src/share/vm/opto/runtime.cpp

Thu, 01 Aug 2013 17:25:10 -0700

author
kvn
date
Thu, 01 Aug 2013 17:25:10 -0700
changeset 6457
94c202aa2646
parent 6454
6cc7093e1341
child 6468
cfd05ec74089
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "code/compiledIC.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/nmethod.hpp"
    31 #include "code/pcDesc.hpp"
    32 #include "code/scopeDesc.hpp"
    33 #include "code/vtableStubs.hpp"
    34 #include "compiler/compileBroker.hpp"
    35 #include "compiler/compilerOracle.hpp"
    36 #include "compiler/oopMap.hpp"
    37 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    38 #include "gc_implementation/g1/heapRegion.hpp"
    39 #include "gc_interface/collectedHeap.hpp"
    40 #include "interpreter/bytecode.hpp"
    41 #include "interpreter/interpreter.hpp"
    42 #include "interpreter/linkResolver.hpp"
    43 #include "memory/barrierSet.hpp"
    44 #include "memory/gcLocker.inline.hpp"
    45 #include "memory/oopFactory.hpp"
    46 #include "oops/objArrayKlass.hpp"
    47 #include "oops/oop.inline.hpp"
    48 #include "opto/addnode.hpp"
    49 #include "opto/callnode.hpp"
    50 #include "opto/cfgnode.hpp"
    51 #include "opto/connode.hpp"
    52 #include "opto/graphKit.hpp"
    53 #include "opto/machnode.hpp"
    54 #include "opto/matcher.hpp"
    55 #include "opto/memnode.hpp"
    56 #include "opto/mulnode.hpp"
    57 #include "opto/runtime.hpp"
    58 #include "opto/subnode.hpp"
    59 #include "runtime/fprofiler.hpp"
    60 #include "runtime/handles.inline.hpp"
    61 #include "runtime/interfaceSupport.hpp"
    62 #include "runtime/javaCalls.hpp"
    63 #include "runtime/sharedRuntime.hpp"
    64 #include "runtime/signature.hpp"
    65 #include "runtime/threadCritical.hpp"
    66 #include "runtime/vframe.hpp"
    67 #include "runtime/vframeArray.hpp"
    68 #include "runtime/vframe_hp.hpp"
    69 #include "utilities/copy.hpp"
    70 #include "utilities/preserveException.hpp"
    71 #ifdef TARGET_ARCH_MODEL_x86_32
    72 # include "adfiles/ad_x86_32.hpp"
    73 #endif
    74 #ifdef TARGET_ARCH_MODEL_x86_64
    75 # include "adfiles/ad_x86_64.hpp"
    76 #endif
    77 #ifdef TARGET_ARCH_MODEL_sparc
    78 # include "adfiles/ad_sparc.hpp"
    79 #endif
    80 #ifdef TARGET_ARCH_MODEL_zero
    81 # include "adfiles/ad_zero.hpp"
    82 #endif
    83 #ifdef TARGET_ARCH_MODEL_arm
    84 # include "adfiles/ad_arm.hpp"
    85 #endif
    86 #ifdef TARGET_ARCH_MODEL_ppc_32
    87 # include "adfiles/ad_ppc_32.hpp"
    88 #endif
    89 #ifdef TARGET_ARCH_MODEL_ppc_64
    90 # include "adfiles/ad_ppc_64.hpp"
    91 #endif
    94 // For debugging purposes:
    95 //  To force FullGCALot inside a runtime function, add the following two lines
    96 //
    97 //  Universe::release_fullgc_alot_dummy();
    98 //  MarkSweep::invoke(0, "Debugging");
    99 //
   100 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
   105 // Compiled code entry points
   106 address OptoRuntime::_new_instance_Java                           = NULL;
   107 address OptoRuntime::_new_array_Java                              = NULL;
   108 address OptoRuntime::_new_array_nozero_Java                       = NULL;
   109 address OptoRuntime::_multianewarray2_Java                        = NULL;
   110 address OptoRuntime::_multianewarray3_Java                        = NULL;
   111 address OptoRuntime::_multianewarray4_Java                        = NULL;
   112 address OptoRuntime::_multianewarray5_Java                        = NULL;
   113 address OptoRuntime::_multianewarrayN_Java                        = NULL;
   114 address OptoRuntime::_g1_wb_pre_Java                              = NULL;
   115 address OptoRuntime::_g1_wb_post_Java                             = NULL;
   116 address OptoRuntime::_vtable_must_compile_Java                    = NULL;
   117 address OptoRuntime::_complete_monitor_locking_Java               = NULL;
   118 address OptoRuntime::_rethrow_Java                                = NULL;
   120 address OptoRuntime::_slow_arraycopy_Java                         = NULL;
   121 address OptoRuntime::_register_finalizer_Java                     = NULL;
   123 # ifdef ENABLE_ZAP_DEAD_LOCALS
   124 address OptoRuntime::_zap_dead_Java_locals_Java                   = NULL;
   125 address OptoRuntime::_zap_dead_native_locals_Java                 = NULL;
   126 # endif
   128 ExceptionBlob* OptoRuntime::_exception_blob;
   130 // This should be called in an assertion at the start of OptoRuntime routines
   131 // which are entered from compiled code (all of them)
   132 #ifdef ASSERT
   133 static bool check_compiled_frame(JavaThread* thread) {
   134   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
   135   RegisterMap map(thread, false);
   136   frame caller = thread->last_frame().sender(&map);
   137   assert(caller.is_compiled_frame(), "not being called from compiled like code");
   138   return true;
   139 }
   140 #endif // ASSERT
   143 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
   144   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc)
   146 void OptoRuntime::generate(ciEnv* env) {
   148   generate_exception_blob();
   150   // Note: tls: Means fetching the return oop out of the thread-local storage
   151   //
   152   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
   153   // -------------------------------------------------------------------------------------------------------------------------------
   154   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
   155   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
   156   gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true , false, false);
   157   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
   158   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
   159   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
   160   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
   161   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true , false, false);
   162   gen(env, _g1_wb_pre_Java                 , g1_wb_pre_Type               , SharedRuntime::g1_wb_pre        ,    0 , false, false, false);
   163   gen(env, _g1_wb_post_Java                , g1_wb_post_Type              , SharedRuntime::g1_wb_post       ,    0 , false, false, false);
