src/share/vm/gc_implementation/g1/heapRegion.hpp

Wed, 25 Jun 2014 16:53:13 +0200

author
mgerdin
date
Wed, 25 Jun 2014 16:53:13 +0200
changeset 6987
9441d22e429a
parent 6986
e635a728f9da
child 6988
a8137787acfe
permissions
-rw-r--r--

8047820: G1 Block offset table does not need to support generic Space classes
Reviewed-by: tschatzl, stefank

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
    28 #include "gc_implementation/g1/g1BlockOffsetTable.hpp"
    29 #include "gc_implementation/g1/g1_specialized_oop_closures.hpp"
    30 #include "gc_implementation/g1/survRateGroup.hpp"
    31 #include "gc_implementation/shared/ageTable.hpp"
    32 #include "gc_implementation/shared/spaceDecorator.hpp"
    33 #include "memory/space.inline.hpp"
    34 #include "memory/watermark.hpp"
    35 #include "utilities/macros.hpp"
    37 #if INCLUDE_ALL_GCS
    39 // A HeapRegion is the smallest piece of a G1CollectedHeap that
    40 // can be collected independently.
    42 // NOTE: Although a HeapRegion is a Space, its
    43 // Space::initDirtyCardClosure method must not be called.
    44 // The problem is that the existence of this method breaks
    45 // the independence of barrier sets from remembered sets.
    46 // The solution is to remove this method from the definition
    47 // of a Space.
    49 class CompactibleSpace;
    50 class ContiguousSpace;
    51 class HeapRegionRemSet;
    52 class HeapRegionRemSetIterator;
    53 class HeapRegion;
    54 class HeapRegionSetBase;
    55 class nmethod;
    57 #define HR_FORMAT "%u:(%s)["PTR_FORMAT","PTR_FORMAT","PTR_FORMAT"]"
    58 #define HR_FORMAT_PARAMS(_hr_) \
    59                 (_hr_)->hrs_index(), \
    60                 (_hr_)->is_survivor() ? "S" : (_hr_)->is_young() ? "E" : \
    61                 (_hr_)->startsHumongous() ? "HS" : \
    62                 (_hr_)->continuesHumongous() ? "HC" : \
    63                 !(_hr_)->is_empty() ? "O" : "F", \
    64                 p2i((_hr_)->bottom()), p2i((_hr_)->top()), p2i((_hr_)->end())
    66 // sentinel value for hrs_index
    67 #define G1_NULL_HRS_INDEX ((uint) -1)
    69 // A dirty card to oop closure for heap regions. It
    70 // knows how to get the G1 heap and how to use the bitmap
    71 // in the concurrent marker used by G1 to filter remembered
    72 // sets.
    74 class HeapRegionDCTOC : public DirtyCardToOopClosure {
    75 public:
    76   // Specification of possible DirtyCardToOopClosure filtering.
    77   enum FilterKind {
    78     NoFilterKind,
    79     IntoCSFilterKind,
    80     OutOfRegionFilterKind
    81   };
    83 protected:
    84   HeapRegion* _hr;
    85   FilterKind _fk;
    86   G1CollectedHeap* _g1;
    88   // Walk the given memory region from bottom to (actual) top
    89   // looking for objects and applying the oop closure (_cl) to
    90   // them. The base implementation of this treats the area as
    91   // blocks, where a block may or may not be an object. Sub-
    92   // classes should override this to provide more accurate
    93   // or possibly more efficient walking.
    94   void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top);
    96 public:
    97   HeapRegionDCTOC(G1CollectedHeap* g1,
    98                   HeapRegion* hr, ExtendedOopClosure* cl,
    99                   CardTableModRefBS::PrecisionStyle precision,
   100                   FilterKind fk);
   101 };
   103 // The complicating factor is that BlockOffsetTable diverged
   104 // significantly, and we need functionality that is only in the G1 version.
   105 // So I copied that code, which led to an alternate G1 version of
   106 // OffsetTableContigSpace.  If the two versions of BlockOffsetTable could
   107 // be reconciled, then G1OffsetTableContigSpace could go away.
