src/share/vm/prims/jvmtiTagMap.cpp

Tue, 08 Apr 2008 12:23:15 -0400

author
sgoldman
date
Tue, 08 Apr 2008 12:23:15 -0400
changeset 542
93b6525e3b82
parent 435
a61af66fc99e
child 548
ba764ed4b6f2
permissions
-rw-r--r--

6603919: Stackwalking crash on x86 -server with Sun Studio's collect -j on
Summary: Rewrite frame::safe_for_sender and friends to be safe for collector/analyzer
Reviewed-by: dcubed, kvn

     1 /*
     2  * Copyright 2003-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_jvmtiTagMap.cpp.incl"
    28 // JvmtiTagHashmapEntry
    29 //
    30 // Each entry encapsulates a JNI weak reference to the tagged object
    31 // and the tag value. In addition an entry includes a next pointer which
    32 // is used to chain entries together.
    34 class JvmtiTagHashmapEntry : public CHeapObj {
    35  private:
    36   friend class JvmtiTagMap;
    38   jweak _object;                        // JNI weak ref to tagged object
    39   jlong _tag;                           // the tag
    40   JvmtiTagHashmapEntry* _next;          // next on the list
    42   inline void init(jweak object, jlong tag) {
    43     _object = object;
    44     _tag = tag;
    45     _next = NULL;
    46   }
    48   // constructor
    49   JvmtiTagHashmapEntry(jweak object, jlong tag)         { init(object, tag); }
    51  public:
    53   // accessor methods
    54   inline jweak object() const                           { return _object; }
    55   inline jlong tag() const                              { return _tag; }
    57   inline void set_tag(jlong tag) {
    58     assert(tag != 0, "can't be zero");
    59     _tag = tag;
    60   }
    62   inline JvmtiTagHashmapEntry* next() const             { return _next; }
    63   inline void set_next(JvmtiTagHashmapEntry* next)      { _next = next; }
    64 };
    67 // JvmtiTagHashmap
    68 //
    69 // A hashmap is essentially a table of pointers to entries. Entries
    70 // are hashed to a location, or position in the table, and then
    71 // chained from that location. The "key" for hashing is address of
    72 // the object, or oop. The "value" is the JNI weak reference to the
    73 // object and the tag value. Keys are not stored with the entry.
    74 // Instead the weak reference is resolved to obtain the key.
    75 //
    76 // A hashmap maintains a count of the number entries in the hashmap
    77 // and resizes if the number of entries exceeds a given threshold.
    78 // The threshold is specified as a percentage of the size - for
    79 // example a threshold of 0.75 will trigger the hashmap to resize
    80 // if the number of entries is >75% of table size.
    81 //
    82 // A hashmap provides functions for adding, removing, and finding
    83 // entries. It also provides a function to iterate over all entries
    84 // in the hashmap.
    86 class JvmtiTagHashmap : public CHeapObj {
    87  private:
    88   friend class JvmtiTagMap;
    90   enum {
    91     small_trace_threshold  = 10000,                  // threshold for tracing
    92     medium_trace_threshold = 100000,
    93     large_trace_threshold  = 1000000,
    94     initial_trace_threshold = small_trace_threshold
    95   };
    97   static int _sizes[];                  // array of possible hashmap sizes
    98   int _size;                            // actual size of the table
    99   int _size_index;                      // index into size table
   101   int _entry_count;                     // number of entries in the hashmap
   103   float _load_factor;                   // load factor as a % of the size
   104   int _resize_threshold;                // computed threshold to trigger resizing.
   105   bool _resizing_enabled;               // indicates if hashmap can resize
   107   int _trace_threshold;                 // threshold for trace messages
   109   JvmtiTagHashmapEntry** _table;        // the table of entries.
   111   // private accessors
   112   int resize_threshold() const                  { return _resize_threshold; }
   113   int trace_threshold() const                   { return _trace_threshold; }
   115   // initialize the hashmap
   116   void init(int size_index=0, float load_factor=4.0f) {
   117     int initial_size =  _sizes[size_index];
   118     _size_index = size_index;
   119     _size = initial_size;
   120     _entry_count = 0;
   121     if (TraceJVMTIObjectTagging) {
   122       _trace_threshold = initial_trace_threshold;
   123     } else {
   124       _trace_threshold = -1;
   125     }
   126     _load_factor = load_factor;
   127     _resize_threshold = (int)(_load_factor * _size);
   128     _resizing_enabled = true;
   129     size_t s = initial_size * sizeof(JvmtiTagHashmapEntry*);
   130     _table = (JvmtiTagHashmapEntry**)os::malloc(s);
   131     if (_table == NULL) {
   132       vm_exit_out_of_memory(s, "unable to allocate initial hashtable for jvmti object tags");
   133     }
   134     for (int i=0; i<initial_size; i++) {
   135       _table[i] = NULL;
   136     }
   137   }
   139   // hash a given key (oop) with the specified size
   140   static unsigned int hash(oop key, int size) {
   141     // shift right to get better distribution (as these bits will be zero
   142     // with aligned addresses)
   143     unsigned int addr = (unsigned int)((intptr_t)key);
   144 #ifdef _LP64
   145     return (addr >> 3) % size;
   146 #else
   147     return (addr >> 2) % size;
   148 #endif
   149   }
   151   // hash a given key (oop)
   152   unsigned int hash(oop key) {
   153     return hash(key, _size);
   154   }
   156   // resize the hashmap - allocates a large table and re-hashes
   157   // all entries into the new table.
   158   void resize() {
   159     int new_size_index = _size_index+1;
   160     int new_size = _sizes[new_size_index];
   161     if (new_size < 0) {
   162       // hashmap already at maximum capacity
   163       return;
   164     }
   166     // allocate new table
   167     size_t s = new_size * sizeof(JvmtiTagHashmapEntry*);
   168     JvmtiTagHashmapEntry** new_table = (JvmtiTagHashmapEntry**)os::malloc(s);
   169     if (new_table == NULL) {
   170       warning("unable to allocate larger hashtable for jvmti object tags");
   171       set_resizing_enabled(false);
   172       return;
   173     }
   175     // initialize new table
   176     int i;
   177     for (i=0; i<new_size; i++) {
   178       new_table[i] = NULL;
   179     }
   181     // rehash all entries into the new table
   182     for (i=0; i<_size; i++) {
   183       JvmtiTagHashmapEntry* entry = _table[i];
   184       while (entry != NULL) {
   185         JvmtiTagHashmapEntry* next = entry->next();
   186         oop key = JNIHandles::resolve(entry->object());
   187         assert(key != NULL, "jni weak reference cleared!!");
   188         unsigned int h = hash(key, new_size);
   189         JvmtiTagHashmapEntry* anchor = new_table[h];
   190         if (anchor == NULL) {
   191           new_table[h] = entry;
   192           entry->set_next(NULL);
   193         } else {
   194           entry->set_next(anchor);
   195           new_table[h] = entry;
   196         }
   197         entry = next;
   198       }
   199     }
   201     // free old table and update settings.
   202     os::free((void*)_table);
   203     _table = new_table;
   204     _size_index = new_size_index;
   205     _size = new_size;
   207     // compute new resize threshold
   208     _resize_threshold = (int)(_load_factor * _size);
   209   }
   212   // internal remove function - remove an entry at a given position in the
   213   // table.
   214   inline void remove(JvmtiTagHashmapEntry* prev, int pos, JvmtiTagHashmapEntry* entry) {
   215     assert(pos >= 0 && pos < _size, "out of range");
   216     if (prev == NULL) {
   217       _table[pos] = entry->next();
   218     } else {
   219       prev->set_next(entry->next());
   220     }
   221     assert(_entry_count > 0, "checking");
   222     _entry_count--;
   223   }
   225   // resizing switch
   226   bool is_resizing_enabled() const          { return _resizing_enabled; }
   227   void set_resizing_enabled(bool enable)    { _resizing_enabled = enable; }
   229   // debugging
   230   void print_memory_usage();
   231   void compute_next_trace_threshold();
   233  public:
   235   // create a JvmtiTagHashmap of a preferred size and optionally a load factor.
   236   // The preferred size is rounded down to an actual size.
   237   JvmtiTagHashmap(int size, float load_factor=0.0f) {
   238     int i=0;
   239     while (_sizes[i] < size) {
   240       if (_sizes[i] < 0) {
   241         assert(i > 0, "sanity check");
   242         i--;
   243         break;
   244       }
   245       i++;
   246     }
   248     // if a load factor is specified then use it, otherwise use default
   249     if (load_factor > 0.01f) {
   250       init(i, load_factor);
   251     } else {
   252       init(i);
   253     }
   254   }
   256   // create a JvmtiTagHashmap with default settings
   257   JvmtiTagHashmap() {
   258     init();
   259   }
   261   // release table when JvmtiTagHashmap destroyed
   262   ~JvmtiTagHashmap() {
   263     if (_table != NULL) {
   264       os::free((void*)_table);
   265       _table = NULL;
   266     }
   267   }
   269   // accessors
   270   int size() const                              { return _size; }
   271   JvmtiTagHashmapEntry** table() const          { return _table; }
   272   int entry_count() const                       { return _entry_count; }
   274   // find an entry in the hashmap, returns NULL if not found.
   275   inline JvmtiTagHashmapEntry* find(oop key) {
   276     unsigned int h = hash(key);
   277     JvmtiTagHashmapEntry* entry = _table[h];
   278     while (entry != NULL) {
   279       oop orig_key = JNIHandles::resolve(entry->object());
   280       assert(orig_key != NULL, "jni weak reference cleared!!");
   281       if (key == orig_key) {
   282         break;
   283       }
   284       entry = entry->next();
   285     }
   286     return entry;
   287   }
   290   // add a new entry to hashmap
   291   inline void add(oop key, JvmtiTagHashmapEntry* entry) {
   292     assert(key != NULL, "checking");
   293     assert(find(key) == NULL, "duplicate detected");
   294     unsigned int h = hash(key);
   295     JvmtiTagHashmapEntry* anchor = _table[h];
   296     if (anchor == NULL) {
   297       _table[h] = entry;
   298       entry->set_next(NULL);
   299     } else {
   300       entry->set_next(anchor);
   301       _table[h] = entry;
   302     }
   304     _entry_count++;
   305     if (trace_threshold() > 0 && entry_count() >= trace_threshold()) {
   306       assert(TraceJVMTIObjectTagging, "should only get here when tracing");
   307       print_memory_usage();
   308       compute_next_trace_threshold();
   309     }
   311     // if the number of entries exceed the threshold then resize
   312     if (entry_count() > resize_threshold() && is_resizing_enabled()) {
   313       resize();
   314     }
   315   }
   317   // remove an entry with the given key.
   318   inline JvmtiTagHashmapEntry* remove(oop key) {
   319     unsigned int h = hash(key);
   320     JvmtiTagHashmapEntry* entry = _table[h];
   321     JvmtiTagHashmapEntry* prev = NULL;
   322     while (entry != NULL) {
   323       oop orig_key = JNIHandles::resolve(entry->object());
   324       assert(orig_key != NULL, "jni weak reference cleared!!");
   325       if (key == orig_key) {
   326         break;
   327       }
   328       prev = entry;
   329       entry = entry->next();
   330     }
   331     if (entry != NULL) {
   332       remove(prev, h, entry);
   333     }
   334     return entry;
   335   }
   337   // iterate over all entries in the hashmap
   338   void entry_iterate(JvmtiTagHashmapEntryClosure* closure);
   339 };
   341 // possible hashmap sizes - odd primes that roughly double in size.
   342 // To avoid excessive resizing the odd primes from 4801-76831 and
   343 // 76831-307261 have been removed. The list must be terminated by -1.
   344 int JvmtiTagHashmap::_sizes[] =  { 4801, 76831, 307261, 614563, 1228891,
   345     2457733, 4915219, 9830479, 19660831, 39321619, 78643219, -1 };
   348 // A supporting class for iterating over all entries in Hashmap
   349 class JvmtiTagHashmapEntryClosure {
   350  public:
   351   virtual void do_entry(JvmtiTagHashmapEntry* entry) = 0;
   352 };
   355 // iterate over all entries in the hashmap
   356 void JvmtiTagHashmap::entry_iterate(JvmtiTagHashmapEntryClosure* closure) {
   357   for (int i=0; i<_size; i++) {
   358     JvmtiTagHashmapEntry* entry = _table[i];
   359     JvmtiTagHashmapEntry* prev = NULL;
   360     while (entry != NULL) {
   361       // obtain the next entry before invoking do_entry - this is
   362       // necessary because do_entry may remove the entry from the
   363       // hashmap.
   364       JvmtiTagHashmapEntry* next = entry->next();
   365       closure->do_entry(entry);
   366       entry = next;
   367      }
   368   }
   369 }
   371 // debugging
   372 void JvmtiTagHashmap::print_memory_usage() {
   373   intptr_t p = (intptr_t)this;
   374   tty->print("[JvmtiTagHashmap @ " INTPTR_FORMAT, p);
   376   // table + entries in KB
   377   int hashmap_usage = (size()*sizeof(JvmtiTagHashmapEntry*) +
   378     entry_count()*sizeof(JvmtiTagHashmapEntry))/K;
   380   int weak_globals_usage = (int)(JNIHandles::weak_global_handle_memory_usage()/K);
   381   tty->print_cr(", %d entries (%d KB) <JNI weak globals: %d KB>]",
   382     entry_count(), hashmap_usage, weak_globals_usage);
   383 }
   385 // compute threshold for the next trace message
   386 void JvmtiTagHashmap::compute_next_trace_threshold() {
   387   if (trace_threshold() < medium_trace_threshold) {
   388     _trace_threshold += small_trace_threshold;
   389   } else {
   390     if (trace_threshold() < large_trace_threshold) {
   391       _trace_threshold += medium_trace_threshold;
   392     } else {
   393       _trace_threshold += large_trace_threshold;
   394     }
   395   }
   396 }
   398 // memory region for young generation
   399 MemRegion JvmtiTagMap::_young_gen;
   401 // get the memory region used for the young generation
   402 void JvmtiTagMap::get_young_generation() {
   403   if (Universe::heap()->kind() == CollectedHeap::GenCollectedHeap) {
   404     GenCollectedHeap* gch = GenCollectedHeap::heap();
   405     _young_gen = gch->get_gen(0)->reserved();
   406   } else {
   407 #ifndef SERIALGC
   408     ParallelScavengeHeap* psh = ParallelScavengeHeap::heap();
   409     _young_gen= psh->young_gen()->reserved();
   410 #else  // SERIALGC
   411     fatal("SerialGC only supported in this configuration.");
   412 #endif // SERIALGC
   413   }
   414 }
   416 // returns true if oop is in the young generation
   417 inline bool JvmtiTagMap::is_in_young(oop o) {
   418   assert(_young_gen.start() != NULL, "checking");
   419   void* p = (void*)o;
   420   bool in_young = _young_gen.contains(p);
   421   return in_young;
   422 }
   424 // returns the appropriate hashmap for a given object
   425 inline JvmtiTagHashmap* JvmtiTagMap::hashmap_for(oop o) {
   426   if (is_in_young(o)) {
   427     return _hashmap[0];
   428   } else {
   429     return _hashmap[1];
   430   }
   431 }
   434 // create a JvmtiTagMap
   435 JvmtiTagMap::JvmtiTagMap(JvmtiEnv* env) :
   436   _env(env),
   437   _lock(Mutex::nonleaf+2, "JvmtiTagMap._lock", false),
   438   _free_entries(NULL),
   439   _free_entries_count(0)
   440 {
   441   assert(JvmtiThreadState_lock->is_locked(), "sanity check");
   442   assert(((JvmtiEnvBase *)env)->tag_map() == NULL, "tag map already exists for environment");
   444   // create the hashmaps
   445   for (int i=0; i<n_hashmaps; i++) {
   446     _hashmap[i] = new JvmtiTagHashmap();
   447   }
   449   // get the memory region used by the young generation
   450   get_young_generation();
   452   // finally add us to the environment
   453   ((JvmtiEnvBase *)env)->set_tag_map(this);
   454 }
   457 // destroy a JvmtiTagMap
   458 JvmtiTagMap::~JvmtiTagMap() {
   460   // no lock acquired as we assume the enclosing environment is
   461   // also being destroryed.
