src/share/vm/gc_implementation/g1/g1CollectedHeap.cpp

Thu, 23 Oct 2014 11:43:29 +0200

author
ehelin
date
Thu, 23 Oct 2014 11:43:29 +0200
changeset 7657
93a69595b807
parent 7655
8e9ede9dd2cd
child 7658
c3fcc09c9239
permissions
-rw-r--r--

8061630: G1 iterates over JNIHandles two times
Reviewed-by: mgerdin, brutisso

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #if !defined(__clang_major__) && defined(__GNUC__)
    26 #define ATTRIBUTE_PRINTF(x,y) // FIXME, formats are a mess.
    27 #endif
    29 #include "precompiled.hpp"
    30 #include "classfile/metadataOnStackMark.hpp"
    31 #include "code/codeCache.hpp"
    32 #include "code/icBuffer.hpp"
    33 #include "gc_implementation/g1/bufferingOopClosure.hpp"
    34 #include "gc_implementation/g1/concurrentG1Refine.hpp"
    35 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
    36 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    37 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
    38 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    39 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    40 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
    41 #include "gc_implementation/g1/g1EvacFailure.hpp"
    42 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
    43 #include "gc_implementation/g1/g1Log.hpp"
    44 #include "gc_implementation/g1/g1MarkSweep.hpp"
    45 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    46 #include "gc_implementation/g1/g1ParScanThreadState.inline.hpp"
    47 #include "gc_implementation/g1/g1RegionToSpaceMapper.hpp"
    48 #include "gc_implementation/g1/g1RemSet.inline.hpp"
    49 #include "gc_implementation/g1/g1StringDedup.hpp"
    50 #include "gc_implementation/g1/g1YCTypes.hpp"
    51 #include "gc_implementation/g1/heapRegion.inline.hpp"
    52 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    53 #include "gc_implementation/g1/heapRegionSet.inline.hpp"
    54 #include "gc_implementation/g1/vm_operations_g1.hpp"
    55 #include "gc_implementation/shared/gcHeapSummary.hpp"
    56 #include "gc_implementation/shared/gcTimer.hpp"
    57 #include "gc_implementation/shared/gcTrace.hpp"
    58 #include "gc_implementation/shared/gcTraceTime.hpp"
    59 #include "gc_implementation/shared/isGCActiveMark.hpp"
    60 #include "memory/allocation.hpp"
    61 #include "memory/gcLocker.inline.hpp"
    62 #include "memory/generationSpec.hpp"
    63 #include "memory/iterator.hpp"
    64 #include "memory/referenceProcessor.hpp"
    65 #include "oops/oop.inline.hpp"
    66 #include "oops/oop.pcgc.inline.hpp"
    67 #include "runtime/orderAccess.inline.hpp"
    68 #include "runtime/vmThread.hpp"
    70 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
    72 // turn it on so that the contents of the young list (scan-only /
    73 // to-be-collected) are printed at "strategic" points before / during
    74 // / after the collection --- this is useful for debugging
    75 #define YOUNG_LIST_VERBOSE 0
    76 // CURRENT STATUS
    77 // This file is under construction.  Search for "FIXME".
    79 // INVARIANTS/NOTES
    80 //
    81 // All allocation activity covered by the G1CollectedHeap interface is
    82 // serialized by acquiring the HeapLock.  This happens in mem_allocate
    83 // and allocate_new_tlab, which are the "entry" points to the
    84 // allocation code from the rest of the JVM.  (Note that this does not
    85 // apply to TLAB allocation, which is not part of this interface: it
    86 // is done by clients of this interface.)
    88 // Notes on implementation of parallelism in different tasks.
    89 //
    90 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
    91 // The number of GC workers is passed to heap_region_par_iterate_chunked().
    92 // It does use run_task() which sets _n_workers in the task.
    93 // G1ParTask executes g1_process_roots() ->
    94 // SharedHeap::process_roots() which calls eventually to
    95 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
    96 // SequentialSubTasksDone.  SharedHeap::process_roots() also
    97 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
    98 //
   100 // Local to this file.
   102 class RefineCardTableEntryClosure: public CardTableEntryClosure {
   103   bool _concurrent;
   104 public:
   105   RefineCardTableEntryClosure() : _concurrent(true) { }
   107   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
   108     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
   109     // This path is executed by the concurrent refine or mutator threads,
   110     // concurrently, and so we do not care if card_ptr contains references
   111     // that point into the collection set.
   112     assert(!oops_into_cset, "should be");
   114     if (_concurrent && SuspendibleThreadSet::should_yield()) {
   115       // Caller will actually yield.
   116       return false;
   117     }
   118     // Otherwise, we finished successfully; return true.
   119     return true;
   120   }
   122   void set_concurrent(bool b) { _concurrent = b; }
   123 };
   126 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
   127   size_t _num_processed;
   128   CardTableModRefBS* _ctbs;
   129   int _histo[256];
   131  public:
   132   ClearLoggedCardTableEntryClosure() :
   133     _num_processed(0), _ctbs(G1CollectedHeap::heap()->g1_barrier_set())
   134   {
   135     for (int i = 0; i < 256; i++) _histo[i] = 0;
   136   }
   138   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
   139     unsigned char* ujb = (unsigned char*)card_ptr;
   140     int ind = (int)(*ujb);
   141     _histo[ind]++;
   143     *card_ptr = (jbyte)CardTableModRefBS::clean_card_val();
   144     _num_processed++;
   146     return true;
   147   }
   149   size_t num_processed() { return _num_processed; }
   151   void print_histo() {
   152     gclog_or_tty->print_cr("Card table value histogram:");
   153     for (int i = 0; i < 256; i++) {
   154       if (_histo[i] != 0) {
   155         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
   156       }
   157     }
   158   }
   159 };
   161 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
   162  private:
   163   size_t _num_processed;
   165  public:
   166   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
   168   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
   169     *card_ptr = CardTableModRefBS::dirty_card_val();
   170     _num_processed++;
   171     return true;
   172   }
   174   size_t num_processed() const { return _num_processed; }
   175 };
   177 YoungList::YoungList(G1CollectedHeap* g1h) :
   178     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
   179     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
   180   guarantee(check_list_empty(false), "just making sure...");
   181 }
   183 void YoungList::push_region(HeapRegion *hr) {
   184   assert(!hr->is_young(), "should not already be young");
   185   assert(hr->get_next_young_region() == NULL, "cause it should!");
   187   hr->set_next_young_region(_head);
   188   _head = hr;
   190   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
   191   ++_length;
   192 }
   194 void YoungList::add_survivor_region(HeapRegion* hr) {
   195   assert(hr->is_survivor(), "should be flagged as survivor region");
   196   assert(hr->get_next_young_region() == NULL, "cause it should!");
   198   hr->set_next_young_region(_survivor_head);
   199   if (_survivor_head == NULL) {
   200     _survivor_tail = hr;
   201   }
   202   _survivor_head = hr;
   203   ++_survivor_length;
   204 }
   206 void YoungList::empty_list(HeapRegion* list) {
   207   while (list != NULL) {
   208     HeapRegion* next = list->get_next_young_region();
   209     list->set_next_young_region(NULL);
   210     list->uninstall_surv_rate_group();
   211     // This is called before a Full GC and all the non-empty /
   212     // non-humongous regions at the end of the Full GC will end up as
   213     // old anyway.
   214     list->set_old();
   215     list = next;
   216   }
   217 }
   219 void YoungList::empty_list() {
   220   assert(check_list_well_formed(), "young list should be well formed");
   222   empty_list(_head);
   223   _head = NULL;
   224   _length = 0;
   226   empty_list(_survivor_head);
   227   _survivor_head = NULL;
   228   _survivor_tail = NULL;
   229   _survivor_length = 0;
   231   _last_sampled_rs_lengths = 0;
   233   assert(check_list_empty(false), "just making sure...");
   234 }
   236 bool YoungList::check_list_well_formed() {
   237   bool ret = true;
   239   uint length = 0;
   240   HeapRegion* curr = _head;
   241   HeapRegion* last = NULL;
   242   while (curr != NULL) {
   243     if (!curr->is_young()) {
   244       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
   245                              "incorrectly tagged (y: %d, surv: %d)",
   246                              curr->bottom(), curr->end(),
   247                              curr->is_young(), curr->is_survivor());
   248       ret = false;
   249     }
   250     ++length;
   251     last = curr;
   252     curr = curr->get_next_young_region();
   253   }
   254   ret = ret && (length == _length);
   256   if (!ret) {
   257     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
   258     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
   259                            length, _length);
   260   }
   262   return ret;
   263 }
   265 bool YoungList::check_list_empty(bool check_sample) {
   266   bool ret = true;
   268   if (_length != 0) {
   269     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
   270                   _length);
   271     ret = false;
   272   }
   273   if (check_sample && _last_sampled_rs_lengths != 0) {
   274     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
   275     ret = false;
   276   }
   277   if (_head != NULL) {
   278     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
   279     ret = false;
   280   }
   281   if (!ret) {
   282     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
   283   }
   285   return ret;
   286 }
   288 void
   289 YoungList::rs_length_sampling_init() {
   290   _sampled_rs_lengths = 0;
   291   _curr               = _head;
   292 }
   294 bool
   295 YoungList::rs_length_sampling_more() {
   296   return _curr != NULL;
   297 }
   299 void
   300 YoungList::rs_length_sampling_next() {
   301   assert( _curr != NULL, "invariant" );
   302   size_t rs_length = _curr->rem_set()->occupied();
   304   _sampled_rs_lengths += rs_length;
   306   // The current region may not yet have been added to the
   307   // incremental collection set (it gets added when it is
   308   // retired as the current allocation region).
   309   if (_curr->in_collection_set()) {
   310     // Update the collection set policy information for this region
   311     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
   312   }
   314   _curr = _curr->get_next_young_region();
   315   if (_curr == NULL) {
   316     _last_sampled_rs_lengths = _sampled_rs_lengths;
   317     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
   318   }
   319 }
   321 void
   322 YoungList::reset_auxilary_lists() {
   323   guarantee( is_empty(), "young list should be empty" );
   324   assert(check_list_well_formed(), "young list should be well formed");
   326   // Add survivor regions to SurvRateGroup.
   327   _g1h->g1_policy()->note_start_adding_survivor_regions();
   328   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
   330   int young_index_in_cset = 0;
   331   for (HeapRegion* curr = _survivor_head;
   332        curr != NULL;
   333        curr = curr->get_next_young_region()) {
   334     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
   336     // The region is a non-empty survivor so let's add it to
   337     // the incremental collection set for the next evacuation
   338     // pause.
   339     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
   340     young_index_in_cset += 1;
   341   }
   342   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
   343   _g1h->g1_policy()->note_stop_adding_survivor_regions();
   345   _head   = _survivor_head;
   346   _length = _survivor_length;
   347   if (_survivor_head != NULL) {
   348     assert(_survivor_tail != NULL, "cause it shouldn't be");
   349     assert(_survivor_length > 0, "invariant");
   350     _survivor_tail->set_next_young_region(NULL);
   351   }
   353   // Don't clear the survivor list handles until the start of
   354   // the next evacuation pause - we need it in order to re-tag
   355   // the survivor regions from this evacuation pause as 'young'
   356   // at the start of the next.
   358   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
   360   assert(check_list_well_formed(), "young list should be well formed");
   361 }
   363 void YoungList::print() {
   364   HeapRegion* lists[] = {_head,   _survivor_head};
   365   const char* names[] = {"YOUNG", "SURVIVOR"};
   367   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
   368     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
   369     HeapRegion *curr = lists[list];
   370     if (curr == NULL)
   371       gclog_or_tty->print_cr("  empty");
   372     while (curr != NULL) {
   373       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT ", N: "PTR_FORMAT", age: %4d",
   374                              HR_FORMAT_PARAMS(curr),
   375                              curr->prev_top_at_mark_start(),
   376                              curr->next_top_at_mark_start(),
   377                              curr->age_in_surv_rate_group_cond());
   378       curr = curr->get_next_young_region();
   379     }
   380   }
   382   gclog_or_tty->cr();
   383 }
   385 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
   386   OtherRegionsTable::invalidate(start_idx, num_regions);
   387 }
   389 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
   390   // The from card cache is not the memory that is actually committed. So we cannot
   391   // take advantage of the zero_filled parameter.
   392   reset_from_card_cache(start_idx, num_regions);
   393 }
   395 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
   396 {
   397   // Claim the right to put the region on the dirty cards region list
   398   // by installing a self pointer.
   399   HeapRegion* next = hr->get_next_dirty_cards_region();
   400   if (next == NULL) {
   401     HeapRegion* res = (HeapRegion*)
   402       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
   403                           NULL);
   404     if (res == NULL) {
   405       HeapRegion* head;
   406       do {
   407         // Put the region to the dirty cards region list.
   408         head = _dirty_cards_region_list;
   409         next = (HeapRegion*)
   410           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
   411         if (next == head) {
   412           assert(hr->get_next_dirty_cards_region() == hr,
   413                  "hr->get_next_dirty_cards_region() != hr");
   414           if (next == NULL) {
   415             // The last region in the list points to itself.
   416             hr->set_next_dirty_cards_region(hr);
   417           } else {
   418             hr->set_next_dirty_cards_region(next);
   419           }
   420         }
   421       } while (next != head);
   422     }
   423   }
   424 }
   426 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
   427 {
   428   HeapRegion* head;
   429   HeapRegion* hr;
   430   do {
   431     head = _dirty_cards_region_list;
   432     if (head == NULL) {
   433       return NULL;
   434     }
   435     HeapRegion* new_head = head->get_next_dirty_cards_region();
   436     if (head == new_head) {
   437       // The last region.
   438       new_head = NULL;
   439     }
   440     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
   441                                           head);
   442   } while (hr != head);
   443   assert(hr != NULL, "invariant");
   444   hr->set_next_dirty_cards_region(NULL);
   445   return hr;
   446 }
   448 #ifdef ASSERT
   449 // A region is added to the collection set as it is retired
   450 // so an address p can point to a region which will be in the
   451 // collection set but has not yet been retired.  This method
   452 // therefore is only accurate during a GC pause after all
   453 // regions have been retired.  It is used for debugging
   454 // to check if an nmethod has references to objects that can
   455 // be move during a partial collection.  Though it can be
   456 // inaccurate, it is sufficient for G1 because the conservative
   457 // implementation of is_scavengable() for G1 will indicate that
   458 // all nmethods must be scanned during a partial collection.
   459 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
   460   if (p == NULL) {
   461     return false;
   462   }
   463   return heap_region_containing(p)->in_collection_set();
   464 }
   465 #endif
   467 // Returns true if the reference points to an object that
   468 // can move in an incremental collection.
   469 bool G1CollectedHeap::is_scavengable(const void* p) {
   470   HeapRegion* hr = heap_region_containing(p);
   471   return !hr->isHumongous();
   472 }
   474 void G1CollectedHeap::check_ct_logs_at_safepoint() {
   475   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
   476   CardTableModRefBS* ct_bs = g1_barrier_set();
   478   // Count the dirty cards at the start.
   479   CountNonCleanMemRegionClosure count1(this);
   480   ct_bs->mod_card_iterate(&count1);
   481   int orig_count = count1.n();
   483   // First clear the logged cards.
   484   ClearLoggedCardTableEntryClosure clear;
   485   dcqs.apply_closure_to_all_completed_buffers(&clear);
   486   dcqs.iterate_closure_all_threads(&clear, false);
   487   clear.print_histo();
   489   // Now ensure that there's no dirty cards.
   490   CountNonCleanMemRegionClosure count2(this);
   491   ct_bs->mod_card_iterate(&count2);
   492   if (count2.n() != 0) {
   493     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
   494                            count2.n(), orig_count);
   495   }
   496   guarantee(count2.n() == 0, "Card table should be clean.");
   498   RedirtyLoggedCardTableEntryClosure redirty;
   499   dcqs.apply_closure_to_all_completed_buffers(&redirty);
   500   dcqs.iterate_closure_all_threads(&redirty, false);
   501   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
   502                          clear.num_processed(), orig_count);
   503   guarantee(redirty.num_processed() == clear.num_processed(),
   504             err_msg("Redirtied "SIZE_FORMAT" cards, bug cleared "SIZE_FORMAT,
   505                     redirty.num_processed(), clear.num_processed()));
   507   CountNonCleanMemRegionClosure count3(this);
   508   ct_bs->mod_card_iterate(&count3);
   509   if (count3.n() != orig_count) {
   510     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
   511                            orig_count, count3.n());
   512     guarantee(count3.n() >= orig_count, "Should have restored them all.");
   513   }
   514 }
   516 // Private class members.
   518 G1CollectedHeap* G1CollectedHeap::_g1h;
   520 // Private methods.
   522 HeapRegion*
   523 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
   524   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
   525   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
   526     if (!_secondary_free_list.is_empty()) {
   527       if (G1ConcRegionFreeingVerbose) {
   528         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   529                                "secondary_free_list has %u entries",
   530                                _secondary_free_list.length());
   531       }
   532       // It looks as if there are free regions available on the
   533       // secondary_free_list. Let's move them to the free_list and try
   534       // again to allocate from it.
   535       append_secondary_free_list();
   537       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
   538              "empty we should have moved at least one entry to the free_list");
   539       HeapRegion* res = _hrm.allocate_free_region(is_old);
   540       if (G1ConcRegionFreeingVerbose) {
   541         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   542                                "allocated "HR_FORMAT" from secondary_free_list",
   543                                HR_FORMAT_PARAMS(res));
   544       }
   545       return res;
   546     }
   548     // Wait here until we get notified either when (a) there are no
   549     // more free regions coming or (b) some regions have been moved on
   550     // the secondary_free_list.
   551     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
   552   }
   554   if (G1ConcRegionFreeingVerbose) {
   555     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   556                            "could not allocate from secondary_free_list");
   557   }
   558   return NULL;
   559 }
   561 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
   562   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
   563          "the only time we use this to allocate a humongous region is "
   564          "when we are allocating a single humongous region");
   566   HeapRegion* res;
   567   if (G1StressConcRegionFreeing) {
   568     if (!_secondary_free_list.is_empty()) {
   569       if (G1ConcRegionFreeingVerbose) {
   570         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   571                                "forced to look at the secondary_free_list");
   572       }
   573       res = new_region_try_secondary_free_list(is_old);
   574       if (res != NULL) {
   575         return res;
   576       }
   577     }
   578   }
   580   res = _hrm.allocate_free_region(is_old);
   582   if (res == NULL) {
   583     if (G1ConcRegionFreeingVerbose) {
   584       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   585                              "res == NULL, trying the secondary_free_list");
   586     }
   587     res = new_region_try_secondary_free_list(is_old);
   588   }
   589   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
   590     // Currently, only attempts to allocate GC alloc regions set
   591     // do_expand to true. So, we should only reach here during a
   592     // safepoint. If this assumption changes we might have to
   593     // reconsider the use of _expand_heap_after_alloc_failure.
   594     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
   596     ergo_verbose1(ErgoHeapSizing,
   597                   "attempt heap expansion",
   598                   ergo_format_reason("region allocation request failed")
   599                   ergo_format_byte("allocation request"),
   600                   word_size * HeapWordSize);
   601     if (expand(word_size * HeapWordSize)) {
   602       // Given that expand() succeeded in expanding the heap, and we
   603       // always expand the heap by an amount aligned to the heap
   604       // region size, the free list should in theory not be empty.
   605       // In either case allocate_free_region() will check for NULL.
   606       res = _hrm.allocate_free_region(is_old);
   607     } else {
   608       _expand_heap_after_alloc_failure = false;
   609     }
   610   }
   611   return res;
   612 }
   614 HeapWord*
   615 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
   616                                                            uint num_regions,
   617                                                            size_t word_size,
   618                                                            AllocationContext_t context) {
   619   assert(first != G1_NO_HRM_INDEX, "pre-condition");
   620   assert(isHumongous(word_size), "word_size should be humongous");
   621   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
   623   // Index of last region in the series + 1.
   624   uint last = first + num_regions;
   626   // We need to initialize the region(s) we just discovered. This is
   627   // a bit tricky given that it can happen concurrently with
   628   // refinement threads refining cards on these regions and
   629   // potentially wanting to refine the BOT as they are scanning
   630   // those cards (this can happen shortly after a cleanup; see CR
   631   // 6991377). So we have to set up the region(s) carefully and in
   632   // a specific order.
   634   // The word size sum of all the regions we will allocate.
   635   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
   636   assert(word_size <= word_size_sum, "sanity");
   638   // This will be the "starts humongous" region.
   639   HeapRegion* first_hr = region_at(first);
   640   // The header of the new object will be placed at the bottom of
   641   // the first region.
   642   HeapWord* new_obj = first_hr->bottom();
   643   // This will be the new end of the first region in the series that
   644   // should also match the end of the last region in the series.
   645   HeapWord* new_end = new_obj + word_size_sum;
   646   // This will be the new top of the first region that will reflect
   647   // this allocation.
   648   HeapWord* new_top = new_obj + word_size;
   650   // First, we need to zero the header of the space that we will be
   651   // allocating. When we update top further down, some refinement
   652   // threads might try to scan the region. By zeroing the header we
   653   // ensure that any thread that will try to scan the region will
   654   // come across the zero klass word and bail out.
   655   //
   656   // NOTE: It would not have been correct to have used
   657   // CollectedHeap::fill_with_object() and make the space look like
   658   // an int array. The thread that is doing the allocation will
   659   // later update the object header to a potentially different array
   660   // type and, for a very short period of time, the klass and length
   661   // fields will be inconsistent. This could cause a refinement
   662   // thread to calculate the object size incorrectly.
   663   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
   665   // We will set up the first region as "starts humongous". This
   666   // will also update the BOT covering all the regions to reflect
   667   // that there is a single object that starts at the bottom of the
   668   // first region.
   669   first_hr->set_startsHumongous(new_top, new_end);
   670   first_hr->set_allocation_context(context);
   671   // Then, if there are any, we will set up the "continues
   672   // humongous" regions.
   673   HeapRegion* hr = NULL;
   674   for (uint i = first + 1; i < last; ++i) {
   675     hr = region_at(i);
   676     hr->set_continuesHumongous(first_hr);
   677     hr->set_allocation_context(context);
   678   }
   679   // If we have "continues humongous" regions (hr != NULL), then the
   680   // end of the last one should match new_end.
   681   assert(hr == NULL || hr->end() == new_end, "sanity");
   683   // Up to this point no concurrent thread would have been able to
   684   // do any scanning on any region in this series. All the top
   685   // fields still point to bottom, so the intersection between
   686   // [bottom,top] and [card_start,card_end] will be empty. Before we
   687   // update the top fields, we'll do a storestore to make sure that
   688   // no thread sees the update to top before the zeroing of the
   689   // object header and the BOT initialization.
   690   OrderAccess::storestore();
   692   // Now that the BOT and the object header have been initialized,
   693   // we can update top of the "starts humongous" region.
   694   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
   695          "new_top should be in this region");
   696   first_hr->set_top(new_top);
   697   if (_hr_printer.is_active()) {
   698     HeapWord* bottom = first_hr->bottom();
   699     HeapWord* end = first_hr->orig_end();
   700     if ((first + 1) == last) {
   701       // the series has a single humongous region
   702       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
   703     } else {
   704       // the series has more than one humongous regions
   705       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
   706     }
   707   }
   709   // Now, we will update the top fields of the "continues humongous"
   710   // regions. The reason we need to do this is that, otherwise,
   711   // these regions would look empty and this will confuse parts of
   712   // G1. For example, the code that looks for a consecutive number
   713   // of empty regions will consider them empty and try to
   714   // re-allocate them. We can extend is_empty() to also include
   715   // !continuesHumongous(), but it is easier to just update the top
   716   // fields here. The way we set top for all regions (i.e., top ==
   717   // end for all regions but the last one, top == new_top for the
   718   // last one) is actually used when we will free up the humongous
   719   // region in free_humongous_region().
   720   hr = NULL;
   721   for (uint i = first + 1; i < last; ++i) {
   722     hr = region_at(i);
   723     if ((i + 1) == last) {
   724       // last continues humongous region
   725       assert(hr->bottom() < new_top && new_top <= hr->end(),
   726              "new_top should fall on this region");
   727       hr->set_top(new_top);
   728       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
   729     } else {
   730       // not last one
   731       assert(new_top > hr->end(), "new_top should be above this region");
   732       hr->set_top(hr->end());
   733       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
   734     }
   735   }
   736   // If we have continues humongous regions (hr != NULL), then the
   737   // end of the last one should match new_end and its top should
   738   // match new_top.
   739   assert(hr == NULL ||
   740          (hr->end() == new_end && hr->top() == new_top), "sanity");
   741   check_bitmaps("Humongous Region Allocation", first_hr);
   743   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
   744   _allocator->increase_used(first_hr->used());
   745   _humongous_set.add(first_hr);
   747   return new_obj;
   748 }
   750 // If could fit into free regions w/o expansion, try.
   751 // Otherwise, if can expand, do so.
   752 // Otherwise, if using ex regions might help, try with ex given back.
   753 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
   754   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
   756   verify_region_sets_optional();
   758   uint first = G1_NO_HRM_INDEX;
   759   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
   761   if (obj_regions == 1) {
   762     // Only one region to allocate, try to use a fast path by directly allocating
   763     // from the free lists. Do not try to expand here, we will potentially do that
   764     // later.
   765     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
   766     if (hr != NULL) {
   767       first = hr->hrm_index();
   768     }
   769   } else {
   770     // We can't allocate humongous regions spanning more than one region while
   771     // cleanupComplete() is running, since some of the regions we find to be
   772     // empty might not yet be added to the free list. It is not straightforward
   773     // to know in which list they are on so that we can remove them. We only
   774     // need to do this if we need to allocate more than one region to satisfy the
   775     // current humongous allocation request. If we are only allocating one region
   776     // we use the one-region region allocation code (see above), that already
   777     // potentially waits for regions from the secondary free list.
   778     wait_while_free_regions_coming();
   779     append_secondary_free_list_if_not_empty_with_lock();
   781     // Policy: Try only empty regions (i.e. already committed first). Maybe we
   782     // are lucky enough to find some.
   783     first = _hrm.find_contiguous_only_empty(obj_regions);
   784     if (first != G1_NO_HRM_INDEX) {
   785       _hrm.allocate_free_regions_starting_at(first, obj_regions);
   786     }
   787   }
   789   if (first == G1_NO_HRM_INDEX) {
   790     // Policy: We could not find enough regions for the humongous object in the
   791     // free list. Look through the heap to find a mix of free and uncommitted regions.
   792     // If so, try expansion.
   793     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
   794     if (first != G1_NO_HRM_INDEX) {
   795       // We found something. Make sure these regions are committed, i.e. expand
   796       // the heap. Alternatively we could do a defragmentation GC.
   797       ergo_verbose1(ErgoHeapSizing,
   798                     "attempt heap expansion",
   799                     ergo_format_reason("humongous allocation request failed")
   800                     ergo_format_byte("allocation request"),
   801                     word_size * HeapWordSize);
   803       _hrm.expand_at(first, obj_regions);
   804       g1_policy()->record_new_heap_size(num_regions());
   806 #ifdef ASSERT
   807       for (uint i = first; i < first + obj_regions; ++i) {
   808         HeapRegion* hr = region_at(i);
   809         assert(hr->is_free(), "sanity");
   810         assert(hr->is_empty(), "sanity");
   811         assert(is_on_master_free_list(hr), "sanity");
   812       }
   813 #endif
   814       _hrm.allocate_free_regions_starting_at(first, obj_regions);
   815     } else {
   816       // Policy: Potentially trigger a defragmentation GC.
   817     }
   818   }
   820   HeapWord* result = NULL;
   821   if (first != G1_NO_HRM_INDEX) {
   822     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
   823                                                        word_size, context);
   824     assert(result != NULL, "it should always return a valid result");
   826     // A successful humongous object allocation changes the used space
   827     // information of the old generation so we need to recalculate the
   828     // sizes and update the jstat counters here.
   829     g1mm()->update_sizes();
   830   }
   832   verify_region_sets_optional();
   834   return result;
   835 }
   837 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
   838   assert_heap_not_locked_and_not_at_safepoint();
   839   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
   841   unsigned int dummy_gc_count_before;
   842   int dummy_gclocker_retry_count = 0;
   843   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
   844 }
   846 HeapWord*
   847 G1CollectedHeap::mem_allocate(size_t word_size,
   848                               bool*  gc_overhead_limit_was_exceeded) {
   849   assert_heap_not_locked_and_not_at_safepoint();
   851   // Loop until the allocation is satisfied, or unsatisfied after GC.
   852   for (int try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
   853     unsigned int gc_count_before;
   855     HeapWord* result = NULL;
   856     if (!isHumongous(word_size)) {
   857       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
   858     } else {
   859       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
   860     }
   861     if (result != NULL) {
   862       return result;
   863     }
   865     // Create the garbage collection operation...
