src/share/vm/c1/c1_Instruction.cpp

Tue, 04 Oct 2011 10:07:07 -0700

author
iveresov
date
Tue, 04 Oct 2011 10:07:07 -0700
changeset 3193
940513efe83a
parent 3100
a32de5085326
child 3969
1d7922586cf6
permissions
-rw-r--r--

7097679: Tiered: events with bad bci to Gotos reduced from Ifs
Summary: Save bci of instruction that produced Goto and use it to call back to runtime
Reviewed-by: kvn, never

     1 /*
     2  * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "c1/c1_IR.hpp"
    27 #include "c1/c1_Instruction.hpp"
    28 #include "c1/c1_InstructionPrinter.hpp"
    29 #include "c1/c1_ValueStack.hpp"
    30 #include "ci/ciObjArrayKlass.hpp"
    31 #include "ci/ciTypeArrayKlass.hpp"
    34 // Implementation of Instruction
    37 Instruction::Condition Instruction::mirror(Condition cond) {
    38   switch (cond) {
    39     case eql: return eql;
    40     case neq: return neq;
    41     case lss: return gtr;
    42     case leq: return geq;
    43     case gtr: return lss;
    44     case geq: return leq;
    45   }
    46   ShouldNotReachHere();
    47   return eql;
    48 }
    51 Instruction::Condition Instruction::negate(Condition cond) {
    52   switch (cond) {
    53     case eql: return neq;
    54     case neq: return eql;
    55     case lss: return geq;
    56     case leq: return gtr;
    57     case gtr: return leq;
    58     case geq: return lss;
    59   }
    60   ShouldNotReachHere();
    61   return eql;
    62 }
    64 void Instruction::update_exception_state(ValueStack* state) {
    65   if (state != NULL && (state->kind() == ValueStack::EmptyExceptionState || state->kind() == ValueStack::ExceptionState)) {
    66     assert(state->kind() == ValueStack::EmptyExceptionState || Compilation::current()->env()->jvmti_can_access_local_variables(), "unexpected state kind");
    67     _exception_state = state;
    68   } else {
    69     _exception_state = NULL;
    70   }
    71 }
    74 Instruction* Instruction::prev(BlockBegin* block) {
    75   Instruction* p = NULL;
    76   Instruction* q = block;
    77   while (q != this) {
    78     assert(q != NULL, "this is not in the block's instruction list");
    79     p = q; q = q->next();
    80   }
    81   return p;
    82 }
    85 void Instruction::state_values_do(ValueVisitor* f) {
    86   if (state_before() != NULL) {
    87     state_before()->values_do(f);
    88   }
    89   if (exception_state() != NULL){
    90     exception_state()->values_do(f);
    91   }
    92 }
    95 #ifndef PRODUCT
    96 void Instruction::check_state(ValueStack* state) {
    97   if (state != NULL) {
    98     state->verify();
    99   }
   100 }
   103 void Instruction::print() {
   104   InstructionPrinter ip;
   105   print(ip);
   106 }
   109 void Instruction::print_line() {
   110   InstructionPrinter ip;
   111   ip.print_line(this);
   112 }
   115 void Instruction::print(InstructionPrinter& ip) {
   116   ip.print_head();
   117   ip.print_line(this);
   118   tty->cr();
   119 }
   120 #endif // PRODUCT
   123 // perform constant and interval tests on index value
   124 bool AccessIndexed::compute_needs_range_check() {
   125   Constant* clength = length()->as_Constant();
   126   Constant* cindex = index()->as_Constant();
   127   if (clength && cindex) {
   128     IntConstant* l = clength->type()->as_IntConstant();
   129     IntConstant* i = cindex->type()->as_IntConstant();
   130     if (l && i && i->value() < l->value() && i->value() >= 0) {
   131       return false;
   132     }
   133   }
   134   return true;
   135 }
   138 ciType* Local::exact_type() const {
   139   ciType* type = declared_type();
   141   // for primitive arrays, the declared type is the exact type
   142   if (type->is_type_array_klass()) {
   143     return type;
   144   } else if (type->is_instance_klass()) {
   145     ciInstanceKlass* ik = (ciInstanceKlass*)type;
   146     if (ik->is_loaded() && ik->is_final() && !ik->is_interface()) {
   147       return type;
   148     }
   149   } else if (type->is_obj_array_klass()) {
   150     ciObjArrayKlass* oak = (ciObjArrayKlass*)type;
   151     ciType* base = oak->base_element_type();
   152     if (base->is_instance_klass()) {
