src/share/vm/c1/c1_Runtime1.cpp

Tue, 04 Oct 2011 10:07:07 -0700

author
iveresov
date
Tue, 04 Oct 2011 10:07:07 -0700
changeset 3193
940513efe83a
parent 3099
c124e2e7463e
child 3244
cec1757a0134
permissions
-rw-r--r--

7097679: Tiered: events with bad bci to Gotos reduced from Ifs
Summary: Save bci of instruction that produced Goto and use it to call back to runtime
Reviewed-by: kvn, never

     1 /*
     2  * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/codeBuffer.hpp"
    27 #include "c1/c1_CodeStubs.hpp"
    28 #include "c1/c1_Defs.hpp"
    29 #include "c1/c1_FrameMap.hpp"
    30 #include "c1/c1_LIRAssembler.hpp"
    31 #include "c1/c1_MacroAssembler.hpp"
    32 #include "c1/c1_Runtime1.hpp"
    33 #include "classfile/systemDictionary.hpp"
    34 #include "classfile/vmSymbols.hpp"
    35 #include "code/codeBlob.hpp"
    36 #include "code/compiledIC.hpp"
    37 #include "code/pcDesc.hpp"
    38 #include "code/scopeDesc.hpp"
    39 #include "code/vtableStubs.hpp"
    40 #include "compiler/disassembler.hpp"
    41 #include "gc_interface/collectedHeap.hpp"
    42 #include "interpreter/bytecode.hpp"
    43 #include "interpreter/interpreter.hpp"
    44 #include "memory/allocation.inline.hpp"
    45 #include "memory/barrierSet.hpp"
    46 #include "memory/oopFactory.hpp"
    47 #include "memory/resourceArea.hpp"
    48 #include "oops/objArrayKlass.hpp"
    49 #include "oops/oop.inline.hpp"
    50 #include "runtime/biasedLocking.hpp"
    51 #include "runtime/compilationPolicy.hpp"
    52 #include "runtime/interfaceSupport.hpp"
    53 #include "runtime/javaCalls.hpp"
    54 #include "runtime/sharedRuntime.hpp"
    55 #include "runtime/threadCritical.hpp"
    56 #include "runtime/vframe.hpp"
    57 #include "runtime/vframeArray.hpp"
    58 #include "utilities/copy.hpp"
    59 #include "utilities/events.hpp"
    62 // Implementation of StubAssembler
    64 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
    65   _name = name;
    66   _must_gc_arguments = false;
    67   _frame_size = no_frame_size;
    68   _num_rt_args = 0;
    69   _stub_id = stub_id;
    70 }
    73 void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
    74   _name = name;
    75   _must_gc_arguments = must_gc_arguments;
    76 }
    79 void StubAssembler::set_frame_size(int size) {
    80   if (_frame_size == no_frame_size) {
    81     _frame_size = size;
    82   }
    83   assert(_frame_size == size, "can't change the frame size");
    84 }
    87 void StubAssembler::set_num_rt_args(int args) {
    88   if (_num_rt_args == 0) {
    89     _num_rt_args = args;
    90   }
    91   assert(_num_rt_args == args, "can't change the number of args");
    92 }
    94 // Implementation of Runtime1
    96 CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids];
    97 const char *Runtime1::_blob_names[] = {
    98   RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME)
    99 };
   101 #ifndef PRODUCT
   102 // statistics
   103 int Runtime1::_generic_arraycopy_cnt = 0;
   104 int Runtime1::_primitive_arraycopy_cnt = 0;
   105 int Runtime1::_oop_arraycopy_cnt = 0;
   106 int Runtime1::_generic_arraycopystub_cnt = 0;
   107 int Runtime1::_arraycopy_slowcase_cnt = 0;
   108 int Runtime1::_arraycopy_checkcast_cnt = 0;
   109 int Runtime1::_arraycopy_checkcast_attempt_cnt = 0;
   110 int Runtime1::_new_type_array_slowcase_cnt = 0;
   111 int Runtime1::_new_object_array_slowcase_cnt = 0;
   112 int Runtime1::_new_instance_slowcase_cnt = 0;
   113 int Runtime1::_new_multi_array_slowcase_cnt = 0;
   114 int Runtime1::_monitorenter_slowcase_cnt = 0;
   115 int Runtime1::_monitorexit_slowcase_cnt = 0;
   116 int Runtime1::_patch_code_slowcase_cnt = 0;
   117 int Runtime1::_throw_range_check_exception_count = 0;
   118 int Runtime1::_throw_index_exception_count = 0;
   119 int Runtime1::_throw_div0_exception_count = 0;
   120 int Runtime1::_throw_null_pointer_exception_count = 0;
   121 int Runtime1::_throw_class_cast_exception_count = 0;
   122 int Runtime1::_throw_incompatible_class_change_error_count = 0;
   123 int Runtime1::_throw_array_store_exception_count = 0;
   124 int Runtime1::_throw_count = 0;
   126 static int _byte_arraycopy_cnt = 0;
   127 static int _short_arraycopy_cnt = 0;
   128 static int _int_arraycopy_cnt = 0;
   129 static int _long_arraycopy_cnt = 0;
   130 static int _oop_arraycopy_cnt = 0;
   132 address Runtime1::arraycopy_count_address(BasicType type) {
   133   switch (type) {
   134   case T_BOOLEAN:
   135   case T_BYTE:   return (address)&_byte_arraycopy_cnt;
   136   case T_CHAR:
   137   case T_SHORT:  return (address)&_short_arraycopy_cnt;
   138   case T_FLOAT:
   139   case T_INT:    return (address)&_int_arraycopy_cnt;
   140   case T_DOUBLE:
   141   case T_LONG:   return (address)&_long_arraycopy_cnt;
   142   case T_ARRAY:
   143   case T_OBJECT: return (address)&_oop_arraycopy_cnt;
   144   default:
   145     ShouldNotReachHere();
   146     return NULL;
   147   }
   148 }
   151 #endif
   153 // Simple helper to see if the caller of a runtime stub which
   154 // entered the VM has been deoptimized
   156 static bool caller_is_deopted() {
   157   JavaThread* thread = JavaThread::current();
   158   RegisterMap reg_map(thread, false);
   159   frame runtime_frame = thread->last_frame();
   160   frame caller_frame = runtime_frame.sender(&reg_map);
   161   assert(caller_frame.is_compiled_frame(), "must be compiled");
   162   return caller_frame.is_deoptimized_frame();
   163 }
   165 // Stress deoptimization
   166 static void deopt_caller() {
   167   if ( !caller_is_deopted()) {
   168     JavaThread* thread = JavaThread::current();
   169     RegisterMap reg_map(thread, false);
   170     frame runtime_frame = thread->last_frame();
   171     frame caller_frame = runtime_frame.sender(&reg_map);
   172     Deoptimization::deoptimize_frame(thread, caller_frame.id());
   173     assert(caller_is_deopted(), "Must be deoptimized");
   174   }
   175 }
   178 void Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubID id) {
   179   assert(0 <= id && id < number_of_ids, "illegal stub id");
   180   ResourceMark rm;
   181   // create code buffer for code storage
   182   CodeBuffer code(buffer_blob);
   184   Compilation::setup_code_buffer(&code, 0);
