src/share/vm/opto/library_call.cpp

Fri, 08 Apr 2011 14:19:50 -0700

author
jmasa
date
Fri, 08 Apr 2011 14:19:50 -0700
changeset 2784
92add02409c9
parent 2687
3d58a4983660
parent 2781
e1162778c1c8
child 2786
59766fd005ff
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "compiler/compileBroker.hpp"
    29 #include "compiler/compileLog.hpp"
    30 #include "oops/objArrayKlass.hpp"
    31 #include "opto/addnode.hpp"
    32 #include "opto/callGenerator.hpp"
    33 #include "opto/cfgnode.hpp"
    34 #include "opto/idealKit.hpp"
    35 #include "opto/mulnode.hpp"
    36 #include "opto/parse.hpp"
    37 #include "opto/runtime.hpp"
    38 #include "opto/subnode.hpp"
    39 #include "prims/nativeLookup.hpp"
    40 #include "runtime/sharedRuntime.hpp"
    42 class LibraryIntrinsic : public InlineCallGenerator {
    43   // Extend the set of intrinsics known to the runtime:
    44  public:
    45  private:
    46   bool             _is_virtual;
    47   vmIntrinsics::ID _intrinsic_id;
    49  public:
    50   LibraryIntrinsic(ciMethod* m, bool is_virtual, vmIntrinsics::ID id)
    51     : InlineCallGenerator(m),
    52       _is_virtual(is_virtual),
    53       _intrinsic_id(id)
    54   {
    55   }
    56   virtual bool is_intrinsic() const { return true; }
    57   virtual bool is_virtual()   const { return _is_virtual; }
    58   virtual JVMState* generate(JVMState* jvms);
    59   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
    60 };
    63 // Local helper class for LibraryIntrinsic:
    64 class LibraryCallKit : public GraphKit {
    65  private:
    66   LibraryIntrinsic* _intrinsic;   // the library intrinsic being called
    68  public:
    69   LibraryCallKit(JVMState* caller, LibraryIntrinsic* intrinsic)
    70     : GraphKit(caller),
    71       _intrinsic(intrinsic)
    72   {
    73   }
    75   ciMethod*         caller()    const    { return jvms()->method(); }
    76   int               bci()       const    { return jvms()->bci(); }
    77   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
    78   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
    79   ciMethod*         callee()    const    { return _intrinsic->method(); }
    80   ciSignature*      signature() const    { return callee()->signature(); }
    81   int               arg_size()  const    { return callee()->arg_size(); }
    83   bool try_to_inline();
    85   // Helper functions to inline natives
    86   void push_result(RegionNode* region, PhiNode* value);
    87   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
    88   Node* generate_slow_guard(Node* test, RegionNode* region);
    89   Node* generate_fair_guard(Node* test, RegionNode* region);
    90   Node* generate_negative_guard(Node* index, RegionNode* region,
    91                                 // resulting CastII of index:
    92                                 Node* *pos_index = NULL);
    93   Node* generate_nonpositive_guard(Node* index, bool never_negative,
    94                                    // resulting CastII of index:
    95                                    Node* *pos_index = NULL);
    96   Node* generate_limit_guard(Node* offset, Node* subseq_length,
    97                              Node* array_length,
    98                              RegionNode* region);
    99   Node* generate_current_thread(Node* &tls_output);
   100   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
   101                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
   102   Node* load_mirror_from_klass(Node* klass);
   103   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
   104                                       int nargs,
   105                                       RegionNode* region, int null_path,
   106                                       int offset);
   107   Node* load_klass_from_mirror(Node* mirror, bool never_see_null, int nargs,
   108                                RegionNode* region, int null_path) {
   109     int offset = java_lang_Class::klass_offset_in_bytes();
   110     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
   111                                          region, null_path,
   112                                          offset);
   113   }
   114   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
   115                                      int nargs,
   116                                      RegionNode* region, int null_path) {
   117     int offset = java_lang_Class::array_klass_offset_in_bytes();
   118     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
   119                                          region, null_path,
   120                                          offset);
   121   }
   122   Node* generate_access_flags_guard(Node* kls,
   123                                     int modifier_mask, int modifier_bits,
   124                                     RegionNode* region);
   125   Node* generate_interface_guard(Node* kls, RegionNode* region);
   126   Node* generate_array_guard(Node* kls, RegionNode* region) {
   127     return generate_array_guard_common(kls, region, false, false);
   128   }
   129   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
   130     return generate_array_guard_common(kls, region, false, true);
   131   }
   132   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
   133     return generate_array_guard_common(kls, region, true, false);
   134   }
   135   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
   136     return generate_array_guard_common(kls, region, true, true);
   137   }
   138   Node* generate_array_guard_common(Node* kls, RegionNode* region,
   139                                     bool obj_array, bool not_array);
   140   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
   141   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
   142                                      bool is_virtual = false, bool is_static = false);
   143   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
   144     return generate_method_call(method_id, false, true);
   145   }
   146   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
   147     return generate_method_call(method_id, true, false);
   148   }
   150   Node* make_string_method_node(int opcode, Node* str1, Node* cnt1, Node* str2, Node* cnt2);
   151   bool inline_string_compareTo();
   152   bool inline_string_indexOf();
   153   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
   154   bool inline_string_equals();
   155   Node* pop_math_arg();
   156   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
   157   bool inline_math_native(vmIntrinsics::ID id);
   158   bool inline_trig(vmIntrinsics::ID id);
   159   bool inline_trans(vmIntrinsics::ID id);
   160   bool inline_abs(vmIntrinsics::ID id);
   161   bool inline_sqrt(vmIntrinsics::ID id);
   162   bool inline_pow(vmIntrinsics::ID id);
   163   bool inline_exp(vmIntrinsics::ID id);
   164   bool inline_min_max(vmIntrinsics::ID id);
   165   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
   166   // This returns Type::AnyPtr, RawPtr, or OopPtr.
   167   int classify_unsafe_addr(Node* &base, Node* &offset);
   168   Node* make_unsafe_address(Node* base, Node* offset);
   169   // Helper for inline_unsafe_access.
   170   // Generates the guards that check whether the result of
   171   // Unsafe.getObject should be recorded in an SATB log buffer.
   172   void insert_g1_pre_barrier(Node* base_oop, Node* offset, Node* pre_val);
   173   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
   174   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
   175   bool inline_unsafe_allocate();
   176   bool inline_unsafe_copyMemory();
   177   bool inline_native_currentThread();
   178   bool inline_native_time_funcs(bool isNano);
   179   bool inline_native_isInterrupted();
   180   bool inline_native_Class_query(vmIntrinsics::ID id);
   181   bool inline_native_subtype_check();
   183   bool inline_native_newArray();
   184   bool inline_native_getLength();
   185   bool inline_array_copyOf(bool is_copyOfRange);
   186   bool inline_array_equals();
   187   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
   188   bool inline_native_clone(bool is_virtual);
   189   bool inline_native_Reflection_getCallerClass();
   190   bool inline_native_AtomicLong_get();
   191   bool inline_native_AtomicLong_attemptUpdate();
   192   bool is_method_invoke_or_aux_frame(JVMState* jvms);
   193   // Helper function for inlining native object hash method
   194   bool inline_native_hashcode(bool is_virtual, bool is_static);
   195   bool inline_native_getClass();
   197   // Helper functions for inlining arraycopy
   198   bool inline_arraycopy();
   199   void generate_arraycopy(const TypePtr* adr_type,
   200                           BasicType basic_elem_type,
   201                           Node* src,  Node* src_offset,
   202                           Node* dest, Node* dest_offset,
   203                           Node* copy_length,
   204                           bool disjoint_bases = false,
   205                           bool length_never_negative = false,
   206                           RegionNode* slow_region = NULL);
   207   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
   208                                                 RegionNode* slow_region);
   209   void generate_clear_array(const TypePtr* adr_type,
   210                             Node* dest,
   211                             BasicType basic_elem_type,
   212                             Node* slice_off,
   213                             Node* slice_len,
   214                             Node* slice_end);
   215   bool generate_block_arraycopy(const TypePtr* adr_type,
   216                                 BasicType basic_elem_type,
   217                                 AllocateNode* alloc,
   218                                 Node* src,  Node* src_offset,
   219                                 Node* dest, Node* dest_offset,
   220                                 Node* dest_size, bool dest_uninitialized);
   221   void generate_slow_arraycopy(const TypePtr* adr_type,
   222                                Node* src,  Node* src_offset,
   223                                Node* dest, Node* dest_offset,
   224                                Node* copy_length, bool dest_uninitialized);
   225   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
   226                                      Node* dest_elem_klass,
   227                                      Node* src,  Node* src_offset,
   228                                      Node* dest, Node* dest_offset,
   229                                      Node* copy_length, bool dest_uninitialized);
   230   Node* generate_generic_arraycopy(const TypePtr* adr_type,
   231                                    Node* src,  Node* src_offset,
   232                                    Node* dest, Node* dest_offset,
   233                                    Node* copy_length, bool dest_uninitialized);
   234   void generate_unchecked_arraycopy(const TypePtr* adr_type,
   235                                     BasicType basic_elem_type,
   236                                     bool disjoint_bases,
   237                                     Node* src,  Node* src_offset,
   238                                     Node* dest, Node* dest_offset,
   239                                     Node* copy_length, bool dest_uninitialized);
   240   bool inline_unsafe_CAS(BasicType type);
   241   bool inline_unsafe_ordered_store(BasicType type);
   242   bool inline_fp_conversions(vmIntrinsics::ID id);
   243   bool inline_numberOfLeadingZeros(vmIntrinsics::ID id);
   244   bool inline_numberOfTrailingZeros(vmIntrinsics::ID id);
   245   bool inline_bitCount(vmIntrinsics::ID id);
   246   bool inline_reverseBytes(vmIntrinsics::ID id);
   248   bool inline_reference_get();
   249 };
   252 //---------------------------make_vm_intrinsic----------------------------
   253 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
   254   vmIntrinsics::ID id = m->intrinsic_id();
   255   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
   257   if (DisableIntrinsic[0] != '\0'
   258       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
   259     // disabled by a user request on the command line:
   260     // example: -XX:DisableIntrinsic=_hashCode,_getClass
   261     return NULL;
   262   }
   264   if (!m->is_loaded()) {
   265     // do not attempt to inline unloaded methods
   266     return NULL;
   267   }
   269   // Only a few intrinsics implement a virtual dispatch.