   153       ciInstanceKlass* ik = base->as_instance_klass();
   154       if (ik->is_loaded() && ik->is_final()) {
   155         return type;
   156       }
   157     } else if (base->is_primitive_type()) {
   158       return type;
   159     }
   160   }
   161   return NULL;
   162 }
   165 ciType* LoadIndexed::exact_type() const {
   166   ciType* array_type = array()->exact_type();
   167   if (array_type == NULL) {
   168     return NULL;
   169   }
   170   assert(array_type->is_array_klass(), "what else?");
   171   ciArrayKlass* ak = (ciArrayKlass*)array_type;
   173   if (ak->element_type()->is_instance_klass()) {
   174     ciInstanceKlass* ik = (ciInstanceKlass*)ak->element_type();
   175     if (ik->is_loaded() && ik->is_final()) {
   176       return ik;
   177     }
   178   }
   179   return NULL;
   180 }
   183 ciType* LoadIndexed::declared_type() const {
   184   ciType* array_type = array()->declared_type();
   185   if (array_type == NULL) {
   186     return NULL;
   187   }
   188   assert(array_type->is_array_klass(), "what else?");
   189   ciArrayKlass* ak = (ciArrayKlass*)array_type;
   190   return ak->element_type();
   191 }
   194 ciType* LoadField::declared_type() const {
   195   return field()->type();
   196 }
   199 ciType* LoadField::exact_type() const {
   200   ciType* type = declared_type();
   201   // for primitive arrays, the declared type is the exact type
   202   if (type->is_type_array_klass()) {
   203     return type;
   204   }
   205   if (type->is_instance_klass()) {
   206     ciInstanceKlass* ik = (ciInstanceKlass*)type;
   207     if (ik->is_loaded() && ik->is_final()) {
   208       return type;
   209     }
   210   }
   211   return NULL;
   212 }
   215 ciType* NewTypeArray::exact_type() const {
   216   return ciTypeArrayKlass::make(elt_type());
   217 }
   219 ciType* NewObjectArray::exact_type() const {
   220   return ciObjArrayKlass::make(klass());
   221 }
   223 ciType* NewArray::declared_type() const {
   224   return exact_type();
   225 }
   227 ciType* NewInstance::exact_type() const {
   228   return klass();
   229 }
   231 ciType* NewInstance::declared_type() const {
   232   return exact_type();
   233 }
   235 ciType* CheckCast::declared_type() const {
   236   return klass();
   237 }
   239 ciType* CheckCast::exact_type() const {
   240   if (klass()->is_instance_klass()) {
   241     ciInstanceKlass* ik = (ciInstanceKlass*)klass();
   242     if (ik->is_loaded() && ik->is_final()) {
   243       return ik;
   244     }
   245   }
   246   return NULL;
   247 }
   249 // Implementation of ArithmeticOp
   251 bool ArithmeticOp::is_commutative() const {
   252   switch (op()) {
   253     case Bytecodes::_iadd: // fall through
   254     case Bytecodes::_ladd: // fall through
   255     case Bytecodes::_fadd: // fall through
   256     case Bytecodes::_dadd: // fall through
   257     case Bytecodes::_imul: // fall through
   258     case Bytecodes::_lmul: // fall through
   259     case Bytecodes::_fmul: // fall through
   260     case Bytecodes::_dmul: return true;
   261   }
   262   return false;
   263 }
   266 bool ArithmeticOp::can_trap() const {
   267   switch (op()) {
   268     case Bytecodes::_idiv: // fall through
   269     case Bytecodes::_ldiv: // fall through
   270     case Bytecodes::_irem: // fall through
   271     case Bytecodes::_lrem: return true;
   272   }
   273   return false;
   274 }
   277 // Implementation of LogicOp
   279 bool LogicOp::is_commutative() const {
   280 #ifdef ASSERT
   281   switch (op()) {
   282     case Bytecodes::_iand: // fall through
   283     case Bytecodes::_land: // fall through
   284     case Bytecodes::_ior : // fall through
   285     case Bytecodes::_lor : // fall through
   286     case Bytecodes::_ixor: // fall through
   287     case Bytecodes::_lxor: break;
   288     default              : ShouldNotReachHere();
   289   }
   290 #endif
   291   // all LogicOps are commutative
   292   return true;
   293 }
   296 // Implementation of IfOp
   298 bool IfOp::is_commutative() const {
   299   return cond() == eql || cond() == neq;
   300 }
   303 // Implementation of StateSplit