   186   // create assembler for code generation
   187   StubAssembler* sasm = new StubAssembler(&code, name_for(id), id);
   188   // generate code for runtime stub
   189   OopMapSet* oop_maps;
   190   oop_maps = generate_code_for(id, sasm);
   191   assert(oop_maps == NULL || sasm->frame_size() != no_frame_size,
   192          "if stub has an oop map it must have a valid frame size");
   194 #ifdef ASSERT
   195   // Make sure that stubs that need oopmaps have them
   196   switch (id) {
   197     // These stubs don't need to have an oopmap
   198     case dtrace_object_alloc_id:
   199     case g1_pre_barrier_slow_id:
   200     case g1_post_barrier_slow_id:
   201     case slow_subtype_check_id:
   202     case fpu2long_stub_id:
   203     case unwind_exception_id:
   204     case counter_overflow_id:
   205 #if defined(SPARC) || defined(PPC)
   206     case handle_exception_nofpu_id:  // Unused on sparc
   207 #endif
   208       break;
   210     // All other stubs should have oopmaps
   211     default:
   212       assert(oop_maps != NULL, "must have an oopmap");
   213   }
   214 #endif
   216   // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
   217   sasm->align(BytesPerWord);
   218   // make sure all code is in code buffer
   219   sasm->flush();
   220   // create blob - distinguish a few special cases
   221   CodeBlob* blob = RuntimeStub::new_runtime_stub(name_for(id),
   222                                                  &code,
   223                                                  CodeOffsets::frame_never_safe,
   224                                                  sasm->frame_size(),
   225                                                  oop_maps,
   226                                                  sasm->must_gc_arguments());
   227   // install blob
   228   assert(blob != NULL, "blob must exist");
   229   _blobs[id] = blob;
   230 }
   233 void Runtime1::initialize(BufferBlob* blob) {
   234   // platform-dependent initialization
   235   initialize_pd();
   236   // generate stubs
   237   for (int id = 0; id < number_of_ids; id++) generate_blob_for(blob, (StubID)id);
   238   // printing
   239 #ifndef PRODUCT
   240   if (PrintSimpleStubs) {
   241     ResourceMark rm;
   242     for (int id = 0; id < number_of_ids; id++) {
   243       _blobs[id]->print();
   244       if (_blobs[id]->oop_maps() != NULL) {
   245         _blobs[id]->oop_maps()->print();
   246       }
   247     }
   248   }
   249 #endif
   250 }
   253 CodeBlob* Runtime1::blob_for(StubID id) {
   254   assert(0 <= id && id < number_of_ids, "illegal stub id");
   255   return _blobs[id];
   256 }
   259 const char* Runtime1::name_for(StubID id) {
   260   assert(0 <= id && id < number_of_ids, "illegal stub id");
   261   return _blob_names[id];
   262 }
   264 const char* Runtime1::name_for_address(address entry) {
   265   for (int id = 0; id < number_of_ids; id++) {
   266     if (entry == entry_for((StubID)id)) return name_for((StubID)id);
   267   }
   269 #define FUNCTION_CASE(a, f) \
   270   if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
   272   FUNCTION_CASE(entry, os::javaTimeMillis);
   273   FUNCTION_CASE(entry, os::javaTimeNanos);
   274   FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
   275   FUNCTION_CASE(entry, SharedRuntime::d2f);
   276   FUNCTION_CASE(entry, SharedRuntime::d2i);
   277   FUNCTION_CASE(entry, SharedRuntime::d2l);
   278   FUNCTION_CASE(entry, SharedRuntime::dcos);
   279   FUNCTION_CASE(entry, SharedRuntime::dexp);
   280   FUNCTION_CASE(entry, SharedRuntime::dlog);
   281   FUNCTION_CASE(entry, SharedRuntime::dlog10);
   282   FUNCTION_CASE(entry, SharedRuntime::dpow);
   283   FUNCTION_CASE(entry, SharedRuntime::drem);
   284   FUNCTION_CASE(entry, SharedRuntime::dsin);
   285   FUNCTION_CASE(entry, SharedRuntime::dtan);
   286   FUNCTION_CASE(entry, SharedRuntime::f2i);
   287   FUNCTION_CASE(entry, SharedRuntime::f2l);
   288   FUNCTION_CASE(entry, SharedRuntime::frem);
   289   FUNCTION_CASE(entry, SharedRuntime::l2d);
   290   FUNCTION_CASE(entry, SharedRuntime::l2f);
   291   FUNCTION_CASE(entry, SharedRuntime::ldiv);
   292   FUNCTION_CASE(entry, SharedRuntime::lmul);
   293   FUNCTION_CASE(entry, SharedRuntime::lrem);
   294   FUNCTION_CASE(entry, SharedRuntime::lrem);
   295   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
   296   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
   297   FUNCTION_CASE(entry, trace_block_entry);
   299 #undef FUNCTION_CASE
   301   // Soft float adds more runtime names.
   302   return pd_name_for_address(entry);
   303 }
   306 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* thread, klassOopDesc* klass))
   307   NOT_PRODUCT(_new_instance_slowcase_cnt++;)
   309   assert(oop(klass)->is_klass(), "not a class");
   310   instanceKlassHandle h(thread, klass);
   311   h->check_valid_for_instantiation(true, CHECK);
   312   // make sure klass is initialized
   313   h->initialize(CHECK);
   314   // allocate instance and return via TLS
   315   oop obj = h->allocate_instance(CHECK);
   316   thread->set_vm_result(obj);
   317 JRT_END
   320 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* thread, klassOopDesc* klass, jint length))
   321   NOT_PRODUCT(_new_type_array_slowcase_cnt++;)
   322   // Note: no handle for klass needed since they are not used
   323   //       anymore after new_typeArray() and no GC can happen before.
   324   //       (This may have to change if this code changes!)
   325   assert(oop(klass)->is_klass(), "not a class");
   326   BasicType elt_type = typeArrayKlass::cast(klass)->element_type();
   327   oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
   328   thread->set_vm_result(obj);
   329   // This is pretty rare but this runtime patch is stressful to deoptimization
   330   // if we deoptimize here so force a deopt to stress the path.
   331   if (DeoptimizeALot) {
   332     deopt_caller();
   333   }
   335 JRT_END
   338 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* thread, klassOopDesc* array_klass, jint length))
   339   NOT_PRODUCT(_new_object_array_slowcase_cnt++;)
   341   // Note: no handle for klass needed since they are not used
   342   //       anymore after new_objArray() and no GC can happen before.
