src/share/vm/gc_implementation/parallelScavenge/psParallelCompact.cpp

Fri, 10 May 2013 08:27:30 -0700

author
minqi
date
Fri, 10 May 2013 08:27:30 -0700
changeset 5097
92ef81e2f571
parent 5020
2f50bc369470
child 5117
4868caa99ecf
permissions
-rw-r--r--

8003557: NPG: Klass* const k should be const Klass* k.
Summary: With NPG, const KlassOop klass which is in fact a definition converted to Klass* const, which is not the original intention. The right usage is converting them to const Klass*.
Reviewed-by: coleenp, kvn
Contributed-by: yumin.qi@oracle.com

     1 /*
     2  * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/symbolTable.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "code/codeCache.hpp"
    29 #include "gc_implementation/parallelScavenge/gcTaskManager.hpp"
    30 #include "gc_implementation/parallelScavenge/generationSizer.hpp"
    31 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.inline.hpp"
    32 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
    33 #include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
    34 #include "gc_implementation/parallelScavenge/psCompactionManager.inline.hpp"
    35 #include "gc_implementation/parallelScavenge/psMarkSweep.hpp"
    36 #include "gc_implementation/parallelScavenge/psMarkSweepDecorator.hpp"
    37 #include "gc_implementation/parallelScavenge/psOldGen.hpp"
    38 #include "gc_implementation/parallelScavenge/psParallelCompact.hpp"
    39 #include "gc_implementation/parallelScavenge/psPromotionManager.inline.hpp"
    40 #include "gc_implementation/parallelScavenge/psScavenge.hpp"
    41 #include "gc_implementation/parallelScavenge/psYoungGen.hpp"
    42 #include "gc_implementation/shared/isGCActiveMark.hpp"
    43 #include "gc_interface/gcCause.hpp"
    44 #include "memory/gcLocker.inline.hpp"
    45 #include "memory/referencePolicy.hpp"
    46 #include "memory/referenceProcessor.hpp"
    47 #include "oops/methodData.hpp"
    48 #include "oops/oop.inline.hpp"
    49 #include "oops/oop.pcgc.inline.hpp"
    50 #include "runtime/fprofiler.hpp"
    51 #include "runtime/safepoint.hpp"
    52 #include "runtime/vmThread.hpp"
    53 #include "services/management.hpp"
    54 #include "services/memoryService.hpp"
    55 #include "services/memTracker.hpp"
    56 #include "utilities/events.hpp"
    57 #include "utilities/stack.inline.hpp"
    59 #include <math.h>
    61 // All sizes are in HeapWords.
    62 const size_t ParallelCompactData::Log2RegionSize  = 9; // 512 words
    63 const size_t ParallelCompactData::RegionSize      = (size_t)1 << Log2RegionSize;
    64 const size_t ParallelCompactData::RegionSizeBytes =
    65   RegionSize << LogHeapWordSize;
    66 const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1;
    67 const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1;
    68 const size_t ParallelCompactData::RegionAddrMask  = ~RegionAddrOffsetMask;
    70 const ParallelCompactData::RegionData::region_sz_t
    71 ParallelCompactData::RegionData::dc_shift = 27;
    73 const ParallelCompactData::RegionData::region_sz_t
    74 ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift;
    76 const ParallelCompactData::RegionData::region_sz_t
    77 ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift;
    79 const ParallelCompactData::RegionData::region_sz_t
    80 ParallelCompactData::RegionData::los_mask = ~dc_mask;
    82 const ParallelCompactData::RegionData::region_sz_t
    83 ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift;
    85 const ParallelCompactData::RegionData::region_sz_t
    86 ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift;
    88 SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
    89 bool      PSParallelCompact::_print_phases = false;
    91 ReferenceProcessor* PSParallelCompact::_ref_processor = NULL;
    92 Klass*              PSParallelCompact::_updated_int_array_klass_obj = NULL;
    94 double PSParallelCompact::_dwl_mean;
    95 double PSParallelCompact::_dwl_std_dev;
    96 double PSParallelCompact::_dwl_first_term;
    97 double PSParallelCompact::_dwl_adjustment;
    98 #ifdef  ASSERT
    99 bool   PSParallelCompact::_dwl_initialized = false;
   100 #endif  // #ifdef ASSERT
   102 void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size,
   103                        HeapWord* destination)
   104 {
   105   assert(src_region_idx != 0, "invalid src_region_idx");
   106   assert(partial_obj_size != 0, "invalid partial_obj_size argument");
   107   assert(destination != NULL, "invalid destination argument");
   109   _src_region_idx = src_region_idx;
   110   _partial_obj_size = partial_obj_size;
   111   _destination = destination;
   113   // These fields may not be updated below, so make sure they're clear.
   114   assert(_dest_region_addr == NULL, "should have been cleared");
   115   assert(_first_src_addr == NULL, "should have been cleared");
   117   // Determine the number of destination regions for the partial object.
   118   HeapWord* const last_word = destination + partial_obj_size - 1;
   119   const ParallelCompactData& sd = PSParallelCompact::summary_data();
   120   HeapWord* const beg_region_addr = sd.region_align_down(destination);
   121   HeapWord* const end_region_addr = sd.region_align_down(last_word);
   123   if (beg_region_addr == end_region_addr) {
   124     // One destination region.
   125     _destination_count = 1;
   126     if (end_region_addr == destination) {
   127       // The destination falls on a region boundary, thus the first word of the
   128       // partial object will be the first word copied to the destination region.
   129       _dest_region_addr = end_region_addr;
   130       _first_src_addr = sd.region_to_addr(src_region_idx);
   131     }
   132   } else {
   133     // Two destination regions.  When copied, the partial object will cross a
   134     // destination region boundary, so a word somewhere within the partial
   135     // object will be the first word copied to the second destination region.
   136     _destination_count = 2;
   137     _dest_region_addr = end_region_addr;
   138     const size_t ofs = pointer_delta(end_region_addr, destination);
   139     assert(ofs < _partial_obj_size, "sanity");
   140     _first_src_addr = sd.region_to_addr(src_region_idx) + ofs;
   141   }
   142 }
   144 void SplitInfo::clear()
   145 {
   146   _src_region_idx = 0;
   147   _partial_obj_size = 0;
   148   _destination = NULL;
   149   _destination_count = 0;
   150   _dest_region_addr = NULL;
   151   _first_src_addr = NULL;
   152   assert(!is_valid(), "sanity");
   153 }
   155 #ifdef  ASSERT
   156 void SplitInfo::verify_clear()
   157 {
   158   assert(_src_region_idx == 0, "not clear");
   159   assert(_partial_obj_size == 0, "not clear");
   160   assert(_destination == NULL, "not clear");
   161   assert(_destination_count == 0, "not clear");
   162   assert(_dest_region_addr == NULL, "not clear");
   163   assert(_first_src_addr == NULL, "not clear");
   164 }
   165 #endif  // #ifdef ASSERT
   168 void PSParallelCompact::print_on_error(outputStream* st) {
   169   _mark_bitmap.print_on_error(st);
   170 }
   172 #ifndef PRODUCT
   173 const char* PSParallelCompact::space_names[] = {
   174   "old ", "eden", "from", "to  "
   175 };
   177 void PSParallelCompact::print_region_ranges()
   178 {
   179   tty->print_cr("space  bottom     top        end        new_top");
   180   tty->print_cr("------ ---------- ---------- ---------- ----------");
   182   for (unsigned int id = 0; id < last_space_id; ++id) {
   183     const MutableSpace* space = _space_info[id].space();
   184     tty->print_cr("%u %s "
   185                   SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " "
   186                   SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " ",
   187                   id, space_names[id],
   188                   summary_data().addr_to_region_idx(space->bottom()),
   189                   summary_data().addr_to_region_idx(space->top()),
   190                   summary_data().addr_to_region_idx(space->end()),
   191                   summary_data().addr_to_region_idx(_space_info[id].new_top()));
   192   }
   193 }
   195 void
   196 print_generic_summary_region(size_t i, const ParallelCompactData::RegionData* c)
   197 {
   198 #define REGION_IDX_FORMAT        SIZE_FORMAT_W(7)
   199 #define REGION_DATA_FORMAT       SIZE_FORMAT_W(5)
   201   ParallelCompactData& sd = PSParallelCompact::summary_data();
   202   size_t dci = c->destination() ? sd.addr_to_region_idx(c->destination()) : 0;
   203   tty->print_cr(REGION_IDX_FORMAT " " PTR_FORMAT " "
   204                 REGION_IDX_FORMAT " " PTR_FORMAT " "
   205                 REGION_DATA_FORMAT " " REGION_DATA_FORMAT " "
   206                 REGION_DATA_FORMAT " " REGION_IDX_FORMAT " %d",
   207                 i, c->data_location(), dci, c->destination(),
   208                 c->partial_obj_size(), c->live_obj_size(),
   209                 c->data_size(), c->source_region(), c->destination_count());
   211 #undef  REGION_IDX_FORMAT
   212 #undef  REGION_DATA_FORMAT
   213 }
   215 void
   216 print_generic_summary_data(ParallelCompactData& summary_data,
   217                            HeapWord* const beg_addr,
   218                            HeapWord* const end_addr)
   219 {
   220   size_t total_words = 0;
   221   size_t i = summary_data.addr_to_region_idx(beg_addr);
   222   const size_t last = summary_data.addr_to_region_idx(end_addr);
   223   HeapWord* pdest = 0;
   225   while (i <= last) {
   226     ParallelCompactData::RegionData* c = summary_data.region(i);
   227     if (c->data_size() != 0 || c->destination() != pdest) {
   228       print_generic_summary_region(i, c);
   229       total_words += c->data_size();
   230       pdest = c->destination();
   231     }
   232     ++i;
   233   }
   235   tty->print_cr("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize);
   236 }
   238 void
   239 print_generic_summary_data(ParallelCompactData& summary_data,
   240                            SpaceInfo* space_info)
   241 {
   242   for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) {
   243     const MutableSpace* space = space_info[id].space();
   244     print_generic_summary_data(summary_data, space->bottom(),
   245                                MAX2(space->top(), space_info[id].new_top()));
   246   }
   247 }
   249 void
   250 print_initial_summary_region(size_t i,
   251                              const ParallelCompactData::RegionData* c,
   252                              bool newline = true)
   253 {
   254   tty->print(SIZE_FORMAT_W(5) " " PTR_FORMAT " "
   255              SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " "
   256              SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
   257              i, c->destination(),
   258              c->partial_obj_size(), c->live_obj_size(),
   259              c->data_size(), c->source_region(), c->destination_count());
   260   if (newline) tty->cr();
   261 }
   263 void
   264 print_initial_summary_data(ParallelCompactData& summary_data,
   265                            const MutableSpace* space) {
   266   if (space->top() == space->bottom()) {
   267     return;
   268   }
   270   const size_t region_size = ParallelCompactData::RegionSize;
   271   typedef ParallelCompactData::RegionData RegionData;
   272   HeapWord* const top_aligned_up = summary_data.region_align_up(space->top());
   273   const size_t end_region = summary_data.addr_to_region_idx(top_aligned_up);
   274   const RegionData* c = summary_data.region(end_region - 1);
   275   HeapWord* end_addr = c->destination() + c->data_size();
   276   const size_t live_in_space = pointer_delta(end_addr, space->bottom());
   278   // Print (and count) the full regions at the beginning of the space.
   279   size_t full_region_count = 0;
   280   size_t i = summary_data.addr_to_region_idx(space->bottom());
   281   while (i < end_region && summary_data.region(i)->data_size() == region_size) {
   282     print_initial_summary_region(i, summary_data.region(i));
   283     ++full_region_count;
   284     ++i;
   285   }
   287   size_t live_to_right = live_in_space - full_region_count * region_size;
   289   double max_reclaimed_ratio = 0.0;
   290   size_t max_reclaimed_ratio_region = 0;
   291   size_t max_dead_to_right = 0;
   292   size_t max_live_to_right = 0;
   294   // Print the 'reclaimed ratio' for regions while there is something live in
   295   // the region or to the right of it.  The remaining regions are empty (and
   296   // uninteresting), and computing the ratio will result in division by 0.
   297   while (i < end_region && live_to_right > 0) {
   298     c = summary_data.region(i);
   299     HeapWord* const region_addr = summary_data.region_to_addr(i);
   300     const size_t used_to_right = pointer_delta(space->top(), region_addr);
   301     const size_t dead_to_right = used_to_right - live_to_right;
   302     const double reclaimed_ratio = double(dead_to_right) / live_to_right;
   304     if (reclaimed_ratio > max_reclaimed_ratio) {
   305             max_reclaimed_ratio = reclaimed_ratio;
   306             max_reclaimed_ratio_region = i;
   307             max_dead_to_right = dead_to_right;
   308             max_live_to_right = live_to_right;
   309     }
   311     print_initial_summary_region(i, c, false);
   312     tty->print_cr(" %12.10f " SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10),
   313                   reclaimed_ratio, dead_to_right, live_to_right);
   315     live_to_right -= c->data_size();
   316     ++i;
   317   }
   319   // Any remaining regions are empty.  Print one more if there is one.
   320   if (i < end_region) {
   321     print_initial_summary_region(i, summary_data.region(i));
   322   }
   324   tty->print_cr("max:  " SIZE_FORMAT_W(4) " d2r=" SIZE_FORMAT_W(10) " "
   325                 "l2r=" SIZE_FORMAT_W(10) " max_ratio=%14.12f",
   326                 max_reclaimed_ratio_region, max_dead_to_right,
   327                 max_live_to_right, max_reclaimed_ratio);
   328 }
   330 void
   331 print_initial_summary_data(ParallelCompactData& summary_data,
   332                            SpaceInfo* space_info) {
   333   unsigned int id = PSParallelCompact::old_space_id;
   334   const MutableSpace* space;
   335   do {
   336     space = space_info[id].space();
   337     print_initial_summary_data(summary_data, space);
   338   } while (++id < PSParallelCompact::eden_space_id);
   340   do {
   341     space = space_info[id].space();
   342     print_generic_summary_data(summary_data, space->bottom(), space->top());
   343   } while (++id < PSParallelCompact::last_space_id);
   344 }
   345 #endif  // #ifndef PRODUCT
   347 #ifdef  ASSERT
   348 size_t add_obj_count;
   349 size_t add_obj_size;
   350 size_t mark_bitmap_count;
   351 size_t mark_bitmap_size;
   352 #endif  // #ifdef ASSERT
   354 ParallelCompactData::ParallelCompactData()
   355 {
   356   _region_start = 0;
   358   _region_vspace = 0;
   359   _region_data = 0;
   360   _region_count = 0;
   361 }
   363 bool ParallelCompactData::initialize(MemRegion covered_region)
   364 {
   365   _region_start = covered_region.start();
   366   const size_t region_size = covered_region.word_size();
   367   DEBUG_ONLY(_region_end = _region_start + region_size;)
   369   assert(region_align_down(_region_start) == _region_start,
   370          "region start not aligned");
   371   assert((region_size & RegionSizeOffsetMask) == 0,
   372          "region size not a multiple of RegionSize");
   374   bool result = initialize_region_data(region_size);
   376   return result;
   377 }
   379 PSVirtualSpace*
   380 ParallelCompactData::create_vspace(size_t count, size_t element_size)
   381 {
   382   const size_t raw_bytes = count * element_size;
   383   const size_t page_sz = os::page_size_for_region(raw_bytes, raw_bytes, 10);
   384   const size_t granularity = os::vm_allocation_granularity();
   385   const size_t bytes = align_size_up(raw_bytes, MAX2(page_sz, granularity));
   387   const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
   388     MAX2(page_sz, granularity);
   389   ReservedSpace rs(bytes, rs_align, rs_align > 0);
   390   os::trace_page_sizes("par compact", raw_bytes, raw_bytes, page_sz, rs.base(),
   391                        rs.size());
   393   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
   395   PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
   396   if (vspace != 0) {
   397     if (vspace->expand_by(bytes)) {
   398       return vspace;
   399     }
   400     delete vspace;
   401     // Release memory reserved in the space.
