src/share/vm/gc_implementation/parallelScavenge/cardTableExtension.cpp

Fri, 10 May 2013 08:27:30 -0700

author
minqi
date
Fri, 10 May 2013 08:27:30 -0700
changeset 5097
92ef81e2f571
parent 4993
746b070f5022
child 5255
a837fa3d3f86
permissions
-rw-r--r--

8003557: NPG: Klass* const k should be const Klass* k.
Summary: With NPG, const KlassOop klass which is in fact a definition converted to Klass* const, which is not the original intention. The right usage is converting them to const Klass*.
Reviewed-by: coleenp, kvn
Contributed-by: yumin.qi@oracle.com

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/parallelScavenge/cardTableExtension.hpp"
    27 #include "gc_implementation/parallelScavenge/gcTaskManager.hpp"
    28 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.hpp"
    29 #include "gc_implementation/parallelScavenge/psTasks.hpp"
    30 #include "gc_implementation/parallelScavenge/psYoungGen.hpp"
    31 #include "oops/oop.inline.hpp"
    32 #include "oops/oop.psgc.inline.hpp"
    34 // Checks an individual oop for missing precise marks. Mark
    35 // may be either dirty or newgen.
    36 class CheckForUnmarkedOops : public OopClosure {
    37  private:
    38   PSYoungGen*         _young_gen;
    39   CardTableExtension* _card_table;
    40   HeapWord*           _unmarked_addr;
    41   jbyte*              _unmarked_card;
    43  protected:
    44   template <class T> void do_oop_work(T* p) {
    45     oop obj = oopDesc::load_decode_heap_oop(p);
    46     if (_young_gen->is_in_reserved(obj) &&
    47         !_card_table->addr_is_marked_imprecise(p)) {
    48       // Don't overwrite the first missing card mark
    49       if (_unmarked_addr == NULL) {
    50         _unmarked_addr = (HeapWord*)p;
    51         _unmarked_card = _card_table->byte_for(p);
    52       }
    53     }
    54   }
    56  public:
    57   CheckForUnmarkedOops(PSYoungGen* young_gen, CardTableExtension* card_table) :
    58     _young_gen(young_gen), _card_table(card_table), _unmarked_addr(NULL) { }
    60   virtual void do_oop(oop* p)       { CheckForUnmarkedOops::do_oop_work(p); }
    61   virtual void do_oop(narrowOop* p) { CheckForUnmarkedOops::do_oop_work(p); }
    63   bool has_unmarked_oop() {
    64     return _unmarked_addr != NULL;
    65   }
    66 };
    68 // Checks all objects for the existance of some type of mark,
    69 // precise or imprecise, dirty or newgen.
    70 class CheckForUnmarkedObjects : public ObjectClosure {
    71  private:
    72   PSYoungGen*         _young_gen;
    73   CardTableExtension* _card_table;
    75  public:
    76   CheckForUnmarkedObjects() {
    77     ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
    78     assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
    80     _young_gen = heap->young_gen();
    81     _card_table = (CardTableExtension*)heap->barrier_set();
    82     // No point in asserting barrier set type here. Need to make CardTableExtension
    83     // a unique barrier set type.
    84   }
    86   // Card marks are not precise. The current system can leave us with
    87   // a mismash of precise marks and beginning of object marks. This means
    88   // we test for missing precise marks first. If any are found, we don't
    89   // fail unless the object head is also unmarked.
    90   virtual void do_object(oop obj) {
    91     CheckForUnmarkedOops object_check(_young_gen, _card_table);
    92     obj->oop_iterate_no_header(&object_check);
    93     if (object_check.has_unmarked_oop()) {
    94       assert(_card_table->addr_is_marked_imprecise(obj), "Found unmarked young_gen object");
    95     }
    96   }
    97 };
    99 // Checks for precise marking of oops as newgen.