   164   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C      ,    0 , false, false, false);
   165   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
   167   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
   168   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
   170 # ifdef ENABLE_ZAP_DEAD_LOCALS
   171   gen(env, _zap_dead_Java_locals_Java      , zap_dead_locals_Type         , zap_dead_Java_locals_C          ,    0 , false, true , false );
   172   gen(env, _zap_dead_native_locals_Java    , zap_dead_locals_Type         , zap_dead_native_locals_C        ,    0 , false, true , false );
   173 # endif
   175 }
   177 #undef gen
   180 // Helper method to do generation of RunTimeStub's
   181 address OptoRuntime::generate_stub( ciEnv* env,
   182                                     TypeFunc_generator gen, address C_function,
   183                                     const char *name, int is_fancy_jump,
   184                                     bool pass_tls,
   185                                     bool save_argument_registers,
   186                                     bool return_pc ) {
   187   ResourceMark rm;
   188   Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc );
   189   return  C.stub_entry_point();
   190 }
   192 const char* OptoRuntime::stub_name(address entry) {
   193 #ifndef PRODUCT
   194   CodeBlob* cb = CodeCache::find_blob(entry);
   195   RuntimeStub* rs =(RuntimeStub *)cb;
   196   assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
   197   return rs->name();
   198 #else
   199   // Fast implementation for product mode (maybe it should be inlined too)
   200   return "runtime stub";
   201 #endif
   202 }
   205 //=============================================================================
   206 // Opto compiler runtime routines
   207 //=============================================================================
   210 //=============================allocation======================================
   211 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
   212 // and try allocation again.
   214 void OptoRuntime::new_store_pre_barrier(JavaThread* thread) {
   215   // After any safepoint, just before going back to compiled code,
   216   // we inform the GC that we will be doing initializing writes to
   217   // this object in the future without emitting card-marks, so
   218   // GC may take any compensating steps.
   219   // NOTE: Keep this code consistent with GraphKit::store_barrier.
   221   oop new_obj = thread->vm_result();
   222   if (new_obj == NULL)  return;
   224   assert(Universe::heap()->can_elide_tlab_store_barriers(),
   225          "compiler must check this first");
   226   // GC may decide to give back a safer copy of new_obj.
   227   new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj);
   228   thread->set_vm_result(new_obj);
   229 }
   231 // object allocation
   232 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
   233   JRT_BLOCK;
   234 #ifndef PRODUCT
   235   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
   236 #endif
   237   assert(check_compiled_frame(thread), "incorrect caller");
   239   // These checks are cheap to make and support reflective allocation.
   240   int lh = klass->layout_helper();
   241   if (Klass::layout_helper_needs_slow_path(lh)
   242       || !InstanceKlass::cast(klass)->is_initialized()) {
   243     KlassHandle kh(THREAD, klass);
   244     kh->check_valid_for_instantiation(false, THREAD);
   245     if (!HAS_PENDING_EXCEPTION) {
   246       InstanceKlass::cast(kh())->initialize(THREAD);
   247     }
   248     if (!HAS_PENDING_EXCEPTION) {
   249       klass = kh();
   250     } else {
   251       klass = NULL;
   252     }
   253   }
   255   if (klass != NULL) {
   256     // Scavenge and allocate an instance.
   257     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
   258     thread->set_vm_result(result);
   260     // Pass oops back through thread local storage.  Our apparent type to Java
   261     // is that we return an oop, but we can block on exit from this routine and
   262     // a GC can trash the oop in C's return register.  The generated stub will
   263     // fetch the oop from TLS after any possible GC.
   264   }
   266   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   267   JRT_BLOCK_END;
   269   if (GraphKit::use_ReduceInitialCardMarks()) {
   270     // inform GC that we won't do card marks for initializing writes.
   271     new_store_pre_barrier(thread);
   272   }
   273 JRT_END
   276 // array allocation
   277 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
   278   JRT_BLOCK;
   279 #ifndef PRODUCT
   280   SharedRuntime::_new_array_ctr++;            // new array requires GC
   281 #endif
   282   assert(check_compiled_frame(thread), "incorrect caller");
   284   // Scavenge and allocate an instance.
   285   oop result;
   287   if (array_type->oop_is_typeArray()) {
   288     // The oopFactory likes to work with the element type.
   289     // (We could bypass the oopFactory, since it doesn't add much value.)
   290     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
   291     result = oopFactory::new_typeArray(elem_type, len, THREAD);
   292   } else {
   293     // Although the oopFactory likes to work with the elem_type,
   294     // the compiler prefers the array_type, since it must already have
   295     // that latter value in hand for the fast path.
   296     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
   297     result = oopFactory::new_objArray(elem_type, len, THREAD);
   298   }
   300   // Pass oops back through thread local storage.  Our apparent type to Java
   301   // is that we return an oop, but we can block on exit from this routine and
   302   // a GC can trash the oop in C's return register.  The generated stub will
   303   // fetch the oop from TLS after any possible GC.
   304   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   305   thread->set_vm_result(result);
   306   JRT_BLOCK_END;
   308   if (GraphKit::use_ReduceInitialCardMarks()) {
   309     // inform GC that we won't do card marks for initializing writes.