   109 // The idea behind time stamps is the following. Doing a save_marks on
   110 // all regions at every GC pause is time consuming (if I remember
   111 // well, 10ms or so). So, we would like to do that only for regions
   112 // that are GC alloc regions. To achieve this, we use time
   113 // stamps. For every evacuation pause, G1CollectedHeap generates a
   114 // unique time stamp (essentially a counter that gets
   115 // incremented). Every time we want to call save_marks on a region,
   116 // we set the saved_mark_word to top and also copy the current GC
   117 // time stamp to the time stamp field of the space. Reading the
   118 // saved_mark_word involves checking the time stamp of the
   119 // region. If it is the same as the current GC time stamp, then we
   120 // can safely read the saved_mark_word field, as it is valid. If the
   121 // time stamp of the region is not the same as the current GC time
   122 // stamp, then we instead read top, as the saved_mark_word field is
   123 // invalid. Time stamps (on the regions and also on the
   124 // G1CollectedHeap) are reset at every cleanup (we iterate over
   125 // the regions anyway) and at the end of a Full GC. The current scheme
   126 // that uses sequential unsigned ints will fail only if we have 4b
   127 // evacuation pauses between two cleanups, which is _highly_ unlikely.
   129 class G1OffsetTableContigSpace: public ContiguousSpace {
   130   friend class VMStructs;
   131  protected:
   132   G1BlockOffsetArrayContigSpace _offsets;
   133   Mutex _par_alloc_lock;
   134   volatile unsigned _gc_time_stamp;
   135   // When we need to retire an allocation region, while other threads
   136   // are also concurrently trying to allocate into it, we typically
   137   // allocate a dummy object at the end of the region to ensure that
   138   // no more allocations can take place in it. However, sometimes we
   139   // want to know where the end of the last "real" object we allocated
   140   // into the region was and this is what this keeps track.
   141   HeapWord* _pre_dummy_top;
   143  public:
   144   G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
   145                            MemRegion mr);
   147   void set_bottom(HeapWord* value);
   148   void set_end(HeapWord* value);
   150   virtual HeapWord* saved_mark_word() const;
   151   virtual void set_saved_mark();
   152   void reset_gc_time_stamp() { _gc_time_stamp = 0; }
   153   unsigned get_gc_time_stamp() { return _gc_time_stamp; }
   155   // See the comment above in the declaration of _pre_dummy_top for an
   156   // explanation of what it is.
   157   void set_pre_dummy_top(HeapWord* pre_dummy_top) {
   158     assert(is_in(pre_dummy_top) && pre_dummy_top <= top(), "pre-condition");
   159     _pre_dummy_top = pre_dummy_top;
   160   }
   161   HeapWord* pre_dummy_top() {
   162     return (_pre_dummy_top == NULL) ? top() : _pre_dummy_top;
   163   }
   164   void reset_pre_dummy_top() { _pre_dummy_top = NULL; }
   166   virtual void clear(bool mangle_space);
   168   HeapWord* block_start(const void* p);
   169   HeapWord* block_start_const(const void* p) const;
   171   // Add offset table update.
   172   virtual HeapWord* allocate(size_t word_size);
   173   HeapWord* par_allocate(size_t word_size);
   175   // MarkSweep support phase3
   176   virtual HeapWord* initialize_threshold();
   177   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
   179   virtual void print() const;
   181   void reset_bot() {
   182     _offsets.zero_bottom_entry();
   183     _offsets.initialize_threshold();
   184   }
   186   void update_bot_for_object(HeapWord* start, size_t word_size) {
   187     _offsets.alloc_block(start, word_size);
   188   }
   190   void print_bot_on(outputStream* out) {
   191     _offsets.print_on(out);
   192   }
   193 };
   195 class HeapRegion: public G1OffsetTableContigSpace {
   196   friend class VMStructs;
   197  private:
   199   enum HumongousType {
   200     NotHumongous = 0,
   201     StartsHumongous,
   202     ContinuesHumongous
   203   };
   205   // Requires that the region "mr" be dense with objects, and begin and end
   206   // with an object.
   207   void oops_in_mr_iterate(MemRegion mr, ExtendedOopClosure* cl);
   209   // The remembered set for this region.
