src/cpu/x86/vm/templateTable_x86_32.cpp

Tue, 08 Apr 2008 12:23:15 -0400

author
sgoldman
date
Tue, 08 Apr 2008 12:23:15 -0400
changeset 542
93b6525e3b82
parent 435
a61af66fc99e
child 631
d1605aabd0a1
child 777
37f87013dfd8
permissions
-rw-r--r--

6603919: Stackwalking crash on x86 -server with Sun Studio's collect -j on
Summary: Rewrite frame::safe_for_sender and friends to be safe for collector/analyzer
Reviewed-by: dcubed, kvn

     1 /*
     2  * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_templateTable_x86_32.cpp.incl"
    28 #ifndef CC_INTERP
    29 #define __ _masm->
    31 //----------------------------------------------------------------------------------------------------
    32 // Platform-dependent initialization
    34 void TemplateTable::pd_initialize() {
    35   // No i486 specific initialization
    36 }
    38 //----------------------------------------------------------------------------------------------------
    39 // Address computation
    41 // local variables
    42 static inline Address iaddress(int n)            {
    43   return Address(rdi, Interpreter::local_offset_in_bytes(n));
    44 }
    46 static inline Address laddress(int n)            { return iaddress(n + 1); }
    47 static inline Address haddress(int n)            { return iaddress(n + 0); }
    48 static inline Address faddress(int n)            { return iaddress(n); }
    49 static inline Address daddress(int n)            { return laddress(n); }
    50 static inline Address aaddress(int n)            { return iaddress(n); }
    52 static inline Address iaddress(Register r)       {
    53   return Address(rdi, r, Interpreter::stackElementScale(), Interpreter::value_offset_in_bytes());
    54 }
    55 static inline Address laddress(Register r)       {
    56   return Address(rdi, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(1));
    57 }
    58 static inline Address haddress(Register r)       {
    59   return Address(rdi, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(0));
    60 }
    62 static inline Address faddress(Register r)       { return iaddress(r); };
    63 static inline Address daddress(Register r)       {
    64   assert(!TaggedStackInterpreter, "This doesn't work");
    65   return laddress(r);
    66 };
    67 static inline Address aaddress(Register r)       { return iaddress(r); };
    69 // expression stack
    70 // (Note: Must not use symmetric equivalents at_rsp_m1/2 since they store
    71 // data beyond the rsp which is potentially unsafe in an MT environment;
    72 // an interrupt may overwrite that data.)
    73 static inline Address at_rsp   () {
    74   return Address(rsp, 0);
    75 }
    77 // At top of Java expression stack which may be different than rsp().  It
    78 // isn't for category 1 objects.
    79 static inline Address at_tos   () {
    80   Address tos = Address(rsp,  Interpreter::expr_offset_in_bytes(0));
    81   return tos;
    82 }
    84 static inline Address at_tos_p1() {
    85   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
    86 }
    88 static inline Address at_tos_p2() {
    89   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
    90 }
    92 // Condition conversion
    93 static Assembler::Condition j_not(TemplateTable::Condition cc) {
    94   switch (cc) {
    95     case TemplateTable::equal        : return Assembler::notEqual;
    96     case TemplateTable::not_equal    : return Assembler::equal;
    97     case TemplateTable::less         : return Assembler::greaterEqual;
    98     case TemplateTable::less_equal   : return Assembler::greater;
    99     case TemplateTable::greater      : return Assembler::lessEqual;
   100     case TemplateTable::greater_equal: return Assembler::less;
   101   }
   102   ShouldNotReachHere();
   103   return Assembler::zero;
   104 }
   107 //----------------------------------------------------------------------------------------------------
   108 // Miscelaneous helper routines
   110 Address TemplateTable::at_bcp(int offset) {
   111   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
   112   return Address(rsi, offset);
   113 }
   116 void TemplateTable::patch_bytecode(Bytecodes::Code bytecode, Register bc,
   117                                    Register scratch,
   118                                    bool load_bc_into_scratch/*=true*/) {
   120   if (!RewriteBytecodes) return;
   121   // the pair bytecodes have already done the load.
   122   if (load_bc_into_scratch) __ movl(bc, bytecode);
   123   Label patch_done;
   124   if (JvmtiExport::can_post_breakpoint()) {
   125     Label fast_patch;
   126     // if a breakpoint is present we can't rewrite the stream directly
   127     __ movzxb(scratch, at_bcp(0));
   128     __ cmpl(scratch, Bytecodes::_breakpoint);
   129     __ jcc(Assembler::notEqual, fast_patch);
   130     __ get_method(scratch);
   131     // Let breakpoint table handling rewrite to quicker bytecode
   132     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), scratch, rsi, bc);
   133 #ifndef ASSERT
   134     __ jmpb(patch_done);
   135     __ bind(fast_patch);
   136   }
   137 #else
   138     __ jmp(patch_done);
   139     __ bind(fast_patch);
   140   }
   141   Label okay;
   142   __ load_unsigned_byte(scratch, at_bcp(0));
   143   __ cmpl(scratch, (int)Bytecodes::java_code(bytecode));
   144   __ jccb(Assembler::equal, okay);
   145   __ cmpl(scratch, bc);
   146   __ jcc(Assembler::equal, okay);
   147   __ stop("patching the wrong bytecode");
   148   __ bind(okay);
   149 #endif
   150   // patch bytecode
   151   __ movb(at_bcp(0), bc);
   152   __ bind(patch_done);
   153 }
   155 //----------------------------------------------------------------------------------------------------
   156 // Individual instructions
   158 void TemplateTable::nop() {
   159   transition(vtos, vtos);
   160   // nothing to do
   161 }
   163 void TemplateTable::shouldnotreachhere() {
   164   transition(vtos, vtos);
   165   __ stop("shouldnotreachhere bytecode");
   166 }
   170 void TemplateTable::aconst_null() {
   171   transition(vtos, atos);
   172   __ xorl(rax, rax);
   173 }
   176 void TemplateTable::iconst(int value) {
   177   transition(vtos, itos);
   178   if (value == 0) {
   179     __ xorl(rax, rax);
   180   } else {
   181     __ movl(rax, value);
   182   }
   183 }
   186 void TemplateTable::lconst(int value) {
   187   transition(vtos, ltos);
   188   if (value == 0) {
   189     __ xorl(rax, rax);
   190   } else {
   191     __ movl(rax, value);
   192   }
   193   assert(value >= 0, "check this code");
   194   __ xorl(rdx, rdx);
   195 }
   198 void TemplateTable::fconst(int value) {
   199   transition(vtos, ftos);
   200          if (value == 0) { __ fldz();
   201   } else if (value == 1) { __ fld1();
   202   } else if (value == 2) { __ fld1(); __ fld1(); __ faddp(); // should do a better solution here
   203   } else                 { ShouldNotReachHere();
   204   }
   205 }
   208 void TemplateTable::dconst(int value) {
   209   transition(vtos, dtos);
   210          if (value == 0) { __ fldz();
   211   } else if (value == 1) { __ fld1();
   212   } else                 { ShouldNotReachHere();
   213   }
   214 }
   217 void TemplateTable::bipush() {
   218   transition(vtos, itos);
   219   __ load_signed_byte(rax, at_bcp(1));
   220 }
   223 void TemplateTable::sipush() {
   224   transition(vtos, itos);
   225   __ load_unsigned_word(rax, at_bcp(1));
   226   __ bswap(rax);
   227   __ sarl(rax, 16);
   228 }
   230 void TemplateTable::ldc(bool wide) {
   231   transition(vtos, vtos);
   232   Label call_ldc, notFloat, notClass, Done;
   234   if (wide) {
   235     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   236   } else {
   237     __ load_unsigned_byte(rbx, at_bcp(1));
   238   }
   239   __ get_cpool_and_tags(rcx, rax);
   240   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
   241   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
   243   // get type
   244   __ xorl(rdx, rdx);
   245   __ movb(rdx, Address(rax, rbx, Address::times_1, tags_offset));
   247   // unresolved string - get the resolved string
   248   __ cmpl(rdx, JVM_CONSTANT_UnresolvedString);
   249   __ jccb(Assembler::equal, call_ldc);
   251   // unresolved class - get the resolved class
   252   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
   253   __ jccb(Assembler::equal, call_ldc);
   255   // unresolved class in error (resolution failed) - call into runtime
   256   // so that the same error from first resolution attempt is thrown.
   257   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
   258   __ jccb(Assembler::equal, call_ldc);
   260   // resolved class - need to call vm to get java mirror of the class
   261   __ cmpl(rdx, JVM_CONSTANT_Class);
   262   __ jcc(Assembler::notEqual, notClass);
   264   __ bind(call_ldc);
   265   __ movl(rcx, wide);
   266   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), rcx);
   267   __ push(atos);
   268   __ jmp(Done);
   270   __ bind(notClass);
   271   __ cmpl(rdx, JVM_CONSTANT_Float);
   272   __ jccb(Assembler::notEqual, notFloat);
   273   // ftos
   274   __ fld_s(    Address(rcx, rbx, Address::times_4, base_offset));
   275   __ push(ftos);
   276   __ jmp(Done);
   278   __ bind(notFloat);
   279 #ifdef ASSERT
   280   { Label L;
   281     __ cmpl(rdx, JVM_CONSTANT_Integer);
   282     __ jcc(Assembler::equal, L);
   283     __ cmpl(rdx, JVM_CONSTANT_String);
   284     __ jcc(Assembler::equal, L);
   285     __ stop("unexpected tag type in ldc");
   286     __ bind(L);
   287   }
   288 #endif
   289   Label isOop;
   290   // atos and itos
   291   __ movl(rax, Address(rcx, rbx, Address::times_4, base_offset));
   292   // String is only oop type we will see here
   293   __ cmpl(rdx, JVM_CONSTANT_String);
   294   __ jccb(Assembler::equal, isOop);
   295   __ push(itos);
   296   __ jmp(Done);
   297   __ bind(isOop);
   298   __ push(atos);
   300   if (VerifyOops) {
   301     __ verify_oop(rax);
   302   }
   303   __ bind(Done);
   304 }
   306 void TemplateTable::ldc2_w() {
   307   transition(vtos, vtos);
   308   Label Long, Done;
   309   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   311   __ get_cpool_and_tags(rcx, rax);
   312   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
   313   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
   315   // get type
   316   __ cmpb(Address(rax, rbx, Address::times_1, tags_offset), JVM_CONSTANT_Double);
   317   __ jccb(Assembler::notEqual, Long);
   318   // dtos
   319   __ fld_d(    Address(rcx, rbx, Address::times_4, base_offset));
   320   __ push(dtos);
   321   __ jmpb(Done);
   323   __ bind(Long);
   324   // ltos
   325   __ movl(rax, Address(rcx, rbx, Address::times_4, base_offset + 0 * wordSize));
   326   __ movl(rdx, Address(rcx, rbx, Address::times_4, base_offset + 1 * wordSize));
   328   __ push(ltos);
   330   __ bind(Done);
   331 }
   334 void TemplateTable::locals_index(Register reg, int offset) {
   335   __ load_unsigned_byte(reg, at_bcp(offset));
   336   __ negl(reg);
   337 }
   340 void TemplateTable::iload() {
   341   transition(vtos, itos);
   342   if (RewriteFrequentPairs) {
   343     Label rewrite, done;
   345     // get next byte
   346     __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
   347     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
   348     // last two iloads in a pair.  Comparing against fast_iload means that
   349     // the next bytecode is neither an iload or a caload, and therefore
   350     // an iload pair.
   351     __ cmpl(rbx, Bytecodes::_iload);
   352     __ jcc(Assembler::equal, done);
   354     __ cmpl(rbx, Bytecodes::_fast_iload);
   355     __ movl(rcx, Bytecodes::_fast_iload2);
   356     __ jccb(Assembler::equal, rewrite);
   358     // if _caload, rewrite to fast_icaload
   359     __ cmpl(rbx, Bytecodes::_caload);
   360     __ movl(rcx, Bytecodes::_fast_icaload);
   361     __ jccb(Assembler::equal, rewrite);
   363     // rewrite so iload doesn't check again.