   310     new_store_pre_barrier(thread);
   311   }
   312 JRT_END
   314 // array allocation without zeroing
   315 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
   316   JRT_BLOCK;
   317 #ifndef PRODUCT
   318   SharedRuntime::_new_array_ctr++;            // new array requires GC
   319 #endif
   320   assert(check_compiled_frame(thread), "incorrect caller");
   322   // Scavenge and allocate an instance.
   323   oop result;
   325   assert(array_type->oop_is_typeArray(), "should be called only for type array");
   326   // The oopFactory likes to work with the element type.
   327   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
   328   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
   330   // Pass oops back through thread local storage.  Our apparent type to Java
   331   // is that we return an oop, but we can block on exit from this routine and
   332   // a GC can trash the oop in C's return register.  The generated stub will
   333   // fetch the oop from TLS after any possible GC.
   334   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   335   thread->set_vm_result(result);
   336   JRT_BLOCK_END;
   338   if (GraphKit::use_ReduceInitialCardMarks()) {
   339     // inform GC that we won't do card marks for initializing writes.
   340     new_store_pre_barrier(thread);
   341   }
   343   oop result = thread->vm_result();
   344   if ((len > 0) && (result != NULL) &&
   345       is_deoptimized_caller_frame(thread)) {
   346     // Zero array here if the caller is deoptimized.
   347     int size = ((typeArrayOop)result)->object_size();
   348     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
   349     const size_t hs = arrayOopDesc::header_size(elem_type);
   350     // Align to next 8 bytes to avoid trashing arrays's length.
   351     const size_t aligned_hs = align_object_offset(hs);
   352     HeapWord* obj = (HeapWord*)result;
   353     if (aligned_hs > hs) {
   354       Copy::zero_to_words(obj+hs, aligned_hs-hs);
   355     }
   356     // Optimized zeroing.
   357     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
   358   }
   360 JRT_END
   362 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
   364 // multianewarray for 2 dimensions
   365 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
   366 #ifndef PRODUCT
   367   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
   368 #endif
   369   assert(check_compiled_frame(thread), "incorrect caller");
   370   assert(elem_type->is_klass(), "not a class");
   371   jint dims[2];
   372   dims[0] = len1;
   373   dims[1] = len2;
   374   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
   375   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   376   thread->set_vm_result(obj);
   377 JRT_END
   379 // multianewarray for 3 dimensions
   380 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
   381 #ifndef PRODUCT
   382   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
   383 #endif
   384   assert(check_compiled_frame(thread), "incorrect caller");
   385   assert(elem_type->is_klass(), "not a class");
   386   jint dims[3];
   387   dims[0] = len1;
   388   dims[1] = len2;
   389   dims[2] = len3;
   390   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
   391   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   392   thread->set_vm_result(obj);
   393 JRT_END
   395 // multianewarray for 4 dimensions
   396 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
   397 #ifndef PRODUCT
   398   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
   399 #endif
   400   assert(check_compiled_frame(thread), "incorrect caller");
   401   assert(elem_type->is_klass(), "not a class");
   402   jint dims[4];
   403   dims[0] = len1;
   404   dims[1] = len2;
   405   dims[2] = len3;
   406   dims[3] = len4;
   407   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
   408   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   409   thread->set_vm_result(obj);
   410 JRT_END
   412 // multianewarray for 5 dimensions
   413 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
   414 #ifndef PRODUCT
   415   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
   416 #endif
   417   assert(check_compiled_frame(thread), "incorrect caller");
   418   assert(elem_type->is_klass(), "not a class");
   419   jint dims[5];
   420   dims[0] = len1;
   421   dims[1] = len2;
   422   dims[2] = len3;
   423   dims[3] = len4;
   424   dims[4] = len5;
   425   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
   426   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   427   thread->set_vm_result(obj);
   428 JRT_END
   430 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
   431   assert(check_compiled_frame(thread), "incorrect caller");
   432   assert(elem_type->is_klass(), "not a class");
   433   assert(oop(dims)->is_typeArray(), "not an array");
   435   ResourceMark rm;
   436   jint len = dims->length();
   437   assert(len > 0, "Dimensions array should contain data");
   438   jint *j_dims = typeArrayOop(dims)->int_at_addr(0);
   439   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
   440   Copy::conjoint_jints_atomic(j_dims, c_dims, len);
   442   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
   443   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   444   thread->set_vm_result(obj);
   445 JRT_END
   448 const TypeFunc *OptoRuntime::new_instance_Type() {
   449   // create input type (domain)
   450   const Type **fields = TypeTuple::fields(1);
   451   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
   452   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   454   // create result type (range)
   455   fields = TypeTuple::fields(1);
   456   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   458   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   460   return TypeFunc::make(domain, range);
   461 }
   464 const TypeFunc *OptoRuntime::athrow_Type() {
   465   // create input type (domain)
   466   const Type **fields = TypeTuple::fields(1);
   467   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
   468   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   470   // create result type (range)
   471   fields = TypeTuple::fields(0);
   473   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
   475   return TypeFunc::make(domain, range);
   476 }
   479 const TypeFunc *OptoRuntime::new_array_Type() {
   480   // create input type (domain)
   481   const Type **fields = TypeTuple::fields(2);
   482   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
   483   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
   484   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   486   // create result type (range)
   487   fields = TypeTuple::fields(1);
   488   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   490   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   492   return TypeFunc::make(domain, range);
   493 }
   495 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
   496   // create input type (domain)
   497   const int nargs = ndim + 1;
   498   const Type **fields = TypeTuple::fields(nargs);
   499   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
   500   for( int i = 1; i < nargs; i++ )
   501     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
   502   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
   504   // create result type (range)
   505   fields = TypeTuple::fields(1);
   506   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   507   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   509   return TypeFunc::make(domain, range);
   510 }
   512 const TypeFunc *OptoRuntime::multianewarray2_Type() {
   513   return multianewarray_Type(2);
   514 }
   516 const TypeFunc *OptoRuntime::multianewarray3_Type() {
   517   return multianewarray_Type(3);
   518 }
   520 const TypeFunc *OptoRuntime::multianewarray4_Type() {
   521   return multianewarray_Type(4);
   522 }
   524 const TypeFunc *OptoRuntime::multianewarray5_Type() {
   525   return multianewarray_Type(5);
   526 }
   528 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
   529   // create input type (domain)