   305 void StateSplit::substitute(BlockList& list, BlockBegin* old_block, BlockBegin* new_block) {
   306   NOT_PRODUCT(bool assigned = false;)
   307   for (int i = 0; i < list.length(); i++) {
   308     BlockBegin** b = list.adr_at(i);
   309     if (*b == old_block) {
   310       *b = new_block;
   311       NOT_PRODUCT(assigned = true;)
   312     }
   313   }
   314   assert(assigned == true, "should have assigned at least once");
   315 }
   318 IRScope* StateSplit::scope() const {
   319   return _state->scope();
   320 }
   323 void StateSplit::state_values_do(ValueVisitor* f) {
   324   Instruction::state_values_do(f);
   325   if (state() != NULL) state()->values_do(f);
   326 }
   329 void BlockBegin::state_values_do(ValueVisitor* f) {
   330   StateSplit::state_values_do(f);
   332   if (is_set(BlockBegin::exception_entry_flag)) {
   333     for (int i = 0; i < number_of_exception_states(); i++) {
   334       exception_state_at(i)->values_do(f);
   335     }
   336   }
   337 }
   340 // Implementation of Invoke
   343 Invoke::Invoke(Bytecodes::Code code, ValueType* result_type, Value recv, Values* args,
   344                int vtable_index, ciMethod* target, ValueStack* state_before)
   345   : StateSplit(result_type, state_before)
   346   , _code(code)
   347   , _recv(recv)
   348   , _args(args)
   349   , _vtable_index(vtable_index)
   350   , _target(target)
   351 {
   352   set_flag(TargetIsLoadedFlag,   target->is_loaded());
   353   set_flag(TargetIsFinalFlag,    target_is_loaded() && target->is_final_method());
   354   set_flag(TargetIsStrictfpFlag, target_is_loaded() && target->is_strict());
   356   assert(args != NULL, "args must exist");
   357 #ifdef ASSERT
   358   AssertValues assert_value;
   359   values_do(&assert_value);
   360 #endif
   362   // provide an initial guess of signature size.
   363   _signature = new BasicTypeList(number_of_arguments() + (has_receiver() ? 1 : 0));
   364   if (has_receiver()) {
   365     _signature->append(as_BasicType(receiver()->type()));
   366   } else if (is_invokedynamic()) {
   367     // Add the synthetic MethodHandle argument to the signature.
   368     _signature->append(T_OBJECT);
   369   }
   370   for (int i = 0; i < number_of_arguments(); i++) {
   371     ValueType* t = argument_at(i)->type();
   372     BasicType bt = as_BasicType(t);
   373     _signature->append(bt);
   374   }
   375 }
   378 void Invoke::state_values_do(ValueVisitor* f) {
   379   StateSplit::state_values_do(f);
   380   if (state_before() != NULL) state_before()->values_do(f);
   381   if (state()        != NULL) state()->values_do(f);
   382 }
   384 ciType* Invoke::declared_type() const {
   385   ciType *t = _target->signature()->return_type();
   386   assert(t->basic_type() != T_VOID, "need return value of void method?");
   387   return t;
   388 }
   390 // Implementation of Contant
   391 intx Constant::hash() const {
   392   if (state_before() == NULL) {
   393     switch (type()->tag()) {
   394     case intTag:
   395       return HASH2(name(), type()->as_IntConstant()->value());
   396     case longTag:
   397       {
   398         jlong temp = type()->as_LongConstant()->value();
   399         return HASH3(name(), high(temp), low(temp));
   400       }
   401     case floatTag:
   402       return HASH2(name(), jint_cast(type()->as_FloatConstant()->value()));
   403     case doubleTag:
   404       {
   405         jlong temp = jlong_cast(type()->as_DoubleConstant()->value());
   406         return HASH3(name(), high(temp), low(temp));
   407       }
   408     case objectTag:
   409       assert(type()->as_ObjectType()->is_loaded(), "can't handle unloaded values");
   410       return HASH2(name(), type()->as_ObjectType()->constant_value());
   411     }
   412   }
   413   return 0;
   414 }
   416 bool Constant::is_equal(Value v) const {
   417   if (v->as_Constant() == NULL) return false;
   419   switch (type()->tag()) {
   420     case intTag:
   421       {
   422         IntConstant* t1 =    type()->as_IntConstant();
   423         IntConstant* t2 = v->type()->as_IntConstant();
   424         return (t1 != NULL && t2 != NULL &&
   425                 t1->value() == t2->value());
   426       }
   427     case longTag:
   428       {
   429         LongConstant* t1 =    type()->as_LongConstant();
   430         LongConstant* t2 = v->type()->as_LongConstant();
   431         return (t1 != NULL && t2 != NULL &&
   432                 t1->value() == t2->value());
   433       }
   434     case floatTag:
   435       {
   436         FloatConstant* t1 =    type()->as_FloatConstant();
   437         FloatConstant* t2 = v->type()->as_FloatConstant();
   438         return (t1 != NULL && t2 != NULL &&
   439                 jint_cast(t1->value()) == jint_cast(t2->value()));
   440       }
   441     case doubleTag:
   442       {
   443         DoubleConstant* t1 =    type()->as_DoubleConstant();
   444         DoubleConstant* t2 = v->type()->as_DoubleConstant();
   445         return (t1 != NULL && t2 != NULL &&
   446                 jlong_cast(t1->value()) == jlong_cast(t2->value()));
   447       }
   448     case objectTag:
   449       {
   450         ObjectType* t1 =    type()->as_ObjectType();
   451         ObjectType* t2 = v->type()->as_ObjectType();
   452         return (t1 != NULL && t2 != NULL &&
   453                 t1->is_loaded() && t2->is_loaded() &&
   454                 t1->constant_value() == t2->constant_value());
   455       }
   456   }
   457   return false;
   458 }
   460 Constant::CompareResult Constant::compare(Instruction::Condition cond, Value right) const {
   461   Constant* rc = right->as_Constant();
   462   // other is not a constant
   463   if (rc == NULL) return not_comparable;
   465   ValueType* lt = type();
   466   ValueType* rt = rc->type();
   467   // different types
   468   if (lt->base() != rt->base()) return not_comparable;
   469   switch (lt->tag()) {
   470   case intTag: {
   471     int x = lt->as_IntConstant()->value();
   472     int y = rt->as_IntConstant()->value();
   473     switch (cond) {
   474     case If::eql: return x == y ? cond_true : cond_false;
   475     case If::neq: return x != y ? cond_true : cond_false;
   476     case If::lss: return x <  y ? cond_true : cond_false;
   477     case If::leq: return x <= y ? cond_true : cond_false;
   478     case If::gtr: return x >  y ? cond_true : cond_false;
   479     case If::geq: return x >= y ? cond_true : cond_false;
   480     }
   481     break;
   482   }
   483   case longTag: {
   484     jlong x = lt->as_LongConstant()->value();
   485     jlong y = rt->as_LongConstant()->value();
   486     switch (cond) {
   487     case If::eql: return x == y ? cond_true : cond_false;
   488     case If::neq: return x != y ? cond_true : cond_false;
   489     case If::lss: return x <  y ? cond_true : cond_false;
   490     case If::leq: return x <= y ? cond_true : cond_false;
   491     case If::gtr: return x >  y ? cond_true : cond_false;
   492     case If::geq: return x >= y ? cond_true : cond_false;
   493     }
   494     break;
   495   }
   496   case objectTag: {
   497     ciObject* xvalue = lt->as_ObjectType()->constant_value();
   498     ciObject* yvalue = rt->as_ObjectType()->constant_value();
   499     assert(xvalue != NULL && yvalue != NULL, "not constants");
   500     if (xvalue->is_loaded() && yvalue->is_loaded()) {
   501       switch (cond) {
   502       case If::eql: return xvalue == yvalue ? cond_true : cond_false;
   503       case If::neq: return xvalue != yvalue ? cond_true : cond_false;
   504       }
   505     }
   506     break;
   507   }
   508   }
   509   return not_comparable;
   510 }
   513 // Implementation of BlockBegin
   515 void BlockBegin::set_end(BlockEnd* end) {
   516   assert(end != NULL, "should not reset block end to NULL");
   517   if (end == _end) {
   518     return;
   519   }
   520   clear_end();
   522   // Set the new end
   523   _end = end;
   525   _successors.clear();
   526   // Now reset successors list based on BlockEnd
   527   for (int i = 0; i < end->number_of_sux(); i++) {
   528     BlockBegin* sux = end->sux_at(i);
   529     _successors.append(sux);
   530     sux->_predecessors.append(this);
   531   }
   532   _end->set_begin(this);
   533 }
   536 void BlockBegin::clear_end() {
   537   // Must make the predecessors/successors match up with the
   538   // BlockEnd's notion.