   364     __ movl(rcx, Bytecodes::_fast_iload);
   366     // rewrite
   367     // rcx: fast bytecode
   368     __ bind(rewrite);
   369     patch_bytecode(Bytecodes::_iload, rcx, rbx, false);
   370     __ bind(done);
   371   }
   373   // Get the local value into tos
   374   locals_index(rbx);
   375   __ movl(rax, iaddress(rbx));
   376   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   377 }
   380 void TemplateTable::fast_iload2() {
   381   transition(vtos, itos);
   382   locals_index(rbx);
   383   __ movl(rax, iaddress(rbx));
   384   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   385   __ push(itos);
   386   locals_index(rbx, 3);
   387   __ movl(rax, iaddress(rbx));
   388   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   389 }
   391 void TemplateTable::fast_iload() {
   392   transition(vtos, itos);
   393   locals_index(rbx);
   394   __ movl(rax, iaddress(rbx));
   395   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   396 }
   399 void TemplateTable::lload() {
   400   transition(vtos, ltos);
   401   locals_index(rbx);
   402   __ movl(rax, laddress(rbx));
   403   __ movl(rdx, haddress(rbx));
   404   debug_only(__ verify_local_tag(frame::TagCategory2, rbx));
   405 }
   408 void TemplateTable::fload() {
   409   transition(vtos, ftos);
   410   locals_index(rbx);
   411   __ fld_s(faddress(rbx));
   412   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   413 }
   416 void TemplateTable::dload() {
   417   transition(vtos, dtos);
   418   locals_index(rbx);
   419   if (TaggedStackInterpreter) {
   420     // Get double out of locals array, onto temp stack and load with
   421     // float instruction into ST0
   422     __ movl(rax, laddress(rbx));
   423     __ movl(rdx, haddress(rbx));
   424     __ pushl(rdx);  // push hi first
   425     __ pushl(rax);
   426     __ fld_d(Address(rsp, 0));
   427     __ addl(rsp, 2*wordSize);
   428     debug_only(__ verify_local_tag(frame::TagCategory2, rbx));
   429   } else {
   430     __ fld_d(daddress(rbx));
   431   }
   432 }
   435 void TemplateTable::aload() {
   436   transition(vtos, atos);
   437   locals_index(rbx);
   438   __ movl(rax, iaddress(rbx));
   439   debug_only(__ verify_local_tag(frame::TagReference, rbx));
   440 }
   443 void TemplateTable::locals_index_wide(Register reg) {
   444   __ movl(reg, at_bcp(2));
   445   __ bswap(reg);
   446   __ shrl(reg, 16);
   447   __ negl(reg);
   448 }
   451 void TemplateTable::wide_iload() {
   452   transition(vtos, itos);
   453   locals_index_wide(rbx);
   454   __ movl(rax, iaddress(rbx));
   455   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   456 }
   459 void TemplateTable::wide_lload() {
   460   transition(vtos, ltos);
   461   locals_index_wide(rbx);
   462   __ movl(rax, laddress(rbx));
   463   __ movl(rdx, haddress(rbx));
   464   debug_only(__ verify_local_tag(frame::TagCategory2, rbx));
   465 }
   468 void TemplateTable::wide_fload() {
   469   transition(vtos, ftos);
   470   locals_index_wide(rbx);
   471   __ fld_s(faddress(rbx));
   472   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   473 }
   476 void TemplateTable::wide_dload() {
   477   transition(vtos, dtos);
   478   locals_index_wide(rbx);
   479   if (TaggedStackInterpreter) {
   480     // Get double out of locals array, onto temp stack and load with
   481     // float instruction into ST0
   482     __ movl(rax, laddress(rbx));
   483     __ movl(rdx, haddress(rbx));
   484     __ pushl(rdx);  // push hi first
   485     __ pushl(rax);
   486     __ fld_d(Address(rsp, 0));
   487     __ addl(rsp, 2*wordSize);
   488     debug_only(__ verify_local_tag(frame::TagCategory2, rbx));
   489   } else {
   490     __ fld_d(daddress(rbx));
   491   }
   492 }
   495 void TemplateTable::wide_aload() {
   496   transition(vtos, atos);
   497   locals_index_wide(rbx);
   498   __ movl(rax, iaddress(rbx));
   499   debug_only(__ verify_local_tag(frame::TagReference, rbx));
   500 }
   502 void TemplateTable::index_check(Register array, Register index) {
   503   // Pop ptr into array
   504   __ pop_ptr(array);
   505   index_check_without_pop(array, index);
   506 }
   508 void TemplateTable::index_check_without_pop(Register array, Register index) {
   509   // destroys rbx,
   510   // check array
   511   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
   512   // check index
   513   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
   514   if (index != rbx) {
   515     // ??? convention: move aberrant index into rbx, for exception message
   516     assert(rbx != array, "different registers");
   517     __ movl(rbx, index);
   518   }
   519   __ jump_cc(Assembler::aboveEqual,
   520              ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
   521 }
   524 void TemplateTable::iaload() {
   525   transition(itos, itos);
   526   // rdx: array
   527   index_check(rdx, rax);  // kills rbx,
   528   // rax,: index
   529   __ movl(rax, Address(rdx, rax, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_INT)));
   530 }
   533 void TemplateTable::laload() {
   534   transition(itos, ltos);
   535   // rax,: index
   536   // rdx: array
   537   index_check(rdx, rax);
   538   __ movl(rbx, rax);
   539   // rbx,: index
   540   __ movl(rax, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize));
   541   __ movl(rdx, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize));
   542 }
   545 void TemplateTable::faload() {
   546   transition(itos, ftos);
   547   // rdx: array
   548   index_check(rdx, rax);  // kills rbx,
   549   // rax,: index
   550   __ fld_s(Address(rdx, rax, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
   551 }
   554 void TemplateTable::daload() {
   555   transition(itos, dtos);
   556   // rdx: array
   557   index_check(rdx, rax);  // kills rbx,
   558   // rax,: index
   559   __ fld_d(Address(rdx, rax, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
   560 }
   563 void TemplateTable::aaload() {
   564   transition(itos, atos);
   565   // rdx: array
   566   index_check(rdx, rax);  // kills rbx,
   567   // rax,: index
   568   __ movl(rax, Address(rdx, rax, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
   569 }
   572 void TemplateTable::baload() {
   573   transition(itos, itos);
   574   // rdx: array
   575   index_check(rdx, rax);  // kills rbx,
   576   // rax,: index
   577   // can do better code for P5 - fix this at some point
   578   __ load_signed_byte(rbx, Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)));
   579   __ movl(rax, rbx);
   580 }
   583 void TemplateTable::caload() {
   584   transition(itos, itos);
   585   // rdx: array
   586   index_check(rdx, rax);  // kills rbx,
   587   // rax,: index
   588   // can do better code for P5 - may want to improve this at some point
   589   __ load_unsigned_word(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   590   __ movl(rax, rbx);
   591 }
   593 // iload followed by caload frequent pair
   594 void TemplateTable::fast_icaload() {
   595   transition(vtos, itos);
   596   // load index out of locals
   597   locals_index(rbx);
   598   __ movl(rax, iaddress(rbx));
   599   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   601   // rdx: array
   602   index_check(rdx, rax);
   603   // rax,: index
   604   __ load_unsigned_word(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   605   __ movl(rax, rbx);
   606 }
   608 void TemplateTable::saload() {
   609   transition(itos, itos);
   610   // rdx: array
   611   index_check(rdx, rax);  // kills rbx,
   612   // rax,: index
   613   // can do better code for P5 - may want to improve this at some point
   614   __ load_signed_word(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_SHORT)));
   615   __ movl(rax, rbx);
   616 }
   619 void TemplateTable::iload(int n) {
   620   transition(vtos, itos);
   621   __ movl(rax, iaddress(n));
   622   debug_only(__ verify_local_tag(frame::TagValue, n));
   623 }
   626 void TemplateTable::lload(int n) {
   627   transition(vtos, ltos);
   628   __ movl(rax, laddress(n));
   629   __ movl(rdx, haddress(n));
   630   debug_only(__ verify_local_tag(frame::TagCategory2, n));
   631 }
   634 void TemplateTable::fload(int n) {
   635   transition(vtos, ftos);
   636   __ fld_s(faddress(n));
   637   debug_only(__ verify_local_tag(frame::TagValue, n));
   638 }
   641 void TemplateTable::dload(int n) {
   642   transition(vtos, dtos);
   643   if (TaggedStackInterpreter) {
   644     // Get double out of locals array, onto temp stack and load with
   645     // float instruction into ST0
   646     __ movl(rax, laddress(n));
   647     __ movl(rdx, haddress(n));
   648     __ pushl(rdx);  // push hi first
   649     __ pushl(rax);
   650     __ fld_d(Address(rsp, 0));
   651     __ addl(rsp, 2*wordSize);  // reset rsp
   652     debug_only(__ verify_local_tag(frame::TagCategory2, n));
   653   } else {
   654     __ fld_d(daddress(n));
   655   }
   656 }
   659 void TemplateTable::aload(int n) {
   660   transition(vtos, atos);
   661   __ movl(rax, aaddress(n));
   662   debug_only(__ verify_local_tag(frame::TagReference, n));
   663 }
   666 void TemplateTable::aload_0() {
   667   transition(vtos, atos);
   668   // According to bytecode histograms, the pairs:
   669   //
   670   // _aload_0, _fast_igetfield
   671   // _aload_0, _fast_agetfield
   672   // _aload_0, _fast_fgetfield
   673   //
   674   // occur frequently. If RewriteFrequentPairs is set, the (slow) _aload_0
   675   // bytecode checks if the next bytecode is either _fast_igetfield,
   676   // _fast_agetfield or _fast_fgetfield and then rewrites the
   677   // current bytecode into a pair bytecode; otherwise it rewrites the current
   678   // bytecode into _fast_aload_0 that doesn't do the pair check anymore.
   679   //
   680   // Note: If the next bytecode is _getfield, the rewrite must be delayed,
   681   //       otherwise we may miss an opportunity for a pair.
   682   //
   683   // Also rewrite frequent pairs
   684   //   aload_0, aload_1
   685   //   aload_0, iload_1
   686   // These bytecodes with a small amount of code are most profitable to rewrite
   687   if (RewriteFrequentPairs) {
   688     Label rewrite, done;
   689     // get next byte
   690     __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
   692     // do actual aload_0
   693     aload(0);
   695     // if _getfield then wait with rewrite
   696     __ cmpl(rbx, Bytecodes::_getfield);
   697     __ jcc(Assembler::equal, done);
   699     // if _igetfield then reqrite to _fast_iaccess_0
   700     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
   701     __ cmpl(rbx, Bytecodes::_fast_igetfield);
   702     __ movl(rcx, Bytecodes::_fast_iaccess_0);
   703     __ jccb(Assembler::equal, rewrite);
   705     // if _agetfield then reqrite to _fast_aaccess_0
   706     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
   707     __ cmpl(rbx, Bytecodes::_fast_agetfield);
   708     __ movl(rcx, Bytecodes::_fast_aaccess_0);
   709     __ jccb(Assembler::equal, rewrite);
   711     // if _fgetfield then reqrite to _fast_faccess_0
   712     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
   713     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
   714     __ movl(rcx, Bytecodes::_fast_faccess_0);
   715     __ jccb(Assembler::equal, rewrite);
   717     // else rewrite to _fast_aload0
   718     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition");
   719     __ movl(rcx, Bytecodes::_fast_aload_0);
   721     // rewrite
   722     // rcx: fast bytecode
   723     __ bind(rewrite);
   724     patch_bytecode(Bytecodes::_aload_0, rcx, rbx, false);
   726     __ bind(done);
   727   } else {
   728     aload(0);
   729   }
   730 }
   732 void TemplateTable::istore() {
   733   transition(itos, vtos);
   734   locals_index(rbx);
   735   __ movl(iaddress(rbx), rax);
   736   __ tag_local(frame::TagValue, rbx);
   737 }
   740 void TemplateTable::lstore() {
   741   transition(ltos, vtos);
   742   locals_index(rbx);
   743   __ movl(laddress(rbx), rax);
   744   __ movl(haddress(rbx), rdx);
   745   __ tag_local(frame::TagCategory2, rbx);
   746 }
   749 void TemplateTable::fstore() {
   750   transition(ftos, vtos);
   751   locals_index(rbx);
   752   __ fstp_s(faddress(rbx));
   753   __ tag_local(frame::TagValue, rbx);
   754 }
   757 void TemplateTable::dstore() {
   758   transition(dtos, vtos);
   759   locals_index(rbx);
   760   if (TaggedStackInterpreter) {
   761     // Store double on stack and reload into locals nonadjacently
   762     __ subl(rsp, 2 * wordSize);
   763     __ fstp_d(Address(rsp, 0));
   764     __ popl(rax);
   765     __ popl(rdx);
   766     __ movl(laddress(rbx), rax);
   767     __ movl(haddress(rbx), rdx);
   768     __ tag_local(frame::TagCategory2, rbx);
   769   } else {
   770     __ fstp_d(daddress(rbx));
   771   }
   772 }
   775 void TemplateTable::astore() {
   776   transition(vtos, vtos);
   777   __ pop_ptr(rax, rdx);   // will need to pop tag too
   778   locals_index(rbx);
   779   __ movl(aaddress(rbx), rax);
   780   __ tag_local(rdx, rbx);    // need to store same tag in local may be returnAddr
   781 }
   784 void TemplateTable::wide_istore() {
   785   transition(vtos, vtos);
   786   __ pop_i(rax);
   787   locals_index_wide(rbx);
   788   __ movl(iaddress(rbx), rax);
   789   __ tag_local(frame::TagValue, rbx);
   790 }
   793 void TemplateTable::wide_lstore() {
   794   transition(vtos, vtos);
   795   __ pop_l(rax, rdx);
   796   locals_index_wide(rbx);
   797   __ movl(laddress(rbx), rax);
   798   __ movl(haddress(rbx), rdx);
   799   __ tag_local(frame::TagCategory2, rbx);
   800 }
   803 void TemplateTable::wide_fstore() {
   804   wide_istore();
   805 }
   808 void TemplateTable::wide_dstore() {
   809   wide_lstore();
   810 }
   813 void TemplateTable::wide_astore() {
   814   transition(vtos, vtos);
   815   __ pop_ptr(rax, rdx);
   816   locals_index_wide(rbx);
   817   __ movl(aaddress(rbx), rax);
   818   __ tag_local(rdx, rbx);
   819 }
   822 void TemplateTable::iastore() {
   823   transition(itos, vtos);
   824   __ pop_i(rbx);
   825   // rax,: value
   826   // rdx: array
   827   index_check(rdx, rbx);  // prefer index in rbx,
   828   // rbx,: index
   829   __ movl(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_INT)), rax);
   830 }
   833 void TemplateTable::lastore() {
   834   transition(ltos, vtos);
   835   __ pop_i(rbx);
   836   // rax,: low(value)
   837   // rcx: array
   838   // rdx: high(value)
   839   index_check(rcx, rbx);  // prefer index in rbx,
   840   // rbx,: index
   841   __ movl(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize), rax);
   842   __ movl(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize), rdx);
   843 }
   846 void TemplateTable::fastore() {
   847   transition(ftos, vtos);
   848   __ pop_i(rbx);
   849   // rdx: array
   850   // st0: value
   851   index_check(rdx, rbx);  // prefer index in rbx,
   852   // rbx,: index
   853   __ fstp_s(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
   854 }
   857 void TemplateTable::dastore() {
   858   transition(dtos, vtos);
   859   __ pop_i(rbx);
   860   // rdx: array
   861   // st0: value
   862   index_check(rdx, rbx);  // prefer index in rbx,
   863   // rbx,: index
   864   __ fstp_d(Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
   865 }
   868 void TemplateTable::aastore() {
   869   Label is_null, ok_is_subtype, done;
   870   transition(vtos, vtos);
   871   // stack: ..., array, index, value
   872   __ movl(rax, at_tos());     // Value
   873   __ movl(rcx, at_tos_p1());  // Index
   874   __ movl(rdx, at_tos_p2());  // Array
   875   index_check_without_pop(rdx, rcx);      // kills rbx,
   876   // do array store check - check for NULL value first
   877   __ testl(rax, rax);
   878   __ jcc(Assembler::zero, is_null);
   880   // Move subklass into EBX
   881   __ movl(rbx, Address(rax, oopDesc::klass_offset_in_bytes()));
   882   // Move superklass into EAX
   883   __ movl(rax, Address(rdx, oopDesc::klass_offset_in_bytes()));
   884   __ movl(rax, Address(rax, sizeof(oopDesc) + objArrayKlass::element_klass_offset_in_bytes()));
   885   // Compress array+index*4+12 into a single register.  Frees ECX.
   886   __ leal(rdx, Address(rdx, rcx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
   888   // Generate subtype check.  Blows ECX.  Resets EDI to locals.
   889   // Superklass in EAX.  Subklass in EBX.