   866     VM_G1CollectForAllocation op(gc_count_before, word_size);
   867     op.set_allocation_context(AllocationContext::current());
   869     // ...and get the VM thread to execute it.
   870     VMThread::execute(&op);
   872     if (op.prologue_succeeded() && op.pause_succeeded()) {
   873       // If the operation was successful we'll return the result even
   874       // if it is NULL. If the allocation attempt failed immediately
   875       // after a Full GC, it's unlikely we'll be able to allocate now.
   876       HeapWord* result = op.result();
   877       if (result != NULL && !isHumongous(word_size)) {
   878         // Allocations that take place on VM operations do not do any
   879         // card dirtying and we have to do it here. We only have to do
   880         // this for non-humongous allocations, though.
   881         dirty_young_block(result, word_size);
   882       }
   883       return result;
   884     } else {
   885       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
   886         return NULL;
   887       }
   888       assert(op.result() == NULL,
   889              "the result should be NULL if the VM op did not succeed");
   890     }
   892     // Give a warning if we seem to be looping forever.
   893     if ((QueuedAllocationWarningCount > 0) &&
   894         (try_count % QueuedAllocationWarningCount == 0)) {
   895       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
   896     }
   897   }
   899   ShouldNotReachHere();
   900   return NULL;
   901 }
   903 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
   904                                                    AllocationContext_t context,
   905                                                    unsigned int *gc_count_before_ret,
   906                                                    int* gclocker_retry_count_ret) {
   907   // Make sure you read the note in attempt_allocation_humongous().
   909   assert_heap_not_locked_and_not_at_safepoint();
   910   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
   911          "be called for humongous allocation requests");
   913   // We should only get here after the first-level allocation attempt
   914   // (attempt_allocation()) failed to allocate.
   916   // We will loop until a) we manage to successfully perform the
   917   // allocation or b) we successfully schedule a collection which
   918   // fails to perform the allocation. b) is the only case when we'll
   919   // return NULL.
   920   HeapWord* result = NULL;
   921   for (int try_count = 1; /* we'll return */; try_count += 1) {
   922     bool should_try_gc;
   923     unsigned int gc_count_before;
   925     {
   926       MutexLockerEx x(Heap_lock);
   927       result = _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
   928                                                                                     false /* bot_updates */);
   929       if (result != NULL) {
   930         return result;
   931       }
   933       // If we reach here, attempt_allocation_locked() above failed to
   934       // allocate a new region. So the mutator alloc region should be NULL.
   935       assert(_allocator->mutator_alloc_region(context)->get() == NULL, "only way to get here");
   937       if (GC_locker::is_active_and_needs_gc()) {
   938         if (g1_policy()->can_expand_young_list()) {
   939           // No need for an ergo verbose message here,
   940           // can_expand_young_list() does this when it returns true.
   941           result = _allocator->mutator_alloc_region(context)->attempt_allocation_force(word_size,
   942                                                                                        false /* bot_updates */);
   943           if (result != NULL) {
   944             return result;
   945           }
   946         }
   947         should_try_gc = false;
   948       } else {
   949         // The GCLocker may not be active but the GCLocker initiated
   950         // GC may not yet have been performed (GCLocker::needs_gc()
   951         // returns true). In this case we do not try this GC and
   952         // wait until the GCLocker initiated GC is performed, and
   953         // then retry the allocation.
   954         if (GC_locker::needs_gc()) {
   955           should_try_gc = false;
   956         } else {
   957           // Read the GC count while still holding the Heap_lock.
   958           gc_count_before = total_collections();
   959           should_try_gc = true;
   960         }
   961       }
   962     }
   964     if (should_try_gc) {
   965       bool succeeded;
   966       result = do_collection_pause(word_size, gc_count_before, &succeeded,
   967           GCCause::_g1_inc_collection_pause);
   968       if (result != NULL) {
   969         assert(succeeded, "only way to get back a non-NULL result");
   970         return result;
   971       }
   973       if (succeeded) {
   974         // If we get here we successfully scheduled a collection which
   975         // failed to allocate. No point in trying to allocate
   976         // further. We'll just return NULL.
   977         MutexLockerEx x(Heap_lock);
   978         *gc_count_before_ret = total_collections();
   979         return NULL;
   980       }
   981     } else {
   982       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
   983         MutexLockerEx x(Heap_lock);
   984         *gc_count_before_ret = total_collections();
   985         return NULL;
   986       }
   987       // The GCLocker is either active or the GCLocker initiated
   988       // GC has not yet been performed. Stall until it is and
   989       // then retry the allocation.
   990       GC_locker::stall_until_clear();
   991       (*gclocker_retry_count_ret) += 1;
   992     }
   994     // We can reach here if we were unsuccessful in scheduling a
   995     // collection (because another thread beat us to it) or if we were
   996     // stalled due to the GC locker. In either can we should retry the
   997     // allocation attempt in case another thread successfully
   998     // performed a collection and reclaimed enough space. We do the
   999     // first attempt (without holding the Heap_lock) here and the
  1000     // follow-on attempt will be at the start of the next loop
  1001     // iteration (after taking the Heap_lock).
  1002     result = _allocator->mutator_alloc_region(context)->attempt_allocation(word_size,
  1003                                                                            false /* bot_updates */);
  1004     if (result != NULL) {
  1005       return result;
  1008     // Give a warning if we seem to be looping forever.
  1009     if ((QueuedAllocationWarningCount > 0) &&
  1010         (try_count % QueuedAllocationWarningCount == 0)) {
  1011       warning("G1CollectedHeap::attempt_allocation_slow() "
  1012               "retries %d times", try_count);
  1016   ShouldNotReachHere();
  1017   return NULL;
  1020 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
  1021                                                         unsigned int * gc_count_before_ret,
  1022                                                         int* gclocker_retry_count_ret) {
  1023   // The structure of this method has a lot of similarities to
  1024   // attempt_allocation_slow(). The reason these two were not merged
  1025   // into a single one is that such a method would require several "if
  1026   // allocation is not humongous do this, otherwise do that"
  1027   // conditional paths which would obscure its flow. In fact, an early
  1028   // version of this code did use a unified method which was harder to
  1029   // follow and, as a result, it had subtle bugs that were hard to
  1030   // track down. So keeping these two methods separate allows each to
  1031   // be more readable. It will be good to keep these two in sync as
  1032   // much as possible.
  1034   assert_heap_not_locked_and_not_at_safepoint();
  1035   assert(isHumongous(word_size), "attempt_allocation_humongous() "
  1036          "should only be called for humongous allocations");
  1038   // Humongous objects can exhaust the heap quickly, so we should check if we
  1039   // need to start a marking cycle at each humongous object allocation. We do
  1040   // the check before we do the actual allocation. The reason for doing it
  1041   // before the allocation is that we avoid having to keep track of the newly
  1042   // allocated memory while we do a GC.
  1043   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
  1044                                            word_size)) {
  1045     collect(GCCause::_g1_humongous_allocation);
  1048   // We will loop until a) we manage to successfully perform the
  1049   // allocation or b) we successfully schedule a collection which
  1050   // fails to perform the allocation. b) is the only case when we'll
  1051   // return NULL.
  1052   HeapWord* result = NULL;
  1053   for (int try_count = 1; /* we'll return */; try_count += 1) {
  1054     bool should_try_gc;
  1055     unsigned int gc_count_before;
  1058       MutexLockerEx x(Heap_lock);
  1060       // Given that humongous objects are not allocated in young
  1061       // regions, we'll first try to do the allocation without doing a
  1062       // collection hoping that there's enough space in the heap.
  1063       result = humongous_obj_allocate(word_size, AllocationContext::current());
  1064       if (result != NULL) {
  1065         return result;
  1068       if (GC_locker::is_active_and_needs_gc()) {
  1069         should_try_gc = false;
  1070       } else {
  1071          // The GCLocker may not be active but the GCLocker initiated
  1072         // GC may not yet have been performed (GCLocker::needs_gc()
  1073         // returns true). In this case we do not try this GC and
  1074         // wait until the GCLocker initiated GC is performed, and
  1075         // then retry the allocation.
  1076         if (GC_locker::needs_gc()) {
  1077           should_try_gc = false;
  1078         } else {
  1079           // Read the GC count while still holding the Heap_lock.
  1080           gc_count_before = total_collections();
  1081           should_try_gc = true;
  1086     if (should_try_gc) {
  1087       // If we failed to allocate the humongous object, we should try to
  1088       // do a collection pause (if we're allowed) in case it reclaims
  1089       // enough space for the allocation to succeed after the pause.
  1091       bool succeeded;
  1092       result = do_collection_pause(word_size, gc_count_before, &succeeded,
  1093           GCCause::_g1_humongous_allocation);
  1094       if (result != NULL) {
  1095         assert(succeeded, "only way to get back a non-NULL result");
  1096         return result;
  1099       if (succeeded) {
  1100         // If we get here we successfully scheduled a collection which
  1101         // failed to allocate. No point in trying to allocate
  1102         // further. We'll just return NULL.
  1103         MutexLockerEx x(Heap_lock);
  1104         *gc_count_before_ret = total_collections();
  1105         return NULL;
  1107     } else {
  1108       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
  1109         MutexLockerEx x(Heap_lock);
  1110         *gc_count_before_ret = total_collections();
  1111         return NULL;
  1113       // The GCLocker is either active or the GCLocker initiated
  1114       // GC has not yet been performed. Stall until it is and
  1115       // then retry the allocation.
  1116       GC_locker::stall_until_clear();
  1117       (*gclocker_retry_count_ret) += 1;
  1120     // We can reach here if we were unsuccessful in scheduling a
  1121     // collection (because another thread beat us to it) or if we were
  1122     // stalled due to the GC locker. In either can we should retry the
  1123     // allocation attempt in case another thread successfully
  1124     // performed a collection and reclaimed enough space.  Give a
  1125     // warning if we seem to be looping forever.
  1127     if ((QueuedAllocationWarningCount > 0) &&
  1128         (try_count % QueuedAllocationWarningCount == 0)) {
  1129       warning("G1CollectedHeap::attempt_allocation_humongous() "
  1130               "retries %d times", try_count);
  1134   ShouldNotReachHere();
  1135   return NULL;
  1138 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
  1139                                                            AllocationContext_t context,
  1140                                                            bool expect_null_mutator_alloc_region) {
  1141   assert_at_safepoint(true /* should_be_vm_thread */);
  1142   assert(_allocator->mutator_alloc_region(context)->get() == NULL ||
  1143                                              !expect_null_mutator_alloc_region,
  1144          "the current alloc region was unexpectedly found to be non-NULL");
  1146   if (!isHumongous(word_size)) {
  1147     return _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
  1148                                                       false /* bot_updates */);
  1149   } else {
  1150     HeapWord* result = humongous_obj_allocate(word_size, context);
  1151     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
  1152       g1_policy()->set_initiate_conc_mark_if_possible();
  1154     return result;
  1157   ShouldNotReachHere();
  1160 class PostMCRemSetClearClosure: public HeapRegionClosure {
  1161   G1CollectedHeap* _g1h;
  1162   ModRefBarrierSet* _mr_bs;
  1163 public:
  1164   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
  1165     _g1h(g1h), _mr_bs(mr_bs) {}
  1167   bool doHeapRegion(HeapRegion* r) {
  1168     HeapRegionRemSet* hrrs = r->rem_set();
  1170     if (r->continuesHumongous()) {
  1171       // We'll assert that the strong code root list and RSet is empty
  1172       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
  1173       assert(hrrs->occupied() == 0, "RSet should be empty");
  1174       return false;
  1177     _g1h->reset_gc_time_stamps(r);
  1178     hrrs->clear();
  1179     // You might think here that we could clear just the cards
  1180     // corresponding to the used region.  But no: if we leave a dirty card
  1181     // in a region we might allocate into, then it would prevent that card
  1182     // from being enqueued, and cause it to be missed.
  1183     // Re: the performance cost: we shouldn't be doing full GC anyway!
  1184     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
  1186     return false;
  1188 };
  1190 void G1CollectedHeap::clear_rsets_post_compaction() {
  1191   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
  1192   heap_region_iterate(&rs_clear);
  1195 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
  1196   G1CollectedHeap*   _g1h;
  1197   UpdateRSOopClosure _cl;
  1198   int                _worker_i;
  1199 public:
  1200   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
  1201     _cl(g1->g1_rem_set(), worker_i),
  1202     _worker_i(worker_i),
  1203     _g1h(g1)
  1204   { }
  1206   bool doHeapRegion(HeapRegion* r) {
  1207     if (!r->continuesHumongous()) {
  1208       _cl.set_from(r);
  1209       r->oop_iterate(&_cl);
  1211     return false;
  1213 };
  1215 class ParRebuildRSTask: public AbstractGangTask {
  1216   G1CollectedHeap* _g1;
  1217 public:
  1218   ParRebuildRSTask(G1CollectedHeap* g1)
  1219     : AbstractGangTask("ParRebuildRSTask"),
  1220       _g1(g1)
  1221   { }
  1223   void work(uint worker_id) {
  1224     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
  1225     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
  1226                                           _g1->workers()->active_workers(),
  1227                                          HeapRegion::RebuildRSClaimValue);
  1229 };
  1231 class PostCompactionPrinterClosure: public HeapRegionClosure {
  1232 private:
  1233   G1HRPrinter* _hr_printer;
  1234 public:
  1235   bool doHeapRegion(HeapRegion* hr) {
  1236     assert(!hr->is_young(), "not expecting to find young regions");
  1237     if (hr->is_free()) {
  1238       // We only generate output for non-empty regions.
  1239     } else if (hr->startsHumongous()) {
  1240       if (hr->region_num() == 1) {
  1241         // single humongous region
  1242         _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
  1243       } else {
  1244         _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
  1246     } else if (hr->continuesHumongous()) {
  1247       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
  1248     } else if (hr->is_old()) {
  1249       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
  1250     } else {
  1251       ShouldNotReachHere();
  1253     return false;
  1256   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
  1257     : _hr_printer(hr_printer) { }
  1258 };
  1260 void G1CollectedHeap::print_hrm_post_compaction() {
  1261   PostCompactionPrinterClosure cl(hr_printer());
  1262   heap_region_iterate(&cl);
  1265 bool G1CollectedHeap::do_collection(bool explicit_gc,
  1266                                     bool clear_all_soft_refs,
  1267                                     size_t word_size) {
  1268   assert_at_safepoint(true /* should_be_vm_thread */);
  1270   if (GC_locker::check_active_before_gc()) {
  1271     return false;
  1274   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
  1275   gc_timer->register_gc_start();
  1277   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
  1278   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
  1280   SvcGCMarker sgcm(SvcGCMarker::FULL);
  1281   ResourceMark rm;
  1283   print_heap_before_gc();
  1284   trace_heap_before_gc(gc_tracer);
  1286   size_t metadata_prev_used = MetaspaceAux::used_bytes();
  1288   verify_region_sets_optional();
  1290   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
  1291                            collector_policy()->should_clear_all_soft_refs();
  1293   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
  1296     IsGCActiveMark x;
  1298     // Timing
  1299     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
  1300     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
  1303       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
  1304       TraceCollectorStats tcs(g1mm()->full_collection_counters());
  1305       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
  1307       double start = os::elapsedTime();
  1308       g1_policy()->record_full_collection_start();
  1310       // Note: When we have a more flexible GC logging framework that
  1311       // allows us to add optional attributes to a GC log record we
  1312       // could consider timing and reporting how long we wait in the
  1313       // following two methods.
  1314       wait_while_free_regions_coming();
  1315       // If we start the compaction before the CM threads finish
  1316       // scanning the root regions we might trip them over as we'll
  1317       // be moving objects / updating references. So let's wait until
  1318       // they are done. By telling them to abort, they should complete
  1319       // early.
  1320       _cm->root_regions()->abort();
  1321       _cm->root_regions()->wait_until_scan_finished();
  1322       append_secondary_free_list_if_not_empty_with_lock();
  1324       gc_prologue(true);
  1325       increment_total_collections(true /* full gc */);
  1326       increment_old_marking_cycles_started();
  1328       assert(used() == recalculate_used(), "Should be equal");
  1330       verify_before_gc();
  1332       check_bitmaps("Full GC Start");
  1333       pre_full_gc_dump(gc_timer);
  1335       COMPILER2_PRESENT(DerivedPointerTable::clear());
  1337       // Disable discovery and empty the discovered lists
  1338       // for the CM ref processor.
  1339       ref_processor_cm()->disable_discovery();
  1340       ref_processor_cm()->abandon_partial_discovery();
  1341       ref_processor_cm()->verify_no_references_recorded();
  1343       // Abandon current iterations of concurrent marking and concurrent
  1344       // refinement, if any are in progress. We have to do this before
  1345       // wait_until_scan_finished() below.
  1346       concurrent_mark()->abort();
  1348       // Make sure we'll choose a new allocation region afterwards.
  1349       _allocator->release_mutator_alloc_region();
  1350       _allocator->abandon_gc_alloc_regions();
  1351       g1_rem_set()->cleanupHRRS();
  1353       // We should call this after we retire any currently active alloc
  1354       // regions so that all the ALLOC / RETIRE events are generated
  1355       // before the start GC event.
  1356       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
  1358       // We may have added regions to the current incremental collection
  1359       // set between the last GC or pause and now. We need to clear the
  1360       // incremental collection set and then start rebuilding it afresh
  1361       // after this full GC.
  1362       abandon_collection_set(g1_policy()->inc_cset_head());
  1363       g1_policy()->clear_incremental_cset();
  1364       g1_policy()->stop_incremental_cset_building();
  1366       tear_down_region_sets(false /* free_list_only */);
  1367       g1_policy()->set_gcs_are_young(true);
  1369       // See the comments in g1CollectedHeap.hpp and
  1370       // G1CollectedHeap::ref_processing_init() about
  1371       // how reference processing currently works in G1.
  1373       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
  1374       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
  1376       // Temporarily clear the STW ref processor's _is_alive_non_header field.
  1377       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
  1379       ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
  1380       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
  1382       // Do collection work
  1384         HandleMark hm;  // Discard invalid handles created during gc
  1385         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
  1388       assert(num_free_regions() == 0, "we should not have added any free regions");
  1389       rebuild_region_sets(false /* free_list_only */);
  1391       // Enqueue any discovered reference objects that have
  1392       // not been removed from the discovered lists.
  1393       ref_processor_stw()->enqueue_discovered_references();
  1395       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  1397       MemoryService::track_memory_usage();
  1399       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
  1400       ref_processor_stw()->verify_no_references_recorded();
  1402       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
  1403       ClassLoaderDataGraph::purge();
  1404       MetaspaceAux::verify_metrics();
  1406       // Note: since we've just done a full GC, concurrent
  1407       // marking is no longer active. Therefore we need not
  1408       // re-enable reference discovery for the CM ref processor.
  1409       // That will be done at the start of the next marking cycle.
  1410       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
  1411       ref_processor_cm()->verify_no_references_recorded();
  1413       reset_gc_time_stamp();
  1414       // Since everything potentially moved, we will clear all remembered
  1415       // sets, and clear all cards.  Later we will rebuild remembered
  1416       // sets. We will also reset the GC time stamps of the regions.
  1417       clear_rsets_post_compaction();
  1418       check_gc_time_stamps();
  1420       // Resize the heap if necessary.
  1421       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
  1423       if (_hr_printer.is_active()) {
  1424         // We should do this after we potentially resize the heap so
  1425         // that all the COMMIT / UNCOMMIT events are generated before
  1426         // the end GC event.
  1428         print_hrm_post_compaction();
  1429         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
  1432       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  1433       if (hot_card_cache->use_cache()) {
  1434         hot_card_cache->reset_card_counts();
  1435         hot_card_cache->reset_hot_cache();
  1438       // Rebuild remembered sets of all regions.
  1439       if (G1CollectedHeap::use_parallel_gc_threads()) {
  1440         uint n_workers =
  1441           AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
  1442                                                   workers()->active_workers(),
  1443                                                   Threads::number_of_non_daemon_threads());
  1444         assert(UseDynamicNumberOfGCThreads ||
  1445                n_workers == workers()->total_workers(),
  1446                "If not dynamic should be using all the  workers");
  1447         workers()->set_active_workers(n_workers);
  1448         // Set parallel threads in the heap (_n_par_threads) only
  1449         // before a parallel phase and always reset it to 0 after
  1450         // the phase so that the number of parallel threads does
  1451         // no get carried forward to a serial phase where there
  1452         // may be code that is "possibly_parallel".
  1453         set_par_threads(n_workers);
  1455         ParRebuildRSTask rebuild_rs_task(this);
  1456         assert(check_heap_region_claim_values(
  1457                HeapRegion::InitialClaimValue), "sanity check");
  1458         assert(UseDynamicNumberOfGCThreads ||
  1459                workers()->active_workers() == workers()->total_workers(),
  1460                "Unless dynamic should use total workers");
  1461         // Use the most recent number of  active workers
  1462         assert(workers()->active_workers() > 0,
  1463                "Active workers not properly set");
  1464         set_par_threads(workers()->active_workers());
  1465         workers()->run_task(&rebuild_rs_task);
  1466         set_par_threads(0);
  1467         assert(check_heap_region_claim_values(
  1468                HeapRegion::RebuildRSClaimValue), "sanity check");
  1469         reset_heap_region_claim_values();
  1470       } else {
  1471         RebuildRSOutOfRegionClosure rebuild_rs(this);
  1472         heap_region_iterate(&rebuild_rs);
  1475       // Rebuild the strong code root lists for each region
  1476       rebuild_strong_code_roots();
  1478       if (true) { // FIXME
  1479         MetaspaceGC::compute_new_size();
  1482 #ifdef TRACESPINNING
  1483       ParallelTaskTerminator::print_termination_counts();
  1484 #endif
  1486       // Discard all rset updates
  1487       JavaThread::dirty_card_queue_set().abandon_logs();
  1488       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
  1490       _young_list->reset_sampled_info();
  1491       // At this point there should be no regions in the
  1492       // entire heap tagged as young.
  1493       assert(check_young_list_empty(true /* check_heap */),
  1494              "young list should be empty at this point");
  1496       // Update the number of full collections that have been completed.
  1497       increment_old_marking_cycles_completed(false /* concurrent */);
  1499       _hrm.verify_optional();
  1500       verify_region_sets_optional();
  1502       verify_after_gc();
  1504       // Clear the previous marking bitmap, if needed for bitmap verification.
  1505       // Note we cannot do this when we clear the next marking bitmap in
  1506       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
  1507       // objects marked during a full GC against the previous bitmap.
  1508       // But we need to clear it before calling check_bitmaps below since
  1509       // the full GC has compacted objects and updated TAMS but not updated
  1510       // the prev bitmap.
  1511       if (G1VerifyBitmaps) {
  1512         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
  1514       check_bitmaps("Full GC End");
  1516       // Start a new incremental collection set for the next pause
  1517       assert(g1_policy()->collection_set() == NULL, "must be");
  1518       g1_policy()->start_incremental_cset_building();
  1520       clear_cset_fast_test();
  1522       _allocator->init_mutator_alloc_region();
  1524       double end = os::elapsedTime();
  1525       g1_policy()->record_full_collection_end();
  1527       if (G1Log::fine()) {
  1528         g1_policy()->print_heap_transition();
  1531       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
  1532       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
  1533       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
  1534       // before any GC notifications are raised.
  1535       g1mm()->update_sizes();
  1537       gc_epilogue(true);
  1540     if (G1Log::finer()) {
  1541       g1_policy()->print_detailed_heap_transition(true /* full */);
  1544     print_heap_after_gc();
  1545     trace_heap_after_gc(gc_tracer);
  1547     post_full_gc_dump(gc_timer);
  1549     gc_timer->register_gc_end();
  1550     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
  1553   return true;
  1556 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
  1557   // do_collection() will return whether it succeeded in performing
  1558   // the GC. Currently, there is no facility on the
  1559   // do_full_collection() API to notify the caller than the collection
  1560   // did not succeed (e.g., because it was locked out by the GC
  1561   // locker). So, right now, we'll ignore the return value.
  1562   bool dummy = do_collection(true,                /* explicit_gc */
  1563                              clear_all_soft_refs,
  1564                              0                    /* word_size */);
  1567 // This code is mostly copied from TenuredGeneration.
  1568 void
  1569 G1CollectedHeap::
  1570 resize_if_necessary_after_full_collection(size_t word_size) {
  1571   // Include the current allocation, if any, and bytes that will be
  1572   // pre-allocated to support collections, as "used".
  1573   const size_t used_after_gc = used();
  1574   const size_t capacity_after_gc = capacity();
  1575   const size_t free_after_gc = capacity_after_gc - used_after_gc;
  1577   // This is enforced in arguments.cpp.
  1578   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
  1579          "otherwise the code below doesn't make sense");
  1581   // We don't have floating point command-line arguments
  1582   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
  1583   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
  1584   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
  1585   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
  1587   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
  1588   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
  1590   // We have to be careful here as these two calculations can overflow
  1591   // 32-bit size_t's.
  1592   double used_after_gc_d = (double) used_after_gc;
  1593   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
  1594   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
  1596   // Let's make sure that they are both under the max heap size, which
  1597   // by default will make them fit into a size_t.
  1598   double desired_capacity_upper_bound = (double) max_heap_size;
  1599   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
  1600                                     desired_capacity_upper_bound);
  1601   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
  1602                                     desired_capacity_upper_bound);
  1604   // We can now safely turn them into size_t's.
  1605   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
  1606   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
  1608   // This assert only makes sense here, before we adjust them
  1609   // with respect to the min and max heap size.
  1610   assert(minimum_desired_capacity <= maximum_desired_capacity,
  1611          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
  1612                  "maximum_desired_capacity = "SIZE_FORMAT,
  1613                  minimum_desired_capacity, maximum_desired_capacity));
  1615   // Should not be greater than the heap max size. No need to adjust
  1616   // it with respect to the heap min size as it's a lower bound (i.e.,
  1617   // we'll try to make the capacity larger than it, not smaller).
  1618   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
  1619   // Should not be less than the heap min size. No need to adjust it
  1620   // with respect to the heap max size as it's an upper bound (i.e.,
  1621   // we'll try to make the capacity smaller than it, not greater).
  1622   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
  1624   if (capacity_after_gc < minimum_desired_capacity) {
  1625     // Don't expand unless it's significant
  1626     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
  1627     ergo_verbose4(ErgoHeapSizing,
  1628                   "attempt heap expansion",
  1629                   ergo_format_reason("capacity lower than "
  1630                                      "min desired capacity after Full GC")
  1631                   ergo_format_byte("capacity")
  1632                   ergo_format_byte("occupancy")
  1633                   ergo_format_byte_perc("min desired capacity"),
  1634                   capacity_after_gc, used_after_gc,
  1635                   minimum_desired_capacity, (double) MinHeapFreeRatio);
  1636     expand(expand_bytes);
  1638     // No expansion, now see if we want to shrink
  1639   } else if (capacity_after_gc > maximum_desired_capacity) {
  1640     // Capacity too large, compute shrinking size
  1641     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
  1642     ergo_verbose4(ErgoHeapSizing,
  1643                   "attempt heap shrinking",
  1644                   ergo_format_reason("capacity higher than "
  1645                                      "max desired capacity after Full GC")
  1646                   ergo_format_byte("capacity")
  1647                   ergo_format_byte("occupancy")
  1648                   ergo_format_byte_perc("max desired capacity"),
  1649                   capacity_after_gc, used_after_gc,
  1650                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
  1651     shrink(shrink_bytes);
  1656 HeapWord*
  1657 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
  1658                                            AllocationContext_t context,
  1659                                            bool* succeeded) {
  1660   assert_at_safepoint(true /* should_be_vm_thread */);
  1662   *succeeded = true;
  1663   // Let's attempt the allocation first.
  1664   HeapWord* result =
  1665     attempt_allocation_at_safepoint(word_size,
  1666                                     context,
  1667                                     false /* expect_null_mutator_alloc_region */);
  1668   if (result != NULL) {
  1669     assert(*succeeded, "sanity");
  1670     return result;
  1673   // In a G1 heap, we're supposed to keep allocation from failing by
  1674   // incremental pauses.  Therefore, at least for now, we'll favor
  1675   // expansion over collection.  (This might change in the future if we can
  1676   // do something smarter than full collection to satisfy a failed alloc.)
  1677   result = expand_and_allocate(word_size, context);
  1678   if (result != NULL) {
  1679     assert(*succeeded, "sanity");
  1680     return result;
  1683   // Expansion didn't work, we'll try to do a Full GC.
  1684   bool gc_succeeded = do_collection(false, /* explicit_gc */
  1685                                     false, /* clear_all_soft_refs */
  1686                                     word_size);
  1687   if (!gc_succeeded) {
  1688     *succeeded = false;
  1689     return NULL;
  1692   // Retry the allocation
  1693   result = attempt_allocation_at_safepoint(word_size,
  1694                                            context,
  1695                                            true /* expect_null_mutator_alloc_region */);
  1696   if (result != NULL) {
  1697     assert(*succeeded, "sanity");
  1698     return result;
  1701   // Then, try a Full GC that will collect all soft references.