   462   ((JvmtiEnvBase *)_env)->set_tag_map(NULL);
   464   // iterate over the hashmaps and destroy each of the entries
   465   for (int i=0; i<n_hashmaps; i++) {
   466     JvmtiTagHashmap* hashmap = _hashmap[i];
   467     JvmtiTagHashmapEntry** table = hashmap->table();
   468     for (int j=0; j<hashmap->size(); j++) {
   469       JvmtiTagHashmapEntry *entry = table[j];
   470       while (entry != NULL) {
   471         JvmtiTagHashmapEntry* next = entry->next();
   472         jweak ref = entry->object();
   473         JNIHandles::destroy_weak_global(ref);
   474         delete entry;
   475         entry = next;
   476       }
   477     }
   479     // finally destroy the hashmap
   480     delete hashmap;
   481   }
   483   // remove any entries on the free list
   484   JvmtiTagHashmapEntry* entry = _free_entries;
   485   while (entry != NULL) {
   486     JvmtiTagHashmapEntry* next = entry->next();
   487     delete entry;
   488     entry = next;
   489   }
   490 }
   492 // create a hashmap entry
   493 // - if there's an entry on the (per-environment) free list then this
   494 // is returned. Otherwise an new entry is allocated.
   495 JvmtiTagHashmapEntry* JvmtiTagMap::create_entry(jweak ref, jlong tag) {
   496   assert(Thread::current()->is_VM_thread() || is_locked(), "checking");
   497   JvmtiTagHashmapEntry* entry;
   498   if (_free_entries == NULL) {
   499     entry = new JvmtiTagHashmapEntry(ref, tag);
   500   } else {
   501     assert(_free_entries_count > 0, "mismatched _free_entries_count");
   502     _free_entries_count--;
   503     entry = _free_entries;
   504     _free_entries = entry->next();
   505     entry->init(ref, tag);
   506   }
   507   return entry;
   508 }
   510 // destroy an entry by returning it to the free list
   511 void JvmtiTagMap::destroy_entry(JvmtiTagHashmapEntry* entry) {
   512   assert(SafepointSynchronize::is_at_safepoint() || is_locked(), "checking");
   513   // limit the size of the free list
   514   if (_free_entries_count >= max_free_entries) {
   515     delete entry;
   516   } else {
   517     entry->set_next(_free_entries);
   518     _free_entries = entry;
   519     _free_entries_count++;
   520   }
   521 }
   523 // returns the tag map for the given environments. If the tag map
   524 // doesn't exist then it is created.
   525 JvmtiTagMap* JvmtiTagMap::tag_map_for(JvmtiEnv* env) {
   526   JvmtiTagMap* tag_map = ((JvmtiEnvBase *)env)->tag_map();
   527   if (tag_map == NULL) {
   528     MutexLocker mu(JvmtiThreadState_lock);
   529     tag_map = ((JvmtiEnvBase *)env)->tag_map();
   530     if (tag_map == NULL) {
   531       tag_map = new JvmtiTagMap(env);
   532     }
   533   } else {
   534     CHECK_UNHANDLED_OOPS_ONLY(Thread::current()->clear_unhandled_oops());
   535   }
   536   return tag_map;
   537 }
   539 // iterate over all entries in the tag map.
   540 void JvmtiTagMap::entry_iterate(JvmtiTagHashmapEntryClosure* closure) {
   541   for (int i=0; i<n_hashmaps; i++) {
   542     JvmtiTagHashmap* hashmap = _hashmap[i];
   543     hashmap->entry_iterate(closure);
   544   }
   545 }
   547 // returns true if the hashmaps are empty
   548 bool JvmtiTagMap::is_empty() {
   549   assert(SafepointSynchronize::is_at_safepoint() || is_locked(), "checking");
   550   assert(n_hashmaps == 2, "not implemented");
   551   return ((_hashmap[0]->entry_count() == 0) && (_hashmap[1]->entry_count() == 0));
   552 }
   555 // Return the tag value for an object, or 0 if the object is
   556 // not tagged
   557 //
   558 static inline jlong tag_for(JvmtiTagMap* tag_map, oop o) {
   559   JvmtiTagHashmapEntry* entry = tag_map->hashmap_for(o)->find(o);
   560   if (entry == NULL) {
   561     return 0;
   562   } else {
   563     return entry->tag();
   564   }
   565 }
   567 // If the object is a java.lang.Class then return the klassOop,
   568 // otherwise return the original object
   569 static inline oop klassOop_if_java_lang_Class(oop o) {
   570   if (o->klass() == SystemDictionary::class_klass()) {
   571     if (!java_lang_Class::is_primitive(o)) {
   572       o = (oop)java_lang_Class::as_klassOop(o);
   573       assert(o != NULL, "class for non-primitive mirror must exist");
   574     }
   575   }
   576   return o;
   577 }
   579 // A CallbackWrapper is a support class for querying and tagging an object
   580 // around a callback to a profiler. The constructor does pre-callback
   581 // work to get the tag value, klass tag value, ... and the destructor
   582 // does the post-callback work of tagging or untagging the object.
   583 //
   584 // {
   585 //   CallbackWrapper wrapper(tag_map, o);
   586 //
   587 //   (*callback)(wrapper.klass_tag(), wrapper.obj_size(), wrapper.obj_tag_p(), ...)
   588 //
   589 // } // wrapper goes out of scope here which results in the destructor
   590 //      checking to see if the object has been tagged, untagged, or the
   591 //      tag value has changed.
   592 //
   593 class CallbackWrapper : public StackObj {
   594  private:
   595   JvmtiTagMap* _tag_map;
   596   JvmtiTagHashmap* _hashmap;
   597   JvmtiTagHashmapEntry* _entry;
   598   oop _o;
   599   jlong _obj_size;
   600   jlong _obj_tag;
   601   klassOop _klass;         // the object's class
   602   jlong _klass_tag;
   604  protected:
   605   JvmtiTagMap* tag_map() const      { return _tag_map; }
   607   // invoked post-callback to tag, untag, or update the tag of an object
   608   void inline post_callback_tag_update(oop o, JvmtiTagHashmap* hashmap,
   609                                        JvmtiTagHashmapEntry* entry, jlong obj_tag);
   610  public:
   611   CallbackWrapper(JvmtiTagMap* tag_map, oop o) {
   612     assert(Thread::current()->is_VM_thread() || tag_map->is_locked(),
   613            "MT unsafe or must be VM thread");
   615     // for Classes the klassOop is tagged
   616     _o = klassOop_if_java_lang_Class(o);
   618     // object size
   619     _obj_size = _o->size() * wordSize;
   621     // record the context
   622     _tag_map = tag_map;
   623     _hashmap = tag_map->hashmap_for(_o);
   624     _entry = _hashmap->find(_o);
   626     // get object tag
   627     _obj_tag = (_entry == NULL) ? 0 : _entry->tag();
   629     // get the class and the class's tag value
   630     if (_o == o) {
   631       _klass = _o->klass();
   632     } else {
   633       // if the object represents a runtime class then use the
   634       // tag for java.lang.Class
   635       _klass = SystemDictionary::class_klass();
   636     }
   637     _klass_tag = tag_for(tag_map, _klass);
   638   }
   640   ~CallbackWrapper() {
   641     post_callback_tag_update(_o, _hashmap, _entry, _obj_tag);
   642   }
   644   inline jlong* obj_tag_p()                     { return &_obj_tag; }
   645   inline jlong obj_size() const                 { return _obj_size; }
   646   inline jlong obj_tag() const                  { return _obj_tag; }
   647   inline klassOop klass() const                 { return _klass; }
   648   inline jlong klass_tag() const                { return _klass_tag; }
   649 };
   653 // callback post-callback to tag, untag, or update the tag of an object
   654 void inline CallbackWrapper::post_callback_tag_update(oop o,
   655                                                       JvmtiTagHashmap* hashmap,
   656                                                       JvmtiTagHashmapEntry* entry,
   657                                                       jlong obj_tag) {
   658   if (entry == NULL) {
   659     if (obj_tag != 0) {
   660       // callback has tagged the object
   661       assert(Thread::current()->is_VM_thread(), "must be VMThread");
   662       HandleMark hm;
   663       Handle h(o);
   664       jweak ref = JNIHandles::make_weak_global(h);
   665       entry = tag_map()->create_entry(ref, obj_tag);
   666       hashmap->add(o, entry);
   667     }
   668   } else {
   669     // object was previously tagged - the callback may have untagged
   670     // the object or changed the tag value
   671     if (obj_tag == 0) {
   672       jweak ref = entry->object();
   674       JvmtiTagHashmapEntry* entry_removed = hashmap->remove(o);
   675       assert(entry_removed == entry, "checking");
   676       tag_map()->destroy_entry(entry);
   678       JNIHandles::destroy_weak_global(ref);
   679     } else {
   680       if (obj_tag != entry->tag()) {
   681          entry->set_tag(obj_tag);
   682       }
   683     }
   684   }
   685 }
   687 // An extended CallbackWrapper used when reporting an object reference
   688 // to the agent.
   689 //
   690 // {
   691 //   TwoOopCallbackWrapper wrapper(tag_map, referrer, o);
   692 //
   693 //   (*callback)(wrapper.klass_tag(),
   694 //               wrapper.obj_size(),
   695 //               wrapper.obj_tag_p()
   696 //               wrapper.referrer_tag_p(), ...)
   697 //
   698 // } // wrapper goes out of scope here which results in the destructor
   699 //      checking to see if the referrer object has been tagged, untagged,
   700 //      or the tag value has changed.
   701 //
   702 class TwoOopCallbackWrapper : public CallbackWrapper {
   703  private:
   704   bool _is_reference_to_self;
   705   JvmtiTagHashmap* _referrer_hashmap;
   706   JvmtiTagHashmapEntry* _referrer_entry;
   707   oop _referrer;
   708   jlong _referrer_obj_tag;
   709   jlong _referrer_klass_tag;
   710   jlong* _referrer_tag_p;
   712   bool is_reference_to_self() const             { return _is_reference_to_self; }
   714  public:
   715   TwoOopCallbackWrapper(JvmtiTagMap* tag_map, oop referrer, oop o) :
   716     CallbackWrapper(tag_map, o)
   717   {
   718     // self reference needs to be handled in a special way
   719     _is_reference_to_self = (referrer == o);
   721     if (_is_reference_to_self) {
   722       _referrer_klass_tag = klass_tag();
   723       _referrer_tag_p = obj_tag_p();
   724     } else {
   725       // for Classes the klassOop is tagged
   726       _referrer = klassOop_if_java_lang_Class(referrer);
   727       // record the context
   728       _referrer_hashmap = tag_map->hashmap_for(_referrer);
   729       _referrer_entry = _referrer_hashmap->find(_referrer);
   731       // get object tag
   732       _referrer_obj_tag = (_referrer_entry == NULL) ? 0 : _referrer_entry->tag();
   733       _referrer_tag_p = &_referrer_obj_tag;
   735       // get referrer class tag.
   736       klassOop k = (_referrer == referrer) ?  // Check if referrer is a class...
   737           _referrer->klass()                  // No, just get its class
   738          : SystemDictionary::class_klass();   // Yes, its class is Class
   739       _referrer_klass_tag = tag_for(tag_map, k);
   740     }
   741   }
   743   ~TwoOopCallbackWrapper() {
   744     if (!is_reference_to_self()){
   745       post_callback_tag_update(_referrer,
   746                                _referrer_hashmap,
   747                                _referrer_entry,
   748                                _referrer_obj_tag);
   749     }
   750   }
   752   // address of referrer tag
   753   // (for a self reference this will return the same thing as obj_tag_p())
   754   inline jlong* referrer_tag_p()        { return _referrer_tag_p; }
   756   // referrer's class tag
   757   inline jlong referrer_klass_tag()     { return _referrer_klass_tag; }
   758 };
   760 // tag an object
   761 //
   762 // This function is performance critical. If many threads attempt to tag objects
   763 // around the same time then it's possible that the Mutex associated with the
   764 // tag map will be a hot lock. Eliminating this lock will not eliminate the issue
   765 // because creating a JNI weak reference requires acquiring a global lock also.
   766 void JvmtiTagMap::set_tag(jobject object, jlong tag) {
   767   MutexLocker ml(lock());
   769   // resolve the object
   770   oop o = JNIHandles::resolve_non_null(object);
   772   // for Classes we tag the klassOop
   773   o = klassOop_if_java_lang_Class(o);
   775   // see if the object is already tagged
   776   JvmtiTagHashmap* hashmap = hashmap_for(o);
   777   JvmtiTagHashmapEntry* entry = hashmap->find(o);
   779   // if the object is not already tagged then we tag it
   780   if (entry == NULL) {
   781     if (tag != 0) {
   782       HandleMark hm;
   783       Handle h(o);
   784       jweak ref = JNIHandles::make_weak_global(h);
   786       // the object may have moved because make_weak_global may
   787       // have blocked - thus it is necessary resolve the handle
   788       // and re-hash the object.
   789       o = h();
   790       entry = create_entry(ref, tag);
   791       hashmap_for(o)->add(o, entry);
   792     } else {
   793       // no-op
   794     }
   795   } else {
   796     // if the object is already tagged then we either update
   797     // the tag (if a new tag value has been provided)
   798     // or remove the object if the new tag value is 0.
   799     // Removing the object requires that we also delete the JNI
   800     // weak ref to the object.
   801     if (tag == 0) {
   802       jweak ref = entry->object();
   803       hashmap->remove(o);
   804       destroy_entry(entry);
   805       JNIHandles::destroy_weak_global(ref);
   806     } else {
   807       entry->set_tag(tag);
   808     }
   809   }
   810 }
   812 // get the tag for an object
   813 jlong JvmtiTagMap::get_tag(jobject object) {
   814   MutexLocker ml(lock());
   816   // resolve the object
   817   oop o = JNIHandles::resolve_non_null(object);
   819   // for Classes get the tag from the klassOop
   820   return tag_for(this, klassOop_if_java_lang_Class(o));
   821 }
   824 // Helper class used to describe the static or instance fields of a class.
   825 // For each field it holds the field index (as defined by the JVMTI specification),
   826 // the field type, and the offset.
   828 class ClassFieldDescriptor: public CHeapObj {
   829  private:
   830   int _field_index;
   831   int _field_offset;
   832   char _field_type;
   833  public:
   834   ClassFieldDescriptor(int index, char type, int offset) :
   835     _field_index(index), _field_type(type), _field_offset(offset) {
   836   }
   837   int field_index()  const  { return _field_index; }
   838   char field_type()  const  { return _field_type; }
   839   int field_offset() const  { return _field_offset; }
   840 };
   842 class ClassFieldMap: public CHeapObj {
   843  private:
   844   enum {
   845     initial_field_count = 5
   846   };
   848   // list of field descriptors
   849   GrowableArray<ClassFieldDescriptor*>* _fields;
   851   // constructor
   852   ClassFieldMap();
   854   // add a field
   855   void add(int index, char type, int offset);
   857   // returns the field count for the given class
   858   static int compute_field_count(instanceKlassHandle ikh);
   860  public:
   861   ~ClassFieldMap();
   863   // access
   864   int field_count()                     { return _fields->length(); }
   865   ClassFieldDescriptor* field_at(int i) { return _fields->at(i); }
   867   // functions to create maps of static or instance fields
   868   static ClassFieldMap* create_map_of_static_fields(klassOop k);
   869   static ClassFieldMap* create_map_of_instance_fields(oop obj);
   870 };
   872 ClassFieldMap::ClassFieldMap() {
   873   _fields = new (ResourceObj::C_HEAP) GrowableArray<ClassFieldDescriptor*>(initial_field_count, true);
   874 }
   876 ClassFieldMap::~ClassFieldMap() {
   877   for (int i=0; i<_fields->length(); i++) {
   878     delete _fields->at(i);
   879   }
   880   delete _fields;
   881 }
   883 void ClassFieldMap::add(int index, char type, int offset) {
   884   ClassFieldDescriptor* field = new ClassFieldDescriptor(index, type, offset);
   885   _fields->append(field);
   886 }
   888 // Returns a heap allocated ClassFieldMap to describe the static fields
   889 // of the given class.
   890 //
   891 ClassFieldMap* ClassFieldMap::create_map_of_static_fields(klassOop k) {
   892   HandleMark hm;
   893   instanceKlassHandle ikh = instanceKlassHandle(Thread::current(), k);
   895   // create the field map
   896   ClassFieldMap* field_map = new ClassFieldMap();
   898   FilteredFieldStream f(ikh, false, false);
   899   int max_field_index = f.field_count()-1;
   901   int index = 0;
   902   for (FilteredFieldStream fld(ikh, true, true); !fld.eos(); fld.next(), index++) {
   903     // ignore instance fields
   904     if (!fld.access_flags().is_static()) {
   905       continue;
   906     }
   907     field_map->add(max_field_index - index, fld.signature()->byte_at(0), fld.offset());
   908   }
   909   return field_map;
   910 }
   912 // Returns a heap allocated ClassFieldMap to describe the instance fields
   913 // of the given class. All instance fields are included (this means public
   914 // and private fields declared in superclasses and superinterfaces too).
