agent/src/os/linux/ps_core.c

Mon, 06 Jan 2020 21:22:25 +0900

author
fmatte
date
Mon, 06 Jan 2020 21:22:25 +0900
changeset 9814
944634dd98a4
parent 9714
e49125a0c77c
child 9852
70aa912cebe5
permissions
-rw-r--r--

8235637: jhsdb jmap from OpenJDK 11.0.5 doesn't work if prelink is enabled
Summary: error handling for "lib_base_diff == 0"
Reviewed-by: ysuenaga, cjplummer, kevinw
Contributed-by: suenaga@oss.nttdata.com

     1 /*
     2  * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include <jni.h>
    26 #include <unistd.h>
    27 #include <fcntl.h>
    28 #include <string.h>
    29 #include <stdlib.h>
    30 #include <stddef.h>
    31 #include <elf.h>
    32 #include <link.h>
    33 #include "libproc_impl.h"
    34 #include "salibelf.h"
    36 // This file has the libproc implementation to read core files.
    37 // For live processes, refer to ps_proc.c. Portions of this is adapted
    38 // /modelled after Solaris libproc.so (in particular Pcore.c)
    40 //----------------------------------------------------------------------
    41 // ps_prochandle cleanup helper functions
    43 // close all file descriptors
    44 static void close_files(struct ps_prochandle* ph) {
    45   lib_info* lib = NULL;
    47   // close core file descriptor
    48   if (ph->core->core_fd >= 0)
    49     close(ph->core->core_fd);
    51   // close exec file descriptor
    52   if (ph->core->exec_fd >= 0)
    53     close(ph->core->exec_fd);
    55   // close interp file descriptor
    56   if (ph->core->interp_fd >= 0)
    57     close(ph->core->interp_fd);
    59   // close class share archive file
    60   if (ph->core->classes_jsa_fd >= 0)
    61     close(ph->core->classes_jsa_fd);
    63   // close all library file descriptors
    64   lib = ph->libs;
    65   while (lib) {
    66     int fd = lib->fd;
    67     if (fd >= 0 && fd != ph->core->exec_fd) {
    68       close(fd);
    69     }
    70     lib = lib->next;
    71   }
    72 }
    74 // clean all map_info stuff
    75 static void destroy_map_info(struct ps_prochandle* ph) {
    76   map_info* map = ph->core->maps;
    77   while (map) {
    78     map_info* next = map->next;
    79     free(map);
    80     map = next;
    81   }
    83   if (ph->core->map_array) {
    84     free(ph->core->map_array);
    85   }
    87   // Part of the class sharing workaround
    88   map = ph->core->class_share_maps;
    89   while (map) {
    90     map_info* next = map->next;
    91     free(map);
    92     map = next;
    93   }
    94 }
    96 // ps_prochandle operations
    97 static void core_release(struct ps_prochandle* ph) {
    98   if (ph->core) {
    99     close_files(ph);
   100     destroy_map_info(ph);
   101     free(ph->core);
   102   }
   103 }
   105 static map_info* allocate_init_map(int fd, off_t offset, uintptr_t vaddr, size_t memsz) {
   106   map_info* map;
   107   if ( (map = (map_info*) calloc(1, sizeof(map_info))) == NULL) {
   108     print_debug("can't allocate memory for map_info\n");
   109     return NULL;
   110   }
   112   // initialize map
   113   map->fd     = fd;
   114   map->offset = offset;
   115   map->vaddr  = vaddr;
   116   map->memsz  = memsz;
   117   return map;
   118 }
   120 // add map info with given fd, offset, vaddr and memsz
   121 static map_info* add_map_info(struct ps_prochandle* ph, int fd, off_t offset,
   122                              uintptr_t vaddr, size_t memsz) {
   123   map_info* map;
   124   if ((map = allocate_init_map(fd, offset, vaddr, memsz)) == NULL) {
   125     return NULL;
   126   }
   128   // add this to map list
   129   map->next  = ph->core->maps;
   130   ph->core->maps   = map;
   131   ph->core->num_maps++;
   133   return map;
   134 }
   136 // Part of the class sharing workaround
   137 static map_info* add_class_share_map_info(struct ps_prochandle* ph, off_t offset,
   138                              uintptr_t vaddr, size_t memsz) {
   139   map_info* map;
   140   if ((map = allocate_init_map(ph->core->classes_jsa_fd,
   141                                offset, vaddr, memsz)) == NULL) {
   142     return NULL;
   143   }
   145   map->next = ph->core->class_share_maps;
   146   ph->core->class_share_maps = map;
   147   return map;
   148 }
   150 // Return the map_info for the given virtual address.  We keep a sorted
   151 // array of pointers in ph->map_array, so we can binary search.
   152 static map_info* core_lookup(struct ps_prochandle *ph, uintptr_t addr) {
   153   int mid, lo = 0, hi = ph->core->num_maps - 1;
   154   map_info *mp;
   156   while (hi - lo > 1) {
   157     mid = (lo + hi) / 2;
   158     if (addr >= ph->core->map_array[mid]->vaddr) {
   159       lo = mid;
   160     } else {
   161       hi = mid;
   162     }
   163   }
   165   if (addr < ph->core->map_array[hi]->vaddr) {
   166     mp = ph->core->map_array[lo];
   167   } else {
   168     mp = ph->core->map_array[hi];
   169   }
   171   if (addr >= mp->vaddr && addr < mp->vaddr + mp->memsz) {
   172     return (mp);
   173   }
   176   // Part of the class sharing workaround
   177   // Unfortunately, we have no way of detecting -Xshare state.
   178   // Check out the share maps atlast, if we don't find anywhere.
   179   // This is done this way so to avoid reading share pages
   180   // ahead of other normal maps. For eg. with -Xshare:off we don't
   181   // want to prefer class sharing data to data from core.