  1702   gc_succeeded = do_collection(false, /* explicit_gc */
  1703                                true,  /* clear_all_soft_refs */
  1704                                word_size);
  1705   if (!gc_succeeded) {
  1706     *succeeded = false;
  1707     return NULL;
  1710   // Retry the allocation once more
  1711   result = attempt_allocation_at_safepoint(word_size,
  1712                                            context,
  1713                                            true /* expect_null_mutator_alloc_region */);
  1714   if (result != NULL) {
  1715     assert(*succeeded, "sanity");
  1716     return result;
  1719   assert(!collector_policy()->should_clear_all_soft_refs(),
  1720          "Flag should have been handled and cleared prior to this point");
  1722   // What else?  We might try synchronous finalization later.  If the total
  1723   // space available is large enough for the allocation, then a more
  1724   // complete compaction phase than we've tried so far might be
  1725   // appropriate.
  1726   assert(*succeeded, "sanity");
  1727   return NULL;
  1730 // Attempting to expand the heap sufficiently
  1731 // to support an allocation of the given "word_size".  If
  1732 // successful, perform the allocation and return the address of the
  1733 // allocated block, or else "NULL".
  1735 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
  1736   assert_at_safepoint(true /* should_be_vm_thread */);
  1738   verify_region_sets_optional();
  1740   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
  1741   ergo_verbose1(ErgoHeapSizing,
  1742                 "attempt heap expansion",
  1743                 ergo_format_reason("allocation request failed")
  1744                 ergo_format_byte("allocation request"),
  1745                 word_size * HeapWordSize);
  1746   if (expand(expand_bytes)) {
  1747     _hrm.verify_optional();
  1748     verify_region_sets_optional();
  1749     return attempt_allocation_at_safepoint(word_size,
  1750                                            context,
  1751                                            false /* expect_null_mutator_alloc_region */);
  1753   return NULL;
  1756 bool G1CollectedHeap::expand(size_t expand_bytes) {
  1757   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
  1758   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
  1759                                        HeapRegion::GrainBytes);
  1760   ergo_verbose2(ErgoHeapSizing,
  1761                 "expand the heap",
  1762                 ergo_format_byte("requested expansion amount")
  1763                 ergo_format_byte("attempted expansion amount"),
  1764                 expand_bytes, aligned_expand_bytes);
  1766   if (is_maximal_no_gc()) {
  1767     ergo_verbose0(ErgoHeapSizing,
  1768                       "did not expand the heap",
  1769                       ergo_format_reason("heap already fully expanded"));
  1770     return false;
  1773   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
  1774   assert(regions_to_expand > 0, "Must expand by at least one region");
  1776   uint expanded_by = _hrm.expand_by(regions_to_expand);
  1778   if (expanded_by > 0) {
  1779     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
  1780     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
  1781     g1_policy()->record_new_heap_size(num_regions());
  1782   } else {
  1783     ergo_verbose0(ErgoHeapSizing,
  1784                   "did not expand the heap",
  1785                   ergo_format_reason("heap expansion operation failed"));
  1786     // The expansion of the virtual storage space was unsuccessful.
  1787     // Let's see if it was because we ran out of swap.
  1788     if (G1ExitOnExpansionFailure &&
  1789         _hrm.available() >= regions_to_expand) {
  1790       // We had head room...
  1791       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
  1794   return regions_to_expand > 0;
  1797 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
  1798   size_t aligned_shrink_bytes =
  1799     ReservedSpace::page_align_size_down(shrink_bytes);
  1800   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
  1801                                          HeapRegion::GrainBytes);
  1802   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
  1804   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
  1805   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
  1807   ergo_verbose3(ErgoHeapSizing,
  1808                 "shrink the heap",
  1809                 ergo_format_byte("requested shrinking amount")
  1810                 ergo_format_byte("aligned shrinking amount")
  1811                 ergo_format_byte("attempted shrinking amount"),
  1812                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
  1813   if (num_regions_removed > 0) {
  1814     g1_policy()->record_new_heap_size(num_regions());
  1815   } else {
  1816     ergo_verbose0(ErgoHeapSizing,
  1817                   "did not shrink the heap",
  1818                   ergo_format_reason("heap shrinking operation failed"));
  1822 void G1CollectedHeap::shrink(size_t shrink_bytes) {
  1823   verify_region_sets_optional();
  1825   // We should only reach here at the end of a Full GC which means we
  1826   // should not not be holding to any GC alloc regions. The method
  1827   // below will make sure of that and do any remaining clean up.
  1828   _allocator->abandon_gc_alloc_regions();
  1830   // Instead of tearing down / rebuilding the free lists here, we
  1831   // could instead use the remove_all_pending() method on free_list to
  1832   // remove only the ones that we need to remove.
  1833   tear_down_region_sets(true /* free_list_only */);
  1834   shrink_helper(shrink_bytes);
  1835   rebuild_region_sets(true /* free_list_only */);
  1837   _hrm.verify_optional();
  1838   verify_region_sets_optional();
  1841 // Public methods.
  1843 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
  1844 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
  1845 #endif // _MSC_VER
  1848 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  1849   SharedHeap(policy_),
  1850   _g1_policy(policy_),
  1851   _dirty_card_queue_set(false),
  1852   _into_cset_dirty_card_queue_set(false),
  1853   _is_alive_closure_cm(this),
  1854   _is_alive_closure_stw(this),
  1855   _ref_processor_cm(NULL),
  1856   _ref_processor_stw(NULL),
  1857   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  1858   _bot_shared(NULL),
  1859   _evac_failure_scan_stack(NULL),
  1860   _mark_in_progress(false),
  1861   _cg1r(NULL),
  1862   _g1mm(NULL),
  1863   _refine_cte_cl(NULL),
  1864   _full_collection(false),
  1865   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
  1866   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
  1867   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
  1868   _humongous_is_live(),
  1869   _has_humongous_reclaim_candidates(false),
  1870   _free_regions_coming(false),
  1871   _young_list(new YoungList(this)),
  1872   _gc_time_stamp(0),
  1873   _survivor_plab_stats(YoungPLABSize, PLABWeight),
  1874   _old_plab_stats(OldPLABSize, PLABWeight),
  1875   _expand_heap_after_alloc_failure(true),
  1876   _surviving_young_words(NULL),
  1877   _old_marking_cycles_started(0),
  1878   _old_marking_cycles_completed(0),
  1879   _concurrent_cycle_started(false),
  1880   _heap_summary_sent(false),
  1881   _in_cset_fast_test(),
  1882   _dirty_cards_region_list(NULL),
  1883   _worker_cset_start_region(NULL),
  1884   _worker_cset_start_region_time_stamp(NULL),
  1885   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
  1886   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
  1887   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
  1888   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
  1890   _g1h = this;
  1891   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
  1892     vm_exit_during_initialization("Failed necessary allocation.");
  1895   _allocator = G1Allocator::create_allocator(_g1h);
  1896   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
  1898   int n_queues = MAX2((int)ParallelGCThreads, 1);
  1899   _task_queues = new RefToScanQueueSet(n_queues);
  1901   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
  1902   assert(n_rem_sets > 0, "Invariant.");
  1904   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
  1905   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
  1906   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
  1908   for (int i = 0; i < n_queues; i++) {
  1909     RefToScanQueue* q = new RefToScanQueue();
  1910     q->initialize();
  1911     _task_queues->register_queue(i, q);
  1912     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
  1914   clear_cset_start_regions();
  1916   // Initialize the G1EvacuationFailureALot counters and flags.
  1917   NOT_PRODUCT(reset_evacuation_should_fail();)
  1919   guarantee(_task_queues != NULL, "task_queues allocation failure.");
  1922 jint G1CollectedHeap::initialize() {
  1923   CollectedHeap::pre_initialize();
  1924   os::enable_vtime();
  1926   G1Log::init();
  1928   // Necessary to satisfy locking discipline assertions.
  1930   MutexLocker x(Heap_lock);
  1932   // We have to initialize the printer before committing the heap, as
  1933   // it will be used then.
  1934   _hr_printer.set_active(G1PrintHeapRegions);
  1936   // While there are no constraints in the GC code that HeapWordSize
  1937   // be any particular value, there are multiple other areas in the
  1938   // system which believe this to be true (e.g. oop->object_size in some
  1939   // cases incorrectly returns the size in wordSize units rather than
  1940   // HeapWordSize).
  1941   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  1943   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  1944   size_t max_byte_size = collector_policy()->max_heap_byte_size();
  1945   size_t heap_alignment = collector_policy()->heap_alignment();
  1947   // Ensure that the sizes are properly aligned.
  1948   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1949   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1950   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
  1952   _refine_cte_cl = new RefineCardTableEntryClosure();
  1954   _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
  1956   // Reserve the maximum.
  1958   // When compressed oops are enabled, the preferred heap base
  1959   // is calculated by subtracting the requested size from the
  1960   // 32Gb boundary and using the result as the base address for
  1961   // heap reservation. If the requested size is not aligned to
  1962   // HeapRegion::GrainBytes (i.e. the alignment that is passed
  1963   // into the ReservedHeapSpace constructor) then the actual
  1964   // base of the reserved heap may end up differing from the
  1965   // address that was requested (i.e. the preferred heap base).
  1966   // If this happens then we could end up using a non-optimal
  1967   // compressed oops mode.
  1969   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
  1970                                                  heap_alignment);
  1972   // It is important to do this in a way such that concurrent readers can't
  1973   // temporarily think something is in the heap.  (I've actually seen this
  1974   // happen in asserts: DLD.)
  1975   _reserved.set_word_size(0);
  1976   _reserved.set_start((HeapWord*)heap_rs.base());
  1977   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
  1979   // Create the gen rem set (and barrier set) for the entire reserved region.
  1980   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  1981   set_barrier_set(rem_set()->bs());
  1982   if (!barrier_set()->is_a(BarrierSet::G1SATBCTLogging)) {
  1983     vm_exit_during_initialization("G1 requires a G1SATBLoggingCardTableModRefBS");
  1984     return JNI_ENOMEM;
  1987   // Also create a G1 rem set.
  1988   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
  1990   // Carve out the G1 part of the heap.
  1992   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
  1993   G1RegionToSpaceMapper* heap_storage =
  1994     G1RegionToSpaceMapper::create_mapper(g1_rs,
  1995                                          UseLargePages ? os::large_page_size() : os::vm_page_size(),
  1996                                          HeapRegion::GrainBytes,
  1997                                          1,
  1998                                          mtJavaHeap);
  1999   heap_storage->set_mapping_changed_listener(&_listener);
  2001   // Reserve space for the block offset table. We do not support automatic uncommit
  2002   // for the card table at this time. BOT only.
  2003   ReservedSpace bot_rs(G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize));
  2004   G1RegionToSpaceMapper* bot_storage =
  2005     G1RegionToSpaceMapper::create_mapper(bot_rs,
  2006                                          os::vm_page_size(),
  2007                                          HeapRegion::GrainBytes,
  2008                                          G1BlockOffsetSharedArray::N_bytes,
  2009                                          mtGC);
  2011   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
  2012   G1RegionToSpaceMapper* cardtable_storage =
  2013     G1RegionToSpaceMapper::create_mapper(cardtable_rs,
  2014                                          os::vm_page_size(),
  2015                                          HeapRegion::GrainBytes,
  2016                                          G1BlockOffsetSharedArray::N_bytes,
  2017                                          mtGC);
  2019   // Reserve space for the card counts table.
  2020   ReservedSpace card_counts_rs(G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize));
  2021   G1RegionToSpaceMapper* card_counts_storage =
  2022     G1RegionToSpaceMapper::create_mapper(card_counts_rs,
  2023                                          os::vm_page_size(),
  2024                                          HeapRegion::GrainBytes,
  2025                                          G1BlockOffsetSharedArray::N_bytes,
  2026                                          mtGC);
  2028   // Reserve space for prev and next bitmap.
  2029   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
  2031   ReservedSpace prev_bitmap_rs(ReservedSpace::allocation_align_size_up(bitmap_size));
  2032   G1RegionToSpaceMapper* prev_bitmap_storage =
  2033     G1RegionToSpaceMapper::create_mapper(prev_bitmap_rs,
  2034                                          os::vm_page_size(),
  2035                                          HeapRegion::GrainBytes,
  2036                                          CMBitMap::mark_distance(),
  2037                                          mtGC);
  2039   ReservedSpace next_bitmap_rs(ReservedSpace::allocation_align_size_up(bitmap_size));
  2040   G1RegionToSpaceMapper* next_bitmap_storage =
  2041     G1RegionToSpaceMapper::create_mapper(next_bitmap_rs,
  2042                                          os::vm_page_size(),
  2043                                          HeapRegion::GrainBytes,
  2044                                          CMBitMap::mark_distance(),
  2045                                          mtGC);
  2047   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
  2048   g1_barrier_set()->initialize(cardtable_storage);
  2049    // Do later initialization work for concurrent refinement.
  2050   _cg1r->init(card_counts_storage);
  2052   // 6843694 - ensure that the maximum region index can fit
  2053   // in the remembered set structures.
  2054   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
  2055   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
  2057   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
  2058   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
  2059   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
  2060             "too many cards per region");
  2062   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
  2064   _bot_shared = new G1BlockOffsetSharedArray(_reserved, bot_storage);
  2066   _g1h = this;
  2068   _in_cset_fast_test.initialize(_hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes);
  2069   _humongous_is_live.initialize(_hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes);
  2071   // Create the ConcurrentMark data structure and thread.
  2072   // (Must do this late, so that "max_regions" is defined.)
  2073   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
  2074   if (_cm == NULL || !_cm->completed_initialization()) {
  2075     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
  2076     return JNI_ENOMEM;
  2078   _cmThread = _cm->cmThread();
  2080   // Initialize the from_card cache structure of HeapRegionRemSet.
  2081   HeapRegionRemSet::init_heap(max_regions());
  2083   // Now expand into the initial heap size.
  2084   if (!expand(init_byte_size)) {
  2085     vm_shutdown_during_initialization("Failed to allocate initial heap.");
  2086     return JNI_ENOMEM;
  2089   // Perform any initialization actions delegated to the policy.
  2090   g1_policy()->init();
  2092   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
  2093                                                SATB_Q_FL_lock,
  2094                                                G1SATBProcessCompletedThreshold,
  2095                                                Shared_SATB_Q_lock);
  2097   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
  2098                                                 DirtyCardQ_CBL_mon,
  2099                                                 DirtyCardQ_FL_lock,
  2100                                                 concurrent_g1_refine()->yellow_zone(),
  2101                                                 concurrent_g1_refine()->red_zone(),
  2102                                                 Shared_DirtyCardQ_lock);
  2104   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
  2105                                     DirtyCardQ_CBL_mon,
  2106                                     DirtyCardQ_FL_lock,
  2107                                     -1, // never trigger processing
  2108                                     -1, // no limit on length
  2109                                     Shared_DirtyCardQ_lock,
  2110                                     &JavaThread::dirty_card_queue_set());
  2112   // Initialize the card queue set used to hold cards containing
  2113   // references into the collection set.
  2114   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
  2115                                              DirtyCardQ_CBL_mon,
  2116                                              DirtyCardQ_FL_lock,
  2117                                              -1, // never trigger processing
  2118                                              -1, // no limit on length
  2119                                              Shared_DirtyCardQ_lock,
  2120                                              &JavaThread::dirty_card_queue_set());
  2122   // In case we're keeping closure specialization stats, initialize those
  2123   // counts and that mechanism.
  2124   SpecializationStats::clear();
  2126   // Here we allocate the dummy HeapRegion that is required by the
  2127   // G1AllocRegion class.
  2128   HeapRegion* dummy_region = _hrm.get_dummy_region();
  2130   // We'll re-use the same region whether the alloc region will
  2131   // require BOT updates or not and, if it doesn't, then a non-young
  2132   // region will complain that it cannot support allocations without
  2133   // BOT updates. So we'll tag the dummy region as eden to avoid that.
  2134   dummy_region->set_eden();
  2135   // Make sure it's full.
  2136   dummy_region->set_top(dummy_region->end());
  2137   G1AllocRegion::setup(this, dummy_region);
  2139   _allocator->init_mutator_alloc_region();
  2141   // Do create of the monitoring and management support so that
  2142   // values in the heap have been properly initialized.
  2143   _g1mm = new G1MonitoringSupport(this);
  2145   G1StringDedup::initialize();
  2147   return JNI_OK;
  2150 void G1CollectedHeap::stop() {
  2151   // Stop all concurrent threads. We do this to make sure these threads
  2152   // do not continue to execute and access resources (e.g. gclog_or_tty)
  2153   // that are destroyed during shutdown.
  2154   _cg1r->stop();
  2155   _cmThread->stop();
  2156   if (G1StringDedup::is_enabled()) {
  2157     G1StringDedup::stop();
  2161 void G1CollectedHeap::clear_humongous_is_live_table() {
  2162   guarantee(G1ReclaimDeadHumongousObjectsAtYoungGC, "Should only be called if true");
  2163   _humongous_is_live.clear();
  2166 size_t G1CollectedHeap::conservative_max_heap_alignment() {
  2167   return HeapRegion::max_region_size();
  2170 void G1CollectedHeap::ref_processing_init() {
  2171   // Reference processing in G1 currently works as follows:
  2172   //
  2173   // * There are two reference processor instances. One is
  2174   //   used to record and process discovered references
  2175   //   during concurrent marking; the other is used to
  2176   //   record and process references during STW pauses
  2177   //   (both full and incremental).
  2178   // * Both ref processors need to 'span' the entire heap as
  2179   //   the regions in the collection set may be dotted around.
  2180   //
  2181   // * For the concurrent marking ref processor:
  2182   //   * Reference discovery is enabled at initial marking.
  2183   //   * Reference discovery is disabled and the discovered
  2184   //     references processed etc during remarking.
  2185   //   * Reference discovery is MT (see below).
  2186   //   * Reference discovery requires a barrier (see below).
  2187   //   * Reference processing may or may not be MT
  2188   //     (depending on the value of ParallelRefProcEnabled
  2189   //     and ParallelGCThreads).
  2190   //   * A full GC disables reference discovery by the CM
  2191   //     ref processor and abandons any entries on it's
  2192   //     discovered lists.
  2193   //
  2194   // * For the STW processor:
  2195   //   * Non MT discovery is enabled at the start of a full GC.
  2196   //   * Processing and enqueueing during a full GC is non-MT.
  2197   //   * During a full GC, references are processed after marking.
  2198   //
  2199   //   * Discovery (may or may not be MT) is enabled at the start
  2200   //     of an incremental evacuation pause.
  2201   //   * References are processed near the end of a STW evacuation pause.
  2202   //   * For both types of GC:
  2203   //     * Discovery is atomic - i.e. not concurrent.
  2204   //     * Reference discovery will not need a barrier.
  2206   SharedHeap::ref_processing_init();
  2207   MemRegion mr = reserved_region();
  2209   // Concurrent Mark ref processor
  2210   _ref_processor_cm =
  2211     new ReferenceProcessor(mr,    // span
  2212                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
  2213                                 // mt processing
  2214                            (int) ParallelGCThreads,
  2215                                 // degree of mt processing
  2216                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
  2217                                 // mt discovery
  2218                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
  2219                                 // degree of mt discovery
  2220                            false,
  2221                                 // Reference discovery is not atomic
  2222                            &_is_alive_closure_cm);
  2223                                 // is alive closure
  2224                                 // (for efficiency/performance)
  2226   // STW ref processor
  2227   _ref_processor_stw =
  2228     new ReferenceProcessor(mr,    // span
  2229                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
  2230                                 // mt processing
  2231                            MAX2((int)ParallelGCThreads, 1),
  2232                                 // degree of mt processing
  2233                            (ParallelGCThreads > 1),
  2234                                 // mt discovery
  2235                            MAX2((int)ParallelGCThreads, 1),
  2236                                 // degree of mt discovery
  2237                            true,
  2238                                 // Reference discovery is atomic
  2239                            &_is_alive_closure_stw);
  2240                                 // is alive closure
  2241                                 // (for efficiency/performance)
  2244 size_t G1CollectedHeap::capacity() const {
  2245   return _hrm.length() * HeapRegion::GrainBytes;
  2248 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
  2249   assert(!hr->continuesHumongous(), "pre-condition");
  2250   hr->reset_gc_time_stamp();
  2251   if (hr->startsHumongous()) {
  2252     uint first_index = hr->hrm_index() + 1;
  2253     uint last_index = hr->last_hc_index();
  2254     for (uint i = first_index; i < last_index; i += 1) {
  2255       HeapRegion* chr = region_at(i);
  2256       assert(chr->continuesHumongous(), "sanity");
  2257       chr->reset_gc_time_stamp();
  2262 #ifndef PRODUCT
  2263 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
  2264 private:
  2265   unsigned _gc_time_stamp;
  2266   bool _failures;
  2268 public:
  2269   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
  2270     _gc_time_stamp(gc_time_stamp), _failures(false) { }
  2272   virtual bool doHeapRegion(HeapRegion* hr) {
  2273     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
  2274     if (_gc_time_stamp != region_gc_time_stamp) {
  2275       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
  2276                              "expected %d", HR_FORMAT_PARAMS(hr),
  2277                              region_gc_time_stamp, _gc_time_stamp);
  2278       _failures = true;
  2280     return false;
  2283   bool failures() { return _failures; }
  2284 };
  2286 void G1CollectedHeap::check_gc_time_stamps() {
  2287   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
  2288   heap_region_iterate(&cl);
  2289   guarantee(!cl.failures(), "all GC time stamps should have been reset");
  2291 #endif // PRODUCT
  2293 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
  2294                                                  DirtyCardQueue* into_cset_dcq,
  2295                                                  bool concurrent,
  2296                                                  uint worker_i) {
  2297   // Clean cards in the hot card cache
  2298   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  2299   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
  2301   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  2302   int n_completed_buffers = 0;
  2303   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
  2304     n_completed_buffers++;
  2306   g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
  2307   dcqs.clear_n_completed_buffers();
  2308   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
  2312 // Computes the sum of the storage used by the various regions.
  2313 size_t G1CollectedHeap::used() const {
  2314   return _allocator->used();
  2317 size_t G1CollectedHeap::used_unlocked() const {
  2318   return _allocator->used_unlocked();
  2321 class SumUsedClosure: public HeapRegionClosure {
  2322   size_t _used;
  2323 public:
  2324   SumUsedClosure() : _used(0) {}
  2325   bool doHeapRegion(HeapRegion* r) {
  2326     if (!r->continuesHumongous()) {
  2327       _used += r->used();
  2329     return false;
  2331   size_t result() { return _used; }
  2332 };
  2334 size_t G1CollectedHeap::recalculate_used() const {
  2335   double recalculate_used_start = os::elapsedTime();
  2337   SumUsedClosure blk;
  2338   heap_region_iterate(&blk);
  2340   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
  2341   return blk.result();
  2344 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
  2345   switch (cause) {
  2346     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
  2347     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
  2348     case GCCause::_g1_humongous_allocation: return true;
  2349     case GCCause::_update_allocation_context_stats_inc: return true;
  2350     default:                                return false;
  2354 #ifndef PRODUCT
  2355 void G1CollectedHeap::allocate_dummy_regions() {
  2356   // Let's fill up most of the region
  2357   size_t word_size = HeapRegion::GrainWords - 1024;
  2358   // And as a result the region we'll allocate will be humongous.
  2359   guarantee(isHumongous(word_size), "sanity");
  2361   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
  2362     // Let's use the existing mechanism for the allocation
  2363     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
  2364                                                  AllocationContext::system());
  2365     if (dummy_obj != NULL) {
  2366       MemRegion mr(dummy_obj, word_size);
  2367       CollectedHeap::fill_with_object(mr);
  2368     } else {
  2369       // If we can't allocate once, we probably cannot allocate
  2370       // again. Let's get out of the loop.
  2371       break;
  2375 #endif // !PRODUCT
  2377 void G1CollectedHeap::increment_old_marking_cycles_started() {
  2378   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
  2379     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
  2380     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
  2381     _old_marking_cycles_started, _old_marking_cycles_completed));
  2383   _old_marking_cycles_started++;
  2386 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
  2387   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
  2389   // We assume that if concurrent == true, then the caller is a
  2390   // concurrent thread that was joined the Suspendible Thread
  2391   // Set. If there's ever a cheap way to check this, we should add an
  2392   // assert here.
  2394   // Given that this method is called at the end of a Full GC or of a
  2395   // concurrent cycle, and those can be nested (i.e., a Full GC can
  2396   // interrupt a concurrent cycle), the number of full collections
  2397   // completed should be either one (in the case where there was no
  2398   // nesting) or two (when a Full GC interrupted a concurrent cycle)
  2399   // behind the number of full collections started.
  2401   // This is the case for the inner caller, i.e. a Full GC.
  2402   assert(concurrent ||
  2403          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
  2404          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
  2405          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
  2406                  "is inconsistent with _old_marking_cycles_completed = %u",
  2407                  _old_marking_cycles_started, _old_marking_cycles_completed));
  2409   // This is the case for the outer caller, i.e. the concurrent cycle.
  2410   assert(!concurrent ||
  2411          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
  2412          err_msg("for outer caller (concurrent cycle): "
  2413                  "_old_marking_cycles_started = %u "
  2414                  "is inconsistent with _old_marking_cycles_completed = %u",
  2415                  _old_marking_cycles_started, _old_marking_cycles_completed));
  2417   _old_marking_cycles_completed += 1;
  2419   // We need to clear the "in_progress" flag in the CM thread before
  2420   // we wake up any waiters (especially when ExplicitInvokesConcurrent
  2421   // is set) so that if a waiter requests another System.gc() it doesn't
  2422   // incorrectly see that a marking cycle is still in progress.
  2423   if (concurrent) {
  2424     _cmThread->clear_in_progress();
  2427   // This notify_all() will ensure that a thread that called
  2428   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
  2429   // and it's waiting for a full GC to finish will be woken up. It is
  2430   // waiting in VM_G1IncCollectionPause::doit_epilogue().
  2431   FullGCCount_lock->notify_all();
  2434 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
  2435   _concurrent_cycle_started = true;
  2436   _gc_timer_cm->register_gc_start(start_time);
  2438   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
  2439   trace_heap_before_gc(_gc_tracer_cm);
  2442 void G1CollectedHeap::register_concurrent_cycle_end() {
  2443   if (_concurrent_cycle_started) {
  2444     if (_cm->has_aborted()) {
  2445       _gc_tracer_cm->report_concurrent_mode_failure();
  2448     _gc_timer_cm->register_gc_end();
  2449     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
  2451     // Clear state variables to prepare for the next concurrent cycle.
  2452     _concurrent_cycle_started = false;
  2453     _heap_summary_sent = false;
  2457 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
  2458   if (_concurrent_cycle_started) {
  2459     // This function can be called when:
  2460     //  the cleanup pause is run
  2461     //  the concurrent cycle is aborted before the cleanup pause.
  2462     //  the concurrent cycle is aborted after the cleanup pause,
  2463     //   but before the concurrent cycle end has been registered.
  2464     // Make sure that we only send the heap information once.
  2465     if (!_heap_summary_sent) {
  2466       trace_heap_after_gc(_gc_tracer_cm);
  2467       _heap_summary_sent = true;
  2472 G1YCType G1CollectedHeap::yc_type() {
  2473   bool is_young = g1_policy()->gcs_are_young();
  2474   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
  2475   bool is_during_mark = mark_in_progress();
  2477   if (is_initial_mark) {
  2478     return InitialMark;
  2479   } else if (is_during_mark) {
  2480     return DuringMark;
  2481   } else if (is_young) {
  2482     return Normal;
  2483   } else {
  2484     return Mixed;
  2488 void G1CollectedHeap::collect(GCCause::Cause cause) {
  2489   assert_heap_not_locked();
  2491   unsigned int gc_count_before;
  2492   unsigned int old_marking_count_before;
  2493   unsigned int full_gc_count_before;
  2494   bool retry_gc;
  2496   do {
  2497     retry_gc = false;
  2500       MutexLocker ml(Heap_lock);
  2502       // Read the GC count while holding the Heap_lock
  2503       gc_count_before = total_collections();
  2504       full_gc_count_before = total_full_collections();
  2505       old_marking_count_before = _old_marking_cycles_started;
  2508     if (should_do_concurrent_full_gc(cause)) {
  2509       // Schedule an initial-mark evacuation pause that will start a
  2510       // concurrent cycle. We're setting word_size to 0 which means that
  2511       // we are not requesting a post-GC allocation.
  2512       VM_G1IncCollectionPause op(gc_count_before,
  2513                                  0,     /* word_size */
  2514                                  true,  /* should_initiate_conc_mark */
  2515                                  g1_policy()->max_pause_time_ms(),
  2516                                  cause);
  2517       op.set_allocation_context(AllocationContext::current());
  2519       VMThread::execute(&op);
  2520       if (!op.pause_succeeded()) {
  2521         if (old_marking_count_before == _old_marking_cycles_started) {
  2522           retry_gc = op.should_retry_gc();
  2523         } else {
  2524           // A Full GC happened while we were trying to schedule the
  2525           // initial-mark GC. No point in starting a new cycle given
  2526           // that the whole heap was collected anyway.