   915 //
   916 ClassFieldMap* ClassFieldMap::create_map_of_instance_fields(oop obj) {
   917   HandleMark hm;
   918   instanceKlassHandle ikh = instanceKlassHandle(Thread::current(), obj->klass());
   920   // create the field map
   921   ClassFieldMap* field_map = new ClassFieldMap();
   923   FilteredFieldStream f(ikh, false, false);
   925   int max_field_index = f.field_count()-1;
   927   int index = 0;
   928   for (FilteredFieldStream fld(ikh, false, false); !fld.eos(); fld.next(), index++) {
   929     // ignore static fields
   930     if (fld.access_flags().is_static()) {
   931       continue;
   932     }
   933     field_map->add(max_field_index - index, fld.signature()->byte_at(0), fld.offset());
   934   }
   936   return field_map;
   937 }
   939 // Helper class used to cache a ClassFileMap for the instance fields of
   940 // a cache. A JvmtiCachedClassFieldMap can be cached by an instanceKlass during
   941 // heap iteration and avoid creating a field map for each object in the heap
   942 // (only need to create the map when the first instance of a class is encountered).
   943 //
   944 class JvmtiCachedClassFieldMap : public CHeapObj {
   945  private:
   946    enum {
   947      initial_class_count = 200
   948    };
   949   ClassFieldMap* _field_map;
   951   ClassFieldMap* field_map() const          { return _field_map; }
   953   JvmtiCachedClassFieldMap(ClassFieldMap* field_map);
   954   ~JvmtiCachedClassFieldMap();
   956   static GrowableArray<instanceKlass*>* _class_list;
   957   static void add_to_class_list(instanceKlass* ik);
   959  public:
   960   // returns the field map for a given object (returning map cached
   961   // by instanceKlass if possible
   962   static ClassFieldMap* get_map_of_instance_fields(oop obj);
   964   // removes the field map from all instanceKlasses - should be
   965   // called before VM operation completes
   966   static void clear_cache();
   968   // returns the number of ClassFieldMap cached by instanceKlasses
   969   static int cached_field_map_count();
   970 };
   972 GrowableArray<instanceKlass*>* JvmtiCachedClassFieldMap::_class_list;
   974 JvmtiCachedClassFieldMap::JvmtiCachedClassFieldMap(ClassFieldMap* field_map) {
   975   _field_map = field_map;
   976 }
   978 JvmtiCachedClassFieldMap::~JvmtiCachedClassFieldMap() {
   979   if (_field_map != NULL) {
   980     delete _field_map;
   981   }
   982 }
   984 // Marker class to ensure that the class file map cache is only used in a defined
   985 // scope.
   986 class ClassFieldMapCacheMark : public StackObj {
   987  private:
   988    static bool _is_active;
   989  public:
   990    ClassFieldMapCacheMark() {
   991      assert(Thread::current()->is_VM_thread(), "must be VMThread");
   992      assert(JvmtiCachedClassFieldMap::cached_field_map_count() == 0, "cache not empty");
   993      assert(!_is_active, "ClassFieldMapCacheMark cannot be nested");
   994      _is_active = true;
   995    }
   996    ~ClassFieldMapCacheMark() {
   997      JvmtiCachedClassFieldMap::clear_cache();
   998      _is_active = false;
   999    }
  1000    static bool is_active() { return _is_active; }
  1001 };
  1003 bool ClassFieldMapCacheMark::_is_active;
  1006 // record that the given instanceKlass is caching a field map
  1007 void JvmtiCachedClassFieldMap::add_to_class_list(instanceKlass* ik) {
  1008   if (_class_list == NULL) {
  1009     _class_list = new (ResourceObj::C_HEAP) GrowableArray<instanceKlass*>(initial_class_count, true);
  1011   _class_list->push(ik);
  1014 // returns the instance field map for the given object
  1015 // (returns field map cached by the instanceKlass if possible)
  1016 ClassFieldMap* JvmtiCachedClassFieldMap::get_map_of_instance_fields(oop obj) {
  1017   assert(Thread::current()->is_VM_thread(), "must be VMThread");
  1018   assert(ClassFieldMapCacheMark::is_active(), "ClassFieldMapCacheMark not active");
  1020   klassOop k = obj->klass();
  1021   instanceKlass* ik = instanceKlass::cast(k);
  1023   // return cached map if possible
  1024   JvmtiCachedClassFieldMap* cached_map = ik->jvmti_cached_class_field_map();
  1025   if (cached_map != NULL) {
  1026     assert(cached_map->field_map() != NULL, "missing field list");
  1027     return cached_map->field_map();
  1028   } else {
  1029     ClassFieldMap* field_map = ClassFieldMap::create_map_of_instance_fields(obj);
  1030     cached_map = new JvmtiCachedClassFieldMap(field_map);
  1031     ik->set_jvmti_cached_class_field_map(cached_map);
  1032     add_to_class_list(ik);
  1033     return field_map;
  1037 // remove the fields maps cached from all instanceKlasses
  1038 void JvmtiCachedClassFieldMap::clear_cache() {
  1039   assert(Thread::current()->is_VM_thread(), "must be VMThread");
  1040   if (_class_list != NULL) {
  1041     for (int i = 0; i < _class_list->length(); i++) {
  1042       instanceKlass* ik = _class_list->at(i);
  1043       JvmtiCachedClassFieldMap* cached_map = ik->jvmti_cached_class_field_map();
  1044       assert(cached_map != NULL, "should not be NULL");
  1045       ik->set_jvmti_cached_class_field_map(NULL);
  1046       delete cached_map;  // deletes the encapsulated field map
  1048     delete _class_list;
  1049     _class_list = NULL;
  1053 // returns the number of ClassFieldMap cached by instanceKlasses
  1054 int JvmtiCachedClassFieldMap::cached_field_map_count() {
  1055   return (_class_list == NULL) ? 0 : _class_list->length();
  1058 // helper function to indicate if an object is filtered by its tag or class tag
  1059 static inline bool is_filtered_by_heap_filter(jlong obj_tag,
  1060                                               jlong klass_tag,
  1061                                               int heap_filter) {
  1062   // apply the heap filter
  1063   if (obj_tag != 0) {
  1064     // filter out tagged objects
  1065     if (heap_filter & JVMTI_HEAP_FILTER_TAGGED) return true;
  1066   } else {
  1067     // filter out untagged objects
  1068     if (heap_filter & JVMTI_HEAP_FILTER_UNTAGGED) return true;
  1070   if (klass_tag != 0) {
  1071     // filter out objects with tagged classes
  1072     if (heap_filter & JVMTI_HEAP_FILTER_CLASS_TAGGED) return true;
  1073   } else {
  1074     // filter out objects with untagged classes.
  1075     if (heap_filter & JVMTI_HEAP_FILTER_CLASS_UNTAGGED) return true;
  1077   return false;
  1080 // helper function to indicate if an object is filtered by a klass filter
  1081 static inline bool is_filtered_by_klass_filter(oop obj, KlassHandle klass_filter) {
  1082   if (!klass_filter.is_null()) {
  1083     if (obj->klass() != klass_filter()) {
  1084       return true;
  1087   return false;
  1090 // helper function to tell if a field is a primitive field or not
  1091 static inline bool is_primitive_field_type(char type) {
  1092   return (type != 'L' && type != '[');
  1095 // helper function to copy the value from location addr to jvalue.
  1096 static inline void copy_to_jvalue(jvalue *v, address addr, jvmtiPrimitiveType value_type) {
  1097   switch (value_type) {
  1098     case JVMTI_PRIMITIVE_TYPE_BOOLEAN : { v->z = *(jboolean*)addr; break; }
  1099     case JVMTI_PRIMITIVE_TYPE_BYTE    : { v->b = *(jbyte*)addr;    break; }
  1100     case JVMTI_PRIMITIVE_TYPE_CHAR    : { v->c = *(jchar*)addr;    break; }
  1101     case JVMTI_PRIMITIVE_TYPE_SHORT   : { v->s = *(jshort*)addr;   break; }
  1102     case JVMTI_PRIMITIVE_TYPE_INT     : { v->i = *(jint*)addr;     break; }
  1103     case JVMTI_PRIMITIVE_TYPE_LONG    : { v->j = *(jlong*)addr;    break; }
  1104     case JVMTI_PRIMITIVE_TYPE_FLOAT   : { v->f = *(jfloat*)addr;   break; }
  1105     case JVMTI_PRIMITIVE_TYPE_DOUBLE  : { v->d = *(jdouble*)addr;  break; }
  1106     default: ShouldNotReachHere();
  1110 // helper function to invoke string primitive value callback
  1111 // returns visit control flags
  1112 static jint invoke_string_value_callback(jvmtiStringPrimitiveValueCallback cb,
  1113                                          CallbackWrapper* wrapper,
  1114                                          oop str,
  1115                                          void* user_data)
  1117   assert(str->klass() == SystemDictionary::string_klass(), "not a string");
  1119   // get the string value and length
  1120   // (string value may be offset from the base)
  1121   int s_len = java_lang_String::length(str);
  1122   typeArrayOop s_value = java_lang_String::value(str);
  1123   int s_offset = java_lang_String::offset(str);
  1124   jchar* value;
  1125   if (s_len > 0) {
  1126     value = s_value->char_at_addr(s_offset);
  1127   } else {
  1128     value = (jchar*) s_value->base(T_CHAR);
  1131   // invoke the callback
  1132   return (*cb)(wrapper->klass_tag(),
  1133                wrapper->obj_size(),
  1134                wrapper->obj_tag_p(),
  1135                value,
  1136                (jint)s_len,
  1137                user_data);
  1140 // helper function to invoke string primitive value callback
  1141 // returns visit control flags
  1142 static jint invoke_array_primitive_value_callback(jvmtiArrayPrimitiveValueCallback cb,
  1143                                                   CallbackWrapper* wrapper,
  1144                                                   oop obj,
  1145                                                   void* user_data)
  1147   assert(obj->is_typeArray(), "not a primitive array");
  1149   // get base address of first element
  1150   typeArrayOop array = typeArrayOop(obj);
  1151   BasicType type = typeArrayKlass::cast(array->klass())->element_type();
  1152   void* elements = array->base(type);
  1154   // jvmtiPrimitiveType is defined so this mapping is always correct
  1155   jvmtiPrimitiveType elem_type = (jvmtiPrimitiveType)type2char(type);
  1157   return (*cb)(wrapper->klass_tag(),
  1158                wrapper->obj_size(),
  1159                wrapper->obj_tag_p(),
  1160                (jint)array->length(),
  1161                elem_type,
  1162                elements,
  1163                user_data);
  1166 // helper function to invoke the primitive field callback for all static fields
  1167 // of a given class
  1168 static jint invoke_primitive_field_callback_for_static_fields
  1169   (CallbackWrapper* wrapper,
  1170    oop obj,
  1171    jvmtiPrimitiveFieldCallback cb,
  1172    void* user_data)
  1174   // for static fields only the index will be set
  1175   static jvmtiHeapReferenceInfo reference_info = { 0 };
  1177   assert(obj->klass() == SystemDictionary::class_klass(), "not a class");
  1178   if (java_lang_Class::is_primitive(obj)) {
  1179     return 0;
  1181   klassOop k = java_lang_Class::as_klassOop(obj);
  1182   Klass* klass = k->klass_part();
  1184   // ignore classes for object and type arrays
  1185   if (!klass->oop_is_instance()) {
  1186     return 0;
  1189   // ignore classes which aren't linked yet
  1190   instanceKlass* ik = instanceKlass::cast(k);
  1191   if (!ik->is_linked()) {
  1192     return 0;
  1195   // get the field map
  1196   ClassFieldMap* field_map = ClassFieldMap::create_map_of_static_fields(k);
  1198   // invoke the callback for each static primitive field
  1199   for (int i=0; i<field_map->field_count(); i++) {
  1200     ClassFieldDescriptor* field = field_map->field_at(i);
  1202     // ignore non-primitive fields
  1203     char type = field->field_type();
  1204     if (!is_primitive_field_type(type)) {
  1205       continue;
  1207     // one-to-one mapping
  1208     jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type;
  1210     // get offset and field value
  1211     int offset = field->field_offset();
  1212     address addr = (address)k + offset;
  1213     jvalue value;
  1214     copy_to_jvalue(&value, addr, value_type);
  1216     // field index
  1217     reference_info.field.index = field->field_index();
  1219     // invoke the callback
  1220     jint res = (*cb)(JVMTI_HEAP_REFERENCE_STATIC_FIELD,
  1221                      &reference_info,
  1222                      wrapper->klass_tag(),
  1223                      wrapper->obj_tag_p(),
  1224                      value,
  1225                      value_type,
  1226                      user_data);
  1227     if (res & JVMTI_VISIT_ABORT) {
  1228       delete field_map;
  1229       return res;
  1233   delete field_map;
  1234   return 0;
  1237 // helper function to invoke the primitive field callback for all instance fields
  1238 // of a given object
  1239 static jint invoke_primitive_field_callback_for_instance_fields(
  1240   CallbackWrapper* wrapper,
  1241   oop obj,
  1242   jvmtiPrimitiveFieldCallback cb,
  1243   void* user_data)
  1245   // for instance fields only the index will be set
  1246   static jvmtiHeapReferenceInfo reference_info = { 0 };
  1248   // get the map of the instance fields
  1249   ClassFieldMap* fields = JvmtiCachedClassFieldMap::get_map_of_instance_fields(obj);
  1251   // invoke the callback for each instance primitive field
  1252   for (int i=0; i<fields->field_count(); i++) {
  1253     ClassFieldDescriptor* field = fields->field_at(i);
  1255     // ignore non-primitive fields
  1256     char type = field->field_type();
  1257     if (!is_primitive_field_type(type)) {
  1258       continue;
  1260     // one-to-one mapping
  1261     jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type;
  1263     // get offset and field value
  1264     int offset = field->field_offset();
  1265     address addr = (address)obj + offset;
  1266     jvalue value;
  1267     copy_to_jvalue(&value, addr, value_type);
  1269     // field index
  1270     reference_info.field.index = field->field_index();
  1272     // invoke the callback
  1273     jint res = (*cb)(JVMTI_HEAP_REFERENCE_FIELD,
  1274                      &reference_info,
  1275                      wrapper->klass_tag(),
  1276                      wrapper->obj_tag_p(),
  1277                      value,
  1278                      value_type,
  1279                      user_data);
  1280     if (res & JVMTI_VISIT_ABORT) {
  1281       return res;
  1284   return 0;
  1288 // VM operation to iterate over all objects in the heap (both reachable
  1289 // and unreachable)
  1290 class VM_HeapIterateOperation: public VM_Operation {
  1291  private:
  1292   ObjectClosure* _blk;
  1293  public:
  1294   VM_HeapIterateOperation(ObjectClosure* blk) { _blk = blk; }
  1296   VMOp_Type type() const { return VMOp_HeapIterateOperation; }
  1297   void doit() {
  1298     // allows class files maps to be cached during iteration
  1299     ClassFieldMapCacheMark cm;
  1301     // make sure that heap is parsable (fills TLABs with filler objects)
  1302     Universe::heap()->ensure_parsability(false);  // no need to retire TLABs
  1304     // Verify heap before iteration - if the heap gets corrupted then
  1305     // JVMTI's IterateOverHeap will crash.