   270   // They are expensive calls which are also frequently overridden.
   271   if (is_virtual) {
   272     switch (id) {
   273     case vmIntrinsics::_hashCode:
   274     case vmIntrinsics::_clone:
   275       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
   276       break;
   277     default:
   278       return NULL;
   279     }
   280   }
   282   // -XX:-InlineNatives disables nearly all intrinsics:
   283   if (!InlineNatives) {
   284     switch (id) {
   285     case vmIntrinsics::_indexOf:
   286     case vmIntrinsics::_compareTo:
   287     case vmIntrinsics::_equals:
   288     case vmIntrinsics::_equalsC:
   289       break;  // InlineNatives does not control String.compareTo
   290     default:
   291       return NULL;
   292     }
   293   }
   295   switch (id) {
   296   case vmIntrinsics::_compareTo:
   297     if (!SpecialStringCompareTo)  return NULL;
   298     break;
   299   case vmIntrinsics::_indexOf:
   300     if (!SpecialStringIndexOf)  return NULL;
   301     break;
   302   case vmIntrinsics::_equals:
   303     if (!SpecialStringEquals)  return NULL;
   304     break;
   305   case vmIntrinsics::_equalsC:
   306     if (!SpecialArraysEquals)  return NULL;
   307     break;
   308   case vmIntrinsics::_arraycopy:
   309     if (!InlineArrayCopy)  return NULL;
   310     break;
   311   case vmIntrinsics::_copyMemory:
   312     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
   313     if (!InlineArrayCopy)  return NULL;
   314     break;
   315   case vmIntrinsics::_hashCode:
   316     if (!InlineObjectHash)  return NULL;
   317     break;
   318   case vmIntrinsics::_clone:
   319   case vmIntrinsics::_copyOf:
   320   case vmIntrinsics::_copyOfRange:
   321     if (!InlineObjectCopy)  return NULL;
   322     // These also use the arraycopy intrinsic mechanism:
   323     if (!InlineArrayCopy)  return NULL;
   324     break;
   325   case vmIntrinsics::_checkIndex:
   326     // We do not intrinsify this.  The optimizer does fine with it.
   327     return NULL;
   329   case vmIntrinsics::_get_AtomicLong:
   330   case vmIntrinsics::_attemptUpdate:
   331     if (!InlineAtomicLong)  return NULL;
   332     break;
   334   case vmIntrinsics::_getCallerClass:
   335     if (!UseNewReflection)  return NULL;
   336     if (!InlineReflectionGetCallerClass)  return NULL;
   337     if (!JDK_Version::is_gte_jdk14x_version())  return NULL;
   338     break;
   340   case vmIntrinsics::_bitCount_i:
   341   case vmIntrinsics::_bitCount_l:
   342     if (!UsePopCountInstruction)  return NULL;
   343     break;
   345   case vmIntrinsics::_Reference_get:
   346     // It is only when G1 is enabled that we absolutely
   347     // need to use the intrinsic version of Reference.get()
   348     // so that the value in the referent field, if necessary,
   349     // can be registered by the pre-barrier code.
   350     if (!UseG1GC) return NULL;
   351     break;
   353  default:
   354     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
   355     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
   356     break;
   357   }
   359   // -XX:-InlineClassNatives disables natives from the Class class.
   360   // The flag applies to all reflective calls, notably Array.newArray
   361   // (visible to Java programmers as Array.newInstance).
   362   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
   363       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
   364     if (!InlineClassNatives)  return NULL;
   365   }
   367   // -XX:-InlineThreadNatives disables natives from the Thread class.
   368   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
   369     if (!InlineThreadNatives)  return NULL;
   370   }
   372   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
   373   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
   374       m->holder()->name() == ciSymbol::java_lang_Float() ||
   375       m->holder()->name() == ciSymbol::java_lang_Double()) {
   376     if (!InlineMathNatives)  return NULL;
   377   }
   379   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
   380   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
   381     if (!InlineUnsafeOps)  return NULL;
   382   }
   384   return new LibraryIntrinsic(m, is_virtual, (vmIntrinsics::ID) id);
   385 }
   387 //----------------------register_library_intrinsics-----------------------
   388 // Initialize this file's data structures, for each Compile instance.
   389 void Compile::register_library_intrinsics() {
   390   // Nothing to do here.
   391 }
   393 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
   394   LibraryCallKit kit(jvms, this);
   395   Compile* C = kit.C;
   396   int nodes = C->unique();
   397 #ifndef PRODUCT
   398   if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
   399     char buf[1000];
   400     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
   401     tty->print_cr("Intrinsic %s", str);
   402   }
   403 #endif
   405   if (kit.try_to_inline()) {
   406     if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
   407       CompileTask::print_inlining(kit.callee(), jvms->depth() - 1, kit.bci(), is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
   408     }
   409     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
   410     if (C->log()) {
   411       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
   412                      vmIntrinsics::name_at(intrinsic_id()),
   413                      (is_virtual() ? " virtual='1'" : ""),
   414                      C->unique() - nodes);
   415     }
   416     return kit.transfer_exceptions_into_jvms();
   417   }
   419   if (PrintIntrinsics) {
   420     if (jvms->has_method()) {
   421       // Not a root compile.
   422       tty->print("Did not inline intrinsic %s%s at bci:%d in",
   423                  vmIntrinsics::name_at(intrinsic_id()),
   424                  (is_virtual() ? " (virtual)" : ""), kit.bci());
   425       kit.caller()->print_short_name(tty);
   426       tty->print_cr(" (%d bytes)", kit.caller()->code_size());
   427     } else {
   428       // Root compile
   429       tty->print("Did not generate intrinsic %s%s at bci:%d in",
   430                vmIntrinsics::name_at(intrinsic_id()),
   431                (is_virtual() ? " (virtual)" : ""), kit.bci());
   432     }
   433   }
   434   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
   435   return NULL;
   436 }
   438 bool LibraryCallKit::try_to_inline() {
   439   // Handle symbolic names for otherwise undistinguished boolean switches:
   440   const bool is_store       = true;
   441   const bool is_native_ptr  = true;
   442   const bool is_static      = true;
   444   if (!jvms()->has_method()) {
   445     // Root JVMState has a null method.