  2529         if (retry_gc) {
  2530           if (GC_locker::is_active_and_needs_gc()) {
  2531             GC_locker::stall_until_clear();
  2535     } else {
  2536       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
  2537           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
  2539         // Schedule a standard evacuation pause. We're setting word_size
  2540         // to 0 which means that we are not requesting a post-GC allocation.
  2541         VM_G1IncCollectionPause op(gc_count_before,
  2542                                    0,     /* word_size */
  2543                                    false, /* should_initiate_conc_mark */
  2544                                    g1_policy()->max_pause_time_ms(),
  2545                                    cause);
  2546         VMThread::execute(&op);
  2547       } else {
  2548         // Schedule a Full GC.
  2549         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
  2550         VMThread::execute(&op);
  2553   } while (retry_gc);
  2556 bool G1CollectedHeap::is_in(const void* p) const {
  2557   if (_hrm.reserved().contains(p)) {
  2558     // Given that we know that p is in the reserved space,
  2559     // heap_region_containing_raw() should successfully
  2560     // return the containing region.
  2561     HeapRegion* hr = heap_region_containing_raw(p);
  2562     return hr->is_in(p);
  2563   } else {
  2564     return false;
  2568 #ifdef ASSERT
  2569 bool G1CollectedHeap::is_in_exact(const void* p) const {
  2570   bool contains = reserved_region().contains(p);
  2571   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
  2572   if (contains && available) {
  2573     return true;
  2574   } else {
  2575     return false;
  2578 #endif
  2580 // Iteration functions.
  2582 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
  2584 class IterateOopClosureRegionClosure: public HeapRegionClosure {
  2585   ExtendedOopClosure* _cl;
  2586 public:
  2587   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
  2588   bool doHeapRegion(HeapRegion* r) {
  2589     if (!r->continuesHumongous()) {
  2590       r->oop_iterate(_cl);
  2592     return false;
  2594 };
  2596 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
  2597   IterateOopClosureRegionClosure blk(cl);
  2598   heap_region_iterate(&blk);
  2601 // Iterates an ObjectClosure over all objects within a HeapRegion.
  2603 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  2604   ObjectClosure* _cl;
  2605 public:
  2606   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  2607   bool doHeapRegion(HeapRegion* r) {
  2608     if (! r->continuesHumongous()) {
  2609       r->object_iterate(_cl);
  2611     return false;
  2613 };
  2615 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
  2616   IterateObjectClosureRegionClosure blk(cl);
  2617   heap_region_iterate(&blk);
  2620 // Calls a SpaceClosure on a HeapRegion.
  2622 class SpaceClosureRegionClosure: public HeapRegionClosure {
  2623   SpaceClosure* _cl;
  2624 public:
  2625   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  2626   bool doHeapRegion(HeapRegion* r) {
  2627     _cl->do_space(r);
  2628     return false;
  2630 };
  2632 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  2633   SpaceClosureRegionClosure blk(cl);
  2634   heap_region_iterate(&blk);
  2637 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
  2638   _hrm.iterate(cl);
  2641 void
  2642 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
  2643                                                  uint worker_id,
  2644                                                  uint num_workers,
  2645                                                  jint claim_value) const {
  2646   _hrm.par_iterate(cl, worker_id, num_workers, claim_value);
  2649 class ResetClaimValuesClosure: public HeapRegionClosure {
  2650 public:
  2651   bool doHeapRegion(HeapRegion* r) {
  2652     r->set_claim_value(HeapRegion::InitialClaimValue);
  2653     return false;
  2655 };
  2657 void G1CollectedHeap::reset_heap_region_claim_values() {
  2658   ResetClaimValuesClosure blk;
  2659   heap_region_iterate(&blk);
  2662 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
  2663   ResetClaimValuesClosure blk;
  2664   collection_set_iterate(&blk);
  2667 #ifdef ASSERT
  2668 // This checks whether all regions in the heap have the correct claim
  2669 // value. I also piggy-backed on this a check to ensure that the
  2670 // humongous_start_region() information on "continues humongous"
  2671 // regions is correct.
  2673 class CheckClaimValuesClosure : public HeapRegionClosure {
  2674 private:
  2675   jint _claim_value;
  2676   uint _failures;
  2677   HeapRegion* _sh_region;
  2679 public:
  2680   CheckClaimValuesClosure(jint claim_value) :
  2681     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  2682   bool doHeapRegion(HeapRegion* r) {
  2683     if (r->claim_value() != _claim_value) {
  2684       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
  2685                              "claim value = %d, should be %d",
  2686                              HR_FORMAT_PARAMS(r),
  2687                              r->claim_value(), _claim_value);
  2688       ++_failures;
  2690     if (!r->isHumongous()) {
  2691       _sh_region = NULL;
  2692     } else if (r->startsHumongous()) {
  2693       _sh_region = r;
  2694     } else if (r->continuesHumongous()) {
  2695       if (r->humongous_start_region() != _sh_region) {
  2696         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
  2697                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
  2698                                HR_FORMAT_PARAMS(r),
  2699                                r->humongous_start_region(),
  2700                                _sh_region);
  2701         ++_failures;
  2704     return false;
  2706   uint failures() { return _failures; }
  2707 };
  2709 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  2710   CheckClaimValuesClosure cl(claim_value);
  2711   heap_region_iterate(&cl);
  2712   return cl.failures() == 0;
  2715 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
  2716 private:
  2717   jint _claim_value;
  2718   uint _failures;
  2720 public:
  2721   CheckClaimValuesInCSetHRClosure(jint claim_value) :
  2722     _claim_value(claim_value), _failures(0) { }
  2724   uint failures() { return _failures; }
  2726   bool doHeapRegion(HeapRegion* hr) {
  2727     assert(hr->in_collection_set(), "how?");
  2728     assert(!hr->isHumongous(), "H-region in CSet");
  2729     if (hr->claim_value() != _claim_value) {
  2730       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
  2731                              "claim value = %d, should be %d",
  2732                              HR_FORMAT_PARAMS(hr),
  2733                              hr->claim_value(), _claim_value);
  2734       _failures += 1;
  2736     return false;
  2738 };
  2740 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
  2741   CheckClaimValuesInCSetHRClosure cl(claim_value);
  2742   collection_set_iterate(&cl);
  2743   return cl.failures() == 0;
  2745 #endif // ASSERT
  2747 // Clear the cached CSet starting regions and (more importantly)
  2748 // the time stamps. Called when we reset the GC time stamp.
  2749 void G1CollectedHeap::clear_cset_start_regions() {
  2750   assert(_worker_cset_start_region != NULL, "sanity");
  2751   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
  2753   int n_queues = MAX2((int)ParallelGCThreads, 1);
  2754   for (int i = 0; i < n_queues; i++) {
  2755     _worker_cset_start_region[i] = NULL;
  2756     _worker_cset_start_region_time_stamp[i] = 0;
  2760 // Given the id of a worker, obtain or calculate a suitable
  2761 // starting region for iterating over the current collection set.
  2762 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
  2763   assert(get_gc_time_stamp() > 0, "should have been updated by now");
  2765   HeapRegion* result = NULL;
  2766   unsigned gc_time_stamp = get_gc_time_stamp();
  2768   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
  2769     // Cached starting region for current worker was set
  2770     // during the current pause - so it's valid.
  2771     // Note: the cached starting heap region may be NULL
  2772     // (when the collection set is empty).
  2773     result = _worker_cset_start_region[worker_i];
  2774     assert(result == NULL || result->in_collection_set(), "sanity");
  2775     return result;
  2778   // The cached entry was not valid so let's calculate
  2779   // a suitable starting heap region for this worker.
  2781   // We want the parallel threads to start their collection
  2782   // set iteration at different collection set regions to
  2783   // avoid contention.
  2784   // If we have:
  2785   //          n collection set regions
  2786   //          p threads
  2787   // Then thread t will start at region floor ((t * n) / p)
  2789   result = g1_policy()->collection_set();
  2790   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2791     uint cs_size = g1_policy()->cset_region_length();
  2792     uint active_workers = workers()->active_workers();
  2793     assert(UseDynamicNumberOfGCThreads ||
  2794              active_workers == workers()->total_workers(),
  2795              "Unless dynamic should use total workers");
  2797     uint end_ind   = (cs_size * worker_i) / active_workers;
  2798     uint start_ind = 0;
  2800     if (worker_i > 0 &&
  2801         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
  2802       // Previous workers starting region is valid
  2803       // so let's iterate from there
  2804       start_ind = (cs_size * (worker_i - 1)) / active_workers;
  2805       result = _worker_cset_start_region[worker_i - 1];
  2808     for (uint i = start_ind; i < end_ind; i++) {
  2809       result = result->next_in_collection_set();
  2813   // Note: the calculated starting heap region may be NULL
  2814   // (when the collection set is empty).
  2815   assert(result == NULL || result->in_collection_set(), "sanity");
  2816   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
  2817          "should be updated only once per pause");
  2818   _worker_cset_start_region[worker_i] = result;
  2819   OrderAccess::storestore();
  2820   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
  2821   return result;
  2824 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  2825   HeapRegion* r = g1_policy()->collection_set();
  2826   while (r != NULL) {
  2827     HeapRegion* next = r->next_in_collection_set();
  2828     if (cl->doHeapRegion(r)) {
  2829       cl->incomplete();
  2830       return;
  2832     r = next;
  2836 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
  2837                                                   HeapRegionClosure *cl) {
  2838   if (r == NULL) {
  2839     // The CSet is empty so there's nothing to do.
  2840     return;
  2843   assert(r->in_collection_set(),
  2844          "Start region must be a member of the collection set.");
  2845   HeapRegion* cur = r;
  2846   while (cur != NULL) {
  2847     HeapRegion* next = cur->next_in_collection_set();
  2848     if (cl->doHeapRegion(cur) && false) {
  2849       cl->incomplete();
  2850       return;
  2852     cur = next;
  2854   cur = g1_policy()->collection_set();
  2855   while (cur != r) {
  2856     HeapRegion* next = cur->next_in_collection_set();
  2857     if (cl->doHeapRegion(cur) && false) {
  2858       cl->incomplete();
  2859       return;
  2861     cur = next;
  2865 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
  2866   HeapRegion* result = _hrm.next_region_in_heap(from);
  2867   while (result != NULL && result->isHumongous()) {
  2868     result = _hrm.next_region_in_heap(result);
  2870   return result;
  2873 Space* G1CollectedHeap::space_containing(const void* addr) const {
  2874   return heap_region_containing(addr);
  2877 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  2878   Space* sp = space_containing(addr);
  2879   return sp->block_start(addr);
  2882 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  2883   Space* sp = space_containing(addr);
  2884   return sp->block_size(addr);
  2887 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  2888   Space* sp = space_containing(addr);
  2889   return sp->block_is_obj(addr);
  2892 bool G1CollectedHeap::supports_tlab_allocation() const {
  2893   return true;
  2896 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
  2897   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
  2900 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
  2901   return young_list()->eden_used_bytes();
  2904 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
  2905 // must be smaller than the humongous object limit.
  2906 size_t G1CollectedHeap::max_tlab_size() const {
  2907   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
  2910 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  2911   // Return the remaining space in the cur alloc region, but not less than
  2912   // the min TLAB size.
  2914   // Also, this value can be at most the humongous object threshold,
  2915   // since we can't allow tlabs to grow big enough to accommodate
  2916   // humongous objects.
  2918   HeapRegion* hr = _allocator->mutator_alloc_region(AllocationContext::current())->get();
  2919   size_t max_tlab = max_tlab_size() * wordSize;
  2920   if (hr == NULL) {
  2921     return max_tlab;
  2922   } else {
  2923     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
  2927 size_t G1CollectedHeap::max_capacity() const {
  2928   return _hrm.reserved().byte_size();
  2931 jlong G1CollectedHeap::millis_since_last_gc() {
  2932   // assert(false, "NYI");
  2933   return 0;
  2936 void G1CollectedHeap::prepare_for_verify() {
  2937   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  2938     ensure_parsability(false);
  2940   g1_rem_set()->prepare_for_verify();
  2943 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
  2944                                               VerifyOption vo) {
  2945   switch (vo) {
  2946   case VerifyOption_G1UsePrevMarking:
  2947     return hr->obj_allocated_since_prev_marking(obj);
  2948   case VerifyOption_G1UseNextMarking:
  2949     return hr->obj_allocated_since_next_marking(obj);
  2950   case VerifyOption_G1UseMarkWord:
  2951     return false;
  2952   default:
  2953     ShouldNotReachHere();
  2955   return false; // keep some compilers happy
  2958 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
  2959   switch (vo) {
  2960   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
  2961   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
  2962   case VerifyOption_G1UseMarkWord:    return NULL;
  2963   default:                            ShouldNotReachHere();
  2965   return NULL; // keep some compilers happy
  2968 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
  2969   switch (vo) {
  2970   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
  2971   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
  2972   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
  2973   default:                            ShouldNotReachHere();
  2975   return false; // keep some compilers happy
  2978 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
  2979   switch (vo) {
  2980   case VerifyOption_G1UsePrevMarking: return "PTAMS";
  2981   case VerifyOption_G1UseNextMarking: return "NTAMS";
  2982   case VerifyOption_G1UseMarkWord:    return "NONE";
  2983   default:                            ShouldNotReachHere();
  2985   return NULL; // keep some compilers happy
  2988 class VerifyRootsClosure: public OopClosure {
  2989 private:
  2990   G1CollectedHeap* _g1h;
  2991   VerifyOption     _vo;
  2992   bool             _failures;
  2993 public:
  2994   // _vo == UsePrevMarking -> use "prev" marking information,
  2995   // _vo == UseNextMarking -> use "next" marking information,
  2996   // _vo == UseMarkWord    -> use mark word from object header.
  2997   VerifyRootsClosure(VerifyOption vo) :
  2998     _g1h(G1CollectedHeap::heap()),
  2999     _vo(vo),
  3000     _failures(false) { }
  3002   bool failures() { return _failures; }
  3004   template <class T> void do_oop_nv(T* p) {
  3005     T heap_oop = oopDesc::load_heap_oop(p);
  3006     if (!oopDesc::is_null(heap_oop)) {
  3007       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  3008       if (_g1h->is_obj_dead_cond(obj, _vo)) {
  3009         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
  3010                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
  3011         if (_vo == VerifyOption_G1UseMarkWord) {
  3012           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
  3014         obj->print_on(gclog_or_tty);
  3015         _failures = true;
  3020   void do_oop(oop* p)       { do_oop_nv(p); }
  3021   void do_oop(narrowOop* p) { do_oop_nv(p); }
  3022 };
  3024 class G1VerifyCodeRootOopClosure: public OopClosure {
  3025   G1CollectedHeap* _g1h;
  3026   OopClosure* _root_cl;
  3027   nmethod* _nm;
  3028   VerifyOption _vo;
  3029   bool _failures;
  3031   template <class T> void do_oop_work(T* p) {
  3032     // First verify that this root is live
  3033     _root_cl->do_oop(p);
  3035     if (!G1VerifyHeapRegionCodeRoots) {
  3036       // We're not verifying the code roots attached to heap region.
  3037       return;
  3040     // Don't check the code roots during marking verification in a full GC
  3041     if (_vo == VerifyOption_G1UseMarkWord) {
  3042       return;
  3045     // Now verify that the current nmethod (which contains p) is
  3046     // in the code root list of the heap region containing the
  3047     // object referenced by p.
  3049     T heap_oop = oopDesc::load_heap_oop(p);
  3050     if (!oopDesc::is_null(heap_oop)) {
  3051       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  3053       // Now fetch the region containing the object
  3054       HeapRegion* hr = _g1h->heap_region_containing(obj);
  3055       HeapRegionRemSet* hrrs = hr->rem_set();
  3056       // Verify that the strong code root list for this region
  3057       // contains the nmethod
  3058       if (!hrrs->strong_code_roots_list_contains(_nm)) {
  3059         gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
  3060                               "from nmethod "PTR_FORMAT" not in strong "
  3061                               "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
  3062                               p, _nm, hr->bottom(), hr->end());
  3063         _failures = true;
  3068 public:
  3069   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
  3070     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
  3072   void do_oop(oop* p) { do_oop_work(p); }
  3073   void do_oop(narrowOop* p) { do_oop_work(p); }
  3075   void set_nmethod(nmethod* nm) { _nm = nm; }
  3076   bool failures() { return _failures; }
  3077 };
  3079 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
  3080   G1VerifyCodeRootOopClosure* _oop_cl;
  3082 public:
  3083   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
  3084     _oop_cl(oop_cl) {}
  3086   void do_code_blob(CodeBlob* cb) {
  3087     nmethod* nm = cb->as_nmethod_or_null();
  3088     if (nm != NULL) {
  3089       _oop_cl->set_nmethod(nm);
  3090       nm->oops_do(_oop_cl);
  3093 };
  3095 class YoungRefCounterClosure : public OopClosure {
  3096   G1CollectedHeap* _g1h;
  3097   int              _count;
  3098  public:
  3099   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
  3100   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
  3101   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
  3103   int count() { return _count; }
  3104   void reset_count() { _count = 0; };
  3105 };
  3107 class VerifyKlassClosure: public KlassClosure {
  3108   YoungRefCounterClosure _young_ref_counter_closure;
  3109   OopClosure *_oop_closure;
  3110  public:
  3111   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
  3112   void do_klass(Klass* k) {
  3113     k->oops_do(_oop_closure);
  3115     _young_ref_counter_closure.reset_count();
  3116     k->oops_do(&_young_ref_counter_closure);
  3117     if (_young_ref_counter_closure.count() > 0) {
  3118       guarantee(k->has_modified_oops(), err_msg("Klass %p, has young refs but is not dirty.", k));
  3121 };
  3123 class VerifyLivenessOopClosure: public OopClosure {
  3124   G1CollectedHeap* _g1h;
  3125   VerifyOption _vo;
  3126 public:
  3127   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
  3128     _g1h(g1h), _vo(vo)
  3129   { }
  3130   void do_oop(narrowOop *p) { do_oop_work(p); }
  3131   void do_oop(      oop *p) { do_oop_work(p); }
  3133   template <class T> void do_oop_work(T *p) {
  3134     oop obj = oopDesc::load_decode_heap_oop(p);
  3135     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
  3136               "Dead object referenced by a not dead object");
  3138 };
  3140 class VerifyObjsInRegionClosure: public ObjectClosure {
  3141 private:
  3142   G1CollectedHeap* _g1h;
  3143   size_t _live_bytes;
  3144   HeapRegion *_hr;
  3145   VerifyOption _vo;
  3146 public:
  3147   // _vo == UsePrevMarking -> use "prev" marking information,
  3148   // _vo == UseNextMarking -> use "next" marking information,
  3149   // _vo == UseMarkWord    -> use mark word from object header.
  3150   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
  3151     : _live_bytes(0), _hr(hr), _vo(vo) {
  3152     _g1h = G1CollectedHeap::heap();
  3154   void do_object(oop o) {
  3155     VerifyLivenessOopClosure isLive(_g1h, _vo);
  3156     assert(o != NULL, "Huh?");
  3157     if (!_g1h->is_obj_dead_cond(o, _vo)) {
  3158       // If the object is alive according to the mark word,
  3159       // then verify that the marking information agrees.
  3160       // Note we can't verify the contra-positive of the
  3161       // above: if the object is dead (according to the mark
  3162       // word), it may not be marked, or may have been marked
  3163       // but has since became dead, or may have been allocated
  3164       // since the last marking.
  3165       if (_vo == VerifyOption_G1UseMarkWord) {
  3166         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
  3169       o->oop_iterate_no_header(&isLive);
  3170       if (!_hr->obj_allocated_since_prev_marking(o)) {
  3171         size_t obj_size = o->size();    // Make sure we don't overflow
  3172         _live_bytes += (obj_size * HeapWordSize);
  3176   size_t live_bytes() { return _live_bytes; }
  3177 };
  3179 class PrintObjsInRegionClosure : public ObjectClosure {
  3180   HeapRegion *_hr;
  3181   G1CollectedHeap *_g1;
  3182 public:
  3183   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
  3184     _g1 = G1CollectedHeap::heap();
  3185   };
  3187   void do_object(oop o) {
  3188     if (o != NULL) {
  3189       HeapWord *start = (HeapWord *) o;
  3190       size_t word_sz = o->size();
  3191       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
  3192                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
  3193                           (void*) o, word_sz,
  3194                           _g1->isMarkedPrev(o),
  3195                           _g1->isMarkedNext(o),
  3196                           _hr->obj_allocated_since_prev_marking(o));
  3197       HeapWord *end = start + word_sz;
  3198       HeapWord *cur;
  3199       int *val;
  3200       for (cur = start; cur < end; cur++) {
  3201         val = (int *) cur;
  3202         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
  3206 };
  3208 class VerifyRegionClosure: public HeapRegionClosure {
  3209 private:
  3210   bool             _par;
  3211   VerifyOption     _vo;
  3212   bool             _failures;
  3213 public:
  3214   // _vo == UsePrevMarking -> use "prev" marking information,
  3215   // _vo == UseNextMarking -> use "next" marking information,
  3216   // _vo == UseMarkWord    -> use mark word from object header.
  3217   VerifyRegionClosure(bool par, VerifyOption vo)
  3218     : _par(par),
  3219       _vo(vo),
  3220       _failures(false) {}
  3222   bool failures() {
  3223     return _failures;
  3226   bool doHeapRegion(HeapRegion* r) {
  3227     if (!r->continuesHumongous()) {
  3228       bool failures = false;
  3229       r->verify(_vo, &failures);
  3230       if (failures) {
  3231         _failures = true;
  3232       } else {
  3233         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
  3234         r->object_iterate(&not_dead_yet_cl);
  3235         if (_vo != VerifyOption_G1UseNextMarking) {
  3236           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
  3237             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
  3238                                    "max_live_bytes "SIZE_FORMAT" "
  3239                                    "< calculated "SIZE_FORMAT,
  3240                                    r->bottom(), r->end(),
  3241                                    r->max_live_bytes(),
  3242                                  not_dead_yet_cl.live_bytes());
  3243             _failures = true;
  3245         } else {
  3246           // When vo == UseNextMarking we cannot currently do a sanity
  3247           // check on the live bytes as the calculation has not been
  3248           // finalized yet.
  3252     return false; // stop the region iteration if we hit a failure
  3254 };
  3256 // This is the task used for parallel verification of the heap regions
  3258 class G1ParVerifyTask: public AbstractGangTask {
  3259 private:
  3260   G1CollectedHeap* _g1h;
  3261   VerifyOption     _vo;
  3262   bool             _failures;
  3264 public:
  3265   // _vo == UsePrevMarking -> use "prev" marking information,
  3266   // _vo == UseNextMarking -> use "next" marking information,
  3267   // _vo == UseMarkWord    -> use mark word from object header.
  3268   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
  3269     AbstractGangTask("Parallel verify task"),
  3270     _g1h(g1h),
  3271     _vo(vo),
  3272     _failures(false) { }
  3274   bool failures() {
  3275     return _failures;
  3278   void work(uint worker_id) {
  3279     HandleMark hm;
  3280     VerifyRegionClosure blk(true, _vo);
  3281     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
  3282                                           _g1h->workers()->active_workers(),
  3283                                           HeapRegion::ParVerifyClaimValue);
  3284     if (blk.failures()) {
  3285       _failures = true;
  3288 };
  3290 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
  3291   if (SafepointSynchronize::is_at_safepoint()) {
  3292     assert(Thread::current()->is_VM_thread(),
  3293            "Expected to be executed serially by the VM thread at this point");
  3295     if (!silent) { gclog_or_tty->print("Roots "); }
  3296     VerifyRootsClosure rootsCl(vo);
  3297     VerifyKlassClosure klassCl(this, &rootsCl);
  3298     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
  3300     // We apply the relevant closures to all the oops in the
  3301     // system dictionary, class loader data graph, the string table
  3302     // and the nmethods in the code cache.
  3303     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
  3304     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
  3306     process_all_roots(true,            // activate StrongRootsScope
  3307                       SO_AllCodeCache, // roots scanning options
  3308                       &rootsCl,
  3309                       &cldCl,
  3310                       &blobsCl);
  3312     bool failures = rootsCl.failures() || codeRootsCl.failures();
  3314     if (vo != VerifyOption_G1UseMarkWord) {
  3315       // If we're verifying during a full GC then the region sets
  3316       // will have been torn down at the start of the GC. Therefore
  3317       // verifying the region sets will fail. So we only verify
  3318       // the region sets when not in a full GC.
  3319       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
  3320       verify_region_sets();
  3323     if (!silent) { gclog_or_tty->print("HeapRegions "); }
  3324     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
  3325       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3326              "sanity check");
  3328       G1ParVerifyTask task(this, vo);
  3329       assert(UseDynamicNumberOfGCThreads ||
  3330         workers()->active_workers() == workers()->total_workers(),
  3331         "If not dynamic should be using all the workers");
  3332       int n_workers = workers()->active_workers();
  3333       set_par_threads(n_workers);
  3334       workers()->run_task(&task);
  3335       set_par_threads(0);
  3336       if (task.failures()) {
  3337         failures = true;
  3340       // Checks that the expected amount of parallel work was done.
  3341       // The implication is that n_workers is > 0.
  3342       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
  3343              "sanity check");
  3345       reset_heap_region_claim_values();
  3347       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3348              "sanity check");
  3349     } else {
  3350       VerifyRegionClosure blk(false, vo);
  3351       heap_region_iterate(&blk);
  3352       if (blk.failures()) {
  3353         failures = true;
  3356     if (!silent) gclog_or_tty->print("RemSet ");
  3357     rem_set()->verify();
  3359     if (G1StringDedup::is_enabled()) {
  3360       if (!silent) gclog_or_tty->print("StrDedup ");
  3361       G1StringDedup::verify();
  3364     if (failures) {
  3365       gclog_or_tty->print_cr("Heap:");
  3366       // It helps to have the per-region information in the output to
  3367       // help us track down what went wrong. This is why we call
  3368       // print_extended_on() instead of print_on().
  3369       print_extended_on(gclog_or_tty);
  3370       gclog_or_tty->cr();
  3371 #ifndef PRODUCT
  3372       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
  3373         concurrent_mark()->print_reachable("at-verification-failure",
  3374                                            vo, false /* all */);
  3376 #endif
  3377       gclog_or_tty->flush();
  3379     guarantee(!failures, "there should not have been any failures");
  3380   } else {
  3381     if (!silent) {
  3382       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
  3383       if (G1StringDedup::is_enabled()) {
  3384         gclog_or_tty->print(", StrDedup");
  3386       gclog_or_tty->print(") ");
  3391 void G1CollectedHeap::verify(bool silent) {
  3392   verify(silent, VerifyOption_G1UsePrevMarking);
  3395 double G1CollectedHeap::verify(bool guard, const char* msg) {
  3396   double verify_time_ms = 0.0;
  3398   if (guard && total_collections() >= VerifyGCStartAt) {
  3399     double verify_start = os::elapsedTime();
  3400     HandleMark hm;  // Discard invalid handles created during verification
  3401     prepare_for_verify();
  3402     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
  3403     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
  3406   return verify_time_ms;
  3409 void G1CollectedHeap::verify_before_gc() {
  3410   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
  3411   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
  3414 void G1CollectedHeap::verify_after_gc() {
  3415   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
  3416   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
  3419 class PrintRegionClosure: public HeapRegionClosure {
  3420   outputStream* _st;
  3421 public:
  3422   PrintRegionClosure(outputStream* st) : _st(st) {}
  3423   bool doHeapRegion(HeapRegion* r) {
  3424     r->print_on(_st);
  3425     return false;
  3427 };
  3429 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
  3430                                        const HeapRegion* hr,
  3431                                        const VerifyOption vo) const {
  3432   switch (vo) {
  3433   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
  3434   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
  3435   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
  3436   default:                            ShouldNotReachHere();
  3438   return false; // keep some compilers happy
  3441 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
  3442                                        const VerifyOption vo) const {
  3443   switch (vo) {
  3444   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
  3445   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
  3446   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
  3447   default:                            ShouldNotReachHere();
  3449   return false; // keep some compilers happy
  3452 void G1CollectedHeap::print_on(outputStream* st) const {
  3453   st->print(" %-20s", "garbage-first heap");
  3454   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
  3455             capacity()/K, used_unlocked()/K);
  3456   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
  3457             _hrm.reserved().start(),
  3458             _hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords,
  3459             _hrm.reserved().end());
  3460   st->cr();
  3461   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
  3462   uint young_regions = _young_list->length();
  3463   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
  3464             (size_t) young_regions * HeapRegion::GrainBytes / K);
  3465   uint survivor_regions = g1_policy()->recorded_survivor_regions();
  3466   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
  3467             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
  3468   st->cr();
  3469   MetaspaceAux::print_on(st);
  3472 void G1CollectedHeap::print_extended_on(outputStream* st) const {
  3473   print_on(st);
  3475   // Print the per-region information.