   890   __ gen_subtype_check( rbx, ok_is_subtype );
   892   // Come here on failure
   893   // object is at TOS
   894   __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
   896   // Come here on success
   897   __ bind(ok_is_subtype);
   898   __ movl(rax, at_rsp());     // Value
   899   __ movl(Address(rdx, 0), rax);
   900   __ store_check(rdx);
   901   __ jmpb(done);
   903   // Have a NULL in EAX, EDX=array, ECX=index.  Store NULL at ary[idx]
   904   __ bind(is_null);
   905   __ profile_null_seen(rbx);
   906   __ movl(Address(rdx, rcx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_OBJECT)), rax);
   908   // Pop stack arguments
   909   __ bind(done);
   910   __ addl(rsp, 3 * Interpreter::stackElementSize());
   911 }
   914 void TemplateTable::bastore() {
   915   transition(itos, vtos);
   916   __ pop_i(rbx);
   917   // rax,: value
   918   // rdx: array
   919   index_check(rdx, rbx);  // prefer index in rbx,
   920   // rbx,: index
   921   __ movb(Address(rdx, rbx, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)), rax);
   922 }
   925 void TemplateTable::castore() {
   926   transition(itos, vtos);
   927   __ pop_i(rbx);
   928   // rax,: value
   929   // rdx: array
   930   index_check(rdx, rbx);  // prefer index in rbx,
   931   // rbx,: index
   932   __ movw(Address(rdx, rbx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)), rax);
   933 }
   936 void TemplateTable::sastore() {
   937   castore();
   938 }
   941 void TemplateTable::istore(int n) {
   942   transition(itos, vtos);
   943   __ movl(iaddress(n), rax);
   944   __ tag_local(frame::TagValue, n);
   945 }
   948 void TemplateTable::lstore(int n) {
   949   transition(ltos, vtos);
   950   __ movl(laddress(n), rax);
   951   __ movl(haddress(n), rdx);
   952   __ tag_local(frame::TagCategory2, n);
   953 }
   956 void TemplateTable::fstore(int n) {
   957   transition(ftos, vtos);
   958   __ fstp_s(faddress(n));
   959   __ tag_local(frame::TagValue, n);
   960 }
   963 void TemplateTable::dstore(int n) {
   964   transition(dtos, vtos);
   965   if (TaggedStackInterpreter) {
   966     __ subl(rsp, 2 * wordSize);
   967     __ fstp_d(Address(rsp, 0));
   968     __ popl(rax);
   969     __ popl(rdx);
   970     __ movl(laddress(n), rax);
   971     __ movl(haddress(n), rdx);
   972     __ tag_local(frame::TagCategory2, n);
   973   } else {
   974     __ fstp_d(daddress(n));
   975   }
   976 }
   979 void TemplateTable::astore(int n) {
   980   transition(vtos, vtos);
   981   __ pop_ptr(rax, rdx);
   982   __ movl(aaddress(n), rax);
   983   __ tag_local(rdx, n);
   984 }
   987 void TemplateTable::pop() {
   988   transition(vtos, vtos);
   989   __ addl(rsp, Interpreter::stackElementSize());
   990 }
   993 void TemplateTable::pop2() {
   994   transition(vtos, vtos);
   995   __ addl(rsp, 2*Interpreter::stackElementSize());
   996 }
   999 void TemplateTable::dup() {
  1000   transition(vtos, vtos);
  1001   // stack: ..., a
  1002   __ load_ptr_and_tag(0, rax, rdx);
  1003   __ push_ptr(rax, rdx);
  1004   // stack: ..., a, a
  1008 void TemplateTable::dup_x1() {
  1009   transition(vtos, vtos);
  1010   // stack: ..., a, b
  1011   __ load_ptr_and_tag(0, rax, rdx);  // load b
  1012   __ load_ptr_and_tag(1, rcx, rbx);  // load a
  1013   __ store_ptr_and_tag(1, rax, rdx); // store b
  1014   __ store_ptr_and_tag(0, rcx, rbx); // store a
  1015   __ push_ptr(rax, rdx);             // push b
  1016   // stack: ..., b, a, b
  1020 void TemplateTable::dup_x2() {
  1021   transition(vtos, vtos);
  1022   // stack: ..., a, b, c
  1023   __ load_ptr_and_tag(0, rax, rdx);  // load c
  1024   __ load_ptr_and_tag(2, rcx, rbx);  // load a
  1025   __ store_ptr_and_tag(2, rax, rdx); // store c in a
  1026   __ push_ptr(rax, rdx);             // push c
  1027   // stack: ..., c, b, c, c
  1028   __ load_ptr_and_tag(2, rax, rdx);  // load b
  1029   __ store_ptr_and_tag(2, rcx, rbx); // store a in b
  1030   // stack: ..., c, a, c, c
  1031   __ store_ptr_and_tag(1, rax, rdx); // store b in c
  1032   // stack: ..., c, a, b, c
  1036 void TemplateTable::dup2() {
  1037   transition(vtos, vtos);
  1038   // stack: ..., a, b
  1039   __ load_ptr_and_tag(1, rax, rdx);  // load a
  1040   __ push_ptr(rax, rdx);             // push a
  1041   __ load_ptr_and_tag(1, rax, rdx);  // load b
  1042   __ push_ptr(rax, rdx);             // push b
  1043   // stack: ..., a, b, a, b
  1047 void TemplateTable::dup2_x1() {
  1048   transition(vtos, vtos);
  1049   // stack: ..., a, b, c
  1050   __ load_ptr_and_tag(0, rcx, rbx);  // load c
  1051   __ load_ptr_and_tag(1, rax, rdx);  // load b
  1052   __ push_ptr(rax, rdx);             // push b
  1053   __ push_ptr(rcx, rbx);             // push c
  1054   // stack: ..., a, b, c, b, c
  1055   __ store_ptr_and_tag(3, rcx, rbx); // store c in b
  1056   // stack: ..., a, c, c, b, c
  1057   __ load_ptr_and_tag(4, rcx, rbx);  // load a
  1058   __ store_ptr_and_tag(2, rcx, rbx); // store a in 2nd c
  1059   // stack: ..., a, c, a, b, c
  1060   __ store_ptr_and_tag(4, rax, rdx); // store b in a
  1061   // stack: ..., b, c, a, b, c
  1062   // stack: ..., b, c, a, b, c
  1066 void TemplateTable::dup2_x2() {
  1067   transition(vtos, vtos);
  1068   // stack: ..., a, b, c, d
  1069   __ load_ptr_and_tag(0, rcx, rbx);  // load d
  1070   __ load_ptr_and_tag(1, rax, rdx);  // load c
  1071   __ push_ptr(rax, rdx);             // push c
  1072   __ push_ptr(rcx, rbx);             // push d
  1073   // stack: ..., a, b, c, d, c, d
  1074   __ load_ptr_and_tag(4, rax, rdx);  // load b
  1075   __ store_ptr_and_tag(2, rax, rdx); // store b in d
  1076   __ store_ptr_and_tag(4, rcx, rbx); // store d in b
  1077   // stack: ..., a, d, c, b, c, d
  1078   __ load_ptr_and_tag(5, rcx, rbx);  // load a
  1079   __ load_ptr_and_tag(3, rax, rdx);  // load c
  1080   __ store_ptr_and_tag(3, rcx, rbx); // store a in c
  1081   __ store_ptr_and_tag(5, rax, rdx); // store c in a
  1082   // stack: ..., c, d, a, b, c, d
  1083   // stack: ..., c, d, a, b, c, d
  1087 void TemplateTable::swap() {
  1088   transition(vtos, vtos);
  1089   // stack: ..., a, b
  1090   __ load_ptr_and_tag(1, rcx, rbx);  // load a
  1091   __ load_ptr_and_tag(0, rax, rdx);  // load b
  1092   __ store_ptr_and_tag(0, rcx, rbx); // store a in b
  1093   __ store_ptr_and_tag(1, rax, rdx); // store b in a
  1094   // stack: ..., b, a
  1098 void TemplateTable::iop2(Operation op) {
  1099   transition(itos, itos);
  1100   switch (op) {
  1101     case add  :                    __ pop_i(rdx); __ addl (rax, rdx); break;
  1102     case sub  : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
  1103     case mul  :                    __ pop_i(rdx); __ imull(rax, rdx); break;
  1104     case _and :                    __ pop_i(rdx); __ andl (rax, rdx); break;
  1105     case _or  :                    __ pop_i(rdx); __ orl  (rax, rdx); break;
  1106     case _xor :                    __ pop_i(rdx); __ xorl (rax, rdx); break;
  1107     case shl  : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax);      break; // implicit masking of lower 5 bits by Intel shift instr.
  1108     case shr  : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax);      break; // implicit masking of lower 5 bits by Intel shift instr.
  1109     case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax);      break; // implicit masking of lower 5 bits by Intel shift instr.
  1110     default   : ShouldNotReachHere();
  1115 void TemplateTable::lop2(Operation op) {
  1116   transition(ltos, ltos);
  1117   __ pop_l(rbx, rcx);
  1118   switch (op) {
  1119     case add : __ addl(rax, rbx); __ adcl(rdx, rcx); break;
  1120     case sub : __ subl(rbx, rax); __ sbbl(rcx, rdx);
  1121                __ movl(rax, rbx); __ movl(rdx, rcx); break;
  1122     case _and: __ andl(rax, rbx); __ andl(rdx, rcx); break;
  1123     case _or : __ orl (rax, rbx); __ orl (rdx, rcx); break;
  1124     case _xor: __ xorl(rax, rbx); __ xorl(rdx, rcx); break;
  1125     default : ShouldNotReachHere();
  1130 void TemplateTable::idiv() {
  1131   transition(itos, itos);
  1132   __ movl(rcx, rax);
  1133   __ pop_i(rax);
  1134   // Note: could xor rax, and rcx and compare with (-1 ^ min_int). If
  1135   //       they are not equal, one could do a normal division (no correction
  1136   //       needed), which may speed up this implementation for the common case.
  1137   //       (see also JVM spec., p.243 & p.271)
  1138   __ corrected_idivl(rcx);
  1142 void TemplateTable::irem() {
  1143   transition(itos, itos);
  1144   __ movl(rcx, rax);
  1145   __ pop_i(rax);
  1146   // Note: could xor rax, and rcx and compare with (-1 ^ min_int). If
  1147   //       they are not equal, one could do a normal division (no correction
  1148   //       needed), which may speed up this implementation for the common case.
  1149   //       (see also JVM spec., p.243 & p.271)
  1150   __ corrected_idivl(rcx);
  1151   __ movl(rax, rdx);
  1155 void TemplateTable::lmul() {
  1156   transition(ltos, ltos);
  1157   __ pop_l(rbx, rcx);
  1158   __ pushl(rcx); __ pushl(rbx);
  1159   __ pushl(rdx); __ pushl(rax);
  1160   __ lmul(2 * wordSize, 0);
  1161   __ addl(rsp, 4 * wordSize);  // take off temporaries
  1165 void TemplateTable::ldiv() {
  1166   transition(ltos, ltos);
  1167   __ pop_l(rbx, rcx);
  1168   __ pushl(rcx); __ pushl(rbx);
  1169   __ pushl(rdx); __ pushl(rax);
  1170   // check if y = 0
  1171   __ orl(rax, rdx);
  1172   __ jump_cc(Assembler::zero,
  1173              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1174   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::ldiv));
  1175   __ addl(rsp, 4 * wordSize);  // take off temporaries
  1179 void TemplateTable::lrem() {
  1180   transition(ltos, ltos);
  1181   __ pop_l(rbx, rcx);
  1182   __ pushl(rcx); __ pushl(rbx);
  1183   __ pushl(rdx); __ pushl(rax);
  1184   // check if y = 0
  1185   __ orl(rax, rdx);
  1186   __ jump_cc(Assembler::zero,
  1187              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1188   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::lrem));
  1189   __ addl(rsp, 4 * wordSize);
  1193 void TemplateTable::lshl() {
  1194   transition(itos, ltos);
  1195   __ movl(rcx, rax);                             // get shift count
  1196   __ pop_l(rax, rdx);                            // get shift value
  1197   __ lshl(rdx, rax);
  1201 void TemplateTable::lshr() {
  1202   transition(itos, ltos);
  1203   __ movl(rcx, rax);                             // get shift count
  1204   __ pop_l(rax, rdx);                            // get shift value
  1205   __ lshr(rdx, rax, true);
  1209 void TemplateTable::lushr() {
  1210   transition(itos, ltos);
  1211   __ movl(rcx, rax);                             // get shift count
  1212   __ pop_l(rax, rdx);                            // get shift value
  1213   __ lshr(rdx, rax);
  1217 void TemplateTable::fop2(Operation op) {
  1218   transition(ftos, ftos);
  1219   __ pop_ftos_to_rsp();  // pop ftos into rsp
  1220   switch (op) {
  1221     case add: __ fadd_s (at_rsp());                break;
  1222     case sub: __ fsubr_s(at_rsp());                break;
  1223     case mul: __ fmul_s (at_rsp());                break;
  1224     case div: __ fdivr_s(at_rsp());                break;
  1225     case rem: __ fld_s  (at_rsp()); __ fremr(rax); break;
  1226     default : ShouldNotReachHere();
  1228   __ f2ieee();
  1229   __ popl(rax);  // pop float thing off
  1233 void TemplateTable::dop2(Operation op) {
  1234   transition(dtos, dtos);
  1235   __ pop_dtos_to_rsp();  // pop dtos into rsp
  1237   switch (op) {
  1238     case add: __ fadd_d (at_rsp());                break;
  1239     case sub: __ fsubr_d(at_rsp());                break;
  1240     case mul: {
  1241       Label L_strict;
  1242       Label L_join;
  1243       const Address access_flags      (rcx, methodOopDesc::access_flags_offset());
  1244       __ get_method(rcx);
  1245       __ movl(rcx, access_flags);
  1246       __ testl(rcx, JVM_ACC_STRICT);
  1247       __ jccb(Assembler::notZero, L_strict);
  1248       __ fmul_d (at_rsp());
  1249       __ jmpb(L_join);
  1250       __ bind(L_strict);
  1251       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
  1252       __ fmulp();
  1253       __ fmul_d (at_rsp());
  1254       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
  1255       __ fmulp();
  1256       __ bind(L_join);
  1257       break;
  1259     case div: {
  1260       Label L_strict;
  1261       Label L_join;
  1262       const Address access_flags      (rcx, methodOopDesc::access_flags_offset());
  1263       __ get_method(rcx);
  1264       __ movl(rcx, access_flags);
  1265       __ testl(rcx, JVM_ACC_STRICT);
  1266       __ jccb(Assembler::notZero, L_strict);
  1267       __ fdivr_d(at_rsp());
  1268       __ jmp(L_join);
  1269       __ bind(L_strict);
  1270       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
  1271       __ fmul_d (at_rsp());
  1272       __ fdivrp();
  1273       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
  1274       __ fmulp();
  1275       __ bind(L_join);
  1276       break;
  1278     case rem: __ fld_d  (at_rsp()); __ fremr(rax); break;
  1279     default : ShouldNotReachHere();
  1281   __ d2ieee();
  1282   // Pop double precision number from rsp.
  1283   __ popl(rax);
  1284   __ popl(rdx);
  1288 void TemplateTable::ineg() {
  1289   transition(itos, itos);
  1290   __ negl(rax);
  1294 void TemplateTable::lneg() {
  1295   transition(ltos, ltos);
  1296   __ lneg(rdx, rax);
  1300 void TemplateTable::fneg() {
  1301   transition(ftos, ftos);
  1302   __ fchs();
  1306 void TemplateTable::dneg() {
  1307   transition(dtos, dtos);
  1308   __ fchs();
  1312 void TemplateTable::iinc() {
  1313   transition(vtos, vtos);
  1314   __ load_signed_byte(rdx, at_bcp(2));           // get constant
  1315   locals_index(rbx);
  1316   __ addl(iaddress(rbx), rdx);
  1320 void TemplateTable::wide_iinc() {
  1321   transition(vtos, vtos);
  1322   __ movl(rdx, at_bcp(4));                       // get constant
  1323   locals_index_wide(rbx);
  1324   __ bswap(rdx);                                 // swap bytes & sign-extend constant
  1325   __ sarl(rdx, 16);
  1326   __ addl(iaddress(rbx), rdx);
  1327   // Note: should probably use only one movl to get both
  1328   //       the index and the constant -> fix this
  1332 void TemplateTable::convert() {
  1333   // Checking
  1334 #ifdef ASSERT
  1335   { TosState tos_in  = ilgl;
  1336     TosState tos_out = ilgl;
  1337     switch (bytecode()) {
  1338       case Bytecodes::_i2l: // fall through
  1339       case Bytecodes::_i2f: // fall through
  1340       case Bytecodes::_i2d: // fall through
  1341       case Bytecodes::_i2b: // fall through
  1342       case Bytecodes::_i2c: // fall through
  1343       case Bytecodes::_i2s: tos_in = itos; break;
  1344       case Bytecodes::_l2i: // fall through
  1345       case Bytecodes::_l2f: // fall through
  1346       case Bytecodes::_l2d: tos_in = ltos; break;
  1347       case Bytecodes::_f2i: // fall through
  1348       case Bytecodes::_f2l: // fall through
  1349       case Bytecodes::_f2d: tos_in = ftos; break;
  1350       case Bytecodes::_d2i: // fall through
  1351       case Bytecodes::_d2l: // fall through
  1352       case Bytecodes::_d2f: tos_in = dtos; break;
  1353       default             : ShouldNotReachHere();
  1355     switch (bytecode()) {
  1356       case Bytecodes::_l2i: // fall through
  1357       case Bytecodes::_f2i: // fall through
  1358       case Bytecodes::_d2i: // fall through
  1359       case Bytecodes::_i2b: // fall through
  1360       case Bytecodes::_i2c: // fall through
  1361       case Bytecodes::_i2s: tos_out = itos; break;
  1362       case Bytecodes::_i2l: // fall through
  1363       case Bytecodes::_f2l: // fall through
  1364       case Bytecodes::_d2l: tos_out = ltos; break;
  1365       case Bytecodes::_i2f: // fall through
  1366       case Bytecodes::_l2f: // fall through
  1367       case Bytecodes::_d2f: tos_out = ftos; break;
  1368       case Bytecodes::_i2d: // fall through
  1369       case Bytecodes::_l2d: // fall through
  1370       case Bytecodes::_f2d: tos_out = dtos; break;
  1371       default             : ShouldNotReachHere();
  1373     transition(tos_in, tos_out);
  1375 #endif // ASSERT
  1377   // Conversion
  1378   // (Note: use pushl(rcx)/popl(rcx) for 1/2-word stack-ptr manipulation)
  1379   switch (bytecode()) {
  1380     case Bytecodes::_i2l:
  1381       __ extend_sign(rdx, rax);
  1382       break;
  1383     case Bytecodes::_i2f:
  1384       __ pushl(rax);         // store int on tos
  1385       __ fild_s(at_rsp());   // load int to ST0
  1386       __ f2ieee();           // truncate to float size
  1387       __ popl(rcx);          // adjust rsp
  1388       break;
  1389     case Bytecodes::_i2d:
  1390       __ pushl(rax);         // add one slot for d2ieee()
  1391       __ pushl(rax);         // store int on tos
  1392       __ fild_s(at_rsp());   // load int to ST0
  1393       __ d2ieee();           // truncate to double size
  1394       __ popl(rcx);          // adjust rsp
  1395       __ popl(rcx);
  1396       break;
  1397     case Bytecodes::_i2b:
  1398       __ shll(rax, 24);      // truncate upper 24 bits
  1399       __ sarl(rax, 24);      // and sign-extend byte
  1400       break;
  1401     case Bytecodes::_i2c:
  1402       __ andl(rax, 0xFFFF);  // truncate upper 16 bits
  1403       break;
  1404     case Bytecodes::_i2s:
  1405       __ shll(rax, 16);      // truncate upper 16 bits
  1406       __ sarl(rax, 16);      // and sign-extend short
  1407       break;
  1408     case Bytecodes::_l2i:
  1409       /* nothing to do */
  1410       break;
  1411     case Bytecodes::_l2f:
  1412       __ pushl(rdx);         // store long on tos
  1413       __ pushl(rax);
  1414       __ fild_d(at_rsp());   // load long to ST0
  1415       __ f2ieee();           // truncate to float size
  1416       __ popl(rcx);          // adjust rsp
  1417       __ popl(rcx);
  1418       break;
  1419     case Bytecodes::_l2d:
  1420       __ pushl(rdx);         // store long on tos
  1421       __ pushl(rax);
  1422       __ fild_d(at_rsp());   // load long to ST0
  1423       __ d2ieee();           // truncate to double size
  1424       __ popl(rcx);          // adjust rsp
  1425       __ popl(rcx);
  1426       break;
  1427     case Bytecodes::_f2i:
  1428       __ pushl(rcx);         // reserve space for argument
  1429       __ fstp_s(at_rsp());   // pass float argument on stack
  1430       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
  1431       break;
  1432     case Bytecodes::_f2l:
  1433       __ pushl(rcx);         // reserve space for argument
  1434       __ fstp_s(at_rsp());   // pass float argument on stack
  1435       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
  1436       break;
  1437     case Bytecodes::_f2d:
  1438       /* nothing to do */
  1439       break;
  1440     case Bytecodes::_d2i:
  1441       __ pushl(rcx);         // reserve space for argument
  1442       __ pushl(rcx);
  1443       __ fstp_d(at_rsp());   // pass double argument on stack
  1444       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 2);
  1445       break;
  1446     case Bytecodes::_d2l:
  1447       __ pushl(rcx);         // reserve space for argument
  1448       __ pushl(rcx);
  1449       __ fstp_d(at_rsp());   // pass double argument on stack
  1450       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 2);
  1451       break;
  1452     case Bytecodes::_d2f:
  1453       __ pushl(rcx);         // reserve space for f2ieee()
  1454       __ f2ieee();           // truncate to float size
  1455       __ popl(rcx);          // adjust rsp
  1456       break;
  1457     default             :
  1458       ShouldNotReachHere();
  1463 void TemplateTable::lcmp() {
  1464   transition(ltos, itos);
  1465   // y = rdx:rax
  1466   __ pop_l(rbx, rcx);             // get x = rcx:rbx
  1467   __ lcmp2int(rcx, rbx, rdx, rax);// rcx := cmp(x, y)
  1468   __ movl(rax, rcx);
  1472 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
  1473   if (is_float) {
  1474     __ pop_ftos_to_rsp();
  1475     __ fld_s(at_rsp());
  1476   } else {
  1477     __ pop_dtos_to_rsp();
  1478     __ fld_d(at_rsp());
  1479     __ popl(rdx);
  1481   __ popl(rcx);
  1482   __ fcmp2int(rax, unordered_result < 0);
  1486 void TemplateTable::branch(bool is_jsr, bool is_wide) {
  1487   __ get_method(rcx);           // ECX holds method
  1488   __ profile_taken_branch(rax,rbx); // EAX holds updated MDP, EBX holds bumped taken count
  1490   const ByteSize be_offset = methodOopDesc::backedge_counter_offset() + InvocationCounter::counter_offset();
  1491   const ByteSize inv_offset = methodOopDesc::invocation_counter_offset() + InvocationCounter::counter_offset();
  1492   const int method_offset = frame::interpreter_frame_method_offset * wordSize;
  1494   // Load up EDX with the branch displacement
  1495   __ movl(rdx, at_bcp(1));
  1496   __ bswap(rdx);
  1497   if (!is_wide) __ sarl(rdx, 16);
  1499   // Handle all the JSR stuff here, then exit.