   446     assert(map()->memory()->Opcode() == Op_Parm, "");
   447     // Insert the memory aliasing node
   448     set_all_memory(reset_memory());
   449   }
   450   assert(merged_memory(), "");
   452   switch (intrinsic_id()) {
   453   case vmIntrinsics::_hashCode:
   454     return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
   455   case vmIntrinsics::_identityHashCode:
   456     return inline_native_hashcode(/*!virtual*/ false, is_static);
   457   case vmIntrinsics::_getClass:
   458     return inline_native_getClass();
   460   case vmIntrinsics::_dsin:
   461   case vmIntrinsics::_dcos:
   462   case vmIntrinsics::_dtan:
   463   case vmIntrinsics::_dabs:
   464   case vmIntrinsics::_datan2:
   465   case vmIntrinsics::_dsqrt:
   466   case vmIntrinsics::_dexp:
   467   case vmIntrinsics::_dlog:
   468   case vmIntrinsics::_dlog10:
   469   case vmIntrinsics::_dpow:
   470     return inline_math_native(intrinsic_id());
   472   case vmIntrinsics::_min:
   473   case vmIntrinsics::_max:
   474     return inline_min_max(intrinsic_id());
   476   case vmIntrinsics::_arraycopy:
   477     return inline_arraycopy();
   479   case vmIntrinsics::_compareTo:
   480     return inline_string_compareTo();
   481   case vmIntrinsics::_indexOf:
   482     return inline_string_indexOf();
   483   case vmIntrinsics::_equals:
   484     return inline_string_equals();
   486   case vmIntrinsics::_getObject:
   487     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, false);
   488   case vmIntrinsics::_getBoolean:
   489     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, false);
   490   case vmIntrinsics::_getByte:
   491     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, false);
   492   case vmIntrinsics::_getShort:
   493     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, false);
   494   case vmIntrinsics::_getChar:
   495     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, false);
   496   case vmIntrinsics::_getInt:
   497     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, false);
   498   case vmIntrinsics::_getLong:
   499     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, false);
   500   case vmIntrinsics::_getFloat:
   501     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, false);
   502   case vmIntrinsics::_getDouble:
   503     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, false);
   505   case vmIntrinsics::_putObject:
   506     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, false);
   507   case vmIntrinsics::_putBoolean:
   508     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, false);
   509   case vmIntrinsics::_putByte:
   510     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, false);
   511   case vmIntrinsics::_putShort:
   512     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, false);
   513   case vmIntrinsics::_putChar:
   514     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, false);
   515   case vmIntrinsics::_putInt:
   516     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, false);
   517   case vmIntrinsics::_putLong:
   518     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, false);
   519   case vmIntrinsics::_putFloat:
   520     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, false);
   521   case vmIntrinsics::_putDouble:
   522     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, false);
   524   case vmIntrinsics::_getByte_raw:
   525     return inline_unsafe_access(is_native_ptr, !is_store, T_BYTE, false);
   526   case vmIntrinsics::_getShort_raw:
   527     return inline_unsafe_access(is_native_ptr, !is_store, T_SHORT, false);
   528   case vmIntrinsics::_getChar_raw:
   529     return inline_unsafe_access(is_native_ptr, !is_store, T_CHAR, false);
   530   case vmIntrinsics::_getInt_raw:
   531     return inline_unsafe_access(is_native_ptr, !is_store, T_INT, false);
   532   case vmIntrinsics::_getLong_raw:
   533     return inline_unsafe_access(is_native_ptr, !is_store, T_LONG, false);
   534   case vmIntrinsics::_getFloat_raw:
   535     return inline_unsafe_access(is_native_ptr, !is_store, T_FLOAT, false);
   536   case vmIntrinsics::_getDouble_raw:
   537     return inline_unsafe_access(is_native_ptr, !is_store, T_DOUBLE, false);
   538   case vmIntrinsics::_getAddress_raw:
   539     return inline_unsafe_access(is_native_ptr, !is_store, T_ADDRESS, false);
   541   case vmIntrinsics::_putByte_raw:
   542     return inline_unsafe_access(is_native_ptr, is_store, T_BYTE, false);
   543   case vmIntrinsics::_putShort_raw:
   544     return inline_unsafe_access(is_native_ptr, is_store, T_SHORT, false);
   545   case vmIntrinsics::_putChar_raw:
   546     return inline_unsafe_access(is_native_ptr, is_store, T_CHAR, false);
   547   case vmIntrinsics::_putInt_raw:
   548     return inline_unsafe_access(is_native_ptr, is_store, T_INT, false);
   549   case vmIntrinsics::_putLong_raw:
   550     return inline_unsafe_access(is_native_ptr, is_store, T_LONG, false);
   551   case vmIntrinsics::_putFloat_raw:
   552     return inline_unsafe_access(is_native_ptr, is_store, T_FLOAT, false);
   553   case vmIntrinsics::_putDouble_raw:
   554     return inline_unsafe_access(is_native_ptr, is_store, T_DOUBLE, false);
   555   case vmIntrinsics::_putAddress_raw:
   556     return inline_unsafe_access(is_native_ptr, is_store, T_ADDRESS, false);
   558   case vmIntrinsics::_getObjectVolatile:
   559     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, true);
   560   case vmIntrinsics::_getBooleanVolatile:
   561     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, true);
   562   case vmIntrinsics::_getByteVolatile:
   563     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, true);
   564   case vmIntrinsics::_getShortVolatile:
   565     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, true);
   566   case vmIntrinsics::_getCharVolatile:
   567     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, true);
   568   case vmIntrinsics::_getIntVolatile:
   569     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, true);
   570   case vmIntrinsics::_getLongVolatile:
   571     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, true);
   572   case vmIntrinsics::_getFloatVolatile:
   573     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, true);
   574   case vmIntrinsics::_getDoubleVolatile:
   575     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, true);
   577   case vmIntrinsics::_putObjectVolatile:
   578     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, true);
   579   case vmIntrinsics::_putBooleanVolatile:
   580     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, true);
   581   case vmIntrinsics::_putByteVolatile:
   582     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, true);
   583   case vmIntrinsics::_putShortVolatile:
   584     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, true);
   585   case vmIntrinsics::_putCharVolatile:
   586     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, true);
   587   case vmIntrinsics::_putIntVolatile:
   588     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, true);
   589   case vmIntrinsics::_putLongVolatile:
   590     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, true);
   591   case vmIntrinsics::_putFloatVolatile:
   592     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, true);
   593   case vmIntrinsics::_putDoubleVolatile:
   594     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, true);
   596   case vmIntrinsics::_prefetchRead:
   597     return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
   598   case vmIntrinsics::_prefetchWrite:
   599     return inline_unsafe_prefetch(!is_native_ptr, is_store, !is_static);
   600   case vmIntrinsics::_prefetchReadStatic:
   601     return inline_unsafe_prefetch(!is_native_ptr, !is_store, is_static);
   602   case vmIntrinsics::_prefetchWriteStatic:
   603     return inline_unsafe_prefetch(!is_native_ptr, is_store, is_static);
   605   case vmIntrinsics::_compareAndSwapObject:
   606     return inline_unsafe_CAS(T_OBJECT);
   607   case vmIntrinsics::_compareAndSwapInt:
   608     return inline_unsafe_CAS(T_INT);
   609   case vmIntrinsics::_compareAndSwapLong:
   610     return inline_unsafe_CAS(T_LONG);
   612   case vmIntrinsics::_putOrderedObject:
   613     return inline_unsafe_ordered_store(T_OBJECT);
   614   case vmIntrinsics::_putOrderedInt:
   615     return inline_unsafe_ordered_store(T_INT);
   616   case vmIntrinsics::_putOrderedLong:
   617     return inline_unsafe_ordered_store(T_LONG);
   619   case vmIntrinsics::_currentThread:
   620     return inline_native_currentThread();
   621   case vmIntrinsics::_isInterrupted:
   622     return inline_native_isInterrupted();
   624   case vmIntrinsics::_currentTimeMillis:
   625     return inline_native_time_funcs(false);
   626   case vmIntrinsics::_nanoTime:
   627     return inline_native_time_funcs(true);
   628   case vmIntrinsics::_allocateInstance:
   629     return inline_unsafe_allocate();
   630   case vmIntrinsics::_copyMemory:
   631     return inline_unsafe_copyMemory();
   632   case vmIntrinsics::_newArray:
   633     return inline_native_newArray();
   634   case vmIntrinsics::_getLength:
   635     return inline_native_getLength();
   636   case vmIntrinsics::_copyOf:
   637     return inline_array_copyOf(false);
   638   case vmIntrinsics::_copyOfRange:
   639     return inline_array_copyOf(true);
   640   case vmIntrinsics::_equalsC:
   641     return inline_array_equals();
   642   case vmIntrinsics::_clone:
   643     return inline_native_clone(intrinsic()->is_virtual());
   645   case vmIntrinsics::_isAssignableFrom:
   646     return inline_native_subtype_check();
   648   case vmIntrinsics::_isInstance:
   649   case vmIntrinsics::_getModifiers:
   650   case vmIntrinsics::_isInterface:
   651   case vmIntrinsics::_isArray:
   652   case vmIntrinsics::_isPrimitive:
   653   case vmIntrinsics::_getSuperclass:
   654   case vmIntrinsics::_getComponentType:
   655   case vmIntrinsics::_getClassAccessFlags:
   656     return inline_native_Class_query(intrinsic_id());
   658   case vmIntrinsics::_floatToRawIntBits:
   659   case vmIntrinsics::_floatToIntBits:
   660   case vmIntrinsics::_intBitsToFloat:
   661   case vmIntrinsics::_doubleToRawLongBits:
   662   case vmIntrinsics::_doubleToLongBits:
   663   case vmIntrinsics::_longBitsToDouble:
   664     return inline_fp_conversions(intrinsic_id());
   666   case vmIntrinsics::_numberOfLeadingZeros_i:
   667   case vmIntrinsics::_numberOfLeadingZeros_l:
   668     return inline_numberOfLeadingZeros(intrinsic_id());
   670   case vmIntrinsics::_numberOfTrailingZeros_i:
   671   case vmIntrinsics::_numberOfTrailingZeros_l:
   672     return inline_numberOfTrailingZeros(intrinsic_id());
   674   case vmIntrinsics::_bitCount_i:
   675   case vmIntrinsics::_bitCount_l:
   676     return inline_bitCount(intrinsic_id());
   678   case vmIntrinsics::_reverseBytes_i:
   679   case vmIntrinsics::_reverseBytes_l:
   680   case vmIntrinsics::_reverseBytes_s:
   681   case vmIntrinsics::_reverseBytes_c:
   682     return inline_reverseBytes((vmIntrinsics::ID) intrinsic_id());
   684   case vmIntrinsics::_get_AtomicLong:
   685     return inline_native_AtomicLong_get();
   686   case vmIntrinsics::_attemptUpdate:
   687     return inline_native_AtomicLong_attemptUpdate();
   689   case vmIntrinsics::_getCallerClass:
   690     return inline_native_Reflection_getCallerClass();
   692   case vmIntrinsics::_Reference_get:
   693     return inline_reference_get();
   695   default:
   696     // If you get here, it may be that someone has added a new intrinsic
   697     // to the list in vmSymbols.hpp without implementing it here.
   698 #ifndef PRODUCT
   699     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
   700       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
   701                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
   702     }
   703 #endif
   704     return false;
   705   }
   706 }
   708 //------------------------------push_result------------------------------
   709 // Helper function for finishing intrinsics.
   710 void LibraryCallKit::push_result(RegionNode* region, PhiNode* value) {
   711   record_for_igvn(region);
   712   set_control(_gvn.transform(region));
   713   BasicType value_type = value->type()->basic_type();
   714   push_node(value_type, _gvn.transform(value));
   715 }
   717 //------------------------------generate_guard---------------------------
   718 // Helper function for generating guarded fast-slow graph structures.
   719 // The given 'test', if true, guards a slow path.  If the test fails
   720 // then a fast path can be taken.  (We generally hope it fails.)
   721 // In all cases, GraphKit::control() is updated to the fast path.
   722 // The returned value represents the control for the slow path.
   723 // The return value is never 'top'; it is either a valid control
   724 // or NULL if it is obvious that the slow path can never be taken.