   210   // (Might want to make this "inline" later, to avoid some alloc failure
   211   // issues.)
   212   HeapRegionRemSet* _rem_set;
   214   G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; }
   216  protected:
   217   // The index of this region in the heap region sequence.
   218   uint  _hrs_index;
   220   HumongousType _humongous_type;
   221   // For a humongous region, region in which it starts.
   222   HeapRegion* _humongous_start_region;
   223   // For the start region of a humongous sequence, it's original end().
   224   HeapWord* _orig_end;
   226   // True iff the region is in current collection_set.
   227   bool _in_collection_set;
   229   // True iff an attempt to evacuate an object in the region failed.
   230   bool _evacuation_failed;
   232   // A heap region may be a member one of a number of special subsets, each
   233   // represented as linked lists through the field below.  Currently, these
   234   // sets include:
   235   //   The collection set.
   236   //   The set of allocation regions used in a collection pause.
   237   //   Spaces that may contain gray objects.
   238   HeapRegion* _next_in_special_set;
   240   // next region in the young "generation" region set
   241   HeapRegion* _next_young_region;
   243   // Next region whose cards need cleaning
   244   HeapRegion* _next_dirty_cards_region;
   246   // Fields used by the HeapRegionSetBase class and subclasses.
   247   HeapRegion* _next;
   248   HeapRegion* _prev;
   249 #ifdef ASSERT
   250   HeapRegionSetBase* _containing_set;
   251 #endif // ASSERT
   252   bool _pending_removal;
   254   // For parallel heapRegion traversal.
   255   jint _claimed;
   257   // We use concurrent marking to determine the amount of live data
   258   // in each heap region.
   259   size_t _prev_marked_bytes;    // Bytes known to be live via last completed marking.
   260   size_t _next_marked_bytes;    // Bytes known to be live via in-progress marking.
   262   // The calculated GC efficiency of the region.
   263   double _gc_efficiency;
   265   enum YoungType {
   266     NotYoung,                   // a region is not young
   267     Young,                      // a region is young
   268     Survivor                    // a region is young and it contains survivors
   269   };
   271   volatile YoungType _young_type;
   272   int  _young_index_in_cset;
   273   SurvRateGroup* _surv_rate_group;
   274   int  _age_index;
   276   // The start of the unmarked area. The unmarked area extends from this
   277   // word until the top and/or end of the region, and is the part
   278   // of the region for which no marking was done, i.e. objects may
   279   // have been allocated in this part since the last mark phase.
   280   // "prev" is the top at the start of the last completed marking.
   281   // "next" is the top at the start of the in-progress marking (if any.)
   282   HeapWord* _prev_top_at_mark_start;
   283   HeapWord* _next_top_at_mark_start;
   284   // If a collection pause is in progress, this is the top at the start
   285   // of that pause.
   287   void init_top_at_mark_start() {
   288     assert(_prev_marked_bytes == 0 &&
   289            _next_marked_bytes == 0,
   290            "Must be called after zero_marked_bytes.");
   291     HeapWord* bot = bottom();
   292     _prev_top_at_mark_start = bot;
   293     _next_top_at_mark_start = bot;
   294   }
   296   void set_young_type(YoungType new_type) {
   297     //assert(_young_type != new_type, "setting the same type" );
   298     // TODO: add more assertions here
   299     _young_type = new_type;
   300   }
   302   // Cached attributes used in the collection set policy information
   304   // The RSet length that was added to the total value
   305   // for the collection set.
   306   size_t _recorded_rs_length;
   308   // The predicted elapsed time that was added to total value
   309   // for the collection set.
   310   double _predicted_elapsed_time_ms;
   312   // The predicted number of bytes to copy that was added to
   313   // the total value for the collection set.
