src/os/linux/vm/os_linux.cpp

Mon, 29 Aug 2011 17:42:39 -0700

author
iveresov
date
Mon, 29 Aug 2011 17:42:39 -0700
changeset 3087
9447b2fb6fcf
parent 3085
3cd0157e1d4d
child 3113
27702f012017
permissions
-rw-r--r--

7082645: Hotspot doesn't compile on old linuxes after 7060836
Summary: Move syscall ids definitions into os_linux.cpp
Reviewed-by: johnc

     1 /*
     2  * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 # define __STDC_FORMAT_MACROS
    27 // no precompiled headers
    28 #include "classfile/classLoader.hpp"
    29 #include "classfile/systemDictionary.hpp"
    30 #include "classfile/vmSymbols.hpp"
    31 #include "code/icBuffer.hpp"
    32 #include "code/vtableStubs.hpp"
    33 #include "compiler/compileBroker.hpp"
    34 #include "interpreter/interpreter.hpp"
    35 #include "jvm_linux.h"
    36 #include "memory/allocation.inline.hpp"
    37 #include "memory/filemap.hpp"
    38 #include "mutex_linux.inline.hpp"
    39 #include "oops/oop.inline.hpp"
    40 #include "os_share_linux.hpp"
    41 #include "prims/jniFastGetField.hpp"
    42 #include "prims/jvm.h"
    43 #include "prims/jvm_misc.hpp"
    44 #include "runtime/arguments.hpp"
    45 #include "runtime/extendedPC.hpp"
    46 #include "runtime/globals.hpp"
    47 #include "runtime/interfaceSupport.hpp"
    48 #include "runtime/java.hpp"
    49 #include "runtime/javaCalls.hpp"
    50 #include "runtime/mutexLocker.hpp"
    51 #include "runtime/objectMonitor.hpp"
    52 #include "runtime/osThread.hpp"
    53 #include "runtime/perfMemory.hpp"
    54 #include "runtime/sharedRuntime.hpp"
    55 #include "runtime/statSampler.hpp"
    56 #include "runtime/stubRoutines.hpp"
    57 #include "runtime/threadCritical.hpp"
    58 #include "runtime/timer.hpp"
    59 #include "services/attachListener.hpp"
    60 #include "services/runtimeService.hpp"
    61 #include "thread_linux.inline.hpp"
    62 #include "utilities/decoder.hpp"
    63 #include "utilities/defaultStream.hpp"
    64 #include "utilities/events.hpp"
    65 #include "utilities/growableArray.hpp"
    66 #include "utilities/vmError.hpp"
    67 #ifdef TARGET_ARCH_x86
    68 # include "assembler_x86.inline.hpp"
    69 # include "nativeInst_x86.hpp"
    70 #endif
    71 #ifdef TARGET_ARCH_sparc
    72 # include "assembler_sparc.inline.hpp"
    73 # include "nativeInst_sparc.hpp"
    74 #endif
    75 #ifdef TARGET_ARCH_zero
    76 # include "assembler_zero.inline.hpp"
    77 # include "nativeInst_zero.hpp"
    78 #endif
    79 #ifdef TARGET_ARCH_arm
    80 # include "assembler_arm.inline.hpp"
    81 # include "nativeInst_arm.hpp"
    82 #endif
    83 #ifdef TARGET_ARCH_ppc
    84 # include "assembler_ppc.inline.hpp"
    85 # include "nativeInst_ppc.hpp"
    86 #endif
    87 #ifdef COMPILER1
    88 #include "c1/c1_Runtime1.hpp"
    89 #endif
    90 #ifdef COMPILER2
    91 #include "opto/runtime.hpp"
    92 #endif
    94 // put OS-includes here
    95 # include <sys/types.h>
    96 # include <sys/mman.h>
    97 # include <sys/stat.h>
    98 # include <sys/select.h>
    99 # include <pthread.h>
   100 # include <signal.h>
   101 # include <errno.h>
   102 # include <dlfcn.h>
   103 # include <stdio.h>
   104 # include <unistd.h>
   105 # include <sys/resource.h>
   106 # include <pthread.h>
   107 # include <sys/stat.h>
   108 # include <sys/time.h>
   109 # include <sys/times.h>
   110 # include <sys/utsname.h>
   111 # include <sys/socket.h>
   112 # include <sys/wait.h>
   113 # include <pwd.h>
   114 # include <poll.h>
   115 # include <semaphore.h>
   116 # include <fcntl.h>
   117 # include <string.h>
   118 # include <syscall.h>
   119 # include <sys/sysinfo.h>
   120 # include <gnu/libc-version.h>
   121 # include <sys/ipc.h>
   122 # include <sys/shm.h>
   123 # include <link.h>
   124 # include <stdint.h>
   125 # include <inttypes.h>
   126 # include <sys/ioctl.h>
   128 #define MAX_PATH    (2 * K)
   130 // for timer info max values which include all bits
   131 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
   132 #define SEC_IN_NANOSECS  1000000000LL
   134 #define LARGEPAGES_BIT (1 << 6)
   135 ////////////////////////////////////////////////////////////////////////////////
   136 // global variables
   137 julong os::Linux::_physical_memory = 0;
   139 address   os::Linux::_initial_thread_stack_bottom = NULL;
   140 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
   142 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
   143 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
   144 Mutex* os::Linux::_createThread_lock = NULL;
   145 pthread_t os::Linux::_main_thread;
   146 int os::Linux::_page_size = -1;
   147 bool os::Linux::_is_floating_stack = false;
   148 bool os::Linux::_is_NPTL = false;
   149 bool os::Linux::_supports_fast_thread_cpu_time = false;
   150 const char * os::Linux::_glibc_version = NULL;
   151 const char * os::Linux::_libpthread_version = NULL;
   153 static jlong initial_time_count=0;
   155 static int clock_tics_per_sec = 100;
   157 // For diagnostics to print a message once. see run_periodic_checks
   158 static sigset_t check_signal_done;
   159 static bool check_signals = true;;
   161 static pid_t _initial_pid = 0;
   163 /* Signal number used to suspend/resume a thread */
   165 /* do not use any signal number less than SIGSEGV, see 4355769 */
   166 static int SR_signum = SIGUSR2;
   167 sigset_t SR_sigset;
   169 /* Used to protect dlsym() calls */
   170 static pthread_mutex_t dl_mutex;
   172 #ifdef JAVASE_EMBEDDED
   173 class MemNotifyThread: public Thread {
   174   friend class VMStructs;
   175  public:
   176   virtual void run();
   178  private:
   179   static MemNotifyThread* _memnotify_thread;
   180   int _fd;
   182  public:
   184   // Constructor
   185   MemNotifyThread(int fd);
   187   // Tester
   188   bool is_memnotify_thread() const { return true; }
   190   // Printing
   191   char* name() const { return (char*)"Linux MemNotify Thread"; }
   193   // Returns the single instance of the MemNotifyThread
   194   static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
   196   // Create and start the single instance of MemNotifyThread
   197   static void start();
   198 };
   199 #endif // JAVASE_EMBEDDED
   201 // utility functions
   203 static int SR_initialize();
   204 static int SR_finalize();
   206 julong os::available_memory() {
   207   return Linux::available_memory();
   208 }
   210 julong os::Linux::available_memory() {
   211   // values in struct sysinfo are "unsigned long"
   212   struct sysinfo si;
   213   sysinfo(&si);
   215   return (julong)si.freeram * si.mem_unit;
   216 }
   218 julong os::physical_memory() {
   219   return Linux::physical_memory();
   220 }
   222 julong os::allocatable_physical_memory(julong size) {
   223 #ifdef _LP64
   224   return size;
   225 #else
   226   julong result = MIN2(size, (julong)3800*M);
   227    if (!is_allocatable(result)) {
   228      // See comments under solaris for alignment considerations
   229      julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
   230      result =  MIN2(size, reasonable_size);
   231    }
   232    return result;
   233 #endif // _LP64
   234 }
   236 ////////////////////////////////////////////////////////////////////////////////
   237 // environment support
   239 bool os::getenv(const char* name, char* buf, int len) {
   240   const char* val = ::getenv(name);
   241   if (val != NULL && strlen(val) < (size_t)len) {
   242     strcpy(buf, val);
   243     return true;
   244   }
   245   if (len > 0) buf[0] = 0;  // return a null string
   246   return false;
   247 }
   250 // Return true if user is running as root.
   252 bool os::have_special_privileges() {
   253   static bool init = false;
   254   static bool privileges = false;
   255   if (!init) {
   256     privileges = (getuid() != geteuid()) || (getgid() != getegid());
   257     init = true;
   258   }
   259   return privileges;
   260 }
   263 #ifndef SYS_gettid
   264 // i386: 224, ia64: 1105, amd64: 186, sparc 143
   265 #ifdef __ia64__
   266 #define SYS_gettid 1105
   267 #elif __i386__
   268 #define SYS_gettid 224
   269 #elif __amd64__
   270 #define SYS_gettid 186
   271 #elif __sparc__
   272 #define SYS_gettid 143
   273 #else
   274 #error define gettid for the arch
   275 #endif
   276 #endif
   278 // Cpu architecture string
   279 #if   defined(ZERO)
   280 static char cpu_arch[] = ZERO_LIBARCH;
   281 #elif defined(IA64)
   282 static char cpu_arch[] = "ia64";
   283 #elif defined(IA32)
   284 static char cpu_arch[] = "i386";
   285 #elif defined(AMD64)
   286 static char cpu_arch[] = "amd64";
   287 #elif defined(ARM)
   288 static char cpu_arch[] = "arm";
   289 #elif defined(PPC)
   290 static char cpu_arch[] = "ppc";
   291 #elif defined(SPARC)
   292 #  ifdef _LP64
   293 static char cpu_arch[] = "sparcv9";
   294 #  else
   295 static char cpu_arch[] = "sparc";
   296 #  endif
   297 #else
   298 #error Add appropriate cpu_arch setting
   299 #endif
   302 // pid_t gettid()
   303 //
   304 // Returns the kernel thread id of the currently running thread. Kernel
   305 // thread id is used to access /proc.
   306 //
   307 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
   308 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
   309 //
   310 pid_t os::Linux::gettid() {
   311   int rslt = syscall(SYS_gettid);
   312   if (rslt == -1) {
   313      // old kernel, no NPTL support
   314      return getpid();
   315   } else {
   316      return (pid_t)rslt;
   317   }
   318 }
   320 // Most versions of linux have a bug where the number of processors are
   321 // determined by looking at the /proc file system.  In a chroot environment,
   322 // the system call returns 1.  This causes the VM to act as if it is
   323 // a single processor and elide locking (see is_MP() call).
   324 static bool unsafe_chroot_detected = false;
   325 static const char *unstable_chroot_error = "/proc file system not found.\n"
   326                      "Java may be unstable running multithreaded in a chroot "
   327                      "environment on Linux when /proc filesystem is not mounted.";
   329 void os::Linux::initialize_system_info() {
   330   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
   331   if (processor_count() == 1) {
   332     pid_t pid = os::Linux::gettid();
   333     char fname[32];
   334     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
   335     FILE *fp = fopen(fname, "r");
   336     if (fp == NULL) {
   337       unsafe_chroot_detected = true;
   338     } else {
   339       fclose(fp);
   340     }
   341   }
   342   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
   343   assert(processor_count() > 0, "linux error");
   344 }
   346 void os::init_system_properties_values() {
   347 //  char arch[12];
   348 //  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
   350   // The next steps are taken in the product version:
   351   //
   352   // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
   353   // This library should be located at:
   354   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
   355   //
   356   // If "/jre/lib/" appears at the right place in the path, then we
   357   // assume libjvm[_g].so is installed in a JDK and we use this path.
   358   //
   359   // Otherwise exit with message: "Could not create the Java virtual machine."
   360   //
   361   // The following extra steps are taken in the debugging version:
   362   //
   363   // If "/jre/lib/" does NOT appear at the right place in the path
   364   // instead of exit check for $JAVA_HOME environment variable.
   365   //
   366   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
   367   // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
   368   // it looks like libjvm[_g].so is installed there
   369   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
   370   //
   371   // Otherwise exit.
   372   //
   373   // Important note: if the location of libjvm.so changes this
   374   // code needs to be changed accordingly.
   376   // The next few definitions allow the code to be verbatim:
   377 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n))
   378 #define getenv(n) ::getenv(n)
   380 /*
   381  * See ld(1):
   382  *      The linker uses the following search paths to locate required
   383  *      shared libraries:
   384  *        1: ...
   385  *        ...
   386  *        7: The default directories, normally /lib and /usr/lib.
   387  */
   388 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
   389 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
   390 #else
   391 #define DEFAULT_LIBPATH "/lib:/usr/lib"
   392 #endif
   394 #define EXTENSIONS_DIR  "/lib/ext"
   395 #define ENDORSED_DIR    "/lib/endorsed"
   396 #define REG_DIR         "/usr/java/packages"
   398   {
   399     /* sysclasspath, java_home, dll_dir */
   400     {
   401         char *home_path;
   402         char *dll_path;
   403         char *pslash;
   404         char buf[MAXPATHLEN];
   405         os::jvm_path(buf, sizeof(buf));
   407         // Found the full path to libjvm.so.
   408         // Now cut the path to <java_home>/jre if we can.
   409         *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
   410         pslash = strrchr(buf, '/');
   411         if (pslash != NULL)
   412             *pslash = '\0';           /* get rid of /{client|server|hotspot} */
   413         dll_path = malloc(strlen(buf) + 1);
   414         if (dll_path == NULL)
   415             return;
   416         strcpy(dll_path, buf);
   417         Arguments::set_dll_dir(dll_path);
   419         if (pslash != NULL) {
   420             pslash = strrchr(buf, '/');
   421             if (pslash != NULL) {
   422                 *pslash = '\0';       /* get rid of /<arch> */
   423                 pslash = strrchr(buf, '/');
   424                 if (pslash != NULL)
   425                     *pslash = '\0';   /* get rid of /lib */
   426             }
   427         }
   429         home_path = malloc(strlen(buf) + 1);
   430         if (home_path == NULL)
   431             return;
   432         strcpy(home_path, buf);
   433         Arguments::set_java_home(home_path);
   435         if (!set_boot_path('/', ':'))
   436             return;
   437     }
   439     /*
   440      * Where to look for native libraries
   441      *
   442      * Note: Due to a legacy implementation, most of the library path
   443      * is set in the launcher.  This was to accomodate linking restrictions
   444      * on legacy Linux implementations (which are no longer supported).
   445      * Eventually, all the library path setting will be done here.
   446      *
   447      * However, to prevent the proliferation of improperly built native
   448      * libraries, the new path component /usr/java/packages is added here.
   449      * Eventually, all the library path setting will be done here.
   450      */
   451     {
   452         char *ld_library_path;
   454         /*
   455          * Construct the invariant part of ld_library_path. Note that the
   456          * space for the colon and the trailing null are provided by the
   457          * nulls included by the sizeof operator (so actually we allocate
   458          * a byte more than necessary).
   459          */
   460         ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
   461             strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
   462         sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
   464         /*
   465          * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
   466          * should always exist (until the legacy problem cited above is
   467          * addressed).
   468          */
   469         char *v = getenv("LD_LIBRARY_PATH");
   470         if (v != NULL) {
   471             char *t = ld_library_path;
   472             /* That's +1 for the colon and +1 for the trailing '\0' */
   473             ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
   474             sprintf(ld_library_path, "%s:%s", v, t);
   475         }
   476         Arguments::set_library_path(ld_library_path);
   477     }
   479     /*
   480      * Extensions directories.
   481      *
   482      * Note that the space for the colon and the trailing null are provided
   483      * by the nulls included by the sizeof operator (so actually one byte more
   484      * than necessary is allocated).
   485      */
   486     {
   487         char *buf = malloc(strlen(Arguments::get_java_home()) +
   488             sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
   489         sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
   490             Arguments::get_java_home());
   491         Arguments::set_ext_dirs(buf);
   492     }
   494     /* Endorsed standards default directory. */
   495     {
   496         char * buf;
   497         buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
   498         sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
   499         Arguments::set_endorsed_dirs(buf);
   500     }
   501   }
   503 #undef malloc
   504 #undef getenv
   505 #undef EXTENSIONS_DIR
   506 #undef ENDORSED_DIR
   508   // Done
   509   return;
   510 }
   512 ////////////////////////////////////////////////////////////////////////////////
   513 // breakpoint support
   515 void os::breakpoint() {
   516   BREAKPOINT;
   517 }
   519 extern "C" void breakpoint() {
   520   // use debugger to set breakpoint here
   521 }
   523 ////////////////////////////////////////////////////////////////////////////////
   524 // signal support
   526 debug_only(static bool signal_sets_initialized = false);
   527 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
   529 bool os::Linux::is_sig_ignored(int sig) {
   530       struct sigaction oact;
   531       sigaction(sig, (struct sigaction*)NULL, &oact);
   532       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
   533                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
   534       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
   535            return true;
   536       else
   537            return false;
   538 }
   540 void os::Linux::signal_sets_init() {
   541   // Should also have an assertion stating we are still single-threaded.
   542   assert(!signal_sets_initialized, "Already initialized");
   543   // Fill in signals that are necessarily unblocked for all threads in
   544   // the VM. Currently, we unblock the following signals:
   545   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
   546   //                         by -Xrs (=ReduceSignalUsage));
   547   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
   548   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
   549   // the dispositions or masks wrt these signals.
   550   // Programs embedding the VM that want to use the above signals for their
   551   // own purposes must, at this time, use the "-Xrs" option to prevent
   552   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
   553   // (See bug 4345157, and other related bugs).
   554   // In reality, though, unblocking these signals is really a nop, since
   555   // these signals are not blocked by default.
   556   sigemptyset(&unblocked_sigs);
   557   sigemptyset(&allowdebug_blocked_sigs);
   558   sigaddset(&unblocked_sigs, SIGILL);
   559   sigaddset(&unblocked_sigs, SIGSEGV);
   560   sigaddset(&unblocked_sigs, SIGBUS);
   561   sigaddset(&unblocked_sigs, SIGFPE);
   562   sigaddset(&unblocked_sigs, SR_signum);
   564   if (!ReduceSignalUsage) {
   565    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
   566       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
   567       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
   568    }
   569    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
   570       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
   571       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
   572    }
   573    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
   574       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
   575       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
   576    }
   577   }
   578   // Fill in signals that are blocked by all but the VM thread.
   579   sigemptyset(&vm_sigs);
   580   if (!ReduceSignalUsage)
   581     sigaddset(&vm_sigs, BREAK_SIGNAL);
   582   debug_only(signal_sets_initialized = true);
   584 }
   586 // These are signals that are unblocked while a thread is running Java.
   587 // (For some reason, they get blocked by default.)
   588 sigset_t* os::Linux::unblocked_signals() {
   589   assert(signal_sets_initialized, "Not initialized");
   590   return &unblocked_sigs;
   591 }
   593 // These are the signals that are blocked while a (non-VM) thread is
   594 // running Java. Only the VM thread handles these signals.
   595 sigset_t* os::Linux::vm_signals() {
   596   assert(signal_sets_initialized, "Not initialized");
   597   return &vm_sigs;
   598 }
   600 // These are signals that are blocked during cond_wait to allow debugger in
   601 sigset_t* os::Linux::allowdebug_blocked_signals() {
   602   assert(signal_sets_initialized, "Not initialized");
   603   return &allowdebug_blocked_sigs;
   604 }
   606 void os::Linux::hotspot_sigmask(Thread* thread) {
   608   //Save caller's signal mask before setting VM signal mask
   609   sigset_t caller_sigmask;
   610   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
   612   OSThread* osthread = thread->osthread();
   613   osthread->set_caller_sigmask(caller_sigmask);
   615   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
   617   if (!ReduceSignalUsage) {
   618     if (thread->is_VM_thread()) {
   619       // Only the VM thread handles BREAK_SIGNAL ...
   620       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
   621     } else {
   622       // ... all other threads block BREAK_SIGNAL
   623       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
   624     }
   625   }
   626 }
   628 //////////////////////////////////////////////////////////////////////////////
   629 // detecting pthread library
   631 void os::Linux::libpthread_init() {
   632   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
   633   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
   634   // generic name for earlier versions.
   635   // Define macros here so we can build HotSpot on old systems.
   636 # ifndef _CS_GNU_LIBC_VERSION
   637 # define _CS_GNU_LIBC_VERSION 2
   638 # endif
   639 # ifndef _CS_GNU_LIBPTHREAD_VERSION
   640 # define _CS_GNU_LIBPTHREAD_VERSION 3
   641 # endif
   643   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
   644   if (n > 0) {
   645      char *str = (char *)malloc(n);
   646      confstr(_CS_GNU_LIBC_VERSION, str, n);
   647      os::Linux::set_glibc_version(str);
   648   } else {
   649      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
   650      static char _gnu_libc_version[32];
   651      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
   652               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
   653      os::Linux::set_glibc_version(_gnu_libc_version);
   654   }
   656   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
   657   if (n > 0) {
   658      char *str = (char *)malloc(n);
   659      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
   660      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
   661      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
   662      // is the case. LinuxThreads has a hard limit on max number of threads.
   663      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
   664      // On the other hand, NPTL does not have such a limit, sysconf()
   665      // will return -1 and errno is not changed. Check if it is really NPTL.
   666      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
   667          strstr(str, "NPTL") &&
   668          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
   669        free(str);
   670        os::Linux::set_libpthread_version("linuxthreads");
   671      } else {
   672        os::Linux::set_libpthread_version(str);
   673      }
   674   } else {
   675     // glibc before 2.3.2 only has LinuxThreads.
