591             "AND    $dst,$mask,$dst" %}
  5592   ins_encode %{
  5593     __ ldub($mem$$Address, $dst$$Register);
  5594     __ and3($dst$$Register, $mask$$constant, $dst$$Register);
  5595   %}
  5596   ins_pipe(iload_mem);
  5597 %}
  5599 // Load Short (16bit signed)
  5600 instruct loadS(iRegI dst, memory mem) %{
  5601   match(Set dst (LoadS mem));
  5602   ins_cost(MEMORY_REF_COST);
  5604   size(4);
  5605   format %{ "LDSH   $mem,$dst\t! short" %}
  5606   ins_encode %{
  5607     __ ldsh($mem$$Address, $dst$$Register);
  5608   %}
  5609   ins_pipe(iload_mask_mem);
  5610 %}
  5612 // Load Short (16 bit signed) to Byte (8 bit signed)
  5613 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5614   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  5615   ins_cost(MEMORY_REF_COST);
  5617   size(4);
  5619   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
  5620   ins_encode %{
  5621     __ ldsb($mem$$Address, $dst$$Register, 1);
  5622   %}
  5623   ins_pipe(iload_mask_mem);
  5624 %}
  5626 // Load Short (16bit signed) into a Long Register
  5627 instruct loadS2L(iRegL dst, memory mem) %{
  5628   match(Set dst (ConvI2L (LoadS mem)));
  5629   ins_cost(MEMORY_REF_COST);
  5631   size(4);
  5632   format %{ "LDSH   $mem,$dst\t! short -> long" %}
  5633   ins_encode %{
  5634     __ ldsh($mem$$Address, $dst$$Register);
  5635   %}
  5636   ins_pipe(iload_mask_mem);
  5637 %}
  5639 // Load Unsigned Short/Char (16bit UNsigned)
  5640 instruct loadUS(iRegI dst, memory mem) %{
  5641   match(Set dst (LoadUS mem));
  5642   ins_cost(MEMORY_REF_COST);
  5644   size(4);
  5645   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
  5646   ins_encode %{
  5647     __ lduh($mem$$Address, $dst$$Register);
  5648   %}
  5649   ins_pipe(iload_mem);
  5650 %}
  5652 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
  5653 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5654   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
  5655   ins_cost(MEMORY_REF_COST);
  5657   size(4);
  5658   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
  5659   ins_encode %{
  5660     __ ldsb($mem$$Address, $dst$$Register, 1);
  5661   %}
  5662   ins_pipe(iload_mask_mem);
  5663 %}
  5665 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
  5666 instruct loadUS2L(iRegL dst, memory mem) %{
  5667   match(Set dst (ConvI2L (LoadUS mem)));
  5668   ins_cost(MEMORY_REF_COST);
  5670   size(4);
  5671   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
  5672   ins_encode %{
  5673     __ lduh($mem$$Address, $dst$$Register);
  5674   %}
  5675   ins_pipe(iload_mem);
  5676 %}
  5678 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
  5679 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5680   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5681   ins_cost(MEMORY_REF_COST);
  5683   size(4);
  5684   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
  5685   ins_encode %{
  5686     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
  5687   %}
  5688   ins_pipe(iload_mem);
  5689 %}
  5691 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
  5692 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  5693   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5694   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5696   size(2*4);
  5697   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
  5698             "AND    $dst,$mask,$dst" %}
  5699   ins_encode %{
  5700     Register Rdst = $dst$$Register;
  5701     __ lduh($mem$$Address, Rdst);
  5702     __ and3(Rdst, $mask$$constant, Rdst);
  5703   %}
  5704   ins_pipe(iload_mem);
  5705 %}
  5707 // Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
  5708 instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
  5709   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5710   effect(TEMP dst, TEMP tmp);
  5711   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5713   size((3+1)*4);  // set may use two instructions.
  5714   format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
  5715             "SET    $mask,$tmp\n\t"
  5716             "AND    $dst,$tmp,$dst" %}
  5717   ins_encode %{
  5718     Register Rdst = $dst$$Register;
  5719     Register Rtmp = $tmp$$Register;
  5720     __ lduh($mem$$Address, Rdst);
  5721     __ set($mask$$constant, Rtmp);
  5722     __ and3(Rdst, Rtmp, Rdst);
  5723   %}
  5724   ins_pipe(iload_mem);
  5725 %}
  5727 // Load Integer
  5728 instruct loadI(iRegI dst, memory mem) %{
  5729   match(Set dst (LoadI mem));
  5730   ins_cost(MEMORY_REF_COST);
  5732   size(4);
  5733   format %{ "LDUW   $mem,$dst\t! int" %}
  5734   ins_encode %{
  5735     __ lduw($mem$$Address, $dst$$Register);
  5736   %}
  5737   ins_pipe(iload_mem);
  5738 %}
  5740 // Load Integer to Byte (8 bit signed)
  5741 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5742   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  5743   ins_cost(MEMORY_REF_COST);
  5745   size(4);
  5747   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
  5748   ins_encode %{
  5749     __ ldsb($mem$$Address, $dst$$Register, 3);
  5750   %}
  5751   ins_pipe(iload_mask_mem);
  5752 %}
  5754 // Load Integer to Unsigned Byte (8 bit UNsigned)
  5755 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
  5756   match(Set dst (AndI (LoadI mem) mask));
  5757   ins_cost(MEMORY_REF_COST);
  5759   size(4);
  5761   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
  5762   ins_encode %{
  5763     __ ldub($mem$$Address, $dst$$Register, 3);
  5764   %}
  5765   ins_pipe(iload_mask_mem);
  5766 %}
  5768 // Load Integer to Short (16 bit signed)
  5769 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
  5770   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  5771   ins_cost(MEMORY_REF_COST);
  5773   size(4);
  5775   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
  5776   ins_encode %{
  5777     __ ldsh($mem$$Address, $dst$$Register, 2);
  5778   %}
  5779   ins_pipe(iload_mask_mem);
  5780 %}
  5782 // Load Integer to Unsigned Short (16 bit UNsigned)
  5783 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
  5784   match(Set dst (AndI (LoadI mem) mask));
  5785   ins_cost(MEMORY_REF_COST);
  5787   size(4);
  5789   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
  5790   ins_encode %{
  5791     __ lduh($mem$$Address, $dst$$Register, 2);
  5792   %}
  5793   ins_pipe(iload_mask_mem);
  5794 %}
  5796 // Load Integer into a Long Register
  5797 instruct loadI2L(iRegL dst, memory mem) %{
  5798   match(Set dst (ConvI2L (LoadI mem)));
  5799   ins_cost(MEMORY_REF_COST);
  5801   size(4);
  5802   format %{ "LDSW   $mem,$dst\t! int -> long" %}
  5803   ins_encode %{
  5804     __ ldsw($mem$$Address, $dst$$Register);
  5805   %}
  5806   ins_pipe(iload_mask_mem);
  5807 %}
  5809 // Load Integer with mask 0xFF into a Long Register
  5810 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5811   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5812   ins_cost(MEMORY_REF_COST);
  5814   size(4);
  5815   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
  5816   ins_encode %{
  5817     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
  5818   %}
  5819   ins_pipe(iload_mem);
  5820 %}
  5822 // Load Integer with mask 0xFFFF into a Long Register
  5823 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
  5824   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5825   ins_cost(MEMORY_REF_COST);
  5827   size(4);
  5828   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
  5829   ins_encode %{
  5830     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
  5831   %}
  5832   ins_pipe(iload_mem);
  5833 %}
  5835 // Load Integer with a 13-bit mask into a Long Register
  5836 instruct loadI2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  5837   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5838   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5840   size(2*4);
  5841   format %{ "LDUW   $mem,$dst\t! int & 13-bit mask -> long\n\t"
  5842             "AND    $dst,$mask,$dst" %}
  5843   ins_encode %{
  5844     Register Rdst = $dst$$Register;
  5845     __ lduw($mem$$Address, Rdst);
  5846     __ and3(Rdst, $mask$$constant, Rdst);
  5847   %}
  5848   ins_pipe(iload_mem);
  5849 %}
  5851 // Load Integer with a 32-bit mask into a Long Register
  5852 instruct loadI2L_immI(iRegL dst, memory mem, immI mask, iRegL tmp) %{
  5853   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5854   effect(TEMP dst, TEMP tmp);
  5855   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5857   size((3+1)*4);  // set may use two instructions.
  5858   format %{ "LDUW   $mem,$dst\t! int & 32-bit mask -> long\n\t"
  5859             "SET    $mask,$tmp\n\t"
  5860             "AND    $dst,$tmp,$dst" %}
  5861   ins_encode %{
  5862     Register Rdst = $dst$$Register;
  5863     Register Rtmp = $tmp$$Register;
  5864     __ lduw($mem$$Address, Rdst);
  5865     __ set($mask$$constant, Rtmp);
  5866     __ and3(Rdst, Rtmp, Rdst);
  5867   %}
  5868   ins_pipe(iload_mem);
  5869 %}
  5871 // Load Unsigned Integer into a Long Register
  5872 instruct loadUI2L(iRegL dst, memory mem) %{
  5873   match(Set dst (LoadUI2L mem));
  5874   ins_cost(MEMORY_REF_COST);
  5876   size(4);
  5877   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
  5878   ins_encode %{
  5879     __ lduw($mem$$Address, $dst$$Register);
  5880   %}
  5881   ins_pipe(iload_mem);
  5882 %}
  5884 // Load Long - aligned
  5885 instruct loadL(iRegL dst, memory mem ) %{
  5886   match(Set dst (LoadL mem));
  5887   ins_cost(MEMORY_REF_COST);
  5889   size(4);
  5890   format %{ "LDX    $mem,$dst\t! long" %}
  5891   ins_encode %{
  5892     __ ldx($mem$$Address, $dst$$Register);
  5893   %}
  5894   ins_pipe(iload_mem);
  5895 %}
  5897 // Load Long - UNaligned
  5898 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
  5899   match(Set dst (LoadL_unaligned mem));
  5900   effect(KILL tmp);
  5901   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  5902   size(16);
  5903   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
  5904           "\tLDUW   $mem  ,$dst\n"
  5905           "\tSLLX   #32, $dst, $dst\n"
  5906           "\tOR     $dst, R_O7, $dst" %}
  5907   opcode(Assembler::lduw_op3);
  5908   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
  5909   ins_pipe(iload_mem);
  5910 %}
  5912 // Load Aligned Packed Byte into a Double Register
  5913 instruct loadA8B(regD dst, memory mem) %{
  5914   match(Set dst (Load8B mem));
  5915   ins_cost(MEMORY_REF_COST);
  5916   size(4);
  5917   format %{ "LDDF   $mem,$dst\t! packed8B" %}
  5918   opcode(Assembler::lddf_op3);
  5919   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5920   ins_pipe(floadD_mem);
  5921 %}
  5923 // Load Aligned Packed Char into a Double Register
  5924 instruct loadA4C(regD dst, memory mem) %{
  5925   match(Set dst (Load4C mem));
  5926   ins_cost(MEMORY_REF_COST);
  5927   size(4);
  5928   format %{ "LDDF   $mem,$dst\t! packed4C" %}
  5929   opcode(Assembler::lddf_op3);
  5930   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5931   ins_pipe(floadD_mem);
  5932 %}
  5934 // Load Aligned Packed Short into a Double Register
  5935 instruct loadA4S(regD dst, memory mem) %{
  5936   match(Set dst (Load4S mem));
  5937   ins_cost(MEMORY_REF_COST);
  5938   size(4);
  5939   format %{ "LDDF   $mem,$dst\t! packed4S" %}
  5940   opcode(Assembler::lddf_op3);
  5941   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5942   ins_pipe(floadD_mem);
  5943 %}
  5945 // Load Aligned Packed Int into a Double Register
  5946 instruct loadA2I(regD dst, memory mem) %{
  5947   match(Set dst (Load2I mem));
  5948   ins_cost(MEMORY_REF_COST);
  5949   size(4);
  5950   format %{ "LDDF   $mem,$dst\t! packed2I" %}
  5951   opcode(Assembler::lddf_op3);
  5952   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5953   ins_pipe(floadD_mem);
  5954 %}
  5956 // Load Range
  5957 instruct loadRange(iRegI dst, memory mem) %{
  5958   match(Set dst (LoadRange mem));
  5959   ins_cost(MEMORY_REF_COST);
  5961   size(4);
  5962   format %{ "LDUW   $mem,$dst\t! range" %}
  5963   opcode(Assembler::lduw_op3);
  5964   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5965   ins_pipe(iload_mem);
  5966 %}
  5968 // Load Integer into %f register (for fitos/fitod)
  5969 instruct loadI_freg(regF dst, memory mem) %{
  5970   match(Set dst (LoadI mem));
  5971   ins_cost(MEMORY_REF_COST);
  5972   size(4);
  5974   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
  5975   opcode(Assembler::ldf_op3);
  5976   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5977   ins_pipe(floadF_mem);
  5978 %}
  5980 // Load Pointer
  5981 instruct loadP(iRegP dst, memory mem) %{
  5982   match(Set dst (LoadP mem));
  5983   ins_cost(MEMORY_REF_COST);
  5984   size(4);
  5986 #ifndef _LP64
  5987   format %{ "LDUW   $mem,$dst\t! ptr" %}
  5988   ins_encode %{
  5989     __ lduw($mem$$Address, $dst$$Register);
  5990   %}
  5991 #else
  5992   format %{ "LDX    $mem,$dst\t! ptr" %}
  5993   ins_encode %{
  5994     __ ldx($mem$$Address, $dst$$Register);
  5995   %}
  5996 #endif
  5997   ins_pipe(iload_mem);
  5998 %}
  6000 // Load Compressed Pointer
  6001 instruct loadN(iRegN dst, memory mem) %{
  6002   match(Set dst (LoadN mem));
  6003   ins_cost(MEMORY_REF_COST);
  6004   size(4);
  6006   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
  6007   ins_encode %{
  6008     __ lduw($mem$$Address, $dst$$Register);
  6009   %}
  6010   ins_pipe(iload_mem);
  6011 %}
  6013 // Load Klass Pointer
  6014 instruct loadKlass(iRegP dst, memory mem) %{
  6015   match(Set dst (LoadKlass mem));
  6016   ins_cost(MEMORY_REF_COST);
  6017   size(4);
  6019 #ifndef _LP64
  6020   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
  6021   ins_encode %{
  6022     __ lduw($mem$$Address, $dst$$Register);
  6023   %}
  6024 #else
  6025   format %{ "LDX    $mem,$dst\t! klass ptr" %}
  6026   ins_encode %{
  6027     __ ldx($mem$$Address, $dst$$Register);
  6028   %}
  6029 #endif
  6030   ins_pipe(iload_mem);
  6031 %}
  6033 // Load narrow Klass Pointer
  6034 instruct loadNKlass(iRegN dst, memory mem) %{
  6035   match(Set dst (LoadNKlass mem));
  6036   ins_cost(MEMORY_REF_COST);
  6037   size(4);
  6039   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
  6040   ins_encode %{
  6041     __ lduw($mem$$Address, $dst$$Register);
  6042   %}
  6043   ins_pipe(iload_mem);
  6044 %}
  6046 // Load Double
  6047 instruct loadD(regD dst, memory mem) %{
  6048   match(Set dst (LoadD mem));
  6049   ins_cost(MEMORY_REF_COST);
  6051   size(4);
  6052   format %{ "LDDF   $mem,$dst" %}
  6053   opcode(Assembler::lddf_op3);
  6054   ins_encode(simple_form3_mem_reg( mem, dst ) );
  6055   ins_pipe(floadD_mem);
  6056 %}
  6058 // Load Double - UNaligned
  6059 instruct loadD_unaligned(regD_low dst, memory mem ) %{
  6060   match(Set dst (LoadD_unaligned mem));
  6061   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  6062   size(8);
  6063   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
  6064           "\tLDF    $mem+4,$dst.lo\t!" %}
  6065   opcode(Assembler::ldf_op3);
  6066   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
  6067   ins_pipe(iload_mem);
  6068 %}
  6070 // Load Float
  6071 instruct loadF(regF dst, memory mem) %{
  6072   match(Set dst (LoadF mem));
  6073   ins_cost(MEMORY_REF_COST);
  6075   size(4);
  6076   format %{ "LDF    $mem,$dst" %}
  6077   opcode(Assembler::ldf_op3);
  6078   ins_encode(simple_form3_mem_reg( mem, dst ) );
  6079   ins_pipe(floadF_mem);
  6080 %}
  6082 // Load Constant
  6083 instruct loadConI( iRegI dst, immI src ) %{
  6084   match(Set dst src);
  6085   ins_cost(DEFAULT_COST * 3/2);
  6086   format %{ "SET    $src,$dst" %}
  6087   ins_encode( Set32(src, dst) );
  6088   ins_pipe(ialu_hi_lo_reg);
  6089 %}
  6091 instruct loadConI13( iRegI dst, immI13 src ) %{
  6092   match(Set dst src);
  6094   size(4);
  6095   format %{ "MOV    $src,$dst" %}
  6096   ins_encode( Set13( src, dst ) );
  6097   ins_pipe(ialu_imm);
  6098 %}
  6100 #ifndef _LP64
  6101 instruct loadConP(iRegP dst, immP con) %{
  6102   match(Set dst con);
  6103   ins_cost(DEFAULT_COST * 3/2);
  6104   format %{ "SET    $con,$dst\t!ptr" %}
  6105   ins_encode %{
  6106     // [RGV] This next line should be generated from ADLC
  6107     if (_opnds[1]->constant_is_oop()) {
  6108       intptr_t val = $con$$constant;
  6109       __ set_oop_constant((jobject) val, $dst$$Register);
  6110     } else {          // non-oop pointers, e.g. card mark base, heap top
  6111       __ set($con$$constant, $dst$$Register);
  6113   %}
  6114   ins_pipe(loadConP);
  6115 %}
  6116 #else
  6117 instruct loadConP_set(iRegP dst, immP_set con) %{
  6118   match(Set dst con);
  6119   ins_cost(DEFAULT_COST * 3/2);
  6120   format %{ "SET    $con,$dst\t! ptr" %}
  6121   ins_encode %{
  6122     // [RGV] This next line should be generated from ADLC
  6123     if (_opnds[1]->constant_is_oop()) {
  6124       intptr_t val = $con$$constant;
  6125       __ set_oop_constant((jobject) val, $dst$$Register);
  6126     } else {          // non-oop pointers, e.g. card mark base, heap top
  6127       __ set($con$$constant, $dst$$Register);
  6129   %}
  6130   ins_pipe(loadConP);
  6131 %}
  6133 instruct loadConP_load(iRegP dst, immP_load con) %{
  6134   match(Set dst con);
  6135   ins_cost(MEMORY_REF_COST);
  6136   format %{ "LD     [$constanttablebase + $constantoffset],$dst\t! load from constant table: ptr=$con" %}
  6137   ins_encode %{
  6138     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
  6139     __ ld_ptr($constanttablebase, con_offset, $dst$$Register);
  6140   %}
  6141   ins_pipe(loadConP);
  6142 %}
  6144 instruct loadConP_no_oop_cheap(iRegP dst, immP_no_oop_cheap con) %{
  6145   match(Set dst con);
  6146   ins_cost(DEFAULT_COST * 3/2);
  6147   format %{ "SET    $con,$dst\t! non-oop ptr" %}
  6148   ins_encode %{
  6149     __ set($con$$constant, $dst$$Register);
  6150   %}
  6151   ins_pipe(loadConP);
  6152 %}
  6153 #endif // _LP64
  6155 instruct loadConP0(iRegP dst, immP0 src) %{
  6156   match(Set dst src);
  6158   size(4);
  6159   format %{ "CLR    $dst\t!ptr" %}
  6160   ins_encode %{
  6161     __ clr($dst$$Register);
  6162   %}
  6163   ins_pipe(ialu_imm);
  6164 %}
  6166 instruct loadConP_poll(iRegP dst, immP_poll src) %{
  6167   match(Set dst src);
  6168   ins_cost(DEFAULT_COST);
  6169   format %{ "SET    $src,$dst\t!ptr" %}
  6170   ins_encode %{
  6171     AddressLiteral polling_page(os::get_polling_page());
  6172     __ sethi(polling_page, reg_to_register_object($dst$$reg));
  6173   %}
  6174   ins_pipe(loadConP_poll);
  6175 %}
  6177 instruct loadConN0(iRegN dst, immN0 src) %{
  6178   match(Set dst src);
  6180   size(4);
  6181   format %{ "CLR    $dst\t! compressed NULL ptr" %}
  6182   ins_encode %{
  6183     __ clr($dst$$Register);
  6184   %}
  6185   ins_pipe(ialu_imm);
  6186 %}
  6188 instruct loadConN(iRegN dst, immN src) %{
  6189   match(Set dst src);
  6190   ins_cost(DEFAULT_COST * 3/2);
  6191   format %{ "SET    $src,$dst\t! compressed ptr" %}
  6192   ins_encode %{
  6193     Register dst = $dst$$Register;
  6194     __ set_narrow_oop((jobject)$src$$constant, dst);
  6195   %}
  6196   ins_pipe(ialu_hi_lo_reg);
  6197 %}
  6199 // Materialize long value (predicated by immL_cheap).