  1500   // It's much shorter and cleaner than intermingling with the
  1501   // non-JSR normal-branch stuff occuring below.
  1502   if (is_jsr) {
  1503     // Pre-load the next target bytecode into EBX
  1504     __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1, 0));
  1506     // compute return address as bci in rax,
  1507     __ leal(rax, at_bcp((is_wide ? 5 : 3) - in_bytes(constMethodOopDesc::codes_offset())));
  1508     __ subl(rax, Address(rcx, methodOopDesc::const_offset()));
  1509     // Adjust the bcp in ESI by the displacement in EDX
  1510     __ addl(rsi, rdx);
  1511     // Push return address
  1512     __ push_i(rax);
  1513     // jsr returns vtos
  1514     __ dispatch_only_noverify(vtos);
  1515     return;
  1518   // Normal (non-jsr) branch handling
  1520   // Adjust the bcp in ESI by the displacement in EDX
  1521   __ addl(rsi, rdx);
  1523   assert(UseLoopCounter || !UseOnStackReplacement, "on-stack-replacement requires loop counters");
  1524   Label backedge_counter_overflow;
  1525   Label profile_method;
  1526   Label dispatch;
  1527   if (UseLoopCounter) {
  1528     // increment backedge counter for backward branches
  1529     // rax,: MDO
  1530     // rbx,: MDO bumped taken-count
  1531     // rcx: method
  1532     // rdx: target offset
  1533     // rsi: target bcp
  1534     // rdi: locals pointer
  1535     __ testl(rdx, rdx);             // check if forward or backward branch
  1536     __ jcc(Assembler::positive, dispatch); // count only if backward branch
  1538     // increment counter
  1539     __ movl(rax, Address(rcx, be_offset));        // load backedge counter
  1540     __ increment(rax, InvocationCounter::count_increment); // increment counter
  1541     __ movl(Address(rcx, be_offset), rax);        // store counter
  1543     __ movl(rax, Address(rcx, inv_offset));    // load invocation counter
  1544     __ andl(rax, InvocationCounter::count_mask_value);     // and the status bits
  1545     __ addl(rax, Address(rcx, be_offset));        // add both counters
  1547     if (ProfileInterpreter) {
  1548       // Test to see if we should create a method data oop
  1549       __ cmp32(rax,
  1550                ExternalAddress((address) &InvocationCounter::InterpreterProfileLimit));
  1551       __ jcc(Assembler::less, dispatch);
  1553       // if no method data exists, go to profile method
  1554       __ test_method_data_pointer(rax, profile_method);
  1556       if (UseOnStackReplacement) {
  1557         // check for overflow against rbx, which is the MDO taken count
  1558         __ cmp32(rbx,
  1559                  ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1560         __ jcc(Assembler::below, dispatch);
  1562         // When ProfileInterpreter is on, the backedge_count comes from the
  1563         // methodDataOop, which value does not get reset on the call to
  1564         // frequency_counter_overflow().  To avoid excessive calls to the overflow
  1565         // routine while the method is being compiled, add a second test to make
  1566         // sure the overflow function is called only once every overflow_frequency.
  1567         const int overflow_frequency = 1024;
  1568         __ andl(rbx, overflow_frequency-1);
  1569         __ jcc(Assembler::zero, backedge_counter_overflow);
  1572     } else {
  1573       if (UseOnStackReplacement) {
  1574         // check for overflow against rax, which is the sum of the counters
  1575         __ cmp32(rax,
  1576                  ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1577         __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
  1581     __ bind(dispatch);
  1584   // Pre-load the next target bytecode into EBX
  1585   __ load_unsigned_byte(rbx, Address(rsi, 0));
  1587   // continue with the bytecode @ target
  1588   // rax,: return bci for jsr's, unused otherwise
  1589   // rbx,: target bytecode
  1590   // rsi: target bcp
  1591   __ dispatch_only(vtos);
  1593   if (UseLoopCounter) {
  1594     if (ProfileInterpreter) {
  1595       // Out-of-line code to allocate method data oop.
  1596       __ bind(profile_method);
  1597       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method), rsi);
  1598       __ load_unsigned_byte(rbx, Address(rsi, 0));  // restore target bytecode
  1599       __ movl(rcx, Address(rbp, method_offset));
  1600       __ movl(rcx, Address(rcx, in_bytes(methodOopDesc::method_data_offset())));
  1601       __ movl(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rcx);
  1602       __ test_method_data_pointer(rcx, dispatch);
  1603       // offset non-null mdp by MDO::data_offset() + IR::profile_method()
  1604       __ addl(rcx, in_bytes(methodDataOopDesc::data_offset()));
  1605       __ addl(rcx, rax);
  1606       __ movl(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rcx);
  1607       __ jmp(dispatch);
  1610     if (UseOnStackReplacement) {
  1612       // invocation counter overflow
  1613       __ bind(backedge_counter_overflow);
  1614       __ negl(rdx);
  1615       __ addl(rdx, rsi);        // branch bcp
  1616       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rdx);
  1617       __ load_unsigned_byte(rbx, Address(rsi, 0));  // restore target bytecode
  1619       // rax,: osr nmethod (osr ok) or NULL (osr not possible)
  1620       // rbx,: target bytecode
  1621       // rdx: scratch
  1622       // rdi: locals pointer
  1623       // rsi: bcp
  1624       __ testl(rax, rax);                        // test result
  1625       __ jcc(Assembler::zero, dispatch);         // no osr if null
  1626       // nmethod may have been invalidated (VM may block upon call_VM return)
  1627       __ movl(rcx, Address(rax, nmethod::entry_bci_offset()));
  1628       __ cmpl(rcx, InvalidOSREntryBci);
  1629       __ jcc(Assembler::equal, dispatch);
  1631       // We have the address of an on stack replacement routine in rax,
  1632       // We need to prepare to execute the OSR method. First we must
  1633       // migrate the locals and monitors off of the stack.
  1635       __ movl(rbx, rax);                             // save the nmethod
  1637       const Register thread = rcx;
  1638       __ get_thread(thread);
  1639       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
  1640       // rax, is OSR buffer, move it to expected parameter location
  1641       __ movl(rcx, rax);
  1643       // pop the interpreter frame
  1644       __ movl(rdx, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
  1645       __ leave();                                // remove frame anchor
  1646       __ popl(rdi);                              // get return address
  1647       __ movl(rsp, rdx);                         // set sp to sender sp
  1650       Label skip;
  1651       Label chkint;
  1653       // The interpreter frame we have removed may be returning to
  1654       // either the callstub or the interpreter. Since we will
  1655       // now be returning from a compiled (OSR) nmethod we must
  1656       // adjust the return to the return were it can handler compiled
  1657       // results and clean the fpu stack. This is very similar to
  1658       // what a i2c adapter must do.
  1660       // Are we returning to the call stub?
  1662       __ cmp32(rdi, ExternalAddress(StubRoutines::_call_stub_return_address));
  1663       __ jcc(Assembler::notEqual, chkint);
  1665       // yes adjust to the specialized call stub  return.
  1666       assert(StubRoutines::i486::get_call_stub_compiled_return() != NULL, "must be set");
  1667       __ lea(rdi, ExternalAddress(StubRoutines::i486::get_call_stub_compiled_return()));
  1668       __ jmp(skip);
  1670       __ bind(chkint);
  1672       // Are we returning to the interpreter? Look for sentinel
  1674       __ cmpl(Address(rdi, -8), Interpreter::return_sentinel);
  1675       __ jcc(Assembler::notEqual, skip);
  1677       // Adjust to compiled return back to interpreter
  1679       __ movl(rdi, Address(rdi, -4));
  1680       __ bind(skip);
  1682       // Align stack pointer for compiled code (note that caller is
  1683       // responsible for undoing this fixup by remembering the old SP
  1684       // in an rbp,-relative location)
  1685       __ andl(rsp, -(StackAlignmentInBytes));
  1687       // push the (possibly adjusted) return address
  1688       __ pushl(rdi);
  1690       // and begin the OSR nmethod
  1691       __ jmp(Address(rbx, nmethod::osr_entry_point_offset()));
  1697 void TemplateTable::if_0cmp(Condition cc) {
  1698   transition(itos, vtos);
  1699   // assume branch is more often taken than not (loops use backward branches)
  1700   Label not_taken;
  1701   __ testl(rax, rax);
  1702   __ jcc(j_not(cc), not_taken);
  1703   branch(false, false);
  1704   __ bind(not_taken);
  1705   __ profile_not_taken_branch(rax);
  1709 void TemplateTable::if_icmp(Condition cc) {
  1710   transition(itos, vtos);
  1711   // assume branch is more often taken than not (loops use backward branches)
  1712   Label not_taken;
  1713   __ pop_i(rdx);
  1714   __ cmpl(rdx, rax);
  1715   __ jcc(j_not(cc), not_taken);
  1716   branch(false, false);
  1717   __ bind(not_taken);
  1718   __ profile_not_taken_branch(rax);
  1722 void TemplateTable::if_nullcmp(Condition cc) {
  1723   transition(atos, vtos);
  1724   // assume branch is more often taken than not (loops use backward branches)
  1725   Label not_taken;
  1726   __ testl(rax, rax);
  1727   __ jcc(j_not(cc), not_taken);
  1728   branch(false, false);
  1729   __ bind(not_taken);
  1730   __ profile_not_taken_branch(rax);
  1734 void TemplateTable::if_acmp(Condition cc) {
  1735   transition(atos, vtos);
  1736   // assume branch is more often taken than not (loops use backward branches)
  1737   Label not_taken;
  1738   __ pop_ptr(rdx);
  1739   __ cmpl(rdx, rax);
  1740   __ jcc(j_not(cc), not_taken);
  1741   branch(false, false);
  1742   __ bind(not_taken);
  1743   __ profile_not_taken_branch(rax);
  1747 void TemplateTable::ret() {
  1748   transition(vtos, vtos);
  1749   locals_index(rbx);
  1750   __ movl(rbx, iaddress(rbx));                   // get return bci, compute return bcp
  1751   __ profile_ret(rbx, rcx);
  1752   __ get_method(rax);
  1753   __ movl(rsi, Address(rax, methodOopDesc::const_offset()));
  1754   __ leal(rsi, Address(rsi, rbx, Address::times_1,
  1755                        constMethodOopDesc::codes_offset()));
  1756   __ dispatch_next(vtos);
  1760 void TemplateTable::wide_ret() {
  1761   transition(vtos, vtos);
  1762   locals_index_wide(rbx);
  1763   __ movl(rbx, iaddress(rbx));                   // get return bci, compute return bcp
  1764   __ profile_ret(rbx, rcx);
  1765   __ get_method(rax);
  1766   __ movl(rsi, Address(rax, methodOopDesc::const_offset()));
  1767   __ leal(rsi, Address(rsi, rbx, Address::times_1, constMethodOopDesc::codes_offset()));
  1768   __ dispatch_next(vtos);
  1772 void TemplateTable::tableswitch() {
  1773   Label default_case, continue_execution;
  1774   transition(itos, vtos);
  1775   // align rsi
  1776   __ leal(rbx, at_bcp(wordSize));
  1777   __ andl(rbx, -wordSize);
  1778   // load lo & hi
  1779   __ movl(rcx, Address(rbx, 1 * wordSize));
  1780   __ movl(rdx, Address(rbx, 2 * wordSize));
  1781   __ bswap(rcx);
  1782   __ bswap(rdx);
  1783   // check against lo & hi
  1784   __ cmpl(rax, rcx);
  1785   __ jccb(Assembler::less, default_case);
  1786   __ cmpl(rax, rdx);
  1787   __ jccb(Assembler::greater, default_case);
  1788   // lookup dispatch offset
  1789   __ subl(rax, rcx);
  1790   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * wordSize));
  1791   __ profile_switch_case(rax, rbx, rcx);
  1792   // continue execution
  1793   __ bind(continue_execution);
  1794   __ bswap(rdx);
  1795   __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1));
  1796   __ addl(rsi, rdx);
  1797   __ dispatch_only(vtos);
  1798   // handle default
  1799   __ bind(default_case);
  1800   __ profile_switch_default(rax);
  1801   __ movl(rdx, Address(rbx, 0));
  1802   __ jmp(continue_execution);
  1806 void TemplateTable::lookupswitch() {
  1807   transition(itos, itos);
  1808   __ stop("lookupswitch bytecode should have been rewritten");
  1812 void TemplateTable::fast_linearswitch() {
  1813   transition(itos, vtos);
  1814   Label loop_entry, loop, found, continue_execution;
  1815   // bswap rax, so we can avoid bswapping the table entries
  1816   __ bswap(rax);
  1817   // align rsi
  1818   __ leal(rbx, at_bcp(wordSize));                // btw: should be able to get rid of this instruction (change offsets below)
  1819   __ andl(rbx, -wordSize);
  1820   // set counter
  1821   __ movl(rcx, Address(rbx, wordSize));
  1822   __ bswap(rcx);
  1823   __ jmpb(loop_entry);
  1824   // table search
  1825   __ bind(loop);
  1826   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * wordSize));
  1827   __ jccb(Assembler::equal, found);
  1828   __ bind(loop_entry);
  1829   __ decrement(rcx);
  1830   __ jcc(Assembler::greaterEqual, loop);
  1831   // default case
  1832   __ profile_switch_default(rax);
  1833   __ movl(rdx, Address(rbx, 0));
  1834   __ jmpb(continue_execution);
  1835   // entry found -> get offset
  1836   __ bind(found);
  1837   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * wordSize));
  1838   __ profile_switch_case(rcx, rax, rbx);
  1839   // continue execution
  1840   __ bind(continue_execution);
  1841   __ bswap(rdx);
  1842   __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1));
  1843   __ addl(rsi, rdx);
  1844   __ dispatch_only(vtos);
  1848 void TemplateTable::fast_binaryswitch() {
  1849   transition(itos, vtos);
  1850   // Implementation using the following core algorithm:
  1851   //
  1852   // int binary_search(int key, LookupswitchPair* array, int n) {
  1853   //   // Binary search according to "Methodik des Programmierens" by
  1854   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
  1855   //   int i = 0;
  1856   //   int j = n;
  1857   //   while (i+1 < j) {
  1858   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
  1859   //     // with      Q: for all i: 0 <= i < n: key < a[i]
  1860   //     // where a stands for the array and assuming that the (inexisting)
  1861   //     // element a[n] is infinitely big.