   402     rs.release();
   403   }
   405   return 0;
   406 }
   408 bool ParallelCompactData::initialize_region_data(size_t region_size)
   409 {
   410   const size_t count = (region_size + RegionSizeOffsetMask) >> Log2RegionSize;
   411   _region_vspace = create_vspace(count, sizeof(RegionData));
   412   if (_region_vspace != 0) {
   413     _region_data = (RegionData*)_region_vspace->reserved_low_addr();
   414     _region_count = count;
   415     return true;
   416   }
   417   return false;
   418 }
   420 void ParallelCompactData::clear()
   421 {
   422   memset(_region_data, 0, _region_vspace->committed_size());
   423 }
   425 void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) {
   426   assert(beg_region <= _region_count, "beg_region out of range");
   427   assert(end_region <= _region_count, "end_region out of range");
   429   const size_t region_cnt = end_region - beg_region;
   430   memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData));
   431 }
   433 HeapWord* ParallelCompactData::partial_obj_end(size_t region_idx) const
   434 {
   435   const RegionData* cur_cp = region(region_idx);
   436   const RegionData* const end_cp = region(region_count() - 1);
   438   HeapWord* result = region_to_addr(region_idx);
   439   if (cur_cp < end_cp) {
   440     do {
   441       result += cur_cp->partial_obj_size();
   442     } while (cur_cp->partial_obj_size() == RegionSize && ++cur_cp < end_cp);
   443   }
   444   return result;
   445 }
   447 void ParallelCompactData::add_obj(HeapWord* addr, size_t len)
   448 {
   449   const size_t obj_ofs = pointer_delta(addr, _region_start);
   450   const size_t beg_region = obj_ofs >> Log2RegionSize;
   451   const size_t end_region = (obj_ofs + len - 1) >> Log2RegionSize;
   453   DEBUG_ONLY(Atomic::inc_ptr(&add_obj_count);)
   454   DEBUG_ONLY(Atomic::add_ptr(len, &add_obj_size);)
   456   if (beg_region == end_region) {
   457     // All in one region.
   458     _region_data[beg_region].add_live_obj(len);
   459     return;
   460   }
   462   // First region.
   463   const size_t beg_ofs = region_offset(addr);
   464   _region_data[beg_region].add_live_obj(RegionSize - beg_ofs);
   466   Klass* klass = ((oop)addr)->klass();
   467   // Middle regions--completely spanned by this object.
   468   for (size_t region = beg_region + 1; region < end_region; ++region) {
   469     _region_data[region].set_partial_obj_size(RegionSize);
   470     _region_data[region].set_partial_obj_addr(addr);
   471   }
   473   // Last region.
   474   const size_t end_ofs = region_offset(addr + len - 1);
   475   _region_data[end_region].set_partial_obj_size(end_ofs + 1);
   476   _region_data[end_region].set_partial_obj_addr(addr);
   477 }
   479 void
   480 ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
   481 {
   482   assert(region_offset(beg) == 0, "not RegionSize aligned");
   483   assert(region_offset(end) == 0, "not RegionSize aligned");
   485   size_t cur_region = addr_to_region_idx(beg);
   486   const size_t end_region = addr_to_region_idx(end);
   487   HeapWord* addr = beg;
   488   while (cur_region < end_region) {
   489     _region_data[cur_region].set_destination(addr);
   490     _region_data[cur_region].set_destination_count(0);
   491     _region_data[cur_region].set_source_region(cur_region);
   492     _region_data[cur_region].set_data_location(addr);
   494     // Update live_obj_size so the region appears completely full.
   495     size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size();
   496     _region_data[cur_region].set_live_obj_size(live_size);
   498     ++cur_region;
   499     addr += RegionSize;
   500   }
   501 }
   503 // Find the point at which a space can be split and, if necessary, record the
   504 // split point.
   505 //
   506 // If the current src region (which overflowed the destination space) doesn't
   507 // have a partial object, the split point is at the beginning of the current src
   508 // region (an "easy" split, no extra bookkeeping required).
   509 //
   510 // If the current src region has a partial object, the split point is in the
   511 // region where that partial object starts (call it the split_region).  If
   512 // split_region has a partial object, then the split point is just after that
   513 // partial object (a "hard" split where we have to record the split data and
   514 // zero the partial_obj_size field).  With a "hard" split, we know that the
   515 // partial_obj ends within split_region because the partial object that caused
   516 // the overflow starts in split_region.  If split_region doesn't have a partial
   517 // obj, then the split is at the beginning of split_region (another "easy"
   518 // split).
   519 HeapWord*
   520 ParallelCompactData::summarize_split_space(size_t src_region,
   521                                            SplitInfo& split_info,
   522                                            HeapWord* destination,
   523                                            HeapWord* target_end,
   524                                            HeapWord** target_next)
   525 {
   526   assert(destination <= target_end, "sanity");
   527   assert(destination + _region_data[src_region].data_size() > target_end,
   528     "region should not fit into target space");
   529   assert(is_region_aligned(target_end), "sanity");
   531   size_t split_region = src_region;
   532   HeapWord* split_destination = destination;
   533   size_t partial_obj_size = _region_data[src_region].partial_obj_size();
   535   if (destination + partial_obj_size > target_end) {
   536     // The split point is just after the partial object (if any) in the
   537     // src_region that contains the start of the object that overflowed the
   538     // destination space.
   539     //
   540     // Find the start of the "overflow" object and set split_region to the
   541     // region containing it.
   542     HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr();
   543     split_region = addr_to_region_idx(overflow_obj);
   545     // Clear the source_region field of all destination regions whose first word
   546     // came from data after the split point (a non-null source_region field
   547     // implies a region must be filled).
   548     //
   549     // An alternative to the simple loop below:  clear during post_compact(),
   550     // which uses memcpy instead of individual stores, and is easy to
   551     // parallelize.  (The downside is that it clears the entire RegionData
   552     // object as opposed to just one field.)
   553     //
   554     // post_compact() would have to clear the summary data up to the highest
   555     // address that was written during the summary phase, which would be
   556     //
   557     //         max(top, max(new_top, clear_top))
   558     //
   559     // where clear_top is a new field in SpaceInfo.  Would have to set clear_top
   560     // to target_end.
   561     const RegionData* const sr = region(split_region);
   562     const size_t beg_idx =
   563       addr_to_region_idx(region_align_up(sr->destination() +
   564                                          sr->partial_obj_size()));
   565     const size_t end_idx = addr_to_region_idx(target_end);
   567     if (TraceParallelOldGCSummaryPhase) {
   568         gclog_or_tty->print_cr("split:  clearing source_region field in ["
   569                                SIZE_FORMAT ", " SIZE_FORMAT ")",
   570                                beg_idx, end_idx);
   571     }
   572     for (size_t idx = beg_idx; idx < end_idx; ++idx) {
   573       _region_data[idx].set_source_region(0);
   574     }
   576     // Set split_destination and partial_obj_size to reflect the split region.
   577     split_destination = sr->destination();
   578     partial_obj_size = sr->partial_obj_size();
   579   }
   581   // The split is recorded only if a partial object extends onto the region.
   582   if (partial_obj_size != 0) {
   583     _region_data[split_region].set_partial_obj_size(0);
   584     split_info.record(split_region, partial_obj_size, split_destination);
   585   }
   587   // Setup the continuation addresses.
   588   *target_next = split_destination + partial_obj_size;
   589   HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size;
   591   if (TraceParallelOldGCSummaryPhase) {
   592     const char * split_type = partial_obj_size == 0 ? "easy" : "hard";
   593     gclog_or_tty->print_cr("%s split:  src=" PTR_FORMAT " src_c=" SIZE_FORMAT
   594                            " pos=" SIZE_FORMAT,
   595                            split_type, source_next, split_region,
   596                            partial_obj_size);
   597     gclog_or_tty->print_cr("%s split:  dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT
   598                            " tn=" PTR_FORMAT,
   599                            split_type, split_destination,
   600                            addr_to_region_idx(split_destination),
   601                            *target_next);
   603     if (partial_obj_size != 0) {
   604       HeapWord* const po_beg = split_info.destination();
   605       HeapWord* const po_end = po_beg + split_info.partial_obj_size();
   606       gclog_or_tty->print_cr("%s split:  "
   607                              "po_beg=" PTR_FORMAT " " SIZE_FORMAT " "
   608                              "po_end=" PTR_FORMAT " " SIZE_FORMAT,
   609                              split_type,
   610                              po_beg, addr_to_region_idx(po_beg),
   611                              po_end, addr_to_region_idx(po_end));
   612     }
   613   }
   615   return source_next;
   616 }
   618 bool ParallelCompactData::summarize(SplitInfo& split_info,
   619                                     HeapWord* source_beg, HeapWord* source_end,
   620                                     HeapWord** source_next,
   621                                     HeapWord* target_beg, HeapWord* target_end,
   622                                     HeapWord** target_next)
   623 {
   624   if (TraceParallelOldGCSummaryPhase) {
   625     HeapWord* const source_next_val = source_next == NULL ? NULL : *source_next;
   626     tty->print_cr("sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT
   627                   "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT,
   628                   source_beg, source_end, source_next_val,
   629                   target_beg, target_end, *target_next);
   630   }
   632   size_t cur_region = addr_to_region_idx(source_beg);
   633   const size_t end_region = addr_to_region_idx(region_align_up(source_end));
   635   HeapWord *dest_addr = target_beg;
   636   while (cur_region < end_region) {
   637     // The destination must be set even if the region has no data.
   638     _region_data[cur_region].set_destination(dest_addr);
   640     size_t words = _region_data[cur_region].data_size();
   641     if (words > 0) {
   642       // If cur_region does not fit entirely into the target space, find a point
   643       // at which the source space can be 'split' so that part is copied to the
   644       // target space and the rest is copied elsewhere.
   645       if (dest_addr + words > target_end) {
   646         assert(source_next != NULL, "source_next is NULL when splitting");
   647         *source_next = summarize_split_space(cur_region, split_info, dest_addr,
   648                                              target_end, target_next);
   649         return false;
   650       }
   652       // Compute the destination_count for cur_region, and if necessary, update
   653       // source_region for a destination region.  The source_region field is
   654       // updated if cur_region is the first (left-most) region to be copied to a
   655       // destination region.
   656       //
   657       // The destination_count calculation is a bit subtle.  A region that has
   658       // data that compacts into itself does not count itself as a destination.
   659       // This maintains the invariant that a zero count means the region is
   660       // available and can be claimed and then filled.
   661       uint destination_count = 0;
   662       if (split_info.is_split(cur_region)) {
   663         // The current region has been split:  the partial object will be copied
   664         // to one destination space and the remaining data will be copied to
   665         // another destination space.  Adjust the initial destination_count and,
   666         // if necessary, set the source_region field if the partial object will
   667         // cross a destination region boundary.
   668         destination_count = split_info.destination_count();
   669         if (destination_count == 2) {
   670           size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr());
   671           _region_data[dest_idx].set_source_region(cur_region);
   672         }
   673       }
   675       HeapWord* const last_addr = dest_addr + words - 1;
   676       const size_t dest_region_1 = addr_to_region_idx(dest_addr);
   677       const size_t dest_region_2 = addr_to_region_idx(last_addr);
   679       // Initially assume that the destination regions will be the same and
   680       // adjust the value below if necessary.  Under this assumption, if
   681       // cur_region == dest_region_2, then cur_region will be compacted
   682       // completely into itself.
   683       destination_count += cur_region == dest_region_2 ? 0 : 1;
   684       if (dest_region_1 != dest_region_2) {
   685         // Destination regions differ; adjust destination_count.
   686         destination_count += 1;
   687         // Data from cur_region will be copied to the start of dest_region_2.
   688         _region_data[dest_region_2].set_source_region(cur_region);
   689       } else if (region_offset(dest_addr) == 0) {
   690         // Data from cur_region will be copied to the start of the destination
   691         // region.
   692         _region_data[dest_region_1].set_source_region(cur_region);
   693       }
   695       _region_data[cur_region].set_destination_count(destination_count);
   696       _region_data[cur_region].set_data_location(region_to_addr(cur_region));
   697       dest_addr += words;
   698     }
   700     ++cur_region;
   701   }
   703   *target_next = dest_addr;
   704   return true;
   705 }
   707 HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr) {
   708   assert(addr != NULL, "Should detect NULL oop earlier");
   709   assert(PSParallelCompact::gc_heap()->is_in(addr), "addr not in heap");
   710 #ifdef ASSERT
   711   if (PSParallelCompact::mark_bitmap()->is_unmarked(addr)) {
   712     gclog_or_tty->print_cr("calc_new_pointer:: addr " PTR_FORMAT, addr);
   713   }
   714 #endif
   715   assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "obj not marked");
   717   // Region covering the object.
   718   size_t region_index = addr_to_region_idx(addr);
   719   const RegionData* const region_ptr = region(region_index);
   720   HeapWord* const region_addr = region_align_down(addr);
   722   assert(addr < region_addr + RegionSize, "Region does not cover object");
   723   assert(addr_to_region_ptr(region_addr) == region_ptr, "sanity check");
   725   HeapWord* result = region_ptr->destination();
   727   // If all the data in the region is live, then the new location of the object
   728   // can be calculated from the destination of the region plus the offset of the
   729   // object in the region.
   730   if (region_ptr->data_size() == RegionSize) {
   731     result += pointer_delta(addr, region_addr);
   732     DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result);)
   733     return result;
   734   }
   736   // The new location of the object is
   737   //    region destination +
   738   //    size of the partial object extending onto the region +
   739   //    sizes of the live objects in the Region that are to the left of addr
   740   const size_t partial_obj_size = region_ptr->partial_obj_size();
   741   HeapWord* const search_start = region_addr + partial_obj_size;
   743   const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
   744   size_t live_to_left = bitmap->live_words_in_range(search_start, oop(addr));
   746   result += partial_obj_size + live_to_left;
   747   DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result);)
   748   return result;
   749 }
   751 #ifdef  ASSERT
   752 void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace)
   753 {
   754   const size_t* const beg = (const size_t*)vspace->committed_low_addr();
   755   const size_t* const end = (const size_t*)vspace->committed_high_addr();
   756   for (const size_t* p = beg; p < end; ++p) {
   757     assert(*p == 0, "not zero");
   758   }
   759 }
   761 void ParallelCompactData::verify_clear()
   762 {
   763   verify_clear(_region_vspace);
   764 }
   765 #endif  // #ifdef ASSERT
   767 #ifdef NOT_PRODUCT
   768 ParallelCompactData::RegionData* debug_region(size_t region_index) {
   769   ParallelCompactData& sd = PSParallelCompact::summary_data();
   770   return sd.region(region_index);
   771 }
   772 #endif
   774 elapsedTimer        PSParallelCompact::_accumulated_time;
   775 unsigned int        PSParallelCompact::_total_invocations = 0;
   776 unsigned int        PSParallelCompact::_maximum_compaction_gc_num = 0;
   777 jlong               PSParallelCompact::_time_of_last_gc = 0;
   778 CollectorCounters*  PSParallelCompact::_counters = NULL;
   779 ParMarkBitMap       PSParallelCompact::_mark_bitmap;
   780 ParallelCompactData PSParallelCompact::_summary_data;
   782 PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
   784 void PSParallelCompact::IsAliveClosure::do_object(oop p)   { ShouldNotReachHere(); }
   785 bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); }
   787 void PSParallelCompact::KeepAliveClosure::do_oop(oop* p)       { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }
   788 void PSParallelCompact::KeepAliveClosure::do_oop(narrowOop* p) { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }
   790 PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_pointer_closure;
   791 PSParallelCompact::AdjustKlassClosure PSParallelCompact::_adjust_klass_closure;
   793 void PSParallelCompact::AdjustPointerClosure::do_oop(oop* p)       { adjust_pointer(p); }
   794 void PSParallelCompact::AdjustPointerClosure::do_oop(narrowOop* p) { adjust_pointer(p); }
   796 void PSParallelCompact::FollowStackClosure::do_void() { _compaction_manager->follow_marking_stacks(); }
   798 void PSParallelCompact::MarkAndPushClosure::do_oop(oop* p)       {
   799   mark_and_push(_compaction_manager, p);
   800 }
   801 void PSParallelCompact::MarkAndPushClosure::do_oop(narrowOop* p) { mark_and_push(_compaction_manager, p); }
   803 void PSParallelCompact::FollowKlassClosure::do_klass(Klass* klass) {
   804   klass->oops_do(_mark_and_push_closure);
   805 }
   806 void PSParallelCompact::AdjustKlassClosure::do_klass(Klass* klass) {
   807   klass->oops_do(&PSParallelCompact::_adjust_pointer_closure);
   808 }
   810 void PSParallelCompact::post_initialize() {
   811   ParallelScavengeHeap* heap = gc_heap();
   812   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   814   MemRegion mr = heap->reserved_region();
   815   _ref_processor =
   816     new ReferenceProcessor(mr,            // span
   817                            ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
   818                            (int) ParallelGCThreads, // mt processing degree
   819                            true,          // mt discovery
   820                            (int) ParallelGCThreads, // mt discovery degree
   821                            true,          // atomic_discovery
   822                            &_is_alive_closure, // non-header is alive closure
   823                            false);        // write barrier for next field updates
   824   _counters = new CollectorCounters("PSParallelCompact", 1);
   826   // Initialize static fields in ParCompactionManager.