   314   size_t _predicted_bytes_to_copy;
   316  public:
   317   HeapRegion(uint hrs_index,
   318              G1BlockOffsetSharedArray* sharedOffsetArray,
   319              MemRegion mr);
   321   static int    LogOfHRGrainBytes;
   322   static int    LogOfHRGrainWords;
   324   static size_t GrainBytes;
   325   static size_t GrainWords;
   326   static size_t CardsPerRegion;
   328   static size_t align_up_to_region_byte_size(size_t sz) {
   329     return (sz + (size_t) GrainBytes - 1) &
   330                                       ~((1 << (size_t) LogOfHRGrainBytes) - 1);
   331   }
   333   static size_t max_region_size();
   335   // It sets up the heap region size (GrainBytes / GrainWords), as
   336   // well as other related fields that are based on the heap region
   337   // size (LogOfHRGrainBytes / LogOfHRGrainWords /
   338   // CardsPerRegion). All those fields are considered constant
   339   // throughout the JVM's execution, therefore they should only be set
   340   // up once during initialization time.
   341   static void setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size);
   343   enum ClaimValues {
   344     InitialClaimValue          = 0,
   345     FinalCountClaimValue       = 1,
   346     NoteEndClaimValue          = 2,
   347     ScrubRemSetClaimValue      = 3,
   348     ParVerifyClaimValue        = 4,
   349     RebuildRSClaimValue        = 5,
   350     ParEvacFailureClaimValue   = 6,
   351     AggregateCountClaimValue   = 7,
   352     VerifyCountClaimValue      = 8,
   353     ParMarkRootClaimValue      = 9
   354   };
   356   inline HeapWord* par_allocate_no_bot_updates(size_t word_size) {
   357     assert(is_young(), "we can only skip BOT updates on young regions");
   358     return ContiguousSpace::par_allocate(word_size);
   359   }
   360   inline HeapWord* allocate_no_bot_updates(size_t word_size) {
   361     assert(is_young(), "we can only skip BOT updates on young regions");
   362     return ContiguousSpace::allocate(word_size);
   363   }
   365   // If this region is a member of a HeapRegionSeq, the index in that
   366   // sequence, otherwise -1.
   367   uint hrs_index() const { return _hrs_index; }
   369   // The number of bytes marked live in the region in the last marking phase.
   370   size_t marked_bytes()    { return _prev_marked_bytes; }
   371   size_t live_bytes() {
   372     return (top() - prev_top_at_mark_start()) * HeapWordSize + marked_bytes();
   373   }
   375   // The number of bytes counted in the next marking.
   376   size_t next_marked_bytes() { return _next_marked_bytes; }
   377   // The number of bytes live wrt the next marking.
   378   size_t next_live_bytes() {
   379     return
   380       (top() - next_top_at_mark_start()) * HeapWordSize + next_marked_bytes();
   381   }
   383   // A lower bound on the amount of garbage bytes in the region.
   384   size_t garbage_bytes() {
   385     size_t used_at_mark_start_bytes =
   386       (prev_top_at_mark_start() - bottom()) * HeapWordSize;
   387     assert(used_at_mark_start_bytes >= marked_bytes(),
   388            "Can't mark more than we have.");
   389     return used_at_mark_start_bytes - marked_bytes();
   390   }
   392   // Return the amount of bytes we'll reclaim if we collect this
   393   // region. This includes not only the known garbage bytes in the
   394   // region but also any unallocated space in it, i.e., [top, end),
   395   // since it will also be reclaimed if we collect the region.
   396   size_t reclaimable_bytes() {
   397     size_t known_live_bytes = live_bytes();
   398     assert(known_live_bytes <= capacity(), "sanity");
   399     return capacity() - known_live_bytes;
   400   }
   402   // An upper bound on the number of live bytes in the region.
   403   size_t max_live_bytes() { return used() - garbage_bytes(); }
   405   void add_to_marked_bytes(size_t incr_bytes) {
   406     _next_marked_bytes = _next_marked_bytes + incr_bytes;
   407     assert(_next_marked_bytes <= used(), "invariant" );
   408   }
   410   void zero_marked_bytes()      {
   411     _prev_marked_bytes = _next_marked_bytes = 0;
   412   }
   414   bool isHumongous() const { return _humongous_type != NotHumongous; }
   415   bool startsHumongous() const { return _humongous_type == StartsHumongous; }
   416   bool continuesHumongous() const { return _humongous_type == ContinuesHumongous; }
   417   // For a humongous region, region in which it starts.