   725 // Also, if region and the slow control are not NULL, the slow edge
   726 // is appended to the region.
   727 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
   728   if (stopped()) {
   729     // Already short circuited.
   730     return NULL;
   731   }
   733   // Build an if node and its projections.
   734   // If test is true we take the slow path, which we assume is uncommon.
   735   if (_gvn.type(test) == TypeInt::ZERO) {
   736     // The slow branch is never taken.  No need to build this guard.
   737     return NULL;
   738   }
   740   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
   742   Node* if_slow = _gvn.transform( new (C, 1) IfTrueNode(iff) );
   743   if (if_slow == top()) {
   744     // The slow branch is never taken.  No need to build this guard.
   745     return NULL;
   746   }
   748   if (region != NULL)
   749     region->add_req(if_slow);
   751   Node* if_fast = _gvn.transform( new (C, 1) IfFalseNode(iff) );
   752   set_control(if_fast);
   754   return if_slow;
   755 }
   757 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
   758   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
   759 }
   760 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
   761   return generate_guard(test, region, PROB_FAIR);
   762 }
   764 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
   765                                                      Node* *pos_index) {
   766   if (stopped())
   767     return NULL;                // already stopped
   768   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
   769     return NULL;                // index is already adequately typed
   770   Node* cmp_lt = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
   771   Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
   772   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
   773   if (is_neg != NULL && pos_index != NULL) {
   774     // Emulate effect of Parse::adjust_map_after_if.
   775     Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS);
   776     ccast->set_req(0, control());
   777     (*pos_index) = _gvn.transform(ccast);
   778   }
   779   return is_neg;
   780 }
   782 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
   783                                                         Node* *pos_index) {
   784   if (stopped())
   785     return NULL;                // already stopped
   786   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
   787     return NULL;                // index is already adequately typed
   788   Node* cmp_le = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
   789   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
   790   Node* bol_le = _gvn.transform( new (C, 2) BoolNode(cmp_le, le_or_eq) );
   791   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
   792   if (is_notp != NULL && pos_index != NULL) {
   793     // Emulate effect of Parse::adjust_map_after_if.
   794     Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS1);
   795     ccast->set_req(0, control());
   796     (*pos_index) = _gvn.transform(ccast);
   797   }
   798   return is_notp;
   799 }
   801 // Make sure that 'position' is a valid limit index, in [0..length].
   802 // There are two equivalent plans for checking this:
   803 //   A. (offset + copyLength)  unsigned<=  arrayLength
   804 //   B. offset  <=  (arrayLength - copyLength)
   805 // We require that all of the values above, except for the sum and
   806 // difference, are already known to be non-negative.
   807 // Plan A is robust in the face of overflow, if offset and copyLength
   808 // are both hugely positive.
   809 //
   810 // Plan B is less direct and intuitive, but it does not overflow at
   811 // all, since the difference of two non-negatives is always
   812 // representable.  Whenever Java methods must perform the equivalent
   813 // check they generally use Plan B instead of Plan A.
   814 // For the moment we use Plan A.
   815 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
   816                                                   Node* subseq_length,
   817                                                   Node* array_length,
   818                                                   RegionNode* region) {
   819   if (stopped())
   820     return NULL;                // already stopped
   821   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
   822   if (zero_offset && _gvn.eqv_uncast(subseq_length, array_length))
   823     return NULL;                // common case of whole-array copy
   824   Node* last = subseq_length;
   825   if (!zero_offset)             // last += offset
   826     last = _gvn.transform( new (C, 3) AddINode(last, offset));
   827   Node* cmp_lt = _gvn.transform( new (C, 3) CmpUNode(array_length, last) );
   828   Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
   829   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
   830   return is_over;
   831 }
   834 //--------------------------generate_current_thread--------------------
   835 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
   836   ciKlass*    thread_klass = env()->Thread_klass();
   837   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
   838   Node* thread = _gvn.transform(new (C, 1) ThreadLocalNode());
   839   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
   840   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
   841   tls_output = thread;
   842   return threadObj;
   843 }
   846 //------------------------------make_string_method_node------------------------
   847 // Helper method for String intrinsic finctions.
   848 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* cnt1, Node* str2, Node* cnt2) {
   849   const int value_offset  = java_lang_String::value_offset_in_bytes();
   850   const int count_offset  = java_lang_String::count_offset_in_bytes();
   851   const int offset_offset = java_lang_String::offset_offset_in_bytes();
   853   Node* no_ctrl = NULL;
   855   ciInstanceKlass* klass = env()->String_klass();
   856   const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
   858   const TypeAryPtr* value_type =
   859         TypeAryPtr::make(TypePtr::NotNull,
   860                          TypeAry::make(TypeInt::CHAR,TypeInt::POS),
   861                          ciTypeArrayKlass::make(T_CHAR), true, 0);
   863   // Get start addr of string and substring
   864   Node* str1_valuea  = basic_plus_adr(str1, str1, value_offset);
   865   Node* str1_value   = make_load(no_ctrl, str1_valuea, value_type, T_OBJECT, string_type->add_offset(value_offset));
   866   Node* str1_offseta = basic_plus_adr(str1, str1, offset_offset);
   867   Node* str1_offset  = make_load(no_ctrl, str1_offseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
   868   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
   870   // Pin loads from String::equals() argument since it could be NULL.
   871   Node* str2_ctrl = (opcode == Op_StrEquals) ? control() : no_ctrl;
   872   Node* str2_valuea  = basic_plus_adr(str2, str2, value_offset);
   873   Node* str2_value   = make_load(str2_ctrl, str2_valuea, value_type, T_OBJECT, string_type->add_offset(value_offset));
   874   Node* str2_offseta = basic_plus_adr(str2, str2, offset_offset);
   875   Node* str2_offset  = make_load(str2_ctrl, str2_offseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
   876   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
   878   Node* result = NULL;
   879   switch (opcode) {
   880   case Op_StrIndexOf:
   881     result = new (C, 6) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
   882                                        str1_start, cnt1, str2_start, cnt2);
   883     break;
   884   case Op_StrComp:
   885     result = new (C, 6) StrCompNode(control(), memory(TypeAryPtr::CHARS),
   886                                     str1_start, cnt1, str2_start, cnt2);
   887     break;
   888   case Op_StrEquals:
   889     result = new (C, 5) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
   890                                       str1_start, str2_start, cnt1);
   891     break;
   892   default:
   893     ShouldNotReachHere();
   894     return NULL;
   895   }
   897   // All these intrinsics have checks.
   898   C->set_has_split_ifs(true); // Has chance for split-if optimization
   900   return _gvn.transform(result);
   901 }
   903 //------------------------------inline_string_compareTo------------------------
   904 bool LibraryCallKit::inline_string_compareTo() {
   906   if (!Matcher::has_match_rule(Op_StrComp)) return false;
   908   const int value_offset = java_lang_String::value_offset_in_bytes();
   909   const int count_offset = java_lang_String::count_offset_in_bytes();
   910   const int offset_offset = java_lang_String::offset_offset_in_bytes();
   912   _sp += 2;
   913   Node *argument = pop();  // pop non-receiver first:  it was pushed second
   914   Node *receiver = pop();
   916   // Null check on self without removing any arguments.  The argument
   917   // null check technically happens in the wrong place, which can lead to
   918   // invalid stack traces when string compare is inlined into a method
   919   // which handles NullPointerExceptions.
   920   _sp += 2;
   921   receiver = do_null_check(receiver, T_OBJECT);
   922   argument = do_null_check(argument, T_OBJECT);
   923   _sp -= 2;
   924   if (stopped()) {
   925     return true;
   926   }
   928   ciInstanceKlass* klass = env()->String_klass();
   929   const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
   930   Node* no_ctrl = NULL;
   932   // Get counts for string and argument
   933   Node* receiver_cnta = basic_plus_adr(receiver, receiver, count_offset);
   934   Node* receiver_cnt  = make_load(no_ctrl, receiver_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
   936   Node* argument_cnta = basic_plus_adr(argument, argument, count_offset);
   937   Node* argument_cnt  = make_load(no_ctrl, argument_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
   939   Node* compare = make_string_method_node(Op_StrComp, receiver, receiver_cnt, argument, argument_cnt);
   940   push(compare);
   941   return true;
   942 }
   944 //------------------------------inline_string_equals------------------------
   945 bool LibraryCallKit::inline_string_equals() {
   947   if (!Matcher::has_match_rule(Op_StrEquals)) return false;
   949   const int value_offset = java_lang_String::value_offset_in_bytes();
   950   const int count_offset = java_lang_String::count_offset_in_bytes();
   951   const int offset_offset = java_lang_String::offset_offset_in_bytes();
   953   int nargs = 2;
   954   _sp += nargs;
   955   Node* argument = pop();  // pop non-receiver first:  it was pushed second
   956   Node* receiver = pop();
   958   // Null check on self without removing any arguments.  The argument
   959   // null check technically happens in the wrong place, which can lead to
   960   // invalid stack traces when string compare is inlined into a method
   961   // which handles NullPointerExceptions.
   962   _sp += nargs;
   963   receiver = do_null_check(receiver, T_OBJECT);
   964   //should not do null check for argument for String.equals(), because spec
   965   //allows to specify NULL as argument.
   966   _sp -= nargs;
   968   if (stopped()) {
   969     return true;
   970   }
   972   // paths (plus control) merge
   973   RegionNode* region = new (C, 5) RegionNode(5);
   974   Node* phi = new (C, 5) PhiNode(region, TypeInt::BOOL);
   976   // does source == target string?