  3476   st->cr();
  3477   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
  3478                "HS=humongous(starts), HC=humongous(continues), "
  3479                "CS=collection set, F=free, TS=gc time stamp, "
  3480                "PTAMS=previous top-at-mark-start, "
  3481                "NTAMS=next top-at-mark-start)");
  3482   PrintRegionClosure blk(st);
  3483   heap_region_iterate(&blk);
  3486 void G1CollectedHeap::print_on_error(outputStream* st) const {
  3487   this->CollectedHeap::print_on_error(st);
  3489   if (_cm != NULL) {
  3490     st->cr();
  3491     _cm->print_on_error(st);
  3495 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
  3496   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3497     workers()->print_worker_threads_on(st);
  3499   _cmThread->print_on(st);
  3500   st->cr();
  3501   _cm->print_worker_threads_on(st);
  3502   _cg1r->print_worker_threads_on(st);
  3503   if (G1StringDedup::is_enabled()) {
  3504     G1StringDedup::print_worker_threads_on(st);
  3508 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
  3509   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3510     workers()->threads_do(tc);
  3512   tc->do_thread(_cmThread);
  3513   _cg1r->threads_do(tc);
  3514   if (G1StringDedup::is_enabled()) {
  3515     G1StringDedup::threads_do(tc);
  3519 void G1CollectedHeap::print_tracing_info() const {
  3520   // We'll overload this to mean "trace GC pause statistics."
  3521   if (TraceGen0Time || TraceGen1Time) {
  3522     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
  3523     // to that.
  3524     g1_policy()->print_tracing_info();
  3526   if (G1SummarizeRSetStats) {
  3527     g1_rem_set()->print_summary_info();
  3529   if (G1SummarizeConcMark) {
  3530     concurrent_mark()->print_summary_info();
  3532   g1_policy()->print_yg_surv_rate_info();
  3533   SpecializationStats::print();
  3536 #ifndef PRODUCT
  3537 // Helpful for debugging RSet issues.
  3539 class PrintRSetsClosure : public HeapRegionClosure {
  3540 private:
  3541   const char* _msg;
  3542   size_t _occupied_sum;
  3544 public:
  3545   bool doHeapRegion(HeapRegion* r) {
  3546     HeapRegionRemSet* hrrs = r->rem_set();
  3547     size_t occupied = hrrs->occupied();
  3548     _occupied_sum += occupied;
  3550     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
  3551                            HR_FORMAT_PARAMS(r));
  3552     if (occupied == 0) {
  3553       gclog_or_tty->print_cr("  RSet is empty");
  3554     } else {
  3555       hrrs->print();
  3557     gclog_or_tty->print_cr("----------");
  3558     return false;
  3561   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
  3562     gclog_or_tty->cr();
  3563     gclog_or_tty->print_cr("========================================");
  3564     gclog_or_tty->print_cr("%s", msg);
  3565     gclog_or_tty->cr();
  3568   ~PrintRSetsClosure() {
  3569     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
  3570     gclog_or_tty->print_cr("========================================");
  3571     gclog_or_tty->cr();
  3573 };
  3575 void G1CollectedHeap::print_cset_rsets() {
  3576   PrintRSetsClosure cl("Printing CSet RSets");
  3577   collection_set_iterate(&cl);
  3580 void G1CollectedHeap::print_all_rsets() {
  3581   PrintRSetsClosure cl("Printing All RSets");;
  3582   heap_region_iterate(&cl);
  3584 #endif // PRODUCT
  3586 G1CollectedHeap* G1CollectedHeap::heap() {
  3587   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
  3588          "not a garbage-first heap");
  3589   return _g1h;
  3592 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
  3593   // always_do_update_barrier = false;
  3594   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  3595   // Fill TLAB's and such
  3596   accumulate_statistics_all_tlabs();
  3597   ensure_parsability(true);
  3599   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
  3600       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
  3601     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
  3605 void G1CollectedHeap::gc_epilogue(bool full) {
  3607   if (G1SummarizeRSetStats &&
  3608       (G1SummarizeRSetStatsPeriod > 0) &&
  3609       // we are at the end of the GC. Total collections has already been increased.
  3610       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
  3611     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
  3614   // FIXME: what is this about?
  3615   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  3616   // is set.
  3617   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
  3618                         "derived pointer present"));
  3619   // always_do_update_barrier = true;
  3621   resize_all_tlabs();
  3622   allocation_context_stats().update(full);
  3624   // We have just completed a GC. Update the soft reference
  3625   // policy with the new heap occupancy
  3626   Universe::update_heap_info_at_gc();
  3629 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
  3630                                                unsigned int gc_count_before,
  3631                                                bool* succeeded,
  3632                                                GCCause::Cause gc_cause) {
  3633   assert_heap_not_locked_and_not_at_safepoint();
  3634   g1_policy()->record_stop_world_start();
  3635   VM_G1IncCollectionPause op(gc_count_before,
  3636                              word_size,
  3637                              false, /* should_initiate_conc_mark */
  3638                              g1_policy()->max_pause_time_ms(),
  3639                              gc_cause);
  3641   op.set_allocation_context(AllocationContext::current());
  3642   VMThread::execute(&op);
  3644   HeapWord* result = op.result();
  3645   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
  3646   assert(result == NULL || ret_succeeded,
  3647          "the result should be NULL if the VM did not succeed");
  3648   *succeeded = ret_succeeded;
  3650   assert_heap_not_locked();
  3651   return result;
  3654 void
  3655 G1CollectedHeap::doConcurrentMark() {
  3656   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  3657   if (!_cmThread->in_progress()) {
  3658     _cmThread->set_started();
  3659     CGC_lock->notify();
  3663 size_t G1CollectedHeap::pending_card_num() {
  3664   size_t extra_cards = 0;
  3665   JavaThread *curr = Threads::first();
  3666   while (curr != NULL) {
  3667     DirtyCardQueue& dcq = curr->dirty_card_queue();
  3668     extra_cards += dcq.size();
  3669     curr = curr->next();
  3671   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  3672   size_t buffer_size = dcqs.buffer_size();
  3673   size_t buffer_num = dcqs.completed_buffers_num();
  3675   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
  3676   // in bytes - not the number of 'entries'. We need to convert
  3677   // into a number of cards.
  3678   return (buffer_size * buffer_num + extra_cards) / oopSize;
  3681 size_t G1CollectedHeap::cards_scanned() {
  3682   return g1_rem_set()->cardsScanned();
  3685 bool G1CollectedHeap::humongous_region_is_always_live(uint index) {
  3686   HeapRegion* region = region_at(index);
  3687   assert(region->startsHumongous(), "Must start a humongous object");
  3688   return oop(region->bottom())->is_objArray() || !region->rem_set()->is_empty();
  3691 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
  3692  private:
  3693   size_t _total_humongous;
  3694   size_t _candidate_humongous;
  3695  public:
  3696   RegisterHumongousWithInCSetFastTestClosure() : _total_humongous(0), _candidate_humongous(0) {
  3699   virtual bool doHeapRegion(HeapRegion* r) {
  3700     if (!r->startsHumongous()) {
  3701       return false;
  3703     G1CollectedHeap* g1h = G1CollectedHeap::heap();
  3705     uint region_idx = r->hrm_index();
  3706     bool is_candidate = !g1h->humongous_region_is_always_live(region_idx);
  3707     // Is_candidate already filters out humongous regions with some remembered set.
  3708     // This will not lead to humongous object that we mistakenly keep alive because
  3709     // during young collection the remembered sets will only be added to.
  3710     if (is_candidate) {
  3711       g1h->register_humongous_region_with_in_cset_fast_test(region_idx);
  3712       _candidate_humongous++;
  3714     _total_humongous++;
  3716     return false;
  3719   size_t total_humongous() const { return _total_humongous; }
  3720   size_t candidate_humongous() const { return _candidate_humongous; }
  3721 };
  3723 void G1CollectedHeap::register_humongous_regions_with_in_cset_fast_test() {
  3724   if (!G1ReclaimDeadHumongousObjectsAtYoungGC) {
  3725     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0, 0);
  3726     return;
  3729   RegisterHumongousWithInCSetFastTestClosure cl;
  3730   heap_region_iterate(&cl);
  3731   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(cl.total_humongous(),
  3732                                                                   cl.candidate_humongous());
  3733   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
  3735   if (_has_humongous_reclaim_candidates || G1TraceReclaimDeadHumongousObjectsAtYoungGC) {
  3736     clear_humongous_is_live_table();
  3740 void
  3741 G1CollectedHeap::setup_surviving_young_words() {
  3742   assert(_surviving_young_words == NULL, "pre-condition");
  3743   uint array_length = g1_policy()->young_cset_region_length();
  3744   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
  3745   if (_surviving_young_words == NULL) {
  3746     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
  3747                           "Not enough space for young surv words summary.");
  3749   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
  3750 #ifdef ASSERT
  3751   for (uint i = 0;  i < array_length; ++i) {
  3752     assert( _surviving_young_words[i] == 0, "memset above" );
  3754 #endif // !ASSERT
  3757 void
  3758 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  3759   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  3760   uint array_length = g1_policy()->young_cset_region_length();
  3761   for (uint i = 0; i < array_length; ++i) {
  3762     _surviving_young_words[i] += surv_young_words[i];
  3766 void
  3767 G1CollectedHeap::cleanup_surviving_young_words() {
  3768   guarantee( _surviving_young_words != NULL, "pre-condition" );
  3769   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
  3770   _surviving_young_words = NULL;
  3773 #ifdef ASSERT
  3774 class VerifyCSetClosure: public HeapRegionClosure {
  3775 public:
  3776   bool doHeapRegion(HeapRegion* hr) {
  3777     // Here we check that the CSet region's RSet is ready for parallel
  3778     // iteration. The fields that we'll verify are only manipulated
  3779     // when the region is part of a CSet and is collected. Afterwards,
  3780     // we reset these fields when we clear the region's RSet (when the
  3781     // region is freed) so they are ready when the region is
  3782     // re-allocated. The only exception to this is if there's an
  3783     // evacuation failure and instead of freeing the region we leave
  3784     // it in the heap. In that case, we reset these fields during
  3785     // evacuation failure handling.
  3786     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
  3788     // Here's a good place to add any other checks we'd like to
  3789     // perform on CSet regions.
  3790     return false;
  3792 };
  3793 #endif // ASSERT
  3795 #if TASKQUEUE_STATS
  3796 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
  3797   st->print_raw_cr("GC Task Stats");
  3798   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
  3799   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
  3802 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
  3803   print_taskqueue_stats_hdr(st);
  3805   TaskQueueStats totals;
  3806   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3807   for (int i = 0; i < n; ++i) {
  3808     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
  3809     totals += task_queue(i)->stats;
  3811   st->print_raw("tot "); totals.print(st); st->cr();
  3813   DEBUG_ONLY(totals.verify());
  3816 void G1CollectedHeap::reset_taskqueue_stats() {
  3817   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3818   for (int i = 0; i < n; ++i) {
  3819     task_queue(i)->stats.reset();
  3822 #endif // TASKQUEUE_STATS
  3824 void G1CollectedHeap::log_gc_header() {
  3825   if (!G1Log::fine()) {
  3826     return;
  3829   gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
  3831   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
  3832     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
  3833     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
  3835   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
  3838 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
  3839   if (!G1Log::fine()) {
  3840     return;
  3843   if (G1Log::finer()) {
  3844     if (evacuation_failed()) {
  3845       gclog_or_tty->print(" (to-space exhausted)");
  3847     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
  3848     g1_policy()->phase_times()->note_gc_end();
  3849     g1_policy()->phase_times()->print(pause_time_sec);
  3850     g1_policy()->print_detailed_heap_transition();
  3851   } else {
  3852     if (evacuation_failed()) {
  3853       gclog_or_tty->print("--");
  3855     g1_policy()->print_heap_transition();
  3856     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
  3858   gclog_or_tty->flush();
  3861 bool
  3862 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
  3863   assert_at_safepoint(true /* should_be_vm_thread */);
  3864   guarantee(!is_gc_active(), "collection is not reentrant");
  3866   if (GC_locker::check_active_before_gc()) {
  3867     return false;
  3870   _gc_timer_stw->register_gc_start();
  3872   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
  3874   SvcGCMarker sgcm(SvcGCMarker::MINOR);
  3875   ResourceMark rm;
  3877   print_heap_before_gc();
  3878   trace_heap_before_gc(_gc_tracer_stw);
  3880   verify_region_sets_optional();
  3881   verify_dirty_young_regions();
  3883   // This call will decide whether this pause is an initial-mark
  3884   // pause. If it is, during_initial_mark_pause() will return true
  3885   // for the duration of this pause.
  3886   g1_policy()->decide_on_conc_mark_initiation();
  3888   // We do not allow initial-mark to be piggy-backed on a mixed GC.
  3889   assert(!g1_policy()->during_initial_mark_pause() ||
  3890           g1_policy()->gcs_are_young(), "sanity");
  3892   // We also do not allow mixed GCs during marking.
  3893   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
  3895   // Record whether this pause is an initial mark. When the current
  3896   // thread has completed its logging output and it's safe to signal
  3897   // the CM thread, the flag's value in the policy has been reset.
  3898   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
  3900   // Inner scope for scope based logging, timers, and stats collection
  3902     EvacuationInfo evacuation_info;
  3904     if (g1_policy()->during_initial_mark_pause()) {
  3905       // We are about to start a marking cycle, so we increment the
  3906       // full collection counter.
  3907       increment_old_marking_cycles_started();
  3908       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
  3911     _gc_tracer_stw->report_yc_type(yc_type());
  3913     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
  3915     int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  3916                                 workers()->active_workers() : 1);
  3917     double pause_start_sec = os::elapsedTime();
  3918     g1_policy()->phase_times()->note_gc_start(active_workers);
  3919     log_gc_header();
  3921     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
  3922     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
  3924     // If the secondary_free_list is not empty, append it to the
  3925     // free_list. No need to wait for the cleanup operation to finish;
  3926     // the region allocation code will check the secondary_free_list
  3927     // and wait if necessary. If the G1StressConcRegionFreeing flag is
  3928     // set, skip this step so that the region allocation code has to
  3929     // get entries from the secondary_free_list.
  3930     if (!G1StressConcRegionFreeing) {
  3931       append_secondary_free_list_if_not_empty_with_lock();
  3934     assert(check_young_list_well_formed(), "young list should be well formed");
  3935     assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3936            "sanity check");
  3938     // Don't dynamically change the number of GC threads this early.  A value of
  3939     // 0 is used to indicate serial work.  When parallel work is done,
  3940     // it will be set.
  3942     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
  3943       IsGCActiveMark x;
  3945       gc_prologue(false);
  3946       increment_total_collections(false /* full gc */);
  3947       increment_gc_time_stamp();
  3949       verify_before_gc();
  3950       check_bitmaps("GC Start");
  3952       COMPILER2_PRESENT(DerivedPointerTable::clear());
  3954       // Please see comment in g1CollectedHeap.hpp and
  3955       // G1CollectedHeap::ref_processing_init() to see how
  3956       // reference processing currently works in G1.
  3958       // Enable discovery in the STW reference processor
  3959       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
  3960                                             true /*verify_no_refs*/);
  3963         // We want to temporarily turn off discovery by the
  3964         // CM ref processor, if necessary, and turn it back on
  3965         // on again later if we do. Using a scoped
  3966         // NoRefDiscovery object will do this.
  3967         NoRefDiscovery no_cm_discovery(ref_processor_cm());
  3969         // Forget the current alloc region (we might even choose it to be part
  3970         // of the collection set!).
  3971         _allocator->release_mutator_alloc_region();
  3973         // We should call this after we retire the mutator alloc
  3974         // region(s) so that all the ALLOC / RETIRE events are generated
  3975         // before the start GC event.
  3976         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
  3978         // This timing is only used by the ergonomics to handle our pause target.
  3979         // It is unclear why this should not include the full pause. We will
  3980         // investigate this in CR 7178365.
  3981         //
  3982         // Preserving the old comment here if that helps the investigation:
  3983         //
  3984         // The elapsed time induced by the start time below deliberately elides
  3985         // the possible verification above.
  3986         double sample_start_time_sec = os::elapsedTime();
  3988 #if YOUNG_LIST_VERBOSE
  3989         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
  3990         _young_list->print();
  3991         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3992 #endif // YOUNG_LIST_VERBOSE
  3994         g1_policy()->record_collection_pause_start(sample_start_time_sec);
  3996         double scan_wait_start = os::elapsedTime();
  3997         // We have to wait until the CM threads finish scanning the
  3998         // root regions as it's the only way to ensure that all the
  3999         // objects on them have been correctly scanned before we start
  4000         // moving them during the GC.
  4001         bool waited = _cm->root_regions()->wait_until_scan_finished();
  4002         double wait_time_ms = 0.0;
  4003         if (waited) {
  4004           double scan_wait_end = os::elapsedTime();
  4005           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
  4007         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
  4009 #if YOUNG_LIST_VERBOSE
  4010         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
  4011         _young_list->print();
  4012 #endif // YOUNG_LIST_VERBOSE
  4014         if (g1_policy()->during_initial_mark_pause()) {
  4015           concurrent_mark()->checkpointRootsInitialPre();
  4018 #if YOUNG_LIST_VERBOSE
  4019         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
  4020         _young_list->print();
  4021         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  4022 #endif // YOUNG_LIST_VERBOSE
  4024         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
  4026         register_humongous_regions_with_in_cset_fast_test();
  4028         assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
  4030         _cm->note_start_of_gc();
  4031         // We should not verify the per-thread SATB buffers given that
  4032         // we have not filtered them yet (we'll do so during the
  4033         // GC). We also call this after finalize_cset() to
  4034         // ensure that the CSet has been finalized.
  4035         _cm->verify_no_cset_oops(true  /* verify_stacks */,
  4036                                  true  /* verify_enqueued_buffers */,
  4037                                  false /* verify_thread_buffers */,
  4038                                  true  /* verify_fingers */);
  4040         if (_hr_printer.is_active()) {
  4041           HeapRegion* hr = g1_policy()->collection_set();
  4042           while (hr != NULL) {
  4043             _hr_printer.cset(hr);
  4044             hr = hr->next_in_collection_set();
  4048 #ifdef ASSERT
  4049         VerifyCSetClosure cl;
  4050         collection_set_iterate(&cl);
  4051 #endif // ASSERT
  4053         setup_surviving_young_words();
  4055         // Initialize the GC alloc regions.
  4056         _allocator->init_gc_alloc_regions(evacuation_info);
  4058         // Actually do the work...
  4059         evacuate_collection_set(evacuation_info);
  4061         // We do this to mainly verify the per-thread SATB buffers
  4062         // (which have been filtered by now) since we didn't verify
  4063         // them earlier. No point in re-checking the stacks / enqueued
  4064         // buffers given that the CSet has not changed since last time
  4065         // we checked.
  4066         _cm->verify_no_cset_oops(false /* verify_stacks */,
  4067                                  false /* verify_enqueued_buffers */,
  4068                                  true  /* verify_thread_buffers */,
  4069                                  true  /* verify_fingers */);
  4071         free_collection_set(g1_policy()->collection_set(), evacuation_info);
  4073         eagerly_reclaim_humongous_regions();
  4075         g1_policy()->clear_collection_set();
  4077         cleanup_surviving_young_words();
  4079         // Start a new incremental collection set for the next pause.
  4080         g1_policy()->start_incremental_cset_building();
  4082         clear_cset_fast_test();
  4084         _young_list->reset_sampled_info();
  4086         // Don't check the whole heap at this point as the
  4087         // GC alloc regions from this pause have been tagged
  4088         // as survivors and moved on to the survivor list.
  4089         // Survivor regions will fail the !is_young() check.
  4090         assert(check_young_list_empty(false /* check_heap */),
  4091           "young list should be empty");
  4093 #if YOUNG_LIST_VERBOSE
  4094         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
  4095         _young_list->print();
  4096 #endif // YOUNG_LIST_VERBOSE
  4098         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
  4099                                              _young_list->first_survivor_region(),
  4100                                              _young_list->last_survivor_region());
  4102         _young_list->reset_auxilary_lists();
  4104         if (evacuation_failed()) {
  4105           _allocator->set_used(recalculate_used());
  4106           uint n_queues = MAX2((int)ParallelGCThreads, 1);
  4107           for (uint i = 0; i < n_queues; i++) {
  4108             if (_evacuation_failed_info_array[i].has_failed()) {
  4109               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
  4112         } else {
  4113           // The "used" of the the collection set have already been subtracted
  4114           // when they were freed.  Add in the bytes evacuated.
  4115           _allocator->increase_used(g1_policy()->bytes_copied_during_gc());
  4118         if (g1_policy()->during_initial_mark_pause()) {
  4119           // We have to do this before we notify the CM threads that
  4120           // they can start working to make sure that all the
  4121           // appropriate initialization is done on the CM object.
  4122           concurrent_mark()->checkpointRootsInitialPost();
  4123           set_marking_started();
  4124           // Note that we don't actually trigger the CM thread at
  4125           // this point. We do that later when we're sure that
  4126           // the current thread has completed its logging output.
  4129         allocate_dummy_regions();
  4131 #if YOUNG_LIST_VERBOSE
  4132         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
  4133         _young_list->print();
  4134         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  4135 #endif // YOUNG_LIST_VERBOSE
  4137         _allocator->init_mutator_alloc_region();
  4140           size_t expand_bytes = g1_policy()->expansion_amount();
  4141           if (expand_bytes > 0) {
  4142             size_t bytes_before = capacity();
  4143             // No need for an ergo verbose message here,
  4144             // expansion_amount() does this when it returns a value > 0.
  4145             if (!expand(expand_bytes)) {
  4146               // We failed to expand the heap. Cannot do anything about it.
  4151         // We redo the verification but now wrt to the new CSet which
  4152         // has just got initialized after the previous CSet was freed.
  4153         _cm->verify_no_cset_oops(true  /* verify_stacks */,
  4154                                  true  /* verify_enqueued_buffers */,
  4155                                  true  /* verify_thread_buffers */,
  4156                                  true  /* verify_fingers */);
  4157         _cm->note_end_of_gc();
  4159         // This timing is only used by the ergonomics to handle our pause target.
  4160         // It is unclear why this should not include the full pause. We will
  4161         // investigate this in CR 7178365.
  4162         double sample_end_time_sec = os::elapsedTime();
  4163         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
  4164         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
  4166         MemoryService::track_memory_usage();
  4168         // In prepare_for_verify() below we'll need to scan the deferred
  4169         // update buffers to bring the RSets up-to-date if
  4170         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
  4171         // the update buffers we'll probably need to scan cards on the
  4172         // regions we just allocated to (i.e., the GC alloc
  4173         // regions). However, during the last GC we called
  4174         // set_saved_mark() on all the GC alloc regions, so card
  4175         // scanning might skip the [saved_mark_word()...top()] area of
  4176         // those regions (i.e., the area we allocated objects into
  4177         // during the last GC). But it shouldn't. Given that
  4178         // saved_mark_word() is conditional on whether the GC time stamp
  4179         // on the region is current or not, by incrementing the GC time
  4180         // stamp here we invalidate all the GC time stamps on all the
  4181         // regions and saved_mark_word() will simply return top() for
  4182         // all the regions. This is a nicer way of ensuring this rather
  4183         // than iterating over the regions and fixing them. In fact, the
  4184         // GC time stamp increment here also ensures that
  4185         // saved_mark_word() will return top() between pauses, i.e.,
  4186         // during concurrent refinement. So we don't need the
  4187         // is_gc_active() check to decided which top to use when
  4188         // scanning cards (see CR 7039627).
  4189         increment_gc_time_stamp();
  4191         verify_after_gc();
  4192         check_bitmaps("GC End");
  4194         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
  4195         ref_processor_stw()->verify_no_references_recorded();
  4197         // CM reference discovery will be re-enabled if necessary.
  4200       // We should do this after we potentially expand the heap so
  4201       // that all the COMMIT events are generated before the end GC
  4202       // event, and after we retire the GC alloc regions so that all
  4203       // RETIRE events are generated before the end GC event.
  4204       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
  4206 #ifdef TRACESPINNING
  4207       ParallelTaskTerminator::print_termination_counts();
  4208 #endif
  4210       gc_epilogue(false);
  4213     // Print the remainder of the GC log output.
  4214     log_gc_footer(os::elapsedTime() - pause_start_sec);
  4216     // It is not yet to safe to tell the concurrent mark to
  4217     // start as we have some optional output below. We don't want the
  4218     // output from the concurrent mark thread interfering with this
  4219     // logging output either.
  4221     _hrm.verify_optional();
  4222     verify_region_sets_optional();
  4224     TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
  4225     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
  4227     print_heap_after_gc();
  4228     trace_heap_after_gc(_gc_tracer_stw);
  4230     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
  4231     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
  4232     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
  4233     // before any GC notifications are raised.
  4234     g1mm()->update_sizes();
  4236     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
  4237     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
  4238     _gc_timer_stw->register_gc_end();
  4239     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
  4241   // It should now be safe to tell the concurrent mark thread to start
  4242   // without its logging output interfering with the logging output
  4243   // that came from the pause.
  4245   if (should_start_conc_mark) {
  4246     // CAUTION: after the doConcurrentMark() call below,
  4247     // the concurrent marking thread(s) could be running
  4248     // concurrently with us. Make sure that anything after
  4249     // this point does not assume that we are the only GC thread
  4250     // running. Note: of course, the actual marking work will
  4251     // not start until the safepoint itself is released in
  4252     // SuspendibleThreadSet::desynchronize().
  4253     doConcurrentMark();
  4256   return true;
  4259 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  4260   _drain_in_progress = false;
  4261   set_evac_failure_closure(cl);
  4262   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
  4265 void G1CollectedHeap::finalize_for_evac_failure() {
  4266   assert(_evac_failure_scan_stack != NULL &&
  4267          _evac_failure_scan_stack->length() == 0,
  4268          "Postcondition");
  4269   assert(!_drain_in_progress, "Postcondition");
  4270   delete _evac_failure_scan_stack;
  4271   _evac_failure_scan_stack = NULL;
  4274 void G1CollectedHeap::remove_self_forwarding_pointers() {
  4275   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
  4277   double remove_self_forwards_start = os::elapsedTime();
  4279   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
  4281   if (G1CollectedHeap::use_parallel_gc_threads()) {
  4282     set_par_threads();
  4283     workers()->run_task(&rsfp_task);
  4284     set_par_threads(0);
  4285   } else {
  4286     rsfp_task.work(0);
  4289   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
  4291   // Reset the claim values in the regions in the collection set.
  4292   reset_cset_heap_region_claim_values();
  4294   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
  4296   // Now restore saved marks, if any.
  4297   assert(_objs_with_preserved_marks.size() ==
  4298             _preserved_marks_of_objs.size(), "Both or none.");
  4299   while (!_objs_with_preserved_marks.is_empty()) {
  4300     oop obj = _objs_with_preserved_marks.pop();
  4301     markOop m = _preserved_marks_of_objs.pop();
  4302     obj->set_mark(m);
  4304   _objs_with_preserved_marks.clear(true);
  4305   _preserved_marks_of_objs.clear(true);
  4307   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
  4310 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  4311   _evac_failure_scan_stack->push(obj);
  4314 void G1CollectedHeap::drain_evac_failure_scan_stack() {
  4315   assert(_evac_failure_scan_stack != NULL, "precondition");
  4317   while (_evac_failure_scan_stack->length() > 0) {
  4318      oop obj = _evac_failure_scan_stack->pop();
  4319      _evac_failure_closure->set_region(heap_region_containing(obj));
  4320      obj->oop_iterate_backwards(_evac_failure_closure);
  4324 oop
  4325 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
  4326                                                oop old) {
  4327   assert(obj_in_cs(old),
  4328          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
  4329                  (HeapWord*) old));
  4330   markOop m = old->mark();
  4331   oop forward_ptr = old->forward_to_atomic(old);
  4332   if (forward_ptr == NULL) {
  4333     // Forward-to-self succeeded.
  4334     assert(_par_scan_state != NULL, "par scan state");
  4335     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
  4336     uint queue_num = _par_scan_state->queue_num();
  4338     _evacuation_failed = true;
  4339     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
  4340     if (_evac_failure_closure != cl) {
  4341       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
  4342       assert(!_drain_in_progress,
  4343              "Should only be true while someone holds the lock.");
  4344       // Set the global evac-failure closure to the current thread's.
  4345       assert(_evac_failure_closure == NULL, "Or locking has failed.");
  4346       set_evac_failure_closure(cl);
  4347       // Now do the common part.
  4348       handle_evacuation_failure_common(old, m);
  4349       // Reset to NULL.
  4350       set_evac_failure_closure(NULL);
  4351     } else {
  4352       // The lock is already held, and this is recursive.