   676     os::Linux::set_libpthread_version("linuxthreads");
   677   }
   679   if (strstr(libpthread_version(), "NPTL")) {
   680      os::Linux::set_is_NPTL();
   681   } else {
   682      os::Linux::set_is_LinuxThreads();
   683   }
   685   // LinuxThreads have two flavors: floating-stack mode, which allows variable
   686   // stack size; and fixed-stack mode. NPTL is always floating-stack.
   687   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
   688      os::Linux::set_is_floating_stack();
   689   }
   690 }
   692 /////////////////////////////////////////////////////////////////////////////
   693 // thread stack
   695 // Force Linux kernel to expand current thread stack. If "bottom" is close
   696 // to the stack guard, caller should block all signals.
   697 //
   698 // MAP_GROWSDOWN:
   699 //   A special mmap() flag that is used to implement thread stacks. It tells
   700 //   kernel that the memory region should extend downwards when needed. This
   701 //   allows early versions of LinuxThreads to only mmap the first few pages
   702 //   when creating a new thread. Linux kernel will automatically expand thread
   703 //   stack as needed (on page faults).
   704 //
   705 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
   706 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
   707 //   region, it's hard to tell if the fault is due to a legitimate stack
   708 //   access or because of reading/writing non-exist memory (e.g. buffer
   709 //   overrun). As a rule, if the fault happens below current stack pointer,
   710 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
   711 //   application (see Linux kernel fault.c).
   712 //
   713 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
   714 //   stack overflow detection.
   715 //
   716 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
   717 //   not use this flag. However, the stack of initial thread is not created
   718 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
   719 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
   720 //   and then attach the thread to JVM.
   721 //
   722 // To get around the problem and allow stack banging on Linux, we need to
   723 // manually expand thread stack after receiving the SIGSEGV.
   724 //
   725 // There are two ways to expand thread stack to address "bottom", we used
   726 // both of them in JVM before 1.5:
   727 //   1. adjust stack pointer first so that it is below "bottom", and then
   728 //      touch "bottom"
   729 //   2. mmap() the page in question
   730 //
   731 // Now alternate signal stack is gone, it's harder to use 2. For instance,
   732 // if current sp is already near the lower end of page 101, and we need to
   733 // call mmap() to map page 100, it is possible that part of the mmap() frame
   734 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
   735 // That will destroy the mmap() frame and cause VM to crash.
   736 //
   737 // The following code works by adjusting sp first, then accessing the "bottom"
   738 // page to force a page fault. Linux kernel will then automatically expand the
   739 // stack mapping.
   740 //
   741 // _expand_stack_to() assumes its frame size is less than page size, which
   742 // should always be true if the function is not inlined.
   744 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
   745 #define NOINLINE
   746 #else
   747 #define NOINLINE __attribute__ ((noinline))
   748 #endif
   750 static void _expand_stack_to(address bottom) NOINLINE;
   752 static void _expand_stack_to(address bottom) {
   753   address sp;
   754   size_t size;
   755   volatile char *p;
   757   // Adjust bottom to point to the largest address within the same page, it
   758   // gives us a one-page buffer if alloca() allocates slightly more memory.
   759   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
   760   bottom += os::Linux::page_size() - 1;
   762   // sp might be slightly above current stack pointer; if that's the case, we
   763   // will alloca() a little more space than necessary, which is OK. Don't use
   764   // os::current_stack_pointer(), as its result can be slightly below current
   765   // stack pointer, causing us to not alloca enough to reach "bottom".
   766   sp = (address)&sp;
   768   if (sp > bottom) {
   769     size = sp - bottom;
   770     p = (volatile char *)alloca(size);
   771     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
   772     p[0] = '\0';
   773   }
   774 }
   776 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
   777   assert(t!=NULL, "just checking");
   778   assert(t->osthread()->expanding_stack(), "expand should be set");
   779   assert(t->stack_base() != NULL, "stack_base was not initialized");
   781   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
   782     sigset_t mask_all, old_sigset;
   783     sigfillset(&mask_all);
   784     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
   785     _expand_stack_to(addr);
   786     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
   787     return true;
   788   }
   789   return false;
   790 }
   792 //////////////////////////////////////////////////////////////////////////////
   793 // create new thread
   795 static address highest_vm_reserved_address();
   797 // check if it's safe to start a new thread
   798 static bool _thread_safety_check(Thread* thread) {
   799   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
   800     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
   801     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
   802     //   allocated (MAP_FIXED) from high address space. Every thread stack
   803     //   occupies a fixed size slot (usually 2Mbytes, but user can change
   804     //   it to other values if they rebuild LinuxThreads).
   805     //
   806     // Problem with MAP_FIXED is that mmap() can still succeed even part of
   807     // the memory region has already been mmap'ed. That means if we have too
   808     // many threads and/or very large heap, eventually thread stack will
   809     // collide with heap.
   810     //
   811     // Here we try to prevent heap/stack collision by comparing current
   812     // stack bottom with the highest address that has been mmap'ed by JVM
   813     // plus a safety margin for memory maps created by native code.
   814     //
   815     // This feature can be disabled by setting ThreadSafetyMargin to 0
   816     //
   817     if (ThreadSafetyMargin > 0) {
   818       address stack_bottom = os::current_stack_base() - os::current_stack_size();
   820       // not safe if our stack extends below the safety margin
   821       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
   822     } else {
   823       return true;
   824     }
   825   } else {
   826     // Floating stack LinuxThreads or NPTL:
   827     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
   828     //   there's not enough space left, pthread_create() will fail. If we come
   829     //   here, that means enough space has been reserved for stack.
   830     return true;
   831   }
   832 }
   834 // Thread start routine for all newly created threads
   835 static void *java_start(Thread *thread) {
   836   // Try to randomize the cache line index of hot stack frames.
   837   // This helps when threads of the same stack traces evict each other's
   838   // cache lines. The threads can be either from the same JVM instance, or
   839   // from different JVM instances. The benefit is especially true for
   840   // processors with hyperthreading technology.
   841   static int counter = 0;
   842   int pid = os::current_process_id();
   843   alloca(((pid ^ counter++) & 7) * 128);
   845   ThreadLocalStorage::set_thread(thread);
   847   OSThread* osthread = thread->osthread();
   848   Monitor* sync = osthread->startThread_lock();
   850   // non floating stack LinuxThreads needs extra check, see above
   851   if (!_thread_safety_check(thread)) {
   852     // notify parent thread
   853     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   854     osthread->set_state(ZOMBIE);
   855     sync->notify_all();
   856     return NULL;
   857   }
   859   // thread_id is kernel thread id (similar to Solaris LWP id)
   860   osthread->set_thread_id(os::Linux::gettid());
   862   if (UseNUMA) {
   863     int lgrp_id = os::numa_get_group_id();
   864     if (lgrp_id != -1) {
   865       thread->set_lgrp_id(lgrp_id);
   866     }
   867   }
   868   // initialize signal mask for this thread
   869   os::Linux::hotspot_sigmask(thread);
   871   // initialize floating point control register
   872   os::Linux::init_thread_fpu_state();
   874   // handshaking with parent thread
   875   {
   876     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   878     // notify parent thread
   879     osthread->set_state(INITIALIZED);
   880     sync->notify_all();
   882     // wait until os::start_thread()
   883     while (osthread->get_state() == INITIALIZED) {
   884       sync->wait(Mutex::_no_safepoint_check_flag);
   885     }
   886   }
   888   // call one more level start routine
   889   thread->run();
   891   return 0;
   892 }
   894 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
   895   assert(thread->osthread() == NULL, "caller responsible");
   897   // Allocate the OSThread object
   898   OSThread* osthread = new OSThread(NULL, NULL);
   899   if (osthread == NULL) {
   900     return false;
   901   }
   903   // set the correct thread state
   904   osthread->set_thread_type(thr_type);
   906   // Initial state is ALLOCATED but not INITIALIZED
   907   osthread->set_state(ALLOCATED);
   909   thread->set_osthread(osthread);
   911   // init thread attributes
   912   pthread_attr_t attr;
   913   pthread_attr_init(&attr);
   914   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
   916   // stack size
   917   if (os::Linux::supports_variable_stack_size()) {
   918     // calculate stack size if it's not specified by caller
   919     if (stack_size == 0) {
   920       stack_size = os::Linux::default_stack_size(thr_type);
   922       switch (thr_type) {
   923       case os::java_thread:
   924         // Java threads use ThreadStackSize which default value can be
   925         // changed with the flag -Xss
   926         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
   927         stack_size = JavaThread::stack_size_at_create();
   928         break;
   929       case os::compiler_thread:
   930         if (CompilerThreadStackSize > 0) {
   931           stack_size = (size_t)(CompilerThreadStackSize * K);
   932           break;
   933         } // else fall through:
   934           // use VMThreadStackSize if CompilerThreadStackSize is not defined
   935       case os::vm_thread:
   936       case os::pgc_thread:
   937       case os::cgc_thread:
   938       case os::watcher_thread:
   939         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
   940         break;
   941       }
   942     }
   944     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
   945     pthread_attr_setstacksize(&attr, stack_size);
   946   } else {
   947     // let pthread_create() pick the default value.
   948   }
   950   // glibc guard page
   951   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
   953   ThreadState state;
   955   {
   956     // Serialize thread creation if we are running with fixed stack LinuxThreads
   957     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
   958     if (lock) {
   959       os::Linux::createThread_lock()->lock_without_safepoint_check();
   960     }
   962     pthread_t tid;
   963     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
   965     pthread_attr_destroy(&attr);
   967     if (ret != 0) {
   968       if (PrintMiscellaneous && (Verbose || WizardMode)) {
   969         perror("pthread_create()");
   970       }
   971       // Need to clean up stuff we've allocated so far
   972       thread->set_osthread(NULL);
   973       delete osthread;
   974       if (lock) os::Linux::createThread_lock()->unlock();
   975       return false;
   976     }
   978     // Store pthread info into the OSThread
   979     osthread->set_pthread_id(tid);
   981     // Wait until child thread is either initialized or aborted
   982     {
   983       Monitor* sync_with_child = osthread->startThread_lock();
   984       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
   985       while ((state = osthread->get_state()) == ALLOCATED) {
   986         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
   987       }
   988     }
   990     if (lock) {
   991       os::Linux::createThread_lock()->unlock();
   992     }
   993   }
   995   // Aborted due to thread limit being reached
   996   if (state == ZOMBIE) {
   997       thread->set_osthread(NULL);
   998       delete osthread;
   999       return false;
  1002   // The thread is returned suspended (in state INITIALIZED),
  1003   // and is started higher up in the call chain
  1004   assert(state == INITIALIZED, "race condition");
  1005   return true;
  1008 /////////////////////////////////////////////////////////////////////////////
  1009 // attach existing thread
  1011 // bootstrap the main thread
  1012 bool os::create_main_thread(JavaThread* thread) {
  1013   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
  1014   return create_attached_thread(thread);
  1017 bool os::create_attached_thread(JavaThread* thread) {
  1018 #ifdef ASSERT
  1019     thread->verify_not_published();
  1020 #endif
  1022   // Allocate the OSThread object
  1023   OSThread* osthread = new OSThread(NULL, NULL);
  1025   if (osthread == NULL) {
  1026     return false;
  1029   // Store pthread info into the OSThread
  1030   osthread->set_thread_id(os::Linux::gettid());
  1031   osthread->set_pthread_id(::pthread_self());
  1033   // initialize floating point control register
  1034   os::Linux::init_thread_fpu_state();
  1036   // Initial thread state is RUNNABLE
  1037   osthread->set_state(RUNNABLE);
  1039   thread->set_osthread(osthread);
  1041   if (UseNUMA) {
  1042     int lgrp_id = os::numa_get_group_id();
  1043     if (lgrp_id != -1) {
  1044       thread->set_lgrp_id(lgrp_id);
  1048   if (os::Linux::is_initial_thread()) {
  1049     // If current thread is initial thread, its stack is mapped on demand,
  1050     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
  1051     // the entire stack region to avoid SEGV in stack banging.
  1052     // It is also useful to get around the heap-stack-gap problem on SuSE
  1053     // kernel (see 4821821 for details). We first expand stack to the top
  1054     // of yellow zone, then enable stack yellow zone (order is significant,
  1055     // enabling yellow zone first will crash JVM on SuSE Linux), so there
  1056     // is no gap between the last two virtual memory regions.
  1058     JavaThread *jt = (JavaThread *)thread;
  1059     address addr = jt->stack_yellow_zone_base();
  1060     assert(addr != NULL, "initialization problem?");
  1061     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
  1063     osthread->set_expanding_stack();
  1064     os::Linux::manually_expand_stack(jt, addr);
  1065     osthread->clear_expanding_stack();
  1068   // initialize signal mask for this thread
  1069   // and save the caller's signal mask
  1070   os::Linux::hotspot_sigmask(thread);
  1072   return true;
  1075 void os::pd_start_thread(Thread* thread) {
  1076   OSThread * osthread = thread->osthread();
  1077   assert(osthread->get_state() != INITIALIZED, "just checking");
  1078   Monitor* sync_with_child = osthread->startThread_lock();
  1079   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
  1080   sync_with_child->notify();
  1083 // Free Linux resources related to the OSThread
  1084 void os::free_thread(OSThread* osthread) {
  1085   assert(osthread != NULL, "osthread not set");
  1087   if (Thread::current()->osthread() == osthread) {
  1088     // Restore caller's signal mask
  1089     sigset_t sigmask = osthread->caller_sigmask();
  1090     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
  1093   delete osthread;
  1096 //////////////////////////////////////////////////////////////////////////////
  1097 // thread local storage
  1099 int os::allocate_thread_local_storage() {
  1100   pthread_key_t key;
  1101   int rslt = pthread_key_create(&key, NULL);
  1102   assert(rslt == 0, "cannot allocate thread local storage");
  1103   return (int)key;
  1106 // Note: This is currently not used by VM, as we don't destroy TLS key
  1107 // on VM exit.
  1108 void os::free_thread_local_storage(int index) {
  1109   int rslt = pthread_key_delete((pthread_key_t)index);
  1110   assert(rslt == 0, "invalid index");
  1113 void os::thread_local_storage_at_put(int index, void* value) {
  1114   int rslt = pthread_setspecific((pthread_key_t)index, value);
  1115   assert(rslt == 0, "pthread_setspecific failed");
  1118 extern "C" Thread* get_thread() {
  1119   return ThreadLocalStorage::thread();
  1122 //////////////////////////////////////////////////////////////////////////////
  1123 // initial thread
  1125 // Check if current thread is the initial thread, similar to Solaris thr_main.
  1126 bool os::Linux::is_initial_thread(void) {
  1127   char dummy;
  1128   // If called before init complete, thread stack bottom will be null.
  1129   // Can be called if fatal error occurs before initialization.
  1130   if (initial_thread_stack_bottom() == NULL) return false;
  1131   assert(initial_thread_stack_bottom() != NULL &&
  1132          initial_thread_stack_size()   != 0,
  1133          "os::init did not locate initial thread's stack region");
  1134   if ((address)&dummy >= initial_thread_stack_bottom() &&
  1135       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
  1136        return true;
  1137   else return false;
  1140 // Find the virtual memory area that contains addr
  1141 static bool find_vma(address addr, address* vma_low, address* vma_high) {
  1142   FILE *fp = fopen("/proc/self/maps", "r");
  1143   if (fp) {
  1144     address low, high;
  1145     while (!feof(fp)) {
  1146       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
  1147         if (low <= addr && addr < high) {
  1148            if (vma_low)  *vma_low  = low;
  1149            if (vma_high) *vma_high = high;
  1150            fclose (fp);
  1151            return true;
  1154       for (;;) {
  1155         int ch = fgetc(fp);
  1156         if (ch == EOF || ch == (int)'\n') break;
  1159     fclose(fp);
  1161   return false;
  1164 // Locate initial thread stack. This special handling of initial thread stack
  1165 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
  1166 // bogus value for initial thread.
  1167 void os::Linux::capture_initial_stack(size_t max_size) {
  1168   // stack size is the easy part, get it from RLIMIT_STACK
  1169   size_t stack_size;
  1170   struct rlimit rlim;
  1171   getrlimit(RLIMIT_STACK, &rlim);
  1172   stack_size = rlim.rlim_cur;
  1174   // 6308388: a bug in ld.so will relocate its own .data section to the
  1175   //   lower end of primordial stack; reduce ulimit -s value a little bit
  1176   //   so we won't install guard page on ld.so's data section.
  1177   stack_size -= 2 * page_size();
  1179   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
  1180   //   7.1, in both cases we will get 2G in return value.
  1181   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
  1182   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
  1183   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
  1184   //   in case other parts in glibc still assumes 2M max stack size.
  1185   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
  1186 #ifndef IA64
  1187   if (stack_size > 2 * K * K) stack_size = 2 * K * K;
  1188 #else
  1189   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
  1190   if (stack_size > 4 * K * K) stack_size = 4 * K * K;
  1191 #endif
  1193   // Try to figure out where the stack base (top) is. This is harder.
  1194   //
  1195   // When an application is started, glibc saves the initial stack pointer in
  1196   // a global variable "__libc_stack_end", which is then used by system
  1197   // libraries. __libc_stack_end should be pretty close to stack top. The
  1198   // variable is available since the very early days. However, because it is
  1199   // a private interface, it could disappear in the future.
  1200   //
  1201   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
  1202   // to __libc_stack_end, it is very close to stack top, but isn't the real
  1203   // stack top. Note that /proc may not exist if VM is running as a chroot
  1204   // program, so reading /proc/<pid>/stat could fail. Also the contents of
  1205   // /proc/<pid>/stat could change in the future (though unlikely).
  1206   //
  1207   // We try __libc_stack_end first. If that doesn't work, look for
  1208   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
  1209   // as a hint, which should work well in most cases.
  1211   uintptr_t stack_start;
  1213   // try __libc_stack_end first
  1214   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
  1215   if (p && *p) {
  1216     stack_start = *p;
  1217   } else {
  1218     // see if we can get the start_stack field from /proc/self/stat
  1219     FILE *fp;
  1220     int pid;
  1221     char state;
  1222     int ppid;
  1223     int pgrp;
  1224     int session;
  1225     int nr;
  1226     int tpgrp;
  1227     unsigned long flags;
  1228     unsigned long minflt;
  1229     unsigned long cminflt;
  1230     unsigned long majflt;
  1231     unsigned long cmajflt;
  1232     unsigned long utime;
  1233     unsigned long stime;
  1234     long cutime;
  1235     long cstime;
  1236     long prio;
  1237     long nice;
  1238     long junk;
  1239     long it_real;
  1240     uintptr_t start;
  1241     uintptr_t vsize;
  1242     intptr_t rss;
  1243     uintptr_t rsslim;
  1244     uintptr_t scodes;
  1245     uintptr_t ecode;
  1246     int i;
  1248     // Figure what the primordial thread stack base is. Code is inspired
  1249     // by email from Hans Boehm. /proc/self/stat begins with current pid,
  1250     // followed by command name surrounded by parentheses, state, etc.
  1251     char stat[2048];
  1252     int statlen;
  1254     fp = fopen("/proc/self/stat", "r");
  1255     if (fp) {
  1256       statlen = fread(stat, 1, 2047, fp);
  1257       stat[statlen] = '\0';
  1258       fclose(fp);
  1260       // Skip pid and the command string. Note that we could be dealing with
  1261       // weird command names, e.g. user could decide to rename java launcher
  1262       // to "java 1.4.2 :)", then the stat file would look like
  1263       //                1234 (java 1.4.2 :)) R ... ...
  1264       // We don't really need to know the command string, just find the last
  1265       // occurrence of ")" and then start parsing from there. See bug 4726580.
  1266       char * s = strrchr(stat, ')');
  1268       i = 0;
  1269       if (s) {
  1270         // Skip blank chars
  1271         do s++; while (isspace(*s));
  1273 #define _UFM UINTX_FORMAT
  1274 #define _DFM INTX_FORMAT
  1276         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
  1277         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
  1278         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
  1279              &state,          /* 3  %c  */
  1280              &ppid,           /* 4  %d  */
  1281              &pgrp,           /* 5  %d  */
  1282              &session,        /* 6  %d  */
  1283              &nr,             /* 7  %d  */
  1284              &tpgrp,          /* 8  %d  */
  1285              &flags,          /* 9  %lu  */
  1286              &minflt,         /* 10 %lu  */
  1287              &cminflt,        /* 11 %lu  */
  1288              &majflt,         /* 12 %lu  */
  1289              &cmajflt,        /* 13 %lu  */
  1290              &utime,          /* 14 %lu  */
  1291              &stime,          /* 15 %lu  */
  1292              &cutime,         /* 16 %ld  */
  1293              &cstime,         /* 17 %ld  */
  1294              &prio,           /* 18 %ld  */
  1295              &nice,           /* 19 %ld  */
  1296              &junk,           /* 20 %ld  */
  1297              &it_real,        /* 21 %ld  */
  1298              &start,          /* 22 UINTX_FORMAT */
  1299              &vsize,          /* 23 UINTX_FORMAT */
  1300              &rss,            /* 24 INTX_FORMAT  */
  1301              &rsslim,         /* 25 UINTX_FORMAT */
  1302              &scodes,         /* 26 UINTX_FORMAT */
  1303              &ecode,          /* 27 UINTX_FORMAT */
  1304              &stack_start);   /* 28 UINTX_FORMAT */
  1307 #undef _UFM
  1308 #undef _DFM
  1310       if (i != 28 - 2) {
  1311          assert(false, "Bad conversion from /proc/self/stat");
  1312          // product mode - assume we are the initial thread, good luck in the
  1313          // embedded case.