   539   if (_end != NULL) {
   540     // disconnect from the old end
   541     _end->set_begin(NULL);
   543     // disconnect this block from it's current successors
   544     for (int i = 0; i < _successors.length(); i++) {
   545       _successors.at(i)->remove_predecessor(this);
   546     }
   547     _end = NULL;
   548   }
   549 }
   552 void BlockBegin::disconnect_edge(BlockBegin* from, BlockBegin* to) {
   553   // disconnect any edges between from and to
   554 #ifndef PRODUCT
   555   if (PrintIR && Verbose) {
   556     tty->print_cr("Disconnected edge B%d -> B%d", from->block_id(), to->block_id());
   557   }
   558 #endif
   559   for (int s = 0; s < from->number_of_sux();) {
   560     BlockBegin* sux = from->sux_at(s);
   561     if (sux == to) {
   562       int index = sux->_predecessors.index_of(from);
   563       if (index >= 0) {
   564         sux->_predecessors.remove_at(index);
   565       }
   566       from->_successors.remove_at(s);
   567     } else {
   568       s++;
   569     }
   570   }
   571 }
   574 void BlockBegin::disconnect_from_graph() {
   575   // disconnect this block from all other blocks
   576   for (int p = 0; p < number_of_preds(); p++) {
   577     pred_at(p)->remove_successor(this);
   578   }
   579   for (int s = 0; s < number_of_sux(); s++) {
   580     sux_at(s)->remove_predecessor(this);
   581   }
   582 }
   584 void BlockBegin::substitute_sux(BlockBegin* old_sux, BlockBegin* new_sux) {
   585   // modify predecessors before substituting successors
   586   for (int i = 0; i < number_of_sux(); i++) {
   587     if (sux_at(i) == old_sux) {
   588       // remove old predecessor before adding new predecessor
   589       // otherwise there is a dead predecessor in the list
   590       new_sux->remove_predecessor(old_sux);
   591       new_sux->add_predecessor(this);
   592     }
   593   }
   594   old_sux->remove_predecessor(this);
   595   end()->substitute_sux(old_sux, new_sux);
   596 }
   600 // In general it is not possible to calculate a value for the field "depth_first_number"
   601 // of the inserted block, without recomputing the values of the other blocks
   602 // in the CFG. Therefore the value of "depth_first_number" in BlockBegin becomes meaningless.
   603 BlockBegin* BlockBegin::insert_block_between(BlockBegin* sux) {
   604   BlockBegin* new_sux = new BlockBegin(end()->state()->bci());
   606   // mark this block (special treatment when block order is computed)
   607   new_sux->set(critical_edge_split_flag);
   609   // This goto is not a safepoint.
   610   Goto* e = new Goto(sux, false);
   611   new_sux->set_next(e, end()->state()->bci());
   612   new_sux->set_end(e);
   613   // setup states
   614   ValueStack* s = end()->state();
   615   new_sux->set_state(s->copy());
   616   e->set_state(s->copy());
   617   assert(new_sux->state()->locals_size() == s->locals_size(), "local size mismatch!");
   618   assert(new_sux->state()->stack_size() == s->stack_size(), "stack size mismatch!");
   619   assert(new_sux->state()->locks_size() == s->locks_size(), "locks size mismatch!");
   621   // link predecessor to new block
   622   end()->substitute_sux(sux, new_sux);
   624   // The ordering needs to be the same, so remove the link that the
   625   // set_end call above added and substitute the new_sux for this
   626   // block.
   627   sux->remove_predecessor(new_sux);
   629   // the successor could be the target of a switch so it might have
   630   // multiple copies of this predecessor, so substitute the new_sux
   631   // for the first and delete the rest.
   632   bool assigned = false;
   633   BlockList& list = sux->_predecessors;
   634   for (int i = 0; i < list.length(); i++) {
   635     BlockBegin** b = list.adr_at(i);
   636     if (*b == this) {
   637       if (assigned) {
   638         list.remove_at(i);
   639         // reprocess this index
   640         i--;
   641       } else {
   642         assigned = true;
   643         *b = new_sux;
   644       }
   645       // link the new block back to it's predecessors.