   977   Node* cmp = _gvn.transform(new (C, 3) CmpPNode(receiver, argument));
   978   Node* bol = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::eq));
   980   Node* if_eq = generate_slow_guard(bol, NULL);
   981   if (if_eq != NULL) {
   982     // receiver == argument
   983     phi->init_req(2, intcon(1));
   984     region->init_req(2, if_eq);
   985   }
   987   // get String klass for instanceOf
   988   ciInstanceKlass* klass = env()->String_klass();
   990   if (!stopped()) {
   991     _sp += nargs;          // gen_instanceof might do an uncommon trap
   992     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
   993     _sp -= nargs;
   994     Node* cmp  = _gvn.transform(new (C, 3) CmpINode(inst, intcon(1)));
   995     Node* bol  = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::ne));
   997     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
   998     //instanceOf == true, fallthrough
  1000     if (inst_false != NULL) {
  1001       phi->init_req(3, intcon(0));
  1002       region->init_req(3, inst_false);
  1006   const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
  1008   Node* no_ctrl = NULL;
  1009   Node* receiver_cnt;
  1010   Node* argument_cnt;
  1012   if (!stopped()) {
  1013     // Properly cast the argument to String
  1014     argument = _gvn.transform(new (C, 2) CheckCastPPNode(control(), argument, string_type));
  1016     // Get counts for string and argument
  1017     Node* receiver_cnta = basic_plus_adr(receiver, receiver, count_offset);
  1018     receiver_cnt  = make_load(no_ctrl, receiver_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
  1020     // Pin load from argument string since it could be NULL.
  1021     Node* argument_cnta = basic_plus_adr(argument, argument, count_offset);
  1022     argument_cnt  = make_load(control(), argument_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
  1024     // Check for receiver count != argument count
  1025     Node* cmp = _gvn.transform( new(C, 3) CmpINode(receiver_cnt, argument_cnt) );
  1026     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::ne) );
  1027     Node* if_ne = generate_slow_guard(bol, NULL);
  1028     if (if_ne != NULL) {
  1029       phi->init_req(4, intcon(0));
  1030       region->init_req(4, if_ne);
  1034   // Check for count == 0 is done by mach node StrEquals.
  1036   if (!stopped()) {
  1037     Node* equals = make_string_method_node(Op_StrEquals, receiver, receiver_cnt, argument, argument_cnt);
  1038     phi->init_req(1, equals);
  1039     region->init_req(1, control());
  1042   // post merge
  1043   set_control(_gvn.transform(region));
  1044   record_for_igvn(region);
  1046   push(_gvn.transform(phi));
  1048   return true;
  1051 //------------------------------inline_array_equals----------------------------
  1052 bool LibraryCallKit::inline_array_equals() {
  1054   if (!Matcher::has_match_rule(Op_AryEq)) return false;
  1056   _sp += 2;
  1057   Node *argument2 = pop();
  1058   Node *argument1 = pop();
  1060   Node* equals =
  1061     _gvn.transform(new (C, 4) AryEqNode(control(), memory(TypeAryPtr::CHARS),
  1062                                         argument1, argument2) );
  1063   push(equals);
  1064   return true;
  1067 // Java version of String.indexOf(constant string)
  1068 // class StringDecl {
  1069 //   StringDecl(char[] ca) {
  1070 //     offset = 0;
  1071 //     count = ca.length;
  1072 //     value = ca;
  1073 //   }
  1074 //   int offset;
  1075 //   int count;
  1076 //   char[] value;
  1077 // }
  1078 //
  1079 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
  1080 //                             int targetOffset, int cache_i, int md2) {
  1081 //   int cache = cache_i;
  1082 //   int sourceOffset = string_object.offset;
  1083 //   int sourceCount = string_object.count;
  1084 //   int targetCount = target_object.length;
  1085 //
  1086 //   int targetCountLess1 = targetCount - 1;
  1087 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
  1088 //
  1089 //   char[] source = string_object.value;
  1090 //   char[] target = target_object;
  1091 //   int lastChar = target[targetCountLess1];
  1092 //
  1093 //  outer_loop:
  1094 //   for (int i = sourceOffset; i < sourceEnd; ) {
  1095 //     int src = source[i + targetCountLess1];
  1096 //     if (src == lastChar) {
  1097 //       // With random strings and a 4-character alphabet,
  1098 //       // reverse matching at this point sets up 0.8% fewer
  1099 //       // frames, but (paradoxically) makes 0.3% more probes.
  1100 //       // Since those probes are nearer the lastChar probe,
  1101 //       // there is may be a net D$ win with reverse matching.
  1102 //       // But, reversing loop inhibits unroll of inner loop
  1103 //       // for unknown reason.  So, does running outer loop from
  1104 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
  1105 //       for (int j = 0; j < targetCountLess1; j++) {
  1106 //         if (target[targetOffset + j] != source[i+j]) {
  1107 //           if ((cache & (1 << source[i+j])) == 0) {
  1108 //             if (md2 < j+1) {
  1109 //               i += j+1;
  1110 //               continue outer_loop;
  1111 //             }
  1112 //           }
  1113 //           i += md2;
  1114 //           continue outer_loop;
  1115 //         }
  1116 //       }
  1117 //       return i - sourceOffset;
  1118 //     }
  1119 //     if ((cache & (1 << src)) == 0) {
  1120 //       i += targetCountLess1;
  1121 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
  1122 //     i++;
  1123 //   }
  1124 //   return -1;
  1125 // }
  1127 //------------------------------string_indexOf------------------------
  1128 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
  1129                                      jint cache_i, jint md2_i) {
  1131   Node* no_ctrl  = NULL;
  1132   float likely   = PROB_LIKELY(0.9);
  1133   float unlikely = PROB_UNLIKELY(0.9);
  1135   const int nargs = 2; // number of arguments to push back for uncommon trap in predicate
  1137   const int value_offset  = java_lang_String::value_offset_in_bytes();
  1138   const int count_offset  = java_lang_String::count_offset_in_bytes();
  1139   const int offset_offset = java_lang_String::offset_offset_in_bytes();
  1141   ciInstanceKlass* klass = env()->String_klass();
  1142   const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
  1143   const TypeAryPtr*  source_type = TypeAryPtr::make(TypePtr::NotNull, TypeAry::make(TypeInt::CHAR,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, 0);
  1145   Node* sourceOffseta = basic_plus_adr(string_object, string_object, offset_offset);
  1146   Node* sourceOffset  = make_load(no_ctrl, sourceOffseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
  1147   Node* sourceCounta  = basic_plus_adr(string_object, string_object, count_offset);
  1148   Node* sourceCount   = make_load(no_ctrl, sourceCounta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
  1149   Node* sourcea       = basic_plus_adr(string_object, string_object, value_offset);
  1150   Node* source        = make_load(no_ctrl, sourcea, source_type, T_OBJECT, string_type->add_offset(value_offset));
  1152   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)) );
  1153   jint target_length = target_array->length();
  1154   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
  1155   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
  1157   IdealKit kit(gvn(), control(), merged_memory(), false, true);
  1158 #define __ kit.
  1159   Node* zero             = __ ConI(0);
  1160   Node* one              = __ ConI(1);
  1161   Node* cache            = __ ConI(cache_i);
  1162   Node* md2              = __ ConI(md2_i);
  1163   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
  1164   Node* targetCount      = __ ConI(target_length);
  1165   Node* targetCountLess1 = __ ConI(target_length - 1);
  1166   Node* targetOffset     = __ ConI(targetOffset_i);
  1167   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
  1169   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
  1170   Node* outer_loop = __ make_label(2 /* goto */);
  1171   Node* return_    = __ make_label(1);
  1173   __ set(rtn,__ ConI(-1));
  1174   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
  1175        Node* i2  = __ AddI(__ value(i), targetCountLess1);
  1176        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
  1177        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
  1178        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
  1179          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
  1180               Node* tpj = __ AddI(targetOffset, __ value(j));
  1181               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
  1182               Node* ipj  = __ AddI(__ value(i), __ value(j));
  1183               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
  1184               __ if_then(targ, BoolTest::ne, src2); {
  1185                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
  1186                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
  1187                     __ increment(i, __ AddI(__ value(j), one));
  1188                     __ goto_(outer_loop);
  1189                   } __ end_if(); __ dead(j);
  1190                 }__ end_if(); __ dead(j);
  1191                 __ increment(i, md2);
  1192                 __ goto_(outer_loop);
  1193               }__ end_if();
  1194               __ increment(j, one);
  1195          }__ end_loop(); __ dead(j);
  1196          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
  1197          __ goto_(return_);
  1198        }__ end_if();
  1199        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
  1200          __ increment(i, targetCountLess1);
  1201        }__ end_if();
  1202        __ increment(i, one);
  1203        __ bind(outer_loop);
  1204   }__ end_loop(); __ dead(i);
  1205   __ bind(return_);
  1207   // Final sync IdealKit and GraphKit.
  1208   sync_kit(kit);
  1209   Node* result = __ value(rtn);
  1210 #undef __
  1211   C->set_has_loops(true);
  1212   return result;
  1215 //------------------------------inline_string_indexOf------------------------
  1216 bool LibraryCallKit::inline_string_indexOf() {
  1218   const int value_offset  = java_lang_String::value_offset_in_bytes();
  1219   const int count_offset  = java_lang_String::count_offset_in_bytes();
  1220   const int offset_offset = java_lang_String::offset_offset_in_bytes();
  1222   _sp += 2;
  1223   Node *argument = pop();  // pop non-receiver first:  it was pushed second
  1224   Node *receiver = pop();
  1226   Node* result;
  1227   // Disable the use of pcmpestri until it can be guaranteed that
  1228   // the load doesn't cross into the uncommited space.