   182   mp = ph->core->class_share_maps;
   183   if (mp) {
   184     print_debug("can't locate map_info at 0x%lx, trying class share maps\n", addr);
   185   }
   186   while (mp) {
   187     if (addr >= mp->vaddr && addr < mp->vaddr + mp->memsz) {
   188       print_debug("located map_info at 0x%lx from class share maps\n", addr);
   189       return (mp);
   190     }
   191     mp = mp->next;
   192   }
   194   print_debug("can't locate map_info at 0x%lx\n", addr);
   195   return (NULL);
   196 }
   198 //---------------------------------------------------------------
   199 // Part of the class sharing workaround:
   200 //
   201 // With class sharing, pages are mapped from classes.jsa file.
   202 // The read-only class sharing pages are mapped as MAP_SHARED,
   203 // PROT_READ pages. These pages are not dumped into core dump.
   204 // With this workaround, these pages are read from classes.jsa.
   206 // FIXME: !HACK ALERT!
   207 // The format of sharing achive file header is needed to read shared heap
   208 // file mappings. For now, I am hard coding portion of FileMapHeader here.
   209 // Refer to filemap.hpp.
   211 // FileMapHeader describes the shared space data in the file to be
   212 // mapped.  This structure gets written to a file.  It is not a class,
   213 // so that the compilers don't add any compiler-private data to it.
   215 #define NUM_SHARED_MAPS 4
   217 // Refer to FileMapInfo::_current_version in filemap.hpp
   218 #define CURRENT_ARCHIVE_VERSION 1
   220 struct FileMapHeader {
   221   int   _magic;              // identify file type.
   222   int   _version;            // (from enum, above.)
   223   size_t _alignment;         // how shared archive should be aligned
   225   struct space_info {
   226     int    _file_offset;     // sizeof(this) rounded to vm page size
   227     char*  _base;            // copy-on-write base address
   228     size_t _capacity;        // for validity checking
   229     size_t _used;            // for setting space top on read
   231     // 4991491 NOTICE These are C++ bool's in filemap.hpp and must match up with
   232     // the C type matching the C++ bool type on any given platform.
   233     // We assume the corresponding C type is char but licensees
   234     // may need to adjust the type of these fields.
   235     char   _read_only;       // read only space?
   236     char   _allow_exec;      // executable code in space?
   238   } _space[NUM_SHARED_MAPS];
   240   // Ignore the rest of the FileMapHeader. We don't need those fields here.
   241 };
   243 static bool read_jboolean(struct ps_prochandle* ph, uintptr_t addr, jboolean* pvalue) {
   244   jboolean i;
   245   if (ps_pdread(ph, (psaddr_t) addr, &i, sizeof(i)) == PS_OK) {
   246     *pvalue = i;
   247     return true;
   248   } else {
   249     return false;
   250   }
   251 }
   253 static bool read_pointer(struct ps_prochandle* ph, uintptr_t addr, uintptr_t* pvalue) {
   254   uintptr_t uip;
   255   if (ps_pdread(ph, (psaddr_t) addr, (char *)&uip, sizeof(uip)) == PS_OK) {
   256     *pvalue = uip;
   257     return true;
   258   } else {
   259     return false;
   260   }
   261 }
   263 // used to read strings from debuggee
   264 static bool read_string(struct ps_prochandle* ph, uintptr_t addr, char* buf, size_t size) {
   265   size_t i = 0;
   266   char  c = ' ';
   268   while (c != '\0') {
   269     if (ps_pdread(ph, (psaddr_t) addr, &c, sizeof(char)) != PS_OK) {
   270       return false;
   271     }
   272     if (i < size - 1) {
   273       buf[i] = c;
   274     } else {
   275       // smaller buffer
   276       return false;
   277     }
   278     i++; addr++;
   279   }
   281   buf[i] = '\0';
   282   return true;
   283 }
   285 #define USE_SHARED_SPACES_SYM "UseSharedSpaces"
   286 // mangled name of Arguments::SharedArchivePath
   287 #define SHARED_ARCHIVE_PATH_SYM "_ZN9Arguments17SharedArchivePathE"
   288 #define LIBJVM_NAME "/libjvm.so"
   290 static bool init_classsharing_workaround(struct ps_prochandle* ph) {
   291   lib_info* lib = ph->libs;
   292   while (lib != NULL) {
   293     // we are iterating over shared objects from the core dump. look for
   294     // libjvm.so.
   295     const char *jvm_name = 0;
   296     if ((jvm_name = strstr(lib->name, LIBJVM_NAME)) != 0) {
   297       char classes_jsa[PATH_MAX];
   298       struct FileMapHeader header;
   299       int fd = -1;
   300       int m = 0;
   301       size_t n = 0;
   302       uintptr_t base = 0, useSharedSpacesAddr = 0;
   303       uintptr_t sharedArchivePathAddrAddr = 0, sharedArchivePathAddr = 0;
   304       jboolean useSharedSpaces = 0;
   305       map_info* mi = 0;
   307       memset(classes_jsa, 0, sizeof(classes_jsa));
   308       jvm_name = lib->name;
   309       useSharedSpacesAddr = lookup_symbol(ph, jvm_name, USE_SHARED_SPACES_SYM);
   310       if (useSharedSpacesAddr == 0) {
   311         print_debug("can't lookup 'UseSharedSpaces' flag\n");
   312         return false;
   313       }
   315       // Hotspot vm types are not exported to build this library. So
   316       // using equivalent type jboolean to read the value of
   317       // UseSharedSpaces which is same as hotspot type "bool".