  4353       assert(_drain_in_progress, "This should only be the recursive case.");
  4354       handle_evacuation_failure_common(old, m);
  4356     return old;
  4357   } else {
  4358     // Forward-to-self failed. Either someone else managed to allocate
  4359     // space for this object (old != forward_ptr) or they beat us in
  4360     // self-forwarding it (old == forward_ptr).
  4361     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
  4362            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
  4363                    "should not be in the CSet",
  4364                    (HeapWord*) old, (HeapWord*) forward_ptr));
  4365     return forward_ptr;
  4369 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  4370   preserve_mark_if_necessary(old, m);
  4372   HeapRegion* r = heap_region_containing(old);
  4373   if (!r->evacuation_failed()) {
  4374     r->set_evacuation_failed(true);
  4375     _hr_printer.evac_failure(r);
  4378   push_on_evac_failure_scan_stack(old);
  4380   if (!_drain_in_progress) {
  4381     // prevent recursion in copy_to_survivor_space()
  4382     _drain_in_progress = true;
  4383     drain_evac_failure_scan_stack();
  4384     _drain_in_progress = false;
  4388 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
  4389   assert(evacuation_failed(), "Oversaving!");
  4390   // We want to call the "for_promotion_failure" version only in the
  4391   // case of a promotion failure.
  4392   if (m->must_be_preserved_for_promotion_failure(obj)) {
  4393     _objs_with_preserved_marks.push(obj);
  4394     _preserved_marks_of_objs.push(m);
  4398 void G1ParCopyHelper::mark_object(oop obj) {
  4399   assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
  4401   // We know that the object is not moving so it's safe to read its size.
  4402   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
  4405 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
  4406   assert(from_obj->is_forwarded(), "from obj should be forwarded");
  4407   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
  4408   assert(from_obj != to_obj, "should not be self-forwarded");
  4410   assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
  4411   assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
  4413   // The object might be in the process of being copied by another
  4414   // worker so we cannot trust that its to-space image is
  4415   // well-formed. So we have to read its size from its from-space
  4416   // image which we know should not be changing.
  4417   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
  4420 template <class T>
  4421 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
  4422   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
  4423     _scanned_klass->record_modified_oops();
  4427 template <G1Barrier barrier, G1Mark do_mark_object>
  4428 template <class T>
  4429 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
  4430   T heap_oop = oopDesc::load_heap_oop(p);
  4432   if (oopDesc::is_null(heap_oop)) {
  4433     return;
  4436   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  4438   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
  4440   const InCSetState state = _g1->in_cset_state(obj);
  4441   if (state.is_in_cset()) {
  4442     oop forwardee;
  4443     markOop m = obj->mark();
  4444     if (m->is_marked()) {
  4445       forwardee = (oop) m->decode_pointer();
  4446     } else {
  4447       forwardee = _par_scan_state->copy_to_survivor_space(state, obj, m);
  4449     assert(forwardee != NULL, "forwardee should not be NULL");
  4450     oopDesc::encode_store_heap_oop(p, forwardee);
  4451     if (do_mark_object != G1MarkNone && forwardee != obj) {
  4452       // If the object is self-forwarded we don't need to explicitly
  4453       // mark it, the evacuation failure protocol will do so.
  4454       mark_forwarded_object(obj, forwardee);
  4457     if (barrier == G1BarrierKlass) {
  4458       do_klass_barrier(p, forwardee);
  4460   } else {
  4461     if (state.is_humongous()) {
  4462       _g1->set_humongous_is_live(obj);
  4464     // The object is not in collection set. If we're a root scanning
  4465     // closure during an initial mark pause then attempt to mark the object.
  4466     if (do_mark_object == G1MarkFromRoot) {
  4467       mark_object(obj);
  4471   if (barrier == G1BarrierEvac) {
  4472     _par_scan_state->update_rs(_from, p, _worker_id);
  4476 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(oop* p);
  4477 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(narrowOop* p);
  4479 class G1ParEvacuateFollowersClosure : public VoidClosure {
  4480 protected:
  4481   G1CollectedHeap*              _g1h;
  4482   G1ParScanThreadState*         _par_scan_state;
  4483   RefToScanQueueSet*            _queues;
  4484   ParallelTaskTerminator*       _terminator;
  4486   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  4487   RefToScanQueueSet*      queues()         { return _queues; }
  4488   ParallelTaskTerminator* terminator()     { return _terminator; }
  4490 public:
  4491   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
  4492                                 G1ParScanThreadState* par_scan_state,
  4493                                 RefToScanQueueSet* queues,
  4494                                 ParallelTaskTerminator* terminator)
  4495     : _g1h(g1h), _par_scan_state(par_scan_state),
  4496       _queues(queues), _terminator(terminator) {}
  4498   void do_void();
  4500 private:
  4501   inline bool offer_termination();
  4502 };
  4504 bool G1ParEvacuateFollowersClosure::offer_termination() {
  4505   G1ParScanThreadState* const pss = par_scan_state();
  4506   pss->start_term_time();
  4507   const bool res = terminator()->offer_termination();
  4508   pss->end_term_time();
  4509   return res;
  4512 void G1ParEvacuateFollowersClosure::do_void() {
  4513   G1ParScanThreadState* const pss = par_scan_state();
  4514   pss->trim_queue();
  4515   do {
  4516     pss->steal_and_trim_queue(queues());
  4517   } while (!offer_termination());
  4520 class G1KlassScanClosure : public KlassClosure {
  4521  G1ParCopyHelper* _closure;
  4522  bool             _process_only_dirty;
  4523  int              _count;
  4524  public:
  4525   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
  4526       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
  4527   void do_klass(Klass* klass) {
  4528     // If the klass has not been dirtied we know that there's
  4529     // no references into  the young gen and we can skip it.
  4530    if (!_process_only_dirty || klass->has_modified_oops()) {
  4531       // Clean the klass since we're going to scavenge all the metadata.
  4532       klass->clear_modified_oops();
  4534       // Tell the closure that this klass is the Klass to scavenge
  4535       // and is the one to dirty if oops are left pointing into the young gen.
  4536       _closure->set_scanned_klass(klass);
  4538       klass->oops_do(_closure);
  4540       _closure->set_scanned_klass(NULL);
  4542     _count++;
  4544 };
  4546 class G1CodeBlobClosure : public CodeBlobClosure {
  4547   class HeapRegionGatheringOopClosure : public OopClosure {
  4548     G1CollectedHeap* _g1h;
  4549     OopClosure* _work;
  4550     nmethod* _nm;
  4552     template <typename T>
  4553     void do_oop_work(T* p) {
  4554       _work->do_oop(p);
  4555       T oop_or_narrowoop = oopDesc::load_heap_oop(p);
  4556       if (!oopDesc::is_null(oop_or_narrowoop)) {
  4557         oop o = oopDesc::decode_heap_oop_not_null(oop_or_narrowoop);
  4558         HeapRegion* hr = _g1h->heap_region_containing_raw(o);
  4559         assert(!_g1h->obj_in_cs(o) || hr->rem_set()->strong_code_roots_list_contains(_nm), "if o still in CS then evacuation failed and nm must already be in the remset");
  4560         hr->add_strong_code_root(_nm);
  4564   public:
  4565     HeapRegionGatheringOopClosure(OopClosure* oc) : _g1h(G1CollectedHeap::heap()), _work(oc), _nm(NULL) {}
  4567     void do_oop(oop* o) {
  4568       do_oop_work(o);
  4571     void do_oop(narrowOop* o) {
  4572       do_oop_work(o);
  4575     void set_nm(nmethod* nm) {
  4576       _nm = nm;
  4578   };
  4580   HeapRegionGatheringOopClosure _oc;
  4581 public:
  4582   G1CodeBlobClosure(OopClosure* oc) : _oc(oc) {}
  4584   void do_code_blob(CodeBlob* cb) {
  4585     nmethod* nm = cb->as_nmethod_or_null();
  4586     if (nm != NULL) {
  4587       if (!nm->test_set_oops_do_mark()) {
  4588         _oc.set_nm(nm);
  4589         nm->oops_do(&_oc);
  4590         nm->fix_oop_relocations();
  4594 };
  4596 class G1ParTask : public AbstractGangTask {
  4597 protected:
  4598   G1CollectedHeap*       _g1h;
  4599   RefToScanQueueSet      *_queues;
  4600   ParallelTaskTerminator _terminator;
  4601   uint _n_workers;
  4603   Mutex _stats_lock;
  4604   Mutex* stats_lock() { return &_stats_lock; }
  4606 public:
  4607   G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues)
  4608     : AbstractGangTask("G1 collection"),
  4609       _g1h(g1h),
  4610       _queues(task_queues),
  4611       _terminator(0, _queues),
  4612       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
  4613   {}
  4615   RefToScanQueueSet* queues() { return _queues; }
  4617   RefToScanQueue *work_queue(int i) {
  4618     return queues()->queue(i);
  4621   ParallelTaskTerminator* terminator() { return &_terminator; }
  4623   virtual void set_for_termination(int active_workers) {
  4624     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
  4625     // in the young space (_par_seq_tasks) in the G1 heap
  4626     // for SequentialSubTasksDone.
  4627     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
  4628     // both of which need setting by set_n_termination().
  4629     _g1h->SharedHeap::set_n_termination(active_workers);
  4630     _g1h->set_n_termination(active_workers);
  4631     terminator()->reset_for_reuse(active_workers);
  4632     _n_workers = active_workers;
  4635   // Helps out with CLD processing.
  4636   //
  4637   // During InitialMark we need to:
  4638   // 1) Scavenge all CLDs for the young GC.
  4639   // 2) Mark all objects directly reachable from strong CLDs.
  4640   template <G1Mark do_mark_object>
  4641   class G1CLDClosure : public CLDClosure {
  4642     G1ParCopyClosure<G1BarrierNone,  do_mark_object>* _oop_closure;
  4643     G1ParCopyClosure<G1BarrierKlass, do_mark_object>  _oop_in_klass_closure;
  4644     G1KlassScanClosure                                _klass_in_cld_closure;
  4645     bool                                              _claim;
  4647    public:
  4648     G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
  4649                  bool only_young, bool claim)
  4650         : _oop_closure(oop_closure),
  4651           _oop_in_klass_closure(oop_closure->g1(),
  4652                                 oop_closure->pss(),
  4653                                 oop_closure->rp()),
  4654           _klass_in_cld_closure(&_oop_in_klass_closure, only_young),
  4655           _claim(claim) {
  4659     void do_cld(ClassLoaderData* cld) {
  4660       cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
  4662   };
  4664   void work(uint worker_id) {
  4665     if (worker_id >= _n_workers) return;  // no work needed this round
  4667     double start_time_ms = os::elapsedTime() * 1000.0;
  4668     _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
  4671       ResourceMark rm;
  4672       HandleMark   hm;
  4674       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
  4676       G1ParScanThreadState            pss(_g1h, worker_id, rp);
  4677       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
  4679       pss.set_evac_failure_closure(&evac_failure_cl);
  4681       bool only_young = _g1h->g1_policy()->gcs_are_young();
  4683       // Non-IM young GC.
  4684       G1ParCopyClosure<G1BarrierNone, G1MarkNone>             scan_only_root_cl(_g1h, &pss, rp);
  4685       G1CLDClosure<G1MarkNone>                                scan_only_cld_cl(&scan_only_root_cl,
  4686                                                                                only_young, // Only process dirty klasses.
  4687                                                                                false);     // No need to claim CLDs.
  4688       // IM young GC.
  4689       //    Strong roots closures.
  4690       G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot>         scan_mark_root_cl(_g1h, &pss, rp);
  4691       G1CLDClosure<G1MarkFromRoot>                            scan_mark_cld_cl(&scan_mark_root_cl,
  4692                                                                                false, // Process all klasses.
  4693                                                                                true); // Need to claim CLDs.
  4694       //    Weak roots closures.
  4695       G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp);
  4696       G1CLDClosure<G1MarkPromotedFromRoot>                    scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
  4697                                                                                     false, // Process all klasses.
  4698                                                                                     true); // Need to claim CLDs.
  4700       G1CodeBlobClosure scan_only_code_cl(&scan_only_root_cl);
  4701       G1CodeBlobClosure scan_mark_code_cl(&scan_mark_root_cl);
  4702       // IM Weak code roots are handled later.
  4704       OopClosure* strong_root_cl;
  4705       OopClosure* weak_root_cl;
  4706       CLDClosure* strong_cld_cl;
  4707       CLDClosure* weak_cld_cl;
  4708       CodeBlobClosure* strong_code_cl;
  4710       if (_g1h->g1_policy()->during_initial_mark_pause()) {
  4711         // We also need to mark copied objects.
  4712         strong_root_cl = &scan_mark_root_cl;
  4713         strong_cld_cl  = &scan_mark_cld_cl;
  4714         strong_code_cl = &scan_mark_code_cl;
  4715         if (ClassUnloadingWithConcurrentMark) {
  4716           weak_root_cl = &scan_mark_weak_root_cl;
  4717           weak_cld_cl  = &scan_mark_weak_cld_cl;
  4718         } else {
  4719           weak_root_cl = &scan_mark_root_cl;
  4720           weak_cld_cl  = &scan_mark_cld_cl;
  4722       } else {
  4723         strong_root_cl = &scan_only_root_cl;
  4724         weak_root_cl   = &scan_only_root_cl;
  4725         strong_cld_cl  = &scan_only_cld_cl;
  4726         weak_cld_cl    = &scan_only_cld_cl;
  4727         strong_code_cl = &scan_only_code_cl;
  4731       G1ParPushHeapRSClosure  push_heap_rs_cl(_g1h, &pss);
  4733       pss.start_strong_roots();
  4734       _g1h->g1_process_roots(strong_root_cl,
  4735                              weak_root_cl,
  4736                              &push_heap_rs_cl,
  4737                              strong_cld_cl,
  4738                              weak_cld_cl,
  4739                              strong_code_cl,
  4740                              worker_id);
  4742       pss.end_strong_roots();
  4745         double start = os::elapsedTime();
  4746         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
  4747         evac.do_void();
  4748         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
  4749         double term_ms = pss.term_time()*1000.0;
  4750         _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
  4751         _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
  4753       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
  4754       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
  4756       if (ParallelGCVerbose) {
  4757         MutexLocker x(stats_lock());
  4758         pss.print_termination_stats(worker_id);
  4761       assert(pss.queue_is_empty(), "should be empty");
  4763       // Close the inner scope so that the ResourceMark and HandleMark
  4764       // destructors are executed here and are included as part of the
  4765       // "GC Worker Time".
  4768     double end_time_ms = os::elapsedTime() * 1000.0;
  4769     _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
  4771 };
  4773 // *** Common G1 Evacuation Stuff
  4775 // This method is run in a GC worker.
  4777 void
  4778 G1CollectedHeap::
  4779 g1_process_roots(OopClosure* scan_non_heap_roots,
  4780                  OopClosure* scan_non_heap_weak_roots,
  4781                  G1ParPushHeapRSClosure* scan_rs,
  4782                  CLDClosure* scan_strong_clds,
  4783                  CLDClosure* scan_weak_clds,
  4784                  CodeBlobClosure* scan_strong_code,
  4785                  uint worker_i) {
  4787   // First scan the shared roots.
  4788   double ext_roots_start = os::elapsedTime();
  4789   double closure_app_time_sec = 0.0;
  4791   bool during_im = _g1h->g1_policy()->during_initial_mark_pause();
  4792   bool trace_metadata = during_im && ClassUnloadingWithConcurrentMark;
  4794   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
  4795   BufferingOopClosure buf_scan_non_heap_weak_roots(scan_non_heap_weak_roots);
  4797   process_roots(false, // no scoping; this is parallel code
  4798                 SharedHeap::SO_None,
  4799                 &buf_scan_non_heap_roots,
  4800                 &buf_scan_non_heap_weak_roots,
  4801                 scan_strong_clds,
  4802                 // Unloading Initial Marks handle the weak CLDs separately.
  4803                 (trace_metadata ? NULL : scan_weak_clds),
  4804                 scan_strong_code);
  4806   // Now the CM ref_processor roots.
  4807   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
  4808     // We need to treat the discovered reference lists of the
  4809     // concurrent mark ref processor as roots and keep entries
  4810     // (which are added by the marking threads) on them live
  4811     // until they can be processed at the end of marking.
  4812     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
  4815   if (trace_metadata) {
  4816     // Barrier to make sure all workers passed
  4817     // the strong CLD and strong nmethods phases.
  4818     active_strong_roots_scope()->wait_until_all_workers_done_with_threads(n_par_threads());
  4820     // Now take the complement of the strong CLDs.
  4821     ClassLoaderDataGraph::roots_cld_do(NULL, scan_weak_clds);
  4824   // Finish up any enqueued closure apps (attributed as object copy time).
  4825   buf_scan_non_heap_roots.done();
  4826   buf_scan_non_heap_weak_roots.done();
  4828   double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds()
  4829       + buf_scan_non_heap_weak_roots.closure_app_seconds();
  4831   g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
  4833   double ext_root_time_ms =
  4834     ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
  4836   g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
  4838   // During conc marking we have to filter the per-thread SATB buffers
  4839   // to make sure we remove any oops into the CSet (which will show up
  4840   // as implicitly live).
  4841   double satb_filtering_ms = 0.0;
  4842   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
  4843     if (mark_in_progress()) {
  4844       double satb_filter_start = os::elapsedTime();
  4846       JavaThread::satb_mark_queue_set().filter_thread_buffers();
  4848       satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
  4851   g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
  4853   // Now scan the complement of the collection set.
  4854   G1CodeBlobClosure scavenge_cs_nmethods(scan_non_heap_weak_roots);
  4856   g1_rem_set()->oops_into_collection_set_do(scan_rs, &scavenge_cs_nmethods, worker_i);
  4858   _process_strong_tasks->all_tasks_completed();
  4861 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
  4862 private:
  4863   BoolObjectClosure* _is_alive;
  4864   int _initial_string_table_size;
  4865   int _initial_symbol_table_size;
  4867   bool  _process_strings;
  4868   int _strings_processed;
  4869   int _strings_removed;
  4871   bool  _process_symbols;
  4872   int _symbols_processed;
  4873   int _symbols_removed;
  4875   bool _do_in_parallel;
  4876 public:
  4877   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
  4878     AbstractGangTask("String/Symbol Unlinking"),
  4879     _is_alive(is_alive),
  4880     _do_in_parallel(G1CollectedHeap::use_parallel_gc_threads()),
  4881     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
  4882     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
  4884     _initial_string_table_size = StringTable::the_table()->table_size();
  4885     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
  4886     if (process_strings) {
  4887       StringTable::clear_parallel_claimed_index();
  4889     if (process_symbols) {
  4890       SymbolTable::clear_parallel_claimed_index();
  4894   ~G1StringSymbolTableUnlinkTask() {
  4895     guarantee(!_process_strings || !_do_in_parallel || StringTable::parallel_claimed_index() >= _initial_string_table_size,
  4896               err_msg("claim value "INT32_FORMAT" after unlink less than initial string table size "INT32_FORMAT,
  4897                       StringTable::parallel_claimed_index(), _initial_string_table_size));
  4898     guarantee(!_process_symbols || !_do_in_parallel || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
  4899               err_msg("claim value "INT32_FORMAT" after unlink less than initial symbol table size "INT32_FORMAT,
  4900                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
  4902     if (G1TraceStringSymbolTableScrubbing) {
  4903       gclog_or_tty->print_cr("Cleaned string and symbol table, "
  4904                              "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
  4905                              "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
  4906                              strings_processed(), strings_removed(),
  4907                              symbols_processed(), symbols_removed());
  4911   void work(uint worker_id) {
  4912     if (_do_in_parallel) {
  4913       int strings_processed = 0;
  4914       int strings_removed = 0;
  4915       int symbols_processed = 0;
  4916       int symbols_removed = 0;
  4917       if (_process_strings) {
  4918         StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
  4919         Atomic::add(strings_processed, &_strings_processed);
  4920         Atomic::add(strings_removed, &_strings_removed);
  4922       if (_process_symbols) {
  4923         SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
  4924         Atomic::add(symbols_processed, &_symbols_processed);
  4925         Atomic::add(symbols_removed, &_symbols_removed);
  4927     } else {
  4928       if (_process_strings) {
  4929         StringTable::unlink(_is_alive, &_strings_processed, &_strings_removed);
  4931       if (_process_symbols) {
  4932         SymbolTable::unlink(&_symbols_processed, &_symbols_removed);
  4937   size_t strings_processed() const { return (size_t)_strings_processed; }
  4938   size_t strings_removed()   const { return (size_t)_strings_removed; }
  4940   size_t symbols_processed() const { return (size_t)_symbols_processed; }
  4941   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
  4942 };
  4944 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
  4945 private:
  4946   static Monitor* _lock;
  4948   BoolObjectClosure* const _is_alive;
  4949   const bool               _unloading_occurred;
  4950   const uint               _num_workers;
  4952   // Variables used to claim nmethods.
  4953   nmethod* _first_nmethod;
  4954   volatile nmethod* _claimed_nmethod;
  4956   // The list of nmethods that need to be processed by the second pass.
  4957   volatile nmethod* _postponed_list;
  4958   volatile uint     _num_entered_barrier;
  4960  public:
  4961   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
  4962       _is_alive(is_alive),
  4963       _unloading_occurred(unloading_occurred),
  4964       _num_workers(num_workers),
  4965       _first_nmethod(NULL),
  4966       _claimed_nmethod(NULL),
  4967       _postponed_list(NULL),
  4968       _num_entered_barrier(0)
  4970     nmethod::increase_unloading_clock();
  4971     _first_nmethod = CodeCache::alive_nmethod(CodeCache::first());
  4972     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
  4975   ~G1CodeCacheUnloadingTask() {
  4976     CodeCache::verify_clean_inline_caches();
  4978     CodeCache::set_needs_cache_clean(false);
  4979     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
  4981     CodeCache::verify_icholder_relocations();
  4984  private:
  4985   void add_to_postponed_list(nmethod* nm) {
  4986       nmethod* old;
  4987       do {
  4988         old = (nmethod*)_postponed_list;
  4989         nm->set_unloading_next(old);
  4990       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
  4993   void clean_nmethod(nmethod* nm) {
  4994     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
  4996     if (postponed) {
  4997       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
  4998       add_to_postponed_list(nm);
  5001     // Mark that this thread has been cleaned/unloaded.
  5002     // After this call, it will be safe to ask if this nmethod was unloaded or not.
  5003     nm->set_unloading_clock(nmethod::global_unloading_clock());
  5006   void clean_nmethod_postponed(nmethod* nm) {
  5007     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
  5010   static const int MaxClaimNmethods = 16;
  5012   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
  5013     nmethod* first;
  5014     nmethod* last;
  5016     do {
  5017       *num_claimed_nmethods = 0;
  5019       first = last = (nmethod*)_claimed_nmethod;
  5021       if (first != NULL) {
  5022         for (int i = 0; i < MaxClaimNmethods; i++) {
  5023           last = CodeCache::alive_nmethod(CodeCache::next(last));
  5025           if (last == NULL) {
  5026             break;
  5029           claimed_nmethods[i] = last;
  5030           (*num_claimed_nmethods)++;
  5034     } while ((nmethod*)Atomic::cmpxchg_ptr(last, &_claimed_nmethod, first) != first);
  5037   nmethod* claim_postponed_nmethod() {
  5038     nmethod* claim;
  5039     nmethod* next;
  5041     do {
  5042       claim = (nmethod*)_postponed_list;
  5043       if (claim == NULL) {
  5044         return NULL;
  5047       next = claim->unloading_next();
  5049     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
  5051     return claim;
  5054  public:
  5055   // Mark that we're done with the first pass of nmethod cleaning.
  5056   void barrier_mark(uint worker_id) {
  5057     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
  5058     _num_entered_barrier++;
  5059     if (_num_entered_barrier == _num_workers) {
  5060       ml.notify_all();
  5064   // See if we have to wait for the other workers to
  5065   // finish their first-pass nmethod cleaning work.
  5066   void barrier_wait(uint worker_id) {
  5067     if (_num_entered_barrier < _num_workers) {
  5068       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
  5069       while (_num_entered_barrier < _num_workers) {
  5070           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
  5075   // Cleaning and unloading of nmethods. Some work has to be postponed
  5076   // to the second pass, when we know which nmethods survive.
  5077   void work_first_pass(uint worker_id) {
  5078     // The first nmethods is claimed by the first worker.
  5079     if (worker_id == 0 && _first_nmethod != NULL) {
  5080       clean_nmethod(_first_nmethod);
  5081       _first_nmethod = NULL;
  5084     int num_claimed_nmethods;
  5085     nmethod* claimed_nmethods[MaxClaimNmethods];
  5087     while (true) {
  5088       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
  5090       if (num_claimed_nmethods == 0) {
  5091         break;
  5094       for (int i = 0; i < num_claimed_nmethods; i++) {
  5095         clean_nmethod(claimed_nmethods[i]);
  5099     // The nmethod cleaning helps out and does the CodeCache part of MetadataOnStackMark.
  5100     // Need to retire the buffers now that this thread has stopped cleaning nmethods.
  5101     MetadataOnStackMark::retire_buffer_for_thread(Thread::current());
  5104   void work_second_pass(uint worker_id) {
  5105     nmethod* nm;
  5106     // Take care of postponed nmethods.
  5107     while ((nm = claim_postponed_nmethod()) != NULL) {
  5108       clean_nmethod_postponed(nm);
  5111 };
  5113 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock");
  5115 class G1KlassCleaningTask : public StackObj {
  5116   BoolObjectClosure*                      _is_alive;
  5117   volatile jint                           _clean_klass_tree_claimed;
  5118   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
  5120  public:
  5121   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
  5122       _is_alive(is_alive),
  5123       _clean_klass_tree_claimed(0),
  5124       _klass_iterator() {
  5127  private:
  5128   bool claim_clean_klass_tree_task() {
  5129     if (_clean_klass_tree_claimed) {
  5130       return false;
  5133     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
  5136   InstanceKlass* claim_next_klass() {
  5137     Klass* klass;
  5138     do {
  5139       klass =_klass_iterator.next_klass();
  5140     } while (klass != NULL && !klass->oop_is_instance());
  5142     return (InstanceKlass*)klass;
  5145 public:
  5147   void clean_klass(InstanceKlass* ik) {
  5148     ik->clean_implementors_list(_is_alive);
  5149     ik->clean_method_data(_is_alive);
  5151     // G1 specific cleanup work that has
  5152     // been moved here to be done in parallel.
  5153     ik->clean_dependent_nmethods();
  5154     if (JvmtiExport::has_redefined_a_class()) {
  5155       InstanceKlass::purge_previous_versions(ik);
  5159   void work() {
  5160     ResourceMark rm;
  5162     // One worker will clean the subklass/sibling klass tree.
  5163     if (claim_clean_klass_tree_task()) {
  5164       Klass::clean_subklass_tree(_is_alive);
  5167     // All workers will help cleaning the classes,
  5168     InstanceKlass* klass;
  5169     while ((klass = claim_next_klass()) != NULL) {
  5170       clean_klass(klass);
  5173 };
  5175 // To minimize the remark pause times, the tasks below are done in parallel.
  5176 class G1ParallelCleaningTask : public AbstractGangTask {
  5177 private:
  5178   G1StringSymbolTableUnlinkTask _string_symbol_task;
  5179   G1CodeCacheUnloadingTask      _code_cache_task;
  5180   G1KlassCleaningTask           _klass_cleaning_task;
  5182 public:
  5183   // The constructor is run in the VMThread.
  5184   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
  5185       AbstractGangTask("Parallel Cleaning"),
  5186       _string_symbol_task(is_alive, process_strings, process_symbols),
  5187       _code_cache_task(num_workers, is_alive, unloading_occurred),
  5188       _klass_cleaning_task(is_alive) {
  5191   void pre_work_verification() {
  5192     // The VM Thread will have registered Metadata during the single-threaded phase of MetadataStackOnMark.
  5193     assert(Thread::current()->is_VM_thread()
  5194            || !MetadataOnStackMark::has_buffer_for_thread(Thread::current()), "Should be empty");
  5197   void post_work_verification() {
  5198     assert(!MetadataOnStackMark::has_buffer_for_thread(Thread::current()), "Should be empty");
  5201   // The parallel work done by all worker threads.
  5202   void work(uint worker_id) {
  5203     pre_work_verification();
  5205     // Do first pass of code cache cleaning.
  5206     _code_cache_task.work_first_pass(worker_id);
  5208     // Let the threads mark that the first pass is done.
  5209     _code_cache_task.barrier_mark(worker_id);
  5211     // Clean the Strings and Symbols.
  5212     _string_symbol_task.work(worker_id);
  5214     // Wait for all workers to finish the first code cache cleaning pass.
  5215     _code_cache_task.barrier_wait(worker_id);
  5217     // Do the second code cache cleaning work, which realize on
  5218     // the liveness information gathered during the first pass.