   343   //       (This may have to change if this code changes!)
   344   assert(oop(array_klass)->is_klass(), "not a class");
   345   klassOop elem_klass = objArrayKlass::cast(array_klass)->element_klass();
   346   objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
   347   thread->set_vm_result(obj);
   348   // This is pretty rare but this runtime patch is stressful to deoptimization
   349   // if we deoptimize here so force a deopt to stress the path.
   350   if (DeoptimizeALot) {
   351     deopt_caller();
   352   }
   353 JRT_END
   356 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* thread, klassOopDesc* klass, int rank, jint* dims))
   357   NOT_PRODUCT(_new_multi_array_slowcase_cnt++;)
   359   assert(oop(klass)->is_klass(), "not a class");
   360   assert(rank >= 1, "rank must be nonzero");
   361   oop obj = arrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
   362   thread->set_vm_result(obj);
   363 JRT_END
   366 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* thread, StubID id))
   367   tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id);
   368 JRT_END
   371 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* thread, oopDesc* obj))
   372   ResourceMark rm(thread);
   373   const char* klass_name = Klass::cast(obj->klass())->external_name();
   374   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayStoreException(), klass_name);
   375 JRT_END
   378 // counter_overflow() is called from within C1-compiled methods. The enclosing method is the method
   379 // associated with the top activation record. The inlinee (that is possibly included in the enclosing
   380 // method) method oop is passed as an argument. In order to do that it is embedded in the code as
   381 // a constant.
   382 static nmethod* counter_overflow_helper(JavaThread* THREAD, int branch_bci, methodOopDesc* m) {
   383   nmethod* osr_nm = NULL;
   384   methodHandle method(THREAD, m);
   386   RegisterMap map(THREAD, false);
   387   frame fr =  THREAD->last_frame().sender(&map);
   388   nmethod* nm = (nmethod*) fr.cb();
   389   assert(nm!= NULL && nm->is_nmethod(), "Sanity check");
   390   methodHandle enclosing_method(THREAD, nm->method());
   392   CompLevel level = (CompLevel)nm->comp_level();
   393   int bci = InvocationEntryBci;
   394   if (branch_bci != InvocationEntryBci) {
   395     // Compute desination bci
   396     address pc = method()->code_base() + branch_bci;
   397     Bytecodes::Code branch = Bytecodes::code_at(method(), pc);
   398     int offset = 0;
   399     switch (branch) {
   400       case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
   401       case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
   402       case Bytecodes::_if_icmple: case Bytecodes::_ifle:
   403       case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
   404       case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
   405       case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
   406       case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
   407         offset = (int16_t)Bytes::get_Java_u2(pc + 1);
   408         break;
   409       case Bytecodes::_goto_w:
   410         offset = Bytes::get_Java_u4(pc + 1);
   411         break;
   412       default: ;
   413     }
   414     bci = branch_bci + offset;
   415   }
   417   osr_nm = CompilationPolicy::policy()->event(enclosing_method, method, branch_bci, bci, level, nm, THREAD);
   418   return osr_nm;
   419 }
   421 JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* thread, int bci, methodOopDesc* method))
   422   nmethod* osr_nm;
   423   JRT_BLOCK
   424     osr_nm = counter_overflow_helper(thread, bci, method);
   425     if (osr_nm != NULL) {
   426       RegisterMap map(thread, false);
   427       frame fr =  thread->last_frame().sender(&map);
   428       Deoptimization::deoptimize_frame(thread, fr.id());
   429     }
   430   JRT_BLOCK_END
   431   return NULL;
   432 JRT_END
   434 extern void vm_exit(int code);
   436 // Enter this method from compiled code handler below. This is where we transition
   437 // to VM mode. This is done as a helper routine so that the method called directly
   438 // from compiled code does not have to transition to VM. This allows the entry
   439 // method to see if the nmethod that we have just looked up a handler for has
   440 // been deoptimized while we were in the vm. This simplifies the assembly code
   441 // cpu directories.
   442 //
   443 // We are entering here from exception stub (via the entry method below)
   444 // If there is a compiled exception handler in this method, we will continue there;
   445 // otherwise we will unwind the stack and continue at the caller of top frame method
   446 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
   447 // control the area where we can allow a safepoint. After we exit the safepoint area we can
   448 // check to see if the handler we are going to return is now in a nmethod that has
   449 // been deoptimized. If that is the case we return the deopt blob
   450 // unpack_with_exception entry instead. This makes life for the exception blob easier
   451 // because making that same check and diverting is painful from assembly language.
   452 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm))
   453   // Reset method handle flag.
   454   thread->set_is_method_handle_return(false);
   456   Handle exception(thread, ex);
   457   nm = CodeCache::find_nmethod(pc);
   458   assert(nm != NULL, "this is not an nmethod");
   459   // Adjust the pc as needed/
   460   if (nm->is_deopt_pc(pc)) {
   461     RegisterMap map(thread, false);
   462     frame exception_frame = thread->last_frame().sender(&map);
   463     // if the frame isn't deopted then pc must not correspond to the caller of last_frame
   464     assert(exception_frame.is_deoptimized_frame(), "must be deopted");
   465     pc = exception_frame.pc();
   466   }
   467 #ifdef ASSERT
   468   assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
   469   assert(exception->is_oop(), "just checking");
   470   // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
   471   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
   472     if (ExitVMOnVerifyError) vm_exit(-1);
   473     ShouldNotReachHere();
   474   }
   475 #endif
   477   // Check the stack guard pages and reenable them if necessary and there is
   478   // enough space on the stack to do so.  Use fast exceptions only if the guard
   479   // pages are enabled.
   480   bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
   481   if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
   483   if (JvmtiExport::can_post_on_exceptions()) {
   484     // To ensure correct notification of exception catches and throws
   485     // we have to deoptimize here.  If we attempted to notify the
   486     // catches and throws during this exception lookup it's possible
   487     // we could deoptimize on the way out of the VM and end back in
   488     // the interpreter at the throw site.  This would result in double
   489     // notifications since the interpreter would also notify about
   490     // these same catches and throws as it unwound the frame.
   492     RegisterMap reg_map(thread);
   493     frame stub_frame = thread->last_frame();
   494     frame caller_frame = stub_frame.sender(&reg_map);
   496     // We don't really want to deoptimize the nmethod itself since we
   497     // can actually continue in the exception handler ourselves but I
   498     // don't see an easy way to have the desired effect.
   499     Deoptimization::deoptimize_frame(thread, caller_frame.id());
   500     assert(caller_is_deopted(), "Must be deoptimized");
   502     return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
   503   }
   505   // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
   506   if (guard_pages_enabled) {
   507     address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
   508     if (fast_continuation != NULL) {
   509       // Set flag if return address is a method handle call site.