   646       new_sux->add_predecessor(this);
   647     }
   648   }
   649   assert(assigned == true, "should have assigned at least once");
   650   return new_sux;
   651 }
   654 void BlockBegin::remove_successor(BlockBegin* pred) {
   655   int idx;
   656   while ((idx = _successors.index_of(pred)) >= 0) {
   657     _successors.remove_at(idx);
   658   }
   659 }
   662 void BlockBegin::add_predecessor(BlockBegin* pred) {
   663   _predecessors.append(pred);
   664 }
   667 void BlockBegin::remove_predecessor(BlockBegin* pred) {
   668   int idx;
   669   while ((idx = _predecessors.index_of(pred)) >= 0) {
   670     _predecessors.remove_at(idx);
   671   }
   672 }
   675 void BlockBegin::add_exception_handler(BlockBegin* b) {
   676   assert(b != NULL && (b->is_set(exception_entry_flag)), "exception handler must exist");
   677   // add only if not in the list already
   678   if (!_exception_handlers.contains(b)) _exception_handlers.append(b);
   679 }
   681 int BlockBegin::add_exception_state(ValueStack* state) {
   682   assert(is_set(exception_entry_flag), "only for xhandlers");
   683   if (_exception_states == NULL) {
   684     _exception_states = new ValueStackStack(4);
   685   }
   686   _exception_states->append(state);
   687   return _exception_states->length() - 1;
   688 }
   691 void BlockBegin::iterate_preorder(boolArray& mark, BlockClosure* closure) {
   692   if (!mark.at(block_id())) {
   693     mark.at_put(block_id(), true);
   694     closure->block_do(this);
   695     BlockEnd* e = end(); // must do this after block_do because block_do may change it!
   696     { for (int i = number_of_exception_handlers() - 1; i >= 0; i--) exception_handler_at(i)->iterate_preorder(mark, closure); }
   697     { for (int i = e->number_of_sux            () - 1; i >= 0; i--) e->sux_at           (i)->iterate_preorder(mark, closure); }
   698   }
   699 }
   702 void BlockBegin::iterate_postorder(boolArray& mark, BlockClosure* closure) {
   703   if (!mark.at(block_id())) {
   704     mark.at_put(block_id(), true);
   705     BlockEnd* e = end();
   706     { for (int i = number_of_exception_handlers() - 1; i >= 0; i--) exception_handler_at(i)->iterate_postorder(mark, closure); }
   707     { for (int i = e->number_of_sux            () - 1; i >= 0; i--) e->sux_at           (i)->iterate_postorder(mark, closure); }
   708     closure->block_do(this);
   709   }
   710 }
   713 void BlockBegin::iterate_preorder(BlockClosure* closure) {
   714   boolArray mark(number_of_blocks(), false);
   715   iterate_preorder(mark, closure);
   716 }
   719 void BlockBegin::iterate_postorder(BlockClosure* closure) {
   720   boolArray mark(number_of_blocks(), false);
   721   iterate_postorder(mark, closure);
   722 }
   725 void BlockBegin::block_values_do(ValueVisitor* f) {
   726   for (Instruction* n = this; n != NULL; n = n->next()) n->values_do(f);
   727 }
   730 #ifndef PRODUCT
   731    #define TRACE_PHI(code) if (PrintPhiFunctions) { code; }
   732 #else
   733    #define TRACE_PHI(coce)
   734 #endif
   737 bool BlockBegin::try_merge(ValueStack* new_state) {
   738   TRACE_PHI(tty->print_cr("********** try_merge for block B%d", block_id()));
   740   // local variables used for state iteration
   741   int index;
   742   Value new_value, existing_value;
   744   ValueStack* existing_state = state();
   745   if (existing_state == NULL) {
   746     TRACE_PHI(tty->print_cr("first call of try_merge for this block"));
   748     if (is_set(BlockBegin::was_visited_flag)) {
   749       // this actually happens for complicated jsr/ret structures
   750       return false; // BAILOUT in caller
   751     }
   753     // copy state because it is altered
   754     new_state = new_state->copy(ValueStack::BlockBeginState, bci());
   756     // Use method liveness to invalidate dead locals
   757     MethodLivenessResult liveness = new_state->scope()->method()->liveness_at_bci(bci());
   758     if (liveness.is_valid()) {
   759       assert((int)liveness.size() == new_state->locals_size(), "error in use of liveness");
   761       for_each_local_value(new_state, index, new_value) {
   762         if (!liveness.at(index) || new_value->type()->is_illegal()) {
   763           new_state->invalidate_local(index);