   418   HeapRegion* humongous_start_region() const {
   419     return _humongous_start_region;
   420   }
   422   // Return the number of distinct regions that are covered by this region:
   423   // 1 if the region is not humongous, >= 1 if the region is humongous.
   424   uint region_num() const {
   425     if (!isHumongous()) {
   426       return 1U;
   427     } else {
   428       assert(startsHumongous(), "doesn't make sense on HC regions");
   429       assert(capacity() % HeapRegion::GrainBytes == 0, "sanity");
   430       return (uint) (capacity() >> HeapRegion::LogOfHRGrainBytes);
   431     }
   432   }
   434   // Return the index + 1 of the last HC regions that's associated
   435   // with this HS region.
   436   uint last_hc_index() const {
   437     assert(startsHumongous(), "don't call this otherwise");
   438     return hrs_index() + region_num();
   439   }
   441   // Same as Space::is_in_reserved, but will use the original size of the region.
   442   // The original size is different only for start humongous regions. They get
   443   // their _end set up to be the end of the last continues region of the
   444   // corresponding humongous object.
   445   bool is_in_reserved_raw(const void* p) const {
   446     return _bottom <= p && p < _orig_end;
   447   }
   449   // Makes the current region be a "starts humongous" region, i.e.,
   450   // the first region in a series of one or more contiguous regions
   451   // that will contain a single "humongous" object. The two parameters
   452   // are as follows:
   453   //
   454   // new_top : The new value of the top field of this region which
   455   // points to the end of the humongous object that's being
   456   // allocated. If there is more than one region in the series, top
   457   // will lie beyond this region's original end field and on the last
   458   // region in the series.
   459   //
   460   // new_end : The new value of the end field of this region which
   461   // points to the end of the last region in the series. If there is
   462   // one region in the series (namely: this one) end will be the same
   463   // as the original end of this region.
   464   //
   465   // Updating top and end as described above makes this region look as
   466   // if it spans the entire space taken up by all the regions in the
   467   // series and an single allocation moved its top to new_top. This
   468   // ensures that the space (capacity / allocated) taken up by all
   469   // humongous regions can be calculated by just looking at the
   470   // "starts humongous" regions and by ignoring the "continues
   471   // humongous" regions.
   472   void set_startsHumongous(HeapWord* new_top, HeapWord* new_end);
   474   // Makes the current region be a "continues humongous'
   475   // region. first_hr is the "start humongous" region of the series
   476   // which this region will be part of.
   477   void set_continuesHumongous(HeapRegion* first_hr);
   479   // Unsets the humongous-related fields on the region.
   480   void set_notHumongous();
   482   // If the region has a remembered set, return a pointer to it.
   483   HeapRegionRemSet* rem_set() const {
   484     return _rem_set;
   485   }
   487   // True iff the region is in current collection_set.
   488   bool in_collection_set() const {
   489     return _in_collection_set;
   490   }
   491   void set_in_collection_set(bool b) {
   492     _in_collection_set = b;
   493   }
   494   HeapRegion* next_in_collection_set() {
   495     assert(in_collection_set(), "should only invoke on member of CS.");
   496     assert(_next_in_special_set == NULL ||
   497            _next_in_special_set->in_collection_set(),
   498            "Malformed CS.");
   499     return _next_in_special_set;
   500   }
   501   void set_next_in_collection_set(HeapRegion* r) {
   502     assert(in_collection_set(), "should only invoke on member of CS.");
   503     assert(r == NULL || r->in_collection_set(), "Malformed CS.");
   504     _next_in_special_set = r;
   505   }
   507   // Methods used by the HeapRegionSetBase class and subclasses.
   509   // Getter and setter for the next and prev fields used to link regions into
   510   // linked lists.
   511   HeapRegion* next()              { return _next; }
   512   HeapRegion* prev()              { return _prev; }
   514   void set_next(HeapRegion* next) { _next = next; }
   515   void set_prev(HeapRegion* prev) { _prev = prev; }
   517   // Every region added to a set is tagged with a reference to that
   518   // set. This is used for doing consistency checking to make sure that
   519   // the contents of a set are as they should be and it's only
   520   // available in non-product builds.