  1306     if (VerifyBeforeIteration) {
  1307       Universe::verify();
  1310     // do the iteration
  1311     Universe::heap()->object_iterate(_blk);
  1313     // when sharing is enabled we must iterate over the shared spaces
  1314     if (UseSharedSpaces) {
  1315       GenCollectedHeap* gch = GenCollectedHeap::heap();
  1316       CompactingPermGenGen* gen = (CompactingPermGenGen*)gch->perm_gen();
  1317       gen->ro_space()->object_iterate(_blk);
  1318       gen->rw_space()->object_iterate(_blk);
  1322 };
  1325 // An ObjectClosure used to support the deprecated IterateOverHeap and
  1326 // IterateOverInstancesOfClass functions
  1327 class IterateOverHeapObjectClosure: public ObjectClosure {
  1328  private:
  1329   JvmtiTagMap* _tag_map;
  1330   KlassHandle _klass;
  1331   jvmtiHeapObjectFilter _object_filter;
  1332   jvmtiHeapObjectCallback _heap_object_callback;
  1333   const void* _user_data;
  1335   // accessors
  1336   JvmtiTagMap* tag_map() const                    { return _tag_map; }
  1337   jvmtiHeapObjectFilter object_filter() const     { return _object_filter; }
  1338   jvmtiHeapObjectCallback object_callback() const { return _heap_object_callback; }
  1339   KlassHandle klass() const                       { return _klass; }
  1340   const void* user_data() const                   { return _user_data; }
  1342   // indicates if iteration has been aborted
  1343   bool _iteration_aborted;
  1344   bool is_iteration_aborted() const               { return _iteration_aborted; }
  1345   void set_iteration_aborted(bool aborted)        { _iteration_aborted = aborted; }
  1347  public:
  1348   IterateOverHeapObjectClosure(JvmtiTagMap* tag_map,
  1349                                KlassHandle klass,
  1350                                jvmtiHeapObjectFilter object_filter,
  1351                                jvmtiHeapObjectCallback heap_object_callback,
  1352                                const void* user_data) :
  1353     _tag_map(tag_map),
  1354     _klass(klass),
  1355     _object_filter(object_filter),
  1356     _heap_object_callback(heap_object_callback),
  1357     _user_data(user_data),
  1358     _iteration_aborted(false)
  1362   void do_object(oop o);
  1363 };
  1365 // invoked for each object in the heap
  1366 void IterateOverHeapObjectClosure::do_object(oop o) {
  1367   // check if iteration has been halted
  1368   if (is_iteration_aborted()) return;
  1370   // ignore any objects that aren't visible to profiler
  1371   if (!ServiceUtil::visible_oop(o)) return;
  1373   // instanceof check when filtering by klass
  1374   if (!klass().is_null() && !o->is_a(klass()())) {
  1375     return;
  1377   // prepare for the calllback
  1378   CallbackWrapper wrapper(tag_map(), o);
  1380   // if the object is tagged and we're only interested in untagged objects
  1381   // then don't invoke the callback. Similiarly, if the object is untagged
  1382   // and we're only interested in tagged objects we skip the callback.
  1383   if (wrapper.obj_tag() != 0) {
  1384     if (object_filter() == JVMTI_HEAP_OBJECT_UNTAGGED) return;
  1385   } else {
  1386     if (object_filter() == JVMTI_HEAP_OBJECT_TAGGED) return;
  1389   // invoke the agent's callback
  1390   jvmtiIterationControl control = (*object_callback())(wrapper.klass_tag(),
  1391                                                        wrapper.obj_size(),
  1392                                                        wrapper.obj_tag_p(),
  1393                                                        (void*)user_data());
  1394   if (control == JVMTI_ITERATION_ABORT) {
  1395     set_iteration_aborted(true);
  1399 // An ObjectClosure used to support the IterateThroughHeap function
  1400 class IterateThroughHeapObjectClosure: public ObjectClosure {
  1401  private:
  1402   JvmtiTagMap* _tag_map;
  1403   KlassHandle _klass;
  1404   int _heap_filter;
  1405   const jvmtiHeapCallbacks* _callbacks;
  1406   const void* _user_data;
  1408   // accessor functions
  1409   JvmtiTagMap* tag_map() const                     { return _tag_map; }
  1410   int heap_filter() const                          { return _heap_filter; }
  1411   const jvmtiHeapCallbacks* callbacks() const      { return _callbacks; }
  1412   KlassHandle klass() const                        { return _klass; }
  1413   const void* user_data() const                    { return _user_data; }
  1415   // indicates if the iteration has been aborted
  1416   bool _iteration_aborted;
  1417   bool is_iteration_aborted() const                { return _iteration_aborted; }
  1419   // used to check the visit control flags. If the abort flag is set
  1420   // then we set the iteration aborted flag so that the iteration completes
  1421   // without processing any further objects
  1422   bool check_flags_for_abort(jint flags) {
  1423     bool is_abort = (flags & JVMTI_VISIT_ABORT) != 0;
  1424     if (is_abort) {
  1425       _iteration_aborted = true;
  1427     return is_abort;
  1430  public:
  1431   IterateThroughHeapObjectClosure(JvmtiTagMap* tag_map,
  1432                                   KlassHandle klass,
  1433                                   int heap_filter,
  1434                                   const jvmtiHeapCallbacks* heap_callbacks,
  1435                                   const void* user_data) :
  1436     _tag_map(tag_map),
  1437     _klass(klass),
  1438     _heap_filter(heap_filter),
  1439     _callbacks(heap_callbacks),
  1440     _user_data(user_data),
  1441     _iteration_aborted(false)
  1445   void do_object(oop o);
  1446 };
  1448 // invoked for each object in the heap
  1449 void IterateThroughHeapObjectClosure::do_object(oop obj) {
  1450   // check if iteration has been halted
  1451   if (is_iteration_aborted()) return;
  1453   // ignore any objects that aren't visible to profiler
  1454   if (!ServiceUtil::visible_oop(obj)) return;
  1456   // apply class filter
  1457   if (is_filtered_by_klass_filter(obj, klass())) return;
  1459   // prepare for callback
  1460   CallbackWrapper wrapper(tag_map(), obj);
  1462   // check if filtered by the heap filter
  1463   if (is_filtered_by_heap_filter(wrapper.obj_tag(), wrapper.klass_tag(), heap_filter())) {
  1464     return;
  1467   // for arrays we need the length, otherwise -1
  1468   bool is_array = obj->is_array();
  1469   int len = is_array ? arrayOop(obj)->length() : -1;
  1471   // invoke the object callback (if callback is provided)
  1472   if (callbacks()->heap_iteration_callback != NULL) {
  1473     jvmtiHeapIterationCallback cb = callbacks()->heap_iteration_callback;
  1474     jint res = (*cb)(wrapper.klass_tag(),
  1475                      wrapper.obj_size(),
  1476                      wrapper.obj_tag_p(),
  1477                      (jint)len,
  1478                      (void*)user_data());
  1479     if (check_flags_for_abort(res)) return;
  1482   // for objects and classes we report primitive fields if callback provided
  1483   if (callbacks()->primitive_field_callback != NULL && obj->is_instance()) {
  1484     jint res;
  1485     jvmtiPrimitiveFieldCallback cb = callbacks()->primitive_field_callback;
  1486     if (obj->klass() == SystemDictionary::class_klass()) {
  1487       res = invoke_primitive_field_callback_for_static_fields(&wrapper,
  1488                                                                     obj,
  1489                                                                     cb,
  1490                                                                     (void*)user_data());
  1491     } else {
  1492       res = invoke_primitive_field_callback_for_instance_fields(&wrapper,
  1493                                                                       obj,
  1494                                                                       cb,
  1495                                                                       (void*)user_data());
  1497     if (check_flags_for_abort(res)) return;
  1500   // string callback
  1501   if (!is_array &&
  1502       callbacks()->string_primitive_value_callback != NULL &&
  1503       obj->klass() == SystemDictionary::string_klass()) {
  1504     jint res = invoke_string_value_callback(
  1505                 callbacks()->string_primitive_value_callback,
  1506                 &wrapper,
  1507                 obj,
  1508                 (void*)user_data() );
  1509     if (check_flags_for_abort(res)) return;
  1512   // array callback
  1513   if (is_array &&
  1514       callbacks()->array_primitive_value_callback != NULL &&
  1515       obj->is_typeArray()) {
  1516     jint res = invoke_array_primitive_value_callback(
  1517                callbacks()->array_primitive_value_callback,
  1518                &wrapper,
  1519                obj,
  1520                (void*)user_data() );
  1521     if (check_flags_for_abort(res)) return;
  1523 };
  1526 // Deprecated function to iterate over all objects in the heap
  1527 void JvmtiTagMap::iterate_over_heap(jvmtiHeapObjectFilter object_filter,
  1528                                     KlassHandle klass,
  1529                                     jvmtiHeapObjectCallback heap_object_callback,
  1530                                     const void* user_data)
  1532   MutexLocker ml(Heap_lock);
  1533   IterateOverHeapObjectClosure blk(this,
  1534                                    klass,
  1535                                    object_filter,
  1536                                    heap_object_callback,
  1537                                    user_data);
  1538   VM_HeapIterateOperation op(&blk);
  1539   VMThread::execute(&op);
  1543 // Iterates over all objects in the heap
  1544 void JvmtiTagMap::iterate_through_heap(jint heap_filter,
  1545                                        KlassHandle klass,
  1546                                        const jvmtiHeapCallbacks* callbacks,
  1547                                        const void* user_data)
  1549   MutexLocker ml(Heap_lock);
  1550   IterateThroughHeapObjectClosure blk(this,
  1551                                       klass,
  1552                                       heap_filter,
  1553                                       callbacks,
  1554                                       user_data);
  1555   VM_HeapIterateOperation op(&blk);
  1556   VMThread::execute(&op);
  1559 // support class for get_objects_with_tags
  1561 class TagObjectCollector : public JvmtiTagHashmapEntryClosure {
  1562  private:
  1563   JvmtiEnv* _env;
  1564   jlong* _tags;
  1565   jint _tag_count;
  1567   GrowableArray<jobject>* _object_results;  // collected objects (JNI weak refs)
  1568   GrowableArray<uint64_t>* _tag_results;    // collected tags
  1570  public:
  1571   TagObjectCollector(JvmtiEnv* env, const jlong* tags, jint tag_count) {
  1572     _env = env;
  1573     _tags = (jlong*)tags;
  1574     _tag_count = tag_count;
  1575     _object_results = new (ResourceObj::C_HEAP) GrowableArray<jobject>(1,true);
  1576     _tag_results = new (ResourceObj::C_HEAP) GrowableArray<uint64_t>(1,true);
  1579   ~TagObjectCollector() {
  1580     delete _object_results;
  1581     delete _tag_results;
  1584   // for each tagged object check if the tag value matches
  1585   // - if it matches then we create a JNI local reference to the object
  1586   // and record the reference and tag value.
  1587   //
  1588   void do_entry(JvmtiTagHashmapEntry* entry) {
  1589     for (int i=0; i<_tag_count; i++) {
  1590       if (_tags[i] == entry->tag()) {
  1591         oop o = JNIHandles::resolve(entry->object());
  1592         assert(o != NULL && o != JNIHandles::deleted_handle(), "sanity check");
  1594         // the mirror is tagged
  1595         if (o->is_klass()) {
  1596           klassOop k = (klassOop)o;
  1597           o = Klass::cast(k)->java_mirror();
  1600         jobject ref = JNIHandles::make_local(JavaThread::current(), o);
  1601         _object_results->append(ref);
  1602         _tag_results->append((uint64_t)entry->tag());
  1607   // return the results from the collection
  1608   //
  1609   jvmtiError result(jint* count_ptr, jobject** object_result_ptr, jlong** tag_result_ptr) {
  1610     jvmtiError error;
  1611     int count = _object_results->length();
  1612     assert(count >= 0, "sanity check");
  1614     // if object_result_ptr is not NULL then allocate the result and copy
  1615     // in the object references.
  1616     if (object_result_ptr != NULL) {
  1617       error = _env->Allocate(count * sizeof(jobject), (unsigned char**)object_result_ptr);
  1618       if (error != JVMTI_ERROR_NONE) {
  1619         return error;
  1621       for (int i=0; i<count; i++) {
  1622         (*object_result_ptr)[i] = _object_results->at(i);
  1626     // if tag_result_ptr is not NULL then allocate the result and copy
  1627     // in the tag values.
  1628     if (tag_result_ptr != NULL) {
  1629       error = _env->Allocate(count * sizeof(jlong), (unsigned char**)tag_result_ptr);
  1630       if (error != JVMTI_ERROR_NONE) {
  1631         if (object_result_ptr != NULL) {
  1632           _env->Deallocate((unsigned char*)object_result_ptr);
  1634         return error;
  1636       for (int i=0; i<count; i++) {
  1637         (*tag_result_ptr)[i] = (jlong)_tag_results->at(i);
  1641     *count_ptr = count;
  1642     return JVMTI_ERROR_NONE;
  1644 };
  1646 // return the list of objects with the specified tags
  1647 jvmtiError JvmtiTagMap::get_objects_with_tags(const jlong* tags,
  1648   jint count, jint* count_ptr, jobject** object_result_ptr, jlong** tag_result_ptr) {
  1650   TagObjectCollector collector(env(), tags, count);
  1652     // iterate over all tagged objects
  1653     MutexLocker ml(lock());
  1654     entry_iterate(&collector);
  1656   return collector.result(count_ptr, object_result_ptr, tag_result_ptr);
  1660 // ObjectMarker is used to support the marking objects when walking the
  1661 // heap.
  1662 //
  1663 // This implementation uses the existing mark bits in an object for
  1664 // marking. Objects that are marked must later have their headers restored.
  1665 // As most objects are unlocked and don't have their identity hash computed
  1666 // we don't have to save their headers. Instead we save the headers that
  1667 // are "interesting". Later when the headers are restored this implementation
  1668 // restores all headers to their initial value and then restores the few
  1669 // objects that had interesting headers.
  1670 //
  1671 // Future work: This implementation currently uses growable arrays to save
  1672 // the oop and header of interesting objects. As an optimization we could
  1673 // use the same technique as the GC and make use of the unused area
  1674 // between top() and end().
  1675 //
  1677 // An ObjectClosure used to restore the mark bits of an object
  1678 class RestoreMarksClosure : public ObjectClosure {
  1679  public:
  1680   void do_object(oop o) {
  1681     if (o != NULL) {
  1682       markOop mark = o->mark();
  1683       if (mark->is_marked()) {
  1684         o->init_mark();
  1688 };
  1690 // ObjectMarker provides the mark and visited functions
  1691 class ObjectMarker : AllStatic {
  1692  private:
  1693   // saved headers
  1694   static GrowableArray<oop>* _saved_oop_stack;
  1695   static GrowableArray<markOop>* _saved_mark_stack;
  1697  public:
  1698   static void init();                       // initialize
  1699   static void done();                       // clean-up
  1701   static inline void mark(oop o);           // mark an object
  1702   static inline bool visited(oop o);        // check if object has been visited
  1703 };
  1705 GrowableArray<oop>* ObjectMarker::_saved_oop_stack = NULL;
  1706 GrowableArray<markOop>* ObjectMarker::_saved_mark_stack = NULL;
  1708 // initialize ObjectMarker - prepares for object marking
  1709 void ObjectMarker::init() {
  1710   assert(Thread::current()->is_VM_thread(), "must be VMThread");
  1712   // prepare heap for iteration
  1713   Universe::heap()->ensure_parsability(false);  // no need to retire TLABs
  1715   // create stacks for interesting headers
  1716   _saved_mark_stack = new (ResourceObj::C_HEAP) GrowableArray<markOop>(4000, true);
  1717   _saved_oop_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(4000, true);
  1719   if (UseBiasedLocking) {
  1720     BiasedLocking::preserve_marks();
  1724 // Object marking is done so restore object headers
  1725 void ObjectMarker::done() {
  1726   // iterate over all objects and restore the mark bits to
  1727   // their initial value
  1728   RestoreMarksClosure blk;
  1729   Universe::heap()->object_iterate(&blk);
  1731   // When sharing is enabled we need to restore the headers of the objects
  1732   // in the readwrite space too.
  1733   if (UseSharedSpaces) {
  1734     GenCollectedHeap* gch = GenCollectedHeap::heap();
  1735     CompactingPermGenGen* gen = (CompactingPermGenGen*)gch->perm_gen();
  1736     gen->rw_space()->object_iterate(&blk);
  1739   // now restore the interesting headers
  1740   for (int i = 0; i < _saved_oop_stack->length(); i++) {
  1741     oop o = _saved_oop_stack->at(i);
  1742     markOop mark = _saved_mark_stack->at(i);
  1743     o->set_mark(mark);
  1746   if (UseBiasedLocking) {
  1747     BiasedLocking::restore_marks();
  1750   // free the stacks
  1751   delete _saved_oop_stack;
  1752   delete _saved_mark_stack;
  1755 // mark an object
  1756 inline void ObjectMarker::mark(oop o) {
  1757   assert(Universe::heap()->is_in(o), "sanity check");
  1758   assert(!o->mark()->is_marked(), "should only mark an object once");
  1760   // object's mark word
  1761   markOop mark = o->mark();
  1763   if (mark->must_be_preserved(o)) {
  1764     _saved_mark_stack->push(mark);
  1765     _saved_oop_stack->push(o);
  1768   // mark the object
  1769   o->set_mark(markOopDesc::prototype()->set_marked());
  1772 // return true if object is marked
  1773 inline bool ObjectMarker::visited(oop o) {
  1774   return o->mark()->is_marked();
  1777 // Stack allocated class to help ensure that ObjectMarker is used
  1778 // correctly. Constructor initializes ObjectMarker, destructor calls
  1779 // ObjectMarker's done() function to restore object headers.