   318       if (read_jboolean(ph, useSharedSpacesAddr, &useSharedSpaces) != true) {
   319         print_debug("can't read the value of 'UseSharedSpaces' flag\n");
   320         return false;
   321       }
   323       if ((int)useSharedSpaces == 0) {
   324         print_debug("UseSharedSpaces is false, assuming -Xshare:off!\n");
   325         return true;
   326       }
   328       sharedArchivePathAddrAddr = lookup_symbol(ph, jvm_name, SHARED_ARCHIVE_PATH_SYM);
   329       if (sharedArchivePathAddrAddr == 0) {
   330         print_debug("can't lookup shared archive path symbol\n");
   331         return false;
   332       }
   334       if (read_pointer(ph, sharedArchivePathAddrAddr, &sharedArchivePathAddr) != true) {
   335         print_debug("can't read shared archive path pointer\n");
   336         return false;
   337       }
   339       if (read_string(ph, sharedArchivePathAddr, classes_jsa, sizeof(classes_jsa)) != true) {
   340         print_debug("can't read shared archive path value\n");
   341         return false;
   342       }
   344       print_debug("looking for %s\n", classes_jsa);
   345       // open the class sharing archive file
   346       fd = pathmap_open(classes_jsa);
   347       if (fd < 0) {
   348         print_debug("can't open %s!\n", classes_jsa);
   349         ph->core->classes_jsa_fd = -1;
   350         return false;
   351       } else {
   352         print_debug("opened %s\n", classes_jsa);
   353       }
   355       // read FileMapHeader from the file
   356       memset(&header, 0, sizeof(struct FileMapHeader));
   357       if ((n = read(fd, &header, sizeof(struct FileMapHeader)))
   358            != sizeof(struct FileMapHeader)) {
   359         print_debug("can't read shared archive file map header from %s\n", classes_jsa);
   360         close(fd);
   361         return false;
   362       }
   364       // check file magic
   365       if (header._magic != 0xf00baba2) {
   366         print_debug("%s has bad shared archive file magic number 0x%x, expecing 0xf00baba2\n",
   367                      classes_jsa, header._magic);
   368         close(fd);
   369         return false;
   370       }
   372       // check version
   373       if (header._version != CURRENT_ARCHIVE_VERSION) {
   374         print_debug("%s has wrong shared archive file version %d, expecting %d\n",
   375                      classes_jsa, header._version, CURRENT_ARCHIVE_VERSION);
   376         close(fd);
   377         return false;
   378       }
   380       ph->core->classes_jsa_fd = fd;
   381       // add read-only maps from classes.jsa to the list of maps
   382       for (m = 0; m < NUM_SHARED_MAPS; m++) {
   383         if (header._space[m]._read_only) {
   384           base = (uintptr_t) header._space[m]._base;
   385           // no need to worry about the fractional pages at-the-end.
   386           // possible fractional pages are handled by core_read_data.
   387           add_class_share_map_info(ph, (off_t) header._space[m]._file_offset,
   388                                    base, (size_t) header._space[m]._used);
   389           print_debug("added a share archive map at 0x%lx\n", base);
   390         }
   391       }
   392       return true;
   393    }
   394    lib = lib->next;
   395   }
   396   return true;
   397 }
   400 //---------------------------------------------------------------------------
   401 // functions to handle map_info
   403 // Order mappings based on virtual address.  We use this function as the
   404 // callback for sorting the array of map_info pointers.
   405 static int core_cmp_mapping(const void *lhsp, const void *rhsp)
   406 {
   407   const map_info *lhs = *((const map_info **)lhsp);
   408   const map_info *rhs = *((const map_info **)rhsp);
   410   if (lhs->vaddr == rhs->vaddr) {
   411     return (0);
   412   }
   414   return (lhs->vaddr < rhs->vaddr ? -1 : 1);
   415 }
   417 // we sort map_info by starting virtual address so that we can do
   418 // binary search to read from an address.
   419 static bool sort_map_array(struct ps_prochandle* ph) {
   420   size_t num_maps = ph->core->num_maps;
   421   map_info* map = ph->core->maps;
   422   int i = 0;
   424   // allocate map_array
   425   map_info** array;
   426   if ( (array = (map_info**) malloc(sizeof(map_info*) * num_maps)) == NULL) {
   427     print_debug("can't allocate memory for map array\n");
   428     return false;
   429   }
   431   // add maps to array
   432   while (map) {
   433     array[i] = map;
   434     i++;
   435     map = map->next;
   436   }
   438   // sort is called twice. If this is second time, clear map array
   439   if (ph->core->map_array) {
   440     free(ph->core->map_array);
   441   }
   443   ph->core->map_array = array;
   444   // sort the map_info array by base virtual address.
   445   qsort(ph->core->map_array, ph->core->num_maps, sizeof (map_info*),
   446         core_cmp_mapping);
   448   // print map
   449   if (is_debug()) {
   450     int j = 0;
   451     print_debug("---- sorted virtual address map ----\n");
   452     for (j = 0; j < ph->core->num_maps; j++) {
   453       print_debug("base = 0x%lx\tsize = %zu\n", ph->core->map_array[j]->vaddr,
   454                   ph->core->map_array[j]->memsz);
   455     }
   456   }
   458   return true;
   459 }
   461 #ifndef MIN
   462 #define MIN(x, y) (((x) < (y))? (x): (y))
   463 #endif
   465 static bool core_read_data(struct ps_prochandle* ph, uintptr_t addr, char *buf, size_t size) {
   466    ssize_t resid = size;
   467    int page_size=sysconf(_SC_PAGE_SIZE);
   468    while (resid != 0) {
   469       map_info *mp = core_lookup(ph, addr);
   470       uintptr_t mapoff;
   471       ssize_t len, rem;
   472       off_t off;
   473       int fd;
   475       if (mp == NULL) {
   476          break;  /* No mapping for this address */
   477       }
   479       fd = mp->fd;
   480       mapoff = addr - mp->vaddr;
   481       len = MIN(resid, mp->memsz - mapoff);
   482       off = mp->offset + mapoff;
   484       if ((len = pread(fd, buf, len, off)) <= 0) {
   485          break;
   486       }
   488       resid -= len;
   489       addr += len;
   490       buf = (char *)buf + len;
   492       // mappings always start at page boundary. But, may end in fractional
   493       // page. fill zeros for possible fractional page at the end of a mapping.