   764           TRACE_PHI(tty->print_cr("invalidating dead local %d", index));
   765         }
   766       }
   767     }
   769     if (is_set(BlockBegin::parser_loop_header_flag)) {
   770       TRACE_PHI(tty->print_cr("loop header block, initializing phi functions"));
   772       for_each_stack_value(new_state, index, new_value) {
   773         new_state->setup_phi_for_stack(this, index);
   774         TRACE_PHI(tty->print_cr("creating phi-function %c%d for stack %d", new_state->stack_at(index)->type()->tchar(), new_state->stack_at(index)->id(), index));
   775       }
   777       BitMap requires_phi_function = new_state->scope()->requires_phi_function();
   779       for_each_local_value(new_state, index, new_value) {
   780         bool requires_phi = requires_phi_function.at(index) || (new_value->type()->is_double_word() && requires_phi_function.at(index + 1));
   781         if (requires_phi || !SelectivePhiFunctions) {
   782           new_state->setup_phi_for_local(this, index);
   783           TRACE_PHI(tty->print_cr("creating phi-function %c%d for local %d", new_state->local_at(index)->type()->tchar(), new_state->local_at(index)->id(), index));
   784         }
   785       }
   786     }
   788     // initialize state of block
   789     set_state(new_state);
   791   } else if (existing_state->is_same(new_state)) {
   792     TRACE_PHI(tty->print_cr("exisiting state found"));
   794     assert(existing_state->scope() == new_state->scope(), "not matching");
   795     assert(existing_state->locals_size() == new_state->locals_size(), "not matching");
   796     assert(existing_state->stack_size() == new_state->stack_size(), "not matching");
   798     if (is_set(BlockBegin::was_visited_flag)) {
   799       TRACE_PHI(tty->print_cr("loop header block, phis must be present"));
   801       if (!is_set(BlockBegin::parser_loop_header_flag)) {
   802         // this actually happens for complicated jsr/ret structures
   803         return false; // BAILOUT in caller
   804       }
   806       for_each_local_value(existing_state, index, existing_value) {
   807         Value new_value = new_state->local_at(index);
   808         if (new_value == NULL || new_value->type()->tag() != existing_value->type()->tag()) {
   809           // The old code invalidated the phi function here
   810           // Because dead locals are replaced with NULL, this is a very rare case now, so simply bail out
   811           return false; // BAILOUT in caller
   812         }
   813       }
   815 #ifdef ASSERT
   816       // check that all necessary phi functions are present
   817       for_each_stack_value(existing_state, index, existing_value) {
   818         assert(existing_value->as_Phi() != NULL && existing_value->as_Phi()->block() == this, "phi function required");
   819       }
   820       for_each_local_value(existing_state, index, existing_value) {
   821         assert(existing_value == new_state->local_at(index) || (existing_value->as_Phi() != NULL && existing_value->as_Phi()->as_Phi()->block() == this), "phi function required");
   822       }
   823 #endif
   825     } else {
   826       TRACE_PHI(tty->print_cr("creating phi functions on demand"));
   828       // create necessary phi functions for stack
   829       for_each_stack_value(existing_state, index, existing_value) {
   830         Value new_value = new_state->stack_at(index);
   831         Phi* existing_phi = existing_value->as_Phi();
   833         if (new_value != existing_value && (existing_phi == NULL || existing_phi->block() != this)) {
   834           existing_state->setup_phi_for_stack(this, index);
   835           TRACE_PHI(tty->print_cr("creating phi-function %c%d for stack %d", existing_state->stack_at(index)->type()->tchar(), existing_state->stack_at(index)->id(), index));
   836         }
   837       }
   839       // create necessary phi functions for locals
   840       for_each_local_value(existing_state, index, existing_value) {
   841         Value new_value = new_state->local_at(index);
   842         Phi* existing_phi = existing_value->as_Phi();
   844         if (new_value == NULL || new_value->type()->tag() != existing_value->type()->tag()) {
   845           existing_state->invalidate_local(index);