  1780 class ObjectMarkerController : public StackObj {
  1781  public:
  1782   ObjectMarkerController() {
  1783     ObjectMarker::init();
  1785   ~ObjectMarkerController() {
  1786     ObjectMarker::done();
  1788 };
  1791 // helper to map a jvmtiHeapReferenceKind to an old style jvmtiHeapRootKind
  1792 // (not performance critical as only used for roots)
  1793 static jvmtiHeapRootKind toJvmtiHeapRootKind(jvmtiHeapReferenceKind kind) {
  1794   switch (kind) {
  1795     case JVMTI_HEAP_REFERENCE_JNI_GLOBAL:   return JVMTI_HEAP_ROOT_JNI_GLOBAL;
  1796     case JVMTI_HEAP_REFERENCE_SYSTEM_CLASS: return JVMTI_HEAP_ROOT_SYSTEM_CLASS;
  1797     case JVMTI_HEAP_REFERENCE_MONITOR:      return JVMTI_HEAP_ROOT_MONITOR;
  1798     case JVMTI_HEAP_REFERENCE_STACK_LOCAL:  return JVMTI_HEAP_ROOT_STACK_LOCAL;
  1799     case JVMTI_HEAP_REFERENCE_JNI_LOCAL:    return JVMTI_HEAP_ROOT_JNI_LOCAL;
  1800     case JVMTI_HEAP_REFERENCE_THREAD:       return JVMTI_HEAP_ROOT_THREAD;
  1801     case JVMTI_HEAP_REFERENCE_OTHER:        return JVMTI_HEAP_ROOT_OTHER;
  1802     default: ShouldNotReachHere();          return JVMTI_HEAP_ROOT_OTHER;
  1806 // Base class for all heap walk contexts. The base class maintains a flag
  1807 // to indicate if the context is valid or not.
  1808 class HeapWalkContext VALUE_OBJ_CLASS_SPEC {
  1809  private:
  1810   bool _valid;
  1811  public:
  1812   HeapWalkContext(bool valid)                   { _valid = valid; }
  1813   void invalidate()                             { _valid = false; }
  1814   bool is_valid() const                         { return _valid; }
  1815 };
  1817 // A basic heap walk context for the deprecated heap walking functions.
  1818 // The context for a basic heap walk are the callbacks and fields used by
  1819 // the referrer caching scheme.
  1820 class BasicHeapWalkContext: public HeapWalkContext {
  1821  private:
  1822   jvmtiHeapRootCallback _heap_root_callback;
  1823   jvmtiStackReferenceCallback _stack_ref_callback;
  1824   jvmtiObjectReferenceCallback _object_ref_callback;
  1826   // used for caching
  1827   oop _last_referrer;
  1828   jlong _last_referrer_tag;
  1830  public:
  1831   BasicHeapWalkContext() : HeapWalkContext(false) { }
  1833   BasicHeapWalkContext(jvmtiHeapRootCallback heap_root_callback,
  1834                        jvmtiStackReferenceCallback stack_ref_callback,
  1835                        jvmtiObjectReferenceCallback object_ref_callback) :
  1836     HeapWalkContext(true),
  1837     _heap_root_callback(heap_root_callback),
  1838     _stack_ref_callback(stack_ref_callback),
  1839     _object_ref_callback(object_ref_callback),
  1840     _last_referrer(NULL),
  1841     _last_referrer_tag(0) {
  1844   // accessors
  1845   jvmtiHeapRootCallback heap_root_callback() const         { return _heap_root_callback; }
  1846   jvmtiStackReferenceCallback stack_ref_callback() const   { return _stack_ref_callback; }
  1847   jvmtiObjectReferenceCallback object_ref_callback() const { return _object_ref_callback;  }
  1849   oop last_referrer() const               { return _last_referrer; }
  1850   void set_last_referrer(oop referrer)    { _last_referrer = referrer; }
  1851   jlong last_referrer_tag() const         { return _last_referrer_tag; }
  1852   void set_last_referrer_tag(jlong value) { _last_referrer_tag = value; }
  1853 };
  1855 // The advanced heap walk context for the FollowReferences functions.
  1856 // The context is the callbacks, and the fields used for filtering.
  1857 class AdvancedHeapWalkContext: public HeapWalkContext {
  1858  private:
  1859   jint _heap_filter;
  1860   KlassHandle _klass_filter;
  1861   const jvmtiHeapCallbacks* _heap_callbacks;
  1863  public:
  1864   AdvancedHeapWalkContext() : HeapWalkContext(false) { }
  1866   AdvancedHeapWalkContext(jint heap_filter,
  1867                            KlassHandle klass_filter,
  1868                            const jvmtiHeapCallbacks* heap_callbacks) :
  1869     HeapWalkContext(true),
  1870     _heap_filter(heap_filter),
  1871     _klass_filter(klass_filter),
  1872     _heap_callbacks(heap_callbacks) {
  1875   // accessors
  1876   jint heap_filter() const         { return _heap_filter; }
  1877   KlassHandle klass_filter() const { return _klass_filter; }
  1879   const jvmtiHeapReferenceCallback heap_reference_callback() const {
  1880     return _heap_callbacks->heap_reference_callback;
  1881   };
  1882   const jvmtiPrimitiveFieldCallback primitive_field_callback() const {
  1883     return _heap_callbacks->primitive_field_callback;
  1885   const jvmtiArrayPrimitiveValueCallback array_primitive_value_callback() const {
  1886     return _heap_callbacks->array_primitive_value_callback;
  1888   const jvmtiStringPrimitiveValueCallback string_primitive_value_callback() const {
  1889     return _heap_callbacks->string_primitive_value_callback;
  1891 };
  1893 // The CallbackInvoker is a class with static functions that the heap walk can call
  1894 // into to invoke callbacks. It works in one of two modes. The "basic" mode is
  1895 // used for the deprecated IterateOverReachableObjects functions. The "advanced"
  1896 // mode is for the newer FollowReferences function which supports a lot of
  1897 // additional callbacks.
  1898 class CallbackInvoker : AllStatic {
  1899  private:
  1900   // heap walk styles
  1901   enum { basic, advanced };
  1902   static int _heap_walk_type;
  1903   static bool is_basic_heap_walk()           { return _heap_walk_type == basic; }
  1904   static bool is_advanced_heap_walk()        { return _heap_walk_type == advanced; }
  1906   // context for basic style heap walk
  1907   static BasicHeapWalkContext _basic_context;
  1908   static BasicHeapWalkContext* basic_context() {
  1909     assert(_basic_context.is_valid(), "invalid");
  1910     return &_basic_context;
  1913   // context for advanced style heap walk
  1914   static AdvancedHeapWalkContext _advanced_context;
  1915   static AdvancedHeapWalkContext* advanced_context() {
  1916     assert(_advanced_context.is_valid(), "invalid");
  1917     return &_advanced_context;
  1920   // context needed for all heap walks
  1921   static JvmtiTagMap* _tag_map;
  1922   static const void* _user_data;
  1923   static GrowableArray<oop>* _visit_stack;
  1925   // accessors
  1926   static JvmtiTagMap* tag_map()                        { return _tag_map; }
  1927   static const void* user_data()                       { return _user_data; }
  1928   static GrowableArray<oop>* visit_stack()             { return _visit_stack; }
  1930   // if the object hasn't been visited then push it onto the visit stack
  1931   // so that it will be visited later
  1932   static inline bool check_for_visit(oop obj) {
  1933     if (!ObjectMarker::visited(obj)) visit_stack()->push(obj);
  1934     return true;
  1937   // invoke basic style callbacks
  1938   static inline bool invoke_basic_heap_root_callback
  1939     (jvmtiHeapRootKind root_kind, oop obj);
  1940   static inline bool invoke_basic_stack_ref_callback
  1941     (jvmtiHeapRootKind root_kind, jlong thread_tag, jint depth, jmethodID method,
  1942      int slot, oop obj);
  1943   static inline bool invoke_basic_object_reference_callback
  1944     (jvmtiObjectReferenceKind ref_kind, oop referrer, oop referree, jint index);
  1946   // invoke advanced style callbacks
  1947   static inline bool invoke_advanced_heap_root_callback
  1948     (jvmtiHeapReferenceKind ref_kind, oop obj);
  1949   static inline bool invoke_advanced_stack_ref_callback
  1950     (jvmtiHeapReferenceKind ref_kind, jlong thread_tag, jlong tid, int depth,
  1951      jmethodID method, jlocation bci, jint slot, oop obj);
  1952   static inline bool invoke_advanced_object_reference_callback
  1953     (jvmtiHeapReferenceKind ref_kind, oop referrer, oop referree, jint index);
  1955   // used to report the value of primitive fields
  1956   static inline bool report_primitive_field
  1957     (jvmtiHeapReferenceKind ref_kind, oop obj, jint index, address addr, char type);
  1959  public:
  1960   // initialize for basic mode
  1961   static void initialize_for_basic_heap_walk(JvmtiTagMap* tag_map,
  1962                                              GrowableArray<oop>* visit_stack,
  1963                                              const void* user_data,
  1964                                              BasicHeapWalkContext context);
  1966   // initialize for advanced mode
  1967   static void initialize_for_advanced_heap_walk(JvmtiTagMap* tag_map,
  1968                                                 GrowableArray<oop>* visit_stack,
  1969                                                 const void* user_data,
  1970                                                 AdvancedHeapWalkContext context);
  1972    // functions to report roots
  1973   static inline bool report_simple_root(jvmtiHeapReferenceKind kind, oop o);
  1974   static inline bool report_jni_local_root(jlong thread_tag, jlong tid, jint depth,
  1975     jmethodID m, oop o);
  1976   static inline bool report_stack_ref_root(jlong thread_tag, jlong tid, jint depth,
  1977     jmethodID method, jlocation bci, jint slot, oop o);
  1979   // functions to report references
  1980   static inline bool report_array_element_reference(oop referrer, oop referree, jint index);
  1981   static inline bool report_class_reference(oop referrer, oop referree);
  1982   static inline bool report_class_loader_reference(oop referrer, oop referree);
  1983   static inline bool report_signers_reference(oop referrer, oop referree);
  1984   static inline bool report_protection_domain_reference(oop referrer, oop referree);
  1985   static inline bool report_superclass_reference(oop referrer, oop referree);
  1986   static inline bool report_interface_reference(oop referrer, oop referree);
  1987   static inline bool report_static_field_reference(oop referrer, oop referree, jint slot);
  1988   static inline bool report_field_reference(oop referrer, oop referree, jint slot);
  1989   static inline bool report_constant_pool_reference(oop referrer, oop referree, jint index);
  1990   static inline bool report_primitive_array_values(oop array);
  1991   static inline bool report_string_value(oop str);
  1992   static inline bool report_primitive_instance_field(oop o, jint index, address value, char type);
  1993   static inline bool report_primitive_static_field(oop o, jint index, address value, char type);
  1994 };
  1996 // statics
  1997 int CallbackInvoker::_heap_walk_type;
  1998 BasicHeapWalkContext CallbackInvoker::_basic_context;
  1999 AdvancedHeapWalkContext CallbackInvoker::_advanced_context;
  2000 JvmtiTagMap* CallbackInvoker::_tag_map;
  2001 const void* CallbackInvoker::_user_data;
  2002 GrowableArray<oop>* CallbackInvoker::_visit_stack;
  2004 // initialize for basic heap walk (IterateOverReachableObjects et al)
  2005 void CallbackInvoker::initialize_for_basic_heap_walk(JvmtiTagMap* tag_map,
  2006                                                      GrowableArray<oop>* visit_stack,
  2007                                                      const void* user_data,
  2008                                                      BasicHeapWalkContext context) {
  2009   _tag_map = tag_map;
  2010   _visit_stack = visit_stack;
  2011   _user_data = user_data;
  2012   _basic_context = context;
  2013   _advanced_context.invalidate();       // will trigger assertion if used
  2014   _heap_walk_type = basic;
  2017 // initialize for advanced heap walk (FollowReferences)
  2018 void CallbackInvoker::initialize_for_advanced_heap_walk(JvmtiTagMap* tag_map,
  2019                                                         GrowableArray<oop>* visit_stack,
  2020                                                         const void* user_data,
  2021                                                         AdvancedHeapWalkContext context) {
  2022   _tag_map = tag_map;
  2023   _visit_stack = visit_stack;
  2024   _user_data = user_data;
  2025   _advanced_context = context;
  2026   _basic_context.invalidate();      // will trigger assertion if used
  2027   _heap_walk_type = advanced;
  2031 // invoke basic style heap root callback
  2032 inline bool CallbackInvoker::invoke_basic_heap_root_callback(jvmtiHeapRootKind root_kind, oop obj) {
  2033   assert(ServiceUtil::visible_oop(obj), "checking");
  2035   // if we heap roots should be reported
  2036   jvmtiHeapRootCallback cb = basic_context()->heap_root_callback();
  2037   if (cb == NULL) {
  2038     return check_for_visit(obj);
  2041   CallbackWrapper wrapper(tag_map(), obj);
  2042   jvmtiIterationControl control = (*cb)(root_kind,
  2043                                         wrapper.klass_tag(),
  2044                                         wrapper.obj_size(),
  2045                                         wrapper.obj_tag_p(),
  2046                                         (void*)user_data());
  2047   // push root to visit stack when following references
  2048   if (control == JVMTI_ITERATION_CONTINUE &&
  2049       basic_context()->object_ref_callback() != NULL) {
  2050     visit_stack()->push(obj);
  2052   return control != JVMTI_ITERATION_ABORT;
  2055 // invoke basic style stack ref callback
  2056 inline bool CallbackInvoker::invoke_basic_stack_ref_callback(jvmtiHeapRootKind root_kind,
  2057                                                              jlong thread_tag,
  2058                                                              jint depth,
  2059                                                              jmethodID method,
  2060                                                              jint slot,
  2061                                                              oop obj) {
  2062   assert(ServiceUtil::visible_oop(obj), "checking");
  2064   // if we stack refs should be reported
  2065   jvmtiStackReferenceCallback cb = basic_context()->stack_ref_callback();
  2066   if (cb == NULL) {
  2067     return check_for_visit(obj);
  2070   CallbackWrapper wrapper(tag_map(), obj);
  2071   jvmtiIterationControl control = (*cb)(root_kind,
  2072                                         wrapper.klass_tag(),
  2073                                         wrapper.obj_size(),
  2074                                         wrapper.obj_tag_p(),
  2075                                         thread_tag,
  2076                                         depth,
  2077                                         method,
  2078                                         slot,
  2079                                         (void*)user_data());
  2080   // push root to visit stack when following references
  2081   if (control == JVMTI_ITERATION_CONTINUE &&
  2082       basic_context()->object_ref_callback() != NULL) {
  2083     visit_stack()->push(obj);
  2085   return control != JVMTI_ITERATION_ABORT;
  2088 // invoke basic style object reference callback
  2089 inline bool CallbackInvoker::invoke_basic_object_reference_callback(jvmtiObjectReferenceKind ref_kind,
  2090                                                                     oop referrer,
  2091                                                                     oop referree,
  2092                                                                     jint index) {
  2094   assert(ServiceUtil::visible_oop(referrer), "checking");
  2095   assert(ServiceUtil::visible_oop(referree), "checking");
  2097   BasicHeapWalkContext* context = basic_context();
  2099   // callback requires the referrer's tag. If it's the same referrer
  2100   // as the last call then we use the cached value.
  2101   jlong referrer_tag;
  2102   if (referrer == context->last_referrer()) {
  2103     referrer_tag = context->last_referrer_tag();
  2104   } else {
  2105     referrer_tag = tag_for(tag_map(), klassOop_if_java_lang_Class(referrer));
  2108   // do the callback
  2109   CallbackWrapper wrapper(tag_map(), referree);
  2110   jvmtiObjectReferenceCallback cb = context->object_ref_callback();
  2111   jvmtiIterationControl control = (*cb)(ref_kind,
  2112                                         wrapper.klass_tag(),
  2113                                         wrapper.obj_size(),
  2114                                         wrapper.obj_tag_p(),
  2115                                         referrer_tag,
  2116                                         index,
  2117                                         (void*)user_data());
  2119   // record referrer and referrer tag. For self-references record the
  2120   // tag value from the callback as this might differ from referrer_tag.