   100 class CheckForPreciseMarks : public OopClosure {
   101  private:
   102   PSYoungGen*         _young_gen;
   103   CardTableExtension* _card_table;
   105  protected:
   106   template <class T> void do_oop_work(T* p) {
   107     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
   108     if (_young_gen->is_in_reserved(obj)) {
   109       assert(_card_table->addr_is_marked_precise(p), "Found unmarked precise oop");
   110       _card_table->set_card_newgen(p);
   111     }
   112   }
   114  public:
   115   CheckForPreciseMarks( PSYoungGen* young_gen, CardTableExtension* card_table ) :
   116     _young_gen(young_gen), _card_table(card_table) { }
   118   virtual void do_oop(oop* p)       { CheckForPreciseMarks::do_oop_work(p); }
   119   virtual void do_oop(narrowOop* p) { CheckForPreciseMarks::do_oop_work(p); }
   120 };
   122 // We get passed the space_top value to prevent us from traversing into
   123 // the old_gen promotion labs, which cannot be safely parsed.
   125 // Do not call this method if the space is empty.
   126 // It is a waste to start tasks and get here only to
   127 // do no work.  If this method needs to be called
   128 // when the space is empty, fix the calculation of
   129 // end_card to allow sp_top == sp->bottom().
   131 void CardTableExtension::scavenge_contents_parallel(ObjectStartArray* start_array,
   132                                                     MutableSpace* sp,
   133                                                     HeapWord* space_top,
   134                                                     PSPromotionManager* pm,
   135                                                     uint stripe_number,
   136                                                     uint stripe_total) {
   137   int ssize = 128; // Naked constant!  Work unit = 64k.
   138   int dirty_card_count = 0;
   140   // It is a waste to get here if empty.
   141   assert(sp->bottom() < sp->top(), "Should not be called if empty");
   142   oop* sp_top = (oop*)space_top;
   143   jbyte* start_card = byte_for(sp->bottom());
   144   jbyte* end_card   = byte_for(sp_top - 1) + 1;
   145   oop* last_scanned = NULL; // Prevent scanning objects more than once
   146   // The width of the stripe ssize*stripe_total must be
   147   // consistent with the number of stripes so that the complete slice
   148   // is covered.
   149   size_t slice_width = ssize * stripe_total;
   150   for (jbyte* slice = start_card; slice < end_card; slice += slice_width) {
   151     jbyte* worker_start_card = slice + stripe_number * ssize;
   152     if (worker_start_card >= end_card)
   153       return; // We're done.
   155     jbyte* worker_end_card = worker_start_card + ssize;
   156     if (worker_end_card > end_card)
   157       worker_end_card = end_card;
   159     // We do not want to scan objects more than once. In order to accomplish
   160     // this, we assert that any object with an object head inside our 'slice'
   161     // belongs to us. We may need to extend the range of scanned cards if the
   162     // last object continues into the next 'slice'.
   163     //
   164     // Note! ending cards are exclusive!
   165     HeapWord* slice_start = addr_for(worker_start_card);
   166     HeapWord* slice_end = MIN2((HeapWord*) sp_top, addr_for(worker_end_card));
   168 #ifdef ASSERT
   169     if (GCWorkerDelayMillis > 0) {
   170       // Delay 1 worker so that it proceeds after all the work
   171       // has been completed.
   172       if (stripe_number < 2) {
   173         os::sleep(Thread::current(), GCWorkerDelayMillis, false);
   174       }
   175     }
   176 #endif
   178     // If there are not objects starting within the chunk, skip it.
   179     if (!start_array->object_starts_in_range(slice_start, slice_end)) {
   180       continue;
   181     }
   182     // Update our beginning addr
   183     HeapWord* first_object = start_array->object_start(slice_start);
   184     debug_only(oop* first_object_within_slice = (oop*) first_object;)
   185     if (first_object < slice_start) {
   186       last_scanned = (oop*)(first_object + oop(first_object)->size());
   187       debug_only(first_object_within_slice = last_scanned;)
   188       worker_start_card = byte_for(last_scanned);
   189     }
   191     // Update the ending addr
   192     if (slice_end < (HeapWord*)sp_top) {
   193       // The subtraction is important! An object may start precisely at slice_end.