   530   const Type **fields = TypeTuple::fields(2);
   531   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
   532   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
   533   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   535   // create result type (range)
   536   fields = TypeTuple::fields(1);
   537   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   538   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   540   return TypeFunc::make(domain, range);
   541 }
   543 const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
   544   const Type **fields = TypeTuple::fields(2);
   545   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
   546   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
   547   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   549   // create result type (range)
   550   fields = TypeTuple::fields(0);
   551   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
   553   return TypeFunc::make(domain, range);
   554 }
   556 const TypeFunc *OptoRuntime::g1_wb_post_Type() {
   558   const Type **fields = TypeTuple::fields(2);
   559   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
   560   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
   561   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   563   // create result type (range)
   564   fields = TypeTuple::fields(0);
   565   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   567   return TypeFunc::make(domain, range);
   568 }
   570 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
   571   // create input type (domain)
   572   const Type **fields = TypeTuple::fields(1);
   573   // Symbol* name of class to be loaded
   574   fields[TypeFunc::Parms+0] = TypeInt::INT;
   575   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   577   // create result type (range)
   578   fields = TypeTuple::fields(0);
   579   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
   581   return TypeFunc::make(domain, range);
   582 }
   584 # ifdef ENABLE_ZAP_DEAD_LOCALS
   585 // Type used for stub generation for zap_dead_locals.
   586 // No inputs or outputs
   587 const TypeFunc *OptoRuntime::zap_dead_locals_Type() {
   588   // create input type (domain)
   589   const Type **fields = TypeTuple::fields(0);
   590   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields);
   592   // create result type (range)
   593   fields = TypeTuple::fields(0);
   594   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields);
   596   return TypeFunc::make(domain,range);
   597 }
   598 # endif
   601 //-----------------------------------------------------------------------------
   602 // Monitor Handling
   603 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
   604   // create input type (domain)
   605   const Type **fields = TypeTuple::fields(2);
   606   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
   607   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
   608   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
   610   // create result type (range)
   611   fields = TypeTuple::fields(0);
   613   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
   615   return TypeFunc::make(domain,range);
   616 }
   619 //-----------------------------------------------------------------------------
   620 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
   621   // create input type (domain)
   622   const Type **fields = TypeTuple::fields(2);
   623   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
   624   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
   625   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
   627   // create result type (range)
   628   fields = TypeTuple::fields(0);
   630   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
   632   return TypeFunc::make(domain,range);
   633 }
   635 const TypeFunc* OptoRuntime::flush_windows_Type() {
   636   // create input type (domain)
   637   const Type** fields = TypeTuple::fields(1);
   638   fields[TypeFunc::Parms+0] = NULL; // void
   639   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
   641   // create result type
   642   fields = TypeTuple::fields(1);
   643   fields[TypeFunc::Parms+0] = NULL; // void
   644   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   646   return TypeFunc::make(domain, range);
   647 }
   649 const TypeFunc* OptoRuntime::l2f_Type() {
   650   // create input type (domain)
   651   const Type **fields = TypeTuple::fields(2);
   652   fields[TypeFunc::Parms+0] = TypeLong::LONG;
   653   fields[TypeFunc::Parms+1] = Type::HALF;
   654   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   656   // create result type (range)
   657   fields = TypeTuple::fields(1);
   658   fields[TypeFunc::Parms+0] = Type::FLOAT;
   659   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   661   return TypeFunc::make(domain, range);
   662 }
   664 const TypeFunc* OptoRuntime::modf_Type() {
   665   const Type **fields = TypeTuple::fields(2);
   666   fields[TypeFunc::Parms+0] = Type::FLOAT;
   667   fields[TypeFunc::Parms+1] = Type::FLOAT;
   668   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   670   // create result type (range)
   671   fields = TypeTuple::fields(1);
   672   fields[TypeFunc::Parms+0] = Type::FLOAT;
   674   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   676   return TypeFunc::make(domain, range);
   677 }
   679 const TypeFunc *OptoRuntime::Math_D_D_Type() {
   680   // create input type (domain)
   681   const Type **fields = TypeTuple::fields(2);
   682   // Symbol* name of class to be loaded
   683   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   684   fields[TypeFunc::Parms+1] = Type::HALF;
   685   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   687   // create result type (range)
   688   fields = TypeTuple::fields(2);
   689   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   690   fields[TypeFunc::Parms+1] = Type::HALF;
   691   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
   693   return TypeFunc::make(domain, range);
   694 }
   696 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
   697   const Type **fields = TypeTuple::fields(4);
   698   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   699   fields[TypeFunc::Parms+1] = Type::HALF;
   700   fields[TypeFunc::Parms+2] = Type::DOUBLE;
   701   fields[TypeFunc::Parms+3] = Type::HALF;
   702   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
   704   // create result type (range)
   705   fields = TypeTuple::fields(2);
   706   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   707   fields[TypeFunc::Parms+1] = Type::HALF;
   708   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
   710   return TypeFunc::make(domain, range);
   711 }
   713 //-------------- currentTimeMillis, currentTimeNanos, etc
   715 const TypeFunc* OptoRuntime::void_long_Type() {
   716   // create input type (domain)
   717   const Type **fields = TypeTuple::fields(0);
   718   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
   720   // create result type (range)
   721   fields = TypeTuple::fields(2);
   722   fields[TypeFunc::Parms+0] = TypeLong::LONG;
   723   fields[TypeFunc::Parms+1] = Type::HALF;
   724   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
   726   return TypeFunc::make(domain, range);
   727 }
   729 // arraycopy stub variations:
   730 enum ArrayCopyType {
   731   ac_fast,                      // void(ptr, ptr, size_t)
   732   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
   733   ac_slow,                      // void(ptr, int, ptr, int, int)
   734   ac_generic                    //  int(ptr, int, ptr, int, int)
   735 };
   737 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
   738   // create input type (domain)
   739   int num_args      = (act == ac_fast ? 3 : 5);
   740   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
   741   int argcnt = num_args;
   742   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
   743   const Type** fields = TypeTuple::fields(argcnt);
   744   int argp = TypeFunc::Parms;
   745   fields[argp++] = TypePtr::NOTNULL;    // src
   746   if (num_size_args == 0) {