  2121   context->set_last_referrer(referrer);
  2122   if (referrer == referree) {
  2123     context->set_last_referrer_tag(*wrapper.obj_tag_p());
  2124   } else {
  2125     context->set_last_referrer_tag(referrer_tag);
  2128   if (control == JVMTI_ITERATION_CONTINUE) {
  2129     return check_for_visit(referree);
  2130   } else {
  2131     return control != JVMTI_ITERATION_ABORT;
  2135 // invoke advanced style heap root callback
  2136 inline bool CallbackInvoker::invoke_advanced_heap_root_callback(jvmtiHeapReferenceKind ref_kind,
  2137                                                                 oop obj) {
  2138   assert(ServiceUtil::visible_oop(obj), "checking");
  2140   AdvancedHeapWalkContext* context = advanced_context();
  2142   // check that callback is provided
  2143   jvmtiHeapReferenceCallback cb = context->heap_reference_callback();
  2144   if (cb == NULL) {
  2145     return check_for_visit(obj);
  2148   // apply class filter
  2149   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
  2150     return check_for_visit(obj);
  2153   // setup the callback wrapper
  2154   CallbackWrapper wrapper(tag_map(), obj);
  2156   // apply tag filter
  2157   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
  2158                                  wrapper.klass_tag(),
  2159                                  context->heap_filter())) {
  2160     return check_for_visit(obj);
  2163   // for arrays we need the length, otherwise -1
  2164   jint len = (jint)(obj->is_array() ? arrayOop(obj)->length() : -1);
  2166   // invoke the callback
  2167   jint res  = (*cb)(ref_kind,
  2168                     NULL, // referrer info
  2169                     wrapper.klass_tag(),
  2170                     0,    // referrer_class_tag is 0 for heap root
  2171                     wrapper.obj_size(),
  2172                     wrapper.obj_tag_p(),
  2173                     NULL, // referrer_tag_p
  2174                     len,
  2175                     (void*)user_data());
  2176   if (res & JVMTI_VISIT_ABORT) {
  2177     return false;// referrer class tag
  2179   if (res & JVMTI_VISIT_OBJECTS) {
  2180     check_for_visit(obj);
  2182   return true;
  2185 // report a reference from a thread stack to an object
  2186 inline bool CallbackInvoker::invoke_advanced_stack_ref_callback(jvmtiHeapReferenceKind ref_kind,
  2187                                                                 jlong thread_tag,
  2188                                                                 jlong tid,
  2189                                                                 int depth,
  2190                                                                 jmethodID method,
  2191                                                                 jlocation bci,
  2192                                                                 jint slot,
  2193                                                                 oop obj) {
  2194   assert(ServiceUtil::visible_oop(obj), "checking");
  2196   AdvancedHeapWalkContext* context = advanced_context();
  2198   // check that callback is provider
  2199   jvmtiHeapReferenceCallback cb = context->heap_reference_callback();
  2200   if (cb == NULL) {
  2201     return check_for_visit(obj);
  2204   // apply class filter
  2205   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
  2206     return check_for_visit(obj);
  2209   // setup the callback wrapper
  2210   CallbackWrapper wrapper(tag_map(), obj);
  2212   // apply tag filter
  2213   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
  2214                                  wrapper.klass_tag(),
  2215                                  context->heap_filter())) {
  2216     return check_for_visit(obj);
  2219   // setup the referrer info
  2220   jvmtiHeapReferenceInfo reference_info;
  2221   reference_info.stack_local.thread_tag = thread_tag;
  2222   reference_info.stack_local.thread_id = tid;
  2223   reference_info.stack_local.depth = depth;
  2224   reference_info.stack_local.method = method;
  2225   reference_info.stack_local.location = bci;
  2226   reference_info.stack_local.slot = slot;
  2228   // for arrays we need the length, otherwise -1
  2229   jint len = (jint)(obj->is_array() ? arrayOop(obj)->length() : -1);
  2231   // call into the agent
  2232   int res = (*cb)(ref_kind,
  2233                   &reference_info,
  2234                   wrapper.klass_tag(),
  2235                   0,    // referrer_class_tag is 0 for heap root (stack)
  2236                   wrapper.obj_size(),
  2237                   wrapper.obj_tag_p(),
  2238                   NULL, // referrer_tag is 0 for root
  2239                   len,
  2240                   (void*)user_data());
  2242   if (res & JVMTI_VISIT_ABORT) {
  2243     return false;
  2245   if (res & JVMTI_VISIT_OBJECTS) {
  2246     check_for_visit(obj);
  2248   return true;
  2251 // This mask is used to pass reference_info to a jvmtiHeapReferenceCallback
  2252 // only for ref_kinds defined by the JVM TI spec. Otherwise, NULL is passed.
  2253 #define REF_INFO_MASK  ((1 << JVMTI_HEAP_REFERENCE_FIELD)         \
  2254                       | (1 << JVMTI_HEAP_REFERENCE_STATIC_FIELD)  \
  2255                       | (1 << JVMTI_HEAP_REFERENCE_ARRAY_ELEMENT) \
  2256                       | (1 << JVMTI_HEAP_REFERENCE_CONSTANT_POOL) \
  2257                       | (1 << JVMTI_HEAP_REFERENCE_STACK_LOCAL)   \
  2258                       | (1 << JVMTI_HEAP_REFERENCE_JNI_LOCAL))
  2260 // invoke the object reference callback to report a reference
  2261 inline bool CallbackInvoker::invoke_advanced_object_reference_callback(jvmtiHeapReferenceKind ref_kind,
  2262                                                                        oop referrer,
  2263                                                                        oop obj,
  2264                                                                        jint index)
  2266   // field index is only valid field in reference_info
  2267   static jvmtiHeapReferenceInfo reference_info = { 0 };
  2269   assert(ServiceUtil::visible_oop(referrer), "checking");
  2270   assert(ServiceUtil::visible_oop(obj), "checking");
  2272   AdvancedHeapWalkContext* context = advanced_context();
  2274   // check that callback is provider
  2275   jvmtiHeapReferenceCallback cb = context->heap_reference_callback();
  2276   if (cb == NULL) {
  2277     return check_for_visit(obj);
  2280   // apply class filter
  2281   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
  2282     return check_for_visit(obj);
  2285   // setup the callback wrapper
  2286   TwoOopCallbackWrapper wrapper(tag_map(), referrer, obj);
  2288   // apply tag filter
  2289   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
  2290                                  wrapper.klass_tag(),
  2291                                  context->heap_filter())) {
  2292     return check_for_visit(obj);
  2295   // field index is only valid field in reference_info
  2296   reference_info.field.index = index;
  2298   // for arrays we need the length, otherwise -1
  2299   jint len = (jint)(obj->is_array() ? arrayOop(obj)->length() : -1);
  2301   // invoke the callback
  2302   int res = (*cb)(ref_kind,
  2303                   (REF_INFO_MASK & (1 << ref_kind)) ? &reference_info : NULL,
  2304                   wrapper.klass_tag(),
  2305                   wrapper.referrer_klass_tag(),
  2306                   wrapper.obj_size(),
  2307                   wrapper.obj_tag_p(),
  2308                   wrapper.referrer_tag_p(),
  2309                   len,
  2310                   (void*)user_data());
  2312   if (res & JVMTI_VISIT_ABORT) {
  2313     return false;
  2315   if (res & JVMTI_VISIT_OBJECTS) {
  2316     check_for_visit(obj);
  2318   return true;
  2321 // report a "simple root"
  2322 inline bool CallbackInvoker::report_simple_root(jvmtiHeapReferenceKind kind, oop obj) {
  2323   assert(kind != JVMTI_HEAP_REFERENCE_STACK_LOCAL &&
  2324          kind != JVMTI_HEAP_REFERENCE_JNI_LOCAL, "not a simple root");
  2325   assert(ServiceUtil::visible_oop(obj), "checking");
  2327   if (is_basic_heap_walk()) {
  2328     // map to old style root kind
  2329     jvmtiHeapRootKind root_kind = toJvmtiHeapRootKind(kind);
  2330     return invoke_basic_heap_root_callback(root_kind, obj);
  2331   } else {
  2332     assert(is_advanced_heap_walk(), "wrong heap walk type");
  2333     return invoke_advanced_heap_root_callback(kind, obj);
  2338 // invoke the primitive array values
  2339 inline bool CallbackInvoker::report_primitive_array_values(oop obj) {
  2340   assert(obj->is_typeArray(), "not a primitive array");
  2342   AdvancedHeapWalkContext* context = advanced_context();
  2343   assert(context->array_primitive_value_callback() != NULL, "no callback");
  2345   // apply class filter
  2346   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
  2347     return true;
  2350   CallbackWrapper wrapper(tag_map(), obj);
  2352   // apply tag filter
  2353   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
  2354                                  wrapper.klass_tag(),
  2355                                  context->heap_filter())) {
  2356     return true;
  2359   // invoke the callback
  2360   int res = invoke_array_primitive_value_callback(context->array_primitive_value_callback(),
  2361                                                   &wrapper,
  2362                                                   obj,
  2363                                                   (void*)user_data());
  2364   return (!(res & JVMTI_VISIT_ABORT));
  2367 // invoke the string value callback
  2368 inline bool CallbackInvoker::report_string_value(oop str) {
  2369   assert(str->klass() == SystemDictionary::string_klass(), "not a string");
  2371   AdvancedHeapWalkContext* context = advanced_context();
  2372   assert(context->string_primitive_value_callback() != NULL, "no callback");
  2374   // apply class filter
  2375   if (is_filtered_by_klass_filter(str, context->klass_filter())) {
  2376     return true;
  2379   CallbackWrapper wrapper(tag_map(), str);
  2381   // apply tag filter
  2382   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
  2383                                  wrapper.klass_tag(),
  2384                                  context->heap_filter())) {
  2385     return true;
  2388   // invoke the callback
  2389   int res = invoke_string_value_callback(context->string_primitive_value_callback(),
  2390                                          &wrapper,
  2391                                          str,
  2392                                          (void*)user_data());
  2393   return (!(res & JVMTI_VISIT_ABORT));
  2396 // invoke the primitive field callback
  2397 inline bool CallbackInvoker::report_primitive_field(jvmtiHeapReferenceKind ref_kind,
  2398                                                     oop obj,
  2399                                                     jint index,
  2400                                                     address addr,
  2401                                                     char type)
  2403   // for primitive fields only the index will be set
  2404   static jvmtiHeapReferenceInfo reference_info = { 0 };
  2406   AdvancedHeapWalkContext* context = advanced_context();
  2407   assert(context->primitive_field_callback() != NULL, "no callback");
  2409   // apply class filter
  2410   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
  2411     return true;
  2414   CallbackWrapper wrapper(tag_map(), obj);
  2416   // apply tag filter
  2417   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
  2418                                  wrapper.klass_tag(),
  2419                                  context->heap_filter())) {
  2420     return true;
  2423   // the field index in the referrer
  2424   reference_info.field.index = index;
  2426   // map the type
  2427   jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type;
  2429   // setup the jvalue
  2430   jvalue value;
  2431   copy_to_jvalue(&value, addr, value_type);
  2433   jvmtiPrimitiveFieldCallback cb = context->primitive_field_callback();
  2434   int res = (*cb)(ref_kind,
  2435                   &reference_info,
  2436                   wrapper.klass_tag(),
  2437                   wrapper.obj_tag_p(),
  2438                   value,
  2439                   value_type,
  2440                   (void*)user_data());
  2441   return (!(res & JVMTI_VISIT_ABORT));
  2445 // instance field
  2446 inline bool CallbackInvoker::report_primitive_instance_field(oop obj,
  2447                                                              jint index,
  2448                                                              address value,
  2449                                                              char type) {
  2450   return report_primitive_field(JVMTI_HEAP_REFERENCE_FIELD,
  2451                                 obj,
  2452                                 index,
  2453                                 value,
  2454                                 type);
  2457 // static field
  2458 inline bool CallbackInvoker::report_primitive_static_field(oop obj,
  2459                                                            jint index,
  2460                                                            address value,
  2461                                                            char type) {
  2462   return report_primitive_field(JVMTI_HEAP_REFERENCE_STATIC_FIELD,
  2463                                 obj,
  2464                                 index,
  2465                                 value,
  2466                                 type);
  2469 // report a JNI local (root object) to the profiler
  2470 inline bool CallbackInvoker::report_jni_local_root(jlong thread_tag, jlong tid, jint depth, jmethodID m, oop obj) {
  2471   if (is_basic_heap_walk()) {
  2472     return invoke_basic_stack_ref_callback(JVMTI_HEAP_ROOT_JNI_LOCAL,
  2473                                            thread_tag,
  2474                                            depth,
  2475                                            m,
  2476                                            -1,
  2477                                            obj);
  2478   } else {
  2479     return invoke_advanced_stack_ref_callback(JVMTI_HEAP_REFERENCE_JNI_LOCAL,
  2480                                               thread_tag, tid,
  2481                                               depth,
  2482                                               m,
  2483                                               (jlocation)-1,
  2484                                               -1,
  2485                                               obj);
  2490 // report a local (stack reference, root object)
  2491 inline bool CallbackInvoker::report_stack_ref_root(jlong thread_tag,
  2492                                                    jlong tid,
  2493                                                    jint depth,
  2494                                                    jmethodID method,
  2495                                                    jlocation bci,
  2496                                                    jint slot,
  2497                                                    oop obj) {
  2498   if (is_basic_heap_walk()) {
  2499     return invoke_basic_stack_ref_callback(JVMTI_HEAP_ROOT_STACK_LOCAL,
  2500                                            thread_tag,
  2501                                            depth,
  2502                                            method,
  2503                                            slot,
  2504                                            obj);
  2505   } else {
  2506     return invoke_advanced_stack_ref_callback(JVMTI_HEAP_REFERENCE_STACK_LOCAL,
  2507                                               thread_tag,
  2508                                               tid,
  2509                                               depth,
  2510                                               method,
  2511                                               bci,
  2512                                               slot,
  2513                                               obj);
  2517 // report an object referencing a class.
  2518 inline bool CallbackInvoker::report_class_reference(oop referrer, oop referree) {
  2519   if (is_basic_heap_walk()) {
  2520     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS, referrer, referree, -1);
  2521   } else {
  2522     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CLASS, referrer, referree, -1);
  2526 // report a class referencing its class loader.
  2527 inline bool CallbackInvoker::report_class_loader_reference(oop referrer, oop referree) {
  2528   if (is_basic_heap_walk()) {
  2529     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS_LOADER, referrer, referree, -1);
  2530   } else {
  2531     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CLASS_LOADER, referrer, referree, -1);
  2535 // report a class referencing its signers.
  2536 inline bool CallbackInvoker::report_signers_reference(oop referrer, oop referree) {
  2537   if (is_basic_heap_walk()) {
  2538     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_SIGNERS, referrer, referree, -1);
  2539   } else {
  2540     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_SIGNERS, referrer, referree, -1);
  2544 // report a class referencing its protection domain..
  2545 inline bool CallbackInvoker::report_protection_domain_reference(oop referrer, oop referree) {
  2546   if (is_basic_heap_walk()) {
  2547     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_PROTECTION_DOMAIN, referrer, referree, -1);
  2548   } else {
  2549     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_PROTECTION_DOMAIN, referrer, referree, -1);
  2553 // report a class referencing its superclass.
  2554 inline bool CallbackInvoker::report_superclass_reference(oop referrer, oop referree) {
  2555   if (is_basic_heap_walk()) {
  2556     // Send this to be consistent with past implementation
  2557     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS, referrer, referree, -1);
  2558   } else {
  2559     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_SUPERCLASS, referrer, referree, -1);
  2563 // report a class referencing one of its interfaces.
  2564 inline bool CallbackInvoker::report_interface_reference(oop referrer, oop referree) {
  2565   if (is_basic_heap_walk()) {
  2566     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_INTERFACE, referrer, referree, -1);
  2567   } else {
  2568     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_INTERFACE, referrer, referree, -1);
  2572 // report a class referencing one of its static fields.