   494       rem = mp->memsz % page_size;
   495       if (rem > 0) {
   496          rem = page_size - rem;
   497          len = MIN(resid, rem);
   498          resid -= len;
   499          addr += len;
   500          // we are not assuming 'buf' to be zero initialized.
   501          memset(buf, 0, len);
   502          buf += len;
   503       }
   504    }
   506    if (resid) {
   507       print_debug("core read failed for %d byte(s) @ 0x%lx (%d more bytes)\n",
   508               size, addr, resid);
   509       return false;
   510    } else {
   511       return true;
   512    }
   513 }
   515 // null implementation for write
   516 static bool core_write_data(struct ps_prochandle* ph,
   517                              uintptr_t addr, const char *buf , size_t size) {
   518    return false;
   519 }
   521 static bool core_get_lwp_regs(struct ps_prochandle* ph, lwpid_t lwp_id,
   522                           struct user_regs_struct* regs) {
   523    // for core we have cached the lwp regs from NOTE section
   524    thread_info* thr = ph->threads;
   525    while (thr) {
   526      if (thr->lwp_id == lwp_id) {
   527        memcpy(regs, &thr->regs, sizeof(struct user_regs_struct));
   528        return true;
   529      }
   530      thr = thr->next;
   531    }
   532    return false;
   533 }
   535 static ps_prochandle_ops core_ops = {
   536    .release=  core_release,
   537    .p_pread=  core_read_data,
   538    .p_pwrite= core_write_data,
   539    .get_lwp_regs= core_get_lwp_regs
   540 };
   542 // read regs and create thread from NT_PRSTATUS entries from core file
   543 static bool core_handle_prstatus(struct ps_prochandle* ph, const char* buf, size_t nbytes) {
   544    // we have to read prstatus_t from buf
   545    // assert(nbytes == sizeof(prstaus_t), "size mismatch on prstatus_t");
   546    prstatus_t* prstat = (prstatus_t*) buf;
   547    thread_info* newthr;
   548    print_debug("got integer regset for lwp %d\n", prstat->pr_pid);
   549    // we set pthread_t to -1 for core dump
   550    if((newthr = add_thread_info(ph, (pthread_t) -1,  prstat->pr_pid)) == NULL)
   551       return false;
   553    // copy regs
   554    memcpy(&newthr->regs, prstat->pr_reg, sizeof(struct user_regs_struct));
   556    if (is_debug()) {
   557       print_debug("integer regset\n");
   558 #ifdef i386
   559       // print the regset
   560       print_debug("\teax = 0x%x\n", newthr->regs.eax);
   561       print_debug("\tebx = 0x%x\n", newthr->regs.ebx);
   562       print_debug("\tecx = 0x%x\n", newthr->regs.ecx);
   563       print_debug("\tedx = 0x%x\n", newthr->regs.edx);
   564       print_debug("\tesp = 0x%x\n", newthr->regs.esp);
   565       print_debug("\tebp = 0x%x\n", newthr->regs.ebp);
   566       print_debug("\tesi = 0x%x\n", newthr->regs.esi);
   567       print_debug("\tedi = 0x%x\n", newthr->regs.edi);
   568       print_debug("\teip = 0x%x\n", newthr->regs.eip);
   569 #endif
   571 #if defined(amd64) || defined(x86_64)
   572       // print the regset
   573       print_debug("\tr15 = 0x%lx\n", newthr->regs.r15);
   574       print_debug("\tr14 = 0x%lx\n", newthr->regs.r14);
   575       print_debug("\tr13 = 0x%lx\n", newthr->regs.r13);
   576       print_debug("\tr12 = 0x%lx\n", newthr->regs.r12);
   577       print_debug("\trbp = 0x%lx\n", newthr->regs.rbp);
   578       print_debug("\trbx = 0x%lx\n", newthr->regs.rbx);
   579       print_debug("\tr11 = 0x%lx\n", newthr->regs.r11);
   580       print_debug("\tr10 = 0x%lx\n", newthr->regs.r10);
   581       print_debug("\tr9 = 0x%lx\n", newthr->regs.r9);
   582       print_debug("\tr8 = 0x%lx\n", newthr->regs.r8);
   583       print_debug("\trax = 0x%lx\n", newthr->regs.rax);
   584       print_debug("\trcx = 0x%lx\n", newthr->regs.rcx);
   585       print_debug("\trdx = 0x%lx\n", newthr->regs.rdx);
   586       print_debug("\trsi = 0x%lx\n", newthr->regs.rsi);
   587       print_debug("\trdi = 0x%lx\n", newthr->regs.rdi);
   588       print_debug("\torig_rax = 0x%lx\n", newthr->regs.orig_rax);
   589       print_debug("\trip = 0x%lx\n", newthr->regs.rip);
   590       print_debug("\tcs = 0x%lx\n", newthr->regs.cs);
   591       print_debug("\teflags = 0x%lx\n", newthr->regs.eflags);
   592       print_debug("\trsp = 0x%lx\n", newthr->regs.rsp);
   593       print_debug("\tss = 0x%lx\n", newthr->regs.ss);
   594       print_debug("\tfs_base = 0x%lx\n", newthr->regs.fs_base);
   595       print_debug("\tgs_base = 0x%lx\n", newthr->regs.gs_base);
   596       print_debug("\tds = 0x%lx\n", newthr->regs.ds);
   597       print_debug("\tes = 0x%lx\n", newthr->regs.es);
   598       print_debug("\tfs = 0x%lx\n", newthr->regs.fs);
   599       print_debug("\tgs = 0x%lx\n", newthr->regs.gs);
   600 #endif
   601    }
   603    return true;
   604 }
   606 #define ROUNDUP(x, y)  ((((x)+((y)-1))/(y))*(y))
   608 // read NT_PRSTATUS entries from core NOTE segment
   609 static bool core_handle_note(struct ps_prochandle* ph, ELF_PHDR* note_phdr) {
   610    char* buf = NULL;
   611    char* p = NULL;
   612    size_t size = note_phdr->p_filesz;
   614    // we are interested in just prstatus entries. we will ignore the rest.