   510       thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
   511       return fast_continuation;
   512     }
   513   }
   515   // If the stack guard pages are enabled, check whether there is a handler in
   516   // the current method.  Otherwise (guard pages disabled), force an unwind and
   517   // skip the exception cache update (i.e., just leave continuation==NULL).
   518   address continuation = NULL;
   519   if (guard_pages_enabled) {
   521     // New exception handling mechanism can support inlined methods
   522     // with exception handlers since the mappings are from PC to PC
   524     // debugging support
   525     // tracing
   526     if (TraceExceptions) {
   527       ttyLocker ttyl;
   528       ResourceMark rm;
   529       tty->print_cr("Exception <%s> (0x%x) thrown in compiled method <%s> at PC " PTR_FORMAT " for thread 0x%x",
   530                     exception->print_value_string(), (address)exception(), nm->method()->print_value_string(), pc, thread);
   531     }
   532     // for AbortVMOnException flag
   533     NOT_PRODUCT(Exceptions::debug_check_abort(exception));
   535     // Clear out the exception oop and pc since looking up an
   536     // exception handler can cause class loading, which might throw an
   537     // exception and those fields are expected to be clear during
   538     // normal bytecode execution.
   539     thread->set_exception_oop(NULL);
   540     thread->set_exception_pc(NULL);
   542     continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false);
   543     // If an exception was thrown during exception dispatch, the exception oop may have changed
   544     thread->set_exception_oop(exception());
   545     thread->set_exception_pc(pc);
   547     // the exception cache is used only by non-implicit exceptions
   548     if (continuation != NULL) {
   549       nm->add_handler_for_exception_and_pc(exception, pc, continuation);
   550     }
   551   }
   553   thread->set_vm_result(exception());
   554   // Set flag if return address is a method handle call site.
   555   thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
   557   if (TraceExceptions) {
   558     ttyLocker ttyl;
   559     ResourceMark rm;
   560     tty->print_cr("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT " for exception thrown at PC " PTR_FORMAT,
   561                   thread, continuation, pc);
   562   }
   564   return continuation;
   565 JRT_END
   567 // Enter this method from compiled code only if there is a Java exception handler
   568 // in the method handling the exception.
   569 // We are entering here from exception stub. We don't do a normal VM transition here.
   570 // We do it in a helper. This is so we can check to see if the nmethod we have just
   571 // searched for an exception handler has been deoptimized in the meantime.
   572 address Runtime1::exception_handler_for_pc(JavaThread* thread) {
   573   oop exception = thread->exception_oop();
   574   address pc = thread->exception_pc();
   575   // Still in Java mode
   576   DEBUG_ONLY(ResetNoHandleMark rnhm);
   577   nmethod* nm = NULL;
   578   address continuation = NULL;
   579   {
   580     // Enter VM mode by calling the helper
   581     ResetNoHandleMark rnhm;
   582     continuation = exception_handler_for_pc_helper(thread, exception, pc, nm);
   583   }
   584   // Back in JAVA, use no oops DON'T safepoint
   586   // Now check to see if the nmethod we were called from is now deoptimized.
   587   // If so we must return to the deopt blob and deoptimize the nmethod
   588   if (nm != NULL && caller_is_deopted()) {
   589     continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
   590   }
   592   assert(continuation != NULL, "no handler found");
   593   return continuation;
   594 }
   597 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* thread, int index))
   598   NOT_PRODUCT(_throw_range_check_exception_count++;)
   599   Events::log("throw_range_check");
   600   char message[jintAsStringSize];
   601   sprintf(message, "%d", index);
   602   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
   603 JRT_END
   606 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* thread, int index))
   607   NOT_PRODUCT(_throw_index_exception_count++;)
   608   Events::log("throw_index");
   609   char message[16];
   610   sprintf(message, "%d", index);
   611   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
   612 JRT_END
   615 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* thread))
   616   NOT_PRODUCT(_throw_div0_exception_count++;)
   617   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
   618 JRT_END
   621 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* thread))
   622   NOT_PRODUCT(_throw_null_pointer_exception_count++;)
   623   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
   624 JRT_END
   627 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* thread, oopDesc* object))
   628   NOT_PRODUCT(_throw_class_cast_exception_count++;)
   629   ResourceMark rm(thread);
   630   char* message = SharedRuntime::generate_class_cast_message(
   631     thread, Klass::cast(object->klass())->external_name());
   632   SharedRuntime::throw_and_post_jvmti_exception(
   633     thread, vmSymbols::java_lang_ClassCastException(), message);
   634 JRT_END
   637 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* thread))
   638   NOT_PRODUCT(_throw_incompatible_class_change_error_count++;)
   639   ResourceMark rm(thread);
   640   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError());
   641 JRT_END
   644 JRT_ENTRY_NO_ASYNC(void, Runtime1::monitorenter(JavaThread* thread, oopDesc* obj, BasicObjectLock* lock))
   645   NOT_PRODUCT(_monitorenter_slowcase_cnt++;)
   646   if (PrintBiasedLockingStatistics) {
   647     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
   648   }
   649   Handle h_obj(thread, obj);
   650   assert(h_obj()->is_oop(), "must be NULL or an object");
   651   if (UseBiasedLocking) {
   652     // Retry fast entry if bias is revoked to avoid unnecessary inflation
   653     ObjectSynchronizer::fast_enter(h_obj, lock->lock(), true, CHECK);
   654   } else {
   655     if (UseFastLocking) {
   656       // When using fast locking, the compiled code has already tried the fast case
   657       assert(obj == lock->obj(), "must match");
   658       ObjectSynchronizer::slow_enter(h_obj, lock->lock(), THREAD);
   659     } else {
   660       lock->set_obj(obj);
   661       ObjectSynchronizer::fast_enter(h_obj, lock->lock(), false, THREAD);
   662     }
   663   }
   664 JRT_END
   667 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* thread, BasicObjectLock* lock))
   668   NOT_PRODUCT(_monitorexit_slowcase_cnt++;)
   669   assert(thread == JavaThread::current(), "threads must correspond");
   670   assert(thread->last_Java_sp(), "last_Java_sp must be set");
   671   // monitorexit is non-blocking (leaf routine) => no exceptions can be thrown
   672   EXCEPTION_MARK;
   674   oop obj = lock->obj();
   675   assert(obj->is_oop(), "must be NULL or an object");
   676   if (UseFastLocking) {
   677     // When using fast locking, the compiled code has already tried the fast case
   678     ObjectSynchronizer::slow_exit(obj, lock->lock(), THREAD);
   679   } else {
   680     ObjectSynchronizer::fast_exit(obj, lock->lock(), THREAD);
   681   }
   682 JRT_END
   685 static klassOop resolve_field_return_klass(methodHandle caller, int bci, TRAPS) {
   686   Bytecode_field field_access(caller, bci);
   687   // This can be static or non-static field access
   688   Bytecodes::Code code       = field_access.code();
   690   // We must load class, initialize class and resolvethe field
   691   FieldAccessInfo result; // initialize class if needed
   692   constantPoolHandle constants(THREAD, caller->constants());
   693   LinkResolver::resolve_field(result, constants, field_access.index(), Bytecodes::java_code(code), false, CHECK_NULL);
   694   return result.klass()();
   695 }
   698 //
   699 // This routine patches sites where a class wasn't loaded or
   700 // initialized at the time the code was generated.  It handles
   701 // references to classes, fields and forcing of initialization.  Most
   702 // of the cases are straightforward and involving simply forcing
   703 // resolution of a class, rewriting the instruction stream with the
   704 // needed constant and replacing the call in this function with the
   705 // patched code.  The case for static field is more complicated since
   706 // the thread which is in the process of initializing a class can
   707 // access it's static fields but other threads can't so the code
   708 // either has to deoptimize when this case is detected or execute a
   709 // check that the current thread is the initializing thread.  The
   710 // current
   711 //
   712 // Patches basically look like this:
   713 //
   714 //
   715 // patch_site: jmp patch stub     ;; will be patched
   716 // continue:   ...