   194       HeapWord* last_object = start_array->object_start(slice_end - 1);
   195       slice_end = last_object + oop(last_object)->size();
   196       // worker_end_card is exclusive, so bump it one past the end of last_object's
   197       // covered span.
   198       worker_end_card = byte_for(slice_end) + 1;
   200       if (worker_end_card > end_card)
   201         worker_end_card = end_card;
   202     }
   204     assert(slice_end <= (HeapWord*)sp_top, "Last object in slice crosses space boundary");
   205     assert(is_valid_card_address(worker_start_card), "Invalid worker start card");
   206     assert(is_valid_card_address(worker_end_card), "Invalid worker end card");
   207     // Note that worker_start_card >= worker_end_card is legal, and happens when
   208     // an object spans an entire slice.
   209     assert(worker_start_card <= end_card, "worker start card beyond end card");
   210     assert(worker_end_card <= end_card, "worker end card beyond end card");
   212     jbyte* current_card = worker_start_card;
   213     while (current_card < worker_end_card) {
   214       // Find an unclean card.
   215       while (current_card < worker_end_card && card_is_clean(*current_card)) {
   216         current_card++;
   217       }
   218       jbyte* first_unclean_card = current_card;
   220       // Find the end of a run of contiguous unclean cards
   221       while (current_card < worker_end_card && !card_is_clean(*current_card)) {
   222         while (current_card < worker_end_card && !card_is_clean(*current_card)) {
   223           current_card++;
   224         }
   226         if (current_card < worker_end_card) {
   227           // Some objects may be large enough to span several cards. If such
   228           // an object has more than one dirty card, separated by a clean card,
   229           // we will attempt to scan it twice. The test against "last_scanned"
   230           // prevents the redundant object scan, but it does not prevent newly
   231           // marked cards from being cleaned.
   232           HeapWord* last_object_in_dirty_region = start_array->object_start(addr_for(current_card)-1);
   233           size_t size_of_last_object = oop(last_object_in_dirty_region)->size();
   234           HeapWord* end_of_last_object = last_object_in_dirty_region + size_of_last_object;
   235           jbyte* ending_card_of_last_object = byte_for(end_of_last_object);
   236           assert(ending_card_of_last_object <= worker_end_card, "ending_card_of_last_object is greater than worker_end_card");
   237           if (ending_card_of_last_object > current_card) {
   238             // This means the object spans the next complete card.
   239             // We need to bump the current_card to ending_card_of_last_object
   240             current_card = ending_card_of_last_object;
   241           }
   242         }
   243       }
   244       jbyte* following_clean_card = current_card;
   246       if (first_unclean_card < worker_end_card) {
   247         oop* p = (oop*) start_array->object_start(addr_for(first_unclean_card));
   248         assert((HeapWord*)p <= addr_for(first_unclean_card), "checking");
   249         // "p" should always be >= "last_scanned" because newly GC dirtied
   250         // cards are no longer scanned again (see comment at end
   251         // of loop on the increment of "current_card").  Test that
   252         // hypothesis before removing this code.
   253         // If this code is removed, deal with the first time through
   254         // the loop when the last_scanned is the object starting in
   255         // the previous slice.
   256         assert((p >= last_scanned) ||
   257                (last_scanned == first_object_within_slice),
   258                "Should no longer be possible");
   259         if (p < last_scanned) {
   260           // Avoid scanning more than once; this can happen because
   261           // newgen cards set by GC may a different set than the
   262           // originally dirty set
   263           p = last_scanned;
   264         }
   265         oop* to = (oop*)addr_for(following_clean_card);
   267         // Test slice_end first!