  1314          warning("Can't detect initial thread stack location - bad conversion");
  1315          stack_start = (uintptr_t) &rlim;
  1317     } else {
  1318       // For some reason we can't open /proc/self/stat (for example, running on
  1319       // FreeBSD with a Linux emulator, or inside chroot), this should work for
  1320       // most cases, so don't abort:
  1321       warning("Can't detect initial thread stack location - no /proc/self/stat");
  1322       stack_start = (uintptr_t) &rlim;
  1326   // Now we have a pointer (stack_start) very close to the stack top, the
  1327   // next thing to do is to figure out the exact location of stack top. We
  1328   // can find out the virtual memory area that contains stack_start by
  1329   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
  1330   // and its upper limit is the real stack top. (again, this would fail if
  1331   // running inside chroot, because /proc may not exist.)
  1333   uintptr_t stack_top;
  1334   address low, high;
  1335   if (find_vma((address)stack_start, &low, &high)) {
  1336     // success, "high" is the true stack top. (ignore "low", because initial
  1337     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
  1338     stack_top = (uintptr_t)high;
  1339   } else {
  1340     // failed, likely because /proc/self/maps does not exist
  1341     warning("Can't detect initial thread stack location - find_vma failed");
  1342     // best effort: stack_start is normally within a few pages below the real
  1343     // stack top, use it as stack top, and reduce stack size so we won't put
  1344     // guard page outside stack.
  1345     stack_top = stack_start;
  1346     stack_size -= 16 * page_size();
  1349   // stack_top could be partially down the page so align it
  1350   stack_top = align_size_up(stack_top, page_size());
  1352   if (max_size && stack_size > max_size) {
  1353      _initial_thread_stack_size = max_size;
  1354   } else {
  1355      _initial_thread_stack_size = stack_size;
  1358   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
  1359   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
  1362 ////////////////////////////////////////////////////////////////////////////////
  1363 // time support
  1365 // Time since start-up in seconds to a fine granularity.
  1366 // Used by VMSelfDestructTimer and the MemProfiler.
  1367 double os::elapsedTime() {
  1369   return (double)(os::elapsed_counter()) * 0.000001;
  1372 jlong os::elapsed_counter() {
  1373   timeval time;
  1374   int status = gettimeofday(&time, NULL);
  1375   return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
  1378 jlong os::elapsed_frequency() {
  1379   return (1000 * 1000);
  1382 // For now, we say that linux does not support vtime.  I have no idea
  1383 // whether it can actually be made to (DLD, 9/13/05).
  1385 bool os::supports_vtime() { return false; }
  1386 bool os::enable_vtime()   { return false; }
  1387 bool os::vtime_enabled()  { return false; }
  1388 double os::elapsedVTime() {
  1389   // better than nothing, but not much
  1390   return elapsedTime();
  1393 jlong os::javaTimeMillis() {
  1394   timeval time;
  1395   int status = gettimeofday(&time, NULL);
  1396   assert(status != -1, "linux error");
  1397   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
  1400 #ifndef CLOCK_MONOTONIC
  1401 #define CLOCK_MONOTONIC (1)
  1402 #endif
  1404 void os::Linux::clock_init() {
  1405   // we do dlopen's in this particular order due to bug in linux
  1406   // dynamical loader (see 6348968) leading to crash on exit
  1407   void* handle = dlopen("librt.so.1", RTLD_LAZY);
  1408   if (handle == NULL) {
  1409     handle = dlopen("librt.so", RTLD_LAZY);
  1412   if (handle) {
  1413     int (*clock_getres_func)(clockid_t, struct timespec*) =
  1414            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
  1415     int (*clock_gettime_func)(clockid_t, struct timespec*) =
  1416            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
  1417     if (clock_getres_func && clock_gettime_func) {
  1418       // See if monotonic clock is supported by the kernel. Note that some
  1419       // early implementations simply return kernel jiffies (updated every
  1420       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
  1421       // for nano time (though the monotonic property is still nice to have).
  1422       // It's fixed in newer kernels, however clock_getres() still returns
  1423       // 1/HZ. We check if clock_getres() works, but will ignore its reported
  1424       // resolution for now. Hopefully as people move to new kernels, this
  1425       // won't be a problem.
  1426       struct timespec res;
  1427       struct timespec tp;
  1428       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
  1429           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
  1430         // yes, monotonic clock is supported
  1431         _clock_gettime = clock_gettime_func;
  1432       } else {
  1433         // close librt if there is no monotonic clock
  1434         dlclose(handle);
  1440 #ifndef SYS_clock_getres
  1442 #if defined(IA32) || defined(AMD64)
  1443 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
  1444 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1445 #else
  1446 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
  1447 #define sys_clock_getres(x,y)  -1
  1448 #endif
  1450 #else
  1451 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1452 #endif
  1454 void os::Linux::fast_thread_clock_init() {
  1455   if (!UseLinuxPosixThreadCPUClocks) {
  1456     return;
  1458   clockid_t clockid;
  1459   struct timespec tp;
  1460   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
  1461       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
  1463   // Switch to using fast clocks for thread cpu time if
  1464   // the sys_clock_getres() returns 0 error code.
  1465   // Note, that some kernels may support the current thread
  1466   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
  1467   // returned by the pthread_getcpuclockid().
  1468   // If the fast Posix clocks are supported then the sys_clock_getres()
  1469   // must return at least tp.tv_sec == 0 which means a resolution
  1470   // better than 1 sec. This is extra check for reliability.
  1472   if(pthread_getcpuclockid_func &&
  1473      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
  1474      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
  1476     _supports_fast_thread_cpu_time = true;
  1477     _pthread_getcpuclockid = pthread_getcpuclockid_func;
  1481 jlong os::javaTimeNanos() {
  1482   if (Linux::supports_monotonic_clock()) {
  1483     struct timespec tp;
  1484     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
  1485     assert(status == 0, "gettime error");
  1486     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
  1487     return result;
  1488   } else {
  1489     timeval time;
  1490     int status = gettimeofday(&time, NULL);
  1491     assert(status != -1, "linux error");
  1492     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
  1493     return 1000 * usecs;
  1497 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
  1498   if (Linux::supports_monotonic_clock()) {
  1499     info_ptr->max_value = ALL_64_BITS;
  1501     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
  1502     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
  1503     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
  1504   } else {
  1505     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
  1506     info_ptr->max_value = ALL_64_BITS;
  1508     // gettimeofday is a real time clock so it skips
  1509     info_ptr->may_skip_backward = true;
  1510     info_ptr->may_skip_forward = true;
  1513   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
  1516 // Return the real, user, and system times in seconds from an
  1517 // arbitrary fixed point in the past.
  1518 bool os::getTimesSecs(double* process_real_time,
  1519                       double* process_user_time,
  1520                       double* process_system_time) {
  1521   struct tms ticks;
  1522   clock_t real_ticks = times(&ticks);
  1524   if (real_ticks == (clock_t) (-1)) {
  1525     return false;
  1526   } else {
  1527     double ticks_per_second = (double) clock_tics_per_sec;
  1528     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
  1529     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
  1530     *process_real_time = ((double) real_ticks) / ticks_per_second;
  1532     return true;
  1537 char * os::local_time_string(char *buf, size_t buflen) {
  1538   struct tm t;
  1539   time_t long_time;
  1540   time(&long_time);
  1541   localtime_r(&long_time, &t);
  1542   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
  1543                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
  1544                t.tm_hour, t.tm_min, t.tm_sec);
  1545   return buf;
  1548 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
  1549   return localtime_r(clock, res);
  1552 ////////////////////////////////////////////////////////////////////////////////
  1553 // runtime exit support
  1555 // Note: os::shutdown() might be called very early during initialization, or
  1556 // called from signal handler. Before adding something to os::shutdown(), make
  1557 // sure it is async-safe and can handle partially initialized VM.
  1558 void os::shutdown() {
  1560   // allow PerfMemory to attempt cleanup of any persistent resources
  1561   perfMemory_exit();
  1563   // needs to remove object in file system
  1564   AttachListener::abort();
  1566   // flush buffered output, finish log files
  1567   ostream_abort();
  1569   // Check for abort hook
  1570   abort_hook_t abort_hook = Arguments::abort_hook();
  1571   if (abort_hook != NULL) {
  1572     abort_hook();
  1577 // Note: os::abort() might be called very early during initialization, or
  1578 // called from signal handler. Before adding something to os::abort(), make
  1579 // sure it is async-safe and can handle partially initialized VM.
  1580 void os::abort(bool dump_core) {
  1581   os::shutdown();
  1582   if (dump_core) {
  1583 #ifndef PRODUCT
  1584     fdStream out(defaultStream::output_fd());
  1585     out.print_raw("Current thread is ");
  1586     char buf[16];
  1587     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
  1588     out.print_raw_cr(buf);
  1589     out.print_raw_cr("Dumping core ...");
  1590 #endif
  1591     ::abort(); // dump core
  1594   ::exit(1);
  1597 // Die immediately, no exit hook, no abort hook, no cleanup.
  1598 void os::die() {
  1599   // _exit() on LinuxThreads only kills current thread
  1600   ::abort();
  1603 // unused on linux for now.
  1604 void os::set_error_file(const char *logfile) {}
  1607 // This method is a copy of JDK's sysGetLastErrorString
  1608 // from src/solaris/hpi/src/system_md.c
  1610 size_t os::lasterror(char *buf, size_t len) {
  1612   if (errno == 0)  return 0;
  1614   const char *s = ::strerror(errno);
  1615   size_t n = ::strlen(s);
  1616   if (n >= len) {
  1617     n = len - 1;
  1619   ::strncpy(buf, s, n);
  1620   buf[n] = '\0';
  1621   return n;
  1624 intx os::current_thread_id() { return (intx)pthread_self(); }
  1625 int os::current_process_id() {
  1627   // Under the old linux thread library, linux gives each thread
  1628   // its own process id. Because of this each thread will return
  1629   // a different pid if this method were to return the result
  1630   // of getpid(2). Linux provides no api that returns the pid
  1631   // of the launcher thread for the vm. This implementation
  1632   // returns a unique pid, the pid of the launcher thread
  1633   // that starts the vm 'process'.
  1635   // Under the NPTL, getpid() returns the same pid as the
  1636   // launcher thread rather than a unique pid per thread.
  1637   // Use gettid() if you want the old pre NPTL behaviour.
  1639   // if you are looking for the result of a call to getpid() that
  1640   // returns a unique pid for the calling thread, then look at the
  1641   // OSThread::thread_id() method in osThread_linux.hpp file
  1643   return (int)(_initial_pid ? _initial_pid : getpid());
  1646 // DLL functions
  1648 const char* os::dll_file_extension() { return ".so"; }
  1650 // This must be hard coded because it's the system's temporary
  1651 // directory not the java application's temp directory, ala java.io.tmpdir.
  1652 const char* os::get_temp_directory() { return "/tmp"; }
  1654 static bool file_exists(const char* filename) {
  1655   struct stat statbuf;
  1656   if (filename == NULL || strlen(filename) == 0) {
  1657     return false;
  1659   return os::stat(filename, &statbuf) == 0;
  1662 void os::dll_build_name(char* buffer, size_t buflen,
  1663                         const char* pname, const char* fname) {
  1664   // Copied from libhpi
  1665   const size_t pnamelen = pname ? strlen(pname) : 0;
  1667   // Quietly truncate on buffer overflow.  Should be an error.
  1668   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
  1669       *buffer = '\0';
  1670       return;
  1673   if (pnamelen == 0) {
  1674     snprintf(buffer, buflen, "lib%s.so", fname);
  1675   } else if (strchr(pname, *os::path_separator()) != NULL) {
  1676     int n;
  1677     char** pelements = split_path(pname, &n);
  1678     for (int i = 0 ; i < n ; i++) {
  1679       // Really shouldn't be NULL, but check can't hurt
  1680       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
  1681         continue; // skip the empty path values
  1683       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
  1684       if (file_exists(buffer)) {
  1685         break;
  1688     // release the storage
  1689     for (int i = 0 ; i < n ; i++) {
  1690       if (pelements[i] != NULL) {
  1691         FREE_C_HEAP_ARRAY(char, pelements[i]);
  1694     if (pelements != NULL) {
  1695       FREE_C_HEAP_ARRAY(char*, pelements);
  1697   } else {
  1698     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
  1702 const char* os::get_current_directory(char *buf, int buflen) {
  1703   return getcwd(buf, buflen);
  1706 // check if addr is inside libjvm[_g].so
  1707 bool os::address_is_in_vm(address addr) {
  1708   static address libjvm_base_addr;
  1709   Dl_info dlinfo;
  1711   if (libjvm_base_addr == NULL) {
  1712     dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
  1713     libjvm_base_addr = (address)dlinfo.dli_fbase;
  1714     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
  1717   if (dladdr((void *)addr, &dlinfo)) {
  1718     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
  1721   return false;
  1724 bool os::dll_address_to_function_name(address addr, char *buf,
  1725                                       int buflen, int *offset) {
  1726   Dl_info dlinfo;
  1728   if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
  1729     if (buf != NULL) {
  1730       if(!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
  1731         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
  1734     if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
  1735     return true;
  1736   } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
  1737     if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
  1738        dlinfo.dli_fname, buf, buflen, offset) == Decoder::no_error) {
  1739        return true;
  1743   if (buf != NULL) buf[0] = '\0';
  1744   if (offset != NULL) *offset = -1;
  1745   return false;
  1748 struct _address_to_library_name {
  1749   address addr;          // input : memory address
  1750   size_t  buflen;        //         size of fname
  1751   char*   fname;         // output: library name
  1752   address base;          //         library base addr
  1753 };
  1755 static int address_to_library_name_callback(struct dl_phdr_info *info,
  1756                                             size_t size, void *data) {
  1757   int i;
  1758   bool found = false;
  1759   address libbase = NULL;
  1760   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
  1762   // iterate through all loadable segments
  1763   for (i = 0; i < info->dlpi_phnum; i++) {
  1764     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
  1765     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
  1766       // base address of a library is the lowest address of its loaded
  1767       // segments.
  1768       if (libbase == NULL || libbase > segbase) {
  1769         libbase = segbase;
  1771       // see if 'addr' is within current segment
  1772       if (segbase <= d->addr &&
  1773           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
  1774         found = true;
  1779   // dlpi_name is NULL or empty if the ELF file is executable, return 0
  1780   // so dll_address_to_library_name() can fall through to use dladdr() which
  1781   // can figure out executable name from argv[0].
  1782   if (found && info->dlpi_name && info->dlpi_name[0]) {
  1783     d->base = libbase;
  1784     if (d->fname) {
  1785       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
  1787     return 1;
  1789   return 0;
  1792 bool os::dll_address_to_library_name(address addr, char* buf,
  1793                                      int buflen, int* offset) {
  1794   Dl_info dlinfo;
  1795   struct _address_to_library_name data;
  1797   // There is a bug in old glibc dladdr() implementation that it could resolve
  1798   // to wrong library name if the .so file has a base address != NULL. Here
  1799   // we iterate through the program headers of all loaded libraries to find
  1800   // out which library 'addr' really belongs to. This workaround can be
  1801   // removed once the minimum requirement for glibc is moved to 2.3.x.
  1802   data.addr = addr;
  1803   data.fname = buf;
  1804   data.buflen = buflen;
  1805   data.base = NULL;
  1806   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
  1808   if (rslt) {
  1809      // buf already contains library name
  1810      if (offset) *offset = addr - data.base;
  1811      return true;
  1812   } else if (dladdr((void*)addr, &dlinfo)){
  1813      if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
  1814      if (offset) *offset = addr - (address)dlinfo.dli_fbase;
  1815      return true;
  1816   } else {
  1817      if (buf) buf[0] = '\0';
  1818      if (offset) *offset = -1;
  1819      return false;
  1823   // Loads .dll/.so and
  1824   // in case of error it checks if .dll/.so was built for the
  1825   // same architecture as Hotspot is running on
  1827 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
  1829   void * result= ::dlopen(filename, RTLD_LAZY);
  1830   if (result != NULL) {
  1831     // Successful loading
  1832     return result;
  1835   Elf32_Ehdr elf_head;
  1837   // Read system error message into ebuf
  1838   // It may or may not be overwritten below
  1839   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
  1840   ebuf[ebuflen-1]='\0';
  1841   int diag_msg_max_length=ebuflen-strlen(ebuf);
  1842   char* diag_msg_buf=ebuf+strlen(ebuf);
  1844   if (diag_msg_max_length==0) {
  1845     // No more space in ebuf for additional diagnostics message
  1846     return NULL;
  1850   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
  1852   if (file_descriptor < 0) {
  1853     // Can't open library, report dlerror() message
  1854     return NULL;
  1857   bool failed_to_read_elf_head=
  1858     (sizeof(elf_head)!=
  1859         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
  1861   ::close(file_descriptor);
  1862   if (failed_to_read_elf_head) {
  1863     // file i/o error - report dlerror() msg
  1864     return NULL;
  1867   typedef struct {
  1868     Elf32_Half  code;         // Actual value as defined in elf.h
  1869     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
  1870     char        elf_class;    // 32 or 64 bit
  1871     char        endianess;    // MSB or LSB
  1872     char*       name;         // String representation
  1873   } arch_t;
  1875   #ifndef EM_486
  1876   #define EM_486          6               /* Intel 80486 */
  1877   #endif
  1879   static const arch_t arch_array[]={
  1880     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1881     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1882     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
  1883     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
  1884     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1885     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1886     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
  1887     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
  1888     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
  1889     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
  1890     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
  1891     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
  1892     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
  1893     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
  1894     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
  1895     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
  1896   };
  1898   #if  (defined IA32)
  1899     static  Elf32_Half running_arch_code=EM_386;
  1900   #elif   (defined AMD64)
  1901     static  Elf32_Half running_arch_code=EM_X86_64;
  1902   #elif  (defined IA64)
  1903     static  Elf32_Half running_arch_code=EM_IA_64;
  1904   #elif  (defined __sparc) && (defined _LP64)
  1905     static  Elf32_Half running_arch_code=EM_SPARCV9;
  1906   #elif  (defined __sparc) && (!defined _LP64)
  1907     static  Elf32_Half running_arch_code=EM_SPARC;
  1908   #elif  (defined __powerpc64__)
  1909     static  Elf32_Half running_arch_code=EM_PPC64;
  1910   #elif  (defined __powerpc__)
  1911     static  Elf32_Half running_arch_code=EM_PPC;
  1912   #elif  (defined ARM)
  1913     static  Elf32_Half running_arch_code=EM_ARM;
  1914   #elif  (defined S390)
  1915     static  Elf32_Half running_arch_code=EM_S390;
  1916   #elif  (defined ALPHA)
  1917     static  Elf32_Half running_arch_code=EM_ALPHA;
  1918   #elif  (defined MIPSEL)
  1919     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
  1920   #elif  (defined PARISC)
  1921     static  Elf32_Half running_arch_code=EM_PARISC;
  1922   #elif  (defined MIPS)
  1923     static  Elf32_Half running_arch_code=EM_MIPS;
  1924   #elif  (defined M68K)
  1925     static  Elf32_Half running_arch_code=EM_68K;
  1926   #else
  1927     #error Method os::dll_load requires that one of following is defined:\
  1928          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
  1929   #endif
  1931   // Identify compatability class for VM's architecture and library's architecture
  1932   // Obtain string descriptions for architectures
  1934   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
  1935   int running_arch_index=-1;
  1937   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
  1938     if (running_arch_code == arch_array[i].code) {
  1939       running_arch_index    = i;
  1941     if (lib_arch.code == arch_array[i].code) {
  1942       lib_arch.compat_class = arch_array[i].compat_class;
  1943       lib_arch.name         = arch_array[i].name;
  1947   assert(running_arch_index != -1,
  1948     "Didn't find running architecture code (running_arch_code) in arch_array");
  1949   if (running_arch_index == -1) {
  1950     // Even though running architecture detection failed
  1951     // we may still continue with reporting dlerror() message
  1952     return NULL;
  1955   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
  1956     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
  1957     return NULL;
  1960 #ifndef S390
  1961   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
  1962     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
  1963     return NULL;
  1965 #endif // !S390
  1967   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
  1968     if ( lib_arch.name!=NULL ) {
  1969       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  1970         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
  1971         lib_arch.name, arch_array[running_arch_index].name);
  1972     } else {
  1973       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  1974       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
  1975         lib_arch.code,
  1976         arch_array[running_arch_index].name);
  1980   return NULL;
  1983 /*
  1984  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
  1985  * chances are you might want to run the generated bits against glibc-2.0
  1986  * libdl.so, so always use locking for any version of glibc.
  1987  */
  1988 void* os::dll_lookup(void* handle, const char* name) {
  1989   pthread_mutex_lock(&dl_mutex);
  1990   void* res = dlsym(handle, name);
  1991   pthread_mutex_unlock(&dl_mutex);
  1992   return res;
  1996 static bool _print_ascii_file(const char* filename, outputStream* st) {
  1997   int fd = ::open(filename, O_RDONLY);
  1998   if (fd == -1) {
  1999      return false;
  2002   char buf[32];
  2003   int bytes;
  2004   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
  2005     st->print_raw(buf, bytes);
  2008   ::close(fd);
  2010   return true;
  2013 void os::print_dll_info(outputStream *st) {
  2014    st->print_cr("Dynamic libraries:");
  2016    char fname[32];
  2017    pid_t pid = os::Linux::gettid();
  2019    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
  2021    if (!_print_ascii_file(fname, st)) {
  2022      st->print("Can not get library information for pid = %d\n", pid);
  2027 void os::print_os_info(outputStream* st) {
  2028   st->print("OS:");
  2030   // Try to identify popular distros.
  2031   // Most Linux distributions have /etc/XXX-release file, which contains
  2032   // the OS version string. Some have more than one /etc/XXX-release file
  2033   // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
  2034   // so the order is important.