  5219     _code_cache_task.work_second_pass(worker_id);
  5221     // Clean all klasses that were not unloaded.
  5222     _klass_cleaning_task.work();
  5224     post_work_verification();
  5226 };
  5229 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
  5230                                         bool process_strings,
  5231                                         bool process_symbols,
  5232                                         bool class_unloading_occurred) {
  5233   uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  5234                     workers()->active_workers() : 1);
  5236   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
  5237                                         n_workers, class_unloading_occurred);
  5238   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5239     set_par_threads(n_workers);
  5240     workers()->run_task(&g1_unlink_task);
  5241     set_par_threads(0);
  5242   } else {
  5243     g1_unlink_task.work(0);
  5247 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
  5248                                                      bool process_strings, bool process_symbols) {
  5250     uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  5251                      _g1h->workers()->active_workers() : 1);
  5252     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
  5253     if (G1CollectedHeap::use_parallel_gc_threads()) {
  5254       set_par_threads(n_workers);
  5255       workers()->run_task(&g1_unlink_task);
  5256       set_par_threads(0);
  5257     } else {
  5258       g1_unlink_task.work(0);
  5262   if (G1StringDedup::is_enabled()) {
  5263     G1StringDedup::unlink(is_alive);
  5267 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
  5268  private:
  5269   DirtyCardQueueSet* _queue;
  5270  public:
  5271   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
  5273   virtual void work(uint worker_id) {
  5274     double start_time = os::elapsedTime();
  5276     RedirtyLoggedCardTableEntryClosure cl;
  5277     if (G1CollectedHeap::heap()->use_parallel_gc_threads()) {
  5278       _queue->par_apply_closure_to_all_completed_buffers(&cl);
  5279     } else {
  5280       _queue->apply_closure_to_all_completed_buffers(&cl);
  5283     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
  5284     timer->record_redirty_logged_cards_time_ms(worker_id, (os::elapsedTime() - start_time) * 1000.0);
  5285     timer->record_redirty_logged_cards_processed_cards(worker_id, cl.num_processed());
  5287 };
  5289 void G1CollectedHeap::redirty_logged_cards() {
  5290   double redirty_logged_cards_start = os::elapsedTime();
  5292   uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  5293                    _g1h->workers()->active_workers() : 1);
  5295   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
  5296   dirty_card_queue_set().reset_for_par_iteration();
  5297   if (use_parallel_gc_threads()) {
  5298     set_par_threads(n_workers);
  5299     workers()->run_task(&redirty_task);
  5300     set_par_threads(0);
  5301   } else {
  5302     redirty_task.work(0);
  5305   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
  5306   dcq.merge_bufferlists(&dirty_card_queue_set());
  5307   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
  5309   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
  5312 // Weak Reference Processing support
  5314 // An always "is_alive" closure that is used to preserve referents.
  5315 // If the object is non-null then it's alive.  Used in the preservation
  5316 // of referent objects that are pointed to by reference objects
  5317 // discovered by the CM ref processor.
  5318 class G1AlwaysAliveClosure: public BoolObjectClosure {
  5319   G1CollectedHeap* _g1;
  5320 public:
  5321   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  5322   bool do_object_b(oop p) {
  5323     if (p != NULL) {
  5324       return true;
  5326     return false;
  5328 };
  5330 bool G1STWIsAliveClosure::do_object_b(oop p) {
  5331   // An object is reachable if it is outside the collection set,
  5332   // or is inside and copied.
  5333   return !_g1->obj_in_cs(p) || p->is_forwarded();
  5336 // Non Copying Keep Alive closure
  5337 class G1KeepAliveClosure: public OopClosure {
  5338   G1CollectedHeap* _g1;
  5339 public:
  5340   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  5341   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
  5342   void do_oop(oop* p) {
  5343     oop obj = *p;
  5344     assert(obj != NULL, "the caller should have filtered out NULL values");
  5346     const InCSetState cset_state = _g1->in_cset_state(obj);
  5347     if (!cset_state.is_in_cset_or_humongous()) {
  5348       return;
  5350     if (cset_state.is_in_cset()) {
  5351       assert( obj->is_forwarded(), "invariant" );
  5352       *p = obj->forwardee();
  5353     } else {
  5354       assert(!obj->is_forwarded(), "invariant" );
  5355       assert(cset_state.is_humongous(),
  5356              err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state.value()));
  5357       _g1->set_humongous_is_live(obj);
  5360 };
  5362 // Copying Keep Alive closure - can be called from both
  5363 // serial and parallel code as long as different worker
  5364 // threads utilize different G1ParScanThreadState instances
  5365 // and different queues.
  5367 class G1CopyingKeepAliveClosure: public OopClosure {
  5368   G1CollectedHeap*         _g1h;
  5369   OopClosure*              _copy_non_heap_obj_cl;
  5370   G1ParScanThreadState*    _par_scan_state;
  5372 public:
  5373   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
  5374                             OopClosure* non_heap_obj_cl,
  5375                             G1ParScanThreadState* pss):
  5376     _g1h(g1h),
  5377     _copy_non_heap_obj_cl(non_heap_obj_cl),
  5378     _par_scan_state(pss)
  5379   {}
  5381   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  5382   virtual void do_oop(      oop* p) { do_oop_work(p); }
  5384   template <class T> void do_oop_work(T* p) {
  5385     oop obj = oopDesc::load_decode_heap_oop(p);
  5387     if (_g1h->is_in_cset_or_humongous(obj)) {
  5388       // If the referent object has been forwarded (either copied
  5389       // to a new location or to itself in the event of an
  5390       // evacuation failure) then we need to update the reference
  5391       // field and, if both reference and referent are in the G1
  5392       // heap, update the RSet for the referent.
  5393       //
  5394       // If the referent has not been forwarded then we have to keep
  5395       // it alive by policy. Therefore we have copy the referent.
  5396       //
  5397       // If the reference field is in the G1 heap then we can push
  5398       // on the PSS queue. When the queue is drained (after each
  5399       // phase of reference processing) the object and it's followers
  5400       // will be copied, the reference field set to point to the
  5401       // new location, and the RSet updated. Otherwise we need to
  5402       // use the the non-heap or metadata closures directly to copy
  5403       // the referent object and update the pointer, while avoiding
  5404       // updating the RSet.
  5406       if (_g1h->is_in_g1_reserved(p)) {
  5407         _par_scan_state->push_on_queue(p);
  5408       } else {
  5409         assert(!Metaspace::contains((const void*)p),
  5410                err_msg("Unexpectedly found a pointer from metadata: "
  5411                               PTR_FORMAT, p));
  5412         _copy_non_heap_obj_cl->do_oop(p);
  5416 };
  5418 // Serial drain queue closure. Called as the 'complete_gc'
  5419 // closure for each discovered list in some of the
  5420 // reference processing phases.
  5422 class G1STWDrainQueueClosure: public VoidClosure {
  5423 protected:
  5424   G1CollectedHeap* _g1h;
  5425   G1ParScanThreadState* _par_scan_state;
  5427   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  5429 public:
  5430   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
  5431     _g1h(g1h),
  5432     _par_scan_state(pss)
  5433   { }
  5435   void do_void() {
  5436     G1ParScanThreadState* const pss = par_scan_state();
  5437     pss->trim_queue();
  5439 };
  5441 // Parallel Reference Processing closures
  5443 // Implementation of AbstractRefProcTaskExecutor for parallel reference
  5444 // processing during G1 evacuation pauses.
  5446 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
  5447 private:
  5448   G1CollectedHeap*   _g1h;
  5449   RefToScanQueueSet* _queues;
  5450   FlexibleWorkGang*  _workers;
  5451   int                _active_workers;
  5453 public:
  5454   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
  5455                         FlexibleWorkGang* workers,
  5456                         RefToScanQueueSet *task_queues,
  5457                         int n_workers) :
  5458     _g1h(g1h),
  5459     _queues(task_queues),
  5460     _workers(workers),
  5461     _active_workers(n_workers)
  5463     assert(n_workers > 0, "shouldn't call this otherwise");
  5466   // Executes the given task using concurrent marking worker threads.
  5467   virtual void execute(ProcessTask& task);
  5468   virtual void execute(EnqueueTask& task);
  5469 };
  5471 // Gang task for possibly parallel reference processing
  5473 class G1STWRefProcTaskProxy: public AbstractGangTask {
  5474   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  5475   ProcessTask&     _proc_task;
  5476   G1CollectedHeap* _g1h;
  5477   RefToScanQueueSet *_task_queues;
  5478   ParallelTaskTerminator* _terminator;
  5480 public:
  5481   G1STWRefProcTaskProxy(ProcessTask& proc_task,
  5482                      G1CollectedHeap* g1h,
  5483                      RefToScanQueueSet *task_queues,
  5484                      ParallelTaskTerminator* terminator) :
  5485     AbstractGangTask("Process reference objects in parallel"),
  5486     _proc_task(proc_task),
  5487     _g1h(g1h),
  5488     _task_queues(task_queues),
  5489     _terminator(terminator)
  5490   {}
  5492   virtual void work(uint worker_id) {
  5493     // The reference processing task executed by a single worker.
  5494     ResourceMark rm;
  5495     HandleMark   hm;
  5497     G1STWIsAliveClosure is_alive(_g1h);
  5499     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
  5500     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
  5502     pss.set_evac_failure_closure(&evac_failure_cl);
  5504     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
  5506     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
  5508     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5510     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5511       // We also need to mark copied objects.
  5512       copy_non_heap_cl = &copy_mark_non_heap_cl;
  5515     // Keep alive closure.
  5516     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
  5518     // Complete GC closure
  5519     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
  5521     // Call the reference processing task's work routine.
  5522     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
  5524     // Note we cannot assert that the refs array is empty here as not all
  5525     // of the processing tasks (specifically phase2 - pp2_work) execute
  5526     // the complete_gc closure (which ordinarily would drain the queue) so
  5527     // the queue may not be empty.
  5529 };
  5531 // Driver routine for parallel reference processing.
  5532 // Creates an instance of the ref processing gang
  5533 // task and has the worker threads execute it.
  5534 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
  5535   assert(_workers != NULL, "Need parallel worker threads.");
  5537   ParallelTaskTerminator terminator(_active_workers, _queues);
  5538   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
  5540   _g1h->set_par_threads(_active_workers);
  5541   _workers->run_task(&proc_task_proxy);
  5542   _g1h->set_par_threads(0);
  5545 // Gang task for parallel reference enqueueing.
  5547 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
  5548   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  5549   EnqueueTask& _enq_task;
  5551 public:
  5552   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
  5553     AbstractGangTask("Enqueue reference objects in parallel"),
  5554     _enq_task(enq_task)
  5555   { }
  5557   virtual void work(uint worker_id) {
  5558     _enq_task.work(worker_id);
  5560 };
  5562 // Driver routine for parallel reference enqueueing.
  5563 // Creates an instance of the ref enqueueing gang
  5564 // task and has the worker threads execute it.
  5566 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
  5567   assert(_workers != NULL, "Need parallel worker threads.");
  5569   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
  5571   _g1h->set_par_threads(_active_workers);
  5572   _workers->run_task(&enq_task_proxy);
  5573   _g1h->set_par_threads(0);
  5576 // End of weak reference support closures
  5578 // Abstract task used to preserve (i.e. copy) any referent objects
  5579 // that are in the collection set and are pointed to by reference
  5580 // objects discovered by the CM ref processor.
  5582 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
  5583 protected:
  5584   G1CollectedHeap* _g1h;
  5585   RefToScanQueueSet      *_queues;
  5586   ParallelTaskTerminator _terminator;
  5587   uint _n_workers;
  5589 public:
  5590   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
  5591     AbstractGangTask("ParPreserveCMReferents"),
  5592     _g1h(g1h),
  5593     _queues(task_queues),
  5594     _terminator(workers, _queues),
  5595     _n_workers(workers)
  5596   { }
  5598   void work(uint worker_id) {
  5599     ResourceMark rm;
  5600     HandleMark   hm;
  5602     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
  5603     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
  5605     pss.set_evac_failure_closure(&evac_failure_cl);
  5607     assert(pss.queue_is_empty(), "both queue and overflow should be empty");
  5609     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
  5611     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
  5613     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5615     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5616       // We also need to mark copied objects.
  5617       copy_non_heap_cl = &copy_mark_non_heap_cl;
  5620     // Is alive closure
  5621     G1AlwaysAliveClosure always_alive(_g1h);
  5623     // Copying keep alive closure. Applied to referent objects that need
  5624     // to be copied.
  5625     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
  5627     ReferenceProcessor* rp = _g1h->ref_processor_cm();
  5629     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
  5630     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
  5632     // limit is set using max_num_q() - which was set using ParallelGCThreads.
  5633     // So this must be true - but assert just in case someone decides to
  5634     // change the worker ids.
  5635     assert(0 <= worker_id && worker_id < limit, "sanity");
  5636     assert(!rp->discovery_is_atomic(), "check this code");
  5638     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
  5639     for (uint idx = worker_id; idx < limit; idx += stride) {
  5640       DiscoveredList& ref_list = rp->discovered_refs()[idx];
  5642       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
  5643       while (iter.has_next()) {
  5644         // Since discovery is not atomic for the CM ref processor, we
  5645         // can see some null referent objects.
  5646         iter.load_ptrs(DEBUG_ONLY(true));
  5647         oop ref = iter.obj();
  5649         // This will filter nulls.
  5650         if (iter.is_referent_alive()) {
  5651           iter.make_referent_alive();
  5653         iter.move_to_next();
  5657     // Drain the queue - which may cause stealing
  5658     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
  5659     drain_queue.do_void();
  5660     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
  5661     assert(pss.queue_is_empty(), "should be");
  5663 };
  5665 // Weak Reference processing during an evacuation pause (part 1).
  5666 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
  5667   double ref_proc_start = os::elapsedTime();
  5669   ReferenceProcessor* rp = _ref_processor_stw;
  5670   assert(rp->discovery_enabled(), "should have been enabled");
  5672   // Any reference objects, in the collection set, that were 'discovered'
  5673   // by the CM ref processor should have already been copied (either by
  5674   // applying the external root copy closure to the discovered lists, or
  5675   // by following an RSet entry).
  5676   //
  5677   // But some of the referents, that are in the collection set, that these
  5678   // reference objects point to may not have been copied: the STW ref
  5679   // processor would have seen that the reference object had already
  5680   // been 'discovered' and would have skipped discovering the reference,
  5681   // but would not have treated the reference object as a regular oop.
  5682   // As a result the copy closure would not have been applied to the
  5683   // referent object.
  5684   //
  5685   // We need to explicitly copy these referent objects - the references
  5686   // will be processed at the end of remarking.
  5687   //
  5688   // We also need to do this copying before we process the reference
  5689   // objects discovered by the STW ref processor in case one of these
  5690   // referents points to another object which is also referenced by an
  5691   // object discovered by the STW ref processor.
  5693   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
  5694            no_of_gc_workers == workers()->active_workers(),
  5695            "Need to reset active GC workers");
  5697   set_par_threads(no_of_gc_workers);
  5698   G1ParPreserveCMReferentsTask keep_cm_referents(this,
  5699                                                  no_of_gc_workers,
  5700                                                  _task_queues);
  5702   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5703     workers()->run_task(&keep_cm_referents);
  5704   } else {
  5705     keep_cm_referents.work(0);
  5708   set_par_threads(0);
  5710   // Closure to test whether a referent is alive.
  5711   G1STWIsAliveClosure is_alive(this);
  5713   // Even when parallel reference processing is enabled, the processing
  5714   // of JNI refs is serial and performed serially by the current thread
  5715   // rather than by a worker. The following PSS will be used for processing
  5716   // JNI refs.
  5718   // Use only a single queue for this PSS.
  5719   G1ParScanThreadState            pss(this, 0, NULL);
  5721   // We do not embed a reference processor in the copying/scanning
  5722   // closures while we're actually processing the discovered
  5723   // reference objects.
  5724   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
  5726   pss.set_evac_failure_closure(&evac_failure_cl);
  5728   assert(pss.queue_is_empty(), "pre-condition");
  5730   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
  5732   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
  5734   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5736   if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5737     // We also need to mark copied objects.
  5738     copy_non_heap_cl = &copy_mark_non_heap_cl;
  5741   // Keep alive closure.
  5742   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss);
  5744   // Serial Complete GC closure
  5745   G1STWDrainQueueClosure drain_queue(this, &pss);
  5747   // Setup the soft refs policy...
  5748   rp->setup_policy(false);
  5750   ReferenceProcessorStats stats;
  5751   if (!rp->processing_is_mt()) {
  5752     // Serial reference processing...
  5753     stats = rp->process_discovered_references(&is_alive,
  5754                                               &keep_alive,
  5755                                               &drain_queue,
  5756                                               NULL,
  5757                                               _gc_timer_stw,
  5758                                               _gc_tracer_stw->gc_id());
  5759   } else {
  5760     // Parallel reference processing
  5761     assert(rp->num_q() == no_of_gc_workers, "sanity");
  5762     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
  5764     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
  5765     stats = rp->process_discovered_references(&is_alive,
  5766                                               &keep_alive,
  5767                                               &drain_queue,
  5768                                               &par_task_executor,
  5769                                               _gc_timer_stw,
  5770                                               _gc_tracer_stw->gc_id());
  5773   _gc_tracer_stw->report_gc_reference_stats(stats);
  5775   // We have completed copying any necessary live referent objects.
  5776   assert(pss.queue_is_empty(), "both queue and overflow should be empty");
  5778   double ref_proc_time = os::elapsedTime() - ref_proc_start;
  5779   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
  5782 // Weak Reference processing during an evacuation pause (part 2).
  5783 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
  5784   double ref_enq_start = os::elapsedTime();
  5786   ReferenceProcessor* rp = _ref_processor_stw;
  5787   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
  5789   // Now enqueue any remaining on the discovered lists on to
  5790   // the pending list.
  5791   if (!rp->processing_is_mt()) {
  5792     // Serial reference processing...
  5793     rp->enqueue_discovered_references();
  5794   } else {
  5795     // Parallel reference enqueueing
  5797     assert(no_of_gc_workers == workers()->active_workers(),
  5798            "Need to reset active workers");
  5799     assert(rp->num_q() == no_of_gc_workers, "sanity");
  5800     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
  5802     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
  5803     rp->enqueue_discovered_references(&par_task_executor);
  5806   rp->verify_no_references_recorded();
  5807   assert(!rp->discovery_enabled(), "should have been disabled");
  5809   // FIXME
  5810   // CM's reference processing also cleans up the string and symbol tables.
  5811   // Should we do that here also? We could, but it is a serial operation
  5812   // and could significantly increase the pause time.
  5814   double ref_enq_time = os::elapsedTime() - ref_enq_start;
  5815   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
  5818 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
  5819   _expand_heap_after_alloc_failure = true;
  5820   _evacuation_failed = false;
  5822   // Should G1EvacuationFailureALot be in effect for this GC?
  5823   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
  5825   g1_rem_set()->prepare_for_oops_into_collection_set_do();
  5827   // Disable the hot card cache.
  5828   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  5829   hot_card_cache->reset_hot_cache_claimed_index();
  5830   hot_card_cache->set_use_cache(false);
  5832   uint n_workers;
  5833   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5834     n_workers =
  5835       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
  5836                                      workers()->active_workers(),
  5837                                      Threads::number_of_non_daemon_threads());
  5838     assert(UseDynamicNumberOfGCThreads ||
  5839            n_workers == workers()->total_workers(),
  5840            "If not dynamic should be using all the  workers");
  5841     workers()->set_active_workers(n_workers);
  5842     set_par_threads(n_workers);
  5843   } else {
  5844     assert(n_par_threads() == 0,
  5845            "Should be the original non-parallel value");
  5846     n_workers = 1;
  5849   G1ParTask g1_par_task(this, _task_queues);
  5851   init_for_evac_failure(NULL);
  5853   rem_set()->prepare_for_younger_refs_iterate(true);
  5855   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
  5856   double start_par_time_sec = os::elapsedTime();
  5857   double end_par_time_sec;
  5860     StrongRootsScope srs(this);
  5861     // InitialMark needs claim bits to keep track of the marked-through CLDs.
  5862     if (g1_policy()->during_initial_mark_pause()) {
  5863       ClassLoaderDataGraph::clear_claimed_marks();
  5866     if (G1CollectedHeap::use_parallel_gc_threads()) {
  5867       // The individual threads will set their evac-failure closures.
  5868       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
  5869       // These tasks use ShareHeap::_process_strong_tasks
  5870       assert(UseDynamicNumberOfGCThreads ||
  5871              workers()->active_workers() == workers()->total_workers(),
  5872              "If not dynamic should be using all the  workers");
  5873       workers()->run_task(&g1_par_task);
  5874     } else {
  5875       g1_par_task.set_for_termination(n_workers);
  5876       g1_par_task.work(0);
  5878     end_par_time_sec = os::elapsedTime();
  5880     // Closing the inner scope will execute the destructor
  5881     // for the StrongRootsScope object. We record the current
  5882     // elapsed time before closing the scope so that time
  5883     // taken for the SRS destructor is NOT included in the
  5884     // reported parallel time.
  5887   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
  5888   g1_policy()->phase_times()->record_par_time(par_time_ms);
  5890   double code_root_fixup_time_ms =
  5891         (os::elapsedTime() - end_par_time_sec) * 1000.0;
  5892   g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
  5894   set_par_threads(0);
  5896   // Process any discovered reference objects - we have
  5897   // to do this _before_ we retire the GC alloc regions
  5898   // as we may have to copy some 'reachable' referent
  5899   // objects (and their reachable sub-graphs) that were
  5900   // not copied during the pause.
  5901   process_discovered_references(n_workers);
  5903   if (G1StringDedup::is_enabled()) {
  5904     G1STWIsAliveClosure is_alive(this);
  5905     G1KeepAliveClosure keep_alive(this);
  5906     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive);
  5909   _allocator->release_gc_alloc_regions(n_workers, evacuation_info);
  5910   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
  5912   // Reset and re-enable the hot card cache.
  5913   // Note the counts for the cards in the regions in the
  5914   // collection set are reset when the collection set is freed.
  5915   hot_card_cache->reset_hot_cache();
  5916   hot_card_cache->set_use_cache(true);
  5918   purge_code_root_memory();
  5920   if (g1_policy()->during_initial_mark_pause()) {
  5921     // Reset the claim values set during marking the strong code roots
  5922     reset_heap_region_claim_values();
  5925   finalize_for_evac_failure();
  5927   if (evacuation_failed()) {
  5928     remove_self_forwarding_pointers();
  5930     // Reset the G1EvacuationFailureALot counters and flags
  5931     // Note: the values are reset only when an actual
  5932     // evacuation failure occurs.
  5933     NOT_PRODUCT(reset_evacuation_should_fail();)
  5936   // Enqueue any remaining references remaining on the STW
  5937   // reference processor's discovered lists. We need to do
  5938   // this after the card table is cleaned (and verified) as
  5939   // the act of enqueueing entries on to the pending list
  5940   // will log these updates (and dirty their associated
  5941   // cards). We need these updates logged to update any
  5942   // RSets.
  5943   enqueue_discovered_references(n_workers);
  5945   redirty_logged_cards();
  5946   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  5949 void G1CollectedHeap::free_region(HeapRegion* hr,
  5950                                   FreeRegionList* free_list,
  5951                                   bool par,
  5952                                   bool locked) {
  5953   assert(!hr->is_free(), "the region should not be free");
  5954   assert(!hr->is_empty(), "the region should not be empty");
  5955   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
  5956   assert(free_list != NULL, "pre-condition");
  5958   if (G1VerifyBitmaps) {
  5959     MemRegion mr(hr->bottom(), hr->end());
  5960     concurrent_mark()->clearRangePrevBitmap(mr);
  5963   // Clear the card counts for this region.
  5964   // Note: we only need to do this if the region is not young
  5965   // (since we don't refine cards in young regions).
  5966   if (!hr->is_young()) {
  5967     _cg1r->hot_card_cache()->reset_card_counts(hr);
  5969   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
  5970   free_list->add_ordered(hr);
  5973 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
  5974                                      FreeRegionList* free_list,
  5975                                      bool par) {
  5976   assert(hr->startsHumongous(), "this is only for starts humongous regions");
  5977   assert(free_list != NULL, "pre-condition");
  5979   size_t hr_capacity = hr->capacity();
  5980   // We need to read this before we make the region non-humongous,
  5981   // otherwise the information will be gone.
  5982   uint last_index = hr->last_hc_index();
  5983   hr->clear_humongous();
  5984   free_region(hr, free_list, par);
  5986   uint i = hr->hrm_index() + 1;
  5987   while (i < last_index) {
  5988     HeapRegion* curr_hr = region_at(i);
  5989     assert(curr_hr->continuesHumongous(), "invariant");
  5990     curr_hr->clear_humongous();
  5991     free_region(curr_hr, free_list, par);
  5992     i += 1;
  5996 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
  5997                                        const HeapRegionSetCount& humongous_regions_removed) {
  5998   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
  5999     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
  6000     _old_set.bulk_remove(old_regions_removed);
  6001     _humongous_set.bulk_remove(humongous_regions_removed);
  6006 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
  6007   assert(list != NULL, "list can't be null");
  6008   if (!list->is_empty()) {
  6009     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
  6010     _hrm.insert_list_into_free_list(list);
  6014 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
  6015   _allocator->decrease_used(bytes);
  6018 class G1ParCleanupCTTask : public AbstractGangTask {
  6019   G1SATBCardTableModRefBS* _ct_bs;
  6020   G1CollectedHeap* _g1h;
  6021   HeapRegion* volatile _su_head;
  6022 public:
  6023   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
  6024                      G1CollectedHeap* g1h) :
  6025     AbstractGangTask("G1 Par Cleanup CT Task"),
  6026     _ct_bs(ct_bs), _g1h(g1h) { }
  6028   void work(uint worker_id) {
  6029     HeapRegion* r;
  6030     while (r = _g1h->pop_dirty_cards_region()) {
  6031       clear_cards(r);
  6035   void clear_cards(HeapRegion* r) {
  6036     // Cards of the survivors should have already been dirtied.
  6037     if (!r->is_survivor()) {
  6038       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
  6041 };
  6043 #ifndef PRODUCT
  6044 class G1VerifyCardTableCleanup: public HeapRegionClosure {
  6045   G1CollectedHeap* _g1h;
  6046   G1SATBCardTableModRefBS* _ct_bs;
  6047 public:
  6048   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
  6049     : _g1h(g1h), _ct_bs(ct_bs) { }
  6050   virtual bool doHeapRegion(HeapRegion* r) {
  6051     if (r->is_survivor()) {
  6052       _g1h->verify_dirty_region(r);
  6053     } else {
  6054       _g1h->verify_not_dirty_region(r);
  6056     return false;
  6058 };
  6060 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
  6061   // All of the region should be clean.
  6062   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
  6063   MemRegion mr(hr->bottom(), hr->end());
  6064   ct_bs->verify_not_dirty_region(mr);
  6067 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
  6068   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
  6069   // dirty allocated blocks as they allocate them. The thread that
  6070   // retires each region and replaces it with a new one will do a
  6071   // maximal allocation to fill in [pre_dummy_top(),end()] but will
  6072   // not dirty that area (one less thing to have to do while holding
  6073   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
  6074   // is dirty.
  6075   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
  6076   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
  6077   if (hr->is_young()) {
  6078     ct_bs->verify_g1_young_region(mr);
  6079   } else {
  6080     ct_bs->verify_dirty_region(mr);
  6084 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
  6085   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
  6086   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
  6087     verify_dirty_region(hr);
  6091 void G1CollectedHeap::verify_dirty_young_regions() {
  6092   verify_dirty_young_list(_young_list->first_region());
  6095 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
  6096                                                HeapWord* tams, HeapWord* end) {
  6097   guarantee(tams <= end,
  6098             err_msg("tams: "PTR_FORMAT" end: "PTR_FORMAT, tams, end));
  6099   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
  6100   if (result < end) {
  6101     gclog_or_tty->cr();
  6102     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: "PTR_FORMAT,
  6103                            bitmap_name, result);
  6104     gclog_or_tty->print_cr("## %s tams: "PTR_FORMAT" end: "PTR_FORMAT,
  6105                            bitmap_name, tams, end);
  6106     return false;
  6108   return true;
  6111 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
  6112   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
  6113   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
  6115   HeapWord* bottom = hr->bottom();
  6116   HeapWord* ptams  = hr->prev_top_at_mark_start();
  6117   HeapWord* ntams  = hr->next_top_at_mark_start();
  6118   HeapWord* end    = hr->end();
  6120   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
  6122   bool res_n = true;
  6123   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
  6124   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
  6125   // if we happen to be in that state.