  2573 inline bool CallbackInvoker::report_static_field_reference(oop referrer, oop referree, jint slot) {
  2574   if (is_basic_heap_walk()) {
  2575     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_STATIC_FIELD, referrer, referree, slot);
  2576   } else {
  2577     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_STATIC_FIELD, referrer, referree, slot);
  2581 // report an array referencing an element object
  2582 inline bool CallbackInvoker::report_array_element_reference(oop referrer, oop referree, jint index) {
  2583   if (is_basic_heap_walk()) {
  2584     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_ARRAY_ELEMENT, referrer, referree, index);
  2585   } else {
  2586     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_ARRAY_ELEMENT, referrer, referree, index);
  2590 // report an object referencing an instance field object
  2591 inline bool CallbackInvoker::report_field_reference(oop referrer, oop referree, jint slot) {
  2592   if (is_basic_heap_walk()) {
  2593     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_FIELD, referrer, referree, slot);
  2594   } else {
  2595     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_FIELD, referrer, referree, slot);
  2599 // report an array referencing an element object
  2600 inline bool CallbackInvoker::report_constant_pool_reference(oop referrer, oop referree, jint index) {
  2601   if (is_basic_heap_walk()) {
  2602     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CONSTANT_POOL, referrer, referree, index);
  2603   } else {
  2604     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CONSTANT_POOL, referrer, referree, index);
  2608 // A supporting closure used to process simple roots
  2609 class SimpleRootsClosure : public OopClosure {
  2610  private:
  2611   jvmtiHeapReferenceKind _kind;
  2612   bool _continue;
  2614   jvmtiHeapReferenceKind root_kind()    { return _kind; }
  2616  public:
  2617   void set_kind(jvmtiHeapReferenceKind kind) {
  2618     _kind = kind;
  2619     _continue = true;
  2622   inline bool stopped() {
  2623     return !_continue;
  2626   void do_oop(oop* obj_p) {
  2627     // iteration has terminated
  2628     if (stopped()) {
  2629       return;
  2632     // ignore null or deleted handles
  2633     oop o = *obj_p;
  2634     if (o == NULL || o == JNIHandles::deleted_handle()) {
  2635       return;
  2638     jvmtiHeapReferenceKind kind = root_kind();
  2640     // many roots are Klasses so we use the java mirror
  2641     if (o->is_klass()) {
  2642       klassOop k = (klassOop)o;
  2643       o = Klass::cast(k)->java_mirror();
  2644     } else {
  2646       // SystemDictionary::always_strong_oops_do reports the application
  2647       // class loader as a root. We want this root to be reported as
  2648       // a root kind of "OTHER" rather than "SYSTEM_CLASS".
  2649       if (o->is_instance() && root_kind() == JVMTI_HEAP_REFERENCE_SYSTEM_CLASS) {
  2650         kind = JVMTI_HEAP_REFERENCE_OTHER;
  2654     // some objects are ignored - in the case of simple
  2655     // roots it's mostly symbolOops that we are skipping
  2656     // here.
  2657     if (!ServiceUtil::visible_oop(o)) {
  2658       return;
  2661     // invoke the callback
  2662     _continue = CallbackInvoker::report_simple_root(kind, o);
  2665 };
  2667 // A supporting closure used to process JNI locals
  2668 class JNILocalRootsClosure : public OopClosure {
  2669  private:
  2670   jlong _thread_tag;
  2671   jlong _tid;
  2672   jint _depth;
  2673   jmethodID _method;
  2674   bool _continue;
  2675  public:
  2676   void set_context(jlong thread_tag, jlong tid, jint depth, jmethodID method) {
  2677     _thread_tag = thread_tag;
  2678     _tid = tid;
  2679     _depth = depth;
  2680     _method = method;
  2681     _continue = true;
  2684   inline bool stopped() {
  2685     return !_continue;
  2688   void do_oop(oop* obj_p) {
  2689     // iteration has terminated
  2690     if (stopped()) {
  2691       return;
  2694     // ignore null or deleted handles
  2695     oop o = *obj_p;
  2696     if (o == NULL || o == JNIHandles::deleted_handle()) {
  2697       return;
  2700     if (!ServiceUtil::visible_oop(o)) {
  2701       return;
  2704     // invoke the callback
  2705     _continue = CallbackInvoker::report_jni_local_root(_thread_tag, _tid, _depth, _method, o);
  2707 };
  2710 // A VM operation to iterate over objects that are reachable from
  2711 // a set of roots or an initial object.
  2712 //
  2713 // For VM_HeapWalkOperation the set of roots used is :-
  2714 //
  2715 // - All JNI global references
  2716 // - All inflated monitors
  2717 // - All classes loaded by the boot class loader (or all classes
  2718 //     in the event that class unloading is disabled)
  2719 // - All java threads
  2720 // - For each java thread then all locals and JNI local references
  2721 //      on the thread's execution stack
  2722 // - All visible/explainable objects from Universes::oops_do
  2723 //
  2724 class VM_HeapWalkOperation: public VM_Operation {
  2725  private:
  2726   enum {
  2727     initial_visit_stack_size = 4000
  2728   };
  2730   bool _is_advanced_heap_walk;                      // indicates FollowReferences
  2731   JvmtiTagMap* _tag_map;
  2732   Handle _initial_object;
  2733   GrowableArray<oop>* _visit_stack;                 // the visit stack
  2735   bool _collecting_heap_roots;                      // are we collecting roots
  2736   bool _following_object_refs;                      // are we following object references
  2738   bool _reporting_primitive_fields;                 // optional reporting
  2739   bool _reporting_primitive_array_values;
  2740   bool _reporting_string_values;
  2742   GrowableArray<oop>* create_visit_stack() {
  2743     return new (ResourceObj::C_HEAP) GrowableArray<oop>(initial_visit_stack_size, true);
  2746   // accessors
  2747   bool is_advanced_heap_walk() const               { return _is_advanced_heap_walk; }
  2748   JvmtiTagMap* tag_map() const                     { return _tag_map; }
  2749   Handle initial_object() const                    { return _initial_object; }
  2751   bool is_following_references() const             { return _following_object_refs; }
  2753   bool is_reporting_primitive_fields()  const      { return _reporting_primitive_fields; }
  2754   bool is_reporting_primitive_array_values() const { return _reporting_primitive_array_values; }
  2755   bool is_reporting_string_values() const          { return _reporting_string_values; }
  2757   GrowableArray<oop>* visit_stack() const          { return _visit_stack; }
  2759   // iterate over the various object types
  2760   inline bool iterate_over_array(oop o);
  2761   inline bool iterate_over_type_array(oop o);
  2762   inline bool iterate_over_class(klassOop o);
  2763   inline bool iterate_over_object(oop o);
  2765   // root collection
  2766   inline bool collect_simple_roots();
  2767   inline bool collect_stack_roots();
  2768   inline bool collect_stack_roots(JavaThread* java_thread, JNILocalRootsClosure* blk);
  2770   // visit an object
  2771   inline bool visit(oop o);
  2773  public:
  2774   VM_HeapWalkOperation(JvmtiTagMap* tag_map,
  2775                        Handle initial_object,
  2776                        BasicHeapWalkContext callbacks,
  2777                        const void* user_data);
  2779   VM_HeapWalkOperation(JvmtiTagMap* tag_map,
  2780                        Handle initial_object,
  2781                        AdvancedHeapWalkContext callbacks,
  2782                        const void* user_data);
  2784   ~VM_HeapWalkOperation();
  2786   VMOp_Type type() const { return VMOp_HeapWalkOperation; }
  2787   void doit();
  2788 };
  2791 VM_HeapWalkOperation::VM_HeapWalkOperation(JvmtiTagMap* tag_map,
  2792                                            Handle initial_object,
  2793                                            BasicHeapWalkContext callbacks,
  2794                                            const void* user_data) {
  2795   _is_advanced_heap_walk = false;
  2796   _tag_map = tag_map;
  2797   _initial_object = initial_object;
  2798   _following_object_refs = (callbacks.object_ref_callback() != NULL);
  2799   _reporting_primitive_fields = false;
  2800   _reporting_primitive_array_values = false;
  2801   _reporting_string_values = false;
  2802   _visit_stack = create_visit_stack();
  2805   CallbackInvoker::initialize_for_basic_heap_walk(tag_map, _visit_stack, user_data, callbacks);
  2808 VM_HeapWalkOperation::VM_HeapWalkOperation(JvmtiTagMap* tag_map,
  2809                                            Handle initial_object,
  2810                                            AdvancedHeapWalkContext callbacks,
  2811                                            const void* user_data) {
  2812   _is_advanced_heap_walk = true;
  2813   _tag_map = tag_map;
  2814   _initial_object = initial_object;
  2815   _following_object_refs = true;
  2816   _reporting_primitive_fields = (callbacks.primitive_field_callback() != NULL);;
  2817   _reporting_primitive_array_values = (callbacks.array_primitive_value_callback() != NULL);;
  2818   _reporting_string_values = (callbacks.string_primitive_value_callback() != NULL);;
  2819   _visit_stack = create_visit_stack();
  2821   CallbackInvoker::initialize_for_advanced_heap_walk(tag_map, _visit_stack, user_data, callbacks);
  2824 VM_HeapWalkOperation::~VM_HeapWalkOperation() {
  2825   if (_following_object_refs) {
  2826     assert(_visit_stack != NULL, "checking");
  2827     delete _visit_stack;
  2828     _visit_stack = NULL;
  2832 // an array references its class and has a reference to
  2833 // each element in the array
  2834 inline bool VM_HeapWalkOperation::iterate_over_array(oop o) {
  2835   objArrayOop array = objArrayOop(o);
  2836   if (array->klass() == Universe::systemObjArrayKlassObj()) {
  2837     // filtered out
  2838     return true;
  2841   // array reference to its class
  2842   oop mirror = objArrayKlass::cast(array->klass())->java_mirror();
  2843   if (!CallbackInvoker::report_class_reference(o, mirror)) {
  2844     return false;
  2847   // iterate over the array and report each reference to a
  2848   // non-null element
  2849   for (int index=0; index<array->length(); index++) {
  2850     oop elem = array->obj_at(index);
  2851     if (elem == NULL) {
  2852       continue;
  2855     // report the array reference o[index] = elem
  2856     if (!CallbackInvoker::report_array_element_reference(o, elem, index)) {
  2857       return false;
  2860   return true;
  2863 // a type array references its class
  2864 inline bool VM_HeapWalkOperation::iterate_over_type_array(oop o) {
  2865   klassOop k = o->klass();
  2866   oop mirror = Klass::cast(k)->java_mirror();
  2867   if (!CallbackInvoker::report_class_reference(o, mirror)) {
  2868     return false;
  2871   // report the array contents if required
  2872   if (is_reporting_primitive_array_values()) {
  2873     if (!CallbackInvoker::report_primitive_array_values(o)) {
  2874       return false;
  2877   return true;
  2880 // verify that a static oop field is in range
  2881 static inline bool verify_static_oop(instanceKlass* ik, oop* obj_p) {
  2882   oop* start = ik->start_of_static_fields();
  2883   oop* end = start + ik->static_oop_field_size();
  2884   assert(end >= start, "sanity check");
  2886   if (obj_p >= start && obj_p < end) {
  2887     return true;
  2888   } else {
  2889     return false;
  2893 // a class references its super class, interfaces, class loader, ...
  2894 // and finally its static fields
  2895 inline bool VM_HeapWalkOperation::iterate_over_class(klassOop k) {
  2896   int i;
  2897   Klass* klass = klassOop(k)->klass_part();
  2899   if (klass->oop_is_instance()) {
  2900     instanceKlass* ik = instanceKlass::cast(k);
  2902     // ignore the class if it's has been initialized yet
  2903     if (!ik->is_linked()) {
  2904       return true;
  2907     // get the java mirror
  2908     oop mirror = klass->java_mirror();
  2910     // super (only if something more interesting than java.lang.Object)
  2911     klassOop java_super = ik->java_super();
  2912     if (java_super != NULL && java_super != SystemDictionary::object_klass()) {
  2913       oop super = Klass::cast(java_super)->java_mirror();
  2914       if (!CallbackInvoker::report_superclass_reference(mirror, super)) {
  2915         return false;
  2919     // class loader
  2920     oop cl = ik->class_loader();
  2921     if (cl != NULL) {
  2922       if (!CallbackInvoker::report_class_loader_reference(mirror, cl)) {
  2923         return false;
  2927     // protection domain
  2928     oop pd = ik->protection_domain();
  2929     if (pd != NULL) {
  2930       if (!CallbackInvoker::report_protection_domain_reference(mirror, pd)) {
  2931         return false;
  2935     // signers
  2936     oop signers = ik->signers();
  2937     if (signers != NULL) {
  2938       if (!CallbackInvoker::report_signers_reference(mirror, signers)) {
  2939         return false;
  2943     // references from the constant pool
  2945       const constantPoolOop pool = ik->constants();
  2946       for (int i = 1; i < pool->length(); i++) {
  2947         constantTag tag = pool->tag_at(i).value();
  2948         if (tag.is_string() || tag.is_klass()) {
  2949           oop entry;
  2950           if (tag.is_string()) {
  2951             entry = pool->resolved_string_at(i);
  2952             assert(java_lang_String::is_instance(entry), "must be string");
  2953           } else {
  2954             entry = Klass::cast(pool->resolved_klass_at(i))->java_mirror();
  2956           if (!CallbackInvoker::report_constant_pool_reference(mirror, entry, (jint)i)) {
  2957             return false;
  2963     // interfaces
  2964     // (These will already have been reported as references from the constant pool
  2965     //  but are specified by IterateOverReachableObjects and must be reported).
  2966     objArrayOop interfaces = ik->local_interfaces();
  2967     for (i = 0; i < interfaces->length(); i++) {
  2968       oop interf = Klass::cast((klassOop)interfaces->obj_at(i))->java_mirror();
  2969       if (interf == NULL) {
  2970         continue;
  2972       if (!CallbackInvoker::report_interface_reference(mirror, interf)) {
  2973         return false;
  2977     // iterate over the static fields
  2979     ClassFieldMap* field_map = ClassFieldMap::create_map_of_static_fields(k);
  2980     for (i=0; i<field_map->field_count(); i++) {
  2981       ClassFieldDescriptor* field = field_map->field_at(i);
  2982       char type = field->field_type();
  2983       if (!is_primitive_field_type(type)) {
  2984         address addr = (address)k + field->field_offset();
  2985         oop* f = (oop*)addr;
  2986         assert(verify_static_oop(ik, f), "sanity check");
  2987         oop fld_o = *f;
  2988         if (fld_o != NULL) {
  2989           int slot = field->field_index();
  2990           if (!CallbackInvoker::report_static_field_reference(mirror, fld_o, slot)) {
  2991             delete field_map;
  2992             return false;
  2995       } else {
  2996          if (is_reporting_primitive_fields()) {
  2997            address addr = (address)k + field->field_offset();
  2998            int slot = field->field_index();
  2999            if (!CallbackInvoker::report_primitive_static_field(mirror, slot, addr, type)) {
  3000              delete field_map;
  3001              return false;
  3006     delete field_map;
  3008     return true;
  3011   return true;
  3014 // an object references a class and its instance fields
  3015 // (static fields are ignored here as we report these as
  3016 // references from the class).
  3017 inline bool VM_HeapWalkOperation::iterate_over_object(oop o) {
  3018   // reference to the class
  3019   if (!CallbackInvoker::report_class_reference(o, Klass::cast(o->klass())->java_mirror())) {
  3020     return false;
  3023   // iterate over instance fields
  3024   ClassFieldMap* field_map = JvmtiCachedClassFieldMap::get_map_of_instance_fields(o);
  3025   for (int i=0; i<field_map->field_count(); i++) {
  3026     ClassFieldDescriptor* field = field_map->field_at(i);
  3027     char type = field->field_type();
  3028     if (!is_primitive_field_type(type)) {
  3029       address addr = (address)o + field->field_offset();
  3030       oop* f = (oop*)addr;
  3031       oop fld_o = *f;
  3032       if (fld_o != NULL) {
  3033         // reflection code may have a reference to a klassOop.
  3034         // - see sun.reflect.UnsafeStaticFieldAccessorImpl and sun.misc.Unsafe
  3035         if (fld_o->is_klass()) {
  3036           klassOop k = (klassOop)fld_o;
  3037           fld_o = Klass::cast(k)->java_mirror();
  3039         int slot = field->field_index();
  3040         if (!CallbackInvoker::report_field_reference(o, fld_o, slot)) {
  3041           return false;
  3044     } else {
  3045       if (is_reporting_primitive_fields()) {
  3046         // primitive instance field
  3047         address addr = (address)o + field->field_offset();
  3048         int slot = field->field_index();
  3049         if (!CallbackInvoker::report_primitive_instance_field(o, slot, addr, type)) {
  3050           return false;
  3056   // if the object is a java.lang.String
  3057   if (is_reporting_string_values() &&
  3058       o->klass() == SystemDictionary::string_klass()) {
  3059     if (!CallbackInvoker::report_string_value(o)) {
  3060       return false;
  3063   return true;
  3067 // collects all simple (non-stack) roots.
  3068 // if there's a heap root callback provided then the callback is
  3069 // invoked for each simple root.