   268         if ((HeapWord*)to > slice_end) {
   269           to = (oop*)slice_end;
   270         } else if (to > sp_top) {
   271           to = sp_top;
   272         }
   274         // we know which cards to scan, now clear them
   275         if (first_unclean_card <= worker_start_card+1)
   276           first_unclean_card = worker_start_card+1;
   277         if (following_clean_card >= worker_end_card-1)
   278           following_clean_card = worker_end_card-1;
   280         while (first_unclean_card < following_clean_card) {
   281           *first_unclean_card++ = clean_card;
   282         }
   284         const int interval = PrefetchScanIntervalInBytes;
   285         // scan all objects in the range
   286         if (interval != 0) {
   287           while (p < to) {
   288             Prefetch::write(p, interval);
   289             oop m = oop(p);
   290             assert(m->is_oop_or_null(), "check for header");
   291             m->push_contents(pm);
   292             p += m->size();
   293           }
   294           pm->drain_stacks_cond_depth();
   295         } else {
   296           while (p < to) {
   297             oop m = oop(p);
   298             assert(m->is_oop_or_null(), "check for header");
   299             m->push_contents(pm);
   300             p += m->size();
   301           }
   302           pm->drain_stacks_cond_depth();
   303         }
   304         last_scanned = p;
   305       }
   306       // "current_card" is still the "following_clean_card" or
   307       // the current_card is >= the worker_end_card so the
   308       // loop will not execute again.
   309       assert((current_card == following_clean_card) ||
   310              (current_card >= worker_end_card),
   311         "current_card should only be incremented if it still equals "
   312         "following_clean_card");
   313       // Increment current_card so that it is not processed again.
   314       // It may now be dirty because a old-to-young pointer was
   315       // found on it an updated.  If it is now dirty, it cannot be
   316       // be safely cleaned in the next iteration.
   317       current_card++;
   318     }
   319   }
   320 }
   322 // This should be called before a scavenge.
   323 void CardTableExtension::verify_all_young_refs_imprecise() {
   324   CheckForUnmarkedObjects check;
   326   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   327   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   329   PSOldGen* old_gen = heap->old_gen();
   331   old_gen->object_iterate(&check);
   332 }
   334 // This should be called immediately after a scavenge, before mutators resume.
   335 void CardTableExtension::verify_all_young_refs_precise() {
   336   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   337   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   339   PSOldGen* old_gen = heap->old_gen();
   341   CheckForPreciseMarks check(heap->young_gen(), (CardTableExtension*)heap->barrier_set());
   343   old_gen->oop_iterate_no_header(&check);
   345   verify_all_young_refs_precise_helper(old_gen->object_space()->used_region());
   346 }
   348 void CardTableExtension::verify_all_young_refs_precise_helper(MemRegion mr) {
   349   CardTableExtension* card_table = (CardTableExtension*)Universe::heap()->barrier_set();
   350   // FIX ME ASSERT HERE
   352   jbyte* bot = card_table->byte_for(mr.start());
   353   jbyte* top = card_table->byte_for(mr.end());
   354   while(bot <= top) {
   355     assert(*bot == clean_card || *bot == verify_card, "Found unwanted or unknown card mark");
   356     if (*bot == verify_card)
   357       *bot = youngergen_card;
   358     bot++;
   359   }
   360 }
   362 bool CardTableExtension::addr_is_marked_imprecise(void *addr) {
   363   jbyte* p = byte_for(addr);
   364   jbyte val = *p;
   366   if (card_is_dirty(val))
   367     return true;
   369   if (card_is_newgen(val))
   370     return true;
   372   if (card_is_clean(val))
   373     return false;
   375   assert(false, "Found unhandled card mark type");
   377   return false;
   378 }
   380 // Also includes verify_card
   381 bool CardTableExtension::addr_is_marked_precise(void *addr) {
   382   jbyte* p = byte_for(addr);
   383   jbyte val = *p;
   385   if (card_is_newgen(val))
   386     return true;
   388   if (card_is_verify(val))
   389     return true;
   391   if (card_is_clean(val))
   392     return false;
   394   if (card_is_dirty(val))
   395     return false;
   397   assert(false, "Found unhandled card mark type");
   399   return false;
   400 }
   402 // Assumes that only the base or the end changes.  This allows indentification
   403 // of the region that is being resized.  The
   404 // CardTableModRefBS::resize_covered_region() is used for the normal case
   405 // where the covered regions are growing or shrinking at the high end.