   521 #ifdef ASSERT
   522   void set_containing_set(HeapRegionSetBase* containing_set) {
   523     assert((containing_set == NULL && _containing_set != NULL) ||
   524            (containing_set != NULL && _containing_set == NULL),
   525            err_msg("containing_set: "PTR_FORMAT" "
   526                    "_containing_set: "PTR_FORMAT,
   527                    p2i(containing_set), p2i(_containing_set)));
   529     _containing_set = containing_set;
   530   }
   532   HeapRegionSetBase* containing_set() { return _containing_set; }
   533 #else // ASSERT
   534   void set_containing_set(HeapRegionSetBase* containing_set) { }
   536   // containing_set() is only used in asserts so there's no reason
   537   // to provide a dummy version of it.
   538 #endif // ASSERT
   540   // If we want to remove regions from a list in bulk we can simply tag
   541   // them with the pending_removal tag and call the
   542   // remove_all_pending() method on the list.
   544   bool pending_removal() { return _pending_removal; }
   546   void set_pending_removal(bool pending_removal) {
   547     if (pending_removal) {
   548       assert(!_pending_removal && containing_set() != NULL,
   549              "can only set pending removal to true if it's false and "
   550              "the region belongs to a region set");
   551     } else {
   552       assert( _pending_removal && containing_set() == NULL,
   553               "can only set pending removal to false if it's true and "
   554               "the region does not belong to a region set");
   555     }
   557     _pending_removal = pending_removal;
   558   }
   560   HeapRegion* get_next_young_region() { return _next_young_region; }
   561   void set_next_young_region(HeapRegion* hr) {
   562     _next_young_region = hr;
   563   }
   565   HeapRegion* get_next_dirty_cards_region() const { return _next_dirty_cards_region; }
   566   HeapRegion** next_dirty_cards_region_addr() { return &_next_dirty_cards_region; }
   567   void set_next_dirty_cards_region(HeapRegion* hr) { _next_dirty_cards_region = hr; }
   568   bool is_on_dirty_cards_region_list() const { return get_next_dirty_cards_region() != NULL; }
   570   HeapWord* orig_end() { return _orig_end; }
   572   // Allows logical separation between objects allocated before and after.
   573   void save_marks();
   575   // Reset HR stuff to default values.
   576   void hr_clear(bool par, bool clear_space, bool locked = false);
   577   void par_clear();
   579   // Get the start of the unmarked area in this region.
   580   HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
   581   HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
   583   // Apply "cl->do_oop" to (the addresses of) all reference fields in objects
   584   // allocated in the current region before the last call to "save_mark".
   585   void oop_before_save_marks_iterate(ExtendedOopClosure* cl);
   587   // Note the start or end of marking. This tells the heap region
   588   // that the collector is about to start or has finished (concurrently)
   589   // marking the heap.
   591   // Notify the region that concurrent marking is starting. Initialize
   592   // all fields related to the next marking info.
   593   inline void note_start_of_marking();
   595   // Notify the region that concurrent marking has finished. Copy the
   596   // (now finalized) next marking info fields into the prev marking
   597   // info fields.
   598   inline void note_end_of_marking();
   600   // Notify the region that it will be used as to-space during a GC
   601   // and we are about to start copying objects into it.
   602   inline void note_start_of_copying(bool during_initial_mark);
   604   // Notify the region that it ceases being to-space during a GC and
   605   // we will not copy objects into it any more.
   606   inline void note_end_of_copying(bool during_initial_mark);
   608   // Notify the region that we are about to start processing
   609   // self-forwarded objects during evac failure handling.
   610   void note_self_forwarding_removal_start(bool during_initial_mark,
   611                                           bool during_conc_mark);
   613   // Notify the region that we have finished processing self-forwarded
   614   // objects during evac failure handling.
   615   void note_self_forwarding_removal_end(bool during_initial_mark,
   616                                         bool during_conc_mark,
   617                                         size_t marked_bytes);
   619   // Returns "false" iff no object in the region was allocated when the
   620   // last mark phase ended.