  1229   if (Matcher::has_match_rule(Op_StrIndexOf) &&
  1230       UseSSE42Intrinsics) {
  1231     // Generate SSE4.2 version of indexOf
  1232     // We currently only have match rules that use SSE4.2
  1234     // Null check on self without removing any arguments.  The argument
  1235     // null check technically happens in the wrong place, which can lead to
  1236     // invalid stack traces when string compare is inlined into a method
  1237     // which handles NullPointerExceptions.
  1238     _sp += 2;
  1239     receiver = do_null_check(receiver, T_OBJECT);
  1240     argument = do_null_check(argument, T_OBJECT);
  1241     _sp -= 2;
  1243     if (stopped()) {
  1244       return true;
  1247     ciInstanceKlass* str_klass = env()->String_klass();
  1248     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
  1250     // Make the merge point
  1251     RegionNode* result_rgn = new (C, 4) RegionNode(4);
  1252     Node*       result_phi = new (C, 4) PhiNode(result_rgn, TypeInt::INT);
  1253     Node* no_ctrl  = NULL;
  1255     // Get counts for string and substr
  1256     Node* source_cnta = basic_plus_adr(receiver, receiver, count_offset);
  1257     Node* source_cnt  = make_load(no_ctrl, source_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
  1259     Node* substr_cnta = basic_plus_adr(argument, argument, count_offset);
  1260     Node* substr_cnt  = make_load(no_ctrl, substr_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
  1262     // Check for substr count > string count
  1263     Node* cmp = _gvn.transform( new(C, 3) CmpINode(substr_cnt, source_cnt) );
  1264     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::gt) );
  1265     Node* if_gt = generate_slow_guard(bol, NULL);
  1266     if (if_gt != NULL) {
  1267       result_phi->init_req(2, intcon(-1));
  1268       result_rgn->init_req(2, if_gt);
  1271     if (!stopped()) {
  1272       // Check for substr count == 0
  1273       cmp = _gvn.transform( new(C, 3) CmpINode(substr_cnt, intcon(0)) );
  1274       bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
  1275       Node* if_zero = generate_slow_guard(bol, NULL);
  1276       if (if_zero != NULL) {
  1277         result_phi->init_req(3, intcon(0));
  1278         result_rgn->init_req(3, if_zero);
  1282     if (!stopped()) {
  1283       result = make_string_method_node(Op_StrIndexOf, receiver, source_cnt, argument, substr_cnt);
  1284       result_phi->init_req(1, result);
  1285       result_rgn->init_req(1, control());
  1287     set_control(_gvn.transform(result_rgn));
  1288     record_for_igvn(result_rgn);
  1289     result = _gvn.transform(result_phi);
  1291   } else { // Use LibraryCallKit::string_indexOf
  1292     // don't intrinsify if argument isn't a constant string.
  1293     if (!argument->is_Con()) {
  1294      return false;
  1296     const TypeOopPtr* str_type = _gvn.type(argument)->isa_oopptr();
  1297     if (str_type == NULL) {
  1298       return false;
  1300     ciInstanceKlass* klass = env()->String_klass();
  1301     ciObject* str_const = str_type->const_oop();
  1302     if (str_const == NULL || str_const->klass() != klass) {
  1303       return false;
  1305     ciInstance* str = str_const->as_instance();
  1306     assert(str != NULL, "must be instance");
  1308     ciObject* v = str->field_value_by_offset(value_offset).as_object();
  1309     int       o = str->field_value_by_offset(offset_offset).as_int();
  1310     int       c = str->field_value_by_offset(count_offset).as_int();
  1311     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
  1313     // constant strings have no offset and count == length which
  1314     // simplifies the resulting code somewhat so lets optimize for that.
  1315     if (o != 0 || c != pat->length()) {
  1316      return false;
  1319     // Null check on self without removing any arguments.  The argument
  1320     // null check technically happens in the wrong place, which can lead to
  1321     // invalid stack traces when string compare is inlined into a method
  1322     // which handles NullPointerExceptions.
  1323     _sp += 2;
  1324     receiver = do_null_check(receiver, T_OBJECT);
  1325     // No null check on the argument is needed since it's a constant String oop.
  1326     _sp -= 2;
  1327     if (stopped()) {
  1328       return true;
  1331     // The null string as a pattern always returns 0 (match at beginning of string)
  1332     if (c == 0) {
  1333       push(intcon(0));
  1334       return true;
  1337     // Generate default indexOf
  1338     jchar lastChar = pat->char_at(o + (c - 1));
  1339     int cache = 0;
  1340     int i;
  1341     for (i = 0; i < c - 1; i++) {
  1342       assert(i < pat->length(), "out of range");
  1343       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
  1346     int md2 = c;
  1347     for (i = 0; i < c - 1; i++) {
  1348       assert(i < pat->length(), "out of range");
  1349       if (pat->char_at(o + i) == lastChar) {
  1350         md2 = (c - 1) - i;
  1354     result = string_indexOf(receiver, pat, o, cache, md2);
  1357   push(result);
  1358   return true;
  1361 //--------------------------pop_math_arg--------------------------------
  1362 // Pop a double argument to a math function from the stack
  1363 // rounding it if necessary.
  1364 Node * LibraryCallKit::pop_math_arg() {
  1365   Node *arg = pop_pair();
  1366   if( Matcher::strict_fp_requires_explicit_rounding && UseSSE<=1 )
  1367     arg = _gvn.transform( new (C, 2) RoundDoubleNode(0, arg) );
  1368   return arg;
  1371 //------------------------------inline_trig----------------------------------
  1372 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
  1373 // argument reduction which will turn into a fast/slow diamond.
  1374 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
  1375   _sp += arg_size();            // restore stack pointer
  1376   Node* arg = pop_math_arg();
  1377   Node* trig = NULL;
  1379   switch (id) {
  1380   case vmIntrinsics::_dsin:
  1381     trig = _gvn.transform((Node*)new (C, 2) SinDNode(arg));
  1382     break;
  1383   case vmIntrinsics::_dcos:
  1384     trig = _gvn.transform((Node*)new (C, 2) CosDNode(arg));
  1385     break;
  1386   case vmIntrinsics::_dtan:
  1387     trig = _gvn.transform((Node*)new (C, 2) TanDNode(arg));
  1388     break;
  1389   default:
  1390     assert(false, "bad intrinsic was passed in");
  1391     return false;
  1394   // Rounding required?  Check for argument reduction!
  1395   if( Matcher::strict_fp_requires_explicit_rounding ) {
  1397     static const double     pi_4 =  0.7853981633974483;
  1398     static const double neg_pi_4 = -0.7853981633974483;
  1399     // pi/2 in 80-bit extended precision
  1400     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
  1401     // -pi/2 in 80-bit extended precision
  1402     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
  1403     // Cutoff value for using this argument reduction technique
  1404     //static const double    pi_2_minus_epsilon =  1.564660403643354;
  1405     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
  1407     // Pseudocode for sin:
  1408     // if (x <= Math.PI / 4.0) {
  1409     //   if (x >= -Math.PI / 4.0) return  fsin(x);
  1410     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
  1411     // } else {
  1412     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
  1413     // }
  1414     // return StrictMath.sin(x);
  1416     // Pseudocode for cos:
  1417     // if (x <= Math.PI / 4.0) {
  1418     //   if (x >= -Math.PI / 4.0) return  fcos(x);
  1419     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
  1420     // } else {
  1421     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
  1422     // }
  1423     // return StrictMath.cos(x);
  1425     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
  1426     // requires a special machine instruction to load it.  Instead we'll try
  1427     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
  1428     // probably do the math inside the SIN encoding.
  1430     // Make the merge point
  1431     RegionNode *r = new (C, 3) RegionNode(3);
  1432     Node *phi = new (C, 3) PhiNode(r,Type::DOUBLE);
  1434     // Flatten arg so we need only 1 test
  1435     Node *abs = _gvn.transform(new (C, 2) AbsDNode(arg));
  1436     // Node for PI/4 constant
  1437     Node *pi4 = makecon(TypeD::make(pi_4));
  1438     // Check PI/4 : abs(arg)
  1439     Node *cmp = _gvn.transform(new (C, 3) CmpDNode(pi4,abs));
  1440     // Check: If PI/4 < abs(arg) then go slow
  1441     Node *bol = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::lt ) );
  1442     // Branch either way
  1443     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1444     set_control(opt_iff(r,iff));
  1446     // Set fast path result
  1447     phi->init_req(2,trig);
  1449     // Slow path - non-blocking leaf call
  1450     Node* call = NULL;
  1451     switch (id) {
  1452     case vmIntrinsics::_dsin:
  1453       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1454                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
  1455                                "Sin", NULL, arg, top());
  1456       break;
  1457     case vmIntrinsics::_dcos:
  1458       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1459                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
  1460                                "Cos", NULL, arg, top());
  1461       break;
  1462     case vmIntrinsics::_dtan:
  1463       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1464                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
  1465                                "Tan", NULL, arg, top());
  1466       break;
  1468     assert(control()->in(0) == call, "");
  1469     Node* slow_result = _gvn.transform(new (C, 1) ProjNode(call,TypeFunc::Parms));
  1470     r->init_req(1,control());
  1471     phi->init_req(1,slow_result);
  1473     // Post-merge
  1474     set_control(_gvn.transform(r));
  1475     record_for_igvn(r);
  1476     trig = _gvn.transform(phi);
  1478     C->set_has_split_ifs(true); // Has chance for split-if optimization
  1480   // Push result back on JVM stack
  1481   push_pair(trig);
  1482   return true;
  1485 //------------------------------inline_sqrt-------------------------------------
  1486 // Inline square root instruction, if possible.