  6126   if (mark_in_progress() || !_cmThread->in_progress()) {
  6127     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
  6129   if (!res_p || !res_n) {
  6130     gclog_or_tty->print_cr("#### Bitmap verification failed for "HR_FORMAT,
  6131                            HR_FORMAT_PARAMS(hr));
  6132     gclog_or_tty->print_cr("#### Caller: %s", caller);
  6133     return false;
  6135   return true;
  6138 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
  6139   if (!G1VerifyBitmaps) return;
  6141   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
  6144 class G1VerifyBitmapClosure : public HeapRegionClosure {
  6145 private:
  6146   const char* _caller;
  6147   G1CollectedHeap* _g1h;
  6148   bool _failures;
  6150 public:
  6151   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
  6152     _caller(caller), _g1h(g1h), _failures(false) { }
  6154   bool failures() { return _failures; }
  6156   virtual bool doHeapRegion(HeapRegion* hr) {
  6157     if (hr->continuesHumongous()) return false;
  6159     bool result = _g1h->verify_bitmaps(_caller, hr);
  6160     if (!result) {
  6161       _failures = true;
  6163     return false;
  6165 };
  6167 void G1CollectedHeap::check_bitmaps(const char* caller) {
  6168   if (!G1VerifyBitmaps) return;
  6170   G1VerifyBitmapClosure cl(caller, this);
  6171   heap_region_iterate(&cl);
  6172   guarantee(!cl.failures(), "bitmap verification");
  6175 bool G1CollectedHeap::check_cset_fast_test() {
  6176   bool failures = false;
  6177   for (uint i = 0; i < _hrm.length(); i += 1) {
  6178     HeapRegion* hr = _hrm.at(i);
  6179     InCSetState cset_state = (InCSetState) _in_cset_fast_test.get_by_index((uint) i);
  6180     if (hr->isHumongous()) {
  6181       if (hr->in_collection_set()) {
  6182         gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
  6183         failures = true;
  6184         break;
  6186       if (cset_state.is_in_cset()) {
  6187         gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
  6188         failures = true;
  6189         break;
  6191       if (hr->continuesHumongous() && cset_state.is_humongous()) {
  6192         gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
  6193         failures = true;
  6194         break;
  6196     } else {
  6197       if (cset_state.is_humongous()) {
  6198         gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
  6199         failures = true;
  6200         break;
  6202       if (hr->in_collection_set() != cset_state.is_in_cset()) {
  6203         gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
  6204                                hr->in_collection_set(), cset_state.value(), i);
  6205         failures = true;
  6206         break;
  6208       if (cset_state.is_in_cset()) {
  6209         if (hr->is_young() != (cset_state.is_young())) {
  6210           gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
  6211                                  hr->is_young(), cset_state.value(), i);
  6212           failures = true;
  6213           break;
  6215         if (hr->is_old() != (cset_state.is_old())) {
  6216           gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
  6217                                  hr->is_old(), cset_state.value(), i);
  6218           failures = true;
  6219           break;
  6224   return !failures;
  6226 #endif // PRODUCT
  6228 void G1CollectedHeap::cleanUpCardTable() {
  6229   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
  6230   double start = os::elapsedTime();
  6233     // Iterate over the dirty cards region list.
  6234     G1ParCleanupCTTask cleanup_task(ct_bs, this);
  6236     if (G1CollectedHeap::use_parallel_gc_threads()) {
  6237       set_par_threads();
  6238       workers()->run_task(&cleanup_task);
  6239       set_par_threads(0);
  6240     } else {
  6241       while (_dirty_cards_region_list) {
  6242         HeapRegion* r = _dirty_cards_region_list;
  6243         cleanup_task.clear_cards(r);
  6244         _dirty_cards_region_list = r->get_next_dirty_cards_region();
  6245         if (_dirty_cards_region_list == r) {
  6246           // The last region.
  6247           _dirty_cards_region_list = NULL;
  6249         r->set_next_dirty_cards_region(NULL);
  6252 #ifndef PRODUCT
  6253     if (G1VerifyCTCleanup || VerifyAfterGC) {
  6254       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
  6255       heap_region_iterate(&cleanup_verifier);
  6257 #endif
  6260   double elapsed = os::elapsedTime() - start;
  6261   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
  6264 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
  6265   size_t pre_used = 0;
  6266   FreeRegionList local_free_list("Local List for CSet Freeing");
  6268   double young_time_ms     = 0.0;
  6269   double non_young_time_ms = 0.0;
  6271   // Since the collection set is a superset of the the young list,
  6272   // all we need to do to clear the young list is clear its
  6273   // head and length, and unlink any young regions in the code below
  6274   _young_list->clear();
  6276   G1CollectorPolicy* policy = g1_policy();
  6278   double start_sec = os::elapsedTime();
  6279   bool non_young = true;
  6281   HeapRegion* cur = cs_head;
  6282   int age_bound = -1;
  6283   size_t rs_lengths = 0;
  6285   while (cur != NULL) {
  6286     assert(!is_on_master_free_list(cur), "sanity");
  6287     if (non_young) {
  6288       if (cur->is_young()) {
  6289         double end_sec = os::elapsedTime();
  6290         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  6291         non_young_time_ms += elapsed_ms;
  6293         start_sec = os::elapsedTime();
  6294         non_young = false;
  6296     } else {
  6297       if (!cur->is_young()) {
  6298         double end_sec = os::elapsedTime();
  6299         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  6300         young_time_ms += elapsed_ms;
  6302         start_sec = os::elapsedTime();
  6303         non_young = true;
  6307     rs_lengths += cur->rem_set()->occupied_locked();
  6309     HeapRegion* next = cur->next_in_collection_set();
  6310     assert(cur->in_collection_set(), "bad CS");
  6311     cur->set_next_in_collection_set(NULL);
  6312     cur->set_in_collection_set(false);
  6314     if (cur->is_young()) {
  6315       int index = cur->young_index_in_cset();
  6316       assert(index != -1, "invariant");
  6317       assert((uint) index < policy->young_cset_region_length(), "invariant");
  6318       size_t words_survived = _surviving_young_words[index];
  6319       cur->record_surv_words_in_group(words_survived);
  6321       // At this point the we have 'popped' cur from the collection set
  6322       // (linked via next_in_collection_set()) but it is still in the
  6323       // young list (linked via next_young_region()). Clear the
  6324       // _next_young_region field.
  6325       cur->set_next_young_region(NULL);
  6326     } else {
  6327       int index = cur->young_index_in_cset();
  6328       assert(index == -1, "invariant");
  6331     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
  6332             (!cur->is_young() && cur->young_index_in_cset() == -1),
  6333             "invariant" );
  6335     if (!cur->evacuation_failed()) {
  6336       MemRegion used_mr = cur->used_region();
  6338       // And the region is empty.
  6339       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
  6340       pre_used += cur->used();
  6341       free_region(cur, &local_free_list, false /* par */, true /* locked */);
  6342     } else {
  6343       cur->uninstall_surv_rate_group();
  6344       if (cur->is_young()) {
  6345         cur->set_young_index_in_cset(-1);
  6347       cur->set_evacuation_failed(false);
  6348       // The region is now considered to be old.
  6349       cur->set_old();
  6350       _old_set.add(cur);
  6351       evacuation_info.increment_collectionset_used_after(cur->used());
  6353     cur = next;
  6356   evacuation_info.set_regions_freed(local_free_list.length());
  6357   policy->record_max_rs_lengths(rs_lengths);
  6358   policy->cset_regions_freed();
  6360   double end_sec = os::elapsedTime();
  6361   double elapsed_ms = (end_sec - start_sec) * 1000.0;
  6363   if (non_young) {
  6364     non_young_time_ms += elapsed_ms;
  6365   } else {
  6366     young_time_ms += elapsed_ms;
  6369   prepend_to_freelist(&local_free_list);
  6370   decrement_summary_bytes(pre_used);
  6371   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
  6372   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
  6375 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
  6376  private:
  6377   FreeRegionList* _free_region_list;
  6378   HeapRegionSet* _proxy_set;
  6379   HeapRegionSetCount _humongous_regions_removed;
  6380   size_t _freed_bytes;
  6381  public:
  6383   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
  6384     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
  6387   virtual bool doHeapRegion(HeapRegion* r) {
  6388     if (!r->startsHumongous()) {
  6389       return false;
  6392     G1CollectedHeap* g1h = G1CollectedHeap::heap();
  6394     oop obj = (oop)r->bottom();
  6395     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
  6397     // The following checks whether the humongous object is live are sufficient.
  6398     // The main additional check (in addition to having a reference from the roots
  6399     // or the young gen) is whether the humongous object has a remembered set entry.
  6400     //
  6401     // A humongous object cannot be live if there is no remembered set for it
  6402     // because:
  6403     // - there can be no references from within humongous starts regions referencing
  6404     // the object because we never allocate other objects into them.
  6405     // (I.e. there are no intra-region references that may be missed by the
  6406     // remembered set)
  6407     // - as soon there is a remembered set entry to the humongous starts region
  6408     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
  6409     // until the end of a concurrent mark.
  6410     //
  6411     // It is not required to check whether the object has been found dead by marking
  6412     // or not, in fact it would prevent reclamation within a concurrent cycle, as
  6413     // all objects allocated during that time are considered live.
  6414     // SATB marking is even more conservative than the remembered set.
  6415     // So if at this point in the collection there is no remembered set entry,
  6416     // nobody has a reference to it.
  6417     // At the start of collection we flush all refinement logs, and remembered sets
  6418     // are completely up-to-date wrt to references to the humongous object.
  6419     //
  6420     // Other implementation considerations:
  6421     // - never consider object arrays: while they are a valid target, they have not
  6422     // been observed to be used as temporary objects.
  6423     // - they would also pose considerable effort for cleaning up the the remembered
  6424     // sets.
  6425     // While this cleanup is not strictly necessary to be done (or done instantly),
  6426     // given that their occurrence is very low, this saves us this additional
  6427     // complexity.
  6428     uint region_idx = r->hrm_index();
  6429     if (g1h->humongous_is_live(region_idx) ||
  6430         g1h->humongous_region_is_always_live(region_idx)) {
  6432       if (G1TraceReclaimDeadHumongousObjectsAtYoungGC) {
  6433         gclog_or_tty->print_cr("Live humongous %d region %d size "SIZE_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d",
  6434                                r->isHumongous(),
  6435                                region_idx,
  6436                                obj->size()*HeapWordSize,
  6437                                r->rem_set()->occupied(),
  6438                                r->rem_set()->strong_code_roots_list_length(),
  6439                                next_bitmap->isMarked(r->bottom()),
  6440                                g1h->humongous_is_live(region_idx),
  6441                                obj->is_objArray()
  6442                               );
  6445       return false;
  6448     guarantee(!obj->is_objArray(),
  6449               err_msg("Eagerly reclaiming object arrays is not supported, but the object "PTR_FORMAT" is.",
  6450                       r->bottom()));
  6452     if (G1TraceReclaimDeadHumongousObjectsAtYoungGC) {
  6453       gclog_or_tty->print_cr("Reclaim humongous region %d size "SIZE_FORMAT" start "PTR_FORMAT" region %d length "UINT32_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other ",
  6454                              r->isHumongous(),
  6455                              obj->size()*HeapWordSize,
  6456                              r->bottom(),
  6457                              region_idx,
  6458                              r->region_num(),
  6459                              r->rem_set()->occupied(),
  6460                              r->rem_set()->strong_code_roots_list_length(),
  6461                              next_bitmap->isMarked(r->bottom()),
  6462                              g1h->humongous_is_live(region_idx),
  6463                              obj->is_objArray()
  6464                             );
  6466     // Need to clear mark bit of the humongous object if already set.
  6467     if (next_bitmap->isMarked(r->bottom())) {
  6468       next_bitmap->clear(r->bottom());
  6470     _freed_bytes += r->used();
  6471     r->set_containing_set(NULL);
  6472     _humongous_regions_removed.increment(1u, r->capacity());
  6473     g1h->free_humongous_region(r, _free_region_list, false);
  6475     return false;
  6478   HeapRegionSetCount& humongous_free_count() {
  6479     return _humongous_regions_removed;
  6482   size_t bytes_freed() const {
  6483     return _freed_bytes;
  6486   size_t humongous_reclaimed() const {
  6487     return _humongous_regions_removed.length();
  6489 };
  6491 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
  6492   assert_at_safepoint(true);
  6494   if (!G1ReclaimDeadHumongousObjectsAtYoungGC ||
  6495       (!_has_humongous_reclaim_candidates && !G1TraceReclaimDeadHumongousObjectsAtYoungGC)) {
  6496     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
  6497     return;
  6500   double start_time = os::elapsedTime();
  6502   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
  6504   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
  6505   heap_region_iterate(&cl);
  6507   HeapRegionSetCount empty_set;
  6508   remove_from_old_sets(empty_set, cl.humongous_free_count());
  6510   G1HRPrinter* hr_printer = _g1h->hr_printer();
  6511   if (hr_printer->is_active()) {
  6512     FreeRegionListIterator iter(&local_cleanup_list);
  6513     while (iter.more_available()) {
  6514       HeapRegion* hr = iter.get_next();
  6515       hr_printer->cleanup(hr);
  6519   prepend_to_freelist(&local_cleanup_list);
  6520   decrement_summary_bytes(cl.bytes_freed());
  6522   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
  6523                                                                     cl.humongous_reclaimed());
  6526 // This routine is similar to the above but does not record
  6527 // any policy statistics or update free lists; we are abandoning
  6528 // the current incremental collection set in preparation of a
  6529 // full collection. After the full GC we will start to build up
  6530 // the incremental collection set again.
  6531 // This is only called when we're doing a full collection
  6532 // and is immediately followed by the tearing down of the young list.
  6534 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
  6535   HeapRegion* cur = cs_head;
  6537   while (cur != NULL) {
  6538     HeapRegion* next = cur->next_in_collection_set();
  6539     assert(cur->in_collection_set(), "bad CS");
  6540     cur->set_next_in_collection_set(NULL);
  6541     cur->set_in_collection_set(false);
  6542     cur->set_young_index_in_cset(-1);
  6543     cur = next;
  6547 void G1CollectedHeap::set_free_regions_coming() {
  6548   if (G1ConcRegionFreeingVerbose) {
  6549     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  6550                            "setting free regions coming");
  6553   assert(!free_regions_coming(), "pre-condition");
  6554   _free_regions_coming = true;
  6557 void G1CollectedHeap::reset_free_regions_coming() {
  6558   assert(free_regions_coming(), "pre-condition");
  6561     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6562     _free_regions_coming = false;
  6563     SecondaryFreeList_lock->notify_all();
  6566   if (G1ConcRegionFreeingVerbose) {
  6567     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  6568                            "reset free regions coming");
  6572 void G1CollectedHeap::wait_while_free_regions_coming() {
  6573   // Most of the time we won't have to wait, so let's do a quick test
  6574   // first before we take the lock.
  6575   if (!free_regions_coming()) {
  6576     return;
  6579   if (G1ConcRegionFreeingVerbose) {
  6580     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  6581                            "waiting for free regions");
  6585     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6586     while (free_regions_coming()) {
  6587       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
  6591   if (G1ConcRegionFreeingVerbose) {
  6592     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  6593                            "done waiting for free regions");
  6597 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  6598   assert(heap_lock_held_for_gc(),
  6599               "the heap lock should already be held by or for this thread");
  6600   _young_list->push_region(hr);
  6603 class NoYoungRegionsClosure: public HeapRegionClosure {
  6604 private:
  6605   bool _success;
  6606 public:
  6607   NoYoungRegionsClosure() : _success(true) { }
  6608   bool doHeapRegion(HeapRegion* r) {
  6609     if (r->is_young()) {
  6610       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
  6611                              r->bottom(), r->end());
  6612       _success = false;
  6614     return false;
  6616   bool success() { return _success; }
  6617 };
  6619 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
  6620   bool ret = _young_list->check_list_empty(check_sample);
  6622   if (check_heap) {
  6623     NoYoungRegionsClosure closure;
  6624     heap_region_iterate(&closure);
  6625     ret = ret && closure.success();
  6628   return ret;
  6631 class TearDownRegionSetsClosure : public HeapRegionClosure {
  6632 private:
  6633   HeapRegionSet *_old_set;
  6635 public:
  6636   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
  6638   bool doHeapRegion(HeapRegion* r) {
  6639     if (r->is_old()) {
  6640       _old_set->remove(r);
  6641     } else {
  6642       // We ignore free regions, we'll empty the free list afterwards.
  6643       // We ignore young regions, we'll empty the young list afterwards.
  6644       // We ignore humongous regions, we're not tearing down the
  6645       // humongous regions set.
  6646       assert(r->is_free() || r->is_young() || r->isHumongous(),
  6647              "it cannot be another type");
  6649     return false;
  6652   ~TearDownRegionSetsClosure() {
  6653     assert(_old_set->is_empty(), "post-condition");
  6655 };
  6657 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
  6658   assert_at_safepoint(true /* should_be_vm_thread */);
  6660   if (!free_list_only) {
  6661     TearDownRegionSetsClosure cl(&_old_set);
  6662     heap_region_iterate(&cl);
  6664     // Note that emptying the _young_list is postponed and instead done as
  6665     // the first step when rebuilding the regions sets again. The reason for
  6666     // this is that during a full GC string deduplication needs to know if
  6667     // a collected region was young or old when the full GC was initiated.
  6669   _hrm.remove_all_free_regions();
  6672 class RebuildRegionSetsClosure : public HeapRegionClosure {
  6673 private:
  6674   bool            _free_list_only;
  6675   HeapRegionSet*   _old_set;
  6676   HeapRegionManager*   _hrm;
  6677   size_t          _total_used;
  6679 public:
  6680   RebuildRegionSetsClosure(bool free_list_only,
  6681                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
  6682     _free_list_only(free_list_only),
  6683     _old_set(old_set), _hrm(hrm), _total_used(0) {
  6684     assert(_hrm->num_free_regions() == 0, "pre-condition");
  6685     if (!free_list_only) {
  6686       assert(_old_set->is_empty(), "pre-condition");
  6690   bool doHeapRegion(HeapRegion* r) {
  6691     if (r->continuesHumongous()) {
  6692       return false;
  6695     if (r->is_empty()) {
  6696       // Add free regions to the free list
  6697       r->set_free();
  6698       r->set_allocation_context(AllocationContext::system());
  6699       _hrm->insert_into_free_list(r);
  6700     } else if (!_free_list_only) {
  6701       assert(!r->is_young(), "we should not come across young regions");
  6703       if (r->isHumongous()) {
  6704         // We ignore humongous regions, we left the humongous set unchanged
  6705       } else {
  6706         // Objects that were compacted would have ended up on regions
  6707         // that were previously old or free.
  6708         assert(r->is_free() || r->is_old(), "invariant");
  6709         // We now consider them old, so register as such.
  6710         r->set_old();
  6711         _old_set->add(r);
  6713       _total_used += r->used();
  6716     return false;
  6719   size_t total_used() {
  6720     return _total_used;
  6722 };
  6724 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
  6725   assert_at_safepoint(true /* should_be_vm_thread */);
  6727   if (!free_list_only) {
  6728     _young_list->empty_list();
  6731   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
  6732   heap_region_iterate(&cl);
  6734   if (!free_list_only) {
  6735     _allocator->set_used(cl.total_used());
  6737   assert(_allocator->used_unlocked() == recalculate_used(),
  6738          err_msg("inconsistent _allocator->used_unlocked(), "
  6739                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
  6740                  _allocator->used_unlocked(), recalculate_used()));
  6743 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  6744   _refine_cte_cl->set_concurrent(concurrent);
  6747 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  6748   HeapRegion* hr = heap_region_containing(p);
  6749   return hr->is_in(p);
  6752 // Methods for the mutator alloc region
  6754 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
  6755                                                       bool force) {
  6756   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6757   assert(!force || g1_policy()->can_expand_young_list(),
  6758          "if force is true we should be able to expand the young list");
  6759   bool young_list_full = g1_policy()->is_young_list_full();
  6760   if (force || !young_list_full) {
  6761     HeapRegion* new_alloc_region = new_region(word_size,
  6762                                               false /* is_old */,
  6763                                               false /* do_expand */);
  6764     if (new_alloc_region != NULL) {
  6765       set_region_short_lived_locked(new_alloc_region);
  6766       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
  6767       check_bitmaps("Mutator Region Allocation", new_alloc_region);
  6768       return new_alloc_region;
  6771   return NULL;
  6774 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
  6775                                                   size_t allocated_bytes) {
  6776   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6777   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
  6779   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
  6780   _allocator->increase_used(allocated_bytes);
  6781   _hr_printer.retire(alloc_region);
  6782   // We update the eden sizes here, when the region is retired,
  6783   // instead of when it's allocated, since this is the point that its
  6784   // used space has been recored in _summary_bytes_used.
  6785   g1mm()->update_eden_size();
  6788 void G1CollectedHeap::set_par_threads() {
  6789   // Don't change the number of workers.  Use the value previously set
  6790   // in the workgroup.
  6791   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
  6792   uint n_workers = workers()->active_workers();
  6793   assert(UseDynamicNumberOfGCThreads ||
  6794            n_workers == workers()->total_workers(),
  6795       "Otherwise should be using the total number of workers");
  6796   if (n_workers == 0) {
  6797     assert(false, "Should have been set in prior evacuation pause.");
  6798     n_workers = ParallelGCThreads;
  6799     workers()->set_active_workers(n_workers);
  6801   set_par_threads(n_workers);
  6804 // Methods for the GC alloc regions
  6806 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
  6807                                                  uint count,
  6808                                                  InCSetState dest) {
  6809   assert(FreeList_lock->owned_by_self(), "pre-condition");
  6811   if (count < g1_policy()->max_regions(dest)) {
  6812     const bool is_survivor = (dest.is_young());
  6813     HeapRegion* new_alloc_region = new_region(word_size,
  6814                                               !is_survivor,
  6815                                               true /* do_expand */);
  6816     if (new_alloc_region != NULL) {
  6817       // We really only need to do this for old regions given that we
  6818       // should never scan survivors. But it doesn't hurt to do it
  6819       // for survivors too.
  6820       new_alloc_region->record_timestamp();
  6821       if (is_survivor) {
  6822         new_alloc_region->set_survivor();
  6823         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
  6824         check_bitmaps("Survivor Region Allocation", new_alloc_region);
  6825       } else {
  6826         new_alloc_region->set_old();
  6827         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
  6828         check_bitmaps("Old Region Allocation", new_alloc_region);
  6830       bool during_im = g1_policy()->during_initial_mark_pause();
  6831       new_alloc_region->note_start_of_copying(during_im);
  6832       return new_alloc_region;
  6835   return NULL;
  6838 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
  6839                                              size_t allocated_bytes,
  6840                                              InCSetState dest) {
  6841   bool during_im = g1_policy()->during_initial_mark_pause();
  6842   alloc_region->note_end_of_copying(during_im);
  6843   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
  6844   if (dest.is_young()) {
  6845     young_list()->add_survivor_region(alloc_region);
  6846   } else {
  6847     _old_set.add(alloc_region);
  6849   _hr_printer.retire(alloc_region);
  6852 // Heap region set verification
  6854 class VerifyRegionListsClosure : public HeapRegionClosure {
  6855 private:
  6856   HeapRegionSet*   _old_set;
  6857   HeapRegionSet*   _humongous_set;
  6858   HeapRegionManager*   _hrm;
  6860 public:
  6861   HeapRegionSetCount _old_count;
  6862   HeapRegionSetCount _humongous_count;
  6863   HeapRegionSetCount _free_count;
  6865   VerifyRegionListsClosure(HeapRegionSet* old_set,
  6866                            HeapRegionSet* humongous_set,
  6867                            HeapRegionManager* hrm) :
  6868     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
  6869     _old_count(), _humongous_count(), _free_count(){ }
  6871   bool doHeapRegion(HeapRegion* hr) {
  6872     if (hr->continuesHumongous()) {
  6873       return false;
  6876     if (hr->is_young()) {
  6877       // TODO
  6878     } else if (hr->startsHumongous()) {
  6879       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index()));
  6880       _humongous_count.increment(1u, hr->capacity());
  6881     } else if (hr->is_empty()) {
  6882       assert(_hrm->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrm_index()));
  6883       _free_count.increment(1u, hr->capacity());
  6884     } else if (hr->is_old()) {
  6885       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrm_index()));
  6886       _old_count.increment(1u, hr->capacity());
  6887     } else {
  6888       ShouldNotReachHere();
  6890     return false;
  6893   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
  6894     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
  6895     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
  6896         old_set->total_capacity_bytes(), _old_count.capacity()));
  6898     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
  6899     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
  6900         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
  6902     guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length()));
  6903     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
  6904         free_list->total_capacity_bytes(), _free_count.capacity()));
  6906 };
  6908 void G1CollectedHeap::verify_region_sets() {
  6909   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6911   // First, check the explicit lists.
  6912   _hrm.verify();
  6914     // Given that a concurrent operation might be adding regions to
  6915     // the secondary free list we have to take the lock before
  6916     // verifying it.
  6917     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6918     _secondary_free_list.verify_list();
  6921   // If a concurrent region freeing operation is in progress it will
  6922   // be difficult to correctly attributed any free regions we come
  6923   // across to the correct free list given that they might belong to
  6924   // one of several (free_list, secondary_free_list, any local lists,
  6925   // etc.). So, if that's the case we will skip the rest of the
  6926   // verification operation. Alternatively, waiting for the concurrent
  6927   // operation to complete will have a non-trivial effect on the GC's
  6928   // operation (no concurrent operation will last longer than the
  6929   // interval between two calls to verification) and it might hide
  6930   // any issues that we would like to catch during testing.
  6931   if (free_regions_coming()) {
  6932     return;
  6935   // Make sure we append the secondary_free_list on the free_list so
  6936   // that all free regions we will come across can be safely
  6937   // attributed to the free_list.
  6938   append_secondary_free_list_if_not_empty_with_lock();
  6940   // Finally, make sure that the region accounting in the lists is
  6941   // consistent with what we see in the heap.
  6943   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
  6944   heap_region_iterate(&cl);
  6945   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
  6948 // Optimized nmethod scanning
  6950 class RegisterNMethodOopClosure: public OopClosure {
  6951   G1CollectedHeap* _g1h;
  6952   nmethod* _nm;
  6954   template <class T> void do_oop_work(T* p) {
  6955     T heap_oop = oopDesc::load_heap_oop(p);
  6956     if (!oopDesc::is_null(heap_oop)) {
  6957       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  6958       HeapRegion* hr = _g1h->heap_region_containing(obj);
  6959       assert(!hr->continuesHumongous(),
  6960              err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
  6961                      " starting at "HR_FORMAT,
  6962                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
  6964       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
  6965       hr->add_strong_code_root_locked(_nm);
  6969 public:
  6970   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
  6971     _g1h(g1h), _nm(nm) {}
  6973   void do_oop(oop* p)       { do_oop_work(p); }
  6974   void do_oop(narrowOop* p) { do_oop_work(p); }
  6975 };
  6977 class UnregisterNMethodOopClosure: public OopClosure {
  6978   G1CollectedHeap* _g1h;
  6979   nmethod* _nm;
  6981   template <class T> void do_oop_work(T* p) {
  6982     T heap_oop = oopDesc::load_heap_oop(p);
  6983     if (!oopDesc::is_null(heap_oop)) {
  6984       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  6985       HeapRegion* hr = _g1h->heap_region_containing(obj);
  6986       assert(!hr->continuesHumongous(),
  6987              err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
  6988                      " starting at "HR_FORMAT,
  6989                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
  6991       hr->remove_strong_code_root(_nm);
  6995 public:
  6996   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
  6997     _g1h(g1h), _nm(nm) {}
  6999   void do_oop(oop* p)       { do_oop_work(p); }
  7000   void do_oop(narrowOop* p) { do_oop_work(p); }
  7001 };
  7003 void G1CollectedHeap::register_nmethod(nmethod* nm) {
  7004   CollectedHeap::register_nmethod(nm);
  7006   guarantee(nm != NULL, "sanity");
  7007   RegisterNMethodOopClosure reg_cl(this, nm);
  7008   nm->oops_do(&reg_cl);
  7011 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
  7012   CollectedHeap::unregister_nmethod(nm);
  7014   guarantee(nm != NULL, "sanity");
  7015   UnregisterNMethodOopClosure reg_cl(this, nm);
  7016   nm->oops_do(&reg_cl, true);
  7019 void G1CollectedHeap::purge_code_root_memory() {
  7020   double purge_start = os::elapsedTime();
  7021   G1CodeRootSet::purge();
  7022   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
  7023   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
  7026 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
  7027   G1CollectedHeap* _g1h;
  7029 public:
  7030   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
  7031     _g1h(g1h) {}
  7033   void do_code_blob(CodeBlob* cb) {
  7034     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
  7035     if (nm == NULL) {
  7036       return;
  7039     if (ScavengeRootsInCode) {
  7040       _g1h->register_nmethod(nm);
  7043 };
  7045 void G1CollectedHeap::rebuild_strong_code_roots() {
  7046   RebuildStrongCodeRootClosure blob_cl(this);
  7047   CodeCache::blobs_do(&blob_cl);

mercurial