   615    // Advance the seek pointer to the start of the PT_NOTE data
   616    if (lseek(ph->core->core_fd, note_phdr->p_offset, SEEK_SET) == (off_t)-1) {
   617       print_debug("failed to lseek to PT_NOTE data\n");
   618       return false;
   619    }
   621    // Now process the PT_NOTE structures.  Each one is preceded by
   622    // an Elf{32/64}_Nhdr structure describing its type and size.
   623    if ( (buf = (char*) malloc(size)) == NULL) {
   624       print_debug("can't allocate memory for reading core notes\n");
   625       goto err;
   626    }
   628    // read notes into buffer
   629    if (read(ph->core->core_fd, buf, size) != size) {
   630       print_debug("failed to read notes, core file must have been truncated\n");
   631       goto err;
   632    }
   634    p = buf;
   635    while (p < buf + size) {
   636       ELF_NHDR* notep = (ELF_NHDR*) p;
   637       char* descdata  = p + sizeof(ELF_NHDR) + ROUNDUP(notep->n_namesz, 4);
   638       print_debug("Note header with n_type = %d and n_descsz = %u\n",
   639                                    notep->n_type, notep->n_descsz);
   641       if (notep->n_type == NT_PRSTATUS) {
   642         if (core_handle_prstatus(ph, descdata, notep->n_descsz) != true) {
   643           return false;
   644         }
   645       } else if (notep->n_type == NT_AUXV) {
   646         // Get first segment from entry point
   647         ELF_AUXV *auxv = (ELF_AUXV *)descdata;
   648         while (auxv->a_type != AT_NULL) {
   649           if (auxv->a_type == AT_ENTRY) {
   650             // Set entry point address to address of dynamic section.
   651             // We will adjust it in read_exec_segments().
   652             ph->core->dynamic_addr = auxv->a_un.a_val;
   653             break;
   654           }
   655           auxv++;
   656         }
   657       }
   658       p = descdata + ROUNDUP(notep->n_descsz, 4);
   659    }
   661    free(buf);
   662    return true;
   664 err:
   665    if (buf) free(buf);
   666    return false;
   667 }
   669 // read all segments from core file
   670 static bool read_core_segments(struct ps_prochandle* ph, ELF_EHDR* core_ehdr) {
   671    int i = 0;
   672    ELF_PHDR* phbuf = NULL;
   673    ELF_PHDR* core_php = NULL;
   675    if ((phbuf =  read_program_header_table(ph->core->core_fd, core_ehdr)) == NULL)
   676       return false;
   678    /*
   679     * Now iterate through the program headers in the core file.
   680     * We're interested in two types of Phdrs: PT_NOTE (which
   681     * contains a set of saved /proc structures), and PT_LOAD (which
   682     * represents a memory mapping from the process's address space).
   683     *
   684     * Difference b/w Solaris PT_NOTE and Linux/BSD PT_NOTE:
   685     *
   686     *     In Solaris there are two PT_NOTE segments the first PT_NOTE (if present)
   687     *     contains /proc structs in the pre-2.6 unstructured /proc format. the last
   688     *     PT_NOTE has data in new /proc format.
   689     *
   690     *     In Solaris, there is only one pstatus (process status). pstatus contains
   691     *     integer register set among other stuff. For each LWP, we have one lwpstatus
   692     *     entry that has integer regset for that LWP.
   693     *
   694     *     Linux threads are actually 'clone'd processes. To support core analysis
   695     *     of "multithreaded" process, Linux creates more than one pstatus (called
   696     *     "prstatus") entry in PT_NOTE. Each prstatus entry has integer regset for one
   697     *     "thread". Please refer to Linux kernel src file 'fs/binfmt_elf.c', in particular
   698     *     function "elf_core_dump".
   699     */
   701     for (core_php = phbuf, i = 0; i < core_ehdr->e_phnum; i++) {
   702       switch (core_php->p_type) {
   703          case PT_NOTE:
   704             if (core_handle_note(ph, core_php) != true) {
   705               goto err;
   706             }
   707             break;
   709          case PT_LOAD: {
   710             if (core_php->p_filesz != 0) {
   711                if (add_map_info(ph, ph->core->core_fd, core_php->p_offset,
   712                   core_php->p_vaddr, core_php->p_filesz) == NULL) goto err;
   713             }
   714             break;
   715          }
   716       }
   718       core_php++;
   719    }
   721    free(phbuf);
   722    return true;
   723 err:
   724    free(phbuf);
   725    return false;
   726 }
   728 // read segments of a shared object
   729 static bool read_lib_segments(struct ps_prochandle* ph, int lib_fd, ELF_EHDR* lib_ehdr, uintptr_t lib_base) {
   730   int i = 0;
   731   ELF_PHDR* phbuf;
   732   ELF_PHDR* lib_php = NULL;
   734   int page_size = sysconf(_SC_PAGE_SIZE);
   736   if ((phbuf = read_program_header_table(lib_fd, lib_ehdr)) == NULL) {
   737     return false;
   738   }
   740   // we want to process only PT_LOAD segments that are not writable.