  2035   if (!_print_ascii_file("/etc/mandrake-release", st) &&
  2036       !_print_ascii_file("/etc/sun-release", st) &&
  2037       !_print_ascii_file("/etc/redhat-release", st) &&
  2038       !_print_ascii_file("/etc/SuSE-release", st) &&
  2039       !_print_ascii_file("/etc/turbolinux-release", st) &&
  2040       !_print_ascii_file("/etc/gentoo-release", st) &&
  2041       !_print_ascii_file("/etc/debian_version", st) &&
  2042       !_print_ascii_file("/etc/ltib-release", st) &&
  2043       !_print_ascii_file("/etc/angstrom-version", st)) {
  2044       st->print("Linux");
  2046   st->cr();
  2048   // kernel
  2049   st->print("uname:");
  2050   struct utsname name;
  2051   uname(&name);
  2052   st->print(name.sysname); st->print(" ");
  2053   st->print(name.release); st->print(" ");
  2054   st->print(name.version); st->print(" ");
  2055   st->print(name.machine);
  2056   st->cr();
  2058   // Print warning if unsafe chroot environment detected
  2059   if (unsafe_chroot_detected) {
  2060     st->print("WARNING!! ");
  2061     st->print_cr(unstable_chroot_error);
  2064   // libc, pthread
  2065   st->print("libc:");
  2066   st->print(os::Linux::glibc_version()); st->print(" ");
  2067   st->print(os::Linux::libpthread_version()); st->print(" ");
  2068   if (os::Linux::is_LinuxThreads()) {
  2069      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
  2071   st->cr();
  2073   // rlimit
  2074   st->print("rlimit:");
  2075   struct rlimit rlim;
  2077   st->print(" STACK ");
  2078   getrlimit(RLIMIT_STACK, &rlim);
  2079   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  2080   else st->print("%uk", rlim.rlim_cur >> 10);
  2082   st->print(", CORE ");
  2083   getrlimit(RLIMIT_CORE, &rlim);
  2084   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  2085   else st->print("%uk", rlim.rlim_cur >> 10);
  2087   st->print(", NPROC ");
  2088   getrlimit(RLIMIT_NPROC, &rlim);
  2089   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  2090   else st->print("%d", rlim.rlim_cur);
  2092   st->print(", NOFILE ");
  2093   getrlimit(RLIMIT_NOFILE, &rlim);
  2094   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  2095   else st->print("%d", rlim.rlim_cur);
  2097   st->print(", AS ");
  2098   getrlimit(RLIMIT_AS, &rlim);
  2099   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  2100   else st->print("%uk", rlim.rlim_cur >> 10);
  2101   st->cr();
  2103   // load average
  2104   st->print("load average:");
  2105   double loadavg[3];
  2106   os::loadavg(loadavg, 3);
  2107   st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
  2108   st->cr();
  2110   // meminfo
  2111   st->print("\n/proc/meminfo:\n");
  2112   _print_ascii_file("/proc/meminfo", st);
  2113   st->cr();
  2116 void os::pd_print_cpu_info(outputStream* st) {
  2117   st->print("\n/proc/cpuinfo:\n");
  2118   if (!_print_ascii_file("/proc/cpuinfo", st)) {
  2119     st->print("  <Not Available>");
  2121   st->cr();
  2124 void os::print_memory_info(outputStream* st) {
  2126   st->print("Memory:");
  2127   st->print(" %dk page", os::vm_page_size()>>10);
  2129   // values in struct sysinfo are "unsigned long"
  2130   struct sysinfo si;
  2131   sysinfo(&si);
  2133   st->print(", physical " UINT64_FORMAT "k",
  2134             os::physical_memory() >> 10);
  2135   st->print("(" UINT64_FORMAT "k free)",
  2136             os::available_memory() >> 10);
  2137   st->print(", swap " UINT64_FORMAT "k",
  2138             ((jlong)si.totalswap * si.mem_unit) >> 10);
  2139   st->print("(" UINT64_FORMAT "k free)",
  2140             ((jlong)si.freeswap * si.mem_unit) >> 10);
  2141   st->cr();
  2144 // Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
  2145 // but they're the same for all the linux arch that we support
  2146 // and they're the same for solaris but there's no common place to put this.
  2147 const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
  2148                           "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
  2149                           "ILL_COPROC", "ILL_BADSTK" };
  2151 const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
  2152                           "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
  2153                           "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
  2155 const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
  2157 const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
  2159 void os::print_siginfo(outputStream* st, void* siginfo) {
  2160   st->print("siginfo:");
  2162   const int buflen = 100;
  2163   char buf[buflen];
  2164   siginfo_t *si = (siginfo_t*)siginfo;
  2165   st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
  2166   if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
  2167     st->print("si_errno=%s", buf);
  2168   } else {
  2169     st->print("si_errno=%d", si->si_errno);
  2171   const int c = si->si_code;
  2172   assert(c > 0, "unexpected si_code");
  2173   switch (si->si_signo) {
  2174   case SIGILL:
  2175     st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
  2176     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2177     break;
  2178   case SIGFPE:
  2179     st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
  2180     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2181     break;
  2182   case SIGSEGV:
  2183     st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
  2184     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2185     break;
  2186   case SIGBUS:
  2187     st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
  2188     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2189     break;
  2190   default:
  2191     st->print(", si_code=%d", si->si_code);
  2192     // no si_addr
  2195   if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
  2196       UseSharedSpaces) {
  2197     FileMapInfo* mapinfo = FileMapInfo::current_info();
  2198     if (mapinfo->is_in_shared_space(si->si_addr)) {
  2199       st->print("\n\nError accessing class data sharing archive."   \
  2200                 " Mapped file inaccessible during execution, "      \
  2201                 " possible disk/network problem.");
  2204   st->cr();
  2208 static void print_signal_handler(outputStream* st, int sig,
  2209                                  char* buf, size_t buflen);
  2211 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  2212   st->print_cr("Signal Handlers:");
  2213   print_signal_handler(st, SIGSEGV, buf, buflen);
  2214   print_signal_handler(st, SIGBUS , buf, buflen);
  2215   print_signal_handler(st, SIGFPE , buf, buflen);
  2216   print_signal_handler(st, SIGPIPE, buf, buflen);
  2217   print_signal_handler(st, SIGXFSZ, buf, buflen);
  2218   print_signal_handler(st, SIGILL , buf, buflen);
  2219   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
  2220   print_signal_handler(st, SR_signum, buf, buflen);
  2221   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
  2222   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
  2223   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
  2224   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
  2227 static char saved_jvm_path[MAXPATHLEN] = {0};
  2229 // Find the full path to the current module, libjvm.so or libjvm_g.so
  2230 void os::jvm_path(char *buf, jint buflen) {
  2231   // Error checking.
  2232   if (buflen < MAXPATHLEN) {
  2233     assert(false, "must use a large-enough buffer");
  2234     buf[0] = '\0';
  2235     return;
  2237   // Lazy resolve the path to current module.
  2238   if (saved_jvm_path[0] != 0) {
  2239     strcpy(buf, saved_jvm_path);
  2240     return;
  2243   char dli_fname[MAXPATHLEN];
  2244   bool ret = dll_address_to_library_name(
  2245                 CAST_FROM_FN_PTR(address, os::jvm_path),
  2246                 dli_fname, sizeof(dli_fname), NULL);
  2247   assert(ret != 0, "cannot locate libjvm");
  2248   char *rp = realpath(dli_fname, buf);
  2249   if (rp == NULL)
  2250     return;
  2252   if (Arguments::created_by_gamma_launcher()) {
  2253     // Support for the gamma launcher.  Typical value for buf is
  2254     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
  2255     // the right place in the string, then assume we are installed in a JDK and
  2256     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
  2257     // up the path so it looks like libjvm.so is installed there (append a
  2258     // fake suffix hotspot/libjvm.so).
  2259     const char *p = buf + strlen(buf) - 1;
  2260     for (int count = 0; p > buf && count < 5; ++count) {
  2261       for (--p; p > buf && *p != '/'; --p)
  2262         /* empty */ ;
  2265     if (strncmp(p, "/jre/lib/", 9) != 0) {
  2266       // Look for JAVA_HOME in the environment.
  2267       char* java_home_var = ::getenv("JAVA_HOME");
  2268       if (java_home_var != NULL && java_home_var[0] != 0) {
  2269         char* jrelib_p;
  2270         int len;
  2272         // Check the current module name "libjvm.so" or "libjvm_g.so".
  2273         p = strrchr(buf, '/');
  2274         assert(strstr(p, "/libjvm") == p, "invalid library name");
  2275         p = strstr(p, "_g") ? "_g" : "";
  2277         rp = realpath(java_home_var, buf);
  2278         if (rp == NULL)
  2279           return;
  2281         // determine if this is a legacy image or modules image
  2282         // modules image doesn't have "jre" subdirectory
  2283         len = strlen(buf);
  2284         jrelib_p = buf + len;
  2285         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
  2286         if (0 != access(buf, F_OK)) {
  2287           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
  2290         if (0 == access(buf, F_OK)) {
  2291           // Use current module name "libjvm[_g].so" instead of
  2292           // "libjvm"debug_only("_g")".so" since for fastdebug version
  2293           // we should have "libjvm.so" but debug_only("_g") adds "_g"!
  2294           len = strlen(buf);
  2295           snprintf(buf + len, buflen-len, "/hotspot/libjvm%s.so", p);
  2296         } else {
  2297           // Go back to path of .so
  2298           rp = realpath(dli_fname, buf);
  2299           if (rp == NULL)
  2300             return;
  2306   strcpy(saved_jvm_path, buf);
  2309 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  2310   // no prefix required, not even "_"
  2313 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  2314   // no suffix required
  2317 ////////////////////////////////////////////////////////////////////////////////
  2318 // sun.misc.Signal support
  2320 static volatile jint sigint_count = 0;
  2322 static void
  2323 UserHandler(int sig, void *siginfo, void *context) {
  2324   // 4511530 - sem_post is serialized and handled by the manager thread. When
  2325   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
  2326   // don't want to flood the manager thread with sem_post requests.
  2327   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
  2328       return;
  2330   // Ctrl-C is pressed during error reporting, likely because the error
  2331   // handler fails to abort. Let VM die immediately.
  2332   if (sig == SIGINT && is_error_reported()) {
  2333      os::die();
  2336   os::signal_notify(sig);
  2339 void* os::user_handler() {
  2340   return CAST_FROM_FN_PTR(void*, UserHandler);
  2343 extern "C" {
  2344   typedef void (*sa_handler_t)(int);
  2345   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
  2348 void* os::signal(int signal_number, void* handler) {
  2349   struct sigaction sigAct, oldSigAct;
  2351   sigfillset(&(sigAct.sa_mask));
  2352   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
  2353   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
  2355   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
  2356     // -1 means registration failed
  2357     return (void *)-1;
  2360   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
  2363 void os::signal_raise(int signal_number) {
  2364   ::raise(signal_number);
  2367 /*
  2368  * The following code is moved from os.cpp for making this
  2369  * code platform specific, which it is by its very nature.
  2370  */
  2372 // Will be modified when max signal is changed to be dynamic
  2373 int os::sigexitnum_pd() {
  2374   return NSIG;
  2377 // a counter for each possible signal value
  2378 static volatile jint pending_signals[NSIG+1] = { 0 };
  2380 // Linux(POSIX) specific hand shaking semaphore.
  2381 static sem_t sig_sem;
  2383 void os::signal_init_pd() {
  2384   // Initialize signal structures
  2385   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
  2387   // Initialize signal semaphore
  2388   ::sem_init(&sig_sem, 0, 0);
  2391 void os::signal_notify(int sig) {
  2392   Atomic::inc(&pending_signals[sig]);
  2393   ::sem_post(&sig_sem);
  2396 static int check_pending_signals(bool wait) {
  2397   Atomic::store(0, &sigint_count);
  2398   for (;;) {
  2399     for (int i = 0; i < NSIG + 1; i++) {
  2400       jint n = pending_signals[i];
  2401       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  2402         return i;
  2405     if (!wait) {
  2406       return -1;
  2408     JavaThread *thread = JavaThread::current();
  2409     ThreadBlockInVM tbivm(thread);
  2411     bool threadIsSuspended;
  2412     do {
  2413       thread->set_suspend_equivalent();
  2414       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  2415       ::sem_wait(&sig_sem);
  2417       // were we externally suspended while we were waiting?
  2418       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  2419       if (threadIsSuspended) {
  2420         //
  2421         // The semaphore has been incremented, but while we were waiting
  2422         // another thread suspended us. We don't want to continue running
  2423         // while suspended because that would surprise the thread that
  2424         // suspended us.
  2425         //
  2426         ::sem_post(&sig_sem);
  2428         thread->java_suspend_self();
  2430     } while (threadIsSuspended);
  2434 int os::signal_lookup() {
  2435   return check_pending_signals(false);
  2438 int os::signal_wait() {
  2439   return check_pending_signals(true);
  2442 ////////////////////////////////////////////////////////////////////////////////
  2443 // Virtual Memory
  2445 int os::vm_page_size() {
  2446   // Seems redundant as all get out
  2447   assert(os::Linux::page_size() != -1, "must call os::init");
  2448   return os::Linux::page_size();
  2451 // Solaris allocates memory by pages.
  2452 int os::vm_allocation_granularity() {
  2453   assert(os::Linux::page_size() != -1, "must call os::init");
  2454   return os::Linux::page_size();
  2457 // Rationale behind this function:
  2458 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
  2459 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
  2460 //  samples for JITted code. Here we create private executable mapping over the code cache
  2461 //  and then we can use standard (well, almost, as mapping can change) way to provide
  2462 //  info for the reporting script by storing timestamp and location of symbol
  2463 void linux_wrap_code(char* base, size_t size) {
  2464   static volatile jint cnt = 0;
  2466   if (!UseOprofile) {
  2467     return;
  2470   char buf[PATH_MAX+1];
  2471   int num = Atomic::add(1, &cnt);
  2473   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
  2474            os::get_temp_directory(), os::current_process_id(), num);
  2475   unlink(buf);
  2477   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
  2479   if (fd != -1) {
  2480     off_t rv = ::lseek(fd, size-2, SEEK_SET);
  2481     if (rv != (off_t)-1) {
  2482       if (::write(fd, "", 1) == 1) {
  2483         mmap(base, size,
  2484              PROT_READ|PROT_WRITE|PROT_EXEC,
  2485              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
  2488     ::close(fd);
  2489     unlink(buf);
  2493 // NOTE: Linux kernel does not really reserve the pages for us.
  2494 //       All it does is to check if there are enough free pages
  2495 //       left at the time of mmap(). This could be a potential
  2496 //       problem.
  2497 bool os::commit_memory(char* addr, size_t size, bool exec) {
  2498   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  2499   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
  2500                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
  2501   if (res != (uintptr_t) MAP_FAILED) {
  2502     if (UseNUMAInterleaving) {
  2503       numa_make_global(addr, size);
  2505     return true;
  2507   return false;
  2510 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
  2511 #ifndef MAP_HUGETLB
  2512 #define MAP_HUGETLB 0x40000
  2513 #endif
  2515 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
  2516 #ifndef MADV_HUGEPAGE
  2517 #define MADV_HUGEPAGE 14
  2518 #endif
  2520 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
  2521                        bool exec) {
  2522   if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
  2523     int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  2524     uintptr_t res =
  2525       (uintptr_t) ::mmap(addr, size, prot,
  2526                          MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS|MAP_HUGETLB,
  2527                          -1, 0);
  2528     if (res != (uintptr_t) MAP_FAILED) {
  2529       if (UseNUMAInterleaving) {
  2530         numa_make_global(addr, size);
  2532       return true;
  2534     return false;
  2537   return commit_memory(addr, size, exec);
  2540 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2541   if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
  2542     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
  2543     // be supported or the memory may already be backed by huge pages.
  2544     ::madvise(addr, bytes, MADV_HUGEPAGE);
  2548 void os::free_memory(char *addr, size_t bytes) {
  2549   commit_memory(addr, bytes, false);
  2552 void os::numa_make_global(char *addr, size_t bytes) {
  2553   Linux::numa_interleave_memory(addr, bytes);
  2556 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
  2557   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
  2560 bool os::numa_topology_changed()   { return false; }
  2562 size_t os::numa_get_groups_num() {
  2563   int max_node = Linux::numa_max_node();
  2564   return max_node > 0 ? max_node + 1 : 1;
  2567 int os::numa_get_group_id() {
  2568   int cpu_id = Linux::sched_getcpu();
  2569   if (cpu_id != -1) {
  2570     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
  2571     if (lgrp_id != -1) {
  2572       return lgrp_id;
  2575   return 0;
  2578 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  2579   for (size_t i = 0; i < size; i++) {
  2580     ids[i] = i;
  2582   return size;
  2585 bool os::get_page_info(char *start, page_info* info) {
  2586   return false;
  2589 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  2590   return end;
  2594 int os::Linux::sched_getcpu_syscall(void) {
  2595   unsigned int cpu;
  2596   int retval = -1;
  2598 #if defined(IA32)
  2599 # ifndef SYS_getcpu
  2600 # define SYS_getcpu 318
  2601 # endif
  2602   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
  2603 #elif defined(AMD64)
  2604 // Unfortunately we have to bring all these macros here from vsyscall.h
  2605 // to be able to compile on old linuxes.
  2606 # define __NR_vgetcpu 2
  2607 # define VSYSCALL_START (-10UL << 20)
  2608 # define VSYSCALL_SIZE 1024
  2609 # define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
  2610   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
  2611   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
  2612   retval = vgetcpu(&cpu, NULL, NULL);
  2613 #endif
  2615   return (retval == -1) ? retval : cpu;
  2618 // Something to do with the numa-aware allocator needs these symbols
  2619 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
  2620 extern "C" JNIEXPORT void numa_error(char *where) { }
  2621 extern "C" JNIEXPORT int fork1() { return fork(); }
  2624 // If we are running with libnuma version > 2, then we should
  2625 // be trying to use symbols with versions 1.1
  2626 // If we are running with earlier version, which did not have symbol versions,
  2627 // we should use the base version.
  2628 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
  2629   void *f = dlvsym(handle, name, "libnuma_1.1");
  2630   if (f == NULL) {
  2631     f = dlsym(handle, name);
  2633   return f;
  2636 bool os::Linux::libnuma_init() {
  2637   // sched_getcpu() should be in libc.
  2638   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
  2639                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
  2641   // If it's not, try a direct syscall.
  2642   if (sched_getcpu() == -1)
  2643     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
  2645   if (sched_getcpu() != -1) { // Does it work?
  2646     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
  2647     if (handle != NULL) {
  2648       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
  2649                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
  2650       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
  2651                                        libnuma_dlsym(handle, "numa_max_node")));
  2652       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
  2653                                         libnuma_dlsym(handle, "numa_available")));
  2654       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
  2655                                             libnuma_dlsym(handle, "numa_tonode_memory")));
  2656       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
  2657                                             libnuma_dlsym(handle, "numa_interleave_memory")));
  2660       if (numa_available() != -1) {
  2661         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
  2662         // Create a cpu -> node mapping
  2663         _cpu_to_node = new (ResourceObj::C_HEAP) GrowableArray<int>(0, true);
  2664         rebuild_cpu_to_node_map();
  2665         return true;
  2669   return false;
  2672 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
  2673 // The table is later used in get_node_by_cpu().
  2674 void os::Linux::rebuild_cpu_to_node_map() {
  2675   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
  2676                               // in libnuma (possible values are starting from 16,
  2677                               // and continuing up with every other power of 2, but less
  2678                               // than the maximum number of CPUs supported by kernel), and
  2679                               // is a subject to change (in libnuma version 2 the requirements
  2680                               // are more reasonable) we'll just hardcode the number they use
  2681                               // in the library.
  2682   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
  2684   size_t cpu_num = os::active_processor_count();
  2685   size_t cpu_map_size = NCPUS / BitsPerCLong;
  2686   size_t cpu_map_valid_size =
  2687     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
  2689   cpu_to_node()->clear();
  2690   cpu_to_node()->at_grow(cpu_num - 1);
  2691   size_t node_num = numa_get_groups_num();
  2693   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size);
  2694   for (size_t i = 0; i < node_num; i++) {
  2695     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
  2696       for (size_t j = 0; j < cpu_map_valid_size; j++) {
  2697         if (cpu_map[j] != 0) {
  2698           for (size_t k = 0; k < BitsPerCLong; k++) {
  2699             if (cpu_map[j] & (1UL << k)) {
  2700               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
  2707   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
  2710 int os::Linux::get_node_by_cpu(int cpu_id) {
  2711   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
  2712     return cpu_to_node()->at(cpu_id);
  2714   return -1;
  2717 GrowableArray<int>* os::Linux::_cpu_to_node;
  2718 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
  2719 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
  2720 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
  2721 os::Linux::numa_available_func_t os::Linux::_numa_available;
  2722 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
  2723 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
  2724 unsigned long* os::Linux::_numa_all_nodes;
  2726 bool os::uncommit_memory(char* addr, size_t size) {
  2727   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
  2728                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
  2729   return res  != (uintptr_t) MAP_FAILED;
  2732 // Linux uses a growable mapping for the stack, and if the mapping for
  2733 // the stack guard pages is not removed when we detach a thread the
  2734 // stack cannot grow beyond the pages where the stack guard was
  2735 // mapped.  If at some point later in the process the stack expands to
  2736 // that point, the Linux kernel cannot expand the stack any further
  2737 // because the guard pages are in the way, and a segfault occurs.
  2738 //
  2739 // However, it's essential not to split the stack region by unmapping
  2740 // a region (leaving a hole) that's already part of the stack mapping,
  2741 // so if the stack mapping has already grown beyond the guard pages at
  2742 // the time we create them, we have to truncate the stack mapping.
  2743 // So, we need to know the extent of the stack mapping when
  2744 // create_stack_guard_pages() is called.
  2746 // Find the bounds of the stack mapping.  Return true for success.