   717 //             ...
   718 //             ...
   719 //             ...
   720 //
   721 // They have a stub which looks like this:
   722 //
   723 //             ;; patch body
   724 //             movl <const>, reg           (for class constants)
   725 //        <or> movl [reg1 + <const>], reg  (for field offsets)
   726 //        <or> movl reg, [reg1 + <const>]  (for field offsets)
   727 //             <being_init offset> <bytes to copy> <bytes to skip>
   728 // patch_stub: call Runtime1::patch_code (through a runtime stub)
   729 //             jmp patch_site
   730 //
   731 //
   732 // A normal patch is done by rewriting the patch body, usually a move,
   733 // and then copying it into place over top of the jmp instruction
   734 // being careful to flush caches and doing it in an MP-safe way.  The
   735 // constants following the patch body are used to find various pieces
   736 // of the patch relative to the call site for Runtime1::patch_code.
   737 // The case for getstatic and putstatic is more complicated because
   738 // getstatic and putstatic have special semantics when executing while
   739 // the class is being initialized.  getstatic/putstatic on a class
   740 // which is being_initialized may be executed by the initializing
   741 // thread but other threads have to block when they execute it.  This
   742 // is accomplished in compiled code by executing a test of the current
   743 // thread against the initializing thread of the class.  It's emitted
   744 // as boilerplate in their stub which allows the patched code to be
   745 // executed before it's copied back into the main body of the nmethod.
   746 //
   747 // being_init: get_thread(<tmp reg>
   748 //             cmpl [reg1 + <init_thread_offset>], <tmp reg>
   749 //             jne patch_stub
   750 //             movl [reg1 + <const>], reg  (for field offsets)  <or>
   751 //             movl reg, [reg1 + <const>]  (for field offsets)
   752 //             jmp continue
   753 //             <being_init offset> <bytes to copy> <bytes to skip>
   754 // patch_stub: jmp Runtim1::patch_code (through a runtime stub)
   755 //             jmp patch_site
   756 //
   757 // If the class is being initialized the patch body is rewritten and
   758 // the patch site is rewritten to jump to being_init, instead of
   759 // patch_stub.  Whenever this code is executed it checks the current
   760 // thread against the intializing thread so other threads will enter
   761 // the runtime and end up blocked waiting the class to finish
   762 // initializing inside the calls to resolve_field below.  The
   763 // initializing class will continue on it's way.  Once the class is
   764 // fully_initialized, the intializing_thread of the class becomes
   765 // NULL, so the next thread to execute this code will fail the test,
   766 // call into patch_code and complete the patching process by copying
   767 // the patch body back into the main part of the nmethod and resume
   768 // executing.
   769 //
   770 //
   772 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
   773   NOT_PRODUCT(_patch_code_slowcase_cnt++;)
   775   ResourceMark rm(thread);
   776   RegisterMap reg_map(thread, false);
   777   frame runtime_frame = thread->last_frame();
   778   frame caller_frame = runtime_frame.sender(&reg_map);
   780   // last java frame on stack
   781   vframeStream vfst(thread, true);
   782   assert(!vfst.at_end(), "Java frame must exist");
   784   methodHandle caller_method(THREAD, vfst.method());
   785   // Note that caller_method->code() may not be same as caller_code because of OSR's
   786   // Note also that in the presence of inlining it is not guaranteed
   787   // that caller_method() == caller_code->method()
   790   int bci = vfst.bci();
   792   Events::log("patch_code @ " INTPTR_FORMAT , caller_frame.pc());
   794   Bytecodes::Code code = caller_method()->java_code_at(bci);
   796 #ifndef PRODUCT
   797   // this is used by assertions in the access_field_patching_id
   798   BasicType patch_field_type = T_ILLEGAL;
   799 #endif // PRODUCT
   800   bool deoptimize_for_volatile = false;
   801   int patch_field_offset = -1;
   802   KlassHandle init_klass(THREAD, klassOop(NULL)); // klass needed by access_field_patching code
   803   Handle load_klass(THREAD, NULL);                // oop needed by load_klass_patching code
   804   if (stub_id == Runtime1::access_field_patching_id) {
   806     Bytecode_field field_access(caller_method, bci);
   807     FieldAccessInfo result; // initialize class if needed
   808     Bytecodes::Code code = field_access.code();
   809     constantPoolHandle constants(THREAD, caller_method->constants());
   810     LinkResolver::resolve_field(result, constants, field_access.index(), Bytecodes::java_code(code), false, CHECK);
   811     patch_field_offset = result.field_offset();
   813     // If we're patching a field which is volatile then at compile it
   814     // must not have been know to be volatile, so the generated code
   815     // isn't correct for a volatile reference.  The nmethod has to be
   816     // deoptimized so that the code can be regenerated correctly.
   817     // This check is only needed for access_field_patching since this
   818     // is the path for patching field offsets.  load_klass is only
   819     // used for patching references to oops which don't need special
   820     // handling in the volatile case.