   741   // i.e., text segments. The read/write/exec (data) segments would
   742   // have been already added from core file segments.
   743   for (lib_php = phbuf, i = 0; i < lib_ehdr->e_phnum; i++) {
   744     if ((lib_php->p_type == PT_LOAD) && !(lib_php->p_flags & PF_W) && (lib_php->p_filesz != 0)) {
   746       uintptr_t target_vaddr = lib_php->p_vaddr + lib_base;
   747       map_info *existing_map = core_lookup(ph, target_vaddr);
   749       if (existing_map == NULL){
   750         if (add_map_info(ph, lib_fd, lib_php->p_offset,
   751                           target_vaddr, lib_php->p_memsz) == NULL) {
   752           goto err;
   753         }
   754       } else {
   755         // Coredump stores value of p_memsz elf field
   756         // rounded up to page boundary.
   758         if ((existing_map->memsz != page_size) &&
   759             (existing_map->fd != lib_fd) &&
   760             (ROUNDUP(existing_map->memsz, page_size) != ROUNDUP(lib_php->p_memsz, page_size))) {
   762           print_debug("address conflict @ 0x%lx (existing map size = %ld, size = %ld, flags = %d)\n",
   763                         target_vaddr, existing_map->memsz, lib_php->p_memsz, lib_php->p_flags);
   764           goto err;
   765         }
   767         /* replace PT_LOAD segment with library segment */
   768         print_debug("overwrote with new address mapping (memsz %ld -> %ld)\n",
   769                      existing_map->memsz, ROUNDUP(lib_php->p_memsz, page_size));
   771         existing_map->fd = lib_fd;
   772         existing_map->offset = lib_php->p_offset;
   773         existing_map->memsz = ROUNDUP(lib_php->p_memsz, page_size);
   774       }
   775     }
   777     lib_php++;
   778   }
   780   free(phbuf);
   781   return true;
   782 err:
   783   free(phbuf);
   784   return false;
   785 }
   787 // process segments from interpreter (ld.so or ld-linux.so)
   788 static bool read_interp_segments(struct ps_prochandle* ph) {
   789    ELF_EHDR interp_ehdr;
   791    if (read_elf_header(ph->core->interp_fd, &interp_ehdr) != true) {
   792        print_debug("interpreter is not a valid ELF file\n");
   793        return false;
   794    }
   796    if (read_lib_segments(ph, ph->core->interp_fd, &interp_ehdr, ph->core->ld_base_addr) != true) {
   797        print_debug("can't read segments of interpreter\n");
   798        return false;
   799    }
   801    return true;
   802 }
   804 // process segments of a a.out
   805 static bool read_exec_segments(struct ps_prochandle* ph, ELF_EHDR* exec_ehdr) {
   806    int i = 0;
   807    ELF_PHDR* phbuf = NULL;
   808    ELF_PHDR* exec_php = NULL;
   810    if ((phbuf = read_program_header_table(ph->core->exec_fd, exec_ehdr)) == NULL)
   811       return false;
   813    for (exec_php = phbuf, i = 0; i < exec_ehdr->e_phnum; i++) {
   814       switch (exec_php->p_type) {
   816          // add mappings for PT_LOAD segments
   817          case PT_LOAD: {
   818             // add only non-writable segments of non-zero filesz
   819             if (!(exec_php->p_flags & PF_W) && exec_php->p_filesz != 0) {
   820                if (add_map_info(ph, ph->core->exec_fd, exec_php->p_offset, exec_php->p_vaddr, exec_php->p_filesz) == NULL) goto err;
   821             }
   822             break;
   823          }
   825          // read the interpreter and it's segments
   826          case PT_INTERP: {
   827             char interp_name[BUF_SIZE];
   829             pread(ph->core->exec_fd, interp_name, MIN(exec_php->p_filesz, BUF_SIZE), exec_php->p_offset);
   830             print_debug("ELF interpreter %s\n", interp_name);
   831             // read interpreter segments as well
   832             if ((ph->core->interp_fd = pathmap_open(interp_name)) < 0) {
   833                print_debug("can't open runtime loader\n");
   834                goto err;
   835             }
   836             break;
   837          }
   839          // from PT_DYNAMIC we want to read address of first link_map addr
   840          case PT_DYNAMIC: {
   841             if (exec_ehdr->e_type == ET_EXEC) {
   842                 ph->core->dynamic_addr = exec_php->p_vaddr;
   843             } else { // ET_DYN
   844                 // dynamic_addr has entry point of executable.
   845                 // Thus we should substract it.
   846                 ph->core->dynamic_addr += exec_php->p_vaddr - exec_ehdr->e_entry;
   847             }
   848             print_debug("address of _DYNAMIC is 0x%lx\n", ph->core->dynamic_addr);
   849             break;
   850          }
   852       } // switch
   853       exec_php++;
   854    } // for
   856    free(phbuf);
   857    return true;
   858 err:
   859    free(phbuf);
   860    return false;
   861 }
   864 #define FIRST_LINK_MAP_OFFSET offsetof(struct r_debug,  r_map)
   865 #define LD_BASE_OFFSET        offsetof(struct r_debug,  r_ldbase)
   866 #define LINK_MAP_ADDR_OFFSET  offsetof(struct link_map, l_addr)
   867 #define LINK_MAP_NAME_OFFSET  offsetof(struct link_map, l_name)
   868 #define LINK_MAP_LD_OFFSET    offsetof(struct link_map, l_ld)
   869 #define LINK_MAP_NEXT_OFFSET  offsetof(struct link_map, l_next)
   871 #define INVALID_LOAD_ADDRESS -1L
   872 #define ZERO_LOAD_ADDRESS 0x0L
   874 // Calculate the load address of shared library
   875 // on prelink-enabled environment.