  1862   //     int h = (i + j) >> 1;
  1863   //     // i < h < j
  1864   //     if (key < array[h].fast_match()) {
  1865   //       j = h;
  1866   //     } else {
  1867   //       i = h;
  1868   //     }
  1869   //   }
  1870   //   // R: a[i] <= key < a[i+1] or Q
  1871   //   // (i.e., if key is within array, i is the correct index)
  1872   //   return i;
  1873   // }
  1875   // register allocation
  1876   const Register key   = rax;                    // already set (tosca)
  1877   const Register array = rbx;
  1878   const Register i     = rcx;
  1879   const Register j     = rdx;
  1880   const Register h     = rdi;                    // needs to be restored
  1881   const Register temp  = rsi;
  1882   // setup array
  1883   __ save_bcp();
  1885   __ leal(array, at_bcp(3*wordSize));            // btw: should be able to get rid of this instruction (change offsets below)
  1886   __ andl(array, -wordSize);
  1887   // initialize i & j
  1888   __ xorl(i, i);                                 // i = 0;
  1889   __ movl(j, Address(array, -wordSize));         // j = length(array);
  1890   // Convert j into native byteordering
  1891   __ bswap(j);
  1892   // and start
  1893   Label entry;
  1894   __ jmp(entry);
  1896   // binary search loop
  1897   { Label loop;
  1898     __ bind(loop);
  1899     // int h = (i + j) >> 1;
  1900     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
  1901     __ sarl(h, 1);                               // h = (i + j) >> 1;
  1902     // if (key < array[h].fast_match()) {
  1903     //   j = h;
  1904     // } else {
  1905     //   i = h;
  1906     // }
  1907     // Convert array[h].match to native byte-ordering before compare
  1908     __ movl(temp, Address(array, h, Address::times_8, 0*wordSize));
  1909     __ bswap(temp);
  1910     __ cmpl(key, temp);
  1911     if (VM_Version::supports_cmov()) {
  1912       __ cmovl(Assembler::less        , j, h);   // j = h if (key <  array[h].fast_match())
  1913       __ cmovl(Assembler::greaterEqual, i, h);   // i = h if (key >= array[h].fast_match())
  1914     } else {
  1915       Label set_i, end_of_if;
  1916       __ jccb(Assembler::greaterEqual, set_i);    // {
  1917       __ movl(j, h);                             //   j = h;
  1918       __ jmp(end_of_if);                         // }
  1919       __ bind(set_i);                            // else {
  1920       __ movl(i, h);                             //   i = h;
  1921       __ bind(end_of_if);                        // }
  1923     // while (i+1 < j)
  1924     __ bind(entry);
  1925     __ leal(h, Address(i, 1));                   // i+1
  1926     __ cmpl(h, j);                               // i+1 < j
  1927     __ jcc(Assembler::less, loop);
  1930   // end of binary search, result index is i (must check again!)
  1931   Label default_case;
  1932   // Convert array[i].match to native byte-ordering before compare
  1933   __ movl(temp, Address(array, i, Address::times_8, 0*wordSize));
  1934   __ bswap(temp);
  1935   __ cmpl(key, temp);
  1936   __ jcc(Assembler::notEqual, default_case);
  1938   // entry found -> j = offset
  1939   __ movl(j , Address(array, i, Address::times_8, 1*wordSize));
  1940   __ profile_switch_case(i, key, array);
  1941   __ bswap(j);
  1942   __ restore_bcp();
  1943   __ restore_locals();                           // restore rdi
  1944   __ load_unsigned_byte(rbx, Address(rsi, j, Address::times_1));
  1946   __ addl(rsi, j);
  1947   __ dispatch_only(vtos);
  1949   // default case -> j = default offset
  1950   __ bind(default_case);
  1951   __ profile_switch_default(i);
  1952   __ movl(j, Address(array, -2*wordSize));
  1953   __ bswap(j);
  1954   __ restore_bcp();
  1955   __ restore_locals();                           // restore rdi
  1956   __ load_unsigned_byte(rbx, Address(rsi, j, Address::times_1));
  1957   __ addl(rsi, j);
  1958   __ dispatch_only(vtos);
  1962 void TemplateTable::_return(TosState state) {
  1963   transition(state, state);
  1964   assert(_desc->calls_vm(), "inconsistent calls_vm information"); // call in remove_activation
  1966   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
  1967     assert(state == vtos, "only valid state");
  1968     __ movl(rax, aaddress(0));
  1969     __ movl(rdi, Address(rax, oopDesc::klass_offset_in_bytes()));
  1970     __ movl(rdi, Address(rdi, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc)));
  1971     __ testl(rdi, JVM_ACC_HAS_FINALIZER);
  1972     Label skip_register_finalizer;
  1973     __ jcc(Assembler::zero, skip_register_finalizer);
  1975     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), rax);
  1977     __ bind(skip_register_finalizer);
  1980   __ remove_activation(state, rsi);
  1981   __ jmp(rsi);
  1985 // ----------------------------------------------------------------------------
  1986 // Volatile variables demand their effects be made known to all CPU's in
  1987 // order.  Store buffers on most chips allow reads & writes to reorder; the
  1988 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
  1989 // memory barrier (i.e., it's not sufficient that the interpreter does not
  1990 // reorder volatile references, the hardware also must not reorder them).
  1991 //
  1992 // According to the new Java Memory Model (JMM):
  1993 // (1) All volatiles are serialized wrt to each other.
  1994 // ALSO reads & writes act as aquire & release, so:
  1995 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
  1996 // the read float up to before the read.  It's OK for non-volatile memory refs
  1997 // that happen before the volatile read to float down below it.
  1998 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
  1999 // that happen BEFORE the write float down to after the write.  It's OK for
  2000 // non-volatile memory refs that happen after the volatile write to float up
  2001 // before it.
  2002 //
  2003 // We only put in barriers around volatile refs (they are expensive), not
  2004 // _between_ memory refs (that would require us to track the flavor of the
  2005 // previous memory refs).  Requirements (2) and (3) require some barriers
  2006 // before volatile stores and after volatile loads.  These nearly cover
  2007 // requirement (1) but miss the volatile-store-volatile-load case.  This final
  2008 // case is placed after volatile-stores although it could just as well go
  2009 // before volatile-loads.
  2010 void TemplateTable::volatile_barrier( ) {
  2011   // Helper function to insert a is-volatile test and memory barrier
  2012   if( !os::is_MP() ) return;    // Not needed on single CPU
  2013   __ membar();
  2016 void TemplateTable::resolve_cache_and_index(int byte_no, Register Rcache, Register index) {
  2017   assert(byte_no == 1 || byte_no == 2, "byte_no out of range");
  2019   Register temp = rbx;
  2021   assert_different_registers(Rcache, index, temp);
  2023   const int shift_count = (1 + byte_no)*BitsPerByte;
  2024   Label resolved;
  2025   __ get_cache_and_index_at_bcp(Rcache, index, 1);
  2026   __ movl(temp, Address(Rcache, index, Address::times_4, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::indices_offset()));
  2027   __ shrl(temp, shift_count);
  2028   // have we resolved this bytecode?
  2029   __ andl(temp, 0xFF);
  2030   __ cmpl(temp, (int)bytecode());
  2031   __ jcc(Assembler::equal, resolved);
  2033   // resolve first time through
  2034   address entry;
  2035   switch (bytecode()) {
  2036     case Bytecodes::_getstatic      : // fall through
  2037     case Bytecodes::_putstatic      : // fall through
  2038     case Bytecodes::_getfield       : // fall through
  2039     case Bytecodes::_putfield       : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); break;
  2040     case Bytecodes::_invokevirtual  : // fall through
  2041     case Bytecodes::_invokespecial  : // fall through
  2042     case Bytecodes::_invokestatic   : // fall through
  2043     case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);  break;
  2044     default                         : ShouldNotReachHere();                                 break;
  2046   __ movl(temp, (int)bytecode());
  2047   __ call_VM(noreg, entry, temp);
  2048   // Update registers with resolved info
  2049   __ get_cache_and_index_at_bcp(Rcache, index, 1);
  2050   __ bind(resolved);
  2054 // The cache and index registers must be set before call
  2055 void TemplateTable::load_field_cp_cache_entry(Register obj,
  2056                                               Register cache,
  2057                                               Register index,
  2058                                               Register off,
  2059                                               Register flags,
  2060                                               bool is_static = false) {
  2061   assert_different_registers(cache, index, flags, off);
  2063   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2064   // Field offset
  2065   __ movl(off, Address(cache, index, Address::times_4,
  2066            in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset())));
  2067   // Flags
  2068   __ movl(flags, Address(cache, index, Address::times_4,
  2069            in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset())));
  2071   // klass     overwrite register
  2072   if (is_static) {
  2073     __ movl(obj, Address(cache, index, Address::times_4,
  2074              in_bytes(cp_base_offset + ConstantPoolCacheEntry::f1_offset())));
  2078 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
  2079                                                Register method,
  2080                                                Register itable_index,
  2081                                                Register flags,
  2082                                                bool is_invokevirtual,
  2083                                                bool is_invokevfinal /*unused*/) {
  2084   // setup registers
  2085   const Register cache = rcx;
  2086   const Register index = rdx;
  2087   assert_different_registers(method, flags);
  2088   assert_different_registers(method, cache, index);
  2089   assert_different_registers(itable_index, flags);
  2090   assert_different_registers(itable_index, cache, index);
  2091   // determine constant pool cache field offsets
  2092   const int method_offset = in_bytes(
  2093     constantPoolCacheOopDesc::base_offset() +
  2094       (is_invokevirtual
  2095        ? ConstantPoolCacheEntry::f2_offset()
  2096        : ConstantPoolCacheEntry::f1_offset()
  2098     );
  2099   const int flags_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
  2100                                     ConstantPoolCacheEntry::flags_offset());
  2101   // access constant pool cache fields
  2102   const int index_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
  2103                                     ConstantPoolCacheEntry::f2_offset());
  2105   resolve_cache_and_index(byte_no, cache, index);
  2107   assert(wordSize == 4, "adjust code below");
  2108   __ movl(method, Address(cache, index, Address::times_4, method_offset));
  2109   if (itable_index != noreg) {
  2110     __ movl(itable_index, Address(cache, index, Address::times_4, index_offset));
  2112   __ movl(flags , Address(cache, index, Address::times_4, flags_offset ));
  2116 // The registers cache and index expected to be set before call.
  2117 // Correct values of the cache and index registers are preserved.
  2118 void TemplateTable::jvmti_post_field_access(Register cache,
  2119                                             Register index,
  2120                                             bool is_static,
  2121                                             bool has_tos) {
  2122   if (JvmtiExport::can_post_field_access()) {
  2123     // Check to see if a field access watch has been set before we take
  2124     // the time to call into the VM.
  2125     Label L1;
  2126     assert_different_registers(cache, index, rax);
  2127     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2128     __ testl(rax,rax);
  2129     __ jcc(Assembler::zero, L1);
  2131     // cache entry pointer
  2132     __ addl(cache, in_bytes(constantPoolCacheOopDesc::base_offset()));
  2133     __ shll(index, LogBytesPerWord);
  2134     __ addl(cache, index);
  2135     if (is_static) {
  2136       __ movl(rax, 0);      // NULL object reference
  2137     } else {
  2138       __ pop(atos);         // Get the object
  2139       __ verify_oop(rax);
  2140       __ push(atos);        // Restore stack state
  2142     // rax,:   object pointer or NULL
  2143     // cache: cache entry pointer
  2144     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
  2145                rax, cache);
  2146     __ get_cache_and_index_at_bcp(cache, index, 1);
  2147     __ bind(L1);
  2151 void TemplateTable::pop_and_check_object(Register r) {
  2152   __ pop_ptr(r);
  2153   __ null_check(r);  // for field access must check obj.
  2154   __ verify_oop(r);
  2157 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
  2158   transition(vtos, vtos);
  2160   const Register cache = rcx;
  2161   const Register index = rdx;
  2162   const Register obj   = rcx;
  2163   const Register off   = rbx;
  2164   const Register flags = rax;
  2166   resolve_cache_and_index(byte_no, cache, index);
  2167   jvmti_post_field_access(cache, index, is_static, false);
  2168   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2170   if (!is_static) pop_and_check_object(obj);
  2172   const Address lo(obj, off, Address::times_1, 0*wordSize);
  2173   const Address hi(obj, off, Address::times_1, 1*wordSize);
  2175   Label Done, notByte, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble;
  2177   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2178   assert(btos == 0, "change code, btos != 0");
  2179   // btos
  2180   __ andl(flags, 0x0f);
  2181   __ jcc(Assembler::notZero, notByte);
  2183   __ load_signed_byte(rax, lo );
  2184   __ push(btos);
  2185   // Rewrite bytecode to be faster
  2186   if (!is_static) {
  2187     patch_bytecode(Bytecodes::_fast_bgetfield, rcx, rbx);
  2189   __ jmp(Done);
  2191   __ bind(notByte);
  2192   // itos
  2193   __ cmpl(flags, itos );
  2194   __ jcc(Assembler::notEqual, notInt);
  2196   __ movl(rax, lo );
  2197   __ push(itos);
  2198   // Rewrite bytecode to be faster
  2199   if (!is_static) {
  2200     patch_bytecode(Bytecodes::_fast_igetfield, rcx, rbx);
  2202   __ jmp(Done);
  2204   __ bind(notInt);
  2205   // atos
  2206   __ cmpl(flags, atos );
  2207   __ jcc(Assembler::notEqual, notObj);
  2209   __ movl(rax, lo );
  2210   __ push(atos);
  2211   if (!is_static) {
  2212     patch_bytecode(Bytecodes::_fast_agetfield, rcx, rbx);
  2214   __ jmp(Done);
  2216   __ bind(notObj);
  2217   // ctos
  2218   __ cmpl(flags, ctos );
  2219   __ jcc(Assembler::notEqual, notChar);
  2221   __ load_unsigned_word(rax, lo );
  2222   __ push(ctos);
  2223   if (!is_static) {
  2224     patch_bytecode(Bytecodes::_fast_cgetfield, rcx, rbx);
  2226   __ jmp(Done);
  2228   __ bind(notChar);
  2229   // stos
  2230   __ cmpl(flags, stos );
  2231   __ jcc(Assembler::notEqual, notShort);
  2233   __ load_signed_word(rax, lo );
  2234   __ push(stos);
  2235   if (!is_static) {
  2236     patch_bytecode(Bytecodes::_fast_sgetfield, rcx, rbx);
  2238   __ jmp(Done);
  2240   __ bind(notShort);
  2241   // ltos
  2242   __ cmpl(flags, ltos );
  2243   __ jcc(Assembler::notEqual, notLong);
  2245   // Generate code as if volatile.  There just aren't enough registers to
  2246   // save that information and this code is faster than the test.