  3070 // if an object reference callback is provided then all simple
  3071 // roots are pushed onto the marking stack so that they can be
  3072 // processed later
  3073 //
  3074 inline bool VM_HeapWalkOperation::collect_simple_roots() {
  3075   SimpleRootsClosure blk;
  3077   // JNI globals
  3078   blk.set_kind(JVMTI_HEAP_REFERENCE_JNI_GLOBAL);
  3079   JNIHandles::oops_do(&blk);
  3080   if (blk.stopped()) {
  3081     return false;
  3084   // Preloaded classes and loader from the system dictionary
  3085   blk.set_kind(JVMTI_HEAP_REFERENCE_SYSTEM_CLASS);
  3086   SystemDictionary::always_strong_oops_do(&blk);
  3087   if (blk.stopped()) {
  3088     return false;
  3091   // Inflated monitors
  3092   blk.set_kind(JVMTI_HEAP_REFERENCE_MONITOR);
  3093   ObjectSynchronizer::oops_do(&blk);
  3094   if (blk.stopped()) {
  3095     return false;
  3098   // Threads
  3099   for (JavaThread* thread = Threads::first(); thread != NULL ; thread = thread->next()) {
  3100     oop threadObj = thread->threadObj();
  3101     if (threadObj != NULL && !thread->is_exiting() && !thread->is_hidden_from_external_view()) {
  3102       bool cont = CallbackInvoker::report_simple_root(JVMTI_HEAP_REFERENCE_THREAD, threadObj);
  3103       if (!cont) {
  3104         return false;
  3109   // Other kinds of roots maintained by HotSpot
  3110   // Many of these won't be visible but others (such as instances of important
  3111   // exceptions) will be visible.
  3112   blk.set_kind(JVMTI_HEAP_REFERENCE_OTHER);
  3113   Universe::oops_do(&blk);
  3114   return true;
  3117 // Walk the stack of a given thread and find all references (locals
  3118 // and JNI calls) and report these as stack references
  3119 inline bool VM_HeapWalkOperation::collect_stack_roots(JavaThread* java_thread,
  3120                                                       JNILocalRootsClosure* blk)
  3122   oop threadObj = java_thread->threadObj();
  3123   assert(threadObj != NULL, "sanity check");
  3125   // only need to get the thread's tag once per thread
  3126   jlong thread_tag = tag_for(_tag_map, threadObj);
  3128   // also need the thread id
  3129   jlong tid = java_lang_Thread::thread_id(threadObj);
  3132   if (java_thread->has_last_Java_frame()) {
  3134     // vframes are resource allocated
  3135     Thread* current_thread = Thread::current();
  3136     ResourceMark rm(current_thread);
  3137     HandleMark hm(current_thread);
  3139     RegisterMap reg_map(java_thread);
  3140     frame f = java_thread->last_frame();
  3141     vframe* vf = vframe::new_vframe(&f, &reg_map, java_thread);
  3143     bool is_top_frame = true;
  3144     int depth = 0;
  3145     frame* last_entry_frame = NULL;
  3147     while (vf != NULL) {
  3148       if (vf->is_java_frame()) {
  3150         // java frame (interpreted, compiled, ...)
  3151         javaVFrame *jvf = javaVFrame::cast(vf);
  3153         // the jmethodID
  3154         jmethodID method = jvf->method()->jmethod_id();
  3156         if (!(jvf->method()->is_native())) {
  3157           jlocation bci = (jlocation)jvf->bci();
  3158           StackValueCollection* locals = jvf->locals();
  3159           for (int slot=0; slot<locals->size(); slot++) {
  3160             if (locals->at(slot)->type() == T_OBJECT) {
  3161               oop o = locals->obj_at(slot)();
  3162               if (o == NULL) {
  3163                 continue;
  3166               // stack reference
  3167               if (!CallbackInvoker::report_stack_ref_root(thread_tag, tid, depth, method,
  3168                                                    bci, slot, o)) {
  3169                 return false;
  3173         } else {
  3174           blk->set_context(thread_tag, tid, depth, method);
  3175           if (is_top_frame) {
  3176             // JNI locals for the top frame.
  3177             java_thread->active_handles()->oops_do(blk);
  3178           } else {
  3179             if (last_entry_frame != NULL) {
  3180               // JNI locals for the entry frame
  3181               assert(last_entry_frame->is_entry_frame(), "checking");
  3182               last_entry_frame->entry_frame_call_wrapper()->handles()->oops_do(blk);
  3186         last_entry_frame = NULL;
  3187         depth++;
  3188       } else {
  3189         // externalVFrame - for an entry frame then we report the JNI locals
  3190         // when we find the corresponding javaVFrame
  3191         frame* fr = vf->frame_pointer();
  3192         assert(fr != NULL, "sanity check");
  3193         if (fr->is_entry_frame()) {
  3194           last_entry_frame = fr;
  3198       vf = vf->sender();
  3199       is_top_frame = false;
  3201   } else {
  3202     // no last java frame but there may be JNI locals
  3203     blk->set_context(thread_tag, tid, 0, (jmethodID)NULL);
  3204     java_thread->active_handles()->oops_do(blk);
  3206   return true;
  3210 // collects all stack roots - for each thread it walks the execution
  3211 // stack to find all references and local JNI refs.
  3212 inline bool VM_HeapWalkOperation::collect_stack_roots() {
  3213   JNILocalRootsClosure blk;
  3214   for (JavaThread* thread = Threads::first(); thread != NULL ; thread = thread->next()) {
  3215     oop threadObj = thread->threadObj();
  3216     if (threadObj != NULL && !thread->is_exiting() && !thread->is_hidden_from_external_view()) {
  3217       if (!collect_stack_roots(thread, &blk)) {
  3218         return false;
  3222   return true;
  3225 // visit an object
  3226 // first mark the object as visited
  3227 // second get all the outbound references from this object (in other words, all
  3228 // the objects referenced by this object).
  3229 //
  3230 bool VM_HeapWalkOperation::visit(oop o) {
  3231   // mark object as visited
  3232   assert(!ObjectMarker::visited(o), "can't visit same object more than once");
  3233   ObjectMarker::mark(o);
  3235   // instance
  3236   if (o->is_instance()) {
  3237     if (o->klass() == SystemDictionary::class_klass()) {
  3238       o = klassOop_if_java_lang_Class(o);
  3239       if (o->is_klass()) {
  3240         // a java.lang.Class
  3241         return iterate_over_class(klassOop(o));
  3243     } else {
  3244       return iterate_over_object(o);
  3248   // object array
  3249   if (o->is_objArray()) {
  3250     return iterate_over_array(o);
  3253   // type array
  3254   if (o->is_typeArray()) {
  3255     return iterate_over_type_array(o);
  3258   return true;
  3261 void VM_HeapWalkOperation::doit() {
  3262   ResourceMark rm;
  3263   ObjectMarkerController marker;
  3264   ClassFieldMapCacheMark cm;
  3266   assert(visit_stack()->is_empty(), "visit stack must be empty");
  3268   // the heap walk starts with an initial object or the heap roots
  3269   if (initial_object().is_null()) {
  3270     if (!collect_simple_roots()) return;
  3271     if (!collect_stack_roots()) return;
  3272   } else {
  3273     visit_stack()->push(initial_object()());
  3276   // object references required
  3277   if (is_following_references()) {
  3279     // visit each object until all reachable objects have been
  3280     // visited or the callback asked to terminate the iteration.
  3281     while (!visit_stack()->is_empty()) {
  3282       oop o = visit_stack()->pop();
  3283       if (!ObjectMarker::visited(o)) {
  3284         if (!visit(o)) {
  3285           break;
  3292 // iterate over all objects that are reachable from a set of roots
  3293 void JvmtiTagMap::iterate_over_reachable_objects(jvmtiHeapRootCallback heap_root_callback,
  3294                                                  jvmtiStackReferenceCallback stack_ref_callback,
  3295                                                  jvmtiObjectReferenceCallback object_ref_callback,
  3296                                                  const void* user_data) {
  3297   MutexLocker ml(Heap_lock);
  3298   BasicHeapWalkContext context(heap_root_callback, stack_ref_callback, object_ref_callback);
  3299   VM_HeapWalkOperation op(this, Handle(), context, user_data);
  3300   VMThread::execute(&op);
  3303 // iterate over all objects that are reachable from a given object
  3304 void JvmtiTagMap::iterate_over_objects_reachable_from_object(jobject object,
  3305                                                              jvmtiObjectReferenceCallback object_ref_callback,
  3306                                                              const void* user_data) {
  3307   oop obj = JNIHandles::resolve(object);
  3308   Handle initial_object(Thread::current(), obj);
  3310   MutexLocker ml(Heap_lock);
  3311   BasicHeapWalkContext context(NULL, NULL, object_ref_callback);
  3312   VM_HeapWalkOperation op(this, initial_object, context, user_data);
  3313   VMThread::execute(&op);
  3316 // follow references from an initial object or the GC roots
  3317 void JvmtiTagMap::follow_references(jint heap_filter,
  3318                                     KlassHandle klass,
  3319                                     jobject object,
  3320                                     const jvmtiHeapCallbacks* callbacks,
  3321                                     const void* user_data)
  3323   oop obj = JNIHandles::resolve(object);
  3324   Handle initial_object(Thread::current(), obj);
  3326   MutexLocker ml(Heap_lock);
  3327   AdvancedHeapWalkContext context(heap_filter, klass, callbacks);
  3328   VM_HeapWalkOperation op(this, initial_object, context, user_data);
  3329   VMThread::execute(&op);
  3333 // called post-GC
  3334 // - for each JVMTI environment with an object tag map, call its rehash
  3335 // function to re-sync with the new object locations.
  3336 void JvmtiTagMap::gc_epilogue(bool full) {
  3337   assert(SafepointSynchronize::is_at_safepoint(), "must be executed at a safepoint");
  3338   if (JvmtiEnv::environments_might_exist()) {
  3339     // re-obtain the memory region for the young generation (might
  3340     // changed due to adaptive resizing policy)
  3341     get_young_generation();
  3343     JvmtiEnvIterator it;
  3344     for (JvmtiEnvBase* env = it.first(); env != NULL; env = it.next(env)) {
  3345       JvmtiTagMap* tag_map = env->tag_map();
  3346       if (tag_map != NULL && !tag_map->is_empty()) {
  3347         TraceTime t(full ? "JVMTI Full Rehash " : "JVMTI Rehash ", TraceJVMTIObjectTagging);
  3348         if (full) {
  3349           tag_map->rehash(0, n_hashmaps);
  3350         } else {
  3351           tag_map->rehash(0, 0);        // tag map for young gen only
  3358 // CMS has completed referencing processing so we may have JNI weak refs
  3359 // to objects in the CMS generation that have been GC'ed.
  3360 void JvmtiTagMap::cms_ref_processing_epilogue() {
  3361   assert(SafepointSynchronize::is_at_safepoint(), "must be executed at a safepoint");
  3362   assert(UseConcMarkSweepGC, "should only be used with CMS");
  3363   if (JvmtiEnv::environments_might_exist()) {
  3364     JvmtiEnvIterator it;
  3365     for (JvmtiEnvBase* env = it.first(); env != NULL; env = it.next(env)) {
  3366       JvmtiTagMap* tag_map = ((JvmtiEnvBase *)env)->tag_map();
  3367       if (tag_map != NULL && !tag_map->is_empty()) {
  3368         TraceTime t("JVMTI Rehash (CMS) ", TraceJVMTIObjectTagging);
  3369         tag_map->rehash(1, n_hashmaps);    // assume CMS not used in young gen
  3376 // For each entry in the hashmaps 'start' to 'end' :
  3377 //
  3378 // 1. resolve the JNI weak reference
  3379 //
  3380 // 2. If it resolves to NULL it means the object has been freed so the entry
  3381 //    is removed, the weak reference destroyed, and the object free event is
  3382 //    posted (if enabled).
  3383 //
  3384 // 3. If the weak reference resolves to an object then we re-hash the object
  3385 //    to see if it has moved or has been promoted (from the young to the old
  3386 //    generation for example).
  3387 //
  3388 void JvmtiTagMap::rehash(int start, int end) {
  3390   // does this environment have the OBJECT_FREE event enabled
  3391   bool post_object_free = env()->is_enabled(JVMTI_EVENT_OBJECT_FREE);
  3393   // counters used for trace message
  3394   int freed = 0;
  3395   int moved = 0;
  3396   int promoted = 0;
  3398   // we assume there are two hashmaps - one for the young generation
  3399   // and the other for all other spaces.
  3400   assert(n_hashmaps == 2, "not implemented");
  3401   JvmtiTagHashmap* young_hashmap = _hashmap[0];
  3402   JvmtiTagHashmap* other_hashmap = _hashmap[1];
  3404   // reenable sizing (if disabled)
  3405   young_hashmap->set_resizing_enabled(true);
  3406   other_hashmap->set_resizing_enabled(true);
  3408   // when re-hashing the hashmap corresponding to the young generation we
  3409   // collect the entries corresponding to objects that have been promoted.
  3410   JvmtiTagHashmapEntry* promoted_entries = NULL;
  3412   if (end >= n_hashmaps) {
  3413     end = n_hashmaps - 1;
  3416   for (int i=start; i <= end; i++) {
  3417     JvmtiTagHashmap* hashmap = _hashmap[i];
  3419     // if the hashmap is empty then we can skip it
  3420     if (hashmap->_entry_count == 0) {
  3421       continue;
  3424     // now iterate through each entry in the table
  3426     JvmtiTagHashmapEntry** table = hashmap->table();
  3427     int size = hashmap->size();
  3429     for (int pos=0; pos<size; pos++) {
  3430       JvmtiTagHashmapEntry* entry = table[pos];
  3431       JvmtiTagHashmapEntry* prev = NULL;
  3433       while (entry != NULL) {
  3434         JvmtiTagHashmapEntry* next = entry->next();
  3436         jweak ref = entry->object();
  3437         oop oop = JNIHandles::resolve(ref);
  3439         // has object been GC'ed
  3440         if (oop == NULL) {
  3441           // grab the tag
  3442           jlong tag = entry->tag();
  3443           guarantee(tag != 0, "checking");
  3445           // remove GC'ed entry from hashmap and return the
  3446           // entry to the free list
  3447           hashmap->remove(prev, pos, entry);
  3448           destroy_entry(entry);
  3450           // destroy the weak ref
  3451           JNIHandles::destroy_weak_global(ref);
  3453           // post the event to the profiler
  3454           if (post_object_free) {
  3455             JvmtiExport::post_object_free(env(), tag);
  3458           freed++;
  3459           entry = next;
  3460           continue;
  3463         // if this is the young hashmap then the object is either promoted
  3464         // or moved.
  3465         // if this is the other hashmap then the object is moved.
  3467         bool same_gen;
  3468         if (i == 0) {
  3469           assert(hashmap == young_hashmap, "checking");
  3470           same_gen = is_in_young(oop);
  3471         } else {
  3472           same_gen = true;
  3476         if (same_gen) {
  3477           // if the object has moved then re-hash it and move its
  3478           // entry to its new location.
  3479           unsigned int new_pos = JvmtiTagHashmap::hash(oop, size);
  3480           if (new_pos != (unsigned int)pos) {
  3481             if (prev == NULL) {
  3482               table[pos] = next;
  3483             } else {
  3484               prev->set_next(next);
  3486             entry->set_next(table[new_pos]);
  3487             table[new_pos] = entry;
  3488             moved++;
  3489           } else {
  3490             // object didn't move
  3491             prev = entry;
  3493         } else {
  3494           // object has been promoted so remove the entry from the
  3495           // young hashmap
  3496           assert(hashmap == young_hashmap, "checking");
  3497           hashmap->remove(prev, pos, entry);
  3499           // move the entry to the promoted list
  3500           entry->set_next(promoted_entries);
  3501           promoted_entries = entry;
  3504         entry = next;
  3510   // add the entries, corresponding to the promoted objects, to the
  3511   // other hashmap.
  3512   JvmtiTagHashmapEntry* entry = promoted_entries;
  3513   while (entry != NULL) {
  3514     oop o = JNIHandles::resolve(entry->object());
  3515     assert(hashmap_for(o) == other_hashmap, "checking");
  3516     JvmtiTagHashmapEntry* next = entry->next();
  3517     other_hashmap->add(o, entry);
  3518     entry = next;
  3519     promoted++;
  3522   // stats
  3523   if (TraceJVMTIObjectTagging) {
  3524     int total_moves = promoted + moved;
  3526     int post_total = 0;
  3527     for (int i=0; i<n_hashmaps; i++) {
  3528       post_total += _hashmap[i]->_entry_count;
  3530     int pre_total = post_total + freed;
  3532     tty->print("(%d->%d, %d freed, %d promoted, %d total moves)",
  3533         pre_total, post_total, freed, promoted, total_moves);

mercurial