  2747 //
  2748 // We only need this for stacks that are growable: at the time of
  2749 // writing thread stacks don't use growable mappings (i.e. those
  2750 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
  2751 // only applies to the main thread.
  2753 static
  2754 bool get_stack_bounds(uintptr_t *bottom, uintptr_t *top) {
  2756   char buf[128];
  2757   int fd, sz;
  2759   if ((fd = ::open("/proc/self/maps", O_RDONLY)) < 0) {
  2760     return false;
  2763   const char kw[] = "[stack]";
  2764   const int kwlen = sizeof(kw)-1;
  2766   // Address part of /proc/self/maps couldn't be more than 128 bytes
  2767   while ((sz = os::get_line_chars(fd, buf, sizeof(buf))) > 0) {
  2768      if (sz > kwlen && ::memcmp(buf+sz-kwlen, kw, kwlen) == 0) {
  2769         // Extract addresses
  2770         if (sscanf(buf, "%" SCNxPTR "-%" SCNxPTR, bottom, top) == 2) {
  2771            uintptr_t sp = (uintptr_t) __builtin_frame_address(0);
  2772            if (sp >= *bottom && sp <= *top) {
  2773               ::close(fd);
  2774               return true;
  2780  ::close(fd);
  2781   return false;
  2785 // If the (growable) stack mapping already extends beyond the point
  2786 // where we're going to put our guard pages, truncate the mapping at
  2787 // that point by munmap()ping it.  This ensures that when we later
  2788 // munmap() the guard pages we don't leave a hole in the stack
  2789 // mapping. This only affects the main/initial thread, but guard
  2790 // against future OS changes
  2791 bool os::create_stack_guard_pages(char* addr, size_t size) {
  2792   uintptr_t stack_extent, stack_base;
  2793   bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
  2794   if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
  2795       assert(os::Linux::is_initial_thread(),
  2796            "growable stack in non-initial thread");
  2797     if (stack_extent < (uintptr_t)addr)
  2798       ::munmap((void*)stack_extent, (uintptr_t)addr - stack_extent);
  2801   return os::commit_memory(addr, size);
  2804 // If this is a growable mapping, remove the guard pages entirely by
  2805 // munmap()ping them.  If not, just call uncommit_memory(). This only
  2806 // affects the main/initial thread, but guard against future OS changes
  2807 bool os::remove_stack_guard_pages(char* addr, size_t size) {
  2808   uintptr_t stack_extent, stack_base;
  2809   bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
  2810   if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
  2811       assert(os::Linux::is_initial_thread(),
  2812            "growable stack in non-initial thread");
  2814     return ::munmap(addr, size) == 0;
  2817   return os::uncommit_memory(addr, size);
  2820 static address _highest_vm_reserved_address = NULL;
  2822 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
  2823 // at 'requested_addr'. If there are existing memory mappings at the same
  2824 // location, however, they will be overwritten. If 'fixed' is false,
  2825 // 'requested_addr' is only treated as a hint, the return value may or
  2826 // may not start from the requested address. Unlike Linux mmap(), this
  2827 // function returns NULL to indicate failure.
  2828 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
  2829   char * addr;
  2830   int flags;
  2832   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
  2833   if (fixed) {
  2834     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
  2835     flags |= MAP_FIXED;
  2838   // Map uncommitted pages PROT_READ and PROT_WRITE, change access
  2839   // to PROT_EXEC if executable when we commit the page.
  2840   addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
  2841                        flags, -1, 0);
  2843   if (addr != MAP_FAILED) {
  2844     // anon_mmap() should only get called during VM initialization,
  2845     // don't need lock (actually we can skip locking even it can be called
  2846     // from multiple threads, because _highest_vm_reserved_address is just a
  2847     // hint about the upper limit of non-stack memory regions.)
  2848     if ((address)addr + bytes > _highest_vm_reserved_address) {
  2849       _highest_vm_reserved_address = (address)addr + bytes;
  2853   return addr == MAP_FAILED ? NULL : addr;
  2856 // Don't update _highest_vm_reserved_address, because there might be memory
  2857 // regions above addr + size. If so, releasing a memory region only creates
  2858 // a hole in the address space, it doesn't help prevent heap-stack collision.
  2859 //
  2860 static int anon_munmap(char * addr, size_t size) {
  2861   return ::munmap(addr, size) == 0;
  2864 char* os::reserve_memory(size_t bytes, char* requested_addr,
  2865                          size_t alignment_hint) {
  2866   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
  2869 bool os::release_memory(char* addr, size_t size) {
  2870   return anon_munmap(addr, size);
  2873 static address highest_vm_reserved_address() {
  2874   return _highest_vm_reserved_address;
  2877 static bool linux_mprotect(char* addr, size_t size, int prot) {
  2878   // Linux wants the mprotect address argument to be page aligned.
  2879   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
  2881   // According to SUSv3, mprotect() should only be used with mappings
  2882   // established by mmap(), and mmap() always maps whole pages. Unaligned
  2883   // 'addr' likely indicates problem in the VM (e.g. trying to change
  2884   // protection of malloc'ed or statically allocated memory). Check the
  2885   // caller if you hit this assert.
  2886   assert(addr == bottom, "sanity check");
  2888   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
  2889   return ::mprotect(bottom, size, prot) == 0;
  2892 // Set protections specified
  2893 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  2894                         bool is_committed) {
  2895   unsigned int p = 0;
  2896   switch (prot) {
  2897   case MEM_PROT_NONE: p = PROT_NONE; break;
  2898   case MEM_PROT_READ: p = PROT_READ; break;
  2899   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
  2900   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
  2901   default:
  2902     ShouldNotReachHere();
  2904   // is_committed is unused.
  2905   return linux_mprotect(addr, bytes, p);
  2908 bool os::guard_memory(char* addr, size_t size) {
  2909   return linux_mprotect(addr, size, PROT_NONE);
  2912 bool os::unguard_memory(char* addr, size_t size) {
  2913   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
  2916 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
  2917   bool result = false;
  2918   void *p = mmap (NULL, page_size, PROT_READ|PROT_WRITE,
  2919                   MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
  2920                   -1, 0);
  2922   if (p != (void *) -1) {
  2923     // We don't know if this really is a huge page or not.
  2924     FILE *fp = fopen("/proc/self/maps", "r");
  2925     if (fp) {
  2926       while (!feof(fp)) {
  2927         char chars[257];
  2928         long x = 0;
  2929         if (fgets(chars, sizeof(chars), fp)) {
  2930           if (sscanf(chars, "%lx-%*x", &x) == 1
  2931               && x == (long)p) {
  2932             if (strstr (chars, "hugepage")) {
  2933               result = true;
  2934               break;
  2939       fclose(fp);
  2941     munmap (p, page_size);
  2942     if (result)
  2943       return true;
  2946   if (warn) {
  2947     warning("HugeTLBFS is not supported by the operating system.");
  2950   return result;
  2953 /*
  2954 * Set the coredump_filter bits to include largepages in core dump (bit 6)
  2956 * From the coredump_filter documentation:
  2958 * - (bit 0) anonymous private memory
  2959 * - (bit 1) anonymous shared memory
  2960 * - (bit 2) file-backed private memory
  2961 * - (bit 3) file-backed shared memory
  2962 * - (bit 4) ELF header pages in file-backed private memory areas (it is
  2963 *           effective only if the bit 2 is cleared)
  2964 * - (bit 5) hugetlb private memory
  2965 * - (bit 6) hugetlb shared memory
  2966 */
  2967 static void set_coredump_filter(void) {
  2968   FILE *f;
  2969   long cdm;
  2971   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
  2972     return;
  2975   if (fscanf(f, "%lx", &cdm) != 1) {
  2976     fclose(f);
  2977     return;
  2980   rewind(f);
  2982   if ((cdm & LARGEPAGES_BIT) == 0) {
  2983     cdm |= LARGEPAGES_BIT;
  2984     fprintf(f, "%#lx", cdm);
  2987   fclose(f);
  2990 // Large page support
  2992 static size_t _large_page_size = 0;
  2994 void os::large_page_init() {
  2995   if (!UseLargePages) {
  2996     UseHugeTLBFS = false;
  2997     UseSHM = false;
  2998     return;
  3001   if (FLAG_IS_DEFAULT(UseHugeTLBFS) && FLAG_IS_DEFAULT(UseSHM)) {
  3002     // If UseLargePages is specified on the command line try both methods,
  3003     // if it's default, then try only HugeTLBFS.
  3004     if (FLAG_IS_DEFAULT(UseLargePages)) {
  3005       UseHugeTLBFS = true;
  3006     } else {
  3007       UseHugeTLBFS = UseSHM = true;
  3011   if (LargePageSizeInBytes) {
  3012     _large_page_size = LargePageSizeInBytes;
  3013   } else {
  3014     // large_page_size on Linux is used to round up heap size. x86 uses either
  3015     // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
  3016     // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
  3017     // page as large as 256M.
  3018     //
  3019     // Here we try to figure out page size by parsing /proc/meminfo and looking
  3020     // for a line with the following format:
  3021     //    Hugepagesize:     2048 kB
  3022     //
  3023     // If we can't determine the value (e.g. /proc is not mounted, or the text
  3024     // format has been changed), we'll use the largest page size supported by
  3025     // the processor.
  3027 #ifndef ZERO
  3028     _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
  3029                        ARM_ONLY(2 * M) PPC_ONLY(4 * M);
  3030 #endif // ZERO
  3032     FILE *fp = fopen("/proc/meminfo", "r");
  3033     if (fp) {
  3034       while (!feof(fp)) {
  3035         int x = 0;
  3036         char buf[16];
  3037         if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
  3038           if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
  3039             _large_page_size = x * K;
  3040             break;
  3042         } else {
  3043           // skip to next line
  3044           for (;;) {
  3045             int ch = fgetc(fp);
  3046             if (ch == EOF || ch == (int)'\n') break;
  3050       fclose(fp);
  3054   // print a warning if any large page related flag is specified on command line
  3055   bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
  3057   const size_t default_page_size = (size_t)Linux::page_size();
  3058   if (_large_page_size > default_page_size) {
  3059     _page_sizes[0] = _large_page_size;
  3060     _page_sizes[1] = default_page_size;
  3061     _page_sizes[2] = 0;
  3063   UseHugeTLBFS = UseHugeTLBFS &&
  3064                  Linux::hugetlbfs_sanity_check(warn_on_failure, _large_page_size);
  3066   if (UseHugeTLBFS)
  3067     UseSHM = false;
  3069   UseLargePages = UseHugeTLBFS || UseSHM;
  3071   set_coredump_filter();
  3074 #ifndef SHM_HUGETLB
  3075 #define SHM_HUGETLB 04000
  3076 #endif
  3078 char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
  3079   // "exec" is passed in but not used.  Creating the shared image for
  3080   // the code cache doesn't have an SHM_X executable permission to check.
  3081   assert(UseLargePages && UseSHM, "only for SHM large pages");
  3083   key_t key = IPC_PRIVATE;
  3084   char *addr;
  3086   bool warn_on_failure = UseLargePages &&
  3087                         (!FLAG_IS_DEFAULT(UseLargePages) ||
  3088                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
  3089                         );
  3090   char msg[128];
  3092   // Create a large shared memory region to attach to based on size.
  3093   // Currently, size is the total size of the heap
  3094   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
  3095   if (shmid == -1) {
  3096      // Possible reasons for shmget failure:
  3097      // 1. shmmax is too small for Java heap.
  3098      //    > check shmmax value: cat /proc/sys/kernel/shmmax
  3099      //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
  3100      // 2. not enough large page memory.
  3101      //    > check available large pages: cat /proc/meminfo
  3102      //    > increase amount of large pages:
  3103      //          echo new_value > /proc/sys/vm/nr_hugepages
  3104      //      Note 1: different Linux may use different name for this property,
  3105      //            e.g. on Redhat AS-3 it is "hugetlb_pool".
  3106      //      Note 2: it's possible there's enough physical memory available but
  3107      //            they are so fragmented after a long run that they can't
  3108      //            coalesce into large pages. Try to reserve large pages when
  3109      //            the system is still "fresh".
  3110      if (warn_on_failure) {
  3111        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
  3112        warning(msg);
  3114      return NULL;
  3117   // attach to the region
  3118   addr = (char*)shmat(shmid, req_addr, 0);
  3119   int err = errno;
  3121   // Remove shmid. If shmat() is successful, the actual shared memory segment
  3122   // will be deleted when it's detached by shmdt() or when the process
  3123   // terminates. If shmat() is not successful this will remove the shared
  3124   // segment immediately.
  3125   shmctl(shmid, IPC_RMID, NULL);
  3127   if ((intptr_t)addr == -1) {
  3128      if (warn_on_failure) {
  3129        jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
  3130        warning(msg);
  3132      return NULL;
  3135   if ((addr != NULL) && UseNUMAInterleaving) {
  3136     numa_make_global(addr, bytes);
  3139   return addr;
  3142 bool os::release_memory_special(char* base, size_t bytes) {
  3143   // detaching the SHM segment will also delete it, see reserve_memory_special()
  3144   int rslt = shmdt(base);
  3145   return rslt == 0;
  3148 size_t os::large_page_size() {
  3149   return _large_page_size;
  3152 // HugeTLBFS allows application to commit large page memory on demand;
  3153 // with SysV SHM the entire memory region must be allocated as shared
  3154 // memory.
  3155 bool os::can_commit_large_page_memory() {
  3156   return UseHugeTLBFS;
  3159 bool os::can_execute_large_page_memory() {
  3160   return UseHugeTLBFS;
  3163 // Reserve memory at an arbitrary address, only if that area is
  3164 // available (and not reserved for something else).
  3166 char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  3167   const int max_tries = 10;
  3168   char* base[max_tries];
  3169   size_t size[max_tries];
  3170   const size_t gap = 0x000000;
  3172   // Assert only that the size is a multiple of the page size, since
  3173   // that's all that mmap requires, and since that's all we really know
  3174   // about at this low abstraction level.  If we need higher alignment,
  3175   // we can either pass an alignment to this method or verify alignment
  3176   // in one of the methods further up the call chain.  See bug 5044738.
  3177   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
  3179   // Repeatedly allocate blocks until the block is allocated at the
  3180   // right spot. Give up after max_tries. Note that reserve_memory() will
  3181   // automatically update _highest_vm_reserved_address if the call is
  3182   // successful. The variable tracks the highest memory address every reserved
  3183   // by JVM. It is used to detect heap-stack collision if running with
  3184   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
  3185   // space than needed, it could confuse the collision detecting code. To
  3186   // solve the problem, save current _highest_vm_reserved_address and
  3187   // calculate the correct value before return.
  3188   address old_highest = _highest_vm_reserved_address;
  3190   // Linux mmap allows caller to pass an address as hint; give it a try first,
  3191   // if kernel honors the hint then we can return immediately.
  3192   char * addr = anon_mmap(requested_addr, bytes, false);
  3193   if (addr == requested_addr) {
  3194      return requested_addr;
  3197   if (addr != NULL) {
  3198      // mmap() is successful but it fails to reserve at the requested address
  3199      anon_munmap(addr, bytes);
  3202   int i;
  3203   for (i = 0; i < max_tries; ++i) {
  3204     base[i] = reserve_memory(bytes);
  3206     if (base[i] != NULL) {
  3207       // Is this the block we wanted?
  3208       if (base[i] == requested_addr) {
  3209         size[i] = bytes;
  3210         break;
  3213       // Does this overlap the block we wanted? Give back the overlapped
  3214       // parts and try again.
  3216       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
  3217       if (top_overlap >= 0 && top_overlap < bytes) {
  3218         unmap_memory(base[i], top_overlap);
  3219         base[i] += top_overlap;
  3220         size[i] = bytes - top_overlap;
  3221       } else {
  3222         size_t bottom_overlap = base[i] + bytes - requested_addr;
  3223         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
  3224           unmap_memory(requested_addr, bottom_overlap);
  3225           size[i] = bytes - bottom_overlap;
  3226         } else {
  3227           size[i] = bytes;
  3233   // Give back the unused reserved pieces.
  3235   for (int j = 0; j < i; ++j) {
  3236     if (base[j] != NULL) {
  3237       unmap_memory(base[j], size[j]);
  3241   if (i < max_tries) {
  3242     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
  3243     return requested_addr;
  3244   } else {
  3245     _highest_vm_reserved_address = old_highest;
  3246     return NULL;
  3250 size_t os::read(int fd, void *buf, unsigned int nBytes) {
  3251   return ::read(fd, buf, nBytes);
  3254 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
  3255 // Solaris uses poll(), linux uses park().
  3256 // Poll() is likely a better choice, assuming that Thread.interrupt()
  3257 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
  3258 // SIGSEGV, see 4355769.
  3260 const int NANOSECS_PER_MILLISECS = 1000000;
  3262 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
  3263   assert(thread == Thread::current(),  "thread consistency check");
  3265   ParkEvent * const slp = thread->_SleepEvent ;
  3266   slp->reset() ;
  3267   OrderAccess::fence() ;
  3269   if (interruptible) {
  3270     jlong prevtime = javaTimeNanos();
  3272     for (;;) {
  3273       if (os::is_interrupted(thread, true)) {
  3274         return OS_INTRPT;
  3277       jlong newtime = javaTimeNanos();
  3279       if (newtime - prevtime < 0) {
  3280         // time moving backwards, should only happen if no monotonic clock
  3281         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  3282         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  3283       } else {
  3284         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
  3287       if(millis <= 0) {
  3288         return OS_OK;
  3291       prevtime = newtime;
  3294         assert(thread->is_Java_thread(), "sanity check");
  3295         JavaThread *jt = (JavaThread *) thread;
  3296         ThreadBlockInVM tbivm(jt);
  3297         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
  3299         jt->set_suspend_equivalent();
  3300         // cleared by handle_special_suspend_equivalent_condition() or
  3301         // java_suspend_self() via check_and_wait_while_suspended()
  3303         slp->park(millis);
  3305         // were we externally suspended while we were waiting?
  3306         jt->check_and_wait_while_suspended();
  3309   } else {
  3310     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  3311     jlong prevtime = javaTimeNanos();
  3313     for (;;) {
  3314       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
  3315       // the 1st iteration ...
  3316       jlong newtime = javaTimeNanos();
  3318       if (newtime - prevtime < 0) {
  3319         // time moving backwards, should only happen if no monotonic clock
  3320         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  3321         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  3322       } else {
  3323         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
  3326       if(millis <= 0) break ;
  3328       prevtime = newtime;
  3329       slp->park(millis);
  3331     return OS_OK ;
  3335 int os::naked_sleep() {
  3336   // %% make the sleep time an integer flag. for now use 1 millisec.
  3337   return os::sleep(Thread::current(), 1, false);
  3340 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  3341 void os::infinite_sleep() {
  3342   while (true) {    // sleep forever ...
  3343     ::sleep(100);   // ... 100 seconds at a time
  3347 // Used to convert frequent JVM_Yield() to nops
  3348 bool os::dont_yield() {
  3349   return DontYieldALot;
  3352 void os::yield() {
  3353   sched_yield();
  3356 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
  3358 void os::yield_all(int attempts) {
  3359   // Yields to all threads, including threads with lower priorities
  3360   // Threads on Linux are all with same priority. The Solaris style
  3361   // os::yield_all() with nanosleep(1ms) is not necessary.
  3362   sched_yield();
  3365 // Called from the tight loops to possibly influence time-sharing heuristics
  3366 void os::loop_breaker(int attempts) {
  3367   os::yield_all(attempts);
  3370 ////////////////////////////////////////////////////////////////////////////////
  3371 // thread priority support
  3373 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
  3374 // only supports dynamic priority, static priority must be zero. For real-time
  3375 // applications, Linux supports SCHED_RR which allows static priority (1-99).
  3376 // However, for large multi-threaded applications, SCHED_RR is not only slower
  3377 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
  3378 // of 5 runs - Sep 2005).
  3379 //
  3380 // The following code actually changes the niceness of kernel-thread/LWP. It
  3381 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
  3382 // not the entire user process, and user level threads are 1:1 mapped to kernel
  3383 // threads. It has always been the case, but could change in the future. For
  3384 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
  3385 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
  3387 int os::java_to_os_priority[MaxPriority + 1] = {
  3388   19,              // 0 Entry should never be used
  3390    4,              // 1 MinPriority
  3391    3,              // 2
  3392    2,              // 3
  3394    1,              // 4
  3395    0,              // 5 NormPriority
  3396   -1,              // 6
  3398   -2,              // 7
  3399   -3,              // 8
  3400   -4,              // 9 NearMaxPriority
  3402   -5               // 10 MaxPriority
  3403 };
  3405 static int prio_init() {
  3406   if (ThreadPriorityPolicy == 1) {
  3407     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
  3408     // if effective uid is not root. Perhaps, a more elegant way of doing
  3409     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
  3410     if (geteuid() != 0) {
  3411       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
  3412         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
  3414       ThreadPriorityPolicy = 0;
  3417   return 0;
  3420 OSReturn os::set_native_priority(Thread* thread, int newpri) {
  3421   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
  3423   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
  3424   return (ret == 0) ? OS_OK : OS_ERR;
  3427 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
  3428   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
  3429     *priority_ptr = java_to_os_priority[NormPriority];
  3430     return OS_OK;
  3433   errno = 0;
  3434   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
  3435   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
  3438 // Hint to the underlying OS that a task switch would not be good.
  3439 // Void return because it's a hint and can fail.
  3440 void os::hint_no_preempt() {}
  3442 ////////////////////////////////////////////////////////////////////////////////
  3443 // suspend/resume support
  3445 //  the low-level signal-based suspend/resume support is a remnant from the
  3446 //  old VM-suspension that used to be for java-suspension, safepoints etc,
  3447 //  within hotspot. Now there is a single use-case for this:
  3448 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
  3449 //      that runs in the watcher thread.