   406 // The method resize_covered_region_by_end() is analogous to
   407 // CardTableModRefBS::resize_covered_region() but
   408 // for regions that grow or shrink at the low end.
   409 void CardTableExtension::resize_covered_region(MemRegion new_region) {
   411   for (int i = 0; i < _cur_covered_regions; i++) {
   412     if (_covered[i].start() == new_region.start()) {
   413       // Found a covered region with the same start as the
   414       // new region.  The region is growing or shrinking
   415       // from the start of the region.
   416       resize_covered_region_by_start(new_region);
   417       return;
   418     }
   419     if (_covered[i].start() > new_region.start()) {
   420       break;
   421     }
   422   }
   424   int changed_region = -1;
   425   for (int j = 0; j < _cur_covered_regions; j++) {
   426     if (_covered[j].end() == new_region.end()) {
   427       changed_region = j;
   428       // This is a case where the covered region is growing or shrinking
   429       // at the start of the region.
   430       assert(changed_region != -1, "Don't expect to add a covered region");
   431       assert(_covered[changed_region].byte_size() != new_region.byte_size(),
   432         "The sizes should be different here");
   433       resize_covered_region_by_end(changed_region, new_region);
   434       return;
   435     }
   436   }
   437   // This should only be a new covered region (where no existing
   438   // covered region matches at the start or the end).
   439   assert(_cur_covered_regions < _max_covered_regions,
   440     "An existing region should have been found");
   441   resize_covered_region_by_start(new_region);
   442 }
   444 void CardTableExtension::resize_covered_region_by_start(MemRegion new_region) {
   445   CardTableModRefBS::resize_covered_region(new_region);
   446   debug_only(verify_guard();)
   447 }
   449 void CardTableExtension::resize_covered_region_by_end(int changed_region,
   450                                                       MemRegion new_region) {
   451   assert(SafepointSynchronize::is_at_safepoint(),
   452     "Only expect an expansion at the low end at a GC");
   453   debug_only(verify_guard();)
   454 #ifdef ASSERT
   455   for (int k = 0; k < _cur_covered_regions; k++) {
   456     if (_covered[k].end() == new_region.end()) {
   457       assert(changed_region == k, "Changed region is incorrect");
   458       break;
   459     }
   460   }
   461 #endif
   463   // Commit new or uncommit old pages, if necessary.
   464   if (resize_commit_uncommit(changed_region, new_region)) {
   465     // Set the new start of the committed region
   466     resize_update_committed_table(changed_region, new_region);
   467   }
   469   // Update card table entries
   470   resize_update_card_table_entries(changed_region, new_region);
   472   // Update the covered region
   473   resize_update_covered_table(changed_region, new_region);
   475   if (TraceCardTableModRefBS) {
   476     int ind = changed_region;
   477     gclog_or_tty->print_cr("CardTableModRefBS::resize_covered_region: ");
   478     gclog_or_tty->print_cr("  "
   479                   "  _covered[%d].start(): " INTPTR_FORMAT
   480                   "  _covered[%d].last(): " INTPTR_FORMAT,
   481                   ind, _covered[ind].start(),
   482                   ind, _covered[ind].last());
   483     gclog_or_tty->print_cr("  "
   484                   "  _committed[%d].start(): " INTPTR_FORMAT
   485                   "  _committed[%d].last(): " INTPTR_FORMAT,
   486                   ind, _committed[ind].start(),
   487                   ind, _committed[ind].last());
   488     gclog_or_tty->print_cr("  "
   489                   "  byte_for(start): " INTPTR_FORMAT
   490                   "  byte_for(last): " INTPTR_FORMAT,
   491                   byte_for(_covered[ind].start()),
   492                   byte_for(_covered[ind].last()));
   493     gclog_or_tty->print_cr("  "
   494                   "  addr_for(start): " INTPTR_FORMAT
   495                   "  addr_for(last): " INTPTR_FORMAT,
   496                   addr_for((jbyte*) _committed[ind].start()),
   497                   addr_for((jbyte*) _committed[ind].last()));
   498   }
   499   debug_only(verify_guard();)
   500 }
   502 bool CardTableExtension::resize_commit_uncommit(int changed_region,
   503                                                 MemRegion new_region) {
   504   bool result = false;
   505   // Commit new or uncommit old pages, if necessary.