   827   ParCompactionManager::initialize(mark_bitmap());
   828 }
   830 bool PSParallelCompact::initialize() {
   831   ParallelScavengeHeap* heap = gc_heap();
   832   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   833   MemRegion mr = heap->reserved_region();
   835   // Was the old gen get allocated successfully?
   836   if (!heap->old_gen()->is_allocated()) {
   837     return false;
   838   }
   840   initialize_space_info();
   841   initialize_dead_wood_limiter();
   843   if (!_mark_bitmap.initialize(mr)) {
   844     vm_shutdown_during_initialization("Unable to allocate bit map for "
   845       "parallel garbage collection for the requested heap size.");
   846     return false;
   847   }
   849   if (!_summary_data.initialize(mr)) {
   850     vm_shutdown_during_initialization("Unable to allocate tables for "
   851       "parallel garbage collection for the requested heap size.");
   852     return false;
   853   }
   855   return true;
   856 }
   858 void PSParallelCompact::initialize_space_info()
   859 {
   860   memset(&_space_info, 0, sizeof(_space_info));
   862   ParallelScavengeHeap* heap = gc_heap();
   863   PSYoungGen* young_gen = heap->young_gen();
   865   _space_info[old_space_id].set_space(heap->old_gen()->object_space());
   866   _space_info[eden_space_id].set_space(young_gen->eden_space());
   867   _space_info[from_space_id].set_space(young_gen->from_space());
   868   _space_info[to_space_id].set_space(young_gen->to_space());
   870   _space_info[old_space_id].set_start_array(heap->old_gen()->start_array());
   871 }
   873 void PSParallelCompact::initialize_dead_wood_limiter()
   874 {
   875   const size_t max = 100;
   876   _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0;
   877   _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0;
   878   _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev);
   879   DEBUG_ONLY(_dwl_initialized = true;)
   880   _dwl_adjustment = normal_distribution(1.0);
   881 }
   883 // Simple class for storing info about the heap at the start of GC, to be used
   884 // after GC for comparison/printing.
   885 class PreGCValues {
   886 public:
   887   PreGCValues() { }
   888   PreGCValues(ParallelScavengeHeap* heap) { fill(heap); }
   890   void fill(ParallelScavengeHeap* heap) {
   891     _heap_used      = heap->used();
   892     _young_gen_used = heap->young_gen()->used_in_bytes();
   893     _old_gen_used   = heap->old_gen()->used_in_bytes();
   894     _metadata_used  = MetaspaceAux::allocated_used_bytes();
   895   };
   897   size_t heap_used() const      { return _heap_used; }
   898   size_t young_gen_used() const { return _young_gen_used; }
   899   size_t old_gen_used() const   { return _old_gen_used; }
   900   size_t metadata_used() const  { return _metadata_used; }
   902 private:
   903   size_t _heap_used;
   904   size_t _young_gen_used;
   905   size_t _old_gen_used;
   906   size_t _metadata_used;
   907 };
   909 void
   910 PSParallelCompact::clear_data_covering_space(SpaceId id)
   911 {
   912   // At this point, top is the value before GC, new_top() is the value that will
   913   // be set at the end of GC.  The marking bitmap is cleared to top; nothing
   914   // should be marked above top.  The summary data is cleared to the larger of
   915   // top & new_top.
   916   MutableSpace* const space = _space_info[id].space();
   917   HeapWord* const bot = space->bottom();
   918   HeapWord* const top = space->top();
   919   HeapWord* const max_top = MAX2(top, _space_info[id].new_top());
   921   const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot);
   922   const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top));
   923   _mark_bitmap.clear_range(beg_bit, end_bit);
   925   const size_t beg_region = _summary_data.addr_to_region_idx(bot);
   926   const size_t end_region =
   927     _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top));
   928   _summary_data.clear_range(beg_region, end_region);
   930   // Clear the data used to 'split' regions.
   931   SplitInfo& split_info = _space_info[id].split_info();
   932   if (split_info.is_valid()) {
   933     split_info.clear();
   934   }
   935   DEBUG_ONLY(split_info.verify_clear();)
   936 }
   938 void PSParallelCompact::pre_compact(PreGCValues* pre_gc_values)
   939 {
   940   // Update the from & to space pointers in space_info, since they are swapped
   941   // at each young gen gc.  Do the update unconditionally (even though a
   942   // promotion failure does not swap spaces) because an unknown number of minor
   943   // collections will have swapped the spaces an unknown number of times.
   944   TraceTime tm("pre compact", print_phases(), true, gclog_or_tty);
   945   ParallelScavengeHeap* heap = gc_heap();
   946   _space_info[from_space_id].set_space(heap->young_gen()->from_space());
   947   _space_info[to_space_id].set_space(heap->young_gen()->to_space());
   949   pre_gc_values->fill(heap);
   951   NOT_PRODUCT(_mark_bitmap.reset_counters());
   952   DEBUG_ONLY(add_obj_count = add_obj_size = 0;)
   953   DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;)
   955   // Increment the invocation count
   956   heap->increment_total_collections(true);
   958   // We need to track unique mark sweep invocations as well.
   959   _total_invocations++;
   961   heap->print_heap_before_gc();
   963   // Fill in TLABs
   964   heap->accumulate_statistics_all_tlabs();
   965   heap->ensure_parsability(true);  // retire TLABs
   967   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
   968     HandleMark hm;  // Discard invalid handles created during verification
   969     Universe::verify(" VerifyBeforeGC:");
   970   }
   972   // Verify object start arrays
   973   if (VerifyObjectStartArray &&
   974       VerifyBeforeGC) {
   975     heap->old_gen()->verify_object_start_array();
   976   }
   978   DEBUG_ONLY(mark_bitmap()->verify_clear();)
   979   DEBUG_ONLY(summary_data().verify_clear();)
   981   // Have worker threads release resources the next time they run a task.
   982   gc_task_manager()->release_all_resources();
   983 }
   985 void PSParallelCompact::post_compact()
   986 {
   987   TraceTime tm("post compact", print_phases(), true, gclog_or_tty);
   989   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
   990     // Clear the marking bitmap, summary data and split info.
   991     clear_data_covering_space(SpaceId(id));
   992     // Update top().  Must be done after clearing the bitmap and summary data.
   993     _space_info[id].publish_new_top();
   994   }
   996   MutableSpace* const eden_space = _space_info[eden_space_id].space();
   997   MutableSpace* const from_space = _space_info[from_space_id].space();
   998   MutableSpace* const to_space   = _space_info[to_space_id].space();
  1000   ParallelScavengeHeap* heap = gc_heap();
  1001   bool eden_empty = eden_space->is_empty();
  1002   if (!eden_empty) {
  1003     eden_empty = absorb_live_data_from_eden(heap->size_policy(),
  1004                                             heap->young_gen(), heap->old_gen());
  1007   // Update heap occupancy information which is used as input to the soft ref
  1008   // clearing policy at the next gc.
  1009   Universe::update_heap_info_at_gc();
  1011   bool young_gen_empty = eden_empty && from_space->is_empty() &&
  1012     to_space->is_empty();
  1014   BarrierSet* bs = heap->barrier_set();
  1015   if (bs->is_a(BarrierSet::ModRef)) {
  1016     ModRefBarrierSet* modBS = (ModRefBarrierSet*)bs;
  1017     MemRegion old_mr = heap->old_gen()->reserved();
  1019     if (young_gen_empty) {
  1020       modBS->clear(MemRegion(old_mr.start(), old_mr.end()));
  1021     } else {
  1022       modBS->invalidate(MemRegion(old_mr.start(), old_mr.end()));
  1026   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
  1027   ClassLoaderDataGraph::purge();
  1028   MetaspaceAux::verify_metrics();
  1030   Threads::gc_epilogue();
  1031   CodeCache::gc_epilogue();
  1032   JvmtiExport::gc_epilogue();
  1034   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  1036   ref_processor()->enqueue_discovered_references(NULL);
  1038   if (ZapUnusedHeapArea) {
  1039     heap->gen_mangle_unused_area();
  1042   // Update time of last GC
  1043   reset_millis_since_last_gc();
  1046 HeapWord*
  1047 PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id,
  1048                                                     bool maximum_compaction)
  1050   const size_t region_size = ParallelCompactData::RegionSize;
  1051   const ParallelCompactData& sd = summary_data();
  1053   const MutableSpace* const space = _space_info[id].space();
  1054   HeapWord* const top_aligned_up = sd.region_align_up(space->top());
  1055   const RegionData* const beg_cp = sd.addr_to_region_ptr(space->bottom());
  1056   const RegionData* const end_cp = sd.addr_to_region_ptr(top_aligned_up);
  1058   // Skip full regions at the beginning of the space--they are necessarily part
  1059   // of the dense prefix.
  1060   size_t full_count = 0;
  1061   const RegionData* cp;
  1062   for (cp = beg_cp; cp < end_cp && cp->data_size() == region_size; ++cp) {
  1063     ++full_count;
  1066   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
  1067   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
  1068   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
  1069   if (maximum_compaction || cp == end_cp || interval_ended) {
  1070     _maximum_compaction_gc_num = total_invocations();
  1071     return sd.region_to_addr(cp);
  1074   HeapWord* const new_top = _space_info[id].new_top();
  1075   const size_t space_live = pointer_delta(new_top, space->bottom());
  1076   const size_t space_used = space->used_in_words();
  1077   const size_t space_capacity = space->capacity_in_words();
  1079   const double cur_density = double(space_live) / space_capacity;
  1080   const double deadwood_density =
  1081     (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density;
  1082   const size_t deadwood_goal = size_t(space_capacity * deadwood_density);
  1084   if (TraceParallelOldGCDensePrefix) {
  1085     tty->print_cr("cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT,
  1086                   cur_density, deadwood_density, deadwood_goal);
  1087     tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
  1088                   "space_cap=" SIZE_FORMAT,
  1089                   space_live, space_used,
  1090                   space_capacity);
  1093   // XXX - Use binary search?
  1094   HeapWord* dense_prefix = sd.region_to_addr(cp);
  1095   const RegionData* full_cp = cp;
  1096   const RegionData* const top_cp = sd.addr_to_region_ptr(space->top() - 1);
  1097   while (cp < end_cp) {
  1098     HeapWord* region_destination = cp->destination();
  1099     const size_t cur_deadwood = pointer_delta(dense_prefix, region_destination);
  1100     if (TraceParallelOldGCDensePrefix && Verbose) {
  1101       tty->print_cr("c#=" SIZE_FORMAT_W(4) " dst=" PTR_FORMAT " "
  1102                     "dp=" SIZE_FORMAT_W(8) " " "cdw=" SIZE_FORMAT_W(8),
  1103                     sd.region(cp), region_destination,
  1104                     dense_prefix, cur_deadwood);
  1107     if (cur_deadwood >= deadwood_goal) {
  1108       // Found the region that has the correct amount of deadwood to the left.
  1109       // This typically occurs after crossing a fairly sparse set of regions, so
  1110       // iterate backwards over those sparse regions, looking for the region
  1111       // that has the lowest density of live objects 'to the right.'
  1112       size_t space_to_left = sd.region(cp) * region_size;
  1113       size_t live_to_left = space_to_left - cur_deadwood;
  1114       size_t space_to_right = space_capacity - space_to_left;
  1115       size_t live_to_right = space_live - live_to_left;
  1116       double density_to_right = double(live_to_right) / space_to_right;
  1117       while (cp > full_cp) {
  1118         --cp;
  1119         const size_t prev_region_live_to_right = live_to_right -
  1120           cp->data_size();
  1121         const size_t prev_region_space_to_right = space_to_right + region_size;
  1122         double prev_region_density_to_right =
  1123           double(prev_region_live_to_right) / prev_region_space_to_right;
  1124         if (density_to_right <= prev_region_density_to_right) {
  1125           return dense_prefix;
  1127         if (TraceParallelOldGCDensePrefix && Verbose) {
  1128           tty->print_cr("backing up from c=" SIZE_FORMAT_W(4) " d2r=%10.8f "
  1129                         "pc_d2r=%10.8f", sd.region(cp), density_to_right,
  1130                         prev_region_density_to_right);
  1132         dense_prefix -= region_size;
  1133         live_to_right = prev_region_live_to_right;
  1134         space_to_right = prev_region_space_to_right;
  1135         density_to_right = prev_region_density_to_right;
  1137       return dense_prefix;
  1140     dense_prefix += region_size;
  1141     ++cp;
  1144   return dense_prefix;
  1147 #ifndef PRODUCT
  1148 void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm,
  1149                                                  const SpaceId id,
  1150                                                  const bool maximum_compaction,
  1151                                                  HeapWord* const addr)
  1153   const size_t region_idx = summary_data().addr_to_region_idx(addr);
  1154   RegionData* const cp = summary_data().region(region_idx);
  1155   const MutableSpace* const space = _space_info[id].space();
  1156   HeapWord* const new_top = _space_info[id].new_top();
  1158   const size_t space_live = pointer_delta(new_top, space->bottom());
  1159   const size_t dead_to_left = pointer_delta(addr, cp->destination());
  1160   const size_t space_cap = space->capacity_in_words();
  1161   const double dead_to_left_pct = double(dead_to_left) / space_cap;
  1162   const size_t live_to_right = new_top - cp->destination();
  1163   const size_t dead_to_right = space->top() - addr - live_to_right;
  1165   tty->print_cr("%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W(5) " "
  1166                 "spl=" SIZE_FORMAT " "
  1167                 "d2l=" SIZE_FORMAT " d2l%%=%6.4f "
  1168                 "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT
  1169                 " ratio=%10.8f",
  1170                 algorithm, addr, region_idx,
  1171                 space_live,
  1172                 dead_to_left, dead_to_left_pct,
  1173                 dead_to_right, live_to_right,
  1174                 double(dead_to_right) / live_to_right);
  1176 #endif  // #ifndef PRODUCT
  1178 // Return a fraction indicating how much of the generation can be treated as
  1179 // "dead wood" (i.e., not reclaimed).  The function uses a normal distribution
  1180 // based on the density of live objects in the generation to determine a limit,
  1181 // which is then adjusted so the return value is min_percent when the density is
  1182 // 1.
  1183 //
  1184 // The following table shows some return values for a different values of the
  1185 // standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and
  1186 // min_percent is 1.
  1187 //
  1188 //                          fraction allowed as dead wood
  1189 //         -----------------------------------------------------------------
  1190 // density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95
  1191 // ------- ---------- ---------- ---------- ---------- ---------- ----------
  1192 // 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
  1193 // 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
  1194 // 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
  1195 // 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
  1196 // 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
  1197 // 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
  1198 // 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
  1199 // 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
  1200 // 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
  1201 // 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
  1202 // 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510
  1203 // 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
  1204 // 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
  1205 // 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
  1206 // 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
  1207 // 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
  1208 // 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
  1209 // 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
  1210 // 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
  1211 // 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
  1212 // 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
  1214 double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent)
  1216   assert(_dwl_initialized, "uninitialized");
  1218   // The raw limit is the value of the normal distribution at x = density.
  1219   const double raw_limit = normal_distribution(density);
  1221   // Adjust the raw limit so it becomes the minimum when the density is 1.
  1222   //
  1223   // First subtract the adjustment value (which is simply the precomputed value
  1224   // normal_distribution(1.0)); this yields a value of 0 when the density is 1.
  1225   // Then add the minimum value, so the minimum is returned when the density is
  1226   // 1.  Finally, prevent negative values, which occur when the mean is not 0.5.