  2247   __ fild_d(lo);                // Must load atomically
  2248   __ subl(rsp,2*wordSize);      // Make space for store
  2249   __ fistp_d(Address(rsp,0));
  2250   __ popl(rax);
  2251   __ popl(rdx);
  2253   __ push(ltos);
  2254   // Don't rewrite to _fast_lgetfield for potential volatile case.
  2255   __ jmp(Done);
  2257   __ bind(notLong);
  2258   // ftos
  2259   __ cmpl(flags, ftos );
  2260   __ jcc(Assembler::notEqual, notFloat);
  2262   __ fld_s(lo);
  2263   __ push(ftos);
  2264   if (!is_static) {
  2265     patch_bytecode(Bytecodes::_fast_fgetfield, rcx, rbx);
  2267   __ jmp(Done);
  2269   __ bind(notFloat);
  2270   // dtos
  2271   __ cmpl(flags, dtos );
  2272   __ jcc(Assembler::notEqual, notDouble);
  2274   __ fld_d(lo);
  2275   __ push(dtos);
  2276   if (!is_static) {
  2277     patch_bytecode(Bytecodes::_fast_dgetfield, rcx, rbx);
  2279   __ jmpb(Done);
  2281   __ bind(notDouble);
  2283   __ stop("Bad state");
  2285   __ bind(Done);
  2286   // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
  2287   // volatile_barrier( );
  2291 void TemplateTable::getfield(int byte_no) {
  2292   getfield_or_static(byte_no, false);
  2296 void TemplateTable::getstatic(int byte_no) {
  2297   getfield_or_static(byte_no, true);
  2300 // The registers cache and index expected to be set before call.
  2301 // The function may destroy various registers, just not the cache and index registers.
  2302 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
  2304   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2306   if (JvmtiExport::can_post_field_modification()) {
  2307     // Check to see if a field modification watch has been set before we take
  2308     // the time to call into the VM.
  2309     Label L1;
  2310     assert_different_registers(cache, index, rax);
  2311     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2312     __ testl(rax, rax);
  2313     __ jcc(Assembler::zero, L1);
  2315     // The cache and index registers have been already set.
  2316     // This allows to eliminate this call but the cache and index
  2317     // registers have to be correspondingly used after this line.
  2318     __ get_cache_and_index_at_bcp(rax, rdx, 1);
  2320     if (is_static) {
  2321       // Life is simple.  Null out the object pointer.
  2322       __ xorl(rbx, rbx);
  2323     } else {
  2324       // Life is harder. The stack holds the value on top, followed by the object.
  2325       // We don't know the size of the value, though; it could be one or two words
  2326       // depending on its type. As a result, we must find the type to determine where
  2327       // the object is.
  2328       Label two_word, valsize_known;
  2329       __ movl(rcx, Address(rax, rdx, Address::times_4, in_bytes(cp_base_offset +
  2330                                    ConstantPoolCacheEntry::flags_offset())));
  2331       __ movl(rbx, rsp);
  2332       __ shrl(rcx, ConstantPoolCacheEntry::tosBits);
  2333       // Make sure we don't need to mask rcx for tosBits after the above shift
  2334       ConstantPoolCacheEntry::verify_tosBits();
  2335       __ cmpl(rcx, ltos);
  2336       __ jccb(Assembler::equal, two_word);
  2337       __ cmpl(rcx, dtos);
  2338       __ jccb(Assembler::equal, two_word);
  2339       __ addl(rbx, Interpreter::expr_offset_in_bytes(1)); // one word jvalue (not ltos, dtos)
  2340       __ jmpb(valsize_known);
  2342       __ bind(two_word);
  2343       __ addl(rbx, Interpreter::expr_offset_in_bytes(2)); // two words jvalue
  2345       __ bind(valsize_known);
  2346       // setup object pointer
  2347       __ movl(rbx, Address(rbx, 0));
  2349     // cache entry pointer
  2350     __ addl(rax, in_bytes(cp_base_offset));
  2351     __ shll(rdx, LogBytesPerWord);
  2352     __ addl(rax, rdx);
  2353     // object (tos)
  2354     __ movl(rcx, rsp);
  2355     // rbx,: object pointer set up above (NULL if static)
  2356     // rax,: cache entry pointer
  2357     // rcx: jvalue object on the stack
  2358     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification),
  2359                rbx, rax, rcx);
  2360     __ get_cache_and_index_at_bcp(cache, index, 1);
  2361     __ bind(L1);
  2366 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
  2367   transition(vtos, vtos);
  2369   const Register cache = rcx;
  2370   const Register index = rdx;
  2371   const Register obj   = rcx;
  2372   const Register off   = rbx;
  2373   const Register flags = rax;
  2375   resolve_cache_and_index(byte_no, cache, index);
  2376   jvmti_post_field_mod(cache, index, is_static);
  2377   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2379   // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
  2380   // volatile_barrier( );
  2382   Label notVolatile, Done;
  2383   __ movl(rdx, flags);
  2384   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2385   __ andl(rdx, 0x1);
  2387   // field addresses
  2388   const Address lo(obj, off, Address::times_1, 0*wordSize);
  2389   const Address hi(obj, off, Address::times_1, 1*wordSize);
  2391   Label notByte, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble;
  2393   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2394   assert(btos == 0, "change code, btos != 0");
  2395   // btos
  2396   __ andl(flags, 0x0f);
  2397   __ jcc(Assembler::notZero, notByte);
  2399   __ pop(btos);
  2400   if (!is_static) pop_and_check_object(obj);
  2401   __ movb(lo, rax );
  2402   if (!is_static) {
  2403     patch_bytecode(Bytecodes::_fast_bputfield, rcx, rbx);
  2405   __ jmp(Done);
  2407   __ bind(notByte);
  2408   // itos
  2409   __ cmpl(flags, itos );
  2410   __ jcc(Assembler::notEqual, notInt);
  2412   __ pop(itos);
  2413   if (!is_static) pop_and_check_object(obj);
  2415   __ movl(lo, rax );
  2416   if (!is_static) {
  2417     patch_bytecode(Bytecodes::_fast_iputfield, rcx, rbx);
  2419   __ jmp(Done);
  2421   __ bind(notInt);
  2422   // atos
  2423   __ cmpl(flags, atos );
  2424   __ jcc(Assembler::notEqual, notObj);
  2426   __ pop(atos);
  2427   if (!is_static) pop_and_check_object(obj);
  2429   __ movl(lo, rax );
  2430   __ store_check(obj, lo);  // Need to mark card
  2431   if (!is_static) {
  2432     patch_bytecode(Bytecodes::_fast_aputfield, rcx, rbx);
  2434   __ jmp(Done);
  2436   __ bind(notObj);
  2437   // ctos
  2438   __ cmpl(flags, ctos );
  2439   __ jcc(Assembler::notEqual, notChar);
  2441   __ pop(ctos);
  2442   if (!is_static) pop_and_check_object(obj);
  2443   __ movw(lo, rax );
  2444   if (!is_static) {
  2445     patch_bytecode(Bytecodes::_fast_cputfield, rcx, rbx);
  2447   __ jmp(Done);
  2449   __ bind(notChar);
  2450   // stos
  2451   __ cmpl(flags, stos );
  2452   __ jcc(Assembler::notEqual, notShort);
  2454   __ pop(stos);
  2455   if (!is_static) pop_and_check_object(obj);
  2456   __ movw(lo, rax );
  2457   if (!is_static) {
  2458     patch_bytecode(Bytecodes::_fast_sputfield, rcx, rbx);
  2460   __ jmp(Done);
  2462   __ bind(notShort);
  2463   // ltos
  2464   __ cmpl(flags, ltos );
  2465   __ jcc(Assembler::notEqual, notLong);
  2467   Label notVolatileLong;
  2468   __ testl(rdx, rdx);
  2469   __ jcc(Assembler::zero, notVolatileLong);
  2471   __ pop(ltos);  // overwrites rdx, do this after testing volatile.
  2472   if (!is_static) pop_and_check_object(obj);
  2474   // Replace with real volatile test
  2475   __ pushl(rdx);
  2476   __ pushl(rax);                // Must update atomically with FIST
  2477   __ fild_d(Address(rsp,0));    // So load into FPU register
  2478   __ fistp_d(lo);               // and put into memory atomically
  2479   __ addl(rsp,2*wordSize);
  2480   volatile_barrier();
  2481   // Don't rewrite volatile version
  2482   __ jmp(notVolatile);
  2484   __ bind(notVolatileLong);
  2486   __ pop(ltos);  // overwrites rdx
  2487   if (!is_static) pop_and_check_object(obj);
  2488   __ movl(hi, rdx);
  2489   __ movl(lo, rax);
  2490   if (!is_static) {
  2491     patch_bytecode(Bytecodes::_fast_lputfield, rcx, rbx);
  2493   __ jmp(notVolatile);
  2495   __ bind(notLong);
  2496   // ftos
  2497   __ cmpl(flags, ftos );
  2498   __ jcc(Assembler::notEqual, notFloat);
  2500   __ pop(ftos);
  2501   if (!is_static) pop_and_check_object(obj);
  2502   __ fstp_s(lo);
  2503   if (!is_static) {
  2504     patch_bytecode(Bytecodes::_fast_fputfield, rcx, rbx);
  2506   __ jmp(Done);
  2508   __ bind(notFloat);
  2509   // dtos
  2510   __ cmpl(flags, dtos );
  2511   __ jcc(Assembler::notEqual, notDouble);
  2513   __ pop(dtos);
  2514   if (!is_static) pop_and_check_object(obj);
  2515   __ fstp_d(lo);
  2516   if (!is_static) {
  2517     patch_bytecode(Bytecodes::_fast_dputfield, rcx, rbx);
  2519   __ jmp(Done);
  2521   __ bind(notDouble);
  2523   __ stop("Bad state");
  2525   __ bind(Done);
  2527   // Check for volatile store
  2528   __ testl(rdx, rdx);
  2529   __ jcc(Assembler::zero, notVolatile);
  2530   volatile_barrier( );
  2531   __ bind(notVolatile);
  2535 void TemplateTable::putfield(int byte_no) {
  2536   putfield_or_static(byte_no, false);
  2540 void TemplateTable::putstatic(int byte_no) {
  2541   putfield_or_static(byte_no, true);
  2544 void TemplateTable::jvmti_post_fast_field_mod() {
  2545   if (JvmtiExport::can_post_field_modification()) {
  2546     // Check to see if a field modification watch has been set before we take
  2547     // the time to call into the VM.
  2548     Label L2;
  2549     __ mov32(rcx, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2550     __ testl(rcx,rcx);
  2551     __ jcc(Assembler::zero, L2);
  2552     __ pop_ptr(rbx);               // copy the object pointer from tos
  2553     __ verify_oop(rbx);
  2554     __ push_ptr(rbx);              // put the object pointer back on tos
  2555     __ subl(rsp, sizeof(jvalue));  // add space for a jvalue object
  2556     __ movl(rcx, rsp);
  2557     __ push_ptr(rbx);                 // save object pointer so we can steal rbx,
  2558     __ movl(rbx, 0);
  2559     const Address lo_value(rcx, rbx, Address::times_1, 0*wordSize);
  2560     const Address hi_value(rcx, rbx, Address::times_1, 1*wordSize);
  2561     switch (bytecode()) {          // load values into the jvalue object
  2562     case Bytecodes::_fast_bputfield: __ movb(lo_value, rax); break;
  2563     case Bytecodes::_fast_sputfield: __ movw(lo_value, rax); break;
  2564     case Bytecodes::_fast_cputfield: __ movw(lo_value, rax); break;
  2565     case Bytecodes::_fast_iputfield: __ movl(lo_value, rax);                         break;
  2566     case Bytecodes::_fast_lputfield: __ movl(hi_value, rdx); __ movl(lo_value, rax); break;
  2567     // need to call fld_s() after fstp_s() to restore the value for below
  2568     case Bytecodes::_fast_fputfield: __ fstp_s(lo_value); __ fld_s(lo_value);        break;
  2569     // need to call fld_d() after fstp_d() to restore the value for below
  2570     case Bytecodes::_fast_dputfield: __ fstp_d(lo_value); __ fld_d(lo_value);        break;
  2571     // since rcx is not an object we don't call store_check() here
  2572     case Bytecodes::_fast_aputfield: __ movl(lo_value, rax);                         break;
  2573     default:  ShouldNotReachHere();
  2575     __ pop_ptr(rbx);  // restore copy of object pointer
  2577     // Save rax, and sometimes rdx because call_VM() will clobber them,
  2578     // then use them for JVM/DI purposes
  2579     __ pushl(rax);
  2580     if (bytecode() == Bytecodes::_fast_lputfield) __ pushl(rdx);
  2581     // access constant pool cache entry
  2582     __ get_cache_entry_pointer_at_bcp(rax, rdx, 1);
  2583     __ verify_oop(rbx);
  2584     // rbx,: object pointer copied above
  2585     // rax,: cache entry pointer
  2586     // rcx: jvalue object on the stack
  2587     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, rax, rcx);
  2588     if (bytecode() == Bytecodes::_fast_lputfield) __ popl(rdx);  // restore high value
  2589     __ popl(rax);     // restore lower value
  2590     __ addl(rsp, sizeof(jvalue));  // release jvalue object space
  2591     __ bind(L2);
  2595 void TemplateTable::fast_storefield(TosState state) {
  2596   transition(state, vtos);
  2598   ByteSize base = constantPoolCacheOopDesc::base_offset();
  2600   jvmti_post_fast_field_mod();
  2602   // access constant pool cache
  2603   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2605   // test for volatile with rdx but rdx is tos register for lputfield.
  2606   if (bytecode() == Bytecodes::_fast_lputfield) __ pushl(rdx);
  2607   __ movl(rdx, Address(rcx, rbx, Address::times_4, in_bytes(base +
  2608                        ConstantPoolCacheEntry::flags_offset())));
  2610   // replace index with field offset from cache entry
  2611   __ movl(rbx, Address(rcx, rbx, Address::times_4, in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
  2613   // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
  2614   // volatile_barrier( );
  2616   Label notVolatile, Done;
  2617   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2618   __ andl(rdx, 0x1);
  2619   // Check for volatile store
  2620   __ testl(rdx, rdx);
  2621   __ jcc(Assembler::zero, notVolatile);
  2623   if (bytecode() == Bytecodes::_fast_lputfield) __ popl(rdx);
  2625   // Get object from stack
  2626   pop_and_check_object(rcx);
  2628   // field addresses
  2629   const Address lo(rcx, rbx, Address::times_1, 0*wordSize);
  2630   const Address hi(rcx, rbx, Address::times_1, 1*wordSize);
  2632   // access field
  2633   switch (bytecode()) {
  2634     case Bytecodes::_fast_bputfield: __ movb(lo, rax); break;
  2635     case Bytecodes::_fast_sputfield: // fall through
  2636     case Bytecodes::_fast_cputfield: __ movw(lo, rax); break;
  2637     case Bytecodes::_fast_iputfield: __ movl(lo, rax); break;
  2638     case Bytecodes::_fast_lputfield: __ movl(hi, rdx); __ movl(lo, rax);        break;
  2639     case Bytecodes::_fast_fputfield: __ fstp_s(lo); break;
  2640     case Bytecodes::_fast_dputfield: __ fstp_d(lo); break;
  2641     case Bytecodes::_fast_aputfield: __ movl(lo, rax); __ store_check(rcx, lo); break;
  2642     default:
  2643       ShouldNotReachHere();
  2646   Label done;
  2647   volatile_barrier( );
  2648   __ jmpb(done);
  2650   // Same code as above, but don't need rdx to test for volatile.