  6200 instruct loadConL_set64(iRegL dst, immL_cheap con, o7RegL tmp) %{
  6201   match(Set dst con);
  6202   effect(KILL tmp);
  6203   ins_cost(DEFAULT_COST * 3);
  6204   format %{ "SET64   $con,$dst KILL $tmp\t! cheap long" %}
  6205   ins_encode %{
  6206     __ set64($con$$constant, $dst$$Register, $tmp$$Register);
  6207   %}
  6208   ins_pipe(loadConL);
  6209 %}
  6211 // Load long value from constant table (predicated by immL_expensive).
  6212 instruct loadConL_ldx(iRegL dst, immL_expensive con) %{
  6213   match(Set dst con);
  6214   ins_cost(MEMORY_REF_COST);
  6215   format %{ "LDX     [$constanttablebase + $constantoffset],$dst\t! load from constant table: long=$con" %}
  6216   ins_encode %{
  6217       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
  6218     __ ldx($constanttablebase, con_offset, $dst$$Register);
  6219   %}
  6220   ins_pipe(loadConL);
  6221 %}
  6223 instruct loadConL0( iRegL dst, immL0 src ) %{
  6224   match(Set dst src);
  6225   ins_cost(DEFAULT_COST);
  6226   size(4);
  6227   format %{ "CLR    $dst\t! long" %}
  6228   ins_encode( Set13( src, dst ) );
  6229   ins_pipe(ialu_imm);
  6230 %}
  6232 instruct loadConL13( iRegL dst, immL13 src ) %{
  6233   match(Set dst src);
  6234   ins_cost(DEFAULT_COST * 2);
  6236   size(4);
  6237   format %{ "MOV    $src,$dst\t! long" %}
  6238   ins_encode( Set13( src, dst ) );
  6239   ins_pipe(ialu_imm);
  6240 %}
  6242 instruct loadConF(regF dst, immF con, o7RegI tmp) %{
  6243   match(Set dst con);
  6244   effect(KILL tmp);
  6245   format %{ "LDF    [$constanttablebase + $constantoffset],$dst\t! load from constant table: float=$con" %}
  6246   ins_encode %{
  6247       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
  6248     __ ldf(FloatRegisterImpl::S, $constanttablebase, con_offset, $dst$$FloatRegister);
  6249   %}
  6250   ins_pipe(loadConFD);
  6251 %}
  6253 instruct loadConD(regD dst, immD con, o7RegI tmp) %{
  6254   match(Set dst con);
  6255   effect(KILL tmp);
  6256   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: double=$con" %}
  6257   ins_encode %{
  6258     // XXX This is a quick fix for 6833573.
  6259     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset($con), $dst$$FloatRegister);
  6260     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
  6261     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  6262   %}
  6263   ins_pipe(loadConFD);
  6264 %}
  6266 // Prefetch instructions.
  6267 // Must be safe to execute with invalid address (cannot fault).
  6269 instruct prefetchr( memory mem ) %{
  6270   match( PrefetchRead mem );
  6271   ins_cost(MEMORY_REF_COST);
  6273   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
  6274   opcode(Assembler::prefetch_op3);
  6275   ins_encode( form3_mem_prefetch_read( mem ) );
  6276   ins_pipe(iload_mem);
  6277 %}
  6279 instruct prefetchw( memory mem ) %{
  6280   predicate(AllocatePrefetchStyle != 3 );
  6281   match( PrefetchWrite mem );
  6282   ins_cost(MEMORY_REF_COST);
  6284   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
  6285   opcode(Assembler::prefetch_op3);
  6286   ins_encode( form3_mem_prefetch_write( mem ) );
  6287   ins_pipe(iload_mem);
  6288 %}
  6290 // Use BIS instruction to prefetch.
  6291 instruct prefetchw_bis( memory mem ) %{
  6292   predicate(AllocatePrefetchStyle == 3);
  6293   match( PrefetchWrite mem );
  6294   ins_cost(MEMORY_REF_COST);
  6296   format %{ "STXA   G0,$mem\t! // Block initializing store" %}
  6297   ins_encode %{
  6298      Register base = as_Register($mem$$base);
  6299      int disp = $mem$$disp;
  6300      if (disp != 0) {
  6301        __ add(base, AllocatePrefetchStepSize, base);
  6303      __ stxa(G0, base, G0, ASI_BLK_INIT_QUAD_LDD_P);
  6304   %}
  6305   ins_pipe(istore_mem_reg);
  6306 %}
  6308 //----------Store Instructions-------------------------------------------------
  6309 // Store Byte
  6310 instruct storeB(memory mem, iRegI src) %{
  6311   match(Set mem (StoreB mem src));
  6312   ins_cost(MEMORY_REF_COST);
  6314   size(4);
  6315   format %{ "STB    $src,$mem\t! byte" %}
  6316   opcode(Assembler::stb_op3);
  6317   ins_encode(simple_form3_mem_reg( mem, src ) );
  6318   ins_pipe(istore_mem_reg);
  6319 %}
  6321 instruct storeB0(memory mem, immI0 src) %{
  6322   match(Set mem (StoreB mem src));
  6323   ins_cost(MEMORY_REF_COST);
  6325   size(4);
  6326   format %{ "STB    $src,$mem\t! byte" %}
  6327   opcode(Assembler::stb_op3);
  6328   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6329   ins_pipe(istore_mem_zero);
  6330 %}
  6332 instruct storeCM0(memory mem, immI0 src) %{
  6333   match(Set mem (StoreCM mem src));
  6334   ins_cost(MEMORY_REF_COST);
  6336   size(4);
  6337   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
  6338   opcode(Assembler::stb_op3);
  6339   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6340   ins_pipe(istore_mem_zero);
  6341 %}
  6343 // Store Char/Short
  6344 instruct storeC(memory mem, iRegI src) %{
  6345   match(Set mem (StoreC mem src));
  6346   ins_cost(MEMORY_REF_COST);
  6348   size(4);
  6349   format %{ "STH    $src,$mem\t! short" %}
  6350   opcode(Assembler::sth_op3);
  6351   ins_encode(simple_form3_mem_reg( mem, src ) );
  6352   ins_pipe(istore_mem_reg);
  6353 %}
  6355 instruct storeC0(memory mem, immI0 src) %{
  6356   match(Set mem (StoreC mem src));
  6357   ins_cost(MEMORY_REF_COST);
  6359   size(4);
  6360   format %{ "STH    $src,$mem\t! short" %}
  6361   opcode(Assembler::sth_op3);
  6362   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6363   ins_pipe(istore_mem_zero);
  6364 %}
  6366 // Store Integer
  6367 instruct storeI(memory mem, iRegI src) %{
  6368   match(Set mem (StoreI mem src));
  6369   ins_cost(MEMORY_REF_COST);
  6371   size(4);
  6372   format %{ "STW    $src,$mem" %}
  6373   opcode(Assembler::stw_op3);
  6374   ins_encode(simple_form3_mem_reg( mem, src ) );
  6375   ins_pipe(istore_mem_reg);
  6376 %}
  6378 // Store Long
  6379 instruct storeL(memory mem, iRegL src) %{
  6380   match(Set mem (StoreL mem src));
  6381   ins_cost(MEMORY_REF_COST);
  6382   size(4);
  6383   format %{ "STX    $src,$mem\t! long" %}
  6384   opcode(Assembler::stx_op3);
  6385   ins_encode(simple_form3_mem_reg( mem, src ) );
  6386   ins_pipe(istore_mem_reg);
  6387 %}
  6389 instruct storeI0(memory mem, immI0 src) %{
  6390   match(Set mem (StoreI mem src));
  6391   ins_cost(MEMORY_REF_COST);
  6393   size(4);
  6394   format %{ "STW    $src,$mem" %}
  6395   opcode(Assembler::stw_op3);
  6396   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6397   ins_pipe(istore_mem_zero);
  6398 %}
  6400 instruct storeL0(memory mem, immL0 src) %{
  6401   match(Set mem (StoreL mem src));
  6402   ins_cost(MEMORY_REF_COST);
  6404   size(4);
  6405   format %{ "STX    $src,$mem" %}
  6406   opcode(Assembler::stx_op3);
  6407   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6408   ins_pipe(istore_mem_zero);
  6409 %}
  6411 // Store Integer from float register (used after fstoi)
  6412 instruct storeI_Freg(memory mem, regF src) %{
  6413   match(Set mem (StoreI mem src));
  6414   ins_cost(MEMORY_REF_COST);
  6416   size(4);
  6417   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
  6418   opcode(Assembler::stf_op3);
  6419   ins_encode(simple_form3_mem_reg( mem, src ) );
  6420   ins_pipe(fstoreF_mem_reg);
  6421 %}
  6423 // Store Pointer
  6424 instruct storeP(memory dst, sp_ptr_RegP src) %{
  6425   match(Set dst (StoreP dst src));
  6426   ins_cost(MEMORY_REF_COST);
  6427   size(4);
  6429 #ifndef _LP64
  6430   format %{ "STW    $src,$dst\t! ptr" %}
  6431   opcode(Assembler::stw_op3, 0, REGP_OP);
  6432 #else
  6433   format %{ "STX    $src,$dst\t! ptr" %}
  6434   opcode(Assembler::stx_op3, 0, REGP_OP);
  6435 #endif
  6436   ins_encode( form3_mem_reg( dst, src ) );
  6437   ins_pipe(istore_mem_spORreg);
  6438 %}
  6440 instruct storeP0(memory dst, immP0 src) %{
  6441   match(Set dst (StoreP dst src));
  6442   ins_cost(MEMORY_REF_COST);
  6443   size(4);
  6445 #ifndef _LP64
  6446   format %{ "STW    $src,$dst\t! ptr" %}
  6447   opcode(Assembler::stw_op3, 0, REGP_OP);
  6448 #else
  6449   format %{ "STX    $src,$dst\t! ptr" %}
  6450   opcode(Assembler::stx_op3, 0, REGP_OP);
  6451 #endif
  6452   ins_encode( form3_mem_reg( dst, R_G0 ) );
  6453   ins_pipe(istore_mem_zero);
  6454 %}
  6456 // Store Compressed Pointer
  6457 instruct storeN(memory dst, iRegN src) %{
  6458    match(Set dst (StoreN dst src));
  6459    ins_cost(MEMORY_REF_COST);
  6460    size(4);
  6462    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6463    ins_encode %{
  6464      Register base = as_Register($dst$$base);
  6465      Register index = as_Register($dst$$index);
  6466      Register src = $src$$Register;
  6467      if (index != G0) {
  6468        __ stw(src, base, index);
  6469      } else {
  6470        __ stw(src, base, $dst$$disp);
  6472    %}
  6473    ins_pipe(istore_mem_spORreg);
  6474 %}
  6476 instruct storeN0(memory dst, immN0 src) %{
  6477    match(Set dst (StoreN dst src));
  6478    ins_cost(MEMORY_REF_COST);
  6479    size(4);
  6481    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6482    ins_encode %{
  6483      Register base = as_Register($dst$$base);
  6484      Register index = as_Register($dst$$index);
  6485      if (index != G0) {
  6486        __ stw(0, base, index);
  6487      } else {
  6488        __ stw(0, base, $dst$$disp);
  6490    %}
  6491    ins_pipe(istore_mem_zero);
  6492 %}
  6494 // Store Double
  6495 instruct storeD( memory mem, regD src) %{
  6496   match(Set mem (StoreD mem src));
  6497   ins_cost(MEMORY_REF_COST);
  6499   size(4);
  6500   format %{ "STDF   $src,$mem" %}
  6501   opcode(Assembler::stdf_op3);
  6502   ins_encode(simple_form3_mem_reg( mem, src ) );
  6503   ins_pipe(fstoreD_mem_reg);
  6504 %}
  6506 instruct storeD0( memory mem, immD0 src) %{
  6507   match(Set mem (StoreD mem src));
  6508   ins_cost(MEMORY_REF_COST);
  6510   size(4);
  6511   format %{ "STX    $src,$mem" %}
  6512   opcode(Assembler::stx_op3);
  6513   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6514   ins_pipe(fstoreD_mem_zero);
  6515 %}
  6517 // Store Float
  6518 instruct storeF( memory mem, regF src) %{
  6519   match(Set mem (StoreF mem src));
  6520   ins_cost(MEMORY_REF_COST);
  6522   size(4);
  6523   format %{ "STF    $src,$mem" %}
  6524   opcode(Assembler::stf_op3);
  6525   ins_encode(simple_form3_mem_reg( mem, src ) );
  6526   ins_pipe(fstoreF_mem_reg);
  6527 %}
  6529 instruct storeF0( memory mem, immF0 src) %{
  6530   match(Set mem (StoreF mem src));
  6531   ins_cost(MEMORY_REF_COST);
  6533   size(4);
  6534   format %{ "STW    $src,$mem\t! storeF0" %}
  6535   opcode(Assembler::stw_op3);
  6536   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6537   ins_pipe(fstoreF_mem_zero);
  6538 %}
  6540 // Store Aligned Packed Bytes in Double register to memory
  6541 instruct storeA8B(memory mem, regD src) %{
  6542   match(Set mem (Store8B mem src));
  6543   ins_cost(MEMORY_REF_COST);
  6544   size(4);
  6545   format %{ "STDF   $src,$mem\t! packed8B" %}
  6546   opcode(Assembler::stdf_op3);
  6547   ins_encode(simple_form3_mem_reg( mem, src ) );
  6548   ins_pipe(fstoreD_mem_reg);
  6549 %}
  6551 // Convert oop pointer into compressed form
  6552 instruct encodeHeapOop(iRegN dst, iRegP src) %{
  6553   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
  6554   match(Set dst (EncodeP src));
  6555   format %{ "encode_heap_oop $src, $dst" %}
  6556   ins_encode %{
  6557     __ encode_heap_oop($src$$Register, $dst$$Register);
  6558   %}
  6559   ins_pipe(ialu_reg);
  6560 %}
  6562 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
  6563   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
  6564   match(Set dst (EncodeP src));
  6565   format %{ "encode_heap_oop_not_null $src, $dst" %}
  6566   ins_encode %{
  6567     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
  6568   %}
  6569   ins_pipe(ialu_reg);
  6570 %}
  6572 instruct decodeHeapOop(iRegP dst, iRegN src) %{
  6573   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
  6574             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
  6575   match(Set dst (DecodeN src));
  6576   format %{ "decode_heap_oop $src, $dst" %}
  6577   ins_encode %{
  6578     __ decode_heap_oop($src$$Register, $dst$$Register);
  6579   %}
  6580   ins_pipe(ialu_reg);
  6581 %}
  6583 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
  6584   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
  6585             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
  6586   match(Set dst (DecodeN src));
  6587   format %{ "decode_heap_oop_not_null $src, $dst" %}
  6588   ins_encode %{
  6589     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
  6590   %}
  6591   ins_pipe(ialu_reg);
  6592 %}
  6595 // Store Zero into Aligned Packed Bytes
  6596 instruct storeA8B0(memory mem, immI0 zero) %{
  6597   match(Set mem (Store8B mem zero));
  6598   ins_cost(MEMORY_REF_COST);
  6599   size(4);
  6600   format %{ "STX    $zero,$mem\t! packed8B" %}
  6601   opcode(Assembler::stx_op3);
  6602   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6603   ins_pipe(fstoreD_mem_zero);
  6604 %}
  6606 // Store Aligned Packed Chars/Shorts in Double register to memory
  6607 instruct storeA4C(memory mem, regD src) %{
  6608   match(Set mem (Store4C mem src));
  6609   ins_cost(MEMORY_REF_COST);
  6610   size(4);
  6611   format %{ "STDF   $src,$mem\t! packed4C" %}
  6612   opcode(Assembler::stdf_op3);
  6613   ins_encode(simple_form3_mem_reg( mem, src ) );
  6614   ins_pipe(fstoreD_mem_reg);
  6615 %}
  6617 // Store Zero into Aligned Packed Chars/Shorts
  6618 instruct storeA4C0(memory mem, immI0 zero) %{
  6619   match(Set mem (Store4C mem (Replicate4C zero)));
  6620   ins_cost(MEMORY_REF_COST);
  6621   size(4);
  6622   format %{ "STX    $zero,$mem\t! packed4C" %}
  6623   opcode(Assembler::stx_op3);
  6624   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6625   ins_pipe(fstoreD_mem_zero);
  6626 %}
  6628 // Store Aligned Packed Ints in Double register to memory
  6629 instruct storeA2I(memory mem, regD src) %{
  6630   match(Set mem (Store2I mem src));
  6631   ins_cost(MEMORY_REF_COST);
  6632   size(4);
  6633   format %{ "STDF   $src,$mem\t! packed2I" %}
  6634   opcode(Assembler::stdf_op3);
  6635   ins_encode(simple_form3_mem_reg( mem, src ) );
  6636   ins_pipe(fstoreD_mem_reg);
  6637 %}
  6639 // Store Zero into Aligned Packed Ints
  6640 instruct storeA2I0(memory mem, immI0 zero) %{
  6641   match(Set mem (Store2I mem zero));
  6642   ins_cost(MEMORY_REF_COST);
  6643   size(4);
  6644   format %{ "STX    $zero,$mem\t! packed2I" %}
  6645   opcode(Assembler::stx_op3);
  6646   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6647   ins_pipe(fstoreD_mem_zero);
  6648 %}
  6651 //----------MemBar Instructions-----------------------------------------------
  6652 // Memory barrier flavors
  6654 instruct membar_acquire() %{
  6655   match(MemBarAcquire);
  6656   ins_cost(4*MEMORY_REF_COST);
  6658   size(0);
  6659   format %{ "MEMBAR-acquire" %}
  6660   ins_encode( enc_membar_acquire );
  6661   ins_pipe(long_memory_op);
  6662 %}
  6664 instruct membar_acquire_lock() %{
  6665   match(MemBarAcquireLock);
  6666   ins_cost(0);
  6668   size(0);
  6669   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
  6670   ins_encode( );
  6671   ins_pipe(empty);
  6672 %}
  6674 instruct membar_release() %{
  6675   match(MemBarRelease);
  6676   ins_cost(4*MEMORY_REF_COST);
  6678   size(0);
  6679   format %{ "MEMBAR-release" %}
  6680   ins_encode( enc_membar_release );
  6681   ins_pipe(long_memory_op);
  6682 %}
  6684 instruct membar_release_lock() %{
  6685   match(MemBarReleaseLock);
  6686   ins_cost(0);
  6688   size(0);
  6689   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
  6690   ins_encode( );
  6691   ins_pipe(empty);
  6692 %}
  6694 instruct membar_volatile() %{
  6695   match(MemBarVolatile);
  6696   ins_cost(4*MEMORY_REF_COST);
  6698   size(4);
  6699   format %{ "MEMBAR-volatile" %}
  6700   ins_encode( enc_membar_volatile );
  6701   ins_pipe(long_memory_op);
  6702 %}
  6704 instruct unnecessary_membar_volatile() %{
  6705   match(MemBarVolatile);
  6706   predicate(Matcher::post_store_load_barrier(n));
  6707   ins_cost(0);
  6709   size(0);
  6710   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
  6711   ins_encode( );
  6712   ins_pipe(empty);
  6713 %}
  6715 //----------Register Move Instructions-----------------------------------------
  6716 instruct roundDouble_nop(regD dst) %{
  6717   match(Set dst (RoundDouble dst));
  6718   ins_cost(0);
  6719   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6720   ins_encode( );
  6721   ins_pipe(empty);
  6722 %}
  6725 instruct roundFloat_nop(regF dst) %{
  6726   match(Set dst (RoundFloat dst));
  6727   ins_cost(0);
  6728   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6729   ins_encode( );
  6730   ins_pipe(empty);
  6731 %}
  6734 // Cast Index to Pointer for unsafe natives
  6735 instruct castX2P(iRegX src, iRegP dst) %{
  6736   match(Set dst (CastX2P src));
  6738   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
  6739   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6740   ins_pipe(ialu_reg);
  6741 %}
  6743 // Cast Pointer to Index for unsafe natives
  6744 instruct castP2X(iRegP src, iRegX dst) %{
  6745   match(Set dst (CastP2X src));
  6747   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
  6748   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6749   ins_pipe(ialu_reg);
  6750 %}
  6752 instruct stfSSD(stackSlotD stkSlot, regD src) %{
  6753   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6754   match(Set stkSlot src);   // chain rule
  6755   ins_cost(MEMORY_REF_COST);
  6756   format %{ "STDF   $src,$stkSlot\t!stk" %}
  6757   opcode(Assembler::stdf_op3);
  6758   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6759   ins_pipe(fstoreD_stk_reg);
  6760 %}
  6762 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
  6763   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6764   match(Set dst stkSlot);   // chain rule
  6765   ins_cost(MEMORY_REF_COST);
  6766   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
  6767   opcode(Assembler::lddf_op3);
  6768   ins_encode(simple_form3_mem_reg(stkSlot, dst));
  6769   ins_pipe(floadD_stk);
  6770 %}
  6772 instruct stfSSF(stackSlotF stkSlot, regF src) %{
  6773   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6774   match(Set stkSlot src);   // chain rule
  6775   ins_cost(MEMORY_REF_COST);
  6776   format %{ "STF   $src,$stkSlot\t!stk" %}
  6777   opcode(Assembler::stf_op3);
  6778   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6779   ins_pipe(fstoreF_stk_reg);
  6780 %}
  6782 //----------Conditional Move---------------------------------------------------
  6783 // Conditional move
  6784 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
  6785   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6786   ins_cost(150);
  6787   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6788   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6789   ins_pipe(ialu_reg);
  6790 %}
  6792 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
  6793   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6794   ins_cost(140);
  6795   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6796   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6797   ins_pipe(ialu_imm);
  6798 %}
  6800 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
  6801   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6802   ins_cost(150);
  6803   size(4);
  6804   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6805   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6806   ins_pipe(ialu_reg);
  6807 %}
  6809 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
  6810   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6811   ins_cost(140);
  6812   size(4);
  6813   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6814   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6815   ins_pipe(ialu_imm);
  6816 %}
  6818 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
  6819   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6820   ins_cost(150);
  6821   size(4);
  6822   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6823   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6824   ins_pipe(ialu_reg);
  6825 %}
  6827 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
  6828   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6829   ins_cost(140);
  6830   size(4);
  6831   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6832   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6833   ins_pipe(ialu_imm);
  6834 %}
  6836 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
  6837   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6838   ins_cost(150);
  6839   size(4);
  6840   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6841   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6842   ins_pipe(ialu_reg);
  6843 %}
  6845 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
  6846   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6847   ins_cost(140);
  6848   size(4);
  6849   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6850   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6851   ins_pipe(ialu_imm);
  6852 %}
  6854 // Conditional move for RegN. Only cmov(reg,reg).
  6855 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
  6856   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
  6857   ins_cost(150);
  6858   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6859   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6860   ins_pipe(ialu_reg);
  6861 %}
  6863 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6864 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
  6865   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6866   ins_cost(150);
  6867   size(4);
  6868   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6869   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6870   ins_pipe(ialu_reg);
  6871 %}
  6873 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6874 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
  6875   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6876   ins_cost(150);
  6877   size(4);
  6878   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6879   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6880   ins_pipe(ialu_reg);
  6881 %}
  6883 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
  6884   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
  6885   ins_cost(150);
  6886   size(4);
  6887   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6888   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6889   ins_pipe(ialu_reg);
  6890 %}
  6892 // Conditional move
  6893 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
  6894   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6895   ins_cost(150);
  6896   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6897   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6898   ins_pipe(ialu_reg);
  6899 %}
  6901 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
  6902   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6903   ins_cost(140);
  6904   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6905   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6906   ins_pipe(ialu_imm);
  6907 %}
  6909 // This instruction also works with CmpN so we don't need cmovPN_reg.
  6910 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
  6911   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6912   ins_cost(150);
  6914   size(4);
  6915   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6916   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6917   ins_pipe(ialu_reg);
  6918 %}
  6920 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
  6921   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6922   ins_cost(150);
  6924   size(4);
  6925   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6926   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6927   ins_pipe(ialu_reg);
  6928 %}
  6930 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
  6931   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6932   ins_cost(140);
  6934   size(4);
  6935   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6936   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6937   ins_pipe(ialu_imm);
  6938 %}
  6940 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
  6941   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6942   ins_cost(140);
  6944   size(4);
  6945   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6946   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6947   ins_pipe(ialu_imm);
  6948 %}
  6950 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
  6951   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6952   ins_cost(150);
  6953   size(4);
  6954   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6955   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6956   ins_pipe(ialu_imm);
  6957 %}
  6959 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
  6960   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6961   ins_cost(140);
  6962   size(4);
  6963   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6964   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6965   ins_pipe(ialu_imm);
  6966 %}
  6968 // Conditional move
  6969 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
  6970   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
  6971   ins_cost(150);
  6972   opcode(0x101);
  6973   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  6974   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6975   ins_pipe(int_conditional_float_move);
  6976 %}
  6978 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
  6979   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  6980   ins_cost(150);
  6982   size(4);
  6983   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  6984   opcode(0x101);
  6985   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6986   ins_pipe(int_conditional_float_move);
  6987 %}
  6989 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
  6990   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  6991   ins_cost(150);
  6993   size(4);
  6994   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  6995   opcode(0x101);
  6996   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6997   ins_pipe(int_conditional_float_move);
  6998 %}
  7000 // Conditional move,
  7001 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
  7002   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
  7003   ins_cost(150);
  7004   size(4);
  7005   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
  7006   opcode(0x1);
  7007   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  7008   ins_pipe(int_conditional_double_move);
  7009 %}
  7011 // Conditional move
  7012 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
  7013   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
  7014   ins_cost(150);
  7015   size(4);
  7016   opcode(0x102);
  7017   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  7018   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  7019   ins_pipe(int_conditional_double_move);
  7020 %}
  7022 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
  7023   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  7024   ins_cost(150);
  7026   size(4);
  7027   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  7028   opcode(0x102);
  7029   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7030   ins_pipe(int_conditional_double_move);
  7031 %}
  7033 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
  7034   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  7035   ins_cost(150);
  7037   size(4);
  7038   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  7039   opcode(0x102);
  7040   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7041   ins_pipe(int_conditional_double_move);
  7042 %}
  7044 // Conditional move,
  7045 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
  7046   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
  7047   ins_cost(150);
  7048   size(4);
  7049   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
  7050   opcode(0x2);
  7051   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  7052   ins_pipe(int_conditional_double_move);
  7053 %}
  7055 // Conditional move
  7056 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
  7057   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  7058   ins_cost(150);
  7059   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  7060   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  7061   ins_pipe(ialu_reg);
  7062 %}
  7064 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
  7065   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  7066   ins_cost(140);
  7067   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  7068   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  7069   ins_pipe(ialu_imm);
  7070 %}
  7072 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
  7073   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  7074   ins_cost(150);
  7076   size(4);
  7077   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  7078   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  7079   ins_pipe(ialu_reg);
  7080 %}
  7083 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
  7084   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  7085   ins_cost(150);
  7087   size(4);
  7088   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  7089   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  7090   ins_pipe(ialu_reg);
  7091 %}
  7094 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
  7095   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
  7096   ins_cost(150);
  7098   size(4);
  7099   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
  7100   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  7101   ins_pipe(ialu_reg);
  7102 %}
  7106 //----------OS and Locking Instructions----------------------------------------
  7108 // This name is KNOWN by the ADLC and cannot be changed.
  7109 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
  7110 // for this guy.
  7111 instruct tlsLoadP(g2RegP dst) %{
  7112   match(Set dst (ThreadLocal));
  7114   size(0);
  7115   ins_cost(0);
  7116   format %{ "# TLS is in G2" %}
  7117   ins_encode( /*empty encoding*/ );
  7118   ins_pipe(ialu_none);
  7119 %}
  7121 instruct checkCastPP( iRegP dst ) %{
  7122   match(Set dst (CheckCastPP dst));
  7124   size(0);
  7125   format %{ "# checkcastPP of $dst" %}
  7126   ins_encode( /*empty encoding*/ );
  7127   ins_pipe(empty);
  7128 %}
  7131 instruct castPP( iRegP dst ) %{
  7132   match(Set dst (CastPP dst));
  7133   format %{ "# castPP of $dst" %}
  7134   ins_encode( /*empty encoding*/ );
  7135   ins_pipe(empty);
  7136 %}
  7138 instruct castII( iRegI dst ) %{
  7139   match(Set dst (CastII dst));
  7140   format %{ "# castII of $dst" %}
  7141   ins_encode( /*empty encoding*/ );
  7142   ins_cost(0);
  7143   ins_pipe(empty);
  7144 %}
  7146 //----------Arithmetic Instructions--------------------------------------------
  7147 // Addition Instructions
  7148 // Register Addition
  7149 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7150   match(Set dst (AddI src1 src2));
  7152   size(4);
  7153   format %{ "ADD    $src1,$src2,$dst" %}
  7154   ins_encode %{
  7155     __ add($src1$$Register, $src2$$Register, $dst$$Register);
  7156   %}
  7157   ins_pipe(ialu_reg_reg);
  7158 %}
  7160 // Immediate Addition
  7161 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7162   match(Set dst (AddI src1 src2));
  7164   size(4);
  7165   format %{ "ADD    $src1,$src2,$dst" %}
  7166   opcode(Assembler::add_op3, Assembler::arith_op);
  7167   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7168   ins_pipe(ialu_reg_imm);
  7169 %}
  7171 // Pointer Register Addition
  7172 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
  7173   match(Set dst (AddP src1 src2));
  7175   size(4);
  7176   format %{ "ADD    $src1,$src2,$dst" %}
  7177   opcode(Assembler::add_op3, Assembler::arith_op);
  7178   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7179   ins_pipe(ialu_reg_reg);
  7180 %}
  7182 // Pointer Immediate Addition
  7183 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
  7184   match(Set dst (AddP src1 src2));
  7186   size(4);
  7187   format %{ "ADD    $src1,$src2,$dst" %}
  7188   opcode(Assembler::add_op3, Assembler::arith_op);
  7189   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7190   ins_pipe(ialu_reg_imm);
  7191 %}
  7193 // Long Addition
  7194 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7195   match(Set dst (AddL src1 src2));
  7197   size(4);
  7198   format %{ "ADD    $src1,$src2,$dst\t! long" %}
  7199   opcode(Assembler::add_op3, Assembler::arith_op);
  7200   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7201   ins_pipe(ialu_reg_reg);
  7202 %}
  7204 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7205   match(Set dst (AddL src1 con));
  7207   size(4);
  7208   format %{ "ADD    $src1,$con,$dst" %}
  7209   opcode(Assembler::add_op3, Assembler::arith_op);
  7210   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7211   ins_pipe(ialu_reg_imm);
  7212 %}
  7214 //----------Conditional_store--------------------------------------------------
  7215 // Conditional-store of the updated heap-top.
  7216 // Used during allocation of the shared heap.
  7217 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
  7219 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
  7220 instruct loadPLocked(iRegP dst, memory mem) %{
  7221   match(Set dst (LoadPLocked mem));
  7222   ins_cost(MEMORY_REF_COST);
  7224 #ifndef _LP64
  7225   size(4);
  7226   format %{ "LDUW   $mem,$dst\t! ptr" %}
  7227   opcode(Assembler::lduw_op3, 0, REGP_OP);
  7228 #else
  7229   format %{ "LDX    $mem,$dst\t! ptr" %}
  7230   opcode(Assembler::ldx_op3, 0, REGP_OP);
  7231 #endif
  7232   ins_encode( form3_mem_reg( mem, dst ) );
  7233   ins_pipe(iload_mem);
  7234 %}
  7236 // LoadL-locked.  Same as a regular long load when used with a compare-swap
  7237 instruct loadLLocked(iRegL dst, memory mem) %{
  7238   match(Set dst (LoadLLocked mem));
  7239   ins_cost(MEMORY_REF_COST);
  7240   size(4);
  7241   format %{ "LDX    $mem,$dst\t! long" %}
  7242   opcode(Assembler::ldx_op3);
  7243   ins_encode(simple_form3_mem_reg( mem, dst ) );
  7244   ins_pipe(iload_mem);
  7245 %}
  7247 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
  7248   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
  7249   effect( KILL newval );
  7250   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
  7251             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
  7252   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
  7253   ins_pipe( long_memory_op );
  7254 %}
  7256 // Conditional-store of an int value.
  7257 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
  7258   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
  7259   effect( KILL newval );
  7260   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7261             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7262   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7263   ins_pipe( long_memory_op );
  7264 %}
  7266 // Conditional-store of a long value.
  7267 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
  7268   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
  7269   effect( KILL newval );
  7270   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7271             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7272   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7273   ins_pipe( long_memory_op );
  7274 %}
  7276 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  7278 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7279   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  7280   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7281   format %{
  7282             "MOV    $newval,O7\n\t"
  7283             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7284             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7285             "MOV    1,$res\n\t"
  7286             "MOVne  xcc,R_G0,$res"
  7287   %}
  7288   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7289               enc_lflags_ne_to_boolean(res) );
  7290   ins_pipe( long_memory_op );
  7291 %}
  7294 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7295   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  7296   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7297   format %{
  7298             "MOV    $newval,O7\n\t"
  7299             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7300             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7301             "MOV    1,$res\n\t"
  7302             "MOVne  icc,R_G0,$res"
  7303   %}
  7304   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7305               enc_iflags_ne_to_boolean(res) );
  7306   ins_pipe( long_memory_op );
  7307 %}
  7309 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7310   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  7311   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7312   format %{
  7313             "MOV    $newval,O7\n\t"
  7314             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7315             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7316             "MOV    1,$res\n\t"
  7317             "MOVne  xcc,R_G0,$res"
  7318   %}
  7319 #ifdef _LP64
  7320   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7321               enc_lflags_ne_to_boolean(res) );
  7322 #else
  7323   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7324               enc_iflags_ne_to_boolean(res) );
  7325 #endif
  7326   ins_pipe( long_memory_op );
  7327 %}
  7329 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7330   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
  7331   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7332   format %{
  7333             "MOV    $newval,O7\n\t"
  7334             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7335             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7336             "MOV    1,$res\n\t"
  7337             "MOVne  icc,R_G0,$res"
  7338   %}
  7339   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7340               enc_iflags_ne_to_boolean(res) );
  7341   ins_pipe( long_memory_op );
  7342 %}
  7344 //---------------------
  7345 // Subtraction Instructions
  7346 // Register Subtraction
  7347 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7348   match(Set dst (SubI src1 src2));
  7350   size(4);
  7351   format %{ "SUB    $src1,$src2,$dst" %}
  7352   opcode(Assembler::sub_op3, Assembler::arith_op);
  7353   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7354   ins_pipe(ialu_reg_reg);
  7355 %}
  7357 // Immediate Subtraction
  7358 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7359   match(Set dst (SubI src1 src2));
  7361   size(4);
  7362   format %{ "SUB    $src1,$src2,$dst" %}
  7363   opcode(Assembler::sub_op3, Assembler::arith_op);
  7364   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7365   ins_pipe(ialu_reg_imm);
  7366 %}
  7368 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  7369   match(Set dst (SubI zero src2));
  7371   size(4);
  7372   format %{ "NEG    $src2,$dst" %}
  7373   opcode(Assembler::sub_op3, Assembler::arith_op);
  7374   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7375   ins_pipe(ialu_zero_reg);
  7376 %}
  7378 // Long subtraction
  7379 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7380   match(Set dst (SubL src1 src2));
  7382   size(4);
  7383   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7384   opcode(Assembler::sub_op3, Assembler::arith_op);
  7385   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7386   ins_pipe(ialu_reg_reg);
  7387 %}
  7389 // Immediate Subtraction
  7390 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7391   match(Set dst (SubL src1 con));
  7393   size(4);
  7394   format %{ "SUB    $src1,$con,$dst\t! long" %}
  7395   opcode(Assembler::sub_op3, Assembler::arith_op);
  7396   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7397   ins_pipe(ialu_reg_imm);
  7398 %}
  7400 // Long negation
  7401 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
  7402   match(Set dst (SubL zero src2));
  7404   size(4);
  7405   format %{ "NEG    $src2,$dst\t! long" %}
  7406   opcode(Assembler::sub_op3, Assembler::arith_op);
  7407   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7408   ins_pipe(ialu_zero_reg);
  7409 %}
  7411 // Multiplication Instructions
  7412 // Integer Multiplication
  7413 // Register Multiplication
  7414 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7415   match(Set dst (MulI src1 src2));
  7417   size(4);
  7418   format %{ "MULX   $src1,$src2,$dst" %}
  7419   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7420   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7421   ins_pipe(imul_reg_reg);
  7422 %}
  7424 // Immediate Multiplication
  7425 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7426   match(Set dst (MulI src1 src2));
  7428   size(4);
  7429   format %{ "MULX   $src1,$src2,$dst" %}
  7430   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7431   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7432   ins_pipe(imul_reg_imm);
  7433 %}
  7435 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7436   match(Set dst (MulL src1 src2));
  7437   ins_cost(DEFAULT_COST * 5);
  7438   size(4);
  7439   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7440   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7441   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7442   ins_pipe(mulL_reg_reg);
  7443 %}
  7445 // Immediate Multiplication
  7446 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7447   match(Set dst (MulL src1 src2));
  7448   ins_cost(DEFAULT_COST * 5);
  7449   size(4);
  7450   format %{ "MULX   $src1,$src2,$dst" %}
  7451   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7452   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7453   ins_pipe(mulL_reg_imm);
  7454 %}
  7456 // Integer Division
  7457 // Register Division
  7458 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
  7459   match(Set dst (DivI src1 src2));
  7460   ins_cost((2+71)*DEFAULT_COST);
  7462   format %{ "SRA     $src2,0,$src2\n\t"
  7463             "SRA     $src1,0,$src1\n\t"
  7464             "SDIVX   $src1,$src2,$dst" %}
  7465   ins_encode( idiv_reg( src1, src2, dst ) );
  7466   ins_pipe(sdiv_reg_reg);
  7467 %}
  7469 // Immediate Division
  7470 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
  7471   match(Set dst (DivI src1 src2));
  7472   ins_cost((2+71)*DEFAULT_COST);
  7474   format %{ "SRA     $src1,0,$src1\n\t"
  7475             "SDIVX   $src1,$src2,$dst" %}
  7476   ins_encode( idiv_imm( src1, src2, dst ) );
  7477   ins_pipe(sdiv_reg_imm);
  7478 %}
  7480 //----------Div-By-10-Expansion------------------------------------------------
  7481 // Extract hi bits of a 32x32->64 bit multiply.
  7482 // Expand rule only, not matched
  7483 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
  7484   effect( DEF dst, USE src1, USE src2 );
  7485   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
  7486             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
  7487   ins_encode( enc_mul_hi(dst,src1,src2));
  7488   ins_pipe(sdiv_reg_reg);
  7489 %}
  7491 // Magic constant, reciprocal of 10
  7492 instruct loadConI_x66666667(iRegIsafe dst) %{
  7493   effect( DEF dst );
  7495   size(8);
  7496   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
  7497   ins_encode( Set32(0x66666667, dst) );
  7498   ins_pipe(ialu_hi_lo_reg);
  7499 %}
  7501 // Register Shift Right Arithmetic Long by 32-63
  7502 instruct sra_31( iRegI dst, iRegI src ) %{
  7503   effect( DEF dst, USE src );
  7504   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
  7505   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
  7506   ins_pipe(ialu_reg_reg);
  7507 %}
  7509 // Arithmetic Shift Right by 8-bit immediate
  7510 instruct sra_reg_2( iRegI dst, iRegI src ) %{
  7511   effect( DEF dst, USE src );
  7512   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
  7513   opcode(Assembler::sra_op3, Assembler::arith_op);
  7514   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
  7515   ins_pipe(ialu_reg_imm);
  7516 %}
  7518 // Integer DIV with 10
  7519 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
  7520   match(Set dst (DivI src div));
  7521   ins_cost((6+6)*DEFAULT_COST);
  7522   expand %{
  7523     iRegIsafe tmp1;               // Killed temps;
  7524     iRegIsafe tmp2;               // Killed temps;
  7525     iRegI tmp3;                   // Killed temps;
  7526     iRegI tmp4;                   // Killed temps;
  7527     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
  7528     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
  7529     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
  7530     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
  7531     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
  7532   %}
  7533 %}
  7535 // Register Long Division
  7536 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7537   match(Set dst (DivL src1 src2));
  7538   ins_cost(DEFAULT_COST*71);
  7539   size(4);
  7540   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7541   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7542   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7543   ins_pipe(divL_reg_reg);
  7544 %}
  7546 // Register Long Division
  7547 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7548   match(Set dst (DivL src1 src2));
  7549   ins_cost(DEFAULT_COST*71);
  7550   size(4);
  7551   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7552   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7553   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7554   ins_pipe(divL_reg_imm);
  7555 %}
  7557 // Integer Remainder
  7558 // Register Remainder
  7559 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
  7560   match(Set dst (ModI src1 src2));
  7561   effect( KILL ccr, KILL temp);
  7563   format %{ "SREM   $src1,$src2,$dst" %}
  7564   ins_encode( irem_reg(src1, src2, dst, temp) );
  7565   ins_pipe(sdiv_reg_reg);
  7566 %}
  7568 // Immediate Remainder
  7569 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
  7570   match(Set dst (ModI src1 src2));
  7571   effect( KILL ccr, KILL temp);
  7573   format %{ "SREM   $src1,$src2,$dst" %}
  7574   ins_encode( irem_imm(src1, src2, dst, temp) );
  7575   ins_pipe(sdiv_reg_imm);
  7576 %}
  7578 // Register Long Remainder
  7579 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7580   effect(DEF dst, USE src1, USE src2);
  7581   size(4);
  7582   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7583   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7584   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7585   ins_pipe(divL_reg_reg);
  7586 %}
  7588 // Register Long Division
  7589 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7590   effect(DEF dst, USE src1, USE src2);
  7591   size(4);
  7592   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7593   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7594   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7595   ins_pipe(divL_reg_imm);
  7596 %}
  7598 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7599   effect(DEF dst, USE src1, USE src2);
  7600   size(4);
  7601   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7602   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7603   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7604   ins_pipe(mulL_reg_reg);
  7605 %}
  7607 // Immediate Multiplication
  7608 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7609   effect(DEF dst, USE src1, USE src2);
  7610   size(4);
  7611   format %{ "MULX   $src1,$src2,$dst" %}
  7612   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7613   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7614   ins_pipe(mulL_reg_imm);
  7615 %}
  7617 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7618   effect(DEF dst, USE src1, USE src2);
  7619   size(4);
  7620   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7621   opcode(Assembler::sub_op3, Assembler::arith_op);
  7622   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7623   ins_pipe(ialu_reg_reg);
  7624 %}
  7626 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  7627   effect(DEF dst, USE src1, USE src2);
  7628   size(4);
  7629   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7630   opcode(Assembler::sub_op3, Assembler::arith_op);
  7631   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7632   ins_pipe(ialu_reg_reg);
  7633 %}
  7635 // Register Long Remainder
  7636 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7637   match(Set dst (ModL src1 src2));
  7638   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7639   expand %{
  7640     iRegL tmp1;
  7641     iRegL tmp2;
  7642     divL_reg_reg_1(tmp1, src1, src2);
  7643     mulL_reg_reg_1(tmp2, tmp1, src2);
  7644     subL_reg_reg_1(dst,  src1, tmp2);
  7645   %}
  7646 %}
  7648 // Register Long Remainder
  7649 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7650   match(Set dst (ModL src1 src2));
  7651   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7652   expand %{
  7653     iRegL tmp1;
  7654     iRegL tmp2;
  7655     divL_reg_imm13_1(tmp1, src1, src2);
  7656     mulL_reg_imm13_1(tmp2, tmp1, src2);
  7657     subL_reg_reg_2  (dst,  src1, tmp2);
  7658   %}
  7659 %}
  7661 // Integer Shift Instructions
  7662 // Register Shift Left
  7663 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7664   match(Set dst (LShiftI src1 src2));
  7666   size(4);
  7667   format %{ "SLL    $src1,$src2,$dst" %}
  7668   opcode(Assembler::sll_op3, Assembler::arith_op);
  7669   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7670   ins_pipe(ialu_reg_reg);
  7671 %}
  7673 // Register Shift Left Immediate
  7674 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7675   match(Set dst (LShiftI src1 src2));
  7677   size(4);
  7678   format %{ "SLL    $src1,$src2,$dst" %}
  7679   opcode(Assembler::sll_op3, Assembler::arith_op);
  7680   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7681   ins_pipe(ialu_reg_imm);
  7682 %}
  7684 // Register Shift Left
  7685 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7686   match(Set dst (LShiftL src1 src2));
  7688   size(4);
  7689   format %{ "SLLX   $src1,$src2,$dst" %}
  7690   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7691   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7692   ins_pipe(ialu_reg_reg);
  7693 %}
  7695 // Register Shift Left Immediate
  7696 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7697   match(Set dst (LShiftL src1 src2));
  7699   size(4);
  7700   format %{ "SLLX   $src1,$src2,$dst" %}
  7701   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7702   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7703   ins_pipe(ialu_reg_imm);
  7704 %}
  7706 // Register Arithmetic Shift Right
  7707 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7708   match(Set dst (RShiftI src1 src2));
  7709   size(4);
  7710   format %{ "SRA    $src1,$src2,$dst" %}
  7711   opcode(Assembler::sra_op3, Assembler::arith_op);
  7712   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7713   ins_pipe(ialu_reg_reg);
  7714 %}
  7716 // Register Arithmetic Shift Right Immediate
  7717 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7718   match(Set dst (RShiftI src1 src2));
  7720   size(4);
  7721   format %{ "SRA    $src1,$src2,$dst" %}
  7722   opcode(Assembler::sra_op3, Assembler::arith_op);
  7723   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7724   ins_pipe(ialu_reg_imm);
  7725 %}
  7727 // Register Shift Right Arithmatic Long
  7728 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7729   match(Set dst (RShiftL src1 src2));
  7731   size(4);
  7732   format %{ "SRAX   $src1,$src2,$dst" %}
  7733   opcode(Assembler::srax_op3, Assembler::arith_op);
  7734   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7735   ins_pipe(ialu_reg_reg);
  7736 %}
  7738 // Register Shift Left Immediate
  7739 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7740   match(Set dst (RShiftL src1 src2));
  7742   size(4);
  7743   format %{ "SRAX   $src1,$src2,$dst" %}
  7744   opcode(Assembler::srax_op3, Assembler::arith_op);
  7745   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7746   ins_pipe(ialu_reg_imm);
  7747 %}
  7749 // Register Shift Right
  7750 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7751   match(Set dst (URShiftI src1 src2));
  7753   size(4);
  7754   format %{ "SRL    $src1,$src2,$dst" %}
  7755   opcode(Assembler::srl_op3, Assembler::arith_op);
  7756   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7757   ins_pipe(ialu_reg_reg);
  7758 %}
  7760 // Register Shift Right Immediate
  7761 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7762   match(Set dst (URShiftI src1 src2));
  7764   size(4);
  7765   format %{ "SRL    $src1,$src2,$dst" %}
  7766   opcode(Assembler::srl_op3, Assembler::arith_op);
  7767   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7768   ins_pipe(ialu_reg_imm);
  7769 %}
  7771 // Register Shift Right
  7772 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7773   match(Set dst (URShiftL src1 src2));
  7775   size(4);
  7776   format %{ "SRLX   $src1,$src2,$dst" %}
  7777   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7778   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7779   ins_pipe(ialu_reg_reg);
  7780 %}
  7782 // Register Shift Right Immediate
  7783 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7784   match(Set dst (URShiftL src1 src2));
  7786   size(4);
  7787   format %{ "SRLX   $src1,$src2,$dst" %}
  7788   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7789   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7790   ins_pipe(ialu_reg_imm);
  7791 %}
  7793 // Register Shift Right Immediate with a CastP2X
  7794 #ifdef _LP64
  7795 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
  7796   match(Set dst (URShiftL (CastP2X src1) src2));
  7797   size(4);
  7798   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
  7799   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7800   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7801   ins_pipe(ialu_reg_imm);
  7802 %}
  7803 #else
  7804 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
  7805   match(Set dst (URShiftI (CastP2X src1) src2));
  7806   size(4);
  7807   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
  7808   opcode(Assembler::srl_op3, Assembler::arith_op);
  7809   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7810   ins_pipe(ialu_reg_imm);
  7811 %}
  7812 #endif
  7815 //----------Floating Point Arithmetic Instructions-----------------------------
  7817 //  Add float single precision
  7818 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
  7819   match(Set dst (AddF src1 src2));
  7821   size(4);
  7822   format %{ "FADDS  $src1,$src2,$dst" %}
  7823   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
  7824   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7825   ins_pipe(faddF_reg_reg);
  7826 %}
  7828 //  Add float double precision
  7829 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
  7830   match(Set dst (AddD src1 src2));
  7832   size(4);
  7833   format %{ "FADDD  $src1,$src2,$dst" %}
  7834   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  7835   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7836   ins_pipe(faddD_reg_reg);
  7837 %}
  7839 //  Sub float single precision
  7840 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
  7841   match(Set dst (SubF src1 src2));
  7843   size(4);
  7844   format %{ "FSUBS  $src1,$src2,$dst" %}
  7845   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
  7846   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7847   ins_pipe(faddF_reg_reg);
  7848 %}
  7850 //  Sub float double precision
  7851 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
  7852   match(Set dst (SubD src1 src2));
  7854   size(4);
  7855   format %{ "FSUBD  $src1,$src2,$dst" %}
  7856   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  7857   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7858   ins_pipe(faddD_reg_reg);
  7859 %}
  7861 //  Mul float single precision
  7862 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
  7863   match(Set dst (MulF src1 src2));
  7865   size(4);
  7866   format %{ "FMULS  $src1,$src2,$dst" %}
  7867   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
  7868   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7869   ins_pipe(fmulF_reg_reg);
  7870 %}
  7872 //  Mul float double precision
  7873 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
  7874   match(Set dst (MulD src1 src2));
  7876   size(4);
  7877   format %{ "FMULD  $src1,$src2,$dst" %}
  7878   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  7879   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7880   ins_pipe(fmulD_reg_reg);
  7881 %}
  7883 //  Div float single precision
  7884 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
  7885   match(Set dst (DivF src1 src2));
  7887   size(4);
  7888   format %{ "FDIVS  $src1,$src2,$dst" %}
  7889   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
  7890   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7891   ins_pipe(fdivF_reg_reg);
  7892 %}
  7894 //  Div float double precision
  7895 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
  7896   match(Set dst (DivD src1 src2));
  7898   size(4);
  7899   format %{ "FDIVD  $src1,$src2,$dst" %}
  7900   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
  7901   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7902   ins_pipe(fdivD_reg_reg);
  7903 %}
  7905 //  Absolute float double precision
  7906 instruct absD_reg(regD dst, regD src) %{
  7907   match(Set dst (AbsD src));
  7909   format %{ "FABSd  $src,$dst" %}
  7910   ins_encode(fabsd(dst, src));
  7911   ins_pipe(faddD_reg);
  7912 %}
  7914 //  Absolute float single precision
  7915 instruct absF_reg(regF dst, regF src) %{
  7916   match(Set dst (AbsF src));
  7918   format %{ "FABSs  $src,$dst" %}
  7919   ins_encode(fabss(dst, src));
  7920   ins_pipe(faddF_reg);
  7921 %}
  7923 instruct negF_reg(regF dst, regF src) %{
  7924   match(Set dst (NegF src));
  7926   size(4);
  7927   format %{ "FNEGs  $src,$dst" %}
  7928   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
  7929   ins_encode(form3_opf_rs2F_rdF(src, dst));
  7930   ins_pipe(faddF_reg);
  7931 %}
  7933 instruct negD_reg(regD dst, regD src) %{
  7934   match(Set dst (NegD src));
  7936   format %{ "FNEGd  $src,$dst" %}
  7937   ins_encode(fnegd(dst, src));
  7938   ins_pipe(faddD_reg);
  7939 %}
  7941 //  Sqrt float double precision
  7942 instruct sqrtF_reg_reg(regF dst, regF src) %{
  7943   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
  7945   size(4);
  7946   format %{ "FSQRTS $src,$dst" %}
  7947   ins_encode(fsqrts(dst, src));
  7948   ins_pipe(fdivF_reg_reg);
  7949 %}
  7951 //  Sqrt float double precision
  7952 instruct sqrtD_reg_reg(regD dst, regD src) %{
  7953   match(Set dst (SqrtD src));
  7955   size(4);
  7956   format %{ "FSQRTD $src,$dst" %}
  7957   ins_encode(fsqrtd(dst, src));
  7958   ins_pipe(fdivD_reg_reg);
  7959 %}
  7961 //----------Logical Instructions-----------------------------------------------
  7962 // And Instructions
  7963 // Register And
  7964 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7965   match(Set dst (AndI src1 src2));
  7967   size(4);
  7968   format %{ "AND    $src1,$src2,$dst" %}
  7969   opcode(Assembler::and_op3, Assembler::arith_op);
  7970   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7971   ins_pipe(ialu_reg_reg);
  7972 %}
  7974 // Immediate And
  7975 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7976   match(Set dst (AndI src1 src2));
  7978   size(4);
  7979   format %{ "AND    $src1,$src2,$dst" %}
  7980   opcode(Assembler::and_op3, Assembler::arith_op);
  7981   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7982   ins_pipe(ialu_reg_imm);
  7983 %}
  7985 // Register And Long
  7986 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7987   match(Set dst (AndL src1 src2));
  7989   ins_cost(DEFAULT_COST);
  7990   size(4);
  7991   format %{ "AND    $src1,$src2,$dst\t! long" %}
  7992   opcode(Assembler::and_op3, Assembler::arith_op);
  7993   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7994   ins_pipe(ialu_reg_reg);
  7995 %}
  7997 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7998   match(Set dst (AndL src1 con));
  8000   ins_cost(DEFAULT_COST);
  8001   size(4);
  8002   format %{ "AND    $src1,$con,$dst\t! long" %}
  8003   opcode(Assembler::and_op3, Assembler::arith_op);
  8004   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8005   ins_pipe(ialu_reg_imm);
  8006 %}
  8008 // Or Instructions
  8009 // Register Or
  8010 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  8011   match(Set dst (OrI src1 src2));
  8013   size(4);
  8014   format %{ "OR     $src1,$src2,$dst" %}
  8015   opcode(Assembler::or_op3, Assembler::arith_op);
  8016   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8017   ins_pipe(ialu_reg_reg);
  8018 %}
  8020 // Immediate Or
  8021 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8022   match(Set dst (OrI src1 src2));
  8024   size(4);
  8025   format %{ "OR     $src1,$src2,$dst" %}
  8026   opcode(Assembler::or_op3, Assembler::arith_op);
  8027   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8028   ins_pipe(ialu_reg_imm);
  8029 %}
  8031 // Register Or Long
  8032 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8033   match(Set dst (OrL src1 src2));
  8035   ins_cost(DEFAULT_COST);
  8036   size(4);
  8037   format %{ "OR     $src1,$src2,$dst\t! long" %}
  8038   opcode(Assembler::or_op3, Assembler::arith_op);
  8039   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8040   ins_pipe(ialu_reg_reg);
  8041 %}
  8043 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8044   match(Set dst (OrL src1 con));
  8045   ins_cost(DEFAULT_COST*2);
  8047   ins_cost(DEFAULT_COST);
  8048   size(4);
  8049   format %{ "OR     $src1,$con,$dst\t! long" %}
  8050   opcode(Assembler::or_op3, Assembler::arith_op);
  8051   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8052   ins_pipe(ialu_reg_imm);
  8053 %}
  8055 #ifndef _LP64
  8057 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
  8058 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
  8059   match(Set dst (OrI src1 (CastP2X src2)));
  8061   size(4);
  8062   format %{ "OR     $src1,$src2,$dst" %}
  8063   opcode(Assembler::or_op3, Assembler::arith_op);
  8064   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8065   ins_pipe(ialu_reg_reg);
  8066 %}
  8068 #else
  8070 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
  8071   match(Set dst (OrL src1 (CastP2X src2)));
  8073   ins_cost(DEFAULT_COST);
  8074   size(4);
  8075   format %{ "OR     $src1,$src2,$dst\t! long" %}
  8076   opcode(Assembler::or_op3, Assembler::arith_op);
  8077   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8078   ins_pipe(ialu_reg_reg);
  8079 %}
  8081 #endif
  8083 // Xor Instructions
  8084 // Register Xor
  8085 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  8086   match(Set dst (XorI src1 src2));
  8088   size(4);
  8089   format %{ "XOR    $src1,$src2,$dst" %}
  8090   opcode(Assembler::xor_op3, Assembler::arith_op);
  8091   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8092   ins_pipe(ialu_reg_reg);
  8093 %}
  8095 // Immediate Xor
  8096 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8097   match(Set dst (XorI src1 src2));
  8099   size(4);
  8100   format %{ "XOR    $src1,$src2,$dst" %}
  8101   opcode(Assembler::xor_op3, Assembler::arith_op);
  8102   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8103   ins_pipe(ialu_reg_imm);
  8104 %}
  8106 // Register Xor Long
  8107 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8108   match(Set dst (XorL src1 src2));
  8110   ins_cost(DEFAULT_COST);
  8111   size(4);
  8112   format %{ "XOR    $src1,$src2,$dst\t! long" %}
  8113   opcode(Assembler::xor_op3, Assembler::arith_op);
  8114   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8115   ins_pipe(ialu_reg_reg);
  8116 %}
  8118 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8119   match(Set dst (XorL src1 con));
  8121   ins_cost(DEFAULT_COST);
  8122   size(4);
  8123   format %{ "XOR    $src1,$con,$dst\t! long" %}
  8124   opcode(Assembler::xor_op3, Assembler::arith_op);
  8125   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8126   ins_pipe(ialu_reg_imm);
  8127 %}
  8129 //----------Convert to Boolean-------------------------------------------------
  8130 // Nice hack for 32-bit tests but doesn't work for
  8131 // 64-bit pointers.
  8132 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
  8133   match(Set dst (Conv2B src));
  8134   effect( KILL ccr );
  8135   ins_cost(DEFAULT_COST*2);
  8136   format %{ "CMP    R_G0,$src\n\t"
  8137             "ADDX   R_G0,0,$dst" %}
  8138   ins_encode( enc_to_bool( src, dst ) );
  8139   ins_pipe(ialu_reg_ialu);
  8140 %}
  8142 #ifndef _LP64
  8143 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
  8144   match(Set dst (Conv2B src));
  8145   effect( KILL ccr );
  8146   ins_cost(DEFAULT_COST*2);
  8147   format %{ "CMP    R_G0,$src\n\t"
  8148             "ADDX   R_G0,0,$dst" %}
  8149   ins_encode( enc_to_bool( src, dst ) );
  8150   ins_pipe(ialu_reg_ialu);
  8151 %}
  8152 #else
  8153 instruct convP2B( iRegI dst, iRegP src ) %{
  8154   match(Set dst (Conv2B src));
  8155   ins_cost(DEFAULT_COST*2);
  8156   format %{ "MOV    $src,$dst\n\t"
  8157             "MOVRNZ $src,1,$dst" %}
  8158   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
  8159   ins_pipe(ialu_clr_and_mover);
  8160 %}
  8161 #endif
  8163 instruct cmpLTMask0( iRegI dst, iRegI src, immI0 zero, flagsReg ccr ) %{
  8164   match(Set dst (CmpLTMask src zero));
  8165   effect(KILL ccr);
  8166   size(4);
  8167   format %{ "SRA    $src,#31,$dst\t# cmpLTMask0" %}
  8168   ins_encode %{
  8169     __ sra($src$$Register, 31, $dst$$Register);
  8170   %}
  8171   ins_pipe(ialu_reg_imm);
  8172 %}
  8174 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
  8175   match(Set dst (CmpLTMask p q));
  8176   effect( KILL ccr );
  8177   ins_cost(DEFAULT_COST*4);
  8178   format %{ "CMP    $p,$q\n\t"
  8179             "MOV    #0,$dst\n\t"
  8180             "BLT,a  .+8\n\t"
  8181             "MOV    #-1,$dst" %}
  8182   ins_encode( enc_ltmask(p,q,dst) );
  8183   ins_pipe(ialu_reg_reg_ialu);
  8184 %}
  8186 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
  8187   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  8188   effect(KILL ccr, TEMP tmp);
  8189   ins_cost(DEFAULT_COST*3);
  8191   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
  8192             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
  8193             "MOVlt  $tmp,$p\t! p' < 0 ? p'+y : p'" %}
  8194   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
  8195   ins_pipe( cadd_cmpltmask );
  8196 %}
  8199 //-----------------------------------------------------------------
  8200 // Direct raw moves between float and general registers using VIS3.
  8202 //  ins_pipe(faddF_reg);
  8203 instruct MoveF2I_reg_reg(iRegI dst, regF src) %{
  8204   predicate(UseVIS >= 3);
  8205   match(Set dst (MoveF2I src));
  8207   format %{ "MOVSTOUW $src,$dst\t! MoveF2I" %}
  8208   ins_encode %{
  8209     __ movstouw($src$$FloatRegister, $dst$$Register);
  8210   %}
  8211   ins_pipe(ialu_reg_reg);
  8212 %}
  8214 instruct MoveI2F_reg_reg(regF dst, iRegI src) %{
  8215   predicate(UseVIS >= 3);
  8216   match(Set dst (MoveI2F src));
  8218   format %{ "MOVWTOS $src,$dst\t! MoveI2F" %}
  8219   ins_encode %{
  8220     __ movwtos($src$$Register, $dst$$FloatRegister);
  8221   %}
  8222   ins_pipe(ialu_reg_reg);
  8223 %}
  8225 instruct MoveD2L_reg_reg(iRegL dst, regD src) %{
  8226   predicate(UseVIS >= 3);
  8227   match(Set dst (MoveD2L src));
  8229   format %{ "MOVDTOX $src,$dst\t! MoveD2L" %}
  8230   ins_encode %{
  8231     __ movdtox(as_DoubleFloatRegister($src$$reg), $dst$$Register);
  8232   %}
  8233   ins_pipe(ialu_reg_reg);
  8234 %}
  8236 instruct MoveL2D_reg_reg(regD dst, iRegL src) %{
  8237   predicate(UseVIS >= 3);
  8238   match(Set dst (MoveL2D src));
  8240   format %{ "MOVXTOD $src,$dst\t! MoveL2D" %}
  8241   ins_encode %{
  8242     __ movxtod($src$$Register, as_DoubleFloatRegister($dst$$reg));
  8243   %}
  8244   ins_pipe(ialu_reg_reg);
  8245 %}
  8248 // Raw moves between float and general registers using stack.
  8250 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
  8251   match(Set dst (MoveF2I src));
  8252   effect(DEF dst, USE src);
  8253   ins_cost(MEMORY_REF_COST);
  8255   size(4);
  8256   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
  8257   opcode(Assembler::lduw_op3);
  8258   ins_encode(simple_form3_mem_reg( src, dst ) );
  8259   ins_pipe(iload_mem);
  8260 %}
  8262 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
  8263   match(Set dst (MoveI2F src));
  8264   effect(DEF dst, USE src);
  8265   ins_cost(MEMORY_REF_COST);
  8267   size(4);
  8268   format %{ "LDF    $src,$dst\t! MoveI2F" %}
  8269   opcode(Assembler::ldf_op3);
  8270   ins_encode(simple_form3_mem_reg(src, dst));
  8271   ins_pipe(floadF_stk);
  8272 %}
  8274 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
  8275   match(Set dst (MoveD2L src));
  8276   effect(DEF dst, USE src);
  8277   ins_cost(MEMORY_REF_COST);
  8279   size(4);
  8280   format %{ "LDX    $src,$dst\t! MoveD2L" %}
  8281   opcode(Assembler::ldx_op3);
  8282   ins_encode(simple_form3_mem_reg( src, dst ) );
  8283   ins_pipe(iload_mem);
  8284 %}
  8286 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
  8287   match(Set dst (MoveL2D src));
  8288   effect(DEF dst, USE src);
  8289   ins_cost(MEMORY_REF_COST);
  8291   size(4);
  8292   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
  8293   opcode(Assembler::lddf_op3);
  8294   ins_encode(simple_form3_mem_reg(src, dst));
  8295   ins_pipe(floadD_stk);
  8296 %}
  8298 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
  8299   match(Set dst (MoveF2I src));
  8300   effect(DEF dst, USE src);
  8301   ins_cost(MEMORY_REF_COST);
  8303   size(4);
  8304   format %{ "STF   $src,$dst\t! MoveF2I" %}
  8305   opcode(Assembler::stf_op3);
  8306   ins_encode(simple_form3_mem_reg(dst, src));
  8307   ins_pipe(fstoreF_stk_reg);
  8308 %}
  8310 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
  8311   match(Set dst (MoveI2F src));
  8312   effect(DEF dst, USE src);
  8313   ins_cost(MEMORY_REF_COST);
  8315   size(4);
  8316   format %{ "STW    $src,$dst\t! MoveI2F" %}
  8317   opcode(Assembler::stw_op3);
  8318   ins_encode(simple_form3_mem_reg( dst, src ) );
  8319   ins_pipe(istore_mem_reg);
  8320 %}
  8322 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
  8323   match(Set dst (MoveD2L src));
  8324   effect(DEF dst, USE src);
  8325   ins_cost(MEMORY_REF_COST);
  8327   size(4);
  8328   format %{ "STDF   $src,$dst\t! MoveD2L" %}
  8329   opcode(Assembler::stdf_op3);
  8330   ins_encode(simple_form3_mem_reg(dst, src));
  8331   ins_pipe(fstoreD_stk_reg);
  8332 %}
  8334 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
  8335   match(Set dst (MoveL2D src));
  8336   effect(DEF dst, USE src);
  8337   ins_cost(MEMORY_REF_COST);
  8339   size(4);
  8340   format %{ "STX    $src,$dst\t! MoveL2D" %}
  8341   opcode(Assembler::stx_op3);
  8342   ins_encode(simple_form3_mem_reg( dst, src ) );
  8343   ins_pipe(istore_mem_reg);
  8344 %}
  8347 //----------Arithmetic Conversion Instructions---------------------------------
  8348 // The conversions operations are all Alpha sorted.  Please keep it that way!
  8350 instruct convD2F_reg(regF dst, regD src) %{
  8351   match(Set dst (ConvD2F src));
  8352   size(4);
  8353   format %{ "FDTOS  $src,$dst" %}
  8354   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
  8355   ins_encode(form3_opf_rs2D_rdF(src, dst));
  8356   ins_pipe(fcvtD2F);
  8357 %}
  8360 // Convert a double to an int in a float register.
  8361 // If the double is a NAN, stuff a zero in instead.
  8362 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
  8363   effect(DEF dst, USE src, KILL fcc0);
  8364   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8365             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8366             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
  8367             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8368             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8369       "skip:" %}
  8370   ins_encode(form_d2i_helper(src,dst));
  8371   ins_pipe(fcvtD2I);
  8372 %}
  8374 instruct convD2I_stk(stackSlotI dst, regD src) %{
  8375   match(Set dst (ConvD2I src));
  8376   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8377   expand %{
  8378     regF tmp;
  8379     convD2I_helper(tmp, src);
  8380     regF_to_stkI(dst, tmp);
  8381   %}
  8382 %}
  8384 instruct convD2I_reg(iRegI dst, regD src) %{
  8385   predicate(UseVIS >= 3);
  8386   match(Set dst (ConvD2I src));
  8387   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8388   expand %{
  8389     regF tmp;
  8390     convD2I_helper(tmp, src);
  8391     MoveF2I_reg_reg(dst, tmp);
  8392   %}
  8393 %}
  8396 // Convert a double to a long in a double register.
  8397 // If the double is a NAN, stuff a zero in instead.
  8398 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
  8399   effect(DEF dst, USE src, KILL fcc0);
  8400   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8401             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8402             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
  8403             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8404             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8405       "skip:" %}
  8406   ins_encode(form_d2l_helper(src,dst));
  8407   ins_pipe(fcvtD2L);
  8408 %}
  8410 instruct convD2L_stk(stackSlotL dst, regD src) %{
  8411   match(Set dst (ConvD2L src));
  8412   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8413   expand %{
  8414     regD tmp;
  8415     convD2L_helper(tmp, src);
  8416     regD_to_stkL(dst, tmp);
  8417   %}
  8418 %}
  8420 instruct convD2L_reg(iRegL dst, regD src) %{
  8421   predicate(UseVIS >= 3);
  8422   match(Set dst (ConvD2L src));
  8423   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8424   expand %{
  8425     regD tmp;
  8426     convD2L_helper(tmp, src);
  8427     MoveD2L_reg_reg(dst, tmp);
  8428   %}
  8429 %}
  8432 instruct convF2D_reg(regD dst, regF src) %{
  8433   match(Set dst (ConvF2D src));
  8434   format %{ "FSTOD  $src,$dst" %}
  8435   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
  8436   ins_encode(form3_opf_rs2F_rdD(src, dst));
  8437   ins_pipe(fcvtF2D);
  8438 %}
  8441 // Convert a float to an int in a float register.
  8442 // If the float is a NAN, stuff a zero in instead.
  8443 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
  8444   effect(DEF dst, USE src, KILL fcc0);
  8445   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8446             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8447             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
  8448             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8449             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8450       "skip:" %}
  8451   ins_encode(form_f2i_helper(src,dst));
  8452   ins_pipe(fcvtF2I);
  8453 %}
  8455 instruct convF2I_stk(stackSlotI dst, regF src) %{
  8456   match(Set dst (ConvF2I src));
  8457   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8458   expand %{
  8459     regF tmp;
  8460     convF2I_helper(tmp, src);
  8461     regF_to_stkI(dst, tmp);
  8462   %}
  8463 %}
  8465 instruct convF2I_reg(iRegI dst, regF src) %{
  8466   predicate(UseVIS >= 3);
  8467   match(Set dst (ConvF2I src));
  8468   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8469   expand %{
  8470     regF tmp;
  8471     convF2I_helper(tmp, src);
  8472     MoveF2I_reg_reg(dst, tmp);
  8473   %}
  8474 %}
  8477 // Convert a float to a long in a float register.
  8478 // If the float is a NAN, stuff a zero in instead.
  8479 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
  8480   effect(DEF dst, USE src, KILL fcc0);
  8481   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8482             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8483             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
  8484             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8485             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8486       "skip:" %}
  8487   ins_encode(form_f2l_helper(src,dst));
  8488   ins_pipe(fcvtF2L);
  8489 %}
  8491 instruct convF2L_stk(stackSlotL dst, regF src) %{
  8492   match(Set dst (ConvF2L src));
  8493   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8494   expand %{
  8495     regD tmp;
  8496     convF2L_helper(tmp, src);
  8497     regD_to_stkL(dst, tmp);
  8498   %}
  8499 %}
  8501 instruct convF2L_reg(iRegL dst, regF src) %{
  8502   predicate(UseVIS >= 3);
  8503   match(Set dst (ConvF2L src));
  8504   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8505   expand %{
  8506     regD tmp;
  8507     convF2L_helper(tmp, src);
  8508     MoveD2L_reg_reg(dst, tmp);
  8509   %}
  8510 %}
  8513 instruct convI2D_helper(regD dst, regF tmp) %{
  8514   effect(USE tmp, DEF dst);
  8515   format %{ "FITOD  $tmp,$dst" %}
  8516   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8517   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
  8518   ins_pipe(fcvtI2D);
  8519 %}
  8521 instruct convI2D_stk(stackSlotI src, regD dst) %{
  8522   match(Set dst (ConvI2D src));
  8523   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8524   expand %{
  8525     regF tmp;
  8526     stkI_to_regF(tmp, src);
  8527     convI2D_helper(dst, tmp);
  8528   %}
  8529 %}
  8531 instruct convI2D_reg(regD_low dst, iRegI src) %{
  8532   predicate(UseVIS >= 3);
  8533   match(Set dst (ConvI2D src));
  8534   expand %{
  8535     regF tmp;
  8536     MoveI2F_reg_reg(tmp, src);
  8537     convI2D_helper(dst, tmp);
  8538   %}
  8539 %}
  8541 instruct convI2D_mem(regD_low dst, memory mem) %{
  8542   match(Set dst (ConvI2D (LoadI mem)));
  8543   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8544   size(8);
  8545   format %{ "LDF    $mem,$dst\n\t"
  8546             "FITOD  $dst,$dst" %}
  8547   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
  8548   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8549   ins_pipe(floadF_mem);
  8550 %}
  8553 instruct convI2F_helper(regF dst, regF tmp) %{
  8554   effect(DEF dst, USE tmp);
  8555   format %{ "FITOS  $tmp,$dst" %}
  8556   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
  8557   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
  8558   ins_pipe(fcvtI2F);
  8559 %}
  8561 instruct convI2F_stk(regF dst, stackSlotI src) %{
  8562   match(Set dst (ConvI2F src));
  8563   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8564   expand %{
  8565     regF tmp;
  8566     stkI_to_regF(tmp,src);
  8567     convI2F_helper(dst, tmp);
  8568   %}
  8569 %}
  8571 instruct convI2F_reg(regF dst, iRegI src) %{
  8572   predicate(UseVIS >= 3);
  8573   match(Set dst (ConvI2F src));
  8574   ins_cost(DEFAULT_COST);
  8575   expand %{
  8576     regF tmp;
  8577     MoveI2F_reg_reg(tmp, src);
  8578     convI2F_helper(dst, tmp);
  8579   %}
  8580 %}
  8582 instruct convI2F_mem( regF dst, memory mem ) %{
  8583   match(Set dst (ConvI2F (LoadI mem)));
  8584   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8585   size(8);
  8586   format %{ "LDF    $mem,$dst\n\t"
  8587             "FITOS  $dst,$dst" %}
  8588   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
  8589   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8590   ins_pipe(floadF_mem);
  8591 %}
  8594 instruct convI2L_reg(iRegL dst, iRegI src) %{
  8595   match(Set dst (ConvI2L src));
  8596   size(4);
  8597   format %{ "SRA    $src,0,$dst\t! int->long" %}
  8598   opcode(Assembler::sra_op3, Assembler::arith_op);
  8599   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8600   ins_pipe(ialu_reg_reg);
  8601 %}
  8603 // Zero-extend convert int to long
  8604 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
  8605   match(Set dst (AndL (ConvI2L src) mask) );
  8606   size(4);
  8607   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
  8608   opcode(Assembler::srl_op3, Assembler::arith_op);
  8609   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8610   ins_pipe(ialu_reg_reg);
  8611 %}
  8613 // Zero-extend long
  8614 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
  8615   match(Set dst (AndL src mask) );
  8616   size(4);
  8617   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
  8618   opcode(Assembler::srl_op3, Assembler::arith_op);
  8619   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8620   ins_pipe(ialu_reg_reg);
  8621 %}
  8624 //-----------
  8625 // Long to Double conversion using V8 opcodes.
  8626 // Still useful because cheetah traps and becomes
  8627 // amazingly slow for some common numbers.
  8629 // Magic constant, 0x43300000
  8630 instruct loadConI_x43300000(iRegI dst) %{
  8631   effect(DEF dst);
  8632   size(4);
  8633   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
  8634   ins_encode(SetHi22(0x43300000, dst));
  8635   ins_pipe(ialu_none);
  8636 %}
  8638 // Magic constant, 0x41f00000
  8639 instruct loadConI_x41f00000(iRegI dst) %{
  8640   effect(DEF dst);
  8641   size(4);
  8642   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
  8643   ins_encode(SetHi22(0x41f00000, dst));
  8644   ins_pipe(ialu_none);
  8645 %}
  8647 // Construct a double from two float halves
  8648 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
  8649   effect(DEF dst, USE src1, USE src2);
  8650   size(8);
  8651   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
  8652             "FMOVS  $src2.lo,$dst.lo" %}
  8653   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
  8654   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
  8655   ins_pipe(faddD_reg_reg);
  8656 %}
  8658 // Convert integer in high half of a double register (in the lower half of
  8659 // the double register file) to double
  8660 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
  8661   effect(DEF dst, USE src);
  8662   size(4);
  8663   format %{ "FITOD  $src,$dst" %}
  8664   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8665   ins_encode(form3_opf_rs2D_rdD(src, dst));
  8666   ins_pipe(fcvtLHi2D);
  8667 %}
  8669 // Add float double precision
  8670 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
  8671   effect(DEF dst, USE src1, USE src2);
  8672   size(4);
  8673   format %{ "FADDD  $src1,$src2,$dst" %}
  8674   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  8675   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8676   ins_pipe(faddD_reg_reg);
  8677 %}
  8679 // Sub float double precision
  8680 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
  8681   effect(DEF dst, USE src1, USE src2);
  8682   size(4);
  8683   format %{ "FSUBD  $src1,$src2,$dst" %}
  8684   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  8685   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8686   ins_pipe(faddD_reg_reg);
  8687 %}
  8689 // Mul float double precision
  8690 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
  8691   effect(DEF dst, USE src1, USE src2);
  8692   size(4);
  8693   format %{ "FMULD  $src1,$src2,$dst" %}
  8694   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  8695   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8696   ins_pipe(fmulD_reg_reg);
  8697 %}
  8699 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
  8700   match(Set dst (ConvL2D src));
  8701   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
  8703   expand %{
  8704     regD_low   tmpsrc;
  8705     iRegI      ix43300000;
  8706     iRegI      ix41f00000;
  8707     stackSlotL lx43300000;
  8708     stackSlotL lx41f00000;
  8709     regD_low   dx43300000;
  8710     regD       dx41f00000;
  8711     regD       tmp1;
  8712     regD_low   tmp2;
  8713     regD       tmp3;
  8714     regD       tmp4;
  8716     stkL_to_regD(tmpsrc, src);
  8718     loadConI_x43300000(ix43300000);
  8719     loadConI_x41f00000(ix41f00000);
  8720     regI_to_stkLHi(lx43300000, ix43300000);
  8721     regI_to_stkLHi(lx41f00000, ix41f00000);
  8722     stkL_to_regD(dx43300000, lx43300000);
  8723     stkL_to_regD(dx41f00000, lx41f00000);
  8725     convI2D_regDHi_regD(tmp1, tmpsrc);
  8726     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
  8727     subD_regD_regD(tmp3, tmp2, dx43300000);
  8728     mulD_regD_regD(tmp4, tmp1, dx41f00000);
  8729     addD_regD_regD(dst, tmp3, tmp4);
  8730   %}
  8731 %}
  8733 // Long to Double conversion using fast fxtof
  8734 instruct convL2D_helper(regD dst, regD tmp) %{
  8735   effect(DEF dst, USE tmp);
  8736   size(4);
  8737   format %{ "FXTOD  $tmp,$dst" %}
  8738   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
  8739   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
  8740   ins_pipe(fcvtL2D);
  8741 %}
  8743 instruct convL2D_stk_fast_fxtof(regD dst, stackSlotL src) %{
  8744   predicate(VM_Version::has_fast_fxtof());
  8745   match(Set dst (ConvL2D src));
  8746   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
  8747   expand %{
  8748     regD tmp;
  8749     stkL_to_regD(tmp, src);
  8750     convL2D_helper(dst, tmp);
  8751   %}
  8752 %}
  8754 instruct convL2D_reg(regD dst, iRegL src) %{
  8755   predicate(UseVIS >= 3);
  8756   match(Set dst (ConvL2D src));
  8757   expand %{
  8758     regD tmp;
  8759     MoveL2D_reg_reg(tmp, src);
  8760     convL2D_helper(dst, tmp);
  8761   %}
  8762 %}
  8764 // Long to Float conversion using fast fxtof
  8765 instruct convL2F_helper(regF dst, regD tmp) %{
  8766   effect(DEF dst, USE tmp);
  8767   size(4);
  8768   format %{ "FXTOS  $tmp,$dst" %}
  8769   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
  8770   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
  8771   ins_pipe(fcvtL2F);
  8772 %}
  8774 instruct convL2F_stk_fast_fxtof(regF dst, stackSlotL src) %{
  8775   match(Set dst (ConvL2F src));
  8776   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8777   expand %{
  8778     regD tmp;
  8779     stkL_to_regD(tmp, src);
  8780     convL2F_helper(dst, tmp);
  8781   %}
  8782 %}
  8784 instruct convL2F_reg(regF dst, iRegL src) %{
  8785   predicate(UseVIS >= 3);
  8786   match(Set dst (ConvL2F src));
  8787   ins_cost(DEFAULT_COST);
  8788   expand %{
  8789     regD tmp;
  8790     MoveL2D_reg_reg(tmp, src);
  8791     convL2F_helper(dst, tmp);
  8792   %}
  8793 %}
  8795 //-----------
  8797 instruct convL2I_reg(iRegI dst, iRegL src) %{
  8798   match(Set dst (ConvL2I src));
  8799 #ifndef _LP64
  8800   format %{ "MOV    $src.lo,$dst\t! long->int" %}
  8801   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
  8802   ins_pipe(ialu_move_reg_I_to_L);
  8803 #else
  8804   size(4);
  8805   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
  8806   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
  8807   ins_pipe(ialu_reg);
  8808 #endif
  8809 %}
  8811 // Register Shift Right Immediate
  8812 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
  8813   match(Set dst (ConvL2I (RShiftL src cnt)));
  8815   size(4);
  8816   format %{ "SRAX   $src,$cnt,$dst" %}
  8817   opcode(Assembler::srax_op3, Assembler::arith_op);
  8818   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
  8819   ins_pipe(ialu_reg_imm);
  8820 %}
  8822 // Replicate scalar to packed byte values in Double register
  8823 instruct Repl8B_reg_helper(iRegL dst, iRegI src) %{
  8824   effect(DEF dst, USE src);
  8825   format %{ "SLLX  $src,56,$dst\n\t"
  8826             "SRLX  $dst, 8,O7\n\t"
  8827             "OR    $dst,O7,$dst\n\t"
  8828             "SRLX  $dst,16,O7\n\t"
  8829             "OR    $dst,O7,$dst\n\t"
  8830             "SRLX  $dst,32,O7\n\t"
  8831             "OR    $dst,O7,$dst\t! replicate8B" %}
  8832   ins_encode( enc_repl8b(src, dst));
  8833   ins_pipe(ialu_reg);
  8834 %}
  8836 // Replicate scalar to packed byte values in Double register
  8837 instruct Repl8B_reg(stackSlotD dst, iRegI src) %{
  8838   match(Set dst (Replicate8B src));
  8839   expand %{
  8840     iRegL tmp;
  8841     Repl8B_reg_helper(tmp, src);
  8842     regL_to_stkD(dst, tmp);
  8843   %}
  8844 %}
  8846 // Replicate scalar constant to packed byte values in Double register
  8847 instruct Repl8B_immI(regD dst, immI13 con, o7RegI tmp) %{
  8848   match(Set dst (Replicate8B con));
  8849   effect(KILL tmp);
  8850   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl8B($con)" %}
  8851   ins_encode %{
  8852     // XXX This is a quick fix for 6833573.
  8853     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 8, 1)), $dst$$FloatRegister);
  8854     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 8, 1)), $tmp$$Register);
  8855     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  8856   %}
  8857   ins_pipe(loadConFD);
  8858 %}
  8860 // Replicate scalar to packed char values into stack slot
  8861 instruct Repl4C_reg_helper(iRegL dst, iRegI src) %{
  8862   effect(DEF dst, USE src);
  8863   format %{ "SLLX  $src,48,$dst\n\t"
  8864             "SRLX  $dst,16,O7\n\t"
  8865             "OR    $dst,O7,$dst\n\t"
  8866             "SRLX  $dst,32,O7\n\t"
  8867             "OR    $dst,O7,$dst\t! replicate4C" %}
  8868   ins_encode( enc_repl4s(src, dst) );
  8869   ins_pipe(ialu_reg);
  8870 %}
  8872 // Replicate scalar to packed char values into stack slot
  8873 instruct Repl4C_reg(stackSlotD dst, iRegI src) %{
  8874   match(Set dst (Replicate4C src));
  8875   expand %{
  8876     iRegL tmp;
  8877     Repl4C_reg_helper(tmp, src);
  8878     regL_to_stkD(dst, tmp);
  8879   %}
  8880 %}
  8882 // Replicate scalar constant to packed char values in Double register
  8883 instruct Repl4C_immI(regD dst, immI con, o7RegI tmp) %{
  8884   match(Set dst (Replicate4C con));
  8885   effect(KILL tmp);
  8886   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4C($con)" %}
  8887   ins_encode %{
  8888     // XXX This is a quick fix for 6833573.
  8889     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
  8890     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
  8891     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  8892   %}
  8893   ins_pipe(loadConFD);
  8894 %}
  8896 // Replicate scalar to packed short values into stack slot
  8897 instruct Repl4S_reg_helper(iRegL dst, iRegI src) %{
  8898   effect(DEF dst, USE src);
  8899   format %{ "SLLX  $src,48,$dst\n\t"
  8900             "SRLX  $dst,16,O7\n\t"
  8901             "OR    $dst,O7,$dst\n\t"
  8902             "SRLX  $dst,32,O7\n\t"
  8903             "OR    $dst,O7,$dst\t! replicate4S" %}
  8904   ins_encode( enc_repl4s(src, dst) );
  8905   ins_pipe(ialu_reg);
  8906 %}
  8908 // Replicate scalar to packed short values into stack slot
  8909 instruct Repl4S_reg(stackSlotD dst, iRegI src) %{
  8910   match(Set dst (Replicate4S src));
  8911   expand %{
  8912     iRegL tmp;
  8913     Repl4S_reg_helper(tmp, src);
  8914     regL_to_stkD(dst, tmp);
  8915   %}
  8916 %}
  8918 // Replicate scalar constant to packed short values in Double register
  8919 instruct Repl4S_immI(regD dst, immI con, o7RegI tmp) %{
  8920   match(Set dst (Replicate4S con));
  8921   effect(KILL tmp);
  8922   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4S($con)" %}
  8923   ins_encode %{
  8924     // XXX This is a quick fix for 6833573.
  8925     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
  8926     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
  8927     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  8928   %}
  8929   ins_pipe(loadConFD);
  8930 %}
  8932 // Replicate scalar to packed int values in Double register
  8933 instruct Repl2I_reg_helper(iRegL dst, iRegI src) %{
  8934   effect(DEF dst, USE src);
  8935   format %{ "SLLX  $src,32,$dst\n\t"
  8936             "SRLX  $dst,32,O7\n\t"
  8937             "OR    $dst,O7,$dst\t! replicate2I" %}
  8938   ins_encode( enc_repl2i(src, dst));
  8939   ins_pipe(ialu_reg);
  8940 %}
  8942 // Replicate scalar to packed int values in Double register
  8943 instruct Repl2I_reg(stackSlotD dst, iRegI src) %{
  8944   match(Set dst (Replicate2I src));
  8945   expand %{
  8946     iRegL tmp;
  8947     Repl2I_reg_helper(tmp, src);
  8948     regL_to_stkD(dst, tmp);
  8949   %}
  8950 %}
  8952 // Replicate scalar zero constant to packed int values in Double register
  8953 instruct Repl2I_immI(regD dst, immI con, o7RegI tmp) %{
  8954   match(Set dst (Replicate2I con));
  8955   effect(KILL tmp);
  8956   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2I($con)" %}
  8957   ins_encode %{
  8958     // XXX This is a quick fix for 6833573.
  8959     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 2, 4)), $dst$$FloatRegister);
  8960     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 2, 4)), $tmp$$Register);
  8961     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  8962   %}
  8963   ins_pipe(loadConFD);
  8964 %}
  8966 //----------Control Flow Instructions------------------------------------------
  8967 // Compare Instructions
  8968 // Compare Integers
  8969 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
  8970   match(Set icc (CmpI op1 op2));
  8971   effect( DEF icc, USE op1, USE op2 );
  8973   size(4);
  8974   format %{ "CMP    $op1,$op2" %}
  8975   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8976   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8977   ins_pipe(ialu_cconly_reg_reg);
  8978 %}
  8980 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
  8981   match(Set icc (CmpU op1 op2));
  8983   size(4);
  8984   format %{ "CMP    $op1,$op2\t! unsigned" %}
  8985   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8986   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8987   ins_pipe(ialu_cconly_reg_reg);
  8988 %}
  8990 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
  8991   match(Set icc (CmpI op1 op2));
  8992   effect( DEF icc, USE op1 );
  8994   size(4);
  8995   format %{ "CMP    $op1,$op2" %}
  8996   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8997   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8998   ins_pipe(ialu_cconly_reg_imm);
  8999 %}
  9001 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
  9002   match(Set icc (CmpI (AndI op1 op2) zero));
  9004   size(4);
  9005   format %{ "BTST   $op2,$op1" %}
  9006   opcode(Assembler::andcc_op3, Assembler::arith_op);
  9007   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9008   ins_pipe(ialu_cconly_reg_reg_zero);
  9009 %}
  9011 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
  9012   match(Set icc (CmpI (AndI op1 op2) zero));
  9014   size(4);
  9015   format %{ "BTST   $op2,$op1" %}
  9016   opcode(Assembler::andcc_op3, Assembler::arith_op);
  9017   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  9018   ins_pipe(ialu_cconly_reg_imm_zero);
  9019 %}
  9021 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
  9022   match(Set xcc (CmpL op1 op2));
  9023   effect( DEF xcc, USE op1, USE op2 );
  9025   size(4);
  9026   format %{ "CMP    $op1,$op2\t\t! long" %}
  9027   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9028   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9029   ins_pipe(ialu_cconly_reg_reg);
  9030 %}
  9032 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
  9033   match(Set xcc (CmpL op1 con));
  9034   effect( DEF xcc, USE op1, USE con );
  9036   size(4);
  9037   format %{ "CMP    $op1,$con\t\t! long" %}
  9038   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9039   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  9040   ins_pipe(ialu_cconly_reg_reg);
  9041 %}
  9043 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
  9044   match(Set xcc (CmpL (AndL op1 op2) zero));
  9045   effect( DEF xcc, USE op1, USE op2 );
  9047   size(4);
  9048   format %{ "BTST   $op1,$op2\t\t! long" %}
  9049   opcode(Assembler::andcc_op3, Assembler::arith_op);
  9050   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9051   ins_pipe(ialu_cconly_reg_reg);
  9052 %}
  9054 // useful for checking the alignment of a pointer:
  9055 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
  9056   match(Set xcc (CmpL (AndL op1 con) zero));
  9057   effect( DEF xcc, USE op1, USE con );
  9059   size(4);
  9060   format %{ "BTST   $op1,$con\t\t! long" %}
  9061   opcode(Assembler::andcc_op3, Assembler::arith_op);
  9062   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  9063   ins_pipe(ialu_cconly_reg_reg);
  9064 %}
  9066 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
  9067   match(Set icc (CmpU op1 op2));
  9069   size(4);
  9070   format %{ "CMP    $op1,$op2\t! unsigned" %}
  9071   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9072   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  9073   ins_pipe(ialu_cconly_reg_imm);
  9074 %}
  9076 // Compare Pointers
  9077 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
  9078   match(Set pcc (CmpP op1 op2));
  9080   size(4);
  9081   format %{ "CMP    $op1,$op2\t! ptr" %}
  9082   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9083   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9084   ins_pipe(ialu_cconly_reg_reg);
  9085 %}
  9087 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
  9088   match(Set pcc (CmpP op1 op2));
  9090   size(4);
  9091   format %{ "CMP    $op1,$op2\t! ptr" %}
  9092   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9093   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  9094   ins_pipe(ialu_cconly_reg_imm);
  9095 %}
  9097 // Compare Narrow oops
  9098 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
  9099   match(Set icc (CmpN op1 op2));
  9101   size(4);
  9102   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  9103   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9104   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9105   ins_pipe(ialu_cconly_reg_reg);
  9106 %}
  9108 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
  9109   match(Set icc (CmpN op1 op2));
  9111   size(4);
  9112   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  9113   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9114   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  9115   ins_pipe(ialu_cconly_reg_imm);
  9116 %}
  9118 //----------Max and Min--------------------------------------------------------
  9119 // Min Instructions
  9120 // Conditional move for min
  9121 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
  9122   effect( USE_DEF op2, USE op1, USE icc );
  9124   size(4);
  9125   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
  9126   opcode(Assembler::less);
  9127   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  9128   ins_pipe(ialu_reg_flags);
  9129 %}
  9131 // Min Register with Register.
  9132 instruct minI_eReg(iRegI op1, iRegI op2) %{
  9133   match(Set op2 (MinI op1 op2));
  9134   ins_cost(DEFAULT_COST*2);
  9135   expand %{
  9136     flagsReg icc;
  9137     compI_iReg(icc,op1,op2);
  9138     cmovI_reg_lt(op2,op1,icc);
  9139   %}
  9140 %}
  9142 // Max Instructions
  9143 // Conditional move for max
  9144 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
  9145   effect( USE_DEF op2, USE op1, USE icc );
  9146   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
  9147   opcode(Assembler::greater);
  9148   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  9149   ins_pipe(ialu_reg_flags);
  9150 %}
  9152 // Max Register with Register
  9153 instruct maxI_eReg(iRegI op1, iRegI op2) %{
  9154   match(Set op2 (MaxI op1 op2));
  9155   ins_cost(DEFAULT_COST*2);
  9156   expand %{
  9157     flagsReg icc;
  9158     compI_iReg(icc,op1,op2);
  9159     cmovI_reg_gt(op2,op1,icc);
  9160   %}
  9161 %}
  9164 //----------Float Compares----------------------------------------------------
  9165 // Compare floating, generate condition code
  9166 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
  9167   match(Set fcc (CmpF src1 src2));
  9169   size(4);
  9170   format %{ "FCMPs  $fcc,$src1,$src2" %}
  9171   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
  9172   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
  9173   ins_pipe(faddF_fcc_reg_reg_zero);
  9174 %}
  9176 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
  9177   match(Set fcc (CmpD src1 src2));
  9179   size(4);
  9180   format %{ "FCMPd  $fcc,$src1,$src2" %}
  9181   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
  9182   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
  9183   ins_pipe(faddD_fcc_reg_reg_zero);
  9184 %}
  9187 // Compare floating, generate -1,0,1
  9188 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
  9189   match(Set dst (CmpF3 src1 src2));
  9190   effect(KILL fcc0);
  9191   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  9192   format %{ "fcmpl  $dst,$src1,$src2" %}
  9193   // Primary = float
  9194   opcode( true );
  9195   ins_encode( floating_cmp( dst, src1, src2 ) );
  9196   ins_pipe( floating_cmp );
  9197 %}
  9199 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
  9200   match(Set dst (CmpD3 src1 src2));
  9201   effect(KILL fcc0);
  9202   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  9203   format %{ "dcmpl  $dst,$src1,$src2" %}
  9204   // Primary = double (not float)
  9205   opcode( false );
  9206   ins_encode( floating_cmp( dst, src1, src2 ) );
  9207   ins_pipe( floating_cmp );
  9208 %}
  9210 //----------Branches---------------------------------------------------------
  9211 // Jump
  9212 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
  9213 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
  9214   match(Jump switch_val);
  9216   ins_cost(350);
  9218   format %{  "ADD    $constanttablebase, $constantoffset, O7\n\t"
  9219              "LD     [O7 + $switch_val], O7\n\t"
  9220              "JUMP   O7"
  9221          %}
  9222   ins_encode %{
  9223     // Calculate table address into a register.
  9224     Register table_reg;
  9225     Register label_reg = O7;
  9226     if (constant_offset() == 0) {
  9227       table_reg = $constanttablebase;
  9228     } else {
  9229       table_reg = O7;
  9230       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset, O7);
  9231       __ add($constanttablebase, con_offset, table_reg);
  9234     // Jump to base address + switch value
  9235     __ ld_ptr(table_reg, $switch_val$$Register, label_reg);
  9236     __ jmp(label_reg, G0);
  9237     __ delayed()->nop();
  9238   %}
  9239   ins_pipe(ialu_reg_reg);
  9240 %}
  9242 // Direct Branch.  Use V8 version with longer range.
  9243 instruct branch(label labl) %{
  9244   match(Goto);
  9245   effect(USE labl);
  9247   size(8);
  9248   ins_cost(BRANCH_COST);
  9249   format %{ "BA     $labl" %}
  9250   ins_encode %{
  9251     Label* L = $labl$$label;
  9252     __ ba(*L);
  9253     __ delayed()->nop();
  9254   %}
  9255   ins_pipe(br);
  9256 %}
  9258 // Direct Branch, short with no delay slot
  9259 instruct branch_short(label labl) %{
  9260   match(Goto);
  9261   predicate(UseCBCond);
  9262   effect(USE labl);
  9264   size(4);
  9265   ins_cost(BRANCH_COST);
  9266   format %{ "BA     $labl\t! short branch" %}
  9267   ins_encode %{ 
  9268     Label* L = $labl$$label;
  9269     assert(__ use_cbcond(*L), "back to back cbcond");
  9270     __ ba_short(*L);
  9271   %}
  9272   ins_short_branch(1);
  9273   ins_avoid_back_to_back(1);
  9274   ins_pipe(cbcond_reg_imm);
  9275 %}
  9277 // Conditional Direct Branch
  9278 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
  9279   match(If cmp icc);
  9280   effect(USE labl);
  9282   size(8);
  9283   ins_cost(BRANCH_COST);
  9284   format %{ "BP$cmp   $icc,$labl" %}
  9285   // Prim = bits 24-22, Secnd = bits 31-30
  9286   ins_encode( enc_bp( labl, cmp, icc ) );
  9287   ins_pipe(br_cc);
  9288 %}
  9290 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9291   match(If cmp icc);
  9292   effect(USE labl);
  9294   ins_cost(BRANCH_COST);
  9295   format %{ "BP$cmp  $icc,$labl" %}
  9296   // Prim = bits 24-22, Secnd = bits 31-30
  9297   ins_encode( enc_bp( labl, cmp, icc ) );
  9298   ins_pipe(br_cc);
  9299 %}
  9301 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
  9302   match(If cmp pcc);
  9303   effect(USE labl);
  9305   size(8);
  9306   ins_cost(BRANCH_COST);
  9307   format %{ "BP$cmp  $pcc,$labl" %}
  9308   ins_encode %{
  9309     Label* L = $labl$$label;
  9310     Assembler::Predict predict_taken =
  9311       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9313     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9314     __ delayed()->nop();
  9315   %}
  9316   ins_pipe(br_cc);
  9317 %}
  9319 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
  9320   match(If cmp fcc);
  9321   effect(USE labl);
  9323   size(8);
  9324   ins_cost(BRANCH_COST);
  9325   format %{ "FBP$cmp $fcc,$labl" %}
  9326   ins_encode %{
  9327     Label* L = $labl$$label;
  9328     Assembler::Predict predict_taken =
  9329       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9331     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($fcc$$reg), predict_taken, *L);
  9332     __ delayed()->nop();
  9333   %}
  9334   ins_pipe(br_fcc);
  9335 %}
  9337 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
  9338   match(CountedLoopEnd cmp icc);
  9339   effect(USE labl);
  9341   size(8);
  9342   ins_cost(BRANCH_COST);
  9343   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
  9344   // Prim = bits 24-22, Secnd = bits 31-30
  9345   ins_encode( enc_bp( labl, cmp, icc ) );
  9346   ins_pipe(br_cc);
  9347 %}
  9349 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9350   match(CountedLoopEnd cmp icc);
  9351   effect(USE labl);
  9353   size(8);
  9354   ins_cost(BRANCH_COST);
  9355   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
  9356   // Prim = bits 24-22, Secnd = bits 31-30
  9357   ins_encode( enc_bp( labl, cmp, icc ) );
  9358   ins_pipe(br_cc);
  9359 %}
  9361 // Compare and branch instructions
  9362 instruct cmpI_reg_branch(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9363   match(If cmp (CmpI op1 op2));
  9364   effect(USE labl, KILL icc);
  9366   size(12);
  9367   ins_cost(BRANCH_COST);
  9368   format %{ "CMP    $op1,$op2\t! int\n\t"
  9369             "BP$cmp   $labl" %}
  9370   ins_encode %{
  9371     Label* L = $labl$$label;
  9372     Assembler::Predict predict_taken =
  9373       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9374     __ cmp($op1$$Register, $op2$$Register);
  9375     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9376     __ delayed()->nop();
  9377   %}
  9378   ins_pipe(cmp_br_reg_reg);
  9379 %}
  9381 instruct cmpI_imm_branch(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9382   match(If cmp (CmpI op1 op2));
  9383   effect(USE labl, KILL icc);
  9385   size(12);
  9386   ins_cost(BRANCH_COST);
  9387   format %{ "CMP    $op1,$op2\t! int\n\t"
  9388             "BP$cmp   $labl" %}
  9389   ins_encode %{
  9390     Label* L = $labl$$label;
  9391     Assembler::Predict predict_taken =
  9392       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9393     __ cmp($op1$$Register, $op2$$constant);
  9394     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9395     __ delayed()->nop();
  9396   %}
  9397   ins_pipe(cmp_br_reg_imm);
  9398 %}
  9400 instruct cmpU_reg_branch(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
  9401   match(If cmp (CmpU op1 op2));
  9402   effect(USE labl, KILL icc);
  9404   size(12);
  9405   ins_cost(BRANCH_COST);
  9406   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
  9407             "BP$cmp  $labl" %}
  9408   ins_encode %{
  9409     Label* L = $labl$$label;
  9410     Assembler::Predict predict_taken =
  9411       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9412     __ cmp($op1$$Register, $op2$$Register);
  9413     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9414     __ delayed()->nop();
  9415   %}
  9416   ins_pipe(cmp_br_reg_reg);
  9417 %}
  9419 instruct cmpU_imm_branch(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
  9420   match(If cmp (CmpU op1 op2));
  9421   effect(USE labl, KILL icc);
  9423   size(12);
  9424   ins_cost(BRANCH_COST);
  9425   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
  9426             "BP$cmp  $labl" %}
  9427   ins_encode %{
  9428     Label* L = $labl$$label;
  9429     Assembler::Predict predict_taken =
  9430       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9431     __ cmp($op1$$Register, $op2$$constant);
  9432     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9433     __ delayed()->nop();
  9434   %}
  9435   ins_pipe(cmp_br_reg_imm);
  9436 %}
  9438 instruct cmpL_reg_branch(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
  9439   match(If cmp (CmpL op1 op2));
  9440   effect(USE labl, KILL xcc);
  9442   size(12);
  9443   ins_cost(BRANCH_COST);
  9444   format %{ "CMP    $op1,$op2\t! long\n\t"
  9445             "BP$cmp   $labl" %}
  9446   ins_encode %{
  9447     Label* L = $labl$$label;
  9448     Assembler::Predict predict_taken =
  9449       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9450     __ cmp($op1$$Register, $op2$$Register);
  9451     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9452     __ delayed()->nop();
  9453   %}
  9454   ins_pipe(cmp_br_reg_reg);
  9455 %}
  9457 instruct cmpL_imm_branch(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
  9458   match(If cmp (CmpL op1 op2));
  9459   effect(USE labl, KILL xcc);
  9461   size(12);
  9462   ins_cost(BRANCH_COST);
  9463   format %{ "CMP    $op1,$op2\t! long\n\t"
  9464             "BP$cmp   $labl" %}
  9465   ins_encode %{
  9466     Label* L = $labl$$label;
  9467     Assembler::Predict predict_taken =
  9468       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9469     __ cmp($op1$$Register, $op2$$constant);
  9470     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9471     __ delayed()->nop();
  9472   %}
  9473   ins_pipe(cmp_br_reg_imm);
  9474 %}
  9476 // Compare Pointers and branch
  9477 instruct cmpP_reg_branch(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
  9478   match(If cmp (CmpP op1 op2));
  9479   effect(USE labl, KILL pcc);
  9481   size(12);
  9482   ins_cost(BRANCH_COST);
  9483   format %{ "CMP    $op1,$op2\t! ptr\n\t"
  9484             "B$cmp   $labl" %}
  9485   ins_encode %{
  9486     Label* L = $labl$$label;
  9487     Assembler::Predict predict_taken =
  9488       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9489     __ cmp($op1$$Register, $op2$$Register);
  9490     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9491     __ delayed()->nop();
  9492   %}
  9493   ins_pipe(cmp_br_reg_reg);
  9494 %}
  9496 instruct cmpP_null_branch(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
  9497   match(If cmp (CmpP op1 null));
  9498   effect(USE labl, KILL pcc);
  9500   size(12);
  9501   ins_cost(BRANCH_COST);
  9502   format %{ "CMP    $op1,0\t! ptr\n\t"
  9503             "B$cmp   $labl" %}
  9504   ins_encode %{
  9505     Label* L = $labl$$label;
  9506     Assembler::Predict predict_taken =
  9507       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9508     __ cmp($op1$$Register, G0);
  9509     // bpr() is not used here since it has shorter distance.
  9510     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9511     __ delayed()->nop();
  9512   %}
  9513   ins_pipe(cmp_br_reg_reg);
  9514 %}
  9516 instruct cmpN_reg_branch(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
  9517   match(If cmp (CmpN op1 op2));
  9518   effect(USE labl, KILL icc);
  9520   size(12);
  9521   ins_cost(BRANCH_COST);
  9522   format %{ "CMP    $op1,$op2\t! compressed ptr\n\t"
  9523             "BP$cmp   $labl" %}
  9524   ins_encode %{
  9525     Label* L = $labl$$label;
  9526     Assembler::Predict predict_taken =
  9527       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9528     __ cmp($op1$$Register, $op2$$Register);
  9529     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9530     __ delayed()->nop();
  9531   %}
  9532   ins_pipe(cmp_br_reg_reg);
  9533 %}
  9535 instruct cmpN_null_branch(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
  9536   match(If cmp (CmpN op1 null));
  9537   effect(USE labl, KILL icc);
  9539   size(12);
  9540   ins_cost(BRANCH_COST);
  9541   format %{ "CMP    $op1,0\t! compressed ptr\n\t"
  9542             "BP$cmp   $labl" %}
  9543   ins_encode %{
  9544     Label* L = $labl$$label;
  9545     Assembler::Predict predict_taken =
  9546       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9547     __ cmp($op1$$Register, G0);
  9548     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9549     __ delayed()->nop();
  9550   %}
  9551   ins_pipe(cmp_br_reg_reg);
  9552 %}
  9554 // Loop back branch
  9555 instruct cmpI_reg_branchLoopEnd(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9556   match(CountedLoopEnd cmp (CmpI op1 op2));
  9557   effect(USE labl, KILL icc);
  9559   size(12);
  9560   ins_cost(BRANCH_COST);
  9561   format %{ "CMP    $op1,$op2\t! int\n\t"
  9562             "BP$cmp   $labl\t! Loop end" %}
  9563   ins_encode %{
  9564     Label* L = $labl$$label;
  9565     Assembler::Predict predict_taken =
  9566       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9567     __ cmp($op1$$Register, $op2$$Register);
  9568     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9569     __ delayed()->nop();
  9570   %}
  9571   ins_pipe(cmp_br_reg_reg);
  9572 %}
  9574 instruct cmpI_imm_branchLoopEnd(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9575   match(CountedLoopEnd cmp (CmpI op1 op2));
  9576   effect(USE labl, KILL icc);
  9578   size(12);
  9579   ins_cost(BRANCH_COST);
  9580   format %{ "CMP    $op1,$op2\t! int\n\t"
  9581             "BP$cmp   $labl\t! Loop end" %}
  9582   ins_encode %{
  9583     Label* L = $labl$$label;
  9584     Assembler::Predict predict_taken =
  9585       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9586     __ cmp($op1$$Register, $op2$$constant);
  9587     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9588     __ delayed()->nop();
  9589   %}
  9590   ins_pipe(cmp_br_reg_imm);
  9591 %}
  9593 // Short compare and branch instructions
  9594 instruct cmpI_reg_branch_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9595   match(If cmp (CmpI op1 op2));
  9596   predicate(UseCBCond);
  9597   effect(USE labl, KILL icc);
  9599   size(4);
  9600   ins_cost(BRANCH_COST);
  9601   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
  9602   ins_encode %{
  9603     Label* L = $labl$$label;
  9604     assert(__ use_cbcond(*L), "back to back cbcond");
  9605     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9606   %}
  9607   ins_short_branch(1);
  9608   ins_avoid_back_to_back(1);
  9609   ins_pipe(cbcond_reg_reg);
  9610 %}
  9612 instruct cmpI_imm_branch_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9613   match(If cmp (CmpI op1 op2));
  9614   predicate(UseCBCond);
  9615   effect(USE labl, KILL icc);
  9617   size(4);
  9618   ins_cost(BRANCH_COST);
  9619   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
  9620   ins_encode %{
  9621     Label* L = $labl$$label;
  9622     assert(__ use_cbcond(*L), "back to back cbcond");
  9623     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9624   %}
  9625   ins_short_branch(1);
  9626   ins_avoid_back_to_back(1);
  9627   ins_pipe(cbcond_reg_imm);
  9628 %}
  9630 instruct cmpU_reg_branch_short(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
  9631   match(If cmp (CmpU op1 op2));
  9632   predicate(UseCBCond);
  9633   effect(USE labl, KILL icc);
  9635   size(4);
  9636   ins_cost(BRANCH_COST);
  9637   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
  9638   ins_encode %{
  9639     Label* L = $labl$$label;
  9640     assert(__ use_cbcond(*L), "back to back cbcond");
  9641     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9642   %}
  9643   ins_short_branch(1);
  9644   ins_avoid_back_to_back(1);
  9645   ins_pipe(cbcond_reg_reg);
  9646 %}
  9648 instruct cmpU_imm_branch_short(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
  9649   match(If cmp (CmpU op1 op2));
  9650   predicate(UseCBCond);
  9651   effect(USE labl, KILL icc);
  9653   size(4);
  9654   ins_cost(BRANCH_COST);
  9655   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
  9656   ins_encode %{
  9657     Label* L = $labl$$label;
  9658     assert(__ use_cbcond(*L), "back to back cbcond");
  9659     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9660   %}
  9661   ins_short_branch(1);
  9662   ins_avoid_back_to_back(1);
  9663   ins_pipe(cbcond_reg_imm);
  9664 %}
  9666 instruct cmpL_reg_branch_short(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
  9667   match(If cmp (CmpL op1 op2));
  9668   predicate(UseCBCond);
  9669   effect(USE labl, KILL xcc);
  9671   size(4);
  9672   ins_cost(BRANCH_COST);
  9673   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
  9674   ins_encode %{
  9675     Label* L = $labl$$label;
  9676     assert(__ use_cbcond(*L), "back to back cbcond");
  9677     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$Register, *L);
  9678   %}
  9679   ins_short_branch(1);
  9680   ins_avoid_back_to_back(1);
  9681   ins_pipe(cbcond_reg_reg);
  9682 %}
  9684 instruct cmpL_imm_branch_short(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
  9685   match(If cmp (CmpL op1 op2));
  9686   predicate(UseCBCond);
  9687   effect(USE labl, KILL xcc);
  9689   size(4);
  9690   ins_cost(BRANCH_COST);
  9691   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
  9692   ins_encode %{
  9693     Label* L = $labl$$label;
  9694     assert(__ use_cbcond(*L), "back to back cbcond");
  9695     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$constant, *L);
  9696   %}
  9697   ins_short_branch(1);
  9698   ins_avoid_back_to_back(1);
  9699   ins_pipe(cbcond_reg_imm);
  9700 %}
  9702 // Compare Pointers and branch
  9703 instruct cmpP_reg_branch_short(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
  9704   match(If cmp (CmpP op1 op2));
  9705   predicate(UseCBCond);
  9706   effect(USE labl, KILL pcc);
  9708   size(4);
  9709   ins_cost(BRANCH_COST);
  9710 #ifdef _LP64
  9711   format %{ "CXB$cmp $op1,$op2,$labl\t! ptr" %}
  9712 #else
  9713   format %{ "CWB$cmp $op1,$op2,$labl\t! ptr" %}
  9714 #endif
  9715   ins_encode %{
  9716     Label* L = $labl$$label;
  9717     assert(__ use_cbcond(*L), "back to back cbcond");
  9718     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, $op2$$Register, *L);
  9719   %}
  9720   ins_short_branch(1);
  9721   ins_avoid_back_to_back(1);
  9722   ins_pipe(cbcond_reg_reg);
  9723 %}
  9725 instruct cmpP_null_branch_short(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
  9726   match(If cmp (CmpP op1 null));
  9727   predicate(UseCBCond);
  9728   effect(USE labl, KILL pcc);
  9730   size(4);
  9731   ins_cost(BRANCH_COST);
  9732 #ifdef _LP64
  9733   format %{ "CXB$cmp $op1,0,$labl\t! ptr" %}
  9734 #else
  9735   format %{ "CWB$cmp $op1,0,$labl\t! ptr" %}
  9736 #endif
  9737   ins_encode %{
  9738     Label* L = $labl$$label;
  9739     assert(__ use_cbcond(*L), "back to back cbcond");
  9740     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, G0, *L);
  9741   %}
  9742   ins_short_branch(1);
  9743   ins_avoid_back_to_back(1);
  9744   ins_pipe(cbcond_reg_reg);
  9745 %}
  9747 instruct cmpN_reg_branch_short(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
  9748   match(If cmp (CmpN op1 op2));
  9749   predicate(UseCBCond);
  9750   effect(USE labl, KILL icc);
  9752   size(4);
  9753   ins_cost(BRANCH_COST);
  9754   format %{ "CWB$cmp  $op1,op2,$labl\t! compressed ptr" %}
  9755   ins_encode %{
  9756     Label* L = $labl$$label;
  9757     assert(__ use_cbcond(*L), "back to back cbcond");
  9758     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9759   %}
  9760   ins_short_branch(1);
  9761   ins_avoid_back_to_back(1);
  9762   ins_pipe(cbcond_reg_reg);
  9763 %}
  9765 instruct cmpN_null_branch_short(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
  9766   match(If cmp (CmpN op1 null));
  9767   predicate(UseCBCond);
  9768   effect(USE labl, KILL icc);
  9770   size(4);
  9771   ins_cost(BRANCH_COST);
  9772   format %{ "CWB$cmp  $op1,0,$labl\t! compressed ptr" %}
  9773   ins_encode %{
  9774     Label* L = $labl$$label;
  9775     assert(__ use_cbcond(*L), "back to back cbcond");
  9776     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, G0, *L);
  9777   %}
  9778   ins_short_branch(1);
  9779   ins_avoid_back_to_back(1);
  9780   ins_pipe(cbcond_reg_reg);
  9781 %}
  9783 // Loop back branch
  9784 instruct cmpI_reg_branchLoopEnd_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9785   match(CountedLoopEnd cmp (CmpI op1 op2));
  9786   predicate(UseCBCond);
  9787   effect(USE labl, KILL icc);
  9789   size(4);
  9790   ins_cost(BRANCH_COST);
  9791   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
  9792   ins_encode %{
  9793     Label* L = $labl$$label;
  9794     assert(__ use_cbcond(*L), "back to back cbcond");
  9795     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9796   %}
  9797   ins_short_branch(1);
  9798   ins_avoid_back_to_back(1);
  9799   ins_pipe(cbcond_reg_reg);
  9800 %}
  9802 instruct cmpI_imm_branchLoopEnd_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9803   match(CountedLoopEnd cmp (CmpI op1 op2));
  9804   predicate(UseCBCond);
  9805   effect(USE labl, KILL icc);
  9807   size(4);
  9808   ins_cost(BRANCH_COST);
  9809   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
  9810   ins_encode %{
  9811     Label* L = $labl$$label;
  9812     assert(__ use_cbcond(*L), "back to back cbcond");
  9813     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9814   %}
  9815   ins_short_branch(1);
  9816   ins_avoid_back_to_back(1);
  9817   ins_pipe(cbcond_reg_imm);
  9818 %}
  9820 // Branch-on-register tests all 64 bits.  We assume that values
  9821 // in 64-bit registers always remains zero or sign extended
  9822 // unless our code munges the high bits.  Interrupts can chop
  9823 // the high order bits to zero or sign at any time.
  9824 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
  9825   match(If cmp (CmpI op1 zero));
  9826   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9827   effect(USE labl);
  9829   size(8);
  9830   ins_cost(BRANCH_COST);
  9831   format %{ "BR$cmp   $op1,$labl" %}
  9832   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9833   ins_pipe(br_reg);
  9834 %}
  9836 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
  9837   match(If cmp (CmpP op1 null));
  9838   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9839   effect(USE labl);
  9841   size(8);
  9842   ins_cost(BRANCH_COST);
  9843   format %{ "BR$cmp   $op1,$labl" %}
  9844   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9845   ins_pipe(br_reg);
  9846 %}
  9848 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
  9849   match(If cmp (CmpL op1 zero));
  9850   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9851   effect(USE labl);
  9853   size(8);
  9854   ins_cost(BRANCH_COST);
  9855   format %{ "BR$cmp   $op1,$labl" %}
  9856   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9857   ins_pipe(br_reg);
  9858 %}
  9861 // ============================================================================
  9862 // Long Compare
  9863 //
  9864 // Currently we hold longs in 2 registers.  Comparing such values efficiently
  9865 // is tricky.  The flavor of compare used depends on whether we are testing
  9866 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
  9867 // The GE test is the negated LT test.  The LE test can be had by commuting
  9868 // the operands (yielding a GE test) and then negating; negate again for the
  9869 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
  9870 // NE test is negated from that.
  9872 // Due to a shortcoming in the ADLC, it mixes up expressions like:
  9873 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
  9874 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
  9875 // are collapsed internally in the ADLC's dfa-gen code.  The match for
  9876 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
  9877 // foo match ends up with the wrong leaf.  One fix is to not match both
  9878 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
  9879 // both forms beat the trinary form of long-compare and both are very useful
  9880 // on Intel which has so few registers.
  9882 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
  9883   match(If cmp xcc);
  9884   effect(USE labl);
  9886   size(8);
  9887   ins_cost(BRANCH_COST);
  9888   format %{ "BP$cmp   $xcc,$labl" %}
  9889   ins_encode %{
  9890     Label* L = $labl$$label;
  9891     Assembler::Predict predict_taken =
  9892       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9894     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9895     __ delayed()->nop();
  9896   %}
  9897   ins_pipe(br_cc);
  9898 %}
  9900 // Manifest a CmpL3 result in an integer register.  Very painful.
  9901 // This is the test to avoid.
  9902 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
  9903   match(Set dst (CmpL3 src1 src2) );
  9904   effect( KILL ccr );
  9905   ins_cost(6*DEFAULT_COST);
  9906   size(24);
  9907   format %{ "CMP    $src1,$src2\t\t! long\n"
  9908           "\tBLT,a,pn done\n"
  9909           "\tMOV    -1,$dst\t! delay slot\n"
  9910           "\tBGT,a,pn done\n"
  9911           "\tMOV    1,$dst\t! delay slot\n"
  9912           "\tCLR    $dst\n"
  9913     "done:"     %}
  9914   ins_encode( cmpl_flag(src1,src2,dst) );
  9915   ins_pipe(cmpL_reg);
  9916 %}
  9918 // Conditional move
  9919 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
  9920   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9921   ins_cost(150);
  9922   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9923   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9924   ins_pipe(ialu_reg);
  9925 %}
  9927 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
  9928   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9929   ins_cost(140);
  9930   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9931   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9932   ins_pipe(ialu_imm);
  9933 %}
  9935 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
  9936   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  9937   ins_cost(150);
  9938   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9939   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9940   ins_pipe(ialu_reg);
  9941 %}
  9943 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
  9944   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  9945   ins_cost(140);
  9946   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9947   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9948   ins_pipe(ialu_imm);
  9949 %}
  9951 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
  9952   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
  9953   ins_cost(150);
  9954   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9955   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9956   ins_pipe(ialu_reg);
  9957 %}
  9959 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
  9960   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  9961   ins_cost(150);
  9962   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9963   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9964   ins_pipe(ialu_reg);
  9965 %}
  9967 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
  9968   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  9969   ins_cost(140);
  9970   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9971   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9972   ins_pipe(ialu_imm);
  9973 %}
  9975 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
  9976   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
  9977   ins_cost(150);
  9978   opcode(0x101);
  9979   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
  9980   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  9981   ins_pipe(int_conditional_float_move);
  9982 %}
  9984 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
  9985   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
  9986   ins_cost(150);
  9987   opcode(0x102);
  9988   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
  9989   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  9990   ins_pipe(int_conditional_float_move);
  9991 %}
  9993 // ============================================================================
  9994 // Safepoint Instruction
  9995 instruct safePoint_poll(iRegP poll) %{
  9996   match(SafePoint poll);
  9997   effect(USE poll);
  9999   size(4);
 10000 #ifdef _LP64
 10001   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
 10002 #else
 10003   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
 10004 #endif
 10005   ins_encode %{
 10006     __ relocate(relocInfo::poll_type);
 10007     __ ld_ptr($poll$$Register, 0, G0);
 10008   %}
 10009   ins_pipe(loadPollP);
 10010 %}
 10012 // ============================================================================
 10013 // Call Instructions
 10014 // Call Java Static Instruction
 10015 instruct CallStaticJavaDirect( method meth ) %{
 10016   match(CallStaticJava);
 10017   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
 10018   effect(USE meth);
 10020   size(8);
 10021   ins_cost(CALL_COST);
 10022   format %{ "CALL,static  ; NOP ==> " %}
 10023   ins_encode( Java_Static_Call( meth ), call_epilog );
 10024   ins_pipe(simple_call);
 10025 %}
 10027 // Call Java Static Instruction (method handle version)
 10028 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
 10029   match(CallStaticJava);
 10030   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
 10031   effect(USE meth, KILL l7_mh_SP_save);
 10033   size(8);
 10034   ins_cost(CALL_COST);
 10035   format %{ "CALL,static/MethodHandle" %}
 10036   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
 10037   ins_pipe(simple_call);
 10038 %}
 10040 // Call Java Dynamic Instruction
 10041 instruct CallDynamicJavaDirect( method meth ) %{
 10042   match(CallDynamicJava);
 10043   effect(USE meth);
 10045   ins_cost(CALL_COST);
 10046   format %{ "SET    (empty),R_G5\n\t"
 10047             "CALL,dynamic  ; NOP ==> " %}
 10048   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
 10049   ins_pipe(call);
 10050 %}
 10052 // Call Runtime Instruction
 10053 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
 10054   match(CallRuntime);
 10055   effect(USE meth, KILL l7);
 10056   ins_cost(CALL_COST);
 10057   format %{ "CALL,runtime" %}
 10058   ins_encode( Java_To_Runtime( meth ),
 10059               call_epilog, adjust_long_from_native_call );
 10060   ins_pipe(simple_call);
 10061 %}
 10063 // Call runtime without safepoint - same as CallRuntime
 10064 instruct CallLeafDirect(method meth, l7RegP l7) %{
 10065   match(CallLeaf);
 10066   effect(USE meth, KILL l7);
 10067   ins_cost(CALL_COST);
 10068   format %{ "CALL,runtime leaf" %}
 10069   ins_encode( Java_To_Runtime( meth ),
 10070               call_epilog,
 10071               adjust_long_from_native_call );
 10072   ins_pipe(simple_call);
 10073 %}
 10075 // Call runtime without safepoint - same as CallLeaf
 10076 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
 10077   match(CallLeafNoFP);
 10078   effect(USE meth, KILL l7);
 10079   ins_cost(CALL_COST);
 10080   format %{ "CALL,runtime leaf nofp" %}
 10081   ins_encode( Java_To_Runtime( meth ),
 10082               call_epilog,
 10083               adjust_long_from_native_call );
 10084   ins_pipe(simple_call);
 10085 %}
 10087 // Tail Call; Jump from runtime stub to Java code.
 10088 // Also known as an 'interprocedural jump'.
 10089 // Target of jump will eventually return to caller.
 10090 // TailJump below removes the return address.
 10091 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
 10092   match(TailCall jump_target method_oop );
 10094   ins_cost(CALL_COST);
 10095   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
 10096   ins_encode(form_jmpl(jump_target));
 10097   ins_pipe(tail_call);
 10098 %}
 10101 // Return Instruction
 10102 instruct Ret() %{
 10103   match(Return);
 10105   // The epilogue node did the ret already.
 10106   size(0);
 10107   format %{ "! return" %}
 10108   ins_encode();
 10109   ins_pipe(empty);
 10110 %}
 10113 // Tail Jump; remove the return address; jump to target.
 10114 // TailCall above leaves the return address around.
 10115 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
 10116 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
 10117 // "restore" before this instruction (in Epilogue), we need to materialize it
 10118 // in %i0.
 10119 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
 10120   match( TailJump jump_target ex_oop );
 10121   ins_cost(CALL_COST);
 10122   format %{ "! discard R_O7\n\t"
 10123             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
 10124   ins_encode(form_jmpl_set_exception_pc(jump_target));
 10125   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
 10126   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
 10127   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
 10128   ins_pipe(tail_call);
 10129 %}
 10131 // Create exception oop: created by stack-crawling runtime code.
 10132 // Created exception is now available to this handler, and is setup
 10133 // just prior to jumping to this handler.  No code emitted.
 10134 instruct CreateException( o0RegP ex_oop )
 10135 %{
 10136   match(Set ex_oop (CreateEx));
 10137   ins_cost(0);
 10139   size(0);
 10140   // use the following format syntax
 10141   format %{ "! exception oop is in R_O0; no code emitted" %}
 10142   ins_encode();
 10143   ins_pipe(empty);
 10144 %}
 10147 // Rethrow exception:
 10148 // The exception oop will come in the first argument position.
 10149 // Then JUMP (not call) to the rethrow stub code.
 10150 instruct RethrowException()
 10151 %{
 10152   match(Rethrow);
 10153   ins_cost(CALL_COST);
 10155   // use the following format syntax
 10156   format %{ "Jmp    rethrow_stub" %}
 10157   ins_encode(enc_rethrow);
 10158   ins_pipe(tail_call);
 10159 %}
 10162 // Die now
 10163 instruct ShouldNotReachHere( )
 10164 %{
 10165   match(Halt);
 10166   ins_cost(CALL_COST);
 10168   size(4);
 10169   // Use the following format syntax
 10170   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
 10171   ins_encode( form2_illtrap() );
 10172   ins_pipe(tail_call);
 10173 %}
 10175 // ============================================================================
 10176 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
 10177 // array for an instance of the superklass.  Set a hidden internal cache on a
 10178 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
 10179 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
 10180 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
 10181   match(Set index (PartialSubtypeCheck sub super));
 10182   effect( KILL pcc, KILL o7 );
 10183   ins_cost(DEFAULT_COST*10);
 10184   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
 10185   ins_encode( enc_PartialSubtypeCheck() );
 10186   ins_pipe(partial_subtype_check_pipe);
 10187 %}
 10189 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
 10190   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
 10191   effect( KILL idx, KILL o7 );
 10192   ins_cost(DEFAULT_COST*10);
 10193   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
 10194   ins_encode( enc_PartialSubtypeCheck() );
 10195   ins_pipe(partial_subtype_check_pipe);
 10196 %}
 10199 // ============================================================================
 10200 // inlined locking and unlocking
 10202 instruct cmpFastLock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
 10203   match(Set pcc (FastLock object box));
 10205   effect(KILL scratch, TEMP scratch2);
 10206   ins_cost(100);
 10208   format %{ "FASTLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
 10209   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
 10210   ins_pipe(long_memory_op);
 10211 %}
 10214 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
 10215   match(Set pcc (FastUnlock object box));
 10216   effect(KILL scratch, TEMP scratch2);
 10217   ins_cost(100);
 10219   format %{ "FASTUNLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
 10220   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
 10221   ins_pipe(long_memory_op);
 10222 %}
 10224 // Count and Base registers are fixed because the allocator cannot
 10225 // kill unknown registers.  The encodings are generic.
 10226 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
 10227   match(Set dummy (ClearArray cnt base));
 10228   effect(TEMP temp, KILL ccr);
 10229   ins_cost(300);
 10230   format %{ "MOV    $cnt,$temp\n"
 10231     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
 10232     "        BRge   loop\t\t! Clearing loop\n"
 10233     "        STX    G0,[$base+$temp]\t! delay slot" %}
 10234   ins_encode( enc_Clear_Array(cnt, base, temp) );
 10235   ins_pipe(long_memory_op);
 10236 %}
 10238 instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
 10239                         o7RegI tmp, flagsReg ccr) %{
 10240   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
 10241   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
 10242   ins_cost(300);
 10243   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
 10244   ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
 10245   ins_pipe(long_memory_op);
 10246 %}
 10248 instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
 10249                        o7RegI tmp, flagsReg ccr) %{
 10250   match(Set result (StrEquals (Binary str1 str2) cnt));
 10251   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
 10252   ins_cost(300);
 10253   format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
 10254   ins_encode( enc_String_Equals(str1, str2, cnt, result) );
 10255   ins_pipe(long_memory_op);
 10256 %}
 10258 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
 10259                       o7RegI tmp2, flagsReg ccr) %{
 10260   match(Set result (AryEq ary1 ary2));
 10261   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
 10262   ins_cost(300);
 10263   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
 10264   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
 10265   ins_pipe(long_memory_op);
 10266 %}
 10269 //---------- Zeros Count Instructions ------------------------------------------
 10271 instruct countLeadingZerosI(iRegI dst, iRegI src, iRegI tmp, flagsReg cr) %{
 10272   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10273   match(Set dst (CountLeadingZerosI src));
 10274   effect(TEMP dst, TEMP tmp, KILL cr);
 10276   // x |= (x >> 1);
 10277   // x |= (x >> 2);
 10278   // x |= (x >> 4);
 10279   // x |= (x >> 8);
 10280   // x |= (x >> 16);
 10281   // return (WORDBITS - popc(x));
 10282   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
 10283             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
 10284             "OR      $dst,$tmp,$dst\n\t"
 10285             "SRL     $dst,2,$tmp\n\t"
 10286             "OR      $dst,$tmp,$dst\n\t"
 10287             "SRL     $dst,4,$tmp\n\t"
 10288             "OR      $dst,$tmp,$dst\n\t"
 10289             "SRL     $dst,8,$tmp\n\t"
 10290             "OR      $dst,$tmp,$dst\n\t"
 10291             "SRL     $dst,16,$tmp\n\t"
 10292             "OR      $dst,$tmp,$dst\n\t"
 10293             "POPC    $dst,$dst\n\t"
 10294             "MOV     32,$tmp\n\t"
 10295             "SUB     $tmp,$dst,$dst" %}
 10296   ins_encode %{
 10297     Register Rdst = $dst$$Register;
 10298     Register Rsrc = $src$$Register;
 10299     Register Rtmp = $tmp$$Register;
 10300     __ srl(Rsrc, 1,    Rtmp);
 10301     __ srl(Rsrc, 0,    Rdst);
 10302     __ or3(Rdst, Rtmp, Rdst);
 10303     __ srl(Rdst, 2,    Rtmp);
 10304     __ or3(Rdst, Rtmp, Rdst);
 10305     __ srl(Rdst, 4,    Rtmp);
 10306     __ or3(Rdst, Rtmp, Rdst);
 10307     __ srl(Rdst, 8,    Rtmp);
 10308     __ or3(Rdst, Rtmp, Rdst);
 10309     __ srl(Rdst, 16,   Rtmp);
 10310     __ or3(Rdst, Rtmp, Rdst);
 10311     __ popc(Rdst, Rdst);
 10312     __ mov(BitsPerInt, Rtmp);
 10313     __ sub(Rtmp, Rdst, Rdst);
 10314   %}
 10315   ins_pipe(ialu_reg);
 10316 %}
 10318 instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
 10319   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10320   match(Set dst (CountLeadingZerosL src));
 10321   effect(TEMP dst, TEMP tmp, KILL cr);
 10323   // x |= (x >> 1);
 10324   // x |= (x >> 2);
 10325   // x |= (x >> 4);
 10326   // x |= (x >> 8);
 10327   // x |= (x >> 16);
 10328   // x |= (x >> 32);
 10329   // return (WORDBITS - popc(x));
 10330   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
 10331             "OR      $src,$tmp,$dst\n\t"
 10332             "SRLX    $dst,2,$tmp\n\t"
 10333             "OR      $dst,$tmp,$dst\n\t"
 10334             "SRLX    $dst,4,$tmp\n\t"
 10335             "OR      $dst,$tmp,$dst\n\t"
 10336             "SRLX    $dst,8,$tmp\n\t"
 10337             "OR      $dst,$tmp,$dst\n\t"
 10338             "SRLX    $dst,16,$tmp\n\t"
 10339             "OR      $dst,$tmp,$dst\n\t"
 10340             "SRLX    $dst,32,$tmp\n\t"
 10341             "OR      $dst,$tmp,$dst\n\t"
 10342             "POPC    $dst,$dst\n\t"
 10343             "MOV     64,$tmp\n\t"
 10344             "SUB     $tmp,$dst,$dst" %}
 10345   ins_encode %{
 10346     Register Rdst = $dst$$Register;
 10347     Register Rsrc = $src$$Register;
 10348     Register Rtmp = $tmp$$Register;
 10349     __ srlx(Rsrc, 1,    Rtmp);
 10350     __ or3( Rsrc, Rtmp, Rdst);
 10351     __ srlx(Rdst, 2,    Rtmp);
 10352     __ or3( Rdst, Rtmp, Rdst);
 10353     __ srlx(Rdst, 4,    Rtmp);
 10354     __ or3( Rdst, Rtmp, Rdst);
 10355     __ srlx(Rdst, 8,    Rtmp);
 10356     __ or3( Rdst, Rtmp, Rdst);
 10357     __ srlx(Rdst, 16,   Rtmp);
 10358     __ or3( Rdst, Rtmp, Rdst);
 10359     __ srlx(Rdst, 32,   Rtmp);
 10360     __ or3( Rdst, Rtmp, Rdst);
 10361     __ popc(Rdst, Rdst);
 10362     __ mov(BitsPerLong, Rtmp);
 10363     __ sub(Rtmp, Rdst, Rdst);
 10364   %}
 10365   ins_pipe(ialu_reg);
 10366 %}
 10368 instruct countTrailingZerosI(iRegI dst, iRegI src, flagsReg cr) %{
 10369   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10370   match(Set dst (CountTrailingZerosI src));
 10371   effect(TEMP dst, KILL cr);
 10373   // return popc(~x & (x - 1));
 10374   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
 10375             "ANDN    $dst,$src,$dst\n\t"
 10376             "SRL     $dst,R_G0,$dst\n\t"
 10377             "POPC    $dst,$dst" %}
 10378   ins_encode %{
 10379     Register Rdst = $dst$$Register;
 10380     Register Rsrc = $src$$Register;
 10381     __ sub(Rsrc, 1, Rdst);
 10382     __ andn(Rdst, Rsrc, Rdst);
 10383     __ srl(Rdst, G0, Rdst);
 10384     __ popc(Rdst, Rdst);
 10385   %}
 10386   ins_pipe(ialu_reg);
 10387 %}
 10389 instruct countTrailingZerosL(iRegI dst, iRegL src, flagsReg cr) %{
 10390   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10391   match(Set dst (CountTrailingZerosL src));
 10392   effect(TEMP dst, KILL cr);
 10394   // return popc(~x & (x - 1));
 10395   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
 10396             "ANDN    $dst,$src,$dst\n\t"
 10397             "POPC    $dst,$dst" %}
 10398   ins_encode %{
 10399     Register Rdst = $dst$$Register;
 10400     Register Rsrc = $src$$Register;
 10401     __ sub(Rsrc, 1, Rdst);
 10402     __ andn(Rdst, Rsrc, Rdst);
 10403     __ popc(Rdst, Rdst);
 10404   %}
 10405   ins_pipe(ialu_reg);
 10406 %}
 10409 //---------- Population Count Instructions -------------------------------------
 10411 instruct popCountI(iRegI dst, iRegI src) %{
 10412   predicate(UsePopCountInstruction);
 10413   match(Set dst (PopCountI src));
 10415   format %{ "POPC   $src, $dst" %}
 10416   ins_encode %{
 10417     __ popc($src$$Register, $dst$$Register);
 10418   %}
 10419   ins_pipe(ialu_reg);
 10420 %}
 10422 // Note: Long.bitCount(long) returns an int.
 10423 instruct popCountL(iRegI dst, iRegL src) %{
 10424   predicate(UsePopCountInstruction);
 10425   match(Set dst (PopCountL src));
 10427   format %{ "POPC   $src, $dst" %}
 10428   ins_encode %{
 10429     __ popc($src$$Register, $dst$$Register);
 10430   %}
 10431   ins_pipe(ialu_reg);
 10432 %}
 10435 // ============================================================================
 10436 //------------Bytes reverse--------------------------------------------------
 10438 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
 10439   match(Set dst (ReverseBytesI src));
 10441   // Op cost is artificially doubled to make sure that load or store
 10442   // instructions are preferred over this one which requires a spill
 10443   // onto a stack slot.
 10444   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10445   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
 10447   ins_encode %{
 10448     __ set($src$$disp + STACK_BIAS, O7);
 10449     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10450   %}
 10451   ins_pipe( iload_mem );
 10452 %}
 10454 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
 10455   match(Set dst (ReverseBytesL src));
 10457   // Op cost is artificially doubled to make sure that load or store
 10458   // instructions are preferred over this one which requires a spill
 10459   // onto a stack slot.
 10460   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10461   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
 10463   ins_encode %{
 10464     __ set($src$$disp + STACK_BIAS, O7);
 10465     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10466   %}
 10467   ins_pipe( iload_mem );
 10468 %}
 10470 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
 10471   match(Set dst (ReverseBytesUS src));
 10473   // Op cost is artificially doubled to make sure that load or store
 10474   // instructions are preferred over this one which requires a spill
 10475   // onto a stack slot.
 10476   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10477   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
 10479   ins_encode %{
 10480     // the value was spilled as an int so bias the load
 10481     __ set($src$$disp + STACK_BIAS + 2, O7);
 10482     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10483   %}
 10484   ins_pipe( iload_mem );
 10485 %}
 10487 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
 10488   match(Set dst (ReverseBytesS src));
 10490   // Op cost is artificially doubled to make sure that load or store
 10491   // instructions are preferred over this one which requires a spill
 10492   // onto a stack slot.
 10493   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10494   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
 10496   ins_encode %{
 10497     // the value was spilled as an int so bias the load
 10498     __ set($src$$disp + STACK_BIAS + 2, O7);
 10499     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10500   %}
 10501   ins_pipe( iload_mem );
 10502 %}
 10504 // Load Integer reversed byte order
 10505 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
 10506   match(Set dst (ReverseBytesI (LoadI src)));
 10508   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
 10509   size(4);
 10510   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
 10512   ins_encode %{
 10513     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10514   %}
 10515   ins_pipe(iload_mem);
 10516 %}
 10518 // Load Long - aligned and reversed
 10519 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
 10520   match(Set dst (ReverseBytesL (LoadL src)));
 10522   ins_cost(MEMORY_REF_COST);
 10523   size(4);
 10524   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
 10526   ins_encode %{
 10527     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10528   %}
 10529   ins_pipe(iload_mem);
 10530 %}
 10532 // Load unsigned short / char reversed byte order
 10533 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
 10534   match(Set dst (ReverseBytesUS (LoadUS src)));
 10536   ins_cost(MEMORY_REF_COST);
 10537   size(4);
 10538   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
 10540   ins_encode %{
 10541     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10542   %}
 10543   ins_pipe(iload_mem);
 10544 %}
 10546 // Load short reversed byte order
 10547 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
 10548   match(Set dst (ReverseBytesS (LoadS src)));
 10550   ins_cost(MEMORY_REF_COST);
 10551   size(4);
 10552   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
 10554   ins_encode %{
 10555     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10556   %}
 10557   ins_pipe(iload_mem);
 10558 %}
 10560 // Store Integer reversed byte order
 10561 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
 10562   match(Set dst (StoreI dst (ReverseBytesI src)));
 10564   ins_cost(MEMORY_REF_COST);
 10565   size(4);
 10566   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
 10568   ins_encode %{
 10569     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10570   %}
 10571   ins_pipe(istore_mem_reg);
 10572 %}
 10574 // Store Long reversed byte order
 10575 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
 10576   match(Set dst (StoreL dst (ReverseBytesL src)));
 10578   ins_cost(MEMORY_REF_COST);
 10579   size(4);
 10580   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
 10582   ins_encode %{
 10583     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10584   %}
 10585   ins_pipe(istore_mem_reg);
 10586 %}
 10588 // Store unsighed short/char reversed byte order
 10589 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
 10590   match(Set dst (StoreC dst (ReverseBytesUS src)));
 10592   ins_cost(MEMORY_REF_COST);
 10593   size(4);
 10594   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
 10596   ins_encode %{
 10597     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10598   %}
 10599   ins_pipe(istore_mem_reg);
 10600 %}
 10602 // Store short reversed byte order
 10603 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
 10604   match(Set dst (StoreC dst (ReverseBytesS src)));
 10606   ins_cost(MEMORY_REF_COST);
 10607   size(4);
 10608   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
 10610   ins_encode %{
 10611     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10612   %}
 10613   ins_pipe(istore_mem_reg);
 10614 %}
 10616 //----------PEEPHOLE RULES-----------------------------------------------------
 10617 // These must follow all instruction definitions as they use the names
 10618 // defined in the instructions definitions.
 10619 //
 10620 // peepmatch ( root_instr_name [preceding_instruction]* );
 10621 //
 10622 // peepconstraint %{
 10623 // (instruction_number.operand_name relational_op instruction_number.operand_name
 10624 //  [, ...] );
 10625 // // instruction numbers are zero-based using left to right order in peepmatch
 10626 //
 10627 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
 10628 // // provide an instruction_number.operand_name for each operand that appears
 10629 // // in the replacement instruction's match rule
 10630 //
 10631 // ---------VM FLAGS---------------------------------------------------------
 10632 //
 10633 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 10634 //
 10635 // Each peephole rule is given an identifying number starting with zero and
 10636 // increasing by one in the order seen by the parser.  An individual peephole
 10637 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 10638 // on the command-line.
 10639 //
 10640 // ---------CURRENT LIMITATIONS----------------------------------------------
 10641 //
 10642 // Only match adjacent instructions in same basic block
 10643 // Only equality constraints
 10644 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 10645 // Only one replacement instruction
 10646 //
 10647 // ---------EXAMPLE----------------------------------------------------------
 10648 //
 10649 // // pertinent parts of existing instructions in architecture description
 10650 // instruct movI(eRegI dst, eRegI src) %{
 10651 //   match(Set dst (CopyI src));
 10652 // %}
 10653 //
 10654 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
 10655 //   match(Set dst (AddI dst src));
 10656 //   effect(KILL cr);
 10657 // %}
 10658 //
 10659 // // Change (inc mov) to lea
 10660 // peephole %{
 10661 //   // increment preceeded by register-register move
 10662 //   peepmatch ( incI_eReg movI );
 10663 //   // require that the destination register of the increment
 10664 //   // match the destination register of the move
 10665 //   peepconstraint ( 0.dst == 1.dst );
 10666 //   // construct a replacement instruction that sets
 10667 //   // the destination to ( move's source register + one )
 10668 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
 10669 // %}
 10670 //
 10672 // // Change load of spilled value to only a spill
 10673 // instruct storeI(memory mem, eRegI src) %{
 10674 //   match(Set mem (StoreI mem src));
 10675 // %}
 10676 //
 10677 // instruct loadI(eRegI dst, memory mem) %{
 10678 //   match(Set dst (LoadI mem));
 10679 // %}
 10680 //
 10681 // peephole %{
 10682 //   peepmatch ( loadI storeI );
 10683 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 10684 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 10685 // %}
 10687 //----------SMARTSPILL RULES---------------------------------------------------
 10688 // These must follow all instruction definitions as they use the names
 10689 // defined in the instructions definitions.
 10690 //
 10691 // SPARC will probably not have any of these rules due to RISC instruction set.
 10693 //----------PIPELINE-----------------------------------------------------------
 10694 // Rules which define the behavior of the target architectures pipeline.

mercurial