  3450 //  The remaining code is greatly simplified from the more general suspension
  3451 //  code that used to be used.
  3452 //
  3453 //  The protocol is quite simple:
  3454 //  - suspend:
  3455 //      - sends a signal to the target thread
  3456 //      - polls the suspend state of the osthread using a yield loop
  3457 //      - target thread signal handler (SR_handler) sets suspend state
  3458 //        and blocks in sigsuspend until continued
  3459 //  - resume:
  3460 //      - sets target osthread state to continue
  3461 //      - sends signal to end the sigsuspend loop in the SR_handler
  3462 //
  3463 //  Note that the SR_lock plays no role in this suspend/resume protocol.
  3464 //
  3466 static void resume_clear_context(OSThread *osthread) {
  3467   osthread->set_ucontext(NULL);
  3468   osthread->set_siginfo(NULL);
  3470   // notify the suspend action is completed, we have now resumed
  3471   osthread->sr.clear_suspended();
  3474 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
  3475   osthread->set_ucontext(context);
  3476   osthread->set_siginfo(siginfo);
  3479 //
  3480 // Handler function invoked when a thread's execution is suspended or
  3481 // resumed. We have to be careful that only async-safe functions are
  3482 // called here (Note: most pthread functions are not async safe and
  3483 // should be avoided.)
  3484 //
  3485 // Note: sigwait() is a more natural fit than sigsuspend() from an
  3486 // interface point of view, but sigwait() prevents the signal hander
  3487 // from being run. libpthread would get very confused by not having
  3488 // its signal handlers run and prevents sigwait()'s use with the
  3489 // mutex granting granting signal.
  3490 //
  3491 // Currently only ever called on the VMThread
  3492 //
  3493 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
  3494   // Save and restore errno to avoid confusing native code with EINTR
  3495   // after sigsuspend.
  3496   int old_errno = errno;
  3498   Thread* thread = Thread::current();
  3499   OSThread* osthread = thread->osthread();
  3500   assert(thread->is_VM_thread(), "Must be VMThread");
  3501   // read current suspend action
  3502   int action = osthread->sr.suspend_action();
  3503   if (action == SR_SUSPEND) {
  3504     suspend_save_context(osthread, siginfo, context);
  3506     // Notify the suspend action is about to be completed. do_suspend()
  3507     // waits until SR_SUSPENDED is set and then returns. We will wait
  3508     // here for a resume signal and that completes the suspend-other
  3509     // action. do_suspend/do_resume is always called as a pair from
  3510     // the same thread - so there are no races
  3512     // notify the caller
  3513     osthread->sr.set_suspended();
  3515     sigset_t suspend_set;  // signals for sigsuspend()
  3517     // get current set of blocked signals and unblock resume signal
  3518     pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
  3519     sigdelset(&suspend_set, SR_signum);
  3521     // wait here until we are resumed
  3522     do {
  3523       sigsuspend(&suspend_set);
  3524       // ignore all returns until we get a resume signal
  3525     } while (osthread->sr.suspend_action() != SR_CONTINUE);
  3527     resume_clear_context(osthread);
  3529   } else {
  3530     assert(action == SR_CONTINUE, "unexpected sr action");
  3531     // nothing special to do - just leave the handler
  3534   errno = old_errno;
  3538 static int SR_initialize() {
  3539   struct sigaction act;
  3540   char *s;
  3541   /* Get signal number to use for suspend/resume */
  3542   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
  3543     int sig = ::strtol(s, 0, 10);
  3544     if (sig > 0 || sig < _NSIG) {
  3545         SR_signum = sig;
  3549   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
  3550         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
  3552   sigemptyset(&SR_sigset);
  3553   sigaddset(&SR_sigset, SR_signum);
  3555   /* Set up signal handler for suspend/resume */
  3556   act.sa_flags = SA_RESTART|SA_SIGINFO;
  3557   act.sa_handler = (void (*)(int)) SR_handler;
  3559   // SR_signum is blocked by default.
  3560   // 4528190 - We also need to block pthread restart signal (32 on all
  3561   // supported Linux platforms). Note that LinuxThreads need to block
  3562   // this signal for all threads to work properly. So we don't have
  3563   // to use hard-coded signal number when setting up the mask.
  3564   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
  3566   if (sigaction(SR_signum, &act, 0) == -1) {
  3567     return -1;
  3570   // Save signal flag
  3571   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
  3572   return 0;
  3575 static int SR_finalize() {
  3576   return 0;
  3580 // returns true on success and false on error - really an error is fatal
  3581 // but this seems the normal response to library errors
  3582 static bool do_suspend(OSThread* osthread) {
  3583   // mark as suspended and send signal
  3584   osthread->sr.set_suspend_action(SR_SUSPEND);
  3585   int status = pthread_kill(osthread->pthread_id(), SR_signum);
  3586   assert_status(status == 0, status, "pthread_kill");
  3588   // check status and wait until notified of suspension
  3589   if (status == 0) {
  3590     for (int i = 0; !osthread->sr.is_suspended(); i++) {
  3591       os::yield_all(i);
  3593     osthread->sr.set_suspend_action(SR_NONE);
  3594     return true;
  3596   else {
  3597     osthread->sr.set_suspend_action(SR_NONE);
  3598     return false;
  3602 static void do_resume(OSThread* osthread) {
  3603   assert(osthread->sr.is_suspended(), "thread should be suspended");
  3604   osthread->sr.set_suspend_action(SR_CONTINUE);
  3606   int status = pthread_kill(osthread->pthread_id(), SR_signum);
  3607   assert_status(status == 0, status, "pthread_kill");
  3608   // check status and wait unit notified of resumption
  3609   if (status == 0) {
  3610     for (int i = 0; osthread->sr.is_suspended(); i++) {
  3611       os::yield_all(i);
  3614   osthread->sr.set_suspend_action(SR_NONE);
  3617 ////////////////////////////////////////////////////////////////////////////////
  3618 // interrupt support
  3620 void os::interrupt(Thread* thread) {
  3621   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  3622     "possibility of dangling Thread pointer");
  3624   OSThread* osthread = thread->osthread();
  3626   if (!osthread->interrupted()) {
  3627     osthread->set_interrupted(true);
  3628     // More than one thread can get here with the same value of osthread,
  3629     // resulting in multiple notifications.  We do, however, want the store
  3630     // to interrupted() to be visible to other threads before we execute unpark().
  3631     OrderAccess::fence();
  3632     ParkEvent * const slp = thread->_SleepEvent ;
  3633     if (slp != NULL) slp->unpark() ;
  3636   // For JSR166. Unpark even if interrupt status already was set
  3637   if (thread->is_Java_thread())
  3638     ((JavaThread*)thread)->parker()->unpark();
  3640   ParkEvent * ev = thread->_ParkEvent ;
  3641   if (ev != NULL) ev->unpark() ;
  3645 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  3646   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  3647     "possibility of dangling Thread pointer");
  3649   OSThread* osthread = thread->osthread();
  3651   bool interrupted = osthread->interrupted();
  3653   if (interrupted && clear_interrupted) {
  3654     osthread->set_interrupted(false);
  3655     // consider thread->_SleepEvent->reset() ... optional optimization
  3658   return interrupted;
  3661 ///////////////////////////////////////////////////////////////////////////////////
  3662 // signal handling (except suspend/resume)
  3664 // This routine may be used by user applications as a "hook" to catch signals.
  3665 // The user-defined signal handler must pass unrecognized signals to this
  3666 // routine, and if it returns true (non-zero), then the signal handler must
  3667 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
  3668 // routine will never retun false (zero), but instead will execute a VM panic
  3669 // routine kill the process.
  3670 //
  3671 // If this routine returns false, it is OK to call it again.  This allows
  3672 // the user-defined signal handler to perform checks either before or after
  3673 // the VM performs its own checks.  Naturally, the user code would be making
  3674 // a serious error if it tried to handle an exception (such as a null check
  3675 // or breakpoint) that the VM was generating for its own correct operation.
  3676 //
  3677 // This routine may recognize any of the following kinds of signals:
  3678 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
  3679 // It should be consulted by handlers for any of those signals.
  3680 //
  3681 // The caller of this routine must pass in the three arguments supplied
  3682 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
  3683 // field of the structure passed to sigaction().  This routine assumes that
  3684 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
  3685 //
  3686 // Note that the VM will print warnings if it detects conflicting signal
  3687 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
  3688 //
  3689 extern "C" JNIEXPORT int
  3690 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
  3691                         void* ucontext, int abort_if_unrecognized);
  3693 void signalHandler(int sig, siginfo_t* info, void* uc) {
  3694   assert(info != NULL && uc != NULL, "it must be old kernel");
  3695   JVM_handle_linux_signal(sig, info, uc, true);
  3699 // This boolean allows users to forward their own non-matching signals
  3700 // to JVM_handle_linux_signal, harmlessly.
  3701 bool os::Linux::signal_handlers_are_installed = false;
  3703 // For signal-chaining
  3704 struct sigaction os::Linux::sigact[MAXSIGNUM];
  3705 unsigned int os::Linux::sigs = 0;
  3706 bool os::Linux::libjsig_is_loaded = false;
  3707 typedef struct sigaction *(*get_signal_t)(int);
  3708 get_signal_t os::Linux::get_signal_action = NULL;
  3710 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
  3711   struct sigaction *actp = NULL;
  3713   if (libjsig_is_loaded) {
  3714     // Retrieve the old signal handler from libjsig
  3715     actp = (*get_signal_action)(sig);
  3717   if (actp == NULL) {
  3718     // Retrieve the preinstalled signal handler from jvm
  3719     actp = get_preinstalled_handler(sig);
  3722   return actp;
  3725 static bool call_chained_handler(struct sigaction *actp, int sig,
  3726                                  siginfo_t *siginfo, void *context) {
  3727   // Call the old signal handler
  3728   if (actp->sa_handler == SIG_DFL) {
  3729     // It's more reasonable to let jvm treat it as an unexpected exception
  3730     // instead of taking the default action.
  3731     return false;
  3732   } else if (actp->sa_handler != SIG_IGN) {
  3733     if ((actp->sa_flags & SA_NODEFER) == 0) {
  3734       // automaticlly block the signal
  3735       sigaddset(&(actp->sa_mask), sig);
  3738     sa_handler_t hand;
  3739     sa_sigaction_t sa;
  3740     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
  3741     // retrieve the chained handler
  3742     if (siginfo_flag_set) {
  3743       sa = actp->sa_sigaction;
  3744     } else {
  3745       hand = actp->sa_handler;
  3748     if ((actp->sa_flags & SA_RESETHAND) != 0) {
  3749       actp->sa_handler = SIG_DFL;
  3752     // try to honor the signal mask
  3753     sigset_t oset;
  3754     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
  3756     // call into the chained handler
  3757     if (siginfo_flag_set) {
  3758       (*sa)(sig, siginfo, context);
  3759     } else {
  3760       (*hand)(sig);
  3763     // restore the signal mask
  3764     pthread_sigmask(SIG_SETMASK, &oset, 0);
  3766   // Tell jvm's signal handler the signal is taken care of.
  3767   return true;
  3770 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
  3771   bool chained = false;
  3772   // signal-chaining
  3773   if (UseSignalChaining) {
  3774     struct sigaction *actp = get_chained_signal_action(sig);
  3775     if (actp != NULL) {
  3776       chained = call_chained_handler(actp, sig, siginfo, context);
  3779   return chained;
  3782 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
  3783   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
  3784     return &sigact[sig];
  3786   return NULL;
  3789 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
  3790   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3791   sigact[sig] = oldAct;
  3792   sigs |= (unsigned int)1 << sig;
  3795 // for diagnostic
  3796 int os::Linux::sigflags[MAXSIGNUM];
  3798 int os::Linux::get_our_sigflags(int sig) {
  3799   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3800   return sigflags[sig];
  3803 void os::Linux::set_our_sigflags(int sig, int flags) {
  3804   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3805   sigflags[sig] = flags;
  3808 void os::Linux::set_signal_handler(int sig, bool set_installed) {
  3809   // Check for overwrite.
  3810   struct sigaction oldAct;
  3811   sigaction(sig, (struct sigaction*)NULL, &oldAct);
  3813   void* oldhand = oldAct.sa_sigaction
  3814                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
  3815                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
  3816   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
  3817       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
  3818       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
  3819     if (AllowUserSignalHandlers || !set_installed) {
  3820       // Do not overwrite; user takes responsibility to forward to us.
  3821       return;
  3822     } else if (UseSignalChaining) {
  3823       // save the old handler in jvm
  3824       save_preinstalled_handler(sig, oldAct);
  3825       // libjsig also interposes the sigaction() call below and saves the
  3826       // old sigaction on it own.
  3827     } else {
  3828       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
  3829                     "%#lx for signal %d.", (long)oldhand, sig));
  3833   struct sigaction sigAct;
  3834   sigfillset(&(sigAct.sa_mask));
  3835   sigAct.sa_handler = SIG_DFL;
  3836   if (!set_installed) {
  3837     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  3838   } else {
  3839     sigAct.sa_sigaction = signalHandler;
  3840     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  3842   // Save flags, which are set by ours
  3843   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3844   sigflags[sig] = sigAct.sa_flags;
  3846   int ret = sigaction(sig, &sigAct, &oldAct);
  3847   assert(ret == 0, "check");
  3849   void* oldhand2  = oldAct.sa_sigaction
  3850                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
  3851                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
  3852   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
  3855 // install signal handlers for signals that HotSpot needs to
  3856 // handle in order to support Java-level exception handling.
  3858 void os::Linux::install_signal_handlers() {
  3859   if (!signal_handlers_are_installed) {
  3860     signal_handlers_are_installed = true;
  3862     // signal-chaining
  3863     typedef void (*signal_setting_t)();
  3864     signal_setting_t begin_signal_setting = NULL;
  3865     signal_setting_t end_signal_setting = NULL;
  3866     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  3867                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
  3868     if (begin_signal_setting != NULL) {
  3869       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  3870                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
  3871       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
  3872                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
  3873       libjsig_is_loaded = true;
  3874       assert(UseSignalChaining, "should enable signal-chaining");
  3876     if (libjsig_is_loaded) {
  3877       // Tell libjsig jvm is setting signal handlers
  3878       (*begin_signal_setting)();
  3881     set_signal_handler(SIGSEGV, true);
  3882     set_signal_handler(SIGPIPE, true);
  3883     set_signal_handler(SIGBUS, true);
  3884     set_signal_handler(SIGILL, true);
  3885     set_signal_handler(SIGFPE, true);
  3886     set_signal_handler(SIGXFSZ, true);
  3888     if (libjsig_is_loaded) {
  3889       // Tell libjsig jvm finishes setting signal handlers
  3890       (*end_signal_setting)();
  3893     // We don't activate signal checker if libjsig is in place, we trust ourselves
  3894     // and if UserSignalHandler is installed all bets are off
  3895     if (CheckJNICalls) {
  3896       if (libjsig_is_loaded) {
  3897         tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
  3898         check_signals = false;
  3900       if (AllowUserSignalHandlers) {
  3901         tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
  3902         check_signals = false;
  3908 // This is the fastest way to get thread cpu time on Linux.
  3909 // Returns cpu time (user+sys) for any thread, not only for current.
  3910 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
  3911 // It might work on 2.6.10+ with a special kernel/glibc patch.
  3912 // For reference, please, see IEEE Std 1003.1-2004:
  3913 //   http://www.unix.org/single_unix_specification
  3915 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
  3916   struct timespec tp;
  3917   int rc = os::Linux::clock_gettime(clockid, &tp);
  3918   assert(rc == 0, "clock_gettime is expected to return 0 code");
  3920   return (tp.tv_sec * SEC_IN_NANOSECS) + tp.tv_nsec;
  3923 /////
  3924 // glibc on Linux platform uses non-documented flag
  3925 // to indicate, that some special sort of signal
  3926 // trampoline is used.
  3927 // We will never set this flag, and we should
  3928 // ignore this flag in our diagnostic
  3929 #ifdef SIGNIFICANT_SIGNAL_MASK
  3930 #undef SIGNIFICANT_SIGNAL_MASK
  3931 #endif
  3932 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
  3934 static const char* get_signal_handler_name(address handler,
  3935                                            char* buf, int buflen) {
  3936   int offset;
  3937   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
  3938   if (found) {
  3939     // skip directory names
  3940     const char *p1, *p2;
  3941     p1 = buf;
  3942     size_t len = strlen(os::file_separator());
  3943     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
  3944     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
  3945   } else {
  3946     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
  3948   return buf;
  3951 static void print_signal_handler(outputStream* st, int sig,
  3952                                  char* buf, size_t buflen) {
  3953   struct sigaction sa;
  3955   sigaction(sig, NULL, &sa);
  3957   // See comment for SIGNIFICANT_SIGNAL_MASK define
  3958   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  3960   st->print("%s: ", os::exception_name(sig, buf, buflen));
  3962   address handler = (sa.sa_flags & SA_SIGINFO)
  3963     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
  3964     : CAST_FROM_FN_PTR(address, sa.sa_handler);
  3966   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
  3967     st->print("SIG_DFL");
  3968   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
  3969     st->print("SIG_IGN");
  3970   } else {
  3971     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
  3974   st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
  3976   address rh = VMError::get_resetted_sighandler(sig);
  3977   // May be, handler was resetted by VMError?
  3978   if(rh != NULL) {
  3979     handler = rh;
  3980     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
  3983   st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
  3985   // Check: is it our handler?
  3986   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
  3987      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
  3988     // It is our signal handler
  3989     // check for flags, reset system-used one!
  3990     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
  3991       st->print(
  3992                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
  3993                 os::Linux::get_our_sigflags(sig));
  3996   st->cr();
  4000 #define DO_SIGNAL_CHECK(sig) \
  4001   if (!sigismember(&check_signal_done, sig)) \
  4002     os::Linux::check_signal_handler(sig)
  4004 // This method is a periodic task to check for misbehaving JNI applications
  4005 // under CheckJNI, we can add any periodic checks here
  4007 void os::run_periodic_checks() {
  4009   if (check_signals == false) return;
  4011   // SEGV and BUS if overridden could potentially prevent
  4012   // generation of hs*.log in the event of a crash, debugging
  4013   // such a case can be very challenging, so we absolutely
  4014   // check the following for a good measure:
  4015   DO_SIGNAL_CHECK(SIGSEGV);
  4016   DO_SIGNAL_CHECK(SIGILL);
  4017   DO_SIGNAL_CHECK(SIGFPE);
  4018   DO_SIGNAL_CHECK(SIGBUS);
  4019   DO_SIGNAL_CHECK(SIGPIPE);
  4020   DO_SIGNAL_CHECK(SIGXFSZ);
  4023   // ReduceSignalUsage allows the user to override these handlers
  4024   // see comments at the very top and jvm_solaris.h
  4025   if (!ReduceSignalUsage) {
  4026     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
  4027     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
  4028     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
  4029     DO_SIGNAL_CHECK(BREAK_SIGNAL);
  4032   DO_SIGNAL_CHECK(SR_signum);
  4033   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
  4036 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
  4038 static os_sigaction_t os_sigaction = NULL;
  4040 void os::Linux::check_signal_handler(int sig) {
  4041   char buf[O_BUFLEN];
  4042   address jvmHandler = NULL;
  4045   struct sigaction act;
  4046   if (os_sigaction == NULL) {
  4047     // only trust the default sigaction, in case it has been interposed
  4048     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
  4049     if (os_sigaction == NULL) return;
  4052   os_sigaction(sig, (struct sigaction*)NULL, &act);
  4055   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  4057   address thisHandler = (act.sa_flags & SA_SIGINFO)
  4058     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
  4059     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
  4062   switch(sig) {
  4063   case SIGSEGV:
  4064   case SIGBUS:
  4065   case SIGFPE:
  4066   case SIGPIPE:
  4067   case SIGILL:
  4068   case SIGXFSZ:
  4069     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
  4070     break;
  4072   case SHUTDOWN1_SIGNAL:
  4073   case SHUTDOWN2_SIGNAL:
  4074   case SHUTDOWN3_SIGNAL:
  4075   case BREAK_SIGNAL:
  4076     jvmHandler = (address)user_handler();
  4077     break;
  4079   case INTERRUPT_SIGNAL:
  4080     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
  4081     break;
  4083   default:
  4084     if (sig == SR_signum) {
  4085       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
  4086     } else {
  4087       return;
  4089     break;
  4092   if (thisHandler != jvmHandler) {
  4093     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
  4094     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
  4095     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
  4096     // No need to check this sig any longer
  4097     sigaddset(&check_signal_done, sig);
  4098   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
  4099     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
  4100     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
  4101     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
  4102     // No need to check this sig any longer
  4103     sigaddset(&check_signal_done, sig);
  4106   // Dump all the signal
  4107   if (sigismember(&check_signal_done, sig)) {
  4108     print_signal_handlers(tty, buf, O_BUFLEN);
  4112 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
  4114 extern bool signal_name(int signo, char* buf, size_t len);
  4116 const char* os::exception_name(int exception_code, char* buf, size_t size) {
  4117   if (0 < exception_code && exception_code <= SIGRTMAX) {
  4118     // signal
  4119     if (!signal_name(exception_code, buf, size)) {
  4120       jio_snprintf(buf, size, "SIG%d", exception_code);
  4122     return buf;
  4123   } else {
  4124     return NULL;
  4128 // this is called _before_ the most of global arguments have been parsed
  4129 void os::init(void) {
  4130   char dummy;   /* used to get a guess on initial stack address */
  4131 //  first_hrtime = gethrtime();
  4133   // With LinuxThreads the JavaMain thread pid (primordial thread)
  4134   // is different than the pid of the java launcher thread.
  4135   // So, on Linux, the launcher thread pid is passed to the VM
  4136   // via the sun.java.launcher.pid property.