  1227   const double min = double(min_percent) / 100.0;
  1228   const double limit = raw_limit - _dwl_adjustment + min;
  1229   return MAX2(limit, 0.0);
  1232 ParallelCompactData::RegionData*
  1233 PSParallelCompact::first_dead_space_region(const RegionData* beg,
  1234                                            const RegionData* end)
  1236   const size_t region_size = ParallelCompactData::RegionSize;
  1237   ParallelCompactData& sd = summary_data();
  1238   size_t left = sd.region(beg);
  1239   size_t right = end > beg ? sd.region(end) - 1 : left;
  1241   // Binary search.
  1242   while (left < right) {
  1243     // Equivalent to (left + right) / 2, but does not overflow.
  1244     const size_t middle = left + (right - left) / 2;
  1245     RegionData* const middle_ptr = sd.region(middle);
  1246     HeapWord* const dest = middle_ptr->destination();
  1247     HeapWord* const addr = sd.region_to_addr(middle);
  1248     assert(dest != NULL, "sanity");
  1249     assert(dest <= addr, "must move left");
  1251     if (middle > left && dest < addr) {
  1252       right = middle - 1;
  1253     } else if (middle < right && middle_ptr->data_size() == region_size) {
  1254       left = middle + 1;
  1255     } else {
  1256       return middle_ptr;
  1259   return sd.region(left);
  1262 ParallelCompactData::RegionData*
  1263 PSParallelCompact::dead_wood_limit_region(const RegionData* beg,
  1264                                           const RegionData* end,
  1265                                           size_t dead_words)
  1267   ParallelCompactData& sd = summary_data();
  1268   size_t left = sd.region(beg);
  1269   size_t right = end > beg ? sd.region(end) - 1 : left;
  1271   // Binary search.
  1272   while (left < right) {
  1273     // Equivalent to (left + right) / 2, but does not overflow.
  1274     const size_t middle = left + (right - left) / 2;
  1275     RegionData* const middle_ptr = sd.region(middle);
  1276     HeapWord* const dest = middle_ptr->destination();
  1277     HeapWord* const addr = sd.region_to_addr(middle);
  1278     assert(dest != NULL, "sanity");
  1279     assert(dest <= addr, "must move left");
  1281     const size_t dead_to_left = pointer_delta(addr, dest);
  1282     if (middle > left && dead_to_left > dead_words) {
  1283       right = middle - 1;
  1284     } else if (middle < right && dead_to_left < dead_words) {
  1285       left = middle + 1;
  1286     } else {
  1287       return middle_ptr;
  1290   return sd.region(left);
  1293 // The result is valid during the summary phase, after the initial summarization
  1294 // of each space into itself, and before final summarization.
  1295 inline double
  1296 PSParallelCompact::reclaimed_ratio(const RegionData* const cp,
  1297                                    HeapWord* const bottom,
  1298                                    HeapWord* const top,
  1299                                    HeapWord* const new_top)
  1301   ParallelCompactData& sd = summary_data();
  1303   assert(cp != NULL, "sanity");
  1304   assert(bottom != NULL, "sanity");
  1305   assert(top != NULL, "sanity");
  1306   assert(new_top != NULL, "sanity");
  1307   assert(top >= new_top, "summary data problem?");
  1308   assert(new_top > bottom, "space is empty; should not be here");
  1309   assert(new_top >= cp->destination(), "sanity");
  1310   assert(top >= sd.region_to_addr(cp), "sanity");
  1312   HeapWord* const destination = cp->destination();
  1313   const size_t dense_prefix_live  = pointer_delta(destination, bottom);
  1314   const size_t compacted_region_live = pointer_delta(new_top, destination);
  1315   const size_t compacted_region_used = pointer_delta(top,
  1316                                                      sd.region_to_addr(cp));
  1317   const size_t reclaimable = compacted_region_used - compacted_region_live;
  1319   const double divisor = dense_prefix_live + 1.25 * compacted_region_live;
  1320   return double(reclaimable) / divisor;
  1323 // Return the address of the end of the dense prefix, a.k.a. the start of the
  1324 // compacted region.  The address is always on a region boundary.
  1325 //
  1326 // Completely full regions at the left are skipped, since no compaction can
  1327 // occur in those regions.  Then the maximum amount of dead wood to allow is
  1328 // computed, based on the density (amount live / capacity) of the generation;
  1329 // the region with approximately that amount of dead space to the left is
  1330 // identified as the limit region.  Regions between the last completely full
  1331 // region and the limit region are scanned and the one that has the best
  1332 // (maximum) reclaimed_ratio() is selected.
  1333 HeapWord*
  1334 PSParallelCompact::compute_dense_prefix(const SpaceId id,
  1335                                         bool maximum_compaction)
  1337   if (ParallelOldGCSplitALot) {
  1338     if (_space_info[id].dense_prefix() != _space_info[id].space()->bottom()) {
  1339       // The value was chosen to provoke splitting a young gen space; use it.
  1340       return _space_info[id].dense_prefix();
  1344   const size_t region_size = ParallelCompactData::RegionSize;
  1345   const ParallelCompactData& sd = summary_data();
  1347   const MutableSpace* const space = _space_info[id].space();
  1348   HeapWord* const top = space->top();
  1349   HeapWord* const top_aligned_up = sd.region_align_up(top);
  1350   HeapWord* const new_top = _space_info[id].new_top();
  1351   HeapWord* const new_top_aligned_up = sd.region_align_up(new_top);
  1352   HeapWord* const bottom = space->bottom();
  1353   const RegionData* const beg_cp = sd.addr_to_region_ptr(bottom);
  1354   const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
  1355   const RegionData* const new_top_cp =
  1356     sd.addr_to_region_ptr(new_top_aligned_up);
  1358   // Skip full regions at the beginning of the space--they are necessarily part
  1359   // of the dense prefix.
  1360   const RegionData* const full_cp = first_dead_space_region(beg_cp, new_top_cp);
  1361   assert(full_cp->destination() == sd.region_to_addr(full_cp) ||
  1362          space->is_empty(), "no dead space allowed to the left");
  1363   assert(full_cp->data_size() < region_size || full_cp == new_top_cp - 1,
  1364          "region must have dead space");
  1366   // The gc number is saved whenever a maximum compaction is done, and used to
  1367   // determine when the maximum compaction interval has expired.  This avoids
  1368   // successive max compactions for different reasons.
  1369   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
  1370   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
  1371   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval ||
  1372     total_invocations() == HeapFirstMaximumCompactionCount;
  1373   if (maximum_compaction || full_cp == top_cp || interval_ended) {
  1374     _maximum_compaction_gc_num = total_invocations();
  1375     return sd.region_to_addr(full_cp);
  1378   const size_t space_live = pointer_delta(new_top, bottom);
  1379   const size_t space_used = space->used_in_words();
  1380   const size_t space_capacity = space->capacity_in_words();
  1382   const double density = double(space_live) / double(space_capacity);
  1383   const size_t min_percent_free = MarkSweepDeadRatio;
  1384   const double limiter = dead_wood_limiter(density, min_percent_free);
  1385   const size_t dead_wood_max = space_used - space_live;
  1386   const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter),
  1387                                       dead_wood_max);
  1389   if (TraceParallelOldGCDensePrefix) {
  1390     tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
  1391                   "space_cap=" SIZE_FORMAT,
  1392                   space_live, space_used,
  1393                   space_capacity);
  1394     tty->print_cr("dead_wood_limiter(%6.4f, %d)=%6.4f "
  1395                   "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT,
  1396                   density, min_percent_free, limiter,
  1397                   dead_wood_max, dead_wood_limit);
  1400   // Locate the region with the desired amount of dead space to the left.
  1401   const RegionData* const limit_cp =
  1402     dead_wood_limit_region(full_cp, top_cp, dead_wood_limit);
  1404   // Scan from the first region with dead space to the limit region and find the
  1405   // one with the best (largest) reclaimed ratio.
  1406   double best_ratio = 0.0;
  1407   const RegionData* best_cp = full_cp;
  1408   for (const RegionData* cp = full_cp; cp < limit_cp; ++cp) {
  1409     double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top);
  1410     if (tmp_ratio > best_ratio) {
  1411       best_cp = cp;
  1412       best_ratio = tmp_ratio;
  1416 #if     0
  1417   // Something to consider:  if the region with the best ratio is 'close to' the
  1418   // first region w/free space, choose the first region with free space
  1419   // ("first-free").  The first-free region is usually near the start of the
  1420   // heap, which means we are copying most of the heap already, so copy a bit
  1421   // more to get complete compaction.
  1422   if (pointer_delta(best_cp, full_cp, sizeof(RegionData)) < 4) {
  1423     _maximum_compaction_gc_num = total_invocations();
  1424     best_cp = full_cp;
  1426 #endif  // #if 0
  1428   return sd.region_to_addr(best_cp);
  1431 #ifndef PRODUCT
  1432 void
  1433 PSParallelCompact::fill_with_live_objects(SpaceId id, HeapWord* const start,
  1434                                           size_t words)
  1436   if (TraceParallelOldGCSummaryPhase) {
  1437     tty->print_cr("fill_with_live_objects [" PTR_FORMAT " " PTR_FORMAT ") "
  1438                   SIZE_FORMAT, start, start + words, words);
  1441   ObjectStartArray* const start_array = _space_info[id].start_array();
  1442   CollectedHeap::fill_with_objects(start, words);
  1443   for (HeapWord* p = start; p < start + words; p += oop(p)->size()) {
  1444     _mark_bitmap.mark_obj(p, words);
  1445     _summary_data.add_obj(p, words);
  1446     start_array->allocate_block(p);
  1450 void
  1451 PSParallelCompact::summarize_new_objects(SpaceId id, HeapWord* start)
  1453   ParallelCompactData& sd = summary_data();
  1454   MutableSpace* space = _space_info[id].space();
  1456   // Find the source and destination start addresses.
  1457   HeapWord* const src_addr = sd.region_align_down(start);
  1458   HeapWord* dst_addr;
  1459   if (src_addr < start) {
  1460     dst_addr = sd.addr_to_region_ptr(src_addr)->destination();
  1461   } else if (src_addr > space->bottom()) {
  1462     // The start (the original top() value) is aligned to a region boundary so
  1463     // the associated region does not have a destination.  Compute the
  1464     // destination from the previous region.
  1465     RegionData* const cp = sd.addr_to_region_ptr(src_addr) - 1;
  1466     dst_addr = cp->destination() + cp->data_size();
  1467   } else {
  1468     // Filling the entire space.
  1469     dst_addr = space->bottom();
  1471   assert(dst_addr != NULL, "sanity");
  1473   // Update the summary data.
  1474   bool result = _summary_data.summarize(_space_info[id].split_info(),
  1475                                         src_addr, space->top(), NULL,
  1476                                         dst_addr, space->end(),
  1477                                         _space_info[id].new_top_addr());
  1478   assert(result, "should not fail:  bad filler object size");
  1481 void
  1482 PSParallelCompact::provoke_split_fill_survivor(SpaceId id)
  1484   if (total_invocations() % (ParallelOldGCSplitInterval * 3) != 0) {
  1485     return;
  1488   MutableSpace* const space = _space_info[id].space();
  1489   if (space->is_empty()) {
  1490     HeapWord* b = space->bottom();
  1491     HeapWord* t = b + space->capacity_in_words() / 2;
  1492     space->set_top(t);
  1493     if (ZapUnusedHeapArea) {
  1494       space->set_top_for_allocations();
  1497     size_t min_size = CollectedHeap::min_fill_size();
  1498     size_t obj_len = min_size;
  1499     while (b + obj_len <= t) {
  1500       CollectedHeap::fill_with_object(b, obj_len);
  1501       mark_bitmap()->mark_obj(b, obj_len);
  1502       summary_data().add_obj(b, obj_len);
  1503       b += obj_len;
  1504       obj_len = (obj_len & (min_size*3)) + min_size; // 8 16 24 32 8 16 24 32 ...
  1506     if (b < t) {
  1507       // The loop didn't completely fill to t (top); adjust top downward.
  1508       space->set_top(b);
  1509       if (ZapUnusedHeapArea) {
  1510         space->set_top_for_allocations();
  1514     HeapWord** nta = _space_info[id].new_top_addr();
  1515     bool result = summary_data().summarize(_space_info[id].split_info(),
  1516                                            space->bottom(), space->top(), NULL,
  1517                                            space->bottom(), space->end(), nta);
  1518     assert(result, "space must fit into itself");
  1522 void
  1523 PSParallelCompact::provoke_split(bool & max_compaction)
  1525   if (total_invocations() % ParallelOldGCSplitInterval != 0) {
  1526     return;
  1529   const size_t region_size = ParallelCompactData::RegionSize;
  1530   ParallelCompactData& sd = summary_data();
  1532   MutableSpace* const eden_space = _space_info[eden_space_id].space();
  1533   MutableSpace* const from_space = _space_info[from_space_id].space();
  1534   const size_t eden_live = pointer_delta(eden_space->top(),
  1535                                          _space_info[eden_space_id].new_top());
  1536   const size_t from_live = pointer_delta(from_space->top(),
  1537                                          _space_info[from_space_id].new_top());
  1539   const size_t min_fill_size = CollectedHeap::min_fill_size();
  1540   const size_t eden_free = pointer_delta(eden_space->end(), eden_space->top());
  1541   const size_t eden_fillable = eden_free >= min_fill_size ? eden_free : 0;
  1542   const size_t from_free = pointer_delta(from_space->end(), from_space->top());
  1543   const size_t from_fillable = from_free >= min_fill_size ? from_free : 0;
  1545   // Choose the space to split; need at least 2 regions live (or fillable).
  1546   SpaceId id;
  1547   MutableSpace* space;
  1548   size_t live_words;
  1549   size_t fill_words;
  1550   if (eden_live + eden_fillable >= region_size * 2) {
  1551     id = eden_space_id;
  1552     space = eden_space;
  1553     live_words = eden_live;
  1554     fill_words = eden_fillable;
  1555   } else if (from_live + from_fillable >= region_size * 2) {
  1556     id = from_space_id;
  1557     space = from_space;
  1558     live_words = from_live;
  1559     fill_words = from_fillable;
  1560   } else {
  1561     return; // Give up.
  1563   assert(fill_words == 0 || fill_words >= min_fill_size, "sanity");
  1565   if (live_words < region_size * 2) {
  1566     // Fill from top() to end() w/live objects of mixed sizes.
  1567     HeapWord* const fill_start = space->top();
  1568     live_words += fill_words;
  1570     space->set_top(fill_start + fill_words);
  1571     if (ZapUnusedHeapArea) {
  1572       space->set_top_for_allocations();
  1575     HeapWord* cur_addr = fill_start;
  1576     while (fill_words > 0) {
  1577       const size_t r = (size_t)os::random() % (region_size / 2) + min_fill_size;
  1578       size_t cur_size = MIN2(align_object_size_(r), fill_words);
  1579       if (fill_words - cur_size < min_fill_size) {
  1580         cur_size = fill_words; // Avoid leaving a fragment too small to fill.
  1583       CollectedHeap::fill_with_object(cur_addr, cur_size);
  1584       mark_bitmap()->mark_obj(cur_addr, cur_size);
  1585       sd.add_obj(cur_addr, cur_size);
  1587       cur_addr += cur_size;
  1588       fill_words -= cur_size;
  1591     summarize_new_objects(id, fill_start);
  1594   max_compaction = false;
  1596   // Manipulate the old gen so that it has room for about half of the live data
  1597   // in the target young gen space (live_words / 2).
  1598   id = old_space_id;
  1599   space = _space_info[id].space();
  1600   const size_t free_at_end = space->free_in_words();
  1601   const size_t free_target = align_object_size(live_words / 2);
  1602   const size_t dead = pointer_delta(space->top(), _space_info[id].new_top());
  1604   if (free_at_end >= free_target + min_fill_size) {
  1605     // Fill space above top() and set the dense prefix so everything survives.
  1606     HeapWord* const fill_start = space->top();
  1607     const size_t fill_size = free_at_end - free_target;
  1608     space->set_top(space->top() + fill_size);
  1609     if (ZapUnusedHeapArea) {
  1610       space->set_top_for_allocations();
  1612     fill_with_live_objects(id, fill_start, fill_size);
  1613     summarize_new_objects(id, fill_start);
  1614     _space_info[id].set_dense_prefix(sd.region_align_down(space->top()));
  1615   } else if (dead + free_at_end > free_target) {
  1616     // Find a dense prefix that makes the right amount of space available.