   621   bool is_marked() { return _prev_top_at_mark_start != bottom(); }
   623   void reset_during_compaction() {
   624     assert(isHumongous() && startsHumongous(),
   625            "should only be called for starts humongous regions");
   627     zero_marked_bytes();
   628     init_top_at_mark_start();
   629   }
   631   void calc_gc_efficiency(void);
   632   double gc_efficiency() { return _gc_efficiency;}
   634   bool is_young() const     { return _young_type != NotYoung; }
   635   bool is_survivor() const  { return _young_type == Survivor; }
   637   int  young_index_in_cset() const { return _young_index_in_cset; }
   638   void set_young_index_in_cset(int index) {
   639     assert( (index == -1) || is_young(), "pre-condition" );
   640     _young_index_in_cset = index;
   641   }
   643   int age_in_surv_rate_group() {
   644     assert( _surv_rate_group != NULL, "pre-condition" );
   645     assert( _age_index > -1, "pre-condition" );
   646     return _surv_rate_group->age_in_group(_age_index);
   647   }
   649   void record_surv_words_in_group(size_t words_survived) {
   650     assert( _surv_rate_group != NULL, "pre-condition" );
   651     assert( _age_index > -1, "pre-condition" );
   652     int age_in_group = age_in_surv_rate_group();
   653     _surv_rate_group->record_surviving_words(age_in_group, words_survived);
   654   }
   656   int age_in_surv_rate_group_cond() {
   657     if (_surv_rate_group != NULL)
   658       return age_in_surv_rate_group();
   659     else
   660       return -1;
   661   }
   663   SurvRateGroup* surv_rate_group() {
   664     return _surv_rate_group;
   665   }
   667   void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
   668     assert( surv_rate_group != NULL, "pre-condition" );
   669     assert( _surv_rate_group == NULL, "pre-condition" );
   670     assert( is_young(), "pre-condition" );
   672     _surv_rate_group = surv_rate_group;
   673     _age_index = surv_rate_group->next_age_index();
   674   }
   676   void uninstall_surv_rate_group() {
   677     if (_surv_rate_group != NULL) {
   678       assert( _age_index > -1, "pre-condition" );
   679       assert( is_young(), "pre-condition" );
   681       _surv_rate_group = NULL;
   682       _age_index = -1;
   683     } else {
   684       assert( _age_index == -1, "pre-condition" );
   685     }
   686   }
   688   void set_young() { set_young_type(Young); }
   690   void set_survivor() { set_young_type(Survivor); }
   692   void set_not_young() { set_young_type(NotYoung); }
   694   // Determine if an object has been allocated since the last
   695   // mark performed by the collector. This returns true iff the object
   696   // is within the unmarked area of the region.
   697   bool obj_allocated_since_prev_marking(oop obj) const {
   698     return (HeapWord *) obj >= prev_top_at_mark_start();
   699   }
   700   bool obj_allocated_since_next_marking(oop obj) const {
   701     return (HeapWord *) obj >= next_top_at_mark_start();
   702   }
   704   // For parallel heapRegion traversal.
   705   bool claimHeapRegion(int claimValue);
   706   jint claim_value() { return _claimed; }
   707   // Use this carefully: only when you're sure no one is claiming...
   708   void set_claim_value(int claimValue) { _claimed = claimValue; }
   710   // Returns the "evacuation_failed" property of the region.
   711   bool evacuation_failed() { return _evacuation_failed; }
   713   // Sets the "evacuation_failed" property of the region.
   714   void set_evacuation_failed(bool b) {
   715     _evacuation_failed = b;
   717     if (b) {
   718       _next_marked_bytes = 0;
   719     }
   720   }
   722   // Requires that "mr" be entirely within the region.
   723   // Apply "cl->do_object" to all objects that intersect with "mr".
   724   // If the iteration encounters an unparseable portion of the region,
   725   // or if "cl->abort()" is true after a closure application,
   726   // terminate the iteration and return the address of the start of the
   727   // subregion that isn't done.  (The two can be distinguished by querying
   728   // "cl->abort()".)  Return of "NULL" indicates that the iteration
   729   // completed.
   730   HeapWord*
   731   object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl);
   733   // filter_young: if true and the region is a young region then we
   734   // skip the iteration.
   735   // card_ptr: if not NULL, and we decide that the card is not young
   736   // and we iterate over it, we'll clean the card before we start the
   737   // iteration.