  4137   // Use this property instead of getpid() if it was correctly passed.
  4138   // See bug 6351349.
  4139   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
  4141   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
  4143   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
  4145   init_random(1234567);
  4147   ThreadCritical::initialize();
  4149   Linux::set_page_size(sysconf(_SC_PAGESIZE));
  4150   if (Linux::page_size() == -1) {
  4151     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
  4152                   strerror(errno)));
  4154   init_page_sizes((size_t) Linux::page_size());
  4156   Linux::initialize_system_info();
  4158   // main_thread points to the aboriginal thread
  4159   Linux::_main_thread = pthread_self();
  4161   Linux::clock_init();
  4162   initial_time_count = os::elapsed_counter();
  4163   pthread_mutex_init(&dl_mutex, NULL);
  4166 // To install functions for atexit system call
  4167 extern "C" {
  4168   static void perfMemory_exit_helper() {
  4169     perfMemory_exit();
  4173 // this is called _after_ the global arguments have been parsed
  4174 jint os::init_2(void)
  4176   Linux::fast_thread_clock_init();
  4178   // Allocate a single page and mark it as readable for safepoint polling
  4179   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  4180   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
  4182   os::set_polling_page( polling_page );
  4184 #ifndef PRODUCT
  4185   if(Verbose && PrintMiscellaneous)
  4186     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  4187 #endif
  4189   if (!UseMembar) {
  4190     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  4191     guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
  4192     os::set_memory_serialize_page( mem_serialize_page );
  4194 #ifndef PRODUCT
  4195     if(Verbose && PrintMiscellaneous)
  4196       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  4197 #endif
  4200   os::large_page_init();
  4202   // initialize suspend/resume support - must do this before signal_sets_init()
  4203   if (SR_initialize() != 0) {
  4204     perror("SR_initialize failed");
  4205     return JNI_ERR;
  4208   Linux::signal_sets_init();
  4209   Linux::install_signal_handlers();
  4211   // Check minimum allowable stack size for thread creation and to initialize
  4212   // the java system classes, including StackOverflowError - depends on page
  4213   // size.  Add a page for compiler2 recursion in main thread.
  4214   // Add in 2*BytesPerWord times page size to account for VM stack during
  4215   // class initialization depending on 32 or 64 bit VM.
  4216   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
  4217             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
  4218                     2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::page_size());
  4220   size_t threadStackSizeInBytes = ThreadStackSize * K;
  4221   if (threadStackSizeInBytes != 0 &&
  4222       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
  4223         tty->print_cr("\nThe stack size specified is too small, "
  4224                       "Specify at least %dk",
  4225                       os::Linux::min_stack_allowed/ K);
  4226         return JNI_ERR;
  4229   // Make the stack size a multiple of the page size so that
  4230   // the yellow/red zones can be guarded.
  4231   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
  4232         vm_page_size()));
  4234   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
  4236   Linux::libpthread_init();
  4237   if (PrintMiscellaneous && (Verbose || WizardMode)) {
  4238      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
  4239           Linux::glibc_version(), Linux::libpthread_version(),
  4240           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
  4243   if (UseNUMA) {
  4244     if (!Linux::libnuma_init()) {
  4245       UseNUMA = false;
  4246     } else {
  4247       if ((Linux::numa_max_node() < 1)) {
  4248         // There's only one node(they start from 0), disable NUMA.
  4249         UseNUMA = false;
  4252     // With SHM large pages we cannot uncommit a page, so there's not way
  4253     // we can make the adaptive lgrp chunk resizing work. If the user specified
  4254     // both UseNUMA and UseLargePages (or UseSHM) on the command line - warn and
  4255     // disable adaptive resizing.
  4256     if (UseNUMA && UseLargePages && UseSHM) {
  4257       if (!FLAG_IS_DEFAULT(UseNUMA)) {
  4258         if (FLAG_IS_DEFAULT(UseLargePages) && FLAG_IS_DEFAULT(UseSHM)) {
  4259           UseLargePages = false;
  4260         } else {
  4261           warning("UseNUMA is not fully compatible with SHM large pages, disabling adaptive resizing");
  4262           UseAdaptiveSizePolicy = false;
  4263           UseAdaptiveNUMAChunkSizing = false;
  4265       } else {
  4266         UseNUMA = false;
  4269     if (!UseNUMA && ForceNUMA) {
  4270       UseNUMA = true;
  4274   if (MaxFDLimit) {
  4275     // set the number of file descriptors to max. print out error
  4276     // if getrlimit/setrlimit fails but continue regardless.
  4277     struct rlimit nbr_files;
  4278     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
  4279     if (status != 0) {
  4280       if (PrintMiscellaneous && (Verbose || WizardMode))
  4281         perror("os::init_2 getrlimit failed");
  4282     } else {
  4283       nbr_files.rlim_cur = nbr_files.rlim_max;
  4284       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
  4285       if (status != 0) {
  4286         if (PrintMiscellaneous && (Verbose || WizardMode))
  4287           perror("os::init_2 setrlimit failed");
  4292   // Initialize lock used to serialize thread creation (see os::create_thread)
  4293   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
  4295   // at-exit methods are called in the reverse order of their registration.
  4296   // atexit functions are called on return from main or as a result of a
  4297   // call to exit(3C). There can be only 32 of these functions registered
  4298   // and atexit() does not set errno.
  4300   if (PerfAllowAtExitRegistration) {
  4301     // only register atexit functions if PerfAllowAtExitRegistration is set.
  4302     // atexit functions can be delayed until process exit time, which
  4303     // can be problematic for embedded VM situations. Embedded VMs should
  4304     // call DestroyJavaVM() to assure that VM resources are released.
  4306     // note: perfMemory_exit_helper atexit function may be removed in
  4307     // the future if the appropriate cleanup code can be added to the
  4308     // VM_Exit VMOperation's doit method.
  4309     if (atexit(perfMemory_exit_helper) != 0) {
  4310       warning("os::init2 atexit(perfMemory_exit_helper) failed");
  4314   // initialize thread priority policy
  4315   prio_init();
  4317   return JNI_OK;
  4320 // this is called at the end of vm_initialization
  4321 void os::init_3(void)
  4323 #ifdef JAVASE_EMBEDDED
  4324   // Start the MemNotifyThread
  4325   if (LowMemoryProtection) {
  4326     MemNotifyThread::start();
  4328   return;
  4329 #endif
  4332 // Mark the polling page as unreadable
  4333 void os::make_polling_page_unreadable(void) {
  4334   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
  4335     fatal("Could not disable polling page");
  4336 };
  4338 // Mark the polling page as readable
  4339 void os::make_polling_page_readable(void) {
  4340   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
  4341     fatal("Could not enable polling page");
  4343 };
  4345 int os::active_processor_count() {
  4346   // Linux doesn't yet have a (official) notion of processor sets,
  4347   // so just return the number of online processors.
  4348   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
  4349   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
  4350   return online_cpus;
  4353 bool os::distribute_processes(uint length, uint* distribution) {
  4354   // Not yet implemented.
  4355   return false;
  4358 bool os::bind_to_processor(uint processor_id) {
  4359   // Not yet implemented.
  4360   return false;
  4363 ///
  4365 // Suspends the target using the signal mechanism and then grabs the PC before
  4366 // resuming the target. Used by the flat-profiler only
  4367 ExtendedPC os::get_thread_pc(Thread* thread) {
  4368   // Make sure that it is called by the watcher for the VMThread
  4369   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
  4370   assert(thread->is_VM_thread(), "Can only be called for VMThread");
  4372   ExtendedPC epc;
  4374   OSThread* osthread = thread->osthread();
  4375   if (do_suspend(osthread)) {
  4376     if (osthread->ucontext() != NULL) {
  4377       epc = os::Linux::ucontext_get_pc(osthread->ucontext());
  4378     } else {
  4379       // NULL context is unexpected, double-check this is the VMThread
  4380       guarantee(thread->is_VM_thread(), "can only be called for VMThread");
  4382     do_resume(osthread);
  4384   // failure means pthread_kill failed for some reason - arguably this is
  4385   // a fatal problem, but such problems are ignored elsewhere
  4387   return epc;
  4390 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
  4392    if (is_NPTL()) {
  4393       return pthread_cond_timedwait(_cond, _mutex, _abstime);
  4394    } else {
  4395 #ifndef IA64
  4396       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
  4397       // word back to default 64bit precision if condvar is signaled. Java
  4398       // wants 53bit precision.  Save and restore current value.
  4399       int fpu = get_fpu_control_word();
  4400 #endif // IA64
  4401       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
  4402 #ifndef IA64
  4403       set_fpu_control_word(fpu);
  4404 #endif // IA64
  4405       return status;
  4409 ////////////////////////////////////////////////////////////////////////////////
  4410 // debug support
  4412 static address same_page(address x, address y) {
  4413   int page_bits = -os::vm_page_size();
  4414   if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
  4415     return x;
  4416   else if (x > y)
  4417     return (address)(intptr_t(y) | ~page_bits) + 1;
  4418   else
  4419     return (address)(intptr_t(y) & page_bits);
  4422 bool os::find(address addr, outputStream* st) {
  4423   Dl_info dlinfo;
  4424   memset(&dlinfo, 0, sizeof(dlinfo));
  4425   if (dladdr(addr, &dlinfo)) {
  4426     st->print(PTR_FORMAT ": ", addr);
  4427     if (dlinfo.dli_sname != NULL) {
  4428       st->print("%s+%#x", dlinfo.dli_sname,
  4429                  addr - (intptr_t)dlinfo.dli_saddr);
  4430     } else if (dlinfo.dli_fname) {
  4431       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
  4432     } else {
  4433       st->print("<absolute address>");
  4435     if (dlinfo.dli_fname) {
  4436       st->print(" in %s", dlinfo.dli_fname);
  4438     if (dlinfo.dli_fbase) {
  4439       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
  4441     st->cr();
  4443     if (Verbose) {
  4444       // decode some bytes around the PC
  4445       address begin = same_page(addr-40, addr);
  4446       address end   = same_page(addr+40, addr);
  4447       address       lowest = (address) dlinfo.dli_sname;
  4448       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
  4449       if (begin < lowest)  begin = lowest;
  4450       Dl_info dlinfo2;
  4451       if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
  4452           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
  4453         end = (address) dlinfo2.dli_saddr;
  4454       Disassembler::decode(begin, end, st);
  4456     return true;
  4458   return false;
  4461 ////////////////////////////////////////////////////////////////////////////////
  4462 // misc
  4464 // This does not do anything on Linux. This is basically a hook for being
  4465 // able to use structured exception handling (thread-local exception filters)
  4466 // on, e.g., Win32.
  4467 void
  4468 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
  4469                          JavaCallArguments* args, Thread* thread) {
  4470   f(value, method, args, thread);
  4473 void os::print_statistics() {
  4476 int os::message_box(const char* title, const char* message) {
  4477   int i;
  4478   fdStream err(defaultStream::error_fd());
  4479   for (i = 0; i < 78; i++) err.print_raw("=");
  4480   err.cr();
  4481   err.print_raw_cr(title);
  4482   for (i = 0; i < 78; i++) err.print_raw("-");
  4483   err.cr();
  4484   err.print_raw_cr(message);
  4485   for (i = 0; i < 78; i++) err.print_raw("=");
  4486   err.cr();
  4488   char buf[16];
  4489   // Prevent process from exiting upon "read error" without consuming all CPU
  4490   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
  4492   return buf[0] == 'y' || buf[0] == 'Y';
  4495 int os::stat(const char *path, struct stat *sbuf) {
  4496   char pathbuf[MAX_PATH];
  4497   if (strlen(path) > MAX_PATH - 1) {
  4498     errno = ENAMETOOLONG;
  4499     return -1;
  4501   os::native_path(strcpy(pathbuf, path));
  4502   return ::stat(pathbuf, sbuf);
  4505 bool os::check_heap(bool force) {
  4506   return true;
  4509 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
  4510   return ::vsnprintf(buf, count, format, args);
  4513 // Is a (classpath) directory empty?
  4514 bool os::dir_is_empty(const char* path) {
  4515   DIR *dir = NULL;
  4516   struct dirent *ptr;
  4518   dir = opendir(path);
  4519   if (dir == NULL) return true;
  4521   /* Scan the directory */
  4522   bool result = true;
  4523   char buf[sizeof(struct dirent) + MAX_PATH];
  4524   while (result && (ptr = ::readdir(dir)) != NULL) {
  4525     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
  4526       result = false;
  4529   closedir(dir);
  4530   return result;
  4533 // This code originates from JDK's sysOpen and open64_w
  4534 // from src/solaris/hpi/src/system_md.c
  4536 #ifndef O_DELETE
  4537 #define O_DELETE 0x10000
  4538 #endif
  4540 // Open a file. Unlink the file immediately after open returns
  4541 // if the specified oflag has the O_DELETE flag set.
  4542 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
  4544 int os::open(const char *path, int oflag, int mode) {
  4546   if (strlen(path) > MAX_PATH - 1) {
  4547     errno = ENAMETOOLONG;
  4548     return -1;
  4550   int fd;
  4551   int o_delete = (oflag & O_DELETE);
  4552   oflag = oflag & ~O_DELETE;
  4554   fd = ::open64(path, oflag, mode);
  4555   if (fd == -1) return -1;
  4557   //If the open succeeded, the file might still be a directory
  4559     struct stat64 buf64;
  4560     int ret = ::fstat64(fd, &buf64);
  4561     int st_mode = buf64.st_mode;
  4563     if (ret != -1) {
  4564       if ((st_mode & S_IFMT) == S_IFDIR) {
  4565         errno = EISDIR;
  4566         ::close(fd);
  4567         return -1;
  4569     } else {
  4570       ::close(fd);
  4571       return -1;
  4575     /*
  4576      * All file descriptors that are opened in the JVM and not
  4577      * specifically destined for a subprocess should have the
  4578      * close-on-exec flag set.  If we don't set it, then careless 3rd
  4579      * party native code might fork and exec without closing all
  4580      * appropriate file descriptors (e.g. as we do in closeDescriptors in
  4581      * UNIXProcess.c), and this in turn might:
  4583      * - cause end-of-file to fail to be detected on some file
  4584      *   descriptors, resulting in mysterious hangs, or
  4586      * - might cause an fopen in the subprocess to fail on a system
  4587      *   suffering from bug 1085341.
  4589      * (Yes, the default setting of the close-on-exec flag is a Unix
  4590      * design flaw)
  4592      * See:
  4593      * 1085341: 32-bit stdio routines should support file descriptors >255
  4594      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
  4595      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
  4596      */
  4597 #ifdef FD_CLOEXEC
  4599         int flags = ::fcntl(fd, F_GETFD);
  4600         if (flags != -1)
  4601             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
  4603 #endif
  4605   if (o_delete != 0) {
  4606     ::unlink(path);
  4608   return fd;
  4612 // create binary file, rewriting existing file if required
  4613 int os::create_binary_file(const char* path, bool rewrite_existing) {
  4614   int oflags = O_WRONLY | O_CREAT;
  4615   if (!rewrite_existing) {
  4616     oflags |= O_EXCL;
  4618   return ::open64(path, oflags, S_IREAD | S_IWRITE);
  4621 // return current position of file pointer
  4622 jlong os::current_file_offset(int fd) {
  4623   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
  4626 // move file pointer to the specified offset
  4627 jlong os::seek_to_file_offset(int fd, jlong offset) {
  4628   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
  4631 // This code originates from JDK's sysAvailable
  4632 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
  4634 int os::available(int fd, jlong *bytes) {
  4635   jlong cur, end;
  4636   int mode;
  4637   struct stat64 buf64;
  4639   if (::fstat64(fd, &buf64) >= 0) {
  4640     mode = buf64.st_mode;
  4641     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
  4642       /*
  4643       * XXX: is the following call interruptible? If so, this might
  4644       * need to go through the INTERRUPT_IO() wrapper as for other
  4645       * blocking, interruptible calls in this file.
  4646       */
  4647       int n;
  4648       if (::ioctl(fd, FIONREAD, &n) >= 0) {
  4649         *bytes = n;
  4650         return 1;
  4654   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
  4655     return 0;
  4656   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
  4657     return 0;
  4658   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
  4659     return 0;
  4661   *bytes = end - cur;
  4662   return 1;
  4665 int os::socket_available(int fd, jint *pbytes) {
  4666   // Linux doc says EINTR not returned, unlike Solaris
  4667   int ret = ::ioctl(fd, FIONREAD, pbytes);
  4669   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
  4670   // is expected to return 0 on failure and 1 on success to the jdk.
  4671   return (ret < 0) ? 0 : 1;
  4674 // Map a block of memory.
  4675 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
  4676                      char *addr, size_t bytes, bool read_only,
  4677                      bool allow_exec) {
  4678   int prot;
  4679   int flags;
  4681   if (read_only) {
  4682     prot = PROT_READ;
  4683     flags = MAP_SHARED;
  4684   } else {
  4685     prot = PROT_READ | PROT_WRITE;
  4686     flags = MAP_PRIVATE;
  4689   if (allow_exec) {
  4690     prot |= PROT_EXEC;
  4693   if (addr != NULL) {
  4694     flags |= MAP_FIXED;
  4697   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
  4698                                      fd, file_offset);
  4699   if (mapped_address == MAP_FAILED) {
  4700     return NULL;
  4702   return mapped_address;
  4706 // Remap a block of memory.
  4707 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
  4708                        char *addr, size_t bytes, bool read_only,
  4709                        bool allow_exec) {
  4710   // same as map_memory() on this OS
  4711   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
  4712                         allow_exec);
  4716 // Unmap a block of memory.
  4717 bool os::unmap_memory(char* addr, size_t bytes) {
  4718   return munmap(addr, bytes) == 0;
  4721 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
  4723 static clockid_t thread_cpu_clockid(Thread* thread) {
  4724   pthread_t tid = thread->osthread()->pthread_id();
  4725   clockid_t clockid;
  4727   // Get thread clockid
  4728   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
  4729   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
  4730   return clockid;
  4733 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  4734 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  4735 // of a thread.
  4736 //
  4737 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
  4738 // the fast estimate available on the platform.
  4740 jlong os::current_thread_cpu_time() {
  4741   if (os::Linux::supports_fast_thread_cpu_time()) {
  4742     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  4743   } else {
  4744     // return user + sys since the cost is the same
  4745     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
  4749 jlong os::thread_cpu_time(Thread* thread) {
  4750   // consistent with what current_thread_cpu_time() returns
  4751   if (os::Linux::supports_fast_thread_cpu_time()) {
  4752     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  4753   } else {
  4754     return slow_thread_cpu_time(thread, true /* user + sys */);
  4758 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  4759   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  4760     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  4761   } else {
  4762     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
  4766 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  4767   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  4768     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  4769   } else {
  4770     return slow_thread_cpu_time(thread, user_sys_cpu_time);
  4774 //
  4775 //  -1 on error.
  4776 //
  4778 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  4779   static bool proc_pid_cpu_avail = true;
  4780   static bool proc_task_unchecked = true;
  4781   static const char *proc_stat_path = "/proc/%d/stat";
  4782   pid_t  tid = thread->osthread()->thread_id();
  4783   int i;
  4784   char *s;
  4785   char stat[2048];
  4786   int statlen;
  4787   char proc_name[64];
  4788   int count;
  4789   long sys_time, user_time;
  4790   char string[64];
  4791   char cdummy;
  4792   int idummy;
  4793   long ldummy;
  4794   FILE *fp;
  4796   // We first try accessing /proc/<pid>/cpu since this is faster to
  4797   // process.  If this file is not present (linux kernels 2.5 and above)
  4798   // then we open /proc/<pid>/stat.
  4799   if ( proc_pid_cpu_avail ) {
  4800     sprintf(proc_name, "/proc/%d/cpu", tid);
  4801     fp =  fopen(proc_name, "r");
  4802     if ( fp != NULL ) {
  4803       count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
  4804       fclose(fp);
  4805       if ( count != 3 ) return -1;
  4807       if (user_sys_cpu_time) {
  4808         return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
  4809       } else {
  4810         return (jlong)user_time * (1000000000 / clock_tics_per_sec);
  4813     else proc_pid_cpu_avail = false;
  4816   // The /proc/<tid>/stat aggregates per-process usage on
  4817   // new Linux kernels 2.6+ where NPTL is supported.
  4818   // The /proc/self/task/<tid>/stat still has the per-thread usage.
  4819   // See bug 6328462.
  4820   // There can be no directory /proc/self/task on kernels 2.4 with NPTL
  4821   // and possibly in some other cases, so we check its availability.
  4822   if (proc_task_unchecked && os::Linux::is_NPTL()) {
  4823     // This is executed only once
  4824     proc_task_unchecked = false;
  4825     fp = fopen("/proc/self/task", "r");
  4826     if (fp != NULL) {
  4827       proc_stat_path = "/proc/self/task/%d/stat";
  4828       fclose(fp);
  4832   sprintf(proc_name, proc_stat_path, tid);
  4833   fp = fopen(proc_name, "r");
  4834   if ( fp == NULL ) return -1;
  4835   statlen = fread(stat, 1, 2047, fp);
  4836   stat[statlen] = '\0';
  4837   fclose(fp);
  4839   // Skip pid and the command string. Note that we could be dealing with
  4840   // weird command names, e.g. user could decide to rename java launcher
  4841   // to "java 1.4.2 :)", then the stat file would look like
  4842   //                1234 (java 1.4.2 :)) R ... ...
  4843   // We don't really need to know the command string, just find the last
  4844   // occurrence of ")" and then start parsing from there. See bug 4726580.