  1617     HeapWord* cur = sd.region_align_down(space->top());
  1618     HeapWord* cur_destination = sd.addr_to_region_ptr(cur)->destination();
  1619     size_t dead_to_right = pointer_delta(space->end(), cur_destination);
  1620     while (dead_to_right < free_target) {
  1621       cur -= region_size;
  1622       cur_destination = sd.addr_to_region_ptr(cur)->destination();
  1623       dead_to_right = pointer_delta(space->end(), cur_destination);
  1625     _space_info[id].set_dense_prefix(cur);
  1628 #endif // #ifndef PRODUCT
  1630 void PSParallelCompact::summarize_spaces_quick()
  1632   for (unsigned int i = 0; i < last_space_id; ++i) {
  1633     const MutableSpace* space = _space_info[i].space();
  1634     HeapWord** nta = _space_info[i].new_top_addr();
  1635     bool result = _summary_data.summarize(_space_info[i].split_info(),
  1636                                           space->bottom(), space->top(), NULL,
  1637                                           space->bottom(), space->end(), nta);
  1638     assert(result, "space must fit into itself");
  1639     _space_info[i].set_dense_prefix(space->bottom());
  1642 #ifndef PRODUCT
  1643   if (ParallelOldGCSplitALot) {
  1644     provoke_split_fill_survivor(to_space_id);
  1646 #endif // #ifndef PRODUCT
  1649 void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
  1651   HeapWord* const dense_prefix_end = dense_prefix(id);
  1652   const RegionData* region = _summary_data.addr_to_region_ptr(dense_prefix_end);
  1653   const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end);
  1654   if (dead_space_crosses_boundary(region, dense_prefix_bit)) {
  1655     // Only enough dead space is filled so that any remaining dead space to the
  1656     // left is larger than the minimum filler object.  (The remainder is filled
  1657     // during the copy/update phase.)
  1658     //
  1659     // The size of the dead space to the right of the boundary is not a
  1660     // concern, since compaction will be able to use whatever space is
  1661     // available.
  1662     //
  1663     // Here '||' is the boundary, 'x' represents a don't care bit and a box
  1664     // surrounds the space to be filled with an object.
  1665     //
  1666     // In the 32-bit VM, each bit represents two 32-bit words:
  1667     //                              +---+
  1668     // a) beg_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
  1669     //    end_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
  1670     //                              +---+
  1671     //
  1672     // In the 64-bit VM, each bit represents one 64-bit word:
  1673     //                              +------------+
  1674     // b) beg_bits:  ...  x   x   x | 0   ||   0 | x  x  ...
  1675     //    end_bits:  ...  x   x   1 | 0   ||   0 | x  x  ...
  1676     //                              +------------+
  1677     //                          +-------+
  1678     // c) beg_bits:  ...  x   x | 0   0 | ||   0   x  x  ...
  1679     //    end_bits:  ...  x   1 | 0   0 | ||   0   x  x  ...
  1680     //                          +-------+
  1681     //                      +-----------+
  1682     // d) beg_bits:  ...  x | 0   0   0 | ||   0   x  x  ...
  1683     //    end_bits:  ...  1 | 0   0   0 | ||   0   x  x  ...
  1684     //                      +-----------+
  1685     //                          +-------+
  1686     // e) beg_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
  1687     //    end_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
  1688     //                          +-------+
  1690     // Initially assume case a, c or e will apply.
  1691     size_t obj_len = CollectedHeap::min_fill_size();
  1692     HeapWord* obj_beg = dense_prefix_end - obj_len;
  1694 #ifdef  _LP64
  1695     if (MinObjAlignment > 1) { // object alignment > heap word size
  1696       // Cases a, c or e.
  1697     } else if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) {
  1698       // Case b above.
  1699       obj_beg = dense_prefix_end - 1;
  1700     } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) &&
  1701                _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) {
  1702       // Case d above.
  1703       obj_beg = dense_prefix_end - 3;
  1704       obj_len = 3;
  1706 #endif  // #ifdef _LP64
  1708     CollectedHeap::fill_with_object(obj_beg, obj_len);
  1709     _mark_bitmap.mark_obj(obj_beg, obj_len);
  1710     _summary_data.add_obj(obj_beg, obj_len);
  1711     assert(start_array(id) != NULL, "sanity");
  1712     start_array(id)->allocate_block(obj_beg);
  1716 void
  1717 PSParallelCompact::clear_source_region(HeapWord* beg_addr, HeapWord* end_addr)
  1719   RegionData* const beg_ptr = _summary_data.addr_to_region_ptr(beg_addr);
  1720   HeapWord* const end_aligned_up = _summary_data.region_align_up(end_addr);
  1721   RegionData* const end_ptr = _summary_data.addr_to_region_ptr(end_aligned_up);
  1722   for (RegionData* cur = beg_ptr; cur < end_ptr; ++cur) {
  1723     cur->set_source_region(0);
  1727 void
  1728 PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
  1730   assert(id < last_space_id, "id out of range");
  1731   assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom() ||
  1732          ParallelOldGCSplitALot && id == old_space_id,
  1733          "should have been reset in summarize_spaces_quick()");
  1735   const MutableSpace* space = _space_info[id].space();
  1736   if (_space_info[id].new_top() != space->bottom()) {
  1737     HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction);
  1738     _space_info[id].set_dense_prefix(dense_prefix_end);
  1740 #ifndef PRODUCT
  1741     if (TraceParallelOldGCDensePrefix) {
  1742       print_dense_prefix_stats("ratio", id, maximum_compaction,
  1743                                dense_prefix_end);
  1744       HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction);
  1745       print_dense_prefix_stats("density", id, maximum_compaction, addr);
  1747 #endif  // #ifndef PRODUCT
  1749     // Recompute the summary data, taking into account the dense prefix.  If
  1750     // every last byte will be reclaimed, then the existing summary data which
  1751     // compacts everything can be left in place.
  1752     if (!maximum_compaction && dense_prefix_end != space->bottom()) {
  1753       // If dead space crosses the dense prefix boundary, it is (at least
  1754       // partially) filled with a dummy object, marked live and added to the
  1755       // summary data.  This simplifies the copy/update phase and must be done
  1756       // before the final locations of objects are determined, to prevent
  1757       // leaving a fragment of dead space that is too small to fill.
  1758       fill_dense_prefix_end(id);
  1760       // Compute the destination of each Region, and thus each object.
  1761       _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
  1762       _summary_data.summarize(_space_info[id].split_info(),
  1763                               dense_prefix_end, space->top(), NULL,
  1764                               dense_prefix_end, space->end(),
  1765                               _space_info[id].new_top_addr());
  1769   if (TraceParallelOldGCSummaryPhase) {
  1770     const size_t region_size = ParallelCompactData::RegionSize;
  1771     HeapWord* const dense_prefix_end = _space_info[id].dense_prefix();
  1772     const size_t dp_region = _summary_data.addr_to_region_idx(dense_prefix_end);
  1773     const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom());
  1774     HeapWord* const new_top = _space_info[id].new_top();
  1775     const HeapWord* nt_aligned_up = _summary_data.region_align_up(new_top);
  1776     const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end);
  1777     tty->print_cr("id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " "
  1778                   "dp_region=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " "
  1779                   "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT,
  1780                   id, space->capacity_in_words(), dense_prefix_end,
  1781                   dp_region, dp_words / region_size,
  1782                   cr_words / region_size, new_top);
  1786 #ifndef PRODUCT
  1787 void PSParallelCompact::summary_phase_msg(SpaceId dst_space_id,
  1788                                           HeapWord* dst_beg, HeapWord* dst_end,
  1789                                           SpaceId src_space_id,
  1790                                           HeapWord* src_beg, HeapWord* src_end)
  1792   if (TraceParallelOldGCSummaryPhase) {
  1793     tty->print_cr("summarizing %d [%s] into %d [%s]:  "
  1794                   "src=" PTR_FORMAT "-" PTR_FORMAT " "
  1795                   SIZE_FORMAT "-" SIZE_FORMAT " "
  1796                   "dst=" PTR_FORMAT "-" PTR_FORMAT " "
  1797                   SIZE_FORMAT "-" SIZE_FORMAT,
  1798                   src_space_id, space_names[src_space_id],
  1799                   dst_space_id, space_names[dst_space_id],
  1800                   src_beg, src_end,
  1801                   _summary_data.addr_to_region_idx(src_beg),
  1802                   _summary_data.addr_to_region_idx(src_end),
  1803                   dst_beg, dst_end,
  1804                   _summary_data.addr_to_region_idx(dst_beg),
  1805                   _summary_data.addr_to_region_idx(dst_end));
  1808 #endif  // #ifndef PRODUCT
  1810 void PSParallelCompact::summary_phase(ParCompactionManager* cm,
  1811                                       bool maximum_compaction)
  1813   TraceTime tm("summary phase", print_phases(), true, gclog_or_tty);
  1814   // trace("2");
  1816 #ifdef  ASSERT
  1817   if (TraceParallelOldGCMarkingPhase) {
  1818     tty->print_cr("add_obj_count=" SIZE_FORMAT " "
  1819                   "add_obj_bytes=" SIZE_FORMAT,
  1820                   add_obj_count, add_obj_size * HeapWordSize);
  1821     tty->print_cr("mark_bitmap_count=" SIZE_FORMAT " "
  1822                   "mark_bitmap_bytes=" SIZE_FORMAT,
  1823                   mark_bitmap_count, mark_bitmap_size * HeapWordSize);
  1825 #endif  // #ifdef ASSERT
  1827   // Quick summarization of each space into itself, to see how much is live.
  1828   summarize_spaces_quick();
  1830   if (TraceParallelOldGCSummaryPhase) {
  1831     tty->print_cr("summary_phase:  after summarizing each space to self");
  1832     Universe::print();
  1833     NOT_PRODUCT(print_region_ranges());
  1834     if (Verbose) {
  1835       NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
  1839   // The amount of live data that will end up in old space (assuming it fits).
  1840   size_t old_space_total_live = 0;
  1841   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
  1842     old_space_total_live += pointer_delta(_space_info[id].new_top(),
  1843                                           _space_info[id].space()->bottom());
  1846   MutableSpace* const old_space = _space_info[old_space_id].space();
  1847   const size_t old_capacity = old_space->capacity_in_words();
  1848   if (old_space_total_live > old_capacity) {
  1849     // XXX - should also try to expand
  1850     maximum_compaction = true;
  1852 #ifndef PRODUCT
  1853   if (ParallelOldGCSplitALot && old_space_total_live < old_capacity) {
  1854     provoke_split(maximum_compaction);
  1856 #endif // #ifndef PRODUCT
  1858   // Old generations.
  1859   summarize_space(old_space_id, maximum_compaction);
  1861   // Summarize the remaining spaces in the young gen.  The initial target space
  1862   // is the old gen.  If a space does not fit entirely into the target, then the
  1863   // remainder is compacted into the space itself and that space becomes the new
  1864   // target.
  1865   SpaceId dst_space_id = old_space_id;
  1866   HeapWord* dst_space_end = old_space->end();
  1867   HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr();
  1868   for (unsigned int id = eden_space_id; id < last_space_id; ++id) {
  1869     const MutableSpace* space = _space_info[id].space();
  1870     const size_t live = pointer_delta(_space_info[id].new_top(),
  1871                                       space->bottom());
  1872     const size_t available = pointer_delta(dst_space_end, *new_top_addr);
  1874     NOT_PRODUCT(summary_phase_msg(dst_space_id, *new_top_addr, dst_space_end,
  1875                                   SpaceId(id), space->bottom(), space->top());)
  1876     if (live > 0 && live <= available) {
  1877       // All the live data will fit.
  1878       bool done = _summary_data.summarize(_space_info[id].split_info(),
  1879                                           space->bottom(), space->top(),
  1880                                           NULL,
  1881                                           *new_top_addr, dst_space_end,
  1882                                           new_top_addr);
  1883       assert(done, "space must fit into old gen");
  1885       // Reset the new_top value for the space.
  1886       _space_info[id].set_new_top(space->bottom());
  1887     } else if (live > 0) {
  1888       // Attempt to fit part of the source space into the target space.
  1889       HeapWord* next_src_addr = NULL;
  1890       bool done = _summary_data.summarize(_space_info[id].split_info(),
  1891                                           space->bottom(), space->top(),
  1892                                           &next_src_addr,
  1893                                           *new_top_addr, dst_space_end,
  1894                                           new_top_addr);
  1895       assert(!done, "space should not fit into old gen");
  1896       assert(next_src_addr != NULL, "sanity");
  1898       // The source space becomes the new target, so the remainder is compacted
  1899       // within the space itself.
  1900       dst_space_id = SpaceId(id);
  1901       dst_space_end = space->end();
  1902       new_top_addr = _space_info[id].new_top_addr();
  1903       NOT_PRODUCT(summary_phase_msg(dst_space_id,
  1904                                     space->bottom(), dst_space_end,
  1905                                     SpaceId(id), next_src_addr, space->top());)
  1906       done = _summary_data.summarize(_space_info[id].split_info(),
  1907                                      next_src_addr, space->top(),
  1908                                      NULL,
  1909                                      space->bottom(), dst_space_end,
  1910                                      new_top_addr);
  1911       assert(done, "space must fit when compacted into itself");
  1912       assert(*new_top_addr <= space->top(), "usage should not grow");
  1916   if (TraceParallelOldGCSummaryPhase) {
  1917     tty->print_cr("summary_phase:  after final summarization");
  1918     Universe::print();
  1919     NOT_PRODUCT(print_region_ranges());
  1920     if (Verbose) {
  1921       NOT_PRODUCT(print_generic_summary_data(_summary_data, _space_info));
  1926 // This method should contain all heap-specific policy for invoking a full
  1927 // collection.  invoke_no_policy() will only attempt to compact the heap; it
  1928 // will do nothing further.  If we need to bail out for policy reasons, scavenge
  1929 // before full gc, or any other specialized behavior, it needs to be added here.
  1930 //
  1931 // Note that this method should only be called from the vm_thread while at a
  1932 // safepoint.
  1933 //
  1934 // Note that the all_soft_refs_clear flag in the collector policy
  1935 // may be true because this method can be called without intervening
  1936 // activity.  For example when the heap space is tight and full measure
  1937 // are being taken to free space.
  1938 void PSParallelCompact::invoke(bool maximum_heap_compaction) {
  1939   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  1940   assert(Thread::current() == (Thread*)VMThread::vm_thread(),
  1941          "should be in vm thread");
  1943   ParallelScavengeHeap* heap = gc_heap();
  1944   GCCause::Cause gc_cause = heap->gc_cause();
  1945   assert(!heap->is_gc_active(), "not reentrant");
  1947   PSAdaptiveSizePolicy* policy = heap->size_policy();
  1948   IsGCActiveMark mark;
  1950   if (ScavengeBeforeFullGC) {
  1951     PSScavenge::invoke_no_policy();
  1954   const bool clear_all_soft_refs =
  1955     heap->collector_policy()->should_clear_all_soft_refs();
  1957   PSParallelCompact::invoke_no_policy(clear_all_soft_refs ||
  1958                                       maximum_heap_compaction);
  1961 bool ParallelCompactData::region_contains(size_t region_index, HeapWord* addr) {
  1962   size_t addr_region_index = addr_to_region_idx(addr);
  1963   return region_index == addr_region_index;
  1966 // This method contains no policy. You should probably
  1967 // be calling invoke() instead.
  1968 bool PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
  1969   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
  1970   assert(ref_processor() != NULL, "Sanity");
  1972   if (GC_locker::check_active_before_gc()) {
  1973     return false;
  1976   TimeStamp marking_start;
  1977   TimeStamp compaction_start;
  1978   TimeStamp collection_exit;
  1980   ParallelScavengeHeap* heap = gc_heap();
  1981   GCCause::Cause gc_cause = heap->gc_cause();
  1982   PSYoungGen* young_gen = heap->young_gen();
  1983   PSOldGen* old_gen = heap->old_gen();
  1984   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
  1986   // The scope of casr should end after code that can change
  1987   // CollectorPolicy::_should_clear_all_soft_refs.