   738   HeapWord*
   739   oops_on_card_seq_iterate_careful(MemRegion mr,
   740                                    FilterOutOfRegionClosure* cl,
   741                                    bool filter_young,
   742                                    jbyte* card_ptr);
   744   // A version of block start that is guaranteed to find *some* block
   745   // boundary at or before "p", but does not object iteration, and may
   746   // therefore be used safely when the heap is unparseable.
   747   HeapWord* block_start_careful(const void* p) const {
   748     return _offsets.block_start_careful(p);
   749   }
   751   // Requires that "addr" is within the region.  Returns the start of the
   752   // first ("careful") block that starts at or after "addr", or else the
   753   // "end" of the region if there is no such block.
   754   HeapWord* next_block_start_careful(HeapWord* addr);
   756   size_t recorded_rs_length() const        { return _recorded_rs_length; }
   757   double predicted_elapsed_time_ms() const { return _predicted_elapsed_time_ms; }
   758   size_t predicted_bytes_to_copy() const   { return _predicted_bytes_to_copy; }
   760   void set_recorded_rs_length(size_t rs_length) {
   761     _recorded_rs_length = rs_length;
   762   }
   764   void set_predicted_elapsed_time_ms(double ms) {
   765     _predicted_elapsed_time_ms = ms;
   766   }
   768   void set_predicted_bytes_to_copy(size_t bytes) {
   769     _predicted_bytes_to_copy = bytes;
   770   }
   772 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)  \
   773   virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
   774   SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DECL)
   776   virtual CompactibleSpace* next_compaction_space() const;
   778   virtual void reset_after_compaction();
   780   // Routines for managing a list of code roots (attached to the
   781   // this region's RSet) that point into this heap region.
   782   void add_strong_code_root(nmethod* nm);
   783   void remove_strong_code_root(nmethod* nm);
   785   // During a collection, migrate the successfully evacuated
   786   // strong code roots that referenced into this region to the
   787   // new regions that they now point into. Unsuccessfully
   788   // evacuated code roots are not migrated.
   789   void migrate_strong_code_roots();
   791   // Applies blk->do_code_blob() to each of the entries in
   792   // the strong code roots list for this region
   793   void strong_code_roots_do(CodeBlobClosure* blk) const;
   795   // Verify that the entries on the strong code root list for this
   796   // region are live and include at least one pointer into this region.
   797   void verify_strong_code_roots(VerifyOption vo, bool* failures) const;
   799   void print() const;
   800   void print_on(outputStream* st) const;
   802   // vo == UsePrevMarking  -> use "prev" marking information,
   803   // vo == UseNextMarking -> use "next" marking information
   804   // vo == UseMarkWord    -> use the mark word in the object header
   805   //
   806   // NOTE: Only the "prev" marking information is guaranteed to be
   807   // consistent most of the time, so most calls to this should use
   808   // vo == UsePrevMarking.
   809   // Currently, there is only one case where this is called with
   810   // vo == UseNextMarking, which is to verify the "next" marking
   811   // information at the end of remark.
   812   // Currently there is only one place where this is called with
   813   // vo == UseMarkWord, which is to verify the marking during a
   814   // full GC.
   815   void verify(VerifyOption vo, bool *failures) const;
   817   // Override; it uses the "prev" marking information
   818   virtual void verify() const;
   819 };
   821 // HeapRegionClosure is used for iterating over regions.
   822 // Terminates the iteration when the "doHeapRegion" method returns "true".
   823 class HeapRegionClosure : public StackObj {
   824   friend class HeapRegionSeq;
   825   friend class G1CollectedHeap;
   827   bool _complete;
   828   void incomplete() { _complete = false; }
   830  public:
   831   HeapRegionClosure(): _complete(true) {}
   833   // Typically called on each region until it returns true.
   834   virtual bool doHeapRegion(HeapRegion* r) = 0;
   836   // True after iteration if the closure was applied to all heap regions
   837   // and returned "false" in all cases.
   838   bool complete() { return _complete; }
   839 };
   841 #endif // INCLUDE_ALL_GCS
   843 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP

mercurial