  4845   s = strrchr(stat, ')');
  4846   i = 0;
  4847   if (s == NULL ) return -1;
  4849   // Skip blank chars
  4850   do s++; while (isspace(*s));
  4852   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
  4853                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
  4854                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
  4855                  &user_time, &sys_time);
  4856   if ( count != 13 ) return -1;
  4857   if (user_sys_cpu_time) {
  4858     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
  4859   } else {
  4860     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
  4864 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  4865   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  4866   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  4867   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  4868   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  4871 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  4872   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  4873   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  4874   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  4875   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  4878 bool os::is_thread_cpu_time_supported() {
  4879   return true;
  4882 // System loadavg support.  Returns -1 if load average cannot be obtained.
  4883 // Linux doesn't yet have a (official) notion of processor sets,
  4884 // so just return the system wide load average.
  4885 int os::loadavg(double loadavg[], int nelem) {
  4886   return ::getloadavg(loadavg, nelem);
  4889 void os::pause() {
  4890   char filename[MAX_PATH];
  4891   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  4892     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  4893   } else {
  4894     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  4897   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  4898   if (fd != -1) {
  4899     struct stat buf;
  4900     ::close(fd);
  4901     while (::stat(filename, &buf) == 0) {
  4902       (void)::poll(NULL, 0, 100);
  4904   } else {
  4905     jio_fprintf(stderr,
  4906       "Could not open pause file '%s', continuing immediately.\n", filename);
  4911 // Refer to the comments in os_solaris.cpp park-unpark.
  4912 //
  4913 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
  4914 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
  4915 // For specifics regarding the bug see GLIBC BUGID 261237 :
  4916 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
  4917 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
  4918 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
  4919 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
  4920 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
  4921 // and monitorenter when we're using 1-0 locking.  All those operations may result in
  4922 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
  4923 // of libpthread avoids the problem, but isn't practical.
  4924 //
  4925 // Possible remedies:
  4926 //
  4927 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
  4928 //      This is palliative and probabilistic, however.  If the thread is preempted
  4929 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
  4930 //      than the minimum period may have passed, and the abstime may be stale (in the
  4931 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
  4932 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
  4933 //
  4934 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
  4935 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
  4936 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
  4937 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
  4938 //      thread.
  4939 //
  4940 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
  4941 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
  4942 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
  4943 //      This also works well.  In fact it avoids kernel-level scalability impediments
  4944 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
  4945 //      timers in a graceful fashion.
  4946 //
  4947 // 4.   When the abstime value is in the past it appears that control returns
  4948 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
  4949 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
  4950 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
  4951 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
  4952 //      It may be possible to avoid reinitialization by checking the return
  4953 //      value from pthread_cond_timedwait().  In addition to reinitializing the
  4954 //      condvar we must establish the invariant that cond_signal() is only called
  4955 //      within critical sections protected by the adjunct mutex.  This prevents
  4956 //      cond_signal() from "seeing" a condvar that's in the midst of being
  4957 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
  4958 //      desirable signal-after-unlock optimization that avoids futile context switching.
  4959 //
  4960 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
  4961 //      structure when a condvar is used or initialized.  cond_destroy()  would
  4962 //      release the helper structure.  Our reinitialize-after-timedwait fix
  4963 //      put excessive stress on malloc/free and locks protecting the c-heap.
  4964 //
  4965 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
  4966 // It may be possible to refine (4) by checking the kernel and NTPL verisons
  4967 // and only enabling the work-around for vulnerable environments.
  4969 // utility to compute the abstime argument to timedwait:
  4970 // millis is the relative timeout time
  4971 // abstime will be the absolute timeout time
  4972 // TODO: replace compute_abstime() with unpackTime()
  4974 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
  4975   if (millis < 0)  millis = 0;
  4976   struct timeval now;
  4977   int status = gettimeofday(&now, NULL);
  4978   assert(status == 0, "gettimeofday");
  4979   jlong seconds = millis / 1000;
  4980   millis %= 1000;
  4981   if (seconds > 50000000) { // see man cond_timedwait(3T)
  4982     seconds = 50000000;
  4984   abstime->tv_sec = now.tv_sec  + seconds;
  4985   long       usec = now.tv_usec + millis * 1000;
  4986   if (usec >= 1000000) {
  4987     abstime->tv_sec += 1;
  4988     usec -= 1000000;
  4990   abstime->tv_nsec = usec * 1000;
  4991   return abstime;
  4995 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
  4996 // Conceptually TryPark() should be equivalent to park(0).
  4998 int os::PlatformEvent::TryPark() {
  4999   for (;;) {
  5000     const int v = _Event ;
  5001     guarantee ((v == 0) || (v == 1), "invariant") ;
  5002     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
  5006 void os::PlatformEvent::park() {       // AKA "down()"
  5007   // Invariant: Only the thread associated with the Event/PlatformEvent
  5008   // may call park().
  5009   // TODO: assert that _Assoc != NULL or _Assoc == Self
  5010   int v ;
  5011   for (;;) {
  5012       v = _Event ;
  5013       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  5015   guarantee (v >= 0, "invariant") ;
  5016   if (v == 0) {
  5017      // Do this the hard way by blocking ...
  5018      int status = pthread_mutex_lock(_mutex);
  5019      assert_status(status == 0, status, "mutex_lock");
  5020      guarantee (_nParked == 0, "invariant") ;
  5021      ++ _nParked ;
  5022      while (_Event < 0) {
  5023         status = pthread_cond_wait(_cond, _mutex);
  5024         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
  5025         // Treat this the same as if the wait was interrupted
  5026         if (status == ETIME) { status = EINTR; }
  5027         assert_status(status == 0 || status == EINTR, status, "cond_wait");
  5029      -- _nParked ;
  5031     // In theory we could move the ST of 0 into _Event past the unlock(),
  5032     // but then we'd need a MEMBAR after the ST.
  5033     _Event = 0 ;
  5034      status = pthread_mutex_unlock(_mutex);
  5035      assert_status(status == 0, status, "mutex_unlock");
  5037   guarantee (_Event >= 0, "invariant") ;
  5040 int os::PlatformEvent::park(jlong millis) {
  5041   guarantee (_nParked == 0, "invariant") ;
  5043   int v ;
  5044   for (;;) {
  5045       v = _Event ;
  5046       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  5048   guarantee (v >= 0, "invariant") ;
  5049   if (v != 0) return OS_OK ;
  5051   // We do this the hard way, by blocking the thread.
  5052   // Consider enforcing a minimum timeout value.
  5053   struct timespec abst;
  5054   compute_abstime(&abst, millis);
  5056   int ret = OS_TIMEOUT;
  5057   int status = pthread_mutex_lock(_mutex);
  5058   assert_status(status == 0, status, "mutex_lock");
  5059   guarantee (_nParked == 0, "invariant") ;
  5060   ++_nParked ;
  5062   // Object.wait(timo) will return because of
  5063   // (a) notification
  5064   // (b) timeout
  5065   // (c) thread.interrupt
  5066   //
  5067   // Thread.interrupt and object.notify{All} both call Event::set.
  5068   // That is, we treat thread.interrupt as a special case of notification.
  5069   // The underlying Solaris implementation, cond_timedwait, admits
  5070   // spurious/premature wakeups, but the JLS/JVM spec prevents the
  5071   // JVM from making those visible to Java code.  As such, we must
  5072   // filter out spurious wakeups.  We assume all ETIME returns are valid.
  5073   //
  5074   // TODO: properly differentiate simultaneous notify+interrupt.
  5075   // In that case, we should propagate the notify to another waiter.
  5077   while (_Event < 0) {
  5078     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
  5079     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  5080       pthread_cond_destroy (_cond);
  5081       pthread_cond_init (_cond, NULL) ;
  5083     assert_status(status == 0 || status == EINTR ||
  5084                   status == ETIME || status == ETIMEDOUT,
  5085                   status, "cond_timedwait");
  5086     if (!FilterSpuriousWakeups) break ;                 // previous semantics
  5087     if (status == ETIME || status == ETIMEDOUT) break ;
  5088     // We consume and ignore EINTR and spurious wakeups.
  5090   --_nParked ;
  5091   if (_Event >= 0) {
  5092      ret = OS_OK;
  5094   _Event = 0 ;
  5095   status = pthread_mutex_unlock(_mutex);
  5096   assert_status(status == 0, status, "mutex_unlock");
  5097   assert (_nParked == 0, "invariant") ;
  5098   return ret;
  5101 void os::PlatformEvent::unpark() {
  5102   int v, AnyWaiters ;
  5103   for (;;) {
  5104       v = _Event ;
  5105       if (v > 0) {
  5106          // The LD of _Event could have reordered or be satisfied
  5107          // by a read-aside from this processor's write buffer.
  5108          // To avoid problems execute a barrier and then
  5109          // ratify the value.
  5110          OrderAccess::fence() ;
  5111          if (_Event == v) return ;
  5112          continue ;
  5114       if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
  5116   if (v < 0) {
  5117      // Wait for the thread associated with the event to vacate
  5118      int status = pthread_mutex_lock(_mutex);
  5119      assert_status(status == 0, status, "mutex_lock");
  5120      AnyWaiters = _nParked ;
  5121      assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
  5122      if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
  5123         AnyWaiters = 0 ;
  5124         pthread_cond_signal (_cond);
  5126      status = pthread_mutex_unlock(_mutex);
  5127      assert_status(status == 0, status, "mutex_unlock");
  5128      if (AnyWaiters != 0) {
  5129         status = pthread_cond_signal(_cond);
  5130         assert_status(status == 0, status, "cond_signal");
  5134   // Note that we signal() _after dropping the lock for "immortal" Events.
  5135   // This is safe and avoids a common class of  futile wakeups.  In rare
  5136   // circumstances this can cause a thread to return prematurely from
  5137   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
  5138   // simply re-test the condition and re-park itself.
  5142 // JSR166
  5143 // -------------------------------------------------------
  5145 /*
  5146  * The solaris and linux implementations of park/unpark are fairly
  5147  * conservative for now, but can be improved. They currently use a
  5148  * mutex/condvar pair, plus a a count.
  5149  * Park decrements count if > 0, else does a condvar wait.  Unpark
  5150  * sets count to 1 and signals condvar.  Only one thread ever waits
  5151  * on the condvar. Contention seen when trying to park implies that someone
  5152  * is unparking you, so don't wait. And spurious returns are fine, so there
  5153  * is no need to track notifications.
  5154  */
  5157 #define NANOSECS_PER_SEC 1000000000
  5158 #define NANOSECS_PER_MILLISEC 1000000
  5159 #define MAX_SECS 100000000
  5160 /*
  5161  * This code is common to linux and solaris and will be moved to a
  5162  * common place in dolphin.
  5164  * The passed in time value is either a relative time in nanoseconds
  5165  * or an absolute time in milliseconds. Either way it has to be unpacked
  5166  * into suitable seconds and nanoseconds components and stored in the
  5167  * given timespec structure.
  5168  * Given time is a 64-bit value and the time_t used in the timespec is only
  5169  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
  5170  * overflow if times way in the future are given. Further on Solaris versions
  5171  * prior to 10 there is a restriction (see cond_timedwait) that the specified
  5172  * number of seconds, in abstime, is less than current_time  + 100,000,000.
  5173  * As it will be 28 years before "now + 100000000" will overflow we can
  5174  * ignore overflow and just impose a hard-limit on seconds using the value
  5175  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
  5176  * years from "now".
  5177  */
  5179 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
  5180   assert (time > 0, "convertTime");
  5182   struct timeval now;
  5183   int status = gettimeofday(&now, NULL);
  5184   assert(status == 0, "gettimeofday");
  5186   time_t max_secs = now.tv_sec + MAX_SECS;
  5188   if (isAbsolute) {
  5189     jlong secs = time / 1000;
  5190     if (secs > max_secs) {
  5191       absTime->tv_sec = max_secs;
  5193     else {
  5194       absTime->tv_sec = secs;
  5196     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
  5198   else {
  5199     jlong secs = time / NANOSECS_PER_SEC;
  5200     if (secs >= MAX_SECS) {
  5201       absTime->tv_sec = max_secs;
  5202       absTime->tv_nsec = 0;
  5204     else {
  5205       absTime->tv_sec = now.tv_sec + secs;
  5206       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
  5207       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  5208         absTime->tv_nsec -= NANOSECS_PER_SEC;
  5209         ++absTime->tv_sec; // note: this must be <= max_secs
  5213   assert(absTime->tv_sec >= 0, "tv_sec < 0");
  5214   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
  5215   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
  5216   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
  5219 void Parker::park(bool isAbsolute, jlong time) {
  5220   // Optional fast-path check:
  5221   // Return immediately if a permit is available.
  5222   if (_counter > 0) {
  5223       _counter = 0 ;
  5224       OrderAccess::fence();
  5225       return ;
  5228   Thread* thread = Thread::current();
  5229   assert(thread->is_Java_thread(), "Must be JavaThread");
  5230   JavaThread *jt = (JavaThread *)thread;
  5232   // Optional optimization -- avoid state transitions if there's an interrupt pending.
  5233   // Check interrupt before trying to wait
  5234   if (Thread::is_interrupted(thread, false)) {
  5235     return;
  5238   // Next, demultiplex/decode time arguments
  5239   timespec absTime;
  5240   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
  5241     return;
  5243   if (time > 0) {
  5244     unpackTime(&absTime, isAbsolute, time);
  5248   // Enter safepoint region
  5249   // Beware of deadlocks such as 6317397.
  5250   // The per-thread Parker:: mutex is a classic leaf-lock.
  5251   // In particular a thread must never block on the Threads_lock while
  5252   // holding the Parker:: mutex.  If safepoints are pending both the
  5253   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
  5254   ThreadBlockInVM tbivm(jt);
  5256   // Don't wait if cannot get lock since interference arises from
  5257   // unblocking.  Also. check interrupt before trying wait
  5258   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
  5259     return;
  5262   int status ;
  5263   if (_counter > 0)  { // no wait needed
  5264     _counter = 0;
  5265     status = pthread_mutex_unlock(_mutex);
  5266     assert (status == 0, "invariant") ;
  5267     OrderAccess::fence();
  5268     return;
  5271 #ifdef ASSERT
  5272   // Don't catch signals while blocked; let the running threads have the signals.
  5273   // (This allows a debugger to break into the running thread.)
  5274   sigset_t oldsigs;
  5275   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
  5276   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
  5277 #endif
  5279   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  5280   jt->set_suspend_equivalent();
  5281   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  5283   if (time == 0) {
  5284     status = pthread_cond_wait (_cond, _mutex) ;
  5285   } else {
  5286     status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
  5287     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  5288       pthread_cond_destroy (_cond) ;
  5289       pthread_cond_init    (_cond, NULL);
  5292   assert_status(status == 0 || status == EINTR ||
  5293                 status == ETIME || status == ETIMEDOUT,
  5294                 status, "cond_timedwait");
  5296 #ifdef ASSERT
  5297   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
  5298 #endif
  5300   _counter = 0 ;
  5301   status = pthread_mutex_unlock(_mutex) ;
  5302   assert_status(status == 0, status, "invariant") ;
  5303   // If externally suspended while waiting, re-suspend
  5304   if (jt->handle_special_suspend_equivalent_condition()) {
  5305     jt->java_suspend_self();
  5308   OrderAccess::fence();
  5311 void Parker::unpark() {
  5312   int s, status ;
  5313   status = pthread_mutex_lock(_mutex);
  5314   assert (status == 0, "invariant") ;
  5315   s = _counter;
  5316   _counter = 1;
  5317   if (s < 1) {
  5318      if (WorkAroundNPTLTimedWaitHang) {
  5319         status = pthread_cond_signal (_cond) ;
  5320         assert (status == 0, "invariant") ;
  5321         status = pthread_mutex_unlock(_mutex);
  5322         assert (status == 0, "invariant") ;
  5323      } else {
  5324         status = pthread_mutex_unlock(_mutex);
  5325         assert (status == 0, "invariant") ;
  5326         status = pthread_cond_signal (_cond) ;
  5327         assert (status == 0, "invariant") ;
  5329   } else {
  5330     pthread_mutex_unlock(_mutex);
  5331     assert (status == 0, "invariant") ;
  5336 extern char** environ;
  5338 #ifndef __NR_fork
  5339 #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
  5340 #endif
  5342 #ifndef __NR_execve
  5343 #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
  5344 #endif
  5346 // Run the specified command in a separate process. Return its exit value,
  5347 // or -1 on failure (e.g. can't fork a new process).
  5348 // Unlike system(), this function can be called from signal handler. It
  5349 // doesn't block SIGINT et al.
  5350 int os::fork_and_exec(char* cmd) {
  5351   const char * argv[4] = {"sh", "-c", cmd, NULL};
  5353   // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
  5354   // pthread_atfork handlers and reset pthread library. All we need is a
  5355   // separate process to execve. Make a direct syscall to fork process.
  5356   // On IA64 there's no fork syscall, we have to use fork() and hope for
  5357   // the best...
  5358   pid_t pid = NOT_IA64(syscall(__NR_fork);)
  5359               IA64_ONLY(fork();)
  5361   if (pid < 0) {
  5362     // fork failed
  5363     return -1;
  5365   } else if (pid == 0) {
  5366     // child process
  5368     // execve() in LinuxThreads will call pthread_kill_other_threads_np()
  5369     // first to kill every thread on the thread list. Because this list is
  5370     // not reset by fork() (see notes above), execve() will instead kill
  5371     // every thread in the parent process. We know this is the only thread
  5372     // in the new process, so make a system call directly.
  5373     // IA64 should use normal execve() from glibc to match the glibc fork()
  5374     // above.
  5375     NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
  5376     IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
  5378     // execve failed
  5379     _exit(-1);
  5381   } else  {
  5382     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
  5383     // care about the actual exit code, for now.
  5385     int status;
  5387     // Wait for the child process to exit.  This returns immediately if
  5388     // the child has already exited. */
  5389     while (waitpid(pid, &status, 0) < 0) {
  5390         switch (errno) {
  5391         case ECHILD: return 0;
  5392         case EINTR: break;
  5393         default: return -1;
  5397     if (WIFEXITED(status)) {
  5398        // The child exited normally; get its exit code.
  5399        return WEXITSTATUS(status);
  5400     } else if (WIFSIGNALED(status)) {
  5401        // The child exited because of a signal
  5402        // The best value to return is 0x80 + signal number,
  5403        // because that is what all Unix shells do, and because
  5404        // it allows callers to distinguish between process exit and
  5405        // process death by signal.
  5406        return 0x80 + WTERMSIG(status);
  5407     } else {
  5408        // Unknown exit code; pass it through
  5409        return status;
  5414 // is_headless_jre()
  5415 //
  5416 // Test for the existence of libmawt in motif21 or xawt directories
  5417 // in order to report if we are running in a headless jre
  5418 //
  5419 bool os::is_headless_jre() {
  5420     struct stat statbuf;
  5421     char buf[MAXPATHLEN];
  5422     char libmawtpath[MAXPATHLEN];
  5423     const char *xawtstr  = "/xawt/libmawt.so";
  5424     const char *motifstr = "/motif21/libmawt.so";
  5425     char *p;
  5427     // Get path to libjvm.so
  5428     os::jvm_path(buf, sizeof(buf));
  5430     // Get rid of libjvm.so
  5431     p = strrchr(buf, '/');
  5432     if (p == NULL) return false;
  5433     else *p = '\0';
  5435     // Get rid of client or server
  5436     p = strrchr(buf, '/');
  5437     if (p == NULL) return false;
  5438     else *p = '\0';
  5440     // check xawt/libmawt.so
  5441     strcpy(libmawtpath, buf);
  5442     strcat(libmawtpath, xawtstr);
  5443     if (::stat(libmawtpath, &statbuf) == 0) return false;
  5445     // check motif21/libmawt.so
  5446     strcpy(libmawtpath, buf);
  5447     strcat(libmawtpath, motifstr);
  5448     if (::stat(libmawtpath, &statbuf) == 0) return false;
  5450     return true;
  5454 #ifdef JAVASE_EMBEDDED
  5455 //
  5456 // A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
  5457 //
  5458 MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
  5460 // ctor
  5461 //
  5462 MemNotifyThread::MemNotifyThread(int fd): Thread() {
  5463   assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
  5464   _fd = fd;
  5466   if (os::create_thread(this, os::os_thread)) {
  5467     _memnotify_thread = this;
  5468     os::set_priority(this, NearMaxPriority);
  5469     os::start_thread(this);
  5473 // Where all the work gets done
  5474 //
  5475 void MemNotifyThread::run() {
  5476   assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
  5478   // Set up the select arguments
  5479   fd_set rfds;
  5480   if (_fd != -1) {
  5481     FD_ZERO(&rfds);
  5482     FD_SET(_fd, &rfds);
  5485   // Now wait for the mem_notify device to wake up
  5486   while (1) {
  5487     // Wait for the mem_notify device to signal us..
  5488     int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
  5489     if (rc == -1) {
  5490       perror("select!\n");
  5491       break;
  5492     } else if (rc) {
  5493       //ssize_t free_before = os::available_memory();
  5494       //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
  5496       // The kernel is telling us there is not much memory left...
  5497       // try to do something about that
  5499       // If we are not already in a GC, try one.
  5500       if (!Universe::heap()->is_gc_active()) {
  5501         Universe::heap()->collect(GCCause::_allocation_failure);
  5503         //ssize_t free_after = os::available_memory();
  5504         //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
  5505         //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
  5507       // We might want to do something like the following if we find the GC's are not helping...
  5508       // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
  5513 //
  5514 // See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
  5515 //
  5516 void MemNotifyThread::start() {
  5517   int    fd;
  5518   fd = open ("/dev/mem_notify", O_RDONLY, 0);
  5519   if (fd < 0) {
  5520       return;
  5523   if (memnotify_thread() == NULL) {
  5524     new MemNotifyThread(fd);
  5527 #endif // JAVASE_EMBEDDED

mercurial