  2651   __ bind(notVolatile);
  2653   if (bytecode() == Bytecodes::_fast_lputfield) __ popl(rdx);
  2655   // Get object from stack
  2656   pop_and_check_object(rcx);
  2658   // access field
  2659   switch (bytecode()) {
  2660     case Bytecodes::_fast_bputfield: __ movb(lo, rax); break;
  2661     case Bytecodes::_fast_sputfield: // fall through
  2662     case Bytecodes::_fast_cputfield: __ movw(lo, rax); break;
  2663     case Bytecodes::_fast_iputfield: __ movl(lo, rax); break;
  2664     case Bytecodes::_fast_lputfield: __ movl(hi, rdx); __ movl(lo, rax);        break;
  2665     case Bytecodes::_fast_fputfield: __ fstp_s(lo); break;
  2666     case Bytecodes::_fast_dputfield: __ fstp_d(lo); break;
  2667     case Bytecodes::_fast_aputfield: __ movl(lo, rax); __ store_check(rcx, lo); break;
  2668     default:
  2669       ShouldNotReachHere();
  2671   __ bind(done);
  2675 void TemplateTable::fast_accessfield(TosState state) {
  2676   transition(atos, state);
  2678   // do the JVMTI work here to avoid disturbing the register state below
  2679   if (JvmtiExport::can_post_field_access()) {
  2680     // Check to see if a field access watch has been set before we take
  2681     // the time to call into the VM.
  2682     Label L1;
  2683     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2684     __ testl(rcx,rcx);
  2685     __ jcc(Assembler::zero, L1);
  2686     // access constant pool cache entry
  2687     __ get_cache_entry_pointer_at_bcp(rcx, rdx, 1);
  2688     __ push_ptr(rax);  // save object pointer before call_VM() clobbers it
  2689     __ verify_oop(rax);
  2690     // rax,: object pointer copied above
  2691     // rcx: cache entry pointer
  2692     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), rax, rcx);
  2693     __ pop_ptr(rax);   // restore object pointer
  2694     __ bind(L1);
  2697   // access constant pool cache
  2698   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2699   // replace index with field offset from cache entry
  2700   __ movl(rbx, Address(rcx, rbx, Address::times_4, in_bytes(constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f2_offset())));
  2703   // rax,: object
  2704   __ verify_oop(rax);
  2705   __ null_check(rax);
  2706   // field addresses
  2707   const Address lo = Address(rax, rbx, Address::times_1, 0*wordSize);
  2708   const Address hi = Address(rax, rbx, Address::times_1, 1*wordSize);
  2710   // access field
  2711   switch (bytecode()) {
  2712     case Bytecodes::_fast_bgetfield: __ movsxb(rax, lo );                 break;
  2713     case Bytecodes::_fast_sgetfield: __ load_signed_word(rax, lo );       break;
  2714     case Bytecodes::_fast_cgetfield: __ load_unsigned_word(rax, lo );     break;
  2715     case Bytecodes::_fast_igetfield: __ movl(rax, lo);                    break;
  2716     case Bytecodes::_fast_lgetfield: __ stop("should not be rewritten");  break;
  2717     case Bytecodes::_fast_fgetfield: __ fld_s(lo);                        break;
  2718     case Bytecodes::_fast_dgetfield: __ fld_d(lo);                        break;
  2719     case Bytecodes::_fast_agetfield: __ movl(rax, lo); __ verify_oop(rax); break;
  2720     default:
  2721       ShouldNotReachHere();
  2724   // Doug Lea believes this is not needed with current Sparcs(TSO) and Intel(PSO)
  2725   // volatile_barrier( );
  2728 void TemplateTable::fast_xaccess(TosState state) {
  2729   transition(vtos, state);
  2730   // get receiver
  2731   __ movl(rax, aaddress(0));
  2732   debug_only(__ verify_local_tag(frame::TagReference, 0));
  2733   // access constant pool cache
  2734   __ get_cache_and_index_at_bcp(rcx, rdx, 2);
  2735   __ movl(rbx, Address(rcx, rdx, Address::times_4, in_bytes(constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f2_offset())));
  2736   // make sure exception is reported in correct bcp range (getfield is next instruction)
  2737   __ increment(rsi);
  2738   __ null_check(rax);
  2739   const Address lo = Address(rax, rbx, Address::times_1, 0*wordSize);
  2740   if (state == itos) {
  2741     __ movl(rax, lo);
  2742   } else if (state == atos) {
  2743     __ movl(rax, lo);
  2744     __ verify_oop(rax);
  2745   } else if (state == ftos) {
  2746     __ fld_s(lo);
  2747   } else {
  2748     ShouldNotReachHere();
  2750   __ decrement(rsi);
  2755 //----------------------------------------------------------------------------------------------------
  2756 // Calls
  2758 void TemplateTable::count_calls(Register method, Register temp) {
  2759   // implemented elsewhere
  2760   ShouldNotReachHere();
  2764 void TemplateTable::prepare_invoke(Register method, Register index, int byte_no, Bytecodes::Code code) {
  2765   // determine flags
  2766   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
  2767   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
  2768   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
  2769   const bool load_receiver       = code != Bytecodes::_invokestatic;
  2770   const bool receiver_null_check = is_invokespecial;
  2771   const bool save_flags = is_invokeinterface || is_invokevirtual;
  2772   // setup registers & access constant pool cache
  2773   const Register recv   = rcx;
  2774   const Register flags  = rdx;
  2775   assert_different_registers(method, index, recv, flags);
  2777   // save 'interpreter return address'
  2778   __ save_bcp();
  2780   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual);
  2782   // load receiver if needed (note: no return address pushed yet)
  2783   if (load_receiver) {
  2784     __ movl(recv, flags);
  2785     __ andl(recv, 0xFF);
  2786     // recv count is 0 based?
  2787     __ movl(recv, Address(rsp, recv, Interpreter::stackElementScale(), -Interpreter::expr_offset_in_bytes(1)));
  2788     __ verify_oop(recv);
  2791   // do null check if needed
  2792   if (receiver_null_check) {
  2793     __ null_check(recv);
  2796   if (save_flags) {
  2797     __ movl(rsi, flags);
  2800   // compute return type
  2801   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2802   // Make sure we don't need to mask flags for tosBits after the above shift
  2803   ConstantPoolCacheEntry::verify_tosBits();
  2804   // load return address
  2805   { const int table =
  2806       is_invokeinterface
  2807       ? (int)Interpreter::return_5_addrs_by_index_table()
  2808       : (int)Interpreter::return_3_addrs_by_index_table();
  2809     __ movl(flags, Address(noreg, flags, Address::times_4, table));
  2812   // push return address
  2813   __ pushl(flags);
  2815   // Restore flag value from the constant pool cache, and restore rsi
  2816   // for later null checks.  rsi is the bytecode pointer
  2817   if (save_flags) {
  2818     __ movl(flags, rsi);
  2819     __ restore_bcp();
  2824 void TemplateTable::invokevirtual_helper(Register index, Register recv,
  2825                         Register flags) {
  2827   // Uses temporary registers rax, rdx
  2828   assert_different_registers(index, recv, rax, rdx);
  2830   // Test for an invoke of a final method
  2831   Label notFinal;
  2832   __ movl(rax, flags);
  2833   __ andl(rax, (1 << ConstantPoolCacheEntry::vfinalMethod));
  2834   __ jcc(Assembler::zero, notFinal);
  2836   Register method = index;  // method must be rbx,
  2837   assert(method == rbx, "methodOop must be rbx, for interpreter calling convention");
  2839   // do the call - the index is actually the method to call
  2840   __ verify_oop(method);
  2842   // It's final, need a null check here!
  2843   __ null_check(recv);
  2845   // profile this call
  2846   __ profile_final_call(rax);
  2848   __ jump_from_interpreted(method, rax);
  2850   __ bind(notFinal);
  2852   // get receiver klass
  2853   __ null_check(recv, oopDesc::klass_offset_in_bytes());
  2854   // Keep recv in rcx for callee expects it there
  2855   __ movl(rax, Address(recv, oopDesc::klass_offset_in_bytes()));
  2856   __ verify_oop(rax);
  2858   // profile this call
  2859   __ profile_virtual_call(rax, rdi, rdx);
  2861   // get target methodOop & entry point
  2862   const int base = instanceKlass::vtable_start_offset() * wordSize;
  2863   assert(vtableEntry::size() * wordSize == 4, "adjust the scaling in the code below");
  2864   __ movl(method, Address(rax, index, Address::times_4, base + vtableEntry::method_offset_in_bytes()));
  2865   __ jump_from_interpreted(method, rdx);
  2869 void TemplateTable::invokevirtual(int byte_no) {
  2870   transition(vtos, vtos);
  2871   prepare_invoke(rbx, noreg, byte_no, bytecode());
  2873   // rbx,: index
  2874   // rcx: receiver
  2875   // rdx: flags
  2877   invokevirtual_helper(rbx, rcx, rdx);
  2881 void TemplateTable::invokespecial(int byte_no) {
  2882   transition(vtos, vtos);
  2883   prepare_invoke(rbx, noreg, byte_no, bytecode());
  2884   // do the call
  2885   __ verify_oop(rbx);
  2886   __ profile_call(rax);
  2887   __ jump_from_interpreted(rbx, rax);
  2891 void TemplateTable::invokestatic(int byte_no) {
  2892   transition(vtos, vtos);
  2893   prepare_invoke(rbx, noreg, byte_no, bytecode());
  2894   // do the call
  2895   __ verify_oop(rbx);
  2896   __ profile_call(rax);
  2897   __ jump_from_interpreted(rbx, rax);
  2901 void TemplateTable::fast_invokevfinal(int byte_no) {
  2902   transition(vtos, vtos);
  2903   __ stop("fast_invokevfinal not used on x86");
  2907 void TemplateTable::invokeinterface(int byte_no) {
  2908   transition(vtos, vtos);
  2909   prepare_invoke(rax, rbx, byte_no, bytecode());
  2911   // rax,: Interface
  2912   // rbx,: index
  2913   // rcx: receiver
  2914   // rdx: flags
  2916   // Special case of invokeinterface called for virtual method of
  2917   // java.lang.Object.  See cpCacheOop.cpp for details.
  2918   // This code isn't produced by javac, but could be produced by
  2919   // another compliant java compiler.
  2920   Label notMethod;
  2921   __ movl(rdi, rdx);
  2922   __ andl(rdi, (1 << ConstantPoolCacheEntry::methodInterface));
  2923   __ jcc(Assembler::zero, notMethod);
  2925   invokevirtual_helper(rbx, rcx, rdx);
  2926   __ bind(notMethod);
  2928   // Get receiver klass into rdx - also a null check
  2929   __ restore_locals();  // restore rdi
  2930   __ movl(rdx, Address(rcx, oopDesc::klass_offset_in_bytes()));
  2931   __ verify_oop(rdx);
  2933   // profile this call
  2934   __ profile_virtual_call(rdx, rsi, rdi);
  2936   __ movl(rdi, rdx); // Save klassOop in rdi
  2938   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
  2939   const int base = instanceKlass::vtable_start_offset() * wordSize;
  2940   assert(vtableEntry::size() * wordSize == 4, "adjust the scaling in the code below");
  2941   __ movl(rsi, Address(rdx, instanceKlass::vtable_length_offset() * wordSize)); // Get length of vtable
  2942   __ leal(rdx, Address(rdx, rsi, Address::times_4, base));
  2943   if (HeapWordsPerLong > 1) {
  2944     // Round up to align_object_offset boundary
  2945     __ round_to(rdx, BytesPerLong);
  2948   Label entry, search, interface_ok;
  2950   __ jmpb(entry);
  2951   __ bind(search);
  2952   __ addl(rdx, itableOffsetEntry::size() * wordSize);
  2954   __ bind(entry);
  2956   // Check that the entry is non-null.  A null entry means that the receiver
  2957   // class doesn't implement the interface, and wasn't the same as the
  2958   // receiver class checked when the interface was resolved.
  2959   __ pushl(rdx);
  2960   __ movl(rdx, Address(rdx, itableOffsetEntry::interface_offset_in_bytes()));
  2961   __ testl(rdx, rdx);
  2962   __ jcc(Assembler::notZero, interface_ok);
  2963   // throw exception
  2964   __ popl(rdx);          // pop saved register first.
  2965   __ popl(rbx);          // pop return address (pushed by prepare_invoke)
  2966   __ restore_bcp();      // rsi must be correct for exception handler   (was destroyed)
  2967   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
  2968   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  2969                    InterpreterRuntime::throw_IncompatibleClassChangeError));
  2970   // the call_VM checks for exception, so we should never return here.
  2971   __ should_not_reach_here();
  2972   __ bind(interface_ok);
  2974     __ popl(rdx);
  2976     __ cmpl(rax, Address(rdx, itableOffsetEntry::interface_offset_in_bytes()));
  2977     __ jcc(Assembler::notEqual, search);
  2979     __ movl(rdx, Address(rdx, itableOffsetEntry::offset_offset_in_bytes()));
  2980     __ addl(rdx, rdi); // Add offset to klassOop
  2981     assert(itableMethodEntry::size() * wordSize == 4, "adjust the scaling in the code below");
  2982     __ movl(rbx, Address(rdx, rbx, Address::times_4));
  2983     // rbx,: methodOop to call
  2984     // rcx: receiver
  2985     // Check for abstract method error
  2986     // Note: This should be done more efficiently via a throw_abstract_method_error
  2987     //       interpreter entry point and a conditional jump to it in case of a null
  2988     //       method.
  2989     { Label L;
  2990       __ testl(rbx, rbx);
  2991       __ jcc(Assembler::notZero, L);
  2992       // throw exception
  2993           // note: must restore interpreter registers to canonical
  2994           //       state for exception handling to work correctly!
  2995           __ popl(rbx);          // pop return address (pushed by prepare_invoke)
  2996           __ restore_bcp();      // rsi must be correct for exception handler   (was destroyed)
  2997           __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
  2998       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
  2999       // the call_VM checks for exception, so we should never return here.
  3000       __ should_not_reach_here();
  3001       __ bind(L);
  3004   // do the call
  3005   // rcx: receiver
  3006   // rbx,: methodOop
  3007   __ jump_from_interpreted(rbx, rdx);
  3010 //----------------------------------------------------------------------------------------------------
  3011 // Allocation
  3013 void TemplateTable::_new() {
  3014   transition(vtos, atos);
  3015   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3016   Label slow_case;
  3017   Label done;
  3018   Label initialize_header;
  3019   Label initialize_object;  // including clearing the fields
  3020   Label allocate_shared;
  3022   ExternalAddress heap_top((address)Universe::heap()->top_addr());
  3024   __ get_cpool_and_tags(rcx, rax);
  3025   // get instanceKlass
  3026   __ movl(rcx, Address(rcx, rdx, Address::times_4, sizeof(constantPoolOopDesc)));
  3027   __ pushl(rcx);  // save the contexts of klass for initializing the header
  3029   // make sure the class we're about to instantiate has been resolved.
  3030   // Note: slow_case does a pop of stack, which is why we loaded class/pushed above
  3031   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
  3032   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class);
  3033   __ jcc(Assembler::notEqual, slow_case);
  3035   // make sure klass is initialized & doesn't have finalizer
  3036   // make sure klass is fully initialized
  3037   __ cmpl(Address(rcx, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)), instanceKlass::fully_initialized);
  3038   __ jcc(Assembler::notEqual, slow_case);
  3040   // get instance_size in instanceKlass (scaled to a count of bytes)
  3041   __ movl(rdx, Address(rcx, Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc)));
  3042   // test to see if it has a finalizer or is malformed in some way
  3043   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
  3044   __ jcc(Assembler::notZero, slow_case);
  3046   //
  3047   // Allocate the instance
  3048   // 1) Try to allocate in the TLAB
  3049   // 2) if fail and the object is large allocate in the shared Eden
  3050   // 3) if the above fails (or is not applicable), go to a slow case
  3051   // (creates a new TLAB, etc.)
  3053   const bool allow_shared_alloc =
  3054     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
  3056   if (UseTLAB) {
  3057     const Register thread = rcx;
  3059     __ get_thread(thread);
  3060     __ movl(rax, Address(thread, in_bytes(JavaThread::tlab_top_offset())));
  3061     __ leal(rbx, Address(rax, rdx, Address::times_1));
  3062     __ cmpl(rbx, Address(thread, in_bytes(JavaThread::tlab_end_offset())));
  3063     __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case);
  3064     __ movl(Address(thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
  3065     if (ZeroTLAB) {
  3066       // the fields have been already cleared
  3067       __ jmp(initialize_header);
  3068     } else {
  3069       // initialize both the header and fields
  3070       __ jmp(initialize_object);
  3074   // Allocation in the shared Eden, if allowed.