   506   MemRegion cur_committed = _committed[changed_region];
   507   assert(_covered[changed_region].end() == new_region.end(),
   508     "The ends of the regions are expected to match");
   509   // Extend the start of this _committed region to
   510   // to cover the start of any previous _committed region.
   511   // This forms overlapping regions, but never interior regions.
   512   HeapWord* min_prev_start = lowest_prev_committed_start(changed_region);
   513   if (min_prev_start < cur_committed.start()) {
   514     // Only really need to set start of "cur_committed" to
   515     // the new start (min_prev_start) but assertion checking code
   516     // below use cur_committed.end() so make it correct.
   517     MemRegion new_committed =
   518         MemRegion(min_prev_start, cur_committed.end());
   519     cur_committed = new_committed;
   520   }
   521 #ifdef ASSERT
   522   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   523   assert(cur_committed.start() ==
   524     (HeapWord*) align_size_up((uintptr_t) cur_committed.start(),
   525                               os::vm_page_size()),
   526     "Starts should have proper alignment");
   527 #endif
   529   jbyte* new_start = byte_for(new_region.start());
   530   // Round down because this is for the start address
   531   HeapWord* new_start_aligned =
   532     (HeapWord*)align_size_down((uintptr_t)new_start, os::vm_page_size());
   533   // The guard page is always committed and should not be committed over.
   534   // This method is used in cases where the generation is growing toward
   535   // lower addresses but the guard region is still at the end of the
   536   // card table.  That still makes sense when looking for writes
   537   // off the end of the card table.
   538   if (new_start_aligned < cur_committed.start()) {
   539     // Expand the committed region
   540     //
   541     // Case A
   542     //                                          |+ guard +|
   543     //                          |+ cur committed +++++++++|
   544     //                  |+ new committed +++++++++++++++++|
   545     //
   546     // Case B
   547     //                                          |+ guard +|
   548     //                        |+ cur committed +|
   549     //                  |+ new committed +++++++|
   550     //
   551     // These are not expected because the calculation of the
   552     // cur committed region and the new committed region
   553     // share the same end for the covered region.
   554     // Case C
   555     //                                          |+ guard +|
   556     //                        |+ cur committed +|
   557     //                  |+ new committed +++++++++++++++++|
   558     // Case D
   559     //                                          |+ guard +|
   560     //                        |+ cur committed +++++++++++|
   561     //                  |+ new committed +++++++|
   563     HeapWord* new_end_for_commit =
   564       MIN2(cur_committed.end(), _guard_region.start());
   565     if(new_start_aligned < new_end_for_commit) {
   566       MemRegion new_committed =
   567         MemRegion(new_start_aligned, new_end_for_commit);
   568       if (!os::commit_memory((char*)new_committed.start(),
   569                              new_committed.byte_size())) {
   570         vm_exit_out_of_memory(new_committed.byte_size(), OOM_MMAP_ERROR,
   571                               "card table expansion");
   572       }
   573     }
   574     result = true;
   575   } else if (new_start_aligned > cur_committed.start()) {
   576     // Shrink the committed region
   577 #if 0 // uncommitting space is currently unsafe because of the interactions
   578       // of growing and shrinking regions.  One region A can uncommit space
   579       // that it owns but which is being used by another region B (maybe).
   580       // Region B has not committed the space because it was already
   581       // committed by region A.
   582     MemRegion uncommit_region = committed_unique_to_self(changed_region,
   583       MemRegion(cur_committed.start(), new_start_aligned));
   584     if (!uncommit_region.is_empty()) {
   585       if (!os::uncommit_memory((char*)uncommit_region.start(),
   586                                uncommit_region.byte_size())) {
   587         // If the uncommit fails, ignore it.  Let the
   588         // committed table resizing go even though the committed
   589         // table will over state the committed space.