   821     deoptimize_for_volatile = result.access_flags().is_volatile();
   823 #ifndef PRODUCT
   824     patch_field_type = result.field_type();
   825 #endif
   826   } else if (stub_id == Runtime1::load_klass_patching_id) {
   827     oop k;
   828     switch (code) {
   829       case Bytecodes::_putstatic:
   830       case Bytecodes::_getstatic:
   831         { klassOop klass = resolve_field_return_klass(caller_method, bci, CHECK);
   832           // Save a reference to the class that has to be checked for initialization
   833           init_klass = KlassHandle(THREAD, klass);
   834           k = klass->java_mirror();
   835         }
   836         break;
   837       case Bytecodes::_new:
   838         { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci));
   839           k = caller_method->constants()->klass_at(bnew.index(), CHECK);
   840         }
   841         break;
   842       case Bytecodes::_multianewarray:
   843         { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci));
   844           k = caller_method->constants()->klass_at(mna.index(), CHECK);
   845         }
   846         break;
   847       case Bytecodes::_instanceof:
   848         { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci));
   849           k = caller_method->constants()->klass_at(io.index(), CHECK);
   850         }
   851         break;
   852       case Bytecodes::_checkcast:
   853         { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci));
   854           k = caller_method->constants()->klass_at(cc.index(), CHECK);
   855         }
   856         break;
   857       case Bytecodes::_anewarray:
   858         { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci));
   859           klassOop ek = caller_method->constants()->klass_at(anew.index(), CHECK);
   860           k = Klass::cast(ek)->array_klass(CHECK);
   861         }
   862         break;
   863       case Bytecodes::_ldc:
   864       case Bytecodes::_ldc_w:
   865         {
   866           Bytecode_loadconstant cc(caller_method, bci);
   867           k = cc.resolve_constant(CHECK);
   868           assert(k != NULL && !k->is_klass(), "must be class mirror or other Java constant");
   869         }
   870         break;
   871       default: Unimplemented();
   872     }
   873     // convert to handle
   874     load_klass = Handle(THREAD, k);
   875   } else {
   876     ShouldNotReachHere();
   877   }
   879   if (deoptimize_for_volatile) {
   880     // At compile time we assumed the field wasn't volatile but after
   881     // loading it turns out it was volatile so we have to throw the
   882     // compiled code out and let it be regenerated.
   883     if (TracePatching) {
   884       tty->print_cr("Deoptimizing for patching volatile field reference");
   885     }
   886     // It's possible the nmethod was invalidated in the last
   887     // safepoint, but if it's still alive then make it not_entrant.
   888     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
   889     if (nm != NULL) {
   890       nm->make_not_entrant();
   891     }
   893     Deoptimization::deoptimize_frame(thread, caller_frame.id());
   895     // Return to the now deoptimized frame.
   896   }
   898   // If we are patching in a non-perm oop, make sure the nmethod
   899   // is on the right list.
   900   if (ScavengeRootsInCode && load_klass.not_null() && load_klass->is_scavengable()) {
   901     MutexLockerEx ml_code (CodeCache_lock, Mutex::_no_safepoint_check_flag);
   902     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
   903     guarantee(nm != NULL, "only nmethods can contain non-perm oops");
   904     if (!nm->on_scavenge_root_list())
   905       CodeCache::add_scavenge_root_nmethod(nm);
   906   }
   908   // Now copy code back
   910   {
   911     MutexLockerEx ml_patch (Patching_lock, Mutex::_no_safepoint_check_flag);
   912     //
   913     // Deoptimization may have happened while we waited for the lock.
   914     // In that case we don't bother to do any patching we just return
   915     // and let the deopt happen
   916     if (!caller_is_deopted()) {
   917       NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
   918       address instr_pc = jump->jump_destination();
   919       NativeInstruction* ni = nativeInstruction_at(instr_pc);
   920       if (ni->is_jump() ) {
   921         // the jump has not been patched yet
   922         // The jump destination is slow case and therefore not part of the stubs
   923         // (stubs are only for StaticCalls)
   925         // format of buffer
   926         //    ....
   927         //    instr byte 0     <-- copy_buff
   928         //    instr byte 1
   929         //    ..
   930         //    instr byte n-1
   931         //      n
   932         //    ....             <-- call destination
   934         address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
   935         unsigned char* byte_count = (unsigned char*) (stub_location - 1);
   936         unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
   937         unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
   938         address copy_buff = stub_location - *byte_skip - *byte_count;
   939         address being_initialized_entry = stub_location - *being_initialized_entry_offset;
   940         if (TracePatching) {
   941           tty->print_cr(" Patching %s at bci %d at address 0x%x  (%s)", Bytecodes::name(code), bci,
   942                         instr_pc, (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass");
   943           nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
   944           assert(caller_code != NULL, "nmethod not found");
   946           // NOTE we use pc() not original_pc() because we already know they are
   947           // identical otherwise we'd have never entered this block of code
   949           OopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
   950           assert(map != NULL, "null check");
   951           map->print();
   952           tty->cr();
   954           Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
   955         }
   956         // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
   957         bool do_patch = true;
   958         if (stub_id == Runtime1::access_field_patching_id) {
   959           // The offset may not be correct if the class was not loaded at code generation time.
   960           // Set it now.
   961           NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
   962           assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
   963           assert(patch_field_offset >= 0, "illegal offset");
   964           n_move->add_offset_in_bytes(patch_field_offset);
   965         } else if (stub_id == Runtime1::load_klass_patching_id) {
   966           // If a getstatic or putstatic is referencing a klass which
   967           // isn't fully initialized, the patch body isn't copied into
   968           // place until initialization is complete.  In this case the
   969           // patch site is setup so that any threads besides the
   970           // initializing thread are forced to come into the VM and
   971           // block.
   972           do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
   973                      instanceKlass::cast(init_klass())->is_initialized();
   974           NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
   975           if (jump->jump_destination() == being_initialized_entry) {
   976             assert(do_patch == true, "initialization must be complete at this point");
   977           } else {
   978             // patch the instruction <move reg, klass>
   979             NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
   981             assert(n_copy->data() == 0 ||
   982                    n_copy->data() == (intptr_t)Universe::non_oop_word(),
   983                    "illegal init value");
   984             assert(load_klass() != NULL, "klass not set");
   985             n_copy->set_data((intx) (load_klass()));
   987             if (TracePatching) {
   988               Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
   989             }
   991 #if defined(SPARC) || defined(PPC)
   992             // Update the oop location in the nmethod with the proper
   993             // oop.  When the code was generated, a NULL was stuffed
   994             // in the oop table and that table needs to be update to
   995             // have the right value.  On intel the value is kept
   996             // directly in the instruction instead of in the oop
   997             // table, so set_data above effectively updated the value.