   876 //
   877 // In case of GDB, it would be calculated by offset of link_map.l_ld
   878 // and the address of .dynamic section.
   879 // See GDB implementation: lm_addr_check @ solib-svr4.c
   880 static uintptr_t calc_prelinked_load_address(struct ps_prochandle* ph, int lib_fd, ELF_EHDR* elf_ehdr, uintptr_t link_map_addr) {
   881   ELF_PHDR *phbuf;
   882   uintptr_t lib_ld;
   883   uintptr_t lib_dyn_addr = 0L;
   884   uintptr_t load_addr;
   885   int i;
   887   phbuf = read_program_header_table(lib_fd, elf_ehdr);
   888   if (phbuf == NULL) {
   889     print_debug("can't read program header of shared object\n");
   890     return INVALID_LOAD_ADDRESS;
   891   }
   893   // Get the address of .dynamic section from shared library.
   894   for (i = 0; i < elf_ehdr->e_phnum; i++) {
   895     if (phbuf[i].p_type == PT_DYNAMIC) {
   896       lib_dyn_addr = phbuf[i].p_vaddr;
   897       break;
   898     }
   899   }
   901   free(phbuf);
   903   if (ps_pdread(ph, (psaddr_t)link_map_addr + LINK_MAP_LD_OFFSET,
   904                &lib_ld, sizeof(uintptr_t)) != PS_OK) {
   905     print_debug("can't read address of dynamic section in shared object\n");
   906     return INVALID_LOAD_ADDRESS;
   907   }
   909   // Return the load address which is calculated by the address of .dynamic
   910   // and link_map.l_ld .
   911   load_addr = lib_ld - lib_dyn_addr;
   912   print_debug("lib_ld = 0x%lx, lib_dyn_addr = 0x%lx -> lib_base_diff = 0x%lx\n", lib_ld, lib_dyn_addr, load_addr);
   913   return load_addr;
   914 }
   916 // read shared library info from runtime linker's data structures.
   917 // This work is done by librtlb_db in Solaris
   918 static bool read_shared_lib_info(struct ps_prochandle* ph) {
   919   uintptr_t addr = ph->core->dynamic_addr;
   920   uintptr_t debug_base;
   921   uintptr_t first_link_map_addr;
   922   uintptr_t ld_base_addr;
   923   uintptr_t link_map_addr;
   924   uintptr_t lib_base_diff;
   925   uintptr_t lib_base;
   926   uintptr_t lib_name_addr;
   927   char lib_name[BUF_SIZE];
   928   ELF_DYN dyn;
   929   ELF_EHDR elf_ehdr;
   930   int lib_fd;
   932   // _DYNAMIC has information of the form
   933   //         [tag] [data] [tag] [data] .....
   934   // Both tag and data are pointer sized.
   935   // We look for dynamic info with DT_DEBUG. This has shared object info.
   936   // refer to struct r_debug in link.h
   938   dyn.d_tag = DT_NULL;
   939   while (dyn.d_tag != DT_DEBUG) {
   940     if (ps_pdread(ph, (psaddr_t) addr, &dyn, sizeof(ELF_DYN)) != PS_OK) {
   941       print_debug("can't read debug info from _DYNAMIC\n");
   942       return false;
   943     }
   944     addr += sizeof(ELF_DYN);
   945   }
   947   // we have got Dyn entry with DT_DEBUG
   948   debug_base = dyn.d_un.d_ptr;
   949   // at debug_base we have struct r_debug. This has first link map in r_map field
   950   if (ps_pdread(ph, (psaddr_t) debug_base + FIRST_LINK_MAP_OFFSET,
   951                  &first_link_map_addr, sizeof(uintptr_t)) != PS_OK) {
   952     print_debug("can't read first link map address\n");
   953     return false;
   954   }
   956   // read ld_base address from struct r_debug
   957   if (ps_pdread(ph, (psaddr_t) debug_base + LD_BASE_OFFSET, &ld_base_addr,
   958                  sizeof(uintptr_t)) != PS_OK) {
   959     print_debug("can't read ld base address\n");
   960     return false;
   961   }
   962   ph->core->ld_base_addr = ld_base_addr;
   964   print_debug("interpreter base address is 0x%lx\n", ld_base_addr);
   966   // now read segments from interp (i.e ld.so or ld-linux.so or ld-elf.so)
   967   if (read_interp_segments(ph) != true) {
   968       return false;
   969   }
   971   // after adding interpreter (ld.so) mappings sort again
   972   if (sort_map_array(ph) != true) {
   973     return false;
   974   }
   976    print_debug("first link map is at 0x%lx\n", first_link_map_addr);
   978    link_map_addr = first_link_map_addr;
   979    while (link_map_addr != 0) {
   980       // read library base address of the .so. Note that even though <sys/link.h> calls
   981       // link_map->l_addr as "base address",  this is * not * really base virtual
   982       // address of the shared object. This is actually the difference b/w the virtual
   983       // address mentioned in shared object and the actual virtual base where runtime
   984       // linker loaded it. We use "base diff" in read_lib_segments call below.