   747     fields[argp++] = TypeInt::INT;      // src_pos
   748   }
   749   fields[argp++] = TypePtr::NOTNULL;    // dest
   750   if (num_size_args == 0) {
   751     fields[argp++] = TypeInt::INT;      // dest_pos
   752     fields[argp++] = TypeInt::INT;      // length
   753   }
   754   while (num_size_args-- > 0) {
   755     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
   756     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
   757   }
   758   if (act == ac_checkcast) {
   759     fields[argp++] = TypePtr::NOTNULL;  // super_klass
   760   }
   761   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
   762   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   764   // create result type if needed
   765   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
   766   fields = TypeTuple::fields(1);
   767   if (retcnt == 0)
   768     fields[TypeFunc::Parms+0] = NULL; // void
   769   else
   770     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
   771   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
   772   return TypeFunc::make(domain, range);
   773 }
   775 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
   776   // This signature is simple:  Two base pointers and a size_t.
   777   return make_arraycopy_Type(ac_fast);
   778 }
   780 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
   781   // An extension of fast_arraycopy_Type which adds type checking.
   782   return make_arraycopy_Type(ac_checkcast);
   783 }
   785 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
   786   // This signature is exactly the same as System.arraycopy.
   787   // There are no intptr_t (int/long) arguments.
   788   return make_arraycopy_Type(ac_slow);
   789 }
   791 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
   792   // This signature is like System.arraycopy, except that it returns status.
   793   return make_arraycopy_Type(ac_generic);
   794 }
   797 const TypeFunc* OptoRuntime::array_fill_Type() {
   798   // create input type (domain): pointer, int, size_t
   799   const Type** fields = TypeTuple::fields(3 LP64_ONLY( + 1));
   800   int argp = TypeFunc::Parms;
   801   fields[argp++] = TypePtr::NOTNULL;
   802   fields[argp++] = TypeInt::INT;
   803   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
   804   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
   805   const TypeTuple *domain = TypeTuple::make(argp, fields);
   807   // create result type
   808   fields = TypeTuple::fields(1);
   809   fields[TypeFunc::Parms+0] = NULL; // void
   810   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   812   return TypeFunc::make(domain, range);
   813 }
   815 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
   816 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
   817   // create input type (domain)
   818   int num_args      = 3;
   819   int argcnt = num_args;
   820   const Type** fields = TypeTuple::fields(argcnt);
   821   int argp = TypeFunc::Parms;
   822   fields[argp++] = TypePtr::NOTNULL;    // src
   823   fields[argp++] = TypePtr::NOTNULL;    // dest
   824   fields[argp++] = TypePtr::NOTNULL;    // k array
   825   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
   826   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   828   // no result type needed
   829   fields = TypeTuple::fields(1);
   830   fields[TypeFunc::Parms+0] = NULL; // void
   831   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
   832   return TypeFunc::make(domain, range);
   833 }
   835 /**
   836  * int updateBytesCRC32(int crc, byte* b, int len)
   837  */
   838 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
   839   // create input type (domain)
   840   int num_args      = 3;
   841   int argcnt = num_args;
   842   const Type** fields = TypeTuple::fields(argcnt);
   843   int argp = TypeFunc::Parms;
   844   fields[argp++] = TypeInt::INT;        // crc
   845   fields[argp++] = TypePtr::NOTNULL;    // src
   846   fields[argp++] = TypeInt::INT;        // len
   847   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
   848   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   850   // result type needed
   851   fields = TypeTuple::fields(1);
   852   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
   853   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
   854   return TypeFunc::make(domain, range);
   855 }
   857 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning void
   858 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
   859   // create input type (domain)
   860   int num_args      = 5;
   861   int argcnt = num_args;
   862   const Type** fields = TypeTuple::fields(argcnt);
   863   int argp = TypeFunc::Parms;
   864   fields[argp++] = TypePtr::NOTNULL;    // src
   865   fields[argp++] = TypePtr::NOTNULL;    // dest
   866   fields[argp++] = TypePtr::NOTNULL;    // k array
   867   fields[argp++] = TypePtr::NOTNULL;    // r array
   868   fields[argp++] = TypeInt::INT;        // src len
   869   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
   870   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   872   // no result type needed
   873   fields = TypeTuple::fields(1);
   874   fields[TypeFunc::Parms+0] = NULL; // void
   875   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
   876   return TypeFunc::make(domain, range);
   877 }
   879 //------------- Interpreter state access for on stack replacement
   880 const TypeFunc* OptoRuntime::osr_end_Type() {
   881   // create input type (domain)
   882   const Type **fields = TypeTuple::fields(1);
   883   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
   884   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   886   // create result type
   887   fields = TypeTuple::fields(1);
   888   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
   889   fields[TypeFunc::Parms+0] = NULL; // void
   890   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   891   return TypeFunc::make(domain, range);
   892 }
   894 //-------------- methodData update helpers
   896 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
   897   // create input type (domain)
   898   const Type **fields = TypeTuple::fields(2);
   899   fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
   900   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
   901   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   903   // create result type
   904   fields = TypeTuple::fields(1);
   905   fields[TypeFunc::Parms+0] = NULL; // void
   906   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   907   return TypeFunc::make(domain,range);
   908 }
   910 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
   911   if (receiver == NULL) return;
   912   Klass* receiver_klass = receiver->klass();
   914   intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
   915   int empty_row = -1;           // free row, if any is encountered
   917   // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
   918   for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
   919     // if (vc->receiver(row) == receiver_klass)
   920     int receiver_off = ReceiverTypeData::receiver_cell_index(row);
   921     intptr_t row_recv = *(mdp + receiver_off);
   922     if (row_recv == (intptr_t) receiver_klass) {
   923       // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
   924       int count_off = ReceiverTypeData::receiver_count_cell_index(row);
   925       *(mdp + count_off) += DataLayout::counter_increment;
   926       return;
   927     } else if (row_recv == 0) {
   928       // else if (vc->receiver(row) == NULL)
   929       empty_row = (int) row;
   930     }
   931   }
   933   if (empty_row != -1) {
   934     int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
   935     // vc->set_receiver(empty_row, receiver_klass);
   936     *(mdp + receiver_off) = (intptr_t) receiver_klass;
   937     // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
   938     int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
   939     *(mdp + count_off) = DataLayout::counter_increment;
   940   } else {
   941     // Receiver did not match any saved receiver and there is no empty row for it.