   998             nmethod* nm = CodeCache::find_nmethod(instr_pc);
   999             assert(nm != NULL, "invalid nmethod_pc");
  1000             RelocIterator oops(nm, copy_buff, copy_buff + 1);
  1001             bool found = false;
  1002             while (oops.next() && !found) {
  1003               if (oops.type() == relocInfo::oop_type) {
  1004                 oop_Relocation* r = oops.oop_reloc();
  1005                 oop* oop_adr = r->oop_addr();
  1006                 *oop_adr = load_klass();
  1007                 r->fix_oop_relocation();
  1008                 found = true;
  1011             assert(found, "the oop must exist!");
  1012 #endif
  1015         } else {
  1016           ShouldNotReachHere();
  1018         if (do_patch) {
  1019           // replace instructions
  1020           // first replace the tail, then the call
  1021 #ifdef ARM
  1022           if(stub_id == Runtime1::load_klass_patching_id && !VM_Version::supports_movw()) {
  1023             nmethod* nm = CodeCache::find_nmethod(instr_pc);
  1024             oop* oop_addr = NULL;
  1025             assert(nm != NULL, "invalid nmethod_pc");
  1026             RelocIterator oops(nm, copy_buff, copy_buff + 1);
  1027             while (oops.next()) {
  1028               if (oops.type() == relocInfo::oop_type) {
  1029                 oop_Relocation* r = oops.oop_reloc();
  1030                 oop_addr = r->oop_addr();
  1031                 break;
  1034             assert(oop_addr != NULL, "oop relocation must exist");
  1035             copy_buff -= *byte_count;
  1036             NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
  1037             n_copy2->set_pc_relative_offset((address)oop_addr, instr_pc);
  1039 #endif
  1041           for (int i = NativeCall::instruction_size; i < *byte_count; i++) {
  1042             address ptr = copy_buff + i;
  1043             int a_byte = (*ptr) & 0xFF;
  1044             address dst = instr_pc + i;
  1045             *(unsigned char*)dst = (unsigned char) a_byte;
  1047           ICache::invalidate_range(instr_pc, *byte_count);
  1048           NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
  1050           if (stub_id == Runtime1::load_klass_patching_id) {
  1051             // update relocInfo to oop
  1052             nmethod* nm = CodeCache::find_nmethod(instr_pc);
  1053             assert(nm != NULL, "invalid nmethod_pc");
  1055             // The old patch site is now a move instruction so update
  1056             // the reloc info so that it will get updated during
  1057             // future GCs.
  1058             RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
  1059             relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
  1060                                                      relocInfo::none, relocInfo::oop_type);
  1061 #ifdef SPARC
  1062             // Sparc takes two relocations for an oop so update the second one.
  1063             address instr_pc2 = instr_pc + NativeMovConstReg::add_offset;
  1064             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
  1065             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
  1066                                                      relocInfo::none, relocInfo::oop_type);
  1067 #endif
  1068 #ifdef PPC
  1069           { address instr_pc2 = instr_pc + NativeMovConstReg::lo_offset;
  1070             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
  1071             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2, relocInfo::none, relocInfo::oop_type);
  1073 #endif
  1076         } else {
  1077           ICache::invalidate_range(copy_buff, *byte_count);
  1078           NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
  1083 JRT_END
  1085 //
  1086 // Entry point for compiled code. We want to patch a nmethod.
  1087 // We don't do a normal VM transition here because we want to
  1088 // know after the patching is complete and any safepoint(s) are taken
  1089 // if the calling nmethod was deoptimized. We do this by calling a
  1090 // helper method which does the normal VM transition and when it
  1091 // completes we can check for deoptimization. This simplifies the
  1092 // assembly code in the cpu directories.
  1093 //
  1094 int Runtime1::move_klass_patching(JavaThread* thread) {
  1095 //
  1096 // NOTE: we are still in Java
  1097 //
  1098   Thread* THREAD = thread;
  1099   debug_only(NoHandleMark nhm;)
  1101     // Enter VM mode
  1103     ResetNoHandleMark rnhm;
  1104     patch_code(thread, load_klass_patching_id);
  1106   // Back in JAVA, use no oops DON'T safepoint
  1108   // Return true if calling code is deoptimized
  1110   return caller_is_deopted();
  1113 //
  1114 // Entry point for compiled code. We want to patch a nmethod.
  1115 // We don't do a normal VM transition here because we want to
  1116 // know after the patching is complete and any safepoint(s) are taken
  1117 // if the calling nmethod was deoptimized. We do this by calling a
  1118 // helper method which does the normal VM transition and when it
  1119 // completes we can check for deoptimization. This simplifies the
  1120 // assembly code in the cpu directories.
  1121 //
  1123 int Runtime1::access_field_patching(JavaThread* thread) {
  1124 //
  1125 // NOTE: we are still in Java
  1126 //
  1127   Thread* THREAD = thread;
  1128   debug_only(NoHandleMark nhm;)
  1130     // Enter VM mode
  1132     ResetNoHandleMark rnhm;
  1133     patch_code(thread, access_field_patching_id);
  1135   // Back in JAVA, use no oops DON'T safepoint
  1137   // Return true if calling code is deoptimized
  1139   return caller_is_deopted();
  1140 JRT_END
  1143 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
  1144   // for now we just print out the block id
  1145   tty->print("%d ", block_id);
  1146 JRT_END
  1149 // Array copy return codes.
  1150 enum {
  1151   ac_failed = -1, // arraycopy failed
  1152   ac_ok = 0       // arraycopy succeeded
  1153 };
  1156 // Below length is the # elements copied.
  1157 template <class T> int obj_arraycopy_work(oopDesc* src, T* src_addr,
  1158                                           oopDesc* dst, T* dst_addr,
  1159                                           int length) {
  1161   // For performance reasons, we assume we are using a card marking write
  1162   // barrier. The assert will fail if this is not the case.
  1163   // Note that we use the non-virtual inlineable variant of write_ref_array.