   590       }
   591     }
   592 #else
   593     assert(!result, "Should be false with current workaround");
   594 #endif
   595   }
   596   assert(_committed[changed_region].end() == cur_committed.end(),
   597     "end should not change");
   598   return result;
   599 }
   601 void CardTableExtension::resize_update_committed_table(int changed_region,
   602                                                        MemRegion new_region) {
   604   jbyte* new_start = byte_for(new_region.start());
   605   // Set the new start of the committed region
   606   HeapWord* new_start_aligned =
   607     (HeapWord*)align_size_down((uintptr_t)new_start,
   608                              os::vm_page_size());
   609   MemRegion new_committed = MemRegion(new_start_aligned,
   610     _committed[changed_region].end());
   611   _committed[changed_region] = new_committed;
   612   _committed[changed_region].set_start(new_start_aligned);
   613 }
   615 void CardTableExtension::resize_update_card_table_entries(int changed_region,
   616                                                           MemRegion new_region) {
   617   debug_only(verify_guard();)
   618   MemRegion original_covered = _covered[changed_region];
   619   // Initialize the card entries.  Only consider the
   620   // region covered by the card table (_whole_heap)
   621   jbyte* entry;
   622   if (new_region.start() < _whole_heap.start()) {
   623     entry = byte_for(_whole_heap.start());
   624   } else {
   625     entry = byte_for(new_region.start());
   626   }
   627   jbyte* end = byte_for(original_covered.start());
   628   // If _whole_heap starts at the original covered regions start,
   629   // this loop will not execute.
   630   while (entry < end) { *entry++ = clean_card; }
   631 }
   633 void CardTableExtension::resize_update_covered_table(int changed_region,
   634                                                      MemRegion new_region) {
   635   // Update the covered region
   636   _covered[changed_region].set_start(new_region.start());
   637   _covered[changed_region].set_word_size(new_region.word_size());
   639   // reorder regions.  There should only be at most 1 out
   640   // of order.
   641   for (int i = _cur_covered_regions-1 ; i > 0; i--) {
   642     if (_covered[i].start() < _covered[i-1].start()) {
   643         MemRegion covered_mr = _covered[i-1];
   644         _covered[i-1] = _covered[i];
   645         _covered[i] = covered_mr;
   646         MemRegion committed_mr = _committed[i-1];
   647       _committed[i-1] = _committed[i];
   648       _committed[i] = committed_mr;
   649       break;
   650     }
   651   }
   652 #ifdef ASSERT
   653   for (int m = 0; m < _cur_covered_regions-1; m++) {
   654     assert(_covered[m].start() <= _covered[m+1].start(),
   655       "Covered regions out of order");
   656     assert(_committed[m].start() <= _committed[m+1].start(),
   657       "Committed regions out of order");
   658   }
   659 #endif
   660 }
   662 // Returns the start of any committed region that is lower than
   663 // the target committed region (index ind) and that intersects the
   664 // target region.  If none, return start of target region.
   665 //
   666 //      -------------
   667 //      |           |
   668 //      -------------
   669 //              ------------
   670 //              | target   |
   671 //              ------------
   672 //                               -------------
   673 //                               |           |
   674 //                               -------------
   675 //      ^ returns this
   676 //
   677 //      -------------
   678 //      |           |
   679 //      -------------
   680 //                      ------------
   681 //                      | target   |
   682 //                      ------------
   683 //                               -------------
   684 //                               |           |
   685 //                               -------------
   686 //                      ^ returns this
   688 HeapWord* CardTableExtension::lowest_prev_committed_start(int ind) const {
   689   assert(_cur_covered_regions >= 0, "Expecting at least on region");
   690   HeapWord* min_start = _committed[ind].start();
   691   for (int j = 0; j < ind; j++) {
   692     HeapWord* this_start = _committed[j].start();
   693     if ((this_start < min_start) &&
   694         !(_committed[j].intersection(_committed[ind])).is_empty()) {
   695        min_start = this_start;
   696     }
   697   }
   698   return min_start;
   699 }

mercurial