   942     // Increment total counter to indicate polymorphic case.
   943     intptr_t* count_p = (intptr_t*)(((byte*)(data)) + in_bytes(CounterData::count_offset()));
   944     *count_p += DataLayout::counter_increment;
   945   }
   946 JRT_END
   948 //-------------------------------------------------------------------------------------
   949 // register policy
   951 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
   952   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
   953   switch (register_save_policy[reg]) {
   954     case 'C': return false; //SOC
   955     case 'E': return true ; //SOE
   956     case 'N': return false; //NS
   957     case 'A': return false; //AS
   958   }
   959   ShouldNotReachHere();
   960   return false;
   961 }
   963 //-----------------------------------------------------------------------
   964 // Exceptions
   965 //
   967 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN;
   969 // The method is an entry that is always called by a C++ method not
   970 // directly from compiled code. Compiled code will call the C++ method following.
   971 // We can't allow async exception to be installed during  exception processing.
   972 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
   974   // Do not confuse exception_oop with pending_exception. The exception_oop
   975   // is only used to pass arguments into the method. Not for general
   976   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
   977   // the runtime stubs checks this on exit.
   978   assert(thread->exception_oop() != NULL, "exception oop is found");
   979   address handler_address = NULL;
   981   Handle exception(thread, thread->exception_oop());
   983   if (TraceExceptions) {
   984     trace_exception(exception(), thread->exception_pc(), "");
   985   }
   986   // for AbortVMOnException flag
   987   NOT_PRODUCT(Exceptions::debug_check_abort(exception));
   989   #ifdef ASSERT
   990     if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
   991       // should throw an exception here
   992       ShouldNotReachHere();
   993     }
   994   #endif
   997   // new exception handling: this method is entered only from adapters
   998   // exceptions from compiled java methods are handled in compiled code
   999   // using rethrow node
  1001   address pc = thread->exception_pc();
  1002   nm = CodeCache::find_nmethod(pc);
  1003   assert(nm != NULL, "No NMethod found");
  1004   if (nm->is_native_method()) {
  1005     fatal("Native method should not have path to exception handling");
  1006   } else {
  1007     // we are switching to old paradigm: search for exception handler in caller_frame
  1008     // instead in exception handler of caller_frame.sender()
  1010     if (JvmtiExport::can_post_on_exceptions()) {
  1011       // "Full-speed catching" is not necessary here,
  1012       // since we're notifying the VM on every catch.
  1013       // Force deoptimization and the rest of the lookup
  1014       // will be fine.
  1015       deoptimize_caller_frame(thread);
  1018     // Check the stack guard pages.  If enabled, look for handler in this frame;
  1019     // otherwise, forcibly unwind the frame.
  1020     //
  1021     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
  1022     bool force_unwind = !thread->reguard_stack();
  1023     bool deopting = false;
  1024     if (nm->is_deopt_pc(pc)) {
  1025       deopting = true;
  1026       RegisterMap map(thread, false);
  1027       frame deoptee = thread->last_frame().sender(&map);
  1028       assert(deoptee.is_deoptimized_frame(), "must be deopted");
  1029       // Adjust the pc back to the original throwing pc
  1030       pc = deoptee.pc();
  1033     // If we are forcing an unwind because of stack overflow then deopt is
  1034     // irrelevant since we are throwing the frame away anyway.
  1036     if (deopting && !force_unwind) {
  1037       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
  1038     } else {
  1040       handler_address =
  1041         force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
  1043       if (handler_address == NULL) {
  1044         Handle original_exception(thread, exception());
  1045         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true);
  1046         assert (handler_address != NULL, "must have compiled handler");
  1047         // Update the exception cache only when the unwind was not forced
  1048         // and there didn't happen another exception during the computation of the
  1049         // compiled exception handler.
  1050         if (!force_unwind && original_exception() == exception()) {
  1051           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
  1053       } else {
  1054         assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same");
  1058     thread->set_exception_pc(pc);
  1059     thread->set_exception_handler_pc(handler_address);
  1061     // Check if the exception PC is a MethodHandle call site.
  1062     thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
  1065   // Restore correct return pc.  Was saved above.