  1164   BarrierSet* bs = Universe::heap()->barrier_set();
  1165   assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
  1166   assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
  1167   if (src == dst) {
  1168     // same object, no check
  1169     bs->write_ref_array_pre(dst_addr, length);
  1170     Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
  1171     bs->write_ref_array((HeapWord*)dst_addr, length);
  1172     return ac_ok;
  1173   } else {
  1174     klassOop bound = objArrayKlass::cast(dst->klass())->element_klass();
  1175     klassOop stype = objArrayKlass::cast(src->klass())->element_klass();
  1176     if (stype == bound || Klass::cast(stype)->is_subtype_of(bound)) {
  1177       // Elements are guaranteed to be subtypes, so no check necessary
  1178       bs->write_ref_array_pre(dst_addr, length);
  1179       Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
  1180       bs->write_ref_array((HeapWord*)dst_addr, length);
  1181       return ac_ok;
  1184   return ac_failed;
  1187 // fast and direct copy of arrays; returning -1, means that an exception may be thrown
  1188 // and we did not copy anything
  1189 JRT_LEAF(int, Runtime1::arraycopy(oopDesc* src, int src_pos, oopDesc* dst, int dst_pos, int length))
  1190 #ifndef PRODUCT
  1191   _generic_arraycopy_cnt++;        // Slow-path oop array copy
  1192 #endif
  1194   if (src == NULL || dst == NULL || src_pos < 0 || dst_pos < 0 || length < 0) return ac_failed;
  1195   if (!dst->is_array() || !src->is_array()) return ac_failed;
  1196   if ((unsigned int) arrayOop(src)->length() < (unsigned int)src_pos + (unsigned int)length) return ac_failed;
  1197   if ((unsigned int) arrayOop(dst)->length() < (unsigned int)dst_pos + (unsigned int)length) return ac_failed;
  1199   if (length == 0) return ac_ok;
  1200   if (src->is_typeArray()) {
  1201     const klassOop klass_oop = src->klass();
  1202     if (klass_oop != dst->klass()) return ac_failed;
  1203     typeArrayKlass* klass = typeArrayKlass::cast(klass_oop);
  1204     const int l2es = klass->log2_element_size();
  1205     const int ihs = klass->array_header_in_bytes() / wordSize;
  1206     char* src_addr = (char*) ((oopDesc**)src + ihs) + (src_pos << l2es);
  1207     char* dst_addr = (char*) ((oopDesc**)dst + ihs) + (dst_pos << l2es);
  1208     // Potential problem: memmove is not guaranteed to be word atomic
  1209     // Revisit in Merlin
  1210     memmove(dst_addr, src_addr, length << l2es);
  1211     return ac_ok;
  1212   } else if (src->is_objArray() && dst->is_objArray()) {
  1213     if (UseCompressedOops) {
  1214       narrowOop *src_addr  = objArrayOop(src)->obj_at_addr<narrowOop>(src_pos);
  1215       narrowOop *dst_addr  = objArrayOop(dst)->obj_at_addr<narrowOop>(dst_pos);
  1216       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
  1217     } else {
  1218       oop *src_addr  = objArrayOop(src)->obj_at_addr<oop>(src_pos);
  1219       oop *dst_addr  = objArrayOop(dst)->obj_at_addr<oop>(dst_pos);
  1220       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
  1223   return ac_failed;
  1224 JRT_END
  1227 JRT_LEAF(void, Runtime1::primitive_arraycopy(HeapWord* src, HeapWord* dst, int length))
  1228 #ifndef PRODUCT
  1229   _primitive_arraycopy_cnt++;
  1230 #endif
  1232   if (length == 0) return;
  1233   // Not guaranteed to be word atomic, but that doesn't matter
  1234   // for anything but an oop array, which is covered by oop_arraycopy.
  1235   Copy::conjoint_jbytes(src, dst, length);
  1236 JRT_END
  1238 JRT_LEAF(void, Runtime1::oop_arraycopy(HeapWord* src, HeapWord* dst, int num))
  1239 #ifndef PRODUCT
  1240   _oop_arraycopy_cnt++;
  1241 #endif
  1243   if (num == 0) return;
  1244   BarrierSet* bs = Universe::heap()->barrier_set();
  1245   assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
  1246   assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
  1247   if (UseCompressedOops) {
  1248     bs->write_ref_array_pre((narrowOop*)dst, num);
  1249     Copy::conjoint_oops_atomic((narrowOop*) src, (narrowOop*) dst, num);
  1250   } else {
  1251     bs->write_ref_array_pre((oop*)dst, num);
  1252     Copy::conjoint_oops_atomic((oop*) src, (oop*) dst, num);
  1254   bs->write_ref_array(dst, num);
  1255 JRT_END
  1258 #ifndef PRODUCT
  1259 void Runtime1::print_statistics() {
  1260   tty->print_cr("C1 Runtime statistics:");
  1261   tty->print_cr(" _resolve_invoke_virtual_cnt:     %d", SharedRuntime::_resolve_virtual_ctr);
  1262   tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr);
  1263   tty->print_cr(" _resolve_invoke_static_cnt:      %d", SharedRuntime::_resolve_static_ctr);
  1264   tty->print_cr(" _handle_wrong_method_cnt:        %d", SharedRuntime::_wrong_method_ctr);
  1265   tty->print_cr(" _ic_miss_cnt:                    %d", SharedRuntime::_ic_miss_ctr);
  1266   tty->print_cr(" _generic_arraycopy_cnt:          %d", _generic_arraycopy_cnt);
  1267   tty->print_cr(" _generic_arraycopystub_cnt:      %d", _generic_arraycopystub_cnt);
  1268   tty->print_cr(" _byte_arraycopy_cnt:             %d", _byte_arraycopy_cnt);
  1269   tty->print_cr(" _short_arraycopy_cnt:            %d", _short_arraycopy_cnt);
  1270   tty->print_cr(" _int_arraycopy_cnt:              %d", _int_arraycopy_cnt);
  1271   tty->print_cr(" _long_arraycopy_cnt:             %d", _long_arraycopy_cnt);
  1272   tty->print_cr(" _primitive_arraycopy_cnt:        %d", _primitive_arraycopy_cnt);
  1273   tty->print_cr(" _oop_arraycopy_cnt (C):          %d", Runtime1::_oop_arraycopy_cnt);
  1274   tty->print_cr(" _oop_arraycopy_cnt (stub):       %d", _oop_arraycopy_cnt);
  1275   tty->print_cr(" _arraycopy_slowcase_cnt:         %d", _arraycopy_slowcase_cnt);
  1276   tty->print_cr(" _arraycopy_checkcast_cnt:        %d", _arraycopy_checkcast_cnt);
  1277   tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%d", _arraycopy_checkcast_attempt_cnt);
  1279   tty->print_cr(" _new_type_array_slowcase_cnt:    %d", _new_type_array_slowcase_cnt);
  1280   tty->print_cr(" _new_object_array_slowcase_cnt:  %d", _new_object_array_slowcase_cnt);
  1281   tty->print_cr(" _new_instance_slowcase_cnt:      %d", _new_instance_slowcase_cnt);
  1282   tty->print_cr(" _new_multi_array_slowcase_cnt:   %d", _new_multi_array_slowcase_cnt);
  1283   tty->print_cr(" _monitorenter_slowcase_cnt:      %d", _monitorenter_slowcase_cnt);
  1284   tty->print_cr(" _monitorexit_slowcase_cnt:       %d", _monitorexit_slowcase_cnt);
  1285   tty->print_cr(" _patch_code_slowcase_cnt:        %d", _patch_code_slowcase_cnt);
  1287   tty->print_cr(" _throw_range_check_exception_count:            %d:", _throw_range_check_exception_count);
  1288   tty->print_cr(" _throw_index_exception_count:                  %d:", _throw_index_exception_count);
  1289   tty->print_cr(" _throw_div0_exception_count:                   %d:", _throw_div0_exception_count);
  1290   tty->print_cr(" _throw_null_pointer_exception_count:           %d:", _throw_null_pointer_exception_count);
  1291   tty->print_cr(" _throw_class_cast_exception_count:             %d:", _throw_class_cast_exception_count);
  1292   tty->print_cr(" _throw_incompatible_class_change_error_count:  %d:", _throw_incompatible_class_change_error_count);
  1293   tty->print_cr(" _throw_array_store_exception_count:            %d:", _throw_array_store_exception_count);
  1294   tty->print_cr(" _throw_count:                                  %d:", _throw_count);
  1296   SharedRuntime::print_ic_miss_histogram();
  1297   tty->cr();
  1299 #endif // PRODUCT

mercurial