   986       if (ps_pdread(ph, (psaddr_t) link_map_addr + LINK_MAP_ADDR_OFFSET,
   987                    &lib_base_diff, sizeof(uintptr_t)) != PS_OK) {
   988          print_debug("can't read shared object base address diff\n");
   989          return false;
   990       }
   992       // read address of the name
   993       if (ps_pdread(ph, (psaddr_t) link_map_addr + LINK_MAP_NAME_OFFSET,
   994                     &lib_name_addr, sizeof(uintptr_t)) != PS_OK) {
   995          print_debug("can't read address of shared object name\n");
   996          return false;
   997       }
   999       // read name of the shared object
  1000       lib_name[0] = '\0';
  1001       if (lib_name_addr != 0 &&
  1002           read_string(ph, (uintptr_t) lib_name_addr, lib_name, sizeof(lib_name)) != true) {
  1003          print_debug("can't read shared object name\n");
  1004          // don't let failure to read the name stop opening the file.  If something is really wrong
  1005          // it will fail later.
  1008       if (lib_name[0] != '\0') {
  1009          // ignore empty lib names
  1010          lib_fd = pathmap_open(lib_name);
  1012          if (lib_fd < 0) {
  1013             print_debug("can't open shared object %s\n", lib_name);
  1014             // continue with other libraries...
  1015          } else {
  1016             if (read_elf_header(lib_fd, &elf_ehdr)) {
  1017                if (lib_base_diff == ZERO_LOAD_ADDRESS) {
  1018                  lib_base_diff = calc_prelinked_load_address(ph, lib_fd, &elf_ehdr, link_map_addr);
  1019                  if (lib_base_diff == INVALID_LOAD_ADDRESS) {
  1020                    close(lib_fd);
  1021                    return false;
  1025                lib_base = lib_base_diff + find_base_address(lib_fd, &elf_ehdr);
  1026                print_debug("reading library %s @ 0x%lx [ 0x%lx ]\n",
  1027                            lib_name, lib_base, lib_base_diff);
  1028                // while adding library mappings we need to use "base difference".
  1029                if (! read_lib_segments(ph, lib_fd, &elf_ehdr, lib_base_diff)) {
  1030                   print_debug("can't read shared object's segments\n");
  1031                   close(lib_fd);
  1032                   return false;
  1034                add_lib_info_fd(ph, lib_name, lib_fd, lib_base);
  1035                // Map info is added for the library (lib_name) so
  1036                // we need to re-sort it before calling the p_pdread.
  1037                if (sort_map_array(ph) != true)
  1038                   return false;
  1039             } else {
  1040                print_debug("can't read ELF header for shared object %s\n", lib_name);
  1041                close(lib_fd);
  1042                // continue with other libraries...
  1047     // read next link_map address
  1048     if (ps_pdread(ph, (psaddr_t) link_map_addr + LINK_MAP_NEXT_OFFSET,
  1049                    &link_map_addr, sizeof(uintptr_t)) != PS_OK) {
  1050       print_debug("can't read next link in link_map\n");
  1051       return false;
  1055   return true;
  1058 // the one and only one exposed stuff from this file
  1059 struct ps_prochandle* Pgrab_core(const char* exec_file, const char* core_file) {
  1060   ELF_EHDR core_ehdr;
  1061   ELF_EHDR exec_ehdr;
  1062   ELF_EHDR lib_ehdr;
  1064   struct ps_prochandle* ph = (struct ps_prochandle*) calloc(1, sizeof(struct ps_prochandle));
  1065   if (ph == NULL) {
  1066     print_debug("can't allocate ps_prochandle\n");
  1067     return NULL;
  1070   if ((ph->core = (struct core_data*) calloc(1, sizeof(struct core_data))) == NULL) {
  1071     free(ph);
  1072     print_debug("can't allocate ps_prochandle\n");
  1073     return NULL;
  1076   // initialize ph
  1077   ph->ops = &core_ops;
  1078   ph->core->core_fd   = -1;
  1079   ph->core->exec_fd   = -1;
  1080   ph->core->interp_fd = -1;
  1082   // open the core file
  1083   if ((ph->core->core_fd = open(core_file, O_RDONLY)) < 0) {
  1084     print_debug("can't open core file\n");
  1085     goto err;
  1088   // read core file ELF header
  1089   if (read_elf_header(ph->core->core_fd, &core_ehdr) != true || core_ehdr.e_type != ET_CORE) {
  1090     print_debug("core file is not a valid ELF ET_CORE file\n");
  1091     goto err;
  1094   if ((ph->core->exec_fd = open(exec_file, O_RDONLY)) < 0) {
  1095     print_debug("can't open executable file\n");
  1096     goto err;
  1099   if (read_elf_header(ph->core->exec_fd, &exec_ehdr) != true ||
  1100       ((exec_ehdr.e_type != ET_EXEC) && (exec_ehdr.e_type != ET_DYN))) {
  1101     print_debug("executable file is not a valid ELF file\n");
  1102     goto err;
  1105   // process core file segments
  1106   if (read_core_segments(ph, &core_ehdr) != true) {
  1107     goto err;
  1110   // process exec file segments
  1111   if (read_exec_segments(ph, &exec_ehdr) != true) {
  1112     goto err;
  1115   // exec file is also treated like a shared object for symbol search
  1116   if (add_lib_info_fd(ph, exec_file, ph->core->exec_fd,
  1117                       (uintptr_t)0 + find_base_address(ph->core->exec_fd, &exec_ehdr)) == NULL) {
  1118     goto err;
  1121   // allocate and sort maps into map_array, we need to do this
  1122   // here because read_shared_lib_info needs to read from debuggee
  1123   // address space
  1124   if (sort_map_array(ph) != true) {
  1125     goto err;
  1128   if (read_shared_lib_info(ph) != true) {
  1129     goto err;
  1132   // sort again because we have added more mappings from shared objects
  1133   if (sort_map_array(ph) != true) {
  1134     goto err;
  1137   if (init_classsharing_workaround(ph) != true) {
  1138     goto err;
  1141   return ph;
  1143 err:
  1144   Prelease(ph);
  1145   return NULL;

mercurial