  1988   ClearedAllSoftRefs casr(maximum_heap_compaction,
  1989                           heap->collector_policy());
  1991   if (ZapUnusedHeapArea) {
  1992     // Save information needed to minimize mangling
  1993     heap->record_gen_tops_before_GC();
  1996   heap->pre_full_gc_dump();
  1998   _print_phases = PrintGCDetails && PrintParallelOldGCPhaseTimes;
  2000   // Make sure data structures are sane, make the heap parsable, and do other
  2001   // miscellaneous bookkeeping.
  2002   PreGCValues pre_gc_values;
  2003   pre_compact(&pre_gc_values);
  2005   // Get the compaction manager reserved for the VM thread.
  2006   ParCompactionManager* const vmthread_cm =
  2007     ParCompactionManager::manager_array(gc_task_manager()->workers());
  2009   // Place after pre_compact() where the number of invocations is incremented.
  2010   AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
  2013     ResourceMark rm;
  2014     HandleMark hm;
  2016     // Set the number of GC threads to be used in this collection
  2017     gc_task_manager()->set_active_gang();
  2018     gc_task_manager()->task_idle_workers();
  2019     heap->set_par_threads(gc_task_manager()->active_workers());
  2021     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
  2022     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  2023     TraceTime t1(GCCauseString("Full GC", gc_cause), PrintGC, !PrintGCDetails, gclog_or_tty);
  2024     TraceCollectorStats tcs(counters());
  2025     TraceMemoryManagerStats tms(true /* Full GC */,gc_cause);
  2027     if (TraceGen1Time) accumulated_time()->start();
  2029     // Let the size policy know we're starting
  2030     size_policy->major_collection_begin();
  2032     CodeCache::gc_prologue();
  2033     Threads::gc_prologue();
  2035     COMPILER2_PRESENT(DerivedPointerTable::clear());
  2037     ref_processor()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
  2038     ref_processor()->setup_policy(maximum_heap_compaction);
  2040     bool marked_for_unloading = false;
  2042     marking_start.update();
  2043     marking_phase(vmthread_cm, maximum_heap_compaction);
  2045 #ifndef PRODUCT
  2046     if (TraceParallelOldGCMarkingPhase) {
  2047       gclog_or_tty->print_cr("marking_phase: cas_tries %d  cas_retries %d "
  2048         "cas_by_another %d",
  2049         mark_bitmap()->cas_tries(), mark_bitmap()->cas_retries(),
  2050         mark_bitmap()->cas_by_another());
  2052 #endif  // #ifndef PRODUCT
  2054     bool max_on_system_gc = UseMaximumCompactionOnSystemGC
  2055       && gc_cause == GCCause::_java_lang_system_gc;
  2056     summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc);
  2058     COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
  2059     COMPILER2_PRESENT(DerivedPointerTable::set_active(false));
  2061     // adjust_roots() updates Universe::_intArrayKlassObj which is
  2062     // needed by the compaction for filling holes in the dense prefix.
  2063     adjust_roots();
  2065     compaction_start.update();
  2066     compact();
  2068     // Reset the mark bitmap, summary data, and do other bookkeeping.  Must be
  2069     // done before resizing.
  2070     post_compact();
  2072     // Let the size policy know we're done
  2073     size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
  2075     if (UseAdaptiveSizePolicy) {
  2076       if (PrintAdaptiveSizePolicy) {
  2077         gclog_or_tty->print("AdaptiveSizeStart: ");
  2078         gclog_or_tty->stamp();
  2079         gclog_or_tty->print_cr(" collection: %d ",
  2080                        heap->total_collections());
  2081         if (Verbose) {
  2082           gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d",
  2083             old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
  2087       // Don't check if the size_policy is ready here.  Let
  2088       // the size_policy check that internally.
  2089       if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
  2090           ((gc_cause != GCCause::_java_lang_system_gc) ||
  2091             UseAdaptiveSizePolicyWithSystemGC)) {
  2092         // Calculate optimal free space amounts
  2093         assert(young_gen->max_size() >
  2094           young_gen->from_space()->capacity_in_bytes() +
  2095           young_gen->to_space()->capacity_in_bytes(),
  2096           "Sizes of space in young gen are out-of-bounds");
  2097         size_t max_eden_size = young_gen->max_size() -
  2098           young_gen->from_space()->capacity_in_bytes() -
  2099           young_gen->to_space()->capacity_in_bytes();
  2100         size_policy->compute_generation_free_space(
  2101                               young_gen->used_in_bytes(),
  2102                               young_gen->eden_space()->used_in_bytes(),
  2103                               old_gen->used_in_bytes(),
  2104                               young_gen->eden_space()->capacity_in_bytes(),
  2105                               old_gen->max_gen_size(),
  2106                               max_eden_size,
  2107                               true /* full gc*/,
  2108                               gc_cause,
  2109                               heap->collector_policy());
  2111         heap->resize_old_gen(
  2112           size_policy->calculated_old_free_size_in_bytes());
  2114         // Don't resize the young generation at an major collection.  A
  2115         // desired young generation size may have been calculated but
  2116         // resizing the young generation complicates the code because the
  2117         // resizing of the old generation may have moved the boundary
  2118         // between the young generation and the old generation.  Let the
  2119         // young generation resizing happen at the minor collections.
  2121       if (PrintAdaptiveSizePolicy) {
  2122         gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
  2123                        heap->total_collections());
  2127     if (UsePerfData) {
  2128       PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
  2129       counters->update_counters();
  2130       counters->update_old_capacity(old_gen->capacity_in_bytes());
  2131       counters->update_young_capacity(young_gen->capacity_in_bytes());
  2134     heap->resize_all_tlabs();
  2136     // Resize the metaspace capactiy after a collection
  2137     MetaspaceGC::compute_new_size();
  2139     if (TraceGen1Time) accumulated_time()->stop();
  2141     if (PrintGC) {
  2142       if (PrintGCDetails) {
  2143         // No GC timestamp here.  This is after GC so it would be confusing.
  2144         young_gen->print_used_change(pre_gc_values.young_gen_used());
  2145         old_gen->print_used_change(pre_gc_values.old_gen_used());
  2146         heap->print_heap_change(pre_gc_values.heap_used());
  2147         MetaspaceAux::print_metaspace_change(pre_gc_values.metadata_used());
  2148       } else {
  2149         heap->print_heap_change(pre_gc_values.heap_used());
  2153     // Track memory usage and detect low memory
  2154     MemoryService::track_memory_usage();
  2155     heap->update_counters();
  2156     gc_task_manager()->release_idle_workers();
  2159 #ifdef ASSERT
  2160   for (size_t i = 0; i < ParallelGCThreads + 1; ++i) {
  2161     ParCompactionManager* const cm =
  2162       ParCompactionManager::manager_array(int(i));
  2163     assert(cm->marking_stack()->is_empty(),       "should be empty");
  2164     assert(ParCompactionManager::region_list(int(i))->is_empty(), "should be empty");
  2166 #endif // ASSERT
  2168   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
  2169     HandleMark hm;  // Discard invalid handles created during verification
  2170     Universe::verify(" VerifyAfterGC:");
  2173   // Re-verify object start arrays
  2174   if (VerifyObjectStartArray &&
  2175       VerifyAfterGC) {
  2176     old_gen->verify_object_start_array();
  2179   if (ZapUnusedHeapArea) {
  2180     old_gen->object_space()->check_mangled_unused_area_complete();
  2183   NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
  2185   collection_exit.update();
  2187   heap->print_heap_after_gc();
  2188   if (PrintGCTaskTimeStamps) {
  2189     gclog_or_tty->print_cr("VM-Thread " INT64_FORMAT " " INT64_FORMAT " "
  2190                            INT64_FORMAT,
  2191                            marking_start.ticks(), compaction_start.ticks(),
  2192                            collection_exit.ticks());
  2193     gc_task_manager()->print_task_time_stamps();
  2196   heap->post_full_gc_dump();
  2198 #ifdef TRACESPINNING
  2199   ParallelTaskTerminator::print_termination_counts();
  2200 #endif
  2202   return true;
  2205 bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
  2206                                              PSYoungGen* young_gen,
  2207                                              PSOldGen* old_gen) {
  2208   MutableSpace* const eden_space = young_gen->eden_space();
  2209   assert(!eden_space->is_empty(), "eden must be non-empty");
  2210   assert(young_gen->virtual_space()->alignment() ==
  2211          old_gen->virtual_space()->alignment(), "alignments do not match");
  2213   if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
  2214     return false;
  2217   // Both generations must be completely committed.
  2218   if (young_gen->virtual_space()->uncommitted_size() != 0) {
  2219     return false;
  2221   if (old_gen->virtual_space()->uncommitted_size() != 0) {
  2222     return false;
  2225   // Figure out how much to take from eden.  Include the average amount promoted
  2226   // in the total; otherwise the next young gen GC will simply bail out to a
  2227   // full GC.
  2228   const size_t alignment = old_gen->virtual_space()->alignment();
  2229   const size_t eden_used = eden_space->used_in_bytes();
  2230   const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
  2231   const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
  2232   const size_t eden_capacity = eden_space->capacity_in_bytes();
  2234   if (absorb_size >= eden_capacity) {
  2235     return false; // Must leave some space in eden.
  2238   const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
  2239   if (new_young_size < young_gen->min_gen_size()) {
  2240     return false; // Respect young gen minimum size.
  2243   if (TraceAdaptiveGCBoundary && Verbose) {
  2244     gclog_or_tty->print(" absorbing " SIZE_FORMAT "K:  "
  2245                         "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
  2246                         "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
  2247                         "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
  2248                         absorb_size / K,
  2249                         eden_capacity / K, (eden_capacity - absorb_size) / K,
  2250                         young_gen->from_space()->used_in_bytes() / K,
  2251                         young_gen->to_space()->used_in_bytes() / K,
  2252                         young_gen->capacity_in_bytes() / K, new_young_size / K);
  2255   // Fill the unused part of the old gen.
  2256   MutableSpace* const old_space = old_gen->object_space();
  2257   HeapWord* const unused_start = old_space->top();
  2258   size_t const unused_words = pointer_delta(old_space->end(), unused_start);
  2260   if (unused_words > 0) {
  2261     if (unused_words < CollectedHeap::min_fill_size()) {
  2262       return false;  // If the old gen cannot be filled, must give up.
  2264     CollectedHeap::fill_with_objects(unused_start, unused_words);
  2267   // Take the live data from eden and set both top and end in the old gen to
  2268   // eden top.  (Need to set end because reset_after_change() mangles the region
  2269   // from end to virtual_space->high() in debug builds).
  2270   HeapWord* const new_top = eden_space->top();
  2271   old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
  2272                                         absorb_size);
  2273   young_gen->reset_after_change();
  2274   old_space->set_top(new_top);
  2275   old_space->set_end(new_top);
  2276   old_gen->reset_after_change();
  2278   // Update the object start array for the filler object and the data from eden.
  2279   ObjectStartArray* const start_array = old_gen->start_array();
  2280   for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
  2281     start_array->allocate_block(p);
  2284   // Could update the promoted average here, but it is not typically updated at
  2285   // full GCs and the value to use is unclear.  Something like
  2286   //
  2287   // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
  2289   size_policy->set_bytes_absorbed_from_eden(absorb_size);
  2290   return true;
  2293 GCTaskManager* const PSParallelCompact::gc_task_manager() {
  2294   assert(ParallelScavengeHeap::gc_task_manager() != NULL,
  2295     "shouldn't return NULL");
  2296   return ParallelScavengeHeap::gc_task_manager();
  2299 void PSParallelCompact::marking_phase(ParCompactionManager* cm,
  2300                                       bool maximum_heap_compaction) {
  2301   // Recursively traverse all live objects and mark them
  2302   TraceTime tm("marking phase", print_phases(), true, gclog_or_tty);
  2304   ParallelScavengeHeap* heap = gc_heap();
  2305   uint parallel_gc_threads = heap->gc_task_manager()->workers();
  2306   uint active_gc_threads = heap->gc_task_manager()->active_workers();
  2307   TaskQueueSetSuper* qset = ParCompactionManager::region_array();
  2308   ParallelTaskTerminator terminator(active_gc_threads, qset);
  2310   PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm);
  2311   PSParallelCompact::FollowStackClosure follow_stack_closure(cm);
  2313   // Need new claim bits before marking starts.
  2314   ClassLoaderDataGraph::clear_claimed_marks();
  2317     TraceTime tm_m("par mark", print_phases(), true, gclog_or_tty);
  2318     ParallelScavengeHeap::ParStrongRootsScope psrs;
  2320     GCTaskQueue* q = GCTaskQueue::create();
  2322     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe));
  2323     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles));
  2324     // We scan the thread roots in parallel
  2325     Threads::create_thread_roots_marking_tasks(q);
  2326     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer));
  2327     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::flat_profiler));
  2328     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management));
  2329     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary));
  2330     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti));
  2331     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::code_cache));
  2333     if (active_gc_threads > 1) {
  2334       for (uint j = 0; j < active_gc_threads; j++) {
  2335         q->enqueue(new StealMarkingTask(&terminator));
  2339     gc_task_manager()->execute_and_wait(q);
  2342   // Process reference objects found during marking
  2344     TraceTime tm_r("reference processing", print_phases(), true, gclog_or_tty);
  2345     if (ref_processor()->processing_is_mt()) {
  2346       RefProcTaskExecutor task_executor;
  2347       ref_processor()->process_discovered_references(
  2348         is_alive_closure(), &mark_and_push_closure, &follow_stack_closure,
  2349         &task_executor);
  2350     } else {
  2351       ref_processor()->process_discovered_references(
  2352         is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, NULL);
  2356   TraceTime tm_c("class unloading", print_phases(), true, gclog_or_tty);
  2358   // This is the point where the entire marking should have completed.
  2359   assert(cm->marking_stacks_empty(), "Marking should have completed");
  2361   // Follow system dictionary roots and unload classes.
  2362   bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
  2364   // Unload nmethods.
  2365   CodeCache::do_unloading(is_alive_closure(), purged_class);
  2367   // Prune dead klasses from subklass/sibling/implementor lists.
  2368   Klass::clean_weak_klass_links(is_alive_closure());
  2370   // Delete entries for dead interned strings.
  2371   StringTable::unlink(is_alive_closure());
  2373   // Clean up unreferenced symbols in symbol table.
  2374   SymbolTable::unlink();
  2377 void PSParallelCompact::follow_klass(ParCompactionManager* cm, Klass* klass) {
  2378   ClassLoaderData* cld = klass->class_loader_data();
  2379   // The actual processing of the klass is done when we
  2380   // traverse the list of Klasses in the class loader data.
  2381   PSParallelCompact::follow_class_loader(cm, cld);
  2384 void PSParallelCompact::adjust_klass(ParCompactionManager* cm, Klass* klass) {
  2385   ClassLoaderData* cld = klass->class_loader_data();
  2386   // The actual processing of the klass is done when we
  2387   // traverse the list of Klasses in the class loader data.
  2388   PSParallelCompact::adjust_class_loader(cm, cld);
  2391 void PSParallelCompact::follow_class_loader(ParCompactionManager* cm,
  2392                                             ClassLoaderData* cld) {
  2393   PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm);
  2394   PSParallelCompact::FollowKlassClosure follow_klass_closure(&mark_and_push_closure);
  2396   cld->oops_do(&mark_and_push_closure, &follow_klass_closure, true);
  2399 void PSParallelCompact::adjust_class_loader(ParCompactionManager* cm,
  2400                                             ClassLoaderData* cld) {
  2401   cld->oops_do(PSParallelCompact::adjust_pointer_closure(),
  2402                PSParallelCompact::adjust_klass_closure(),
  2403                true);
  2406 // This should be moved to the shared markSweep code!
  2407 class PSAlwaysTrueClosure: public BoolObjectClosure {
  2408 public:
  2409   void do_object(oop p) { ShouldNotReachHere(); }
  2410   bool do_object_b(oop p) { return true; }
  2411 };
  2412 static PSAlwaysTrueClosure always_true;
  2414 void PSParallelCompact::adjust_roots() {
  2415   // Adjust the pointers to reflect the new locations
  2416   TraceTime tm("adjust roots", print_phases(), true, gclog_or_tty);
  2418   // Need new claim bits when tracing through and adjusting pointers.
  2419   ClassLoaderDataGraph::clear_claimed_marks();
  2421   // General strong roots.