  1487 bool LibraryCallKit::inline_sqrt(vmIntrinsics::ID id) {
  1488   assert(id == vmIntrinsics::_dsqrt, "Not square root");
  1489   _sp += arg_size();        // restore stack pointer
  1490   push_pair(_gvn.transform(new (C, 2) SqrtDNode(0, pop_math_arg())));
  1491   return true;
  1494 //------------------------------inline_abs-------------------------------------
  1495 // Inline absolute value instruction, if possible.
  1496 bool LibraryCallKit::inline_abs(vmIntrinsics::ID id) {
  1497   assert(id == vmIntrinsics::_dabs, "Not absolute value");
  1498   _sp += arg_size();        // restore stack pointer
  1499   push_pair(_gvn.transform(new (C, 2) AbsDNode(pop_math_arg())));
  1500   return true;
  1503 //------------------------------inline_exp-------------------------------------
  1504 // Inline exp instructions, if possible.  The Intel hardware only misses
  1505 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
  1506 bool LibraryCallKit::inline_exp(vmIntrinsics::ID id) {
  1507   assert(id == vmIntrinsics::_dexp, "Not exp");
  1509   // If this inlining ever returned NaN in the past, we do not intrinsify it
  1510   // every again.  NaN results requires StrictMath.exp handling.
  1511   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  1513   // Do not intrinsify on older platforms which lack cmove.
  1514   if (ConditionalMoveLimit == 0)  return false;
  1516   _sp += arg_size();        // restore stack pointer
  1517   Node *x = pop_math_arg();
  1518   Node *result = _gvn.transform(new (C, 2) ExpDNode(0,x));
  1520   //-------------------
  1521   //result=(result.isNaN())? StrictMath::exp():result;
  1522   // Check: If isNaN() by checking result!=result? then go to Strict Math
  1523   Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
  1524   // Build the boolean node
  1525   Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
  1527   { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
  1528     // End the current control-flow path
  1529     push_pair(x);
  1530     // Math.exp intrinsic returned a NaN, which requires StrictMath.exp
  1531     // to handle.  Recompile without intrinsifying Math.exp
  1532     uncommon_trap(Deoptimization::Reason_intrinsic,
  1533                   Deoptimization::Action_make_not_entrant);
  1536   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1538   push_pair(result);
  1540   return true;
  1543 //------------------------------inline_pow-------------------------------------
  1544 // Inline power instructions, if possible.
  1545 bool LibraryCallKit::inline_pow(vmIntrinsics::ID id) {
  1546   assert(id == vmIntrinsics::_dpow, "Not pow");
  1548   // If this inlining ever returned NaN in the past, we do not intrinsify it
  1549   // every again.  NaN results requires StrictMath.pow handling.
  1550   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  1552   // Do not intrinsify on older platforms which lack cmove.
  1553   if (ConditionalMoveLimit == 0)  return false;
  1555   // Pseudocode for pow
  1556   // if (x <= 0.0) {
  1557   //   if ((double)((int)y)==y) { // if y is int
  1558   //     result = ((1&(int)y)==0)?-DPow(abs(x), y):DPow(abs(x), y)
  1559   //   } else {
  1560   //     result = NaN;
  1561   //   }
  1562   // } else {
  1563   //   result = DPow(x,y);
  1564   // }
  1565   // if (result != result)?  {
  1566   //   uncommon_trap();
  1567   // }
  1568   // return result;
  1570   _sp += arg_size();        // restore stack pointer
  1571   Node* y = pop_math_arg();
  1572   Node* x = pop_math_arg();
  1574   Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, x, y) );
  1576   // Short form: if not top-level (i.e., Math.pow but inlining Math.pow
  1577   // inside of something) then skip the fancy tests and just check for
  1578   // NaN result.
  1579   Node *result = NULL;
  1580   if( jvms()->depth() >= 1 ) {
  1581     result = fast_result;
  1582   } else {
  1584     // Set the merge point for If node with condition of (x <= 0.0)
  1585     // There are four possible paths to region node and phi node
  1586     RegionNode *r = new (C, 4) RegionNode(4);
  1587     Node *phi = new (C, 4) PhiNode(r, Type::DOUBLE);
  1589     // Build the first if node: if (x <= 0.0)
  1590     // Node for 0 constant
  1591     Node *zeronode = makecon(TypeD::ZERO);
  1592     // Check x:0
  1593     Node *cmp = _gvn.transform(new (C, 3) CmpDNode(x, zeronode));
  1594     // Check: If (x<=0) then go complex path
  1595     Node *bol1 = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::le ) );
  1596     // Branch either way
  1597     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1598     Node *opt_test = _gvn.transform(if1);
  1599     //assert( opt_test->is_If(), "Expect an IfNode");
  1600     IfNode *opt_if1 = (IfNode*)opt_test;
  1601     // Fast path taken; set region slot 3
  1602     Node *fast_taken = _gvn.transform( new (C, 1) IfFalseNode(opt_if1) );
  1603     r->init_req(3,fast_taken); // Capture fast-control
  1605     // Fast path not-taken, i.e. slow path
  1606     Node *complex_path = _gvn.transform( new (C, 1) IfTrueNode(opt_if1) );
  1608     // Set fast path result
  1609     Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, y, x) );
  1610     phi->init_req(3, fast_result);
  1612     // Complex path
  1613     // Build the second if node (if y is int)
  1614     // Node for (int)y
  1615     Node *inty = _gvn.transform( new (C, 2) ConvD2INode(y));
  1616     // Node for (double)((int) y)
  1617     Node *doubleinty= _gvn.transform( new (C, 2) ConvI2DNode(inty));
  1618     // Check (double)((int) y) : y
  1619     Node *cmpinty= _gvn.transform(new (C, 3) CmpDNode(doubleinty, y));
  1620     // Check if (y isn't int) then go to slow path
  1622     Node *bol2 = _gvn.transform( new (C, 2) BoolNode( cmpinty, BoolTest::ne ) );
  1623     // Branch either way
  1624     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1625     Node *slow_path = opt_iff(r,if2); // Set region path 2
  1627     // Calculate DPow(abs(x), y)*(1 & (int)y)
  1628     // Node for constant 1
  1629     Node *conone = intcon(1);
  1630     // 1& (int)y
  1631     Node *signnode= _gvn.transform( new (C, 3) AndINode(conone, inty) );
  1632     // zero node
  1633     Node *conzero = intcon(0);
  1634     // Check (1&(int)y)==0?
  1635     Node *cmpeq1 = _gvn.transform(new (C, 3) CmpINode(signnode, conzero));
  1636     // Check if (1&(int)y)!=0?, if so the result is negative
  1637     Node *bol3 = _gvn.transform( new (C, 2) BoolNode( cmpeq1, BoolTest::ne ) );
  1638     // abs(x)
  1639     Node *absx=_gvn.transform( new (C, 2) AbsDNode(x));
  1640     // abs(x)^y
  1641     Node *absxpowy = _gvn.transform( new (C, 3) PowDNode(0, y, absx) );
  1642     // -abs(x)^y
  1643     Node *negabsxpowy = _gvn.transform(new (C, 2) NegDNode (absxpowy));
  1644     // (1&(int)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
  1645     Node *signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
  1646     // Set complex path fast result
  1647     phi->init_req(2, signresult);
  1649     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  1650     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
  1651     r->init_req(1,slow_path);
  1652     phi->init_req(1,slow_result);
  1654     // Post merge
  1655     set_control(_gvn.transform(r));
  1656     record_for_igvn(r);
  1657     result=_gvn.transform(phi);
  1660   //-------------------
  1661   //result=(result.isNaN())? uncommon_trap():result;
  1662   // Check: If isNaN() by checking result!=result? then go to Strict Math
  1663   Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
  1664   // Build the boolean node
  1665   Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
  1667   { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
  1668     // End the current control-flow path
  1669     push_pair(x);
  1670     push_pair(y);
  1671     // Math.pow intrinsic returned a NaN, which requires StrictMath.pow
  1672     // to handle.  Recompile without intrinsifying Math.pow.
  1673     uncommon_trap(Deoptimization::Reason_intrinsic,
  1674                   Deoptimization::Action_make_not_entrant);
  1677   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1679   push_pair(result);
  1681   return true;
  1684 //------------------------------inline_trans-------------------------------------
  1685 // Inline transcendental instructions, if possible.  The Intel hardware gets
  1686 // these right, no funny corner cases missed.