  1066   thread->set_exception_oop(exception());
  1067   return handler_address;
  1069 JRT_END
  1071 // We are entering here from exception_blob
  1072 // If there is a compiled exception handler in this method, we will continue there;
  1073 // otherwise we will unwind the stack and continue at the caller of top frame method
  1074 // Note we enter without the usual JRT wrapper. We will call a helper routine that
  1075 // will do the normal VM entry. We do it this way so that we can see if the nmethod
  1076 // we looked up the handler for has been deoptimized in the meantime. If it has been
  1077 // we must not use the handler and instead return the deopt blob.
  1078 address OptoRuntime::handle_exception_C(JavaThread* thread) {
  1079 //
  1080 // We are in Java not VM and in debug mode we have a NoHandleMark
  1081 //
  1082 #ifndef PRODUCT
  1083   SharedRuntime::_find_handler_ctr++;          // find exception handler
  1084 #endif
  1085   debug_only(NoHandleMark __hm;)
  1086   nmethod* nm = NULL;
  1087   address handler_address = NULL;
  1089     // Enter the VM
  1091     ResetNoHandleMark rnhm;
  1092     handler_address = handle_exception_C_helper(thread, nm);
  1095   // Back in java: Use no oops, DON'T safepoint
  1097   // Now check to see if the handler we are returning is in a now
  1098   // deoptimized frame
  1100   if (nm != NULL) {
  1101     RegisterMap map(thread, false);
  1102     frame caller = thread->last_frame().sender(&map);
  1103 #ifdef ASSERT
  1104     assert(caller.is_compiled_frame(), "must be");
  1105 #endif // ASSERT
  1106     if (caller.is_deoptimized_frame()) {
  1107       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
  1110   return handler_address;
  1113 //------------------------------rethrow----------------------------------------
  1114 // We get here after compiled code has executed a 'RethrowNode'.  The callee
  1115 // is either throwing or rethrowing an exception.  The callee-save registers
  1116 // have been restored, synchronized objects have been unlocked and the callee
  1117 // stack frame has been removed.  The return address was passed in.
  1118 // Exception oop is passed as the 1st argument.  This routine is then called
  1119 // from the stub.  On exit, we know where to jump in the caller's code.
  1120 // After this C code exits, the stub will pop his frame and end in a jump
  1121 // (instead of a return).  We enter the caller's default handler.
  1122 //
  1123 // This must be JRT_LEAF:
  1124 //     - caller will not change its state as we cannot block on exit,
  1125 //       therefore raw_exception_handler_for_return_address is all it takes
  1126 //       to handle deoptimized blobs
  1127 //
  1128 // However, there needs to be a safepoint check in the middle!  So compiled
  1129 // safepoints are completely watertight.
  1130 //
  1131 // Thus, it cannot be a leaf since it contains the No_GC_Verifier.
  1132 //
  1133 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
  1134 //
  1135 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
  1136 #ifndef PRODUCT
  1137   SharedRuntime::_rethrow_ctr++;               // count rethrows
  1138 #endif
  1139   assert (exception != NULL, "should have thrown a NULLPointerException");
  1140 #ifdef ASSERT
  1141   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
  1142     // should throw an exception here
  1143     ShouldNotReachHere();
  1145 #endif
  1147   thread->set_vm_result(exception);
  1148   // Frame not compiled (handles deoptimization blob)
  1149   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
  1153 const TypeFunc *OptoRuntime::rethrow_Type() {
  1154   // create input type (domain)
  1155   const Type **fields = TypeTuple::fields(1);
  1156   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
  1157   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
  1159   // create result type (range)
  1160   fields = TypeTuple::fields(1);
  1161   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
  1162   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
  1164   return TypeFunc::make(domain, range);
  1168 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
  1169   // Deoptimize the caller before continuing, as the compiled
  1170   // exception handler table may not be valid.
  1171   if (!StressCompiledExceptionHandlers && doit) {
  1172     deoptimize_caller_frame(thread);
  1176 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
  1177   // Called from within the owner thread, so no need for safepoint
  1178   RegisterMap reg_map(thread);
  1179   frame stub_frame = thread->last_frame();
  1180   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
  1181   frame caller_frame = stub_frame.sender(&reg_map);
  1183   // Deoptimize the caller frame.
  1184   Deoptimization::deoptimize_frame(thread, caller_frame.id());
  1188 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
  1189   // Called from within the owner thread, so no need for safepoint
  1190   RegisterMap reg_map(thread);
  1191   frame stub_frame = thread->last_frame();
  1192   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
  1193   frame caller_frame = stub_frame.sender(&reg_map);
  1194   return caller_frame.is_deoptimized_frame();
  1198 const TypeFunc *OptoRuntime::register_finalizer_Type() {
  1199   // create input type (domain)
  1200   const Type **fields = TypeTuple::fields(1);
  1201   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
  1202   // // The JavaThread* is passed to each routine as the last argument
  1203   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
  1204   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
  1206   // create result type (range)
  1207   fields = TypeTuple::fields(0);
  1209   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
  1211   return TypeFunc::make(domain,range);
  1215 //-----------------------------------------------------------------------------
  1216 // Dtrace support.  entry and exit probes have the same signature
  1217 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
  1218   // create input type (domain)
  1219   const Type **fields = TypeTuple::fields(2);
  1220   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
  1221   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
  1222   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
  1224   // create result type (range)
  1225   fields = TypeTuple::fields(0);
  1227   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
  1229   return TypeFunc::make(domain,range);
  1232 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
  1233   // create input type (domain)
  1234   const Type **fields = TypeTuple::fields(2);
  1235   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
  1236   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
  1238   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
  1240   // create result type (range)
  1241   fields = TypeTuple::fields(0);
  1243   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
  1245   return TypeFunc::make(domain,range);
  1249 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
  1250   assert(obj->is_oop(), "must be a valid oop");
  1251   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
  1252   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
  1253 JRT_END
  1255 //-----------------------------------------------------------------------------
  1257 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
  1259 //
  1260 // dump the collected NamedCounters.