  2422   Universe::oops_do(adjust_pointer_closure());
  2423   JNIHandles::oops_do(adjust_pointer_closure());   // Global (strong) JNI handles
  2424   CLDToOopClosure adjust_from_cld(adjust_pointer_closure());
  2425   Threads::oops_do(adjust_pointer_closure(), &adjust_from_cld, NULL);
  2426   ObjectSynchronizer::oops_do(adjust_pointer_closure());
  2427   FlatProfiler::oops_do(adjust_pointer_closure());
  2428   Management::oops_do(adjust_pointer_closure());
  2429   JvmtiExport::oops_do(adjust_pointer_closure());
  2430   // SO_AllClasses
  2431   SystemDictionary::oops_do(adjust_pointer_closure());
  2432   ClassLoaderDataGraph::oops_do(adjust_pointer_closure(), adjust_klass_closure(), true);
  2434   // Now adjust pointers in remaining weak roots.  (All of which should
  2435   // have been cleared if they pointed to non-surviving objects.)
  2436   // Global (weak) JNI handles
  2437   JNIHandles::weak_oops_do(&always_true, adjust_pointer_closure());
  2439   CodeCache::oops_do(adjust_pointer_closure());
  2440   StringTable::oops_do(adjust_pointer_closure());
  2441   ref_processor()->weak_oops_do(adjust_pointer_closure());
  2442   // Roots were visited so references into the young gen in roots
  2443   // may have been scanned.  Process them also.
  2444   // Should the reference processor have a span that excludes
  2445   // young gen objects?
  2446   PSScavenge::reference_processor()->weak_oops_do(adjust_pointer_closure());
  2449 void PSParallelCompact::enqueue_region_draining_tasks(GCTaskQueue* q,
  2450                                                       uint parallel_gc_threads)
  2452   TraceTime tm("drain task setup", print_phases(), true, gclog_or_tty);
  2454   // Find the threads that are active
  2455   unsigned int which = 0;
  2457   const uint task_count = MAX2(parallel_gc_threads, 1U);
  2458   for (uint j = 0; j < task_count; j++) {
  2459     q->enqueue(new DrainStacksCompactionTask(j));
  2460     ParCompactionManager::verify_region_list_empty(j);
  2461     // Set the region stacks variables to "no" region stack values
  2462     // so that they will be recognized and needing a region stack
  2463     // in the stealing tasks if they do not get one by executing
  2464     // a draining stack.
  2465     ParCompactionManager* cm = ParCompactionManager::manager_array(j);
  2466     cm->set_region_stack(NULL);
  2467     cm->set_region_stack_index((uint)max_uintx);
  2469   ParCompactionManager::reset_recycled_stack_index();
  2471   // Find all regions that are available (can be filled immediately) and
  2472   // distribute them to the thread stacks.  The iteration is done in reverse
  2473   // order (high to low) so the regions will be removed in ascending order.
  2475   const ParallelCompactData& sd = PSParallelCompact::summary_data();
  2477   size_t fillable_regions = 0;   // A count for diagnostic purposes.
  2478   // A region index which corresponds to the tasks created above.
  2479   // "which" must be 0 <= which < task_count
  2481   which = 0;
  2482   // id + 1 is used to test termination so unsigned  can
  2483   // be used with an old_space_id == 0.
  2484   for (unsigned int id = to_space_id; id + 1 > old_space_id; --id) {
  2485     SpaceInfo* const space_info = _space_info + id;
  2486     MutableSpace* const space = space_info->space();
  2487     HeapWord* const new_top = space_info->new_top();
  2489     const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix());
  2490     const size_t end_region =
  2491       sd.addr_to_region_idx(sd.region_align_up(new_top));
  2493     for (size_t cur = end_region - 1; cur + 1 > beg_region; --cur) {
  2494       if (sd.region(cur)->claim_unsafe()) {
  2495         ParCompactionManager::region_list_push(which, cur);
  2497         if (TraceParallelOldGCCompactionPhase && Verbose) {
  2498           const size_t count_mod_8 = fillable_regions & 7;
  2499           if (count_mod_8 == 0) gclog_or_tty->print("fillable: ");
  2500           gclog_or_tty->print(" " SIZE_FORMAT_W(7), cur);
  2501           if (count_mod_8 == 7) gclog_or_tty->cr();
  2504         NOT_PRODUCT(++fillable_regions;)
  2506         // Assign regions to tasks in round-robin fashion.
  2507         if (++which == task_count) {
  2508           assert(which <= parallel_gc_threads,
  2509             "Inconsistent number of workers");
  2510           which = 0;
  2516   if (TraceParallelOldGCCompactionPhase) {
  2517     if (Verbose && (fillable_regions & 7) != 0) gclog_or_tty->cr();
  2518     gclog_or_tty->print_cr("%u initially fillable regions", fillable_regions);
  2522 #define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4
  2524 void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q,
  2525                                                     uint parallel_gc_threads) {
  2526   TraceTime tm("dense prefix task setup", print_phases(), true, gclog_or_tty);
  2528   ParallelCompactData& sd = PSParallelCompact::summary_data();
  2530   // Iterate over all the spaces adding tasks for updating
  2531   // regions in the dense prefix.  Assume that 1 gc thread
  2532   // will work on opening the gaps and the remaining gc threads
  2533   // will work on the dense prefix.
  2534   unsigned int space_id;
  2535   for (space_id = old_space_id; space_id < last_space_id; ++ space_id) {
  2536     HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix();
  2537     const MutableSpace* const space = _space_info[space_id].space();
  2539     if (dense_prefix_end == space->bottom()) {
  2540       // There is no dense prefix for this space.
  2541       continue;
  2544     // The dense prefix is before this region.
  2545     size_t region_index_end_dense_prefix =
  2546         sd.addr_to_region_idx(dense_prefix_end);
  2547     RegionData* const dense_prefix_cp =
  2548       sd.region(region_index_end_dense_prefix);
  2549     assert(dense_prefix_end == space->end() ||
  2550            dense_prefix_cp->available() ||
  2551            dense_prefix_cp->claimed(),
  2552            "The region after the dense prefix should always be ready to fill");
  2554     size_t region_index_start = sd.addr_to_region_idx(space->bottom());
  2556     // Is there dense prefix work?
  2557     size_t total_dense_prefix_regions =
  2558       region_index_end_dense_prefix - region_index_start;
  2559     // How many regions of the dense prefix should be given to
  2560     // each thread?
  2561     if (total_dense_prefix_regions > 0) {
  2562       uint tasks_for_dense_prefix = 1;
  2563       if (total_dense_prefix_regions <=
  2564           (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) {
  2565         // Don't over partition.  This assumes that
  2566         // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value
  2567         // so there are not many regions to process.
  2568         tasks_for_dense_prefix = parallel_gc_threads;
  2569       } else {
  2570         // Over partition
  2571         tasks_for_dense_prefix = parallel_gc_threads *
  2572           PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING;
  2574       size_t regions_per_thread = total_dense_prefix_regions /
  2575         tasks_for_dense_prefix;
  2576       // Give each thread at least 1 region.
  2577       if (regions_per_thread == 0) {
  2578         regions_per_thread = 1;
  2581       for (uint k = 0; k < tasks_for_dense_prefix; k++) {
  2582         if (region_index_start >= region_index_end_dense_prefix) {
  2583           break;
  2585         // region_index_end is not processed
  2586         size_t region_index_end = MIN2(region_index_start + regions_per_thread,
  2587                                        region_index_end_dense_prefix);
  2588         q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
  2589                                              region_index_start,
  2590                                              region_index_end));
  2591         region_index_start = region_index_end;
  2594     // This gets any part of the dense prefix that did not
  2595     // fit evenly.
  2596     if (region_index_start < region_index_end_dense_prefix) {
  2597       q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
  2598                                            region_index_start,
  2599                                            region_index_end_dense_prefix));
  2604 void PSParallelCompact::enqueue_region_stealing_tasks(
  2605                                      GCTaskQueue* q,
  2606                                      ParallelTaskTerminator* terminator_ptr,
  2607                                      uint parallel_gc_threads) {
  2608   TraceTime tm("steal task setup", print_phases(), true, gclog_or_tty);
  2610   // Once a thread has drained it's stack, it should try to steal regions from
  2611   // other threads.
  2612   if (parallel_gc_threads > 1) {
  2613     for (uint j = 0; j < parallel_gc_threads; j++) {
  2614       q->enqueue(new StealRegionCompactionTask(terminator_ptr));
  2619 void PSParallelCompact::compact() {
  2620   // trace("5");
  2621   TraceTime tm("compaction phase", print_phases(), true, gclog_or_tty);
  2623   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  2624   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
  2625   PSOldGen* old_gen = heap->old_gen();
  2626   old_gen->start_array()->reset();
  2627   uint parallel_gc_threads = heap->gc_task_manager()->workers();
  2628   uint active_gc_threads = heap->gc_task_manager()->active_workers();
  2629   TaskQueueSetSuper* qset = ParCompactionManager::region_array();
  2630   ParallelTaskTerminator terminator(active_gc_threads, qset);
  2632   GCTaskQueue* q = GCTaskQueue::create();
  2633   enqueue_region_draining_tasks(q, active_gc_threads);
  2634   enqueue_dense_prefix_tasks(q, active_gc_threads);
  2635   enqueue_region_stealing_tasks(q, &terminator, active_gc_threads);
  2638     TraceTime tm_pc("par compact", print_phases(), true, gclog_or_tty);
  2640     gc_task_manager()->execute_and_wait(q);
  2642 #ifdef  ASSERT
  2643     // Verify that all regions have been processed before the deferred updates.
  2644     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
  2645       verify_complete(SpaceId(id));
  2647 #endif
  2651     // Update the deferred objects, if any.  Any compaction manager can be used.
  2652     TraceTime tm_du("deferred updates", print_phases(), true, gclog_or_tty);
  2653     ParCompactionManager* cm = ParCompactionManager::manager_array(0);
  2654     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
  2655       update_deferred_objects(cm, SpaceId(id));
  2660 #ifdef  ASSERT
  2661 void PSParallelCompact::verify_complete(SpaceId space_id) {
  2662   // All Regions between space bottom() to new_top() should be marked as filled
  2663   // and all Regions between new_top() and top() should be available (i.e.,
  2664   // should have been emptied).
  2665   ParallelCompactData& sd = summary_data();
  2666   SpaceInfo si = _space_info[space_id];
  2667   HeapWord* new_top_addr = sd.region_align_up(si.new_top());
  2668   HeapWord* old_top_addr = sd.region_align_up(si.space()->top());
  2669   const size_t beg_region = sd.addr_to_region_idx(si.space()->bottom());
  2670   const size_t new_top_region = sd.addr_to_region_idx(new_top_addr);
  2671   const size_t old_top_region = sd.addr_to_region_idx(old_top_addr);
  2673   bool issued_a_warning = false;
  2675   size_t cur_region;
  2676   for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) {
  2677     const RegionData* const c = sd.region(cur_region);
  2678     if (!c->completed()) {
  2679       warning("region " SIZE_FORMAT " not filled:  "
  2680               "destination_count=" SIZE_FORMAT,
  2681               cur_region, c->destination_count());
  2682       issued_a_warning = true;
  2686   for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) {
  2687     const RegionData* const c = sd.region(cur_region);
  2688     if (!c->available()) {
  2689       warning("region " SIZE_FORMAT " not empty:   "
  2690               "destination_count=" SIZE_FORMAT,
  2691               cur_region, c->destination_count());
  2692       issued_a_warning = true;
  2696   if (issued_a_warning) {
  2697     print_region_ranges();
  2700 #endif  // #ifdef ASSERT
  2702 // Update interior oops in the ranges of regions [beg_region, end_region).
  2703 void
  2704 PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
  2705                                                        SpaceId space_id,
  2706                                                        size_t beg_region,
  2707                                                        size_t end_region) {
  2708   ParallelCompactData& sd = summary_data();
  2709   ParMarkBitMap* const mbm = mark_bitmap();
  2711   HeapWord* beg_addr = sd.region_to_addr(beg_region);
  2712   HeapWord* const end_addr = sd.region_to_addr(end_region);
  2713   assert(beg_region <= end_region, "bad region range");
  2714   assert(end_addr <= dense_prefix(space_id), "not in the dense prefix");
  2716 #ifdef  ASSERT
  2717   // Claim the regions to avoid triggering an assert when they are marked as
  2718   // filled.
  2719   for (size_t claim_region = beg_region; claim_region < end_region; ++claim_region) {
  2720     assert(sd.region(claim_region)->claim_unsafe(), "claim() failed");
  2722 #endif  // #ifdef ASSERT
  2724   if (beg_addr != space(space_id)->bottom()) {
  2725     // Find the first live object or block of dead space that *starts* in this
  2726     // range of regions.  If a partial object crosses onto the region, skip it;
  2727     // it will be marked for 'deferred update' when the object head is
  2728     // processed.  If dead space crosses onto the region, it is also skipped; it
  2729     // will be filled when the prior region is processed.  If neither of those
  2730     // apply, the first word in the region is the start of a live object or dead
  2731     // space.
  2732     assert(beg_addr > space(space_id)->bottom(), "sanity");
  2733     const RegionData* const cp = sd.region(beg_region);
  2734     if (cp->partial_obj_size() != 0) {
  2735       beg_addr = sd.partial_obj_end(beg_region);
  2736     } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) {
  2737       beg_addr = mbm->find_obj_beg(beg_addr, end_addr);
  2741   if (beg_addr < end_addr) {
  2742     // A live object or block of dead space starts in this range of Regions.
  2743      HeapWord* const dense_prefix_end = dense_prefix(space_id);
  2745     // Create closures and iterate.
  2746     UpdateOnlyClosure update_closure(mbm, cm, space_id);
  2747     FillClosure fill_closure(cm, space_id);
  2748     ParMarkBitMap::IterationStatus status;
  2749     status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr,
  2750                           dense_prefix_end);
  2751     if (status == ParMarkBitMap::incomplete) {
  2752       update_closure.do_addr(update_closure.source());
  2756   // Mark the regions as filled.
  2757   RegionData* const beg_cp = sd.region(beg_region);
  2758   RegionData* const end_cp = sd.region(end_region);
  2759   for (RegionData* cp = beg_cp; cp < end_cp; ++cp) {
  2760     cp->set_completed();
  2764 // Return the SpaceId for the space containing addr.  If addr is not in the
  2765 // heap, last_space_id is returned.  In debug mode it expects the address to be
  2766 // in the heap and asserts such.
  2767 PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
  2768   assert(Universe::heap()->is_in_reserved(addr), "addr not in the heap");
  2770   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
  2771     if (_space_info[id].space()->contains(addr)) {
  2772       return SpaceId(id);
  2776   assert(false, "no space contains the addr");
  2777   return last_space_id;
  2780 void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm,
  2781                                                 SpaceId id) {
  2782   assert(id < last_space_id, "bad space id");
  2784   ParallelCompactData& sd = summary_data();
  2785   const SpaceInfo* const space_info = _space_info + id;
  2786   ObjectStartArray* const start_array = space_info->start_array();
  2788   const MutableSpace* const space = space_info->space();
  2789   assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set");
  2790   HeapWord* const beg_addr = space_info->dense_prefix();
  2791   HeapWord* const end_addr = sd.region_align_up(space_info->new_top());
  2793   const RegionData* const beg_region = sd.addr_to_region_ptr(beg_addr);
  2794   const RegionData* const end_region = sd.addr_to_region_ptr(end_addr);
  2795   const RegionData* cur_region;
  2796   for (cur_region = beg_region; cur_region < end_region; ++cur_region) {
  2797     HeapWord* const addr = cur_region->deferred_obj_addr();
  2798     if (addr != NULL) {
  2799       if (start_array != NULL) {
  2800         start_array->allocate_block(addr);
  2802       oop(addr)->update_contents(cm);
  2803       assert(oop(addr)->is_oop_or_null(), "should be an oop now");
  2808 // Skip over count live words starting from beg, and return the address of the
  2809 // next live word.  Unless marked, the word corresponding to beg is assumed to
  2810 // be dead.  Callers must either ensure beg does not correspond to the middle of
  2811 // an object, or account for those live words in some other way.  Callers must
  2812 // also ensure that there are enough live words in the range [beg, end) to skip.