  1687 bool LibraryCallKit::inline_trans(vmIntrinsics::ID id) {
  1688   _sp += arg_size();        // restore stack pointer
  1689   Node* arg = pop_math_arg();
  1690   Node* trans = NULL;
  1692   switch (id) {
  1693   case vmIntrinsics::_dlog:
  1694     trans = _gvn.transform((Node*)new (C, 2) LogDNode(arg));
  1695     break;
  1696   case vmIntrinsics::_dlog10:
  1697     trans = _gvn.transform((Node*)new (C, 2) Log10DNode(arg));
  1698     break;
  1699   default:
  1700     assert(false, "bad intrinsic was passed in");
  1701     return false;
  1704   // Push result back on JVM stack
  1705   push_pair(trans);
  1706   return true;
  1709 //------------------------------runtime_math-----------------------------
  1710 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
  1711   Node* a = NULL;
  1712   Node* b = NULL;
  1714   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
  1715          "must be (DD)D or (D)D type");
  1717   // Inputs
  1718   _sp += arg_size();        // restore stack pointer
  1719   if (call_type == OptoRuntime::Math_DD_D_Type()) {
  1720     b = pop_math_arg();
  1722   a = pop_math_arg();
  1724   const TypePtr* no_memory_effects = NULL;
  1725   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
  1726                                  no_memory_effects,
  1727                                  a, top(), b, b ? top() : NULL);
  1728   Node* value = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+0));
  1729 #ifdef ASSERT
  1730   Node* value_top = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+1));
  1731   assert(value_top == top(), "second value must be top");
  1732 #endif
  1734   push_pair(value);
  1735   return true;
  1738 //------------------------------inline_math_native-----------------------------
  1739 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
  1740   switch (id) {
  1741     // These intrinsics are not properly supported on all hardware
  1742   case vmIntrinsics::_dcos: return Matcher::has_match_rule(Op_CosD) ? inline_trig(id) :
  1743     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS");
  1744   case vmIntrinsics::_dsin: return Matcher::has_match_rule(Op_SinD) ? inline_trig(id) :
  1745     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN");
  1746   case vmIntrinsics::_dtan: return Matcher::has_match_rule(Op_TanD) ? inline_trig(id) :
  1747     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
  1749   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD) ? inline_trans(id) :
  1750     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG");
  1751   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_trans(id) :
  1752     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
  1754     // These intrinsics are supported on all hardware
  1755   case vmIntrinsics::_dsqrt: return Matcher::has_match_rule(Op_SqrtD) ? inline_sqrt(id) : false;
  1756   case vmIntrinsics::_dabs:  return Matcher::has_match_rule(Op_AbsD)  ? inline_abs(id)  : false;
  1758     // These intrinsics don't work on X86.  The ad implementation doesn't
  1759     // handle NaN's properly.  Instead of returning infinity, the ad
  1760     // implementation returns a NaN on overflow. See bug: 6304089
  1761     // Once the ad implementations are fixed, change the code below
  1762     // to match the intrinsics above
  1764   case vmIntrinsics::_dexp:  return
  1765     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
  1766   case vmIntrinsics::_dpow:  return
  1767     runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
  1769    // These intrinsics are not yet correctly implemented
  1770   case vmIntrinsics::_datan2:
  1771     return false;
  1773   default:
  1774     ShouldNotReachHere();
  1775     return false;
  1779 static bool is_simple_name(Node* n) {
  1780   return (n->req() == 1         // constant
  1781           || (n->is_Type() && n->as_Type()->type()->singleton())
  1782           || n->is_Proj()       // parameter or return value
  1783           || n->is_Phi()        // local of some sort
  1784           );
  1787 //----------------------------inline_min_max-----------------------------------
  1788 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
  1789   push(generate_min_max(id, argument(0), argument(1)));
  1791   return true;
  1794 Node*
  1795 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
  1796   // These are the candidate return value:
  1797   Node* xvalue = x0;
  1798   Node* yvalue = y0;
  1800   if (xvalue == yvalue) {
  1801     return xvalue;
  1804   bool want_max = (id == vmIntrinsics::_max);
  1806   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
  1807   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
  1808   if (txvalue == NULL || tyvalue == NULL)  return top();
  1809   // This is not really necessary, but it is consistent with a
  1810   // hypothetical MaxINode::Value method:
  1811   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
  1813   // %%% This folding logic should (ideally) be in a different place.
  1814   // Some should be inside IfNode, and there to be a more reliable
  1815   // transformation of ?: style patterns into cmoves.  We also want
  1816   // more powerful optimizations around cmove and min/max.
  1818   // Try to find a dominating comparison of these guys.
  1819   // It can simplify the index computation for Arrays.copyOf
  1820   // and similar uses of System.arraycopy.
  1821   // First, compute the normalized version of CmpI(x, y).
  1822   int   cmp_op = Op_CmpI;
  1823   Node* xkey = xvalue;
  1824   Node* ykey = yvalue;
  1825   Node* ideal_cmpxy = _gvn.transform( new(C, 3) CmpINode(xkey, ykey) );
  1826   if (ideal_cmpxy->is_Cmp()) {
  1827     // E.g., if we have CmpI(length - offset, count),
  1828     // it might idealize to CmpI(length, count + offset)
  1829     cmp_op = ideal_cmpxy->Opcode();
  1830     xkey = ideal_cmpxy->in(1);
  1831     ykey = ideal_cmpxy->in(2);
  1834   // Start by locating any relevant comparisons.
  1835   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
  1836   Node* cmpxy = NULL;
  1837   Node* cmpyx = NULL;
  1838   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
  1839     Node* cmp = start_from->fast_out(k);
  1840     if (cmp->outcnt() > 0 &&            // must have prior uses
  1841         cmp->in(0) == NULL &&           // must be context-independent
  1842         cmp->Opcode() == cmp_op) {      // right kind of compare
  1843       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
  1844       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
  1848   const int NCMPS = 2;
  1849   Node* cmps[NCMPS] = { cmpxy, cmpyx };
  1850   int cmpn;
  1851   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  1852     if (cmps[cmpn] != NULL)  break;     // find a result
  1854   if (cmpn < NCMPS) {
  1855     // Look for a dominating test that tells us the min and max.
  1856     int depth = 0;                // Limit search depth for speed
  1857     Node* dom = control();
  1858     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
  1859       if (++depth >= 100)  break;
  1860       Node* ifproj = dom;
  1861       if (!ifproj->is_Proj())  continue;
  1862       Node* iff = ifproj->in(0);
  1863       if (!iff->is_If())  continue;
  1864       Node* bol = iff->in(1);
  1865       if (!bol->is_Bool())  continue;
  1866       Node* cmp = bol->in(1);
  1867       if (cmp == NULL)  continue;
  1868       for (cmpn = 0; cmpn < NCMPS; cmpn++)
  1869         if (cmps[cmpn] == cmp)  break;
  1870       if (cmpn == NCMPS)  continue;
  1871       BoolTest::mask btest = bol->as_Bool()->_test._test;
  1872       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
  1873       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
  1874       // At this point, we know that 'x btest y' is true.
  1875       switch (btest) {
  1876       case BoolTest::eq:
  1877         // They are proven equal, so we can collapse the min/max.
  1878         // Either value is the answer.  Choose the simpler.
  1879         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
  1880           return yvalue;
  1881         return xvalue;
  1882       case BoolTest::lt:          // x < y
  1883       case BoolTest::le:          // x <= y
  1884         return (want_max ? yvalue : xvalue);
  1885       case BoolTest::gt:          // x > y
  1886       case BoolTest::ge:          // x >= y
  1887         return (want_max ? xvalue : yvalue);
  1892   // We failed to find a dominating test.
  1893   // Let's pick a test that might GVN with prior tests.
  1894   Node*          best_bol   = NULL;
  1895   BoolTest::mask best_btest = BoolTest::illegal;
  1896   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  1897     Node* cmp = cmps[cmpn];
  1898     if (cmp == NULL)  continue;
  1899     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
  1900       Node* bol = cmp->fast_out(j);
  1901       if (!bol->is_Bool())  continue;
  1902       BoolTest::mask btest = bol->as_Bool()->_test._test;
  1903       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
  1904       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
  1905       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
  1906         best_bol   = bol->as_Bool();
  1907         best_btest = btest;
  1912   Node* answer_if_true  = NULL;
  1913   Node* answer_if_false = NULL;
  1914   switch (best_btest) {
  1915   default:
  1916     if (cmpxy == NULL)
  1917       cmpxy = ideal_cmpxy;
  1918     best_bol = _gvn.transform( new(C, 2) BoolNode(cmpxy, BoolTest::lt) );
  1919     // and fall through:
  1920   case BoolTest::lt:          // x < y
  1921   case BoolTest::le:          // x <= y
  1922     answer_if_true  = (want_max ? yvalue : xvalue);
  1923     answer_if_false = (want_max ? xvalue : yvalue);
  1924     break;
  1925   case BoolTest::gt:          // x > y
  1926   case BoolTest::ge:          // x >= y
  1927     answer_if_true  = (want_max ? xvalue : yvalue);
  1928     answer_if_false = (want_max ? yvalue : xvalue);
  1929     break;
  1932   jint hi, lo;
  1933   if (want_max) {
  1934     // We can sharpen the minimum.
  1935     hi = MAX2(txvalue->_hi, tyvalue->_hi);
  1936     lo = MAX2(txvalue->_lo, tyvalue->_lo);
  1937   } else {
  1938     // We can sharpen the maximum.
  1939     hi = MIN2(txvalue->_hi, tyvalue->_hi);
  1940     lo = MIN2(txvalue->_lo, tyvalue->_lo);
  1943   // Use a flow-free graph structure, to avoid creating excess control edges
  1944   // which could hinder other optimizations.
  1945   // Since Math.min/max is often used with arraycopy, we want
  1946   // tightly_coupled_allocation to be able to see beyond min/max expressions.
  1947   Node* cmov = CMoveNode::make(C, NULL, best_bol,
  1948                                answer_if_false, answer_if_true,
  1949                                TypeInt::make(lo, hi, widen));
  1951   return _gvn.transform(cmov);
  1953   /*
  1954   // This is not as desirable as it may seem, since Min and Max
  1955   // nodes do not have a full set of optimizations.
  1956   // And they would interfere, anyway, with 'if' optimizations
  1957   // and with CMoveI canonical forms.
  1958   switch (id) {
  1959   case vmIntrinsics::_min:
  1960     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
  1961   case vmIntrinsics::_max:
  1962     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
  1963   default:
  1964     ShouldNotReachHere();
  1966   */
  1969 inline int
  1970 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
  1971   const TypePtr* base_type = TypePtr::NULL_PTR;
  1972   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
  1973   if (base_type == NULL) {
  1974     // Unknown type.
  1975     return Type::AnyPtr;
  1976   } else if (base_type == TypePtr::NULL_PTR) {
  1977     