   846           TRACE_PHI(tty->print_cr("invalidating local %d because of type mismatch", index));
   847         } else if (new_value != existing_value && (existing_phi == NULL || existing_phi->block() != this)) {
   848           existing_state->setup_phi_for_local(this, index);
   849           TRACE_PHI(tty->print_cr("creating phi-function %c%d for local %d", existing_state->local_at(index)->type()->tchar(), existing_state->local_at(index)->id(), index));
   850         }
   851       }
   852     }
   854     assert(existing_state->caller_state() == new_state->caller_state(), "caller states must be equal");
   856   } else {
   857     assert(false, "stack or locks not matching (invalid bytecodes)");
   858     return false;
   859   }
   861   TRACE_PHI(tty->print_cr("********** try_merge for block B%d successful", block_id()));
   863   return true;
   864 }
   867 #ifndef PRODUCT
   868 void BlockBegin::print_block() {
   869   InstructionPrinter ip;
   870   print_block(ip, false);
   871 }
   874 void BlockBegin::print_block(InstructionPrinter& ip, bool live_only) {
   875   ip.print_instr(this); tty->cr();
   876   ip.print_stack(this->state()); tty->cr();
   877   ip.print_inline_level(this);
   878   ip.print_head();
   879   for (Instruction* n = next(); n != NULL; n = n->next()) {
   880     if (!live_only || n->is_pinned() || n->use_count() > 0) {
   881       ip.print_line(n);
   882     }
   883   }
   884   tty->cr();
   885 }
   886 #endif // PRODUCT
   889 // Implementation of BlockList
   891 void BlockList::iterate_forward (BlockClosure* closure) {
   892   const int l = length();
   893   for (int i = 0; i < l; i++) closure->block_do(at(i));
   894 }
   897 void BlockList::iterate_backward(BlockClosure* closure) {
   898   for (int i = length() - 1; i >= 0; i--) closure->block_do(at(i));
   899 }
   902 void BlockList::blocks_do(void f(BlockBegin*)) {
   903   for (int i = length() - 1; i >= 0; i--) f(at(i));
   904 }
   907 void BlockList::values_do(ValueVisitor* f) {
   908   for (int i = length() - 1; i >= 0; i--) at(i)->block_values_do(f);
   909 }
   912 #ifndef PRODUCT
   913 void BlockList::print(bool cfg_only, bool live_only) {
   914   InstructionPrinter ip;
   915   for (int i = 0; i < length(); i++) {
   916     BlockBegin* block = at(i);
   917     if (cfg_only) {
   918       ip.print_instr(block); tty->cr();
   919     } else {
   920       block->print_block(ip, live_only);
   921     }
   922   }
   923 }
   924 #endif // PRODUCT
   927 // Implementation of BlockEnd
   929 void BlockEnd::set_begin(BlockBegin* begin) {
   930   BlockList* sux = NULL;
   931   if (begin != NULL) {
   932     sux = begin->successors();
   933   } else if (_begin != NULL) {
   934     // copy our sux list
   935     BlockList* sux = new BlockList(_begin->number_of_sux());
   936     for (int i = 0; i < _begin->number_of_sux(); i++) {
   937       sux->append(_begin->sux_at(i));
   938     }
   939   }
   940   _sux = sux;
   941   _begin = begin;
   942 }
   945 void BlockEnd::substitute_sux(BlockBegin* old_sux, BlockBegin* new_sux) {
   946   substitute(*_sux, old_sux, new_sux);
   947 }
   950 // Implementation of Phi
   952 // Normal phi functions take their operands from the last instruction of the
   953 // predecessor. Special handling is needed for xhanlder entries because there
   954 // the state of arbitrary instructions are needed.
   956 Value Phi::operand_at(int i) const {
   957   ValueStack* state;
   958   if (_block->is_set(BlockBegin::exception_entry_flag)) {
   959     state = _block->exception_state_at(i);
   960   } else {
   961     state = _block->pred_at(i)->end()->state();
   962   }
   963   assert(state != NULL, "");
   965   if (is_local()) {
   966     return state->local_at(local_index());
   967   } else {
   968     return state->stack_at(stack_index());
   969   }
   970 }
   973 int Phi::operand_count() const {
   974   if (_block->is_set(BlockBegin::exception_entry_flag)) {
   975     return _block->number_of_exception_states();
   976   } else {
   977     return _block->number_of_preds();
   978   }
   979 }
   983 void ProfileInvoke::state_values_do(ValueVisitor* f) {
   984   if (state() != NULL) state()->values_do(f);
   985 }

mercurial