  2813 HeapWord*
  2814 PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
  2816   assert(count > 0, "sanity");
  2818   ParMarkBitMap* m = mark_bitmap();
  2819   idx_t bits_to_skip = m->words_to_bits(count);
  2820   idx_t cur_beg = m->addr_to_bit(beg);
  2821   const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end));
  2823   do {
  2824     cur_beg = m->find_obj_beg(cur_beg, search_end);
  2825     idx_t cur_end = m->find_obj_end(cur_beg, search_end);
  2826     const size_t obj_bits = cur_end - cur_beg + 1;
  2827     if (obj_bits > bits_to_skip) {
  2828       return m->bit_to_addr(cur_beg + bits_to_skip);
  2830     bits_to_skip -= obj_bits;
  2831     cur_beg = cur_end + 1;
  2832   } while (bits_to_skip > 0);
  2834   // Skipping the desired number of words landed just past the end of an object.
  2835   // Find the start of the next object.
  2836   cur_beg = m->find_obj_beg(cur_beg, search_end);
  2837   assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip");
  2838   return m->bit_to_addr(cur_beg);
  2841 HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
  2842                                             SpaceId src_space_id,
  2843                                             size_t src_region_idx)
  2845   assert(summary_data().is_region_aligned(dest_addr), "not aligned");
  2847   const SplitInfo& split_info = _space_info[src_space_id].split_info();
  2848   if (split_info.dest_region_addr() == dest_addr) {
  2849     // The partial object ending at the split point contains the first word to
  2850     // be copied to dest_addr.
  2851     return split_info.first_src_addr();
  2854   const ParallelCompactData& sd = summary_data();
  2855   ParMarkBitMap* const bitmap = mark_bitmap();
  2856   const size_t RegionSize = ParallelCompactData::RegionSize;
  2858   assert(sd.is_region_aligned(dest_addr), "not aligned");
  2859   const RegionData* const src_region_ptr = sd.region(src_region_idx);
  2860   const size_t partial_obj_size = src_region_ptr->partial_obj_size();
  2861   HeapWord* const src_region_destination = src_region_ptr->destination();
  2863   assert(dest_addr >= src_region_destination, "wrong src region");
  2864   assert(src_region_ptr->data_size() > 0, "src region cannot be empty");
  2866   HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx);
  2867   HeapWord* const src_region_end = src_region_beg + RegionSize;
  2869   HeapWord* addr = src_region_beg;
  2870   if (dest_addr == src_region_destination) {
  2871     // Return the first live word in the source region.
  2872     if (partial_obj_size == 0) {
  2873       addr = bitmap->find_obj_beg(addr, src_region_end);
  2874       assert(addr < src_region_end, "no objects start in src region");
  2876     return addr;
  2879   // Must skip some live data.
  2880   size_t words_to_skip = dest_addr - src_region_destination;
  2881   assert(src_region_ptr->data_size() > words_to_skip, "wrong src region");
  2883   if (partial_obj_size >= words_to_skip) {
  2884     // All the live words to skip are part of the partial object.
  2885     addr += words_to_skip;
  2886     if (partial_obj_size == words_to_skip) {
  2887       // Find the first live word past the partial object.
  2888       addr = bitmap->find_obj_beg(addr, src_region_end);
  2889       assert(addr < src_region_end, "wrong src region");
  2891     return addr;
  2894   // Skip over the partial object (if any).
  2895   if (partial_obj_size != 0) {
  2896     words_to_skip -= partial_obj_size;
  2897     addr += partial_obj_size;
  2900   // Skip over live words due to objects that start in the region.
  2901   addr = skip_live_words(addr, src_region_end, words_to_skip);
  2902   assert(addr < src_region_end, "wrong src region");
  2903   return addr;
  2906 void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
  2907                                                      SpaceId src_space_id,
  2908                                                      size_t beg_region,
  2909                                                      HeapWord* end_addr)
  2911   ParallelCompactData& sd = summary_data();
  2913 #ifdef ASSERT
  2914   MutableSpace* const src_space = _space_info[src_space_id].space();
  2915   HeapWord* const beg_addr = sd.region_to_addr(beg_region);
  2916   assert(src_space->contains(beg_addr) || beg_addr == src_space->end(),
  2917          "src_space_id does not match beg_addr");
  2918   assert(src_space->contains(end_addr) || end_addr == src_space->end(),
  2919          "src_space_id does not match end_addr");
  2920 #endif // #ifdef ASSERT
  2922   RegionData* const beg = sd.region(beg_region);
  2923   RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr));
  2925   // Regions up to new_top() are enqueued if they become available.
  2926   HeapWord* const new_top = _space_info[src_space_id].new_top();
  2927   RegionData* const enqueue_end =
  2928     sd.addr_to_region_ptr(sd.region_align_up(new_top));
  2930   for (RegionData* cur = beg; cur < end; ++cur) {
  2931     assert(cur->data_size() > 0, "region must have live data");
  2932     cur->decrement_destination_count();
  2933     if (cur < enqueue_end && cur->available() && cur->claim()) {
  2934       cm->push_region(sd.region(cur));
  2939 size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure,
  2940                                           SpaceId& src_space_id,
  2941                                           HeapWord*& src_space_top,
  2942                                           HeapWord* end_addr)
  2944   typedef ParallelCompactData::RegionData RegionData;
  2946   ParallelCompactData& sd = PSParallelCompact::summary_data();
  2947   const size_t region_size = ParallelCompactData::RegionSize;
  2949   size_t src_region_idx = 0;
  2951   // Skip empty regions (if any) up to the top of the space.
  2952   HeapWord* const src_aligned_up = sd.region_align_up(end_addr);
  2953   RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up);
  2954   HeapWord* const top_aligned_up = sd.region_align_up(src_space_top);
  2955   const RegionData* const top_region_ptr =
  2956     sd.addr_to_region_ptr(top_aligned_up);
  2957   while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) {
  2958     ++src_region_ptr;
  2961   if (src_region_ptr < top_region_ptr) {
  2962     // The next source region is in the current space.  Update src_region_idx
  2963     // and the source address to match src_region_ptr.
  2964     src_region_idx = sd.region(src_region_ptr);
  2965     HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx);
  2966     if (src_region_addr > closure.source()) {
  2967       closure.set_source(src_region_addr);
  2969     return src_region_idx;
  2972   // Switch to a new source space and find the first non-empty region.
  2973   unsigned int space_id = src_space_id + 1;
  2974   assert(space_id < last_space_id, "not enough spaces");
  2976   HeapWord* const destination = closure.destination();
  2978   do {
  2979     MutableSpace* space = _space_info[space_id].space();
  2980     HeapWord* const bottom = space->bottom();
  2981     const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom);
  2983     // Iterate over the spaces that do not compact into themselves.
  2984     if (bottom_cp->destination() != bottom) {
  2985       HeapWord* const top_aligned_up = sd.region_align_up(space->top());
  2986       const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
  2988       for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) {
  2989         if (src_cp->live_obj_size() > 0) {
  2990           // Found it.
  2991           assert(src_cp->destination() == destination,
  2992                  "first live obj in the space must match the destination");
  2993           assert(src_cp->partial_obj_size() == 0,
  2994                  "a space cannot begin with a partial obj");
  2996           src_space_id = SpaceId(space_id);
  2997           src_space_top = space->top();
  2998           const size_t src_region_idx = sd.region(src_cp);
  2999           closure.set_source(sd.region_to_addr(src_region_idx));
  3000           return src_region_idx;
  3001         } else {
  3002           assert(src_cp->data_size() == 0, "sanity");
  3006   } while (++space_id < last_space_id);
  3008   assert(false, "no source region was found");
  3009   return 0;
  3012 void PSParallelCompact::fill_region(ParCompactionManager* cm, size_t region_idx)
  3014   typedef ParMarkBitMap::IterationStatus IterationStatus;
  3015   const size_t RegionSize = ParallelCompactData::RegionSize;
  3016   ParMarkBitMap* const bitmap = mark_bitmap();
  3017   ParallelCompactData& sd = summary_data();
  3018   RegionData* const region_ptr = sd.region(region_idx);
  3020   // Get the items needed to construct the closure.
  3021   HeapWord* dest_addr = sd.region_to_addr(region_idx);
  3022   SpaceId dest_space_id = space_id(dest_addr);
  3023   ObjectStartArray* start_array = _space_info[dest_space_id].start_array();
  3024   HeapWord* new_top = _space_info[dest_space_id].new_top();
  3025   assert(dest_addr < new_top, "sanity");
  3026   const size_t words = MIN2(pointer_delta(new_top, dest_addr), RegionSize);
  3028   // Get the source region and related info.
  3029   size_t src_region_idx = region_ptr->source_region();
  3030   SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx));
  3031   HeapWord* src_space_top = _space_info[src_space_id].space()->top();
  3033   MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
  3034   closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx));
  3036   // Adjust src_region_idx to prepare for decrementing destination counts (the
  3037   // destination count is not decremented when a region is copied to itself).
  3038   if (src_region_idx == region_idx) {
  3039     src_region_idx += 1;
  3042   if (bitmap->is_unmarked(closure.source())) {
  3043     // The first source word is in the middle of an object; copy the remainder
  3044     // of the object or as much as will fit.  The fact that pointer updates were
  3045     // deferred will be noted when the object header is processed.
  3046     HeapWord* const old_src_addr = closure.source();
  3047     closure.copy_partial_obj();
  3048     if (closure.is_full()) {
  3049       decrement_destination_counts(cm, src_space_id, src_region_idx,
  3050                                    closure.source());
  3051       region_ptr->set_deferred_obj_addr(NULL);
  3052       region_ptr->set_completed();
  3053       return;
  3056     HeapWord* const end_addr = sd.region_align_down(closure.source());
  3057     if (sd.region_align_down(old_src_addr) != end_addr) {
  3058       // The partial object was copied from more than one source region.
  3059       decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
  3061       // Move to the next source region, possibly switching spaces as well.  All
  3062       // args except end_addr may be modified.
  3063       src_region_idx = next_src_region(closure, src_space_id, src_space_top,
  3064                                        end_addr);
  3068   do {
  3069     HeapWord* const cur_addr = closure.source();
  3070     HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1),
  3071                                     src_space_top);
  3072     IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr);
  3074     if (status == ParMarkBitMap::incomplete) {
  3075       // The last obj that starts in the source region does not end in the
  3076       // region.
  3077       assert(closure.source() < end_addr, "sanity");
  3078       HeapWord* const obj_beg = closure.source();
  3079       HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(),
  3080                                        src_space_top);
  3081       HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end);
  3082       if (obj_end < range_end) {
  3083         // The end was found; the entire object will fit.
  3084         status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end));
  3085         assert(status != ParMarkBitMap::would_overflow, "sanity");
  3086       } else {
  3087         // The end was not found; the object will not fit.
  3088         assert(range_end < src_space_top, "obj cannot cross space boundary");
  3089         status = ParMarkBitMap::would_overflow;
  3093     if (status == ParMarkBitMap::would_overflow) {
  3094       // The last object did not fit.  Note that interior oop updates were
  3095       // deferred, then copy enough of the object to fill the region.
  3096       region_ptr->set_deferred_obj_addr(closure.destination());
  3097       status = closure.copy_until_full(); // copies from closure.source()
  3099       decrement_destination_counts(cm, src_space_id, src_region_idx,
  3100                                    closure.source());
  3101       region_ptr->set_completed();
  3102       return;
  3105     if (status == ParMarkBitMap::full) {
  3106       decrement_destination_counts(cm, src_space_id, src_region_idx,
  3107                                    closure.source());
  3108       region_ptr->set_deferred_obj_addr(NULL);
  3109       region_ptr->set_completed();
  3110       return;
  3113     decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
  3115     // Move to the next source region, possibly switching spaces as well.  All
  3116     // args except end_addr may be modified.
  3117     src_region_idx = next_src_region(closure, src_space_id, src_space_top,
  3118                                      end_addr);
  3119   } while (true);
  3122 void
  3123 PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) {
  3124   const MutableSpace* sp = space(space_id);
  3125   if (sp->is_empty()) {
  3126     return;
  3129   ParallelCompactData& sd = PSParallelCompact::summary_data();
  3130   ParMarkBitMap* const bitmap = mark_bitmap();
  3131   HeapWord* const dp_addr = dense_prefix(space_id);
  3132   HeapWord* beg_addr = sp->bottom();
  3133   HeapWord* end_addr = sp->top();
  3135   assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix");
  3137   const size_t beg_region = sd.addr_to_region_idx(beg_addr);
  3138   const size_t dp_region = sd.addr_to_region_idx(dp_addr);
  3139   if (beg_region < dp_region) {
  3140     update_and_deadwood_in_dense_prefix(cm, space_id, beg_region, dp_region);
  3143   // The destination of the first live object that starts in the region is one
  3144   // past the end of the partial object entering the region (if any).
  3145   HeapWord* const dest_addr = sd.partial_obj_end(dp_region);
  3146   HeapWord* const new_top = _space_info[space_id].new_top();
  3147   assert(new_top >= dest_addr, "bad new_top value");
  3148   const size_t words = pointer_delta(new_top, dest_addr);
  3150   if (words > 0) {
  3151     ObjectStartArray* start_array = _space_info[space_id].start_array();
  3152     MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
  3154     ParMarkBitMap::IterationStatus status;
  3155     status = bitmap->iterate(&closure, dest_addr, end_addr);
  3156     assert(status == ParMarkBitMap::full, "iteration not complete");
  3157     assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr,
  3158            "live objects skipped because closure is full");
  3162 jlong PSParallelCompact::millis_since_last_gc() {
  3163   // We need a monotonically non-deccreasing time in ms but
  3164   // os::javaTimeMillis() does not guarantee monotonicity.
  3165   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
  3166   jlong ret_val = now - _time_of_last_gc;
  3167   // XXX See note in genCollectedHeap::millis_since_last_gc().
  3168   if (ret_val < 0) {
  3169     NOT_PRODUCT(warning("time warp: "INT64_FORMAT, ret_val);)
  3170     return 0;
  3172   return ret_val;
  3175 void PSParallelCompact::reset_millis_since_last_gc() {
  3176   // We need a monotonically non-deccreasing time in ms but
  3177   // os::javaTimeMillis() does not guarantee monotonicity.
  3178   _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
  3181 ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full()
  3183   if (source() != destination()) {
  3184     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
  3185     Copy::aligned_conjoint_words(source(), destination(), words_remaining());
  3187   update_state(words_remaining());
  3188   assert(is_full(), "sanity");
  3189   return ParMarkBitMap::full;
  3192 void MoveAndUpdateClosure::copy_partial_obj()
  3194   size_t words = words_remaining();
  3196   HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end());
  3197   HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end);
  3198   if (end_addr < range_end) {
  3199     words = bitmap()->obj_size(source(), end_addr);
  3202   // This test is necessary; if omitted, the pointer updates to a partial object
  3203   // that crosses the dense prefix boundary could be overwritten.
  3204   if (source() != destination()) {
  3205     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
  3206     Copy::aligned_conjoint_words(source(), destination(), words);
  3208   update_state(words);
  3211 ParMarkBitMapClosure::IterationStatus
  3212 MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
  3213   assert(destination() != NULL, "sanity");
  3214   assert(bitmap()->obj_size(addr) == words, "bad size");
  3216   _source = addr;
  3217   assert(PSParallelCompact::summary_data().calc_new_pointer(source()) ==
  3218          destination(), "wrong destination");
  3220   if (words > words_remaining()) {
  3221     return ParMarkBitMap::would_overflow;
  3224   // The start_array must be updated even if the object is not moving.
  3225   if (_start_array != NULL) {
  3226     _start_array->allocate_block(destination());
  3229   if (destination() != source()) {
  3230     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
  3231     Copy::aligned_conjoint_words(source(), destination(), words);
  3234   oop moved_oop = (oop) destination();
  3235   moved_oop->update_contents(compaction_manager());
  3236   assert(moved_oop->is_oop_or_null(), "Object should be whole at this point");
  3238   update_state(words);
  3239   assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity");
  3240   return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete;
  3243 UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm,
  3244                                      ParCompactionManager* cm,
  3245                                      PSParallelCompact::SpaceId space_id) :
  3246   ParMarkBitMapClosure(mbm, cm),
  3247   _space_id(space_id),
  3248   _start_array(PSParallelCompact::start_array(space_id))
  3252 // Updates the references in the object to their new values.
  3253 ParMarkBitMapClosure::IterationStatus
  3254 UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) {
  3255   do_addr(addr);
  3256   return ParMarkBitMap::incomplete;

mercurial