  3075   //
  3076   // rdx: instance size in bytes
  3077   if (allow_shared_alloc) {
  3078     __ bind(allocate_shared);
  3080     Label retry;
  3081     __ bind(retry);
  3082     __ mov32(rax, heap_top);
  3083     __ leal(rbx, Address(rax, rdx, Address::times_1));
  3084     __ cmp32(rbx, ExternalAddress((address)Universe::heap()->end_addr()));
  3085     __ jcc(Assembler::above, slow_case);
  3087     // Compare rax, with the top addr, and if still equal, store the new
  3088     // top addr in rbx, at the address of the top addr pointer. Sets ZF if was
  3089     // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
  3090     //
  3091     // rax,: object begin
  3092     // rbx,: object end
  3093     // rdx: instance size in bytes
  3094     if (os::is_MP()) __ lock();
  3095     __ cmpxchgptr(rbx, heap_top);
  3097     // if someone beat us on the allocation, try again, otherwise continue
  3098     __ jcc(Assembler::notEqual, retry);
  3101   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
  3102     // The object is initialized before the header.  If the object size is
  3103     // zero, go directly to the header initialization.
  3104     __ bind(initialize_object);
  3105     __ decrement(rdx, sizeof(oopDesc));
  3106     __ jcc(Assembler::zero, initialize_header);
  3108   // Initialize topmost object field, divide rdx by 8, check if odd and
  3109   // test if zero.
  3110     __ xorl(rcx, rcx);    // use zero reg to clear memory (shorter code)
  3111     __ shrl(rdx, LogBytesPerLong); // divide by 2*oopSize and set carry flag if odd
  3113   // rdx must have been multiple of 8
  3114 #ifdef ASSERT
  3115     // make sure rdx was multiple of 8
  3116     Label L;
  3117     // Ignore partial flag stall after shrl() since it is debug VM
  3118     __ jccb(Assembler::carryClear, L);
  3119     __ stop("object size is not multiple of 2 - adjust this code");
  3120     __ bind(L);
  3121     // rdx must be > 0, no extra check needed here
  3122 #endif
  3124     // initialize remaining object fields: rdx was a multiple of 8
  3125     { Label loop;
  3126     __ bind(loop);
  3127     __ movl(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 1*oopSize), rcx);
  3128     __ movl(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 2*oopSize), rcx);
  3129     __ decrement(rdx);
  3130     __ jcc(Assembler::notZero, loop);
  3133     // initialize object header only.
  3134     __ bind(initialize_header);
  3135     if (UseBiasedLocking) {
  3136       __ popl(rcx);   // get saved klass back in the register.
  3137       __ movl(rbx, Address(rcx, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  3138       __ movl(Address(rax, oopDesc::mark_offset_in_bytes ()), rbx);
  3139     } else {
  3140       __ movl(Address(rax, oopDesc::mark_offset_in_bytes ()),
  3141               (int)markOopDesc::prototype()); // header
  3142       __ popl(rcx);   // get saved klass back in the register.
  3144     __ movl(Address(rax, oopDesc::klass_offset_in_bytes()), rcx);  // klass
  3147       SkipIfEqual skip_if(_masm, &DTraceAllocProbes, 0);
  3148       // Trigger dtrace event for fastpath
  3149       __ push(atos);
  3150       __ call_VM_leaf(
  3151            CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
  3152       __ pop(atos);
  3155     __ jmp(done);
  3158   // slow case
  3159   __ bind(slow_case);
  3160   __ popl(rcx);   // restore stack pointer to what it was when we came in.
  3161   __ get_constant_pool(rax);
  3162   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3163   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), rax, rdx);
  3165   // continue
  3166   __ bind(done);
  3170 void TemplateTable::newarray() {
  3171   transition(itos, atos);
  3172   __ push_i(rax);                                 // make sure everything is on the stack
  3173   __ load_unsigned_byte(rdx, at_bcp(1));
  3174   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), rdx, rax);
  3175   __ pop_i(rdx);                                  // discard size
  3179 void TemplateTable::anewarray() {
  3180   transition(itos, atos);
  3181   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3182   __ get_constant_pool(rcx);
  3183   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), rcx, rdx, rax);
  3187 void TemplateTable::arraylength() {
  3188   transition(atos, itos);
  3189   __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
  3190   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
  3194 void TemplateTable::checkcast() {
  3195   transition(atos, atos);
  3196   Label done, is_null, ok_is_subtype, quicked, resolved;
  3197   __ testl(rax, rax);   // Object is in EAX
  3198   __ jcc(Assembler::zero, is_null);
  3200   // Get cpool & tags index
  3201   __ get_cpool_and_tags(rcx, rdx); // ECX=cpool, EDX=tags array
  3202   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // EBX=index
  3203   // See if bytecode has already been quicked
  3204   __ cmpb(Address(rdx, rbx, Address::times_1, typeArrayOopDesc::header_size(T_BYTE) * wordSize), JVM_CONSTANT_Class);
  3205   __ jcc(Assembler::equal, quicked);
  3207   __ push(atos);
  3208   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
  3209   __ pop_ptr(rdx);
  3210   __ jmpb(resolved);
  3212   // Get superklass in EAX and subklass in EBX
  3213   __ bind(quicked);
  3214   __ movl(rdx, rax);          // Save object in EDX; EAX needed for subtype check
  3215   __ movl(rax, Address(rcx, rbx, Address::times_4, sizeof(constantPoolOopDesc)));
  3217   __ bind(resolved);
  3218   __ movl(rbx, Address(rdx, oopDesc::klass_offset_in_bytes()));
  3220   // Generate subtype check.  Blows ECX.  Resets EDI.  Object in EDX.
  3221   // Superklass in EAX.  Subklass in EBX.
  3222   __ gen_subtype_check( rbx, ok_is_subtype );
  3224   // Come here on failure
  3225   __ pushl(rdx);
  3226   // object is at TOS
  3227   __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
  3229   // Come here on success
  3230   __ bind(ok_is_subtype);
  3231   __ movl(rax,rdx);           // Restore object in EDX
  3233   // Collect counts on whether this check-cast sees NULLs a lot or not.
  3234   if (ProfileInterpreter) {
  3235     __ jmp(done);
  3236     __ bind(is_null);
  3237     __ profile_null_seen(rcx);
  3238   } else {
  3239     __ bind(is_null);   // same as 'done'
  3241   __ bind(done);
  3245 void TemplateTable::instanceof() {
  3246   transition(atos, itos);
  3247   Label done, is_null, ok_is_subtype, quicked, resolved;
  3248   __ testl(rax, rax);
  3249   __ jcc(Assembler::zero, is_null);
  3251   // Get cpool & tags index
  3252   __ get_cpool_and_tags(rcx, rdx); // ECX=cpool, EDX=tags array
  3253   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // EBX=index
  3254   // See if bytecode has already been quicked
  3255   __ cmpb(Address(rdx, rbx, Address::times_1, typeArrayOopDesc::header_size(T_BYTE) * wordSize), JVM_CONSTANT_Class);
  3256   __ jcc(Assembler::equal, quicked);
  3258   __ push(atos);
  3259   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
  3260   __ pop_ptr(rdx);
  3261   __ movl(rdx, Address(rdx, oopDesc::klass_offset_in_bytes()));
  3262   __ jmp(resolved);
  3264   // Get superklass in EAX and subklass in EDX
  3265   __ bind(quicked);
  3266   __ movl(rdx, Address(rax, oopDesc::klass_offset_in_bytes()));
  3267   __ movl(rax, Address(rcx, rbx, Address::times_4, sizeof(constantPoolOopDesc)));
  3269   __ bind(resolved);
  3271   // Generate subtype check.  Blows ECX.  Resets EDI.
  3272   // Superklass in EAX.  Subklass in EDX.
  3273   __ gen_subtype_check( rdx, ok_is_subtype );
  3275   // Come here on failure
  3276   __ xorl(rax,rax);
  3277   __ jmpb(done);
  3278   // Come here on success
  3279   __ bind(ok_is_subtype);
  3280   __ movl(rax, 1);
  3282   // Collect counts on whether this test sees NULLs a lot or not.
  3283   if (ProfileInterpreter) {
  3284     __ jmp(done);
  3285     __ bind(is_null);
  3286     __ profile_null_seen(rcx);
  3287   } else {
  3288     __ bind(is_null);   // same as 'done'
  3290   __ bind(done);
  3291   // rax, = 0: obj == NULL or  obj is not an instanceof the specified klass
  3292   // rax, = 1: obj != NULL and obj is     an instanceof the specified klass
  3296 //----------------------------------------------------------------------------------------------------
  3297 // Breakpoints
  3298 void TemplateTable::_breakpoint() {
  3300   // Note: We get here even if we are single stepping..
  3301   // jbug inists on setting breakpoints at every bytecode
  3302   // even if we are in single step mode.
  3304   transition(vtos, vtos);
  3306   // get the unpatched byte code
  3307   __ get_method(rcx);
  3308   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), rcx, rsi);
  3309   __ movl(rbx, rax);
  3311   // post the breakpoint event
  3312   __ get_method(rcx);
  3313   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), rcx, rsi);
  3315   // complete the execution of original bytecode
  3316   __ dispatch_only_normal(vtos);
  3320 //----------------------------------------------------------------------------------------------------
  3321 // Exceptions
  3323 void TemplateTable::athrow() {
  3324   transition(atos, vtos);
  3325   __ null_check(rax);
  3326   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
  3330 //----------------------------------------------------------------------------------------------------
  3331 // Synchronization
  3332 //
  3333 // Note: monitorenter & exit are symmetric routines; which is reflected
  3334 //       in the assembly code structure as well
  3335 //
  3336 // Stack layout:
  3337 //
  3338 // [expressions  ] <--- rsp               = expression stack top
  3339 // ..
  3340 // [expressions  ]
  3341 // [monitor entry] <--- monitor block top = expression stack bot
  3342 // ..
  3343 // [monitor entry]
  3344 // [frame data   ] <--- monitor block bot
  3345 // ...
  3346 // [saved rbp,    ] <--- rbp,
  3349 void TemplateTable::monitorenter() {
  3350   transition(atos, vtos);
  3352   // check for NULL object
  3353   __ null_check(rax);
  3355   const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3356   const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
  3357   const int entry_size =         (     frame::interpreter_frame_monitor_size()           * wordSize);
  3358   Label allocated;
  3360   // initialize entry pointer
  3361   __ xorl(rdx, rdx);                             // points to free slot or NULL
  3363   // find a free slot in the monitor block (result in rdx)
  3364   { Label entry, loop, exit;
  3365     __ movl(rcx, monitor_block_top);             // points to current entry, starting with top-most entry
  3366     __ leal(rbx, monitor_block_bot);             // points to word before bottom of monitor block
  3367     __ jmpb(entry);
  3369     __ bind(loop);
  3370     __ cmpl(Address(rcx, BasicObjectLock::obj_offset_in_bytes()), NULL_WORD);  // check if current entry is used
  3372 // TODO - need new func here - kbt
  3373     if (VM_Version::supports_cmov()) {
  3374       __ cmovl(Assembler::equal, rdx, rcx);      // if not used then remember entry in rdx
  3375     } else {
  3376       Label L;
  3377       __ jccb(Assembler::notEqual, L);
  3378       __ movl(rdx, rcx);                         // if not used then remember entry in rdx
  3379       __ bind(L);
  3381     __ cmpl(rax, Address(rcx, BasicObjectLock::obj_offset_in_bytes()));   // check if current entry is for same object
  3382     __ jccb(Assembler::equal, exit);              // if same object then stop searching
  3383     __ addl(rcx, entry_size);                    // otherwise advance to next entry
  3384     __ bind(entry);
  3385     __ cmpl(rcx, rbx);                           // check if bottom reached
  3386     __ jcc(Assembler::notEqual, loop);           // if not at bottom then check this entry
  3387     __ bind(exit);
  3390   __ testl(rdx, rdx);                            // check if a slot has been found
  3391   __ jccb(Assembler::notZero, allocated);         // if found, continue with that one
  3393   // allocate one if there's no free slot
  3394   { Label entry, loop;
  3395     // 1. compute new pointers                   // rsp: old expression stack top
  3396     __ movl(rdx, monitor_block_bot);             // rdx: old expression stack bottom
  3397     __ subl(rsp, entry_size);                    // move expression stack top
  3398     __ subl(rdx, entry_size);                    // move expression stack bottom
  3399     __ movl(rcx, rsp);                           // set start value for copy loop
  3400     __ movl(monitor_block_bot, rdx);             // set new monitor block top
  3401     __ jmp(entry);
  3402     // 2. move expression stack contents
  3403     __ bind(loop);
  3404     __ movl(rbx, Address(rcx, entry_size));      // load expression stack word from old location
  3405     __ movl(Address(rcx, 0), rbx);               // and store it at new location
  3406     __ addl(rcx, wordSize);                      // advance to next word
  3407     __ bind(entry);
  3408     __ cmpl(rcx, rdx);                           // check if bottom reached
  3409     __ jcc(Assembler::notEqual, loop);           // if not at bottom then copy next word
  3412   // call run-time routine
  3413   // rdx: points to monitor entry
  3414   __ bind(allocated);
  3416   // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly.
  3417   // The object has already been poped from the stack, so the expression stack looks correct.
  3418   __ increment(rsi);
  3420   __ movl(Address(rdx, BasicObjectLock::obj_offset_in_bytes()), rax);     // store object
  3421   __ lock_object(rdx);
  3423   // check to make sure this monitor doesn't cause stack overflow after locking
  3424   __ save_bcp();  // in case of exception
  3425   __ generate_stack_overflow_check(0);
  3427   // The bcp has already been incremented. Just need to dispatch to next instruction.
  3428   __ dispatch_next(vtos);
  3432 void TemplateTable::monitorexit() {
  3433   transition(atos, vtos);
  3435   // check for NULL object
  3436   __ null_check(rax);
  3438   const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3439   const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
  3440   const int entry_size =         (     frame::interpreter_frame_monitor_size()           * wordSize);
  3441   Label found;
  3443   // find matching slot
  3444   { Label entry, loop;
  3445     __ movl(rdx, monitor_block_top);             // points to current entry, starting with top-most entry
  3446     __ leal(rbx, monitor_block_bot);             // points to word before bottom of monitor block
  3447     __ jmpb(entry);
  3449     __ bind(loop);
  3450     __ cmpl(rax, Address(rdx, BasicObjectLock::obj_offset_in_bytes()));   // check if current entry is for same object
  3451     __ jcc(Assembler::equal, found);             // if same object then stop searching
  3452     __ addl(rdx, entry_size);                    // otherwise advance to next entry
  3453     __ bind(entry);
  3454     __ cmpl(rdx, rbx);                           // check if bottom reached
  3455     __ jcc(Assembler::notEqual, loop);           // if not at bottom then check this entry
  3458   // error handling. Unlocking was not block-structured
  3459   Label end;
  3460   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
  3461   __ should_not_reach_here();
  3463   // call run-time routine
  3464   // rcx: points to monitor entry
  3465   __ bind(found);
  3466   __ push_ptr(rax);                                 // make sure object is on stack (contract with oopMaps)
  3467   __ unlock_object(rdx);
  3468   __ pop_ptr(rax);                                  // discard object
  3469   __ bind(end);
  3473 //----------------------------------------------------------------------------------------------------
  3474 // Wide instructions
  3476 void TemplateTable::wide() {
  3477   transition(vtos, vtos);
  3478   __ load_unsigned_byte(rbx, at_bcp(1));
  3479   __ jmp(Address(noreg, rbx, Address::times_4, int(Interpreter::_wentry_point)));
  3480   // Note: the rsi increment step is part of the individual wide bytecode implementations
  3484 //----------------------------------------------------------------------------------------------------
  3485 // Multi arrays
  3487 void TemplateTable::multianewarray() {
  3488   transition(vtos, atos);
  3489   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
  3490   // last dim is on top of stack; we want address of first one:
  3491   // first_addr = last_addr + (ndims - 1) * stackElementSize - 1*wordsize
  3492   // the latter wordSize to point to the beginning of the array.
  3493   __ leal(  rax, Address(rsp, rax, Interpreter::stackElementScale(), -wordSize));
  3494   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), rax);     // pass in rax,
  3495   __ load_unsigned_byte(rbx, at_bcp(3));
  3496   __ leal(rsp, Address(rsp, rbx, Interpreter::stackElementScale()));  // get rid of counts
  3499 #endif /* !CC_INTERP */

mercurial