  1261 //
  1262 void OptoRuntime::print_named_counters() {
  1263   int total_lock_count = 0;
  1264   int eliminated_lock_count = 0;
  1266   NamedCounter* c = _named_counters;
  1267   while (c) {
  1268     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
  1269       int count = c->count();
  1270       if (count > 0) {
  1271         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
  1272         if (Verbose) {
  1273           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
  1275         total_lock_count += count;
  1276         if (eliminated) {
  1277           eliminated_lock_count += count;
  1280     } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
  1281       BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
  1282       if (blc->nonzero()) {
  1283         tty->print_cr("%s", c->name());
  1284         blc->print_on(tty);
  1287     c = c->next();
  1289   if (total_lock_count > 0) {
  1290     tty->print_cr("dynamic locks: %d", total_lock_count);
  1291     if (eliminated_lock_count) {
  1292       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
  1293                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
  1298 //
  1299 //  Allocate a new NamedCounter.  The JVMState is used to generate the
  1300 //  name which consists of method@line for the inlining tree.
  1301 //
  1303 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
  1304   int max_depth = youngest_jvms->depth();
  1306   // Visit scopes from youngest to oldest.
  1307   bool first = true;
  1308   stringStream st;
  1309   for (int depth = max_depth; depth >= 1; depth--) {
  1310     JVMState* jvms = youngest_jvms->of_depth(depth);
  1311     ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
  1312     if (!first) {
  1313       st.print(" ");
  1314     } else {
  1315       first = false;
  1317     int bci = jvms->bci();
  1318     if (bci < 0) bci = 0;
  1319     st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
  1320     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
  1322   NamedCounter* c;
  1323   if (tag == NamedCounter::BiasedLockingCounter) {
  1324     c = new BiasedLockingNamedCounter(strdup(st.as_string()));
  1325   } else {
  1326     c = new NamedCounter(strdup(st.as_string()), tag);
  1329   // atomically add the new counter to the head of the list.  We only
  1330   // add counters so this is safe.
  1331   NamedCounter* head;
  1332   do {
  1333     head = _named_counters;
  1334     c->set_next(head);
  1335   } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
  1336   return c;
  1339 //-----------------------------------------------------------------------------
  1340 // Non-product code
  1341 #ifndef PRODUCT
  1343 int trace_exception_counter = 0;
  1344 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) {
  1345   ttyLocker ttyl;
  1346   trace_exception_counter++;
  1347   tty->print("%d [Exception (%s): ", trace_exception_counter, msg);
  1348   exception_oop->print_value();
  1349   tty->print(" in ");
  1350   CodeBlob* blob = CodeCache::find_blob(exception_pc);
  1351   if (blob->is_nmethod()) {
  1352     ((nmethod*)blob)->method()->print_value();
  1353   } else if (blob->is_runtime_stub()) {
  1354     tty->print("<runtime-stub>");
  1355   } else {
  1356     tty->print("<unknown>");
  1358   tty->print(" at " INTPTR_FORMAT,  exception_pc);
  1359   tty->print_cr("]");
  1362 #endif  // PRODUCT
  1365 # ifdef ENABLE_ZAP_DEAD_LOCALS
  1366 // Called from call sites in compiled code with oop maps (actually safepoints)
  1367 // Zaps dead locals in first java frame.
  1368 // Is entry because may need to lock to generate oop maps
  1369 // Currently, only used for compiler frames, but someday may be used
  1370 // for interpreter frames, too.
  1372 int OptoRuntime::ZapDeadCompiledLocals_count = 0;
  1374 // avoid pointers to member funcs with these helpers
  1375 static bool is_java_frame(  frame* f) { return f->is_java_frame();   }
  1376 static bool is_native_frame(frame* f) { return f->is_native_frame(); }
  1379 void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread,
  1380                                                 bool (*is_this_the_right_frame_to_zap)(frame*)) {
  1381   assert(JavaThread::current() == thread, "is this needed?");
  1383   if ( !ZapDeadCompiledLocals )  return;
  1385   bool skip = false;
  1387        if ( ZapDeadCompiledLocalsFirst  ==  0  ) ; // nothing special
  1388   else if ( ZapDeadCompiledLocalsFirst  >  ZapDeadCompiledLocals_count )  skip = true;
  1389   else if ( ZapDeadCompiledLocalsFirst  == ZapDeadCompiledLocals_count )
  1390     warning("starting zapping after skipping");
  1392        if ( ZapDeadCompiledLocalsLast  ==  -1  ) ; // nothing special
  1393   else if ( ZapDeadCompiledLocalsLast  <   ZapDeadCompiledLocals_count )  skip = true;
  1394   else if ( ZapDeadCompiledLocalsLast  ==  ZapDeadCompiledLocals_count )
  1395     warning("about to zap last zap");
  1397   ++ZapDeadCompiledLocals_count; // counts skipped zaps, too
  1399   if ( skip )  return;
  1401   // find java frame and zap it
  1403   for (StackFrameStream sfs(thread);  !sfs.is_done();  sfs.next()) {
  1404     if (is_this_the_right_frame_to_zap(sfs.current()) ) {
  1405       sfs.current()->zap_dead_locals(thread, sfs.register_map());
  1406       return;
  1409   warning("no frame found to zap in zap_dead_Java_locals_C");
  1412 JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread))
  1413   zap_dead_java_or_native_locals(thread, is_java_frame);
  1414 JRT_END
  1416 // The following does not work because for one thing, the
  1417 // thread state is wrong; it expects java, but it is native.
  1418 // Also, the invariants in a native stub are different and
  1419 // I'm not sure it is safe to have a MachCalRuntimeDirectNode
  1420 // in there.
  1421 // So for now, we do not zap in native stubs.
  1423 JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread))
  1424   zap_dead_java_or_native_locals(thread, is_native_frame);
  1425 JRT_END
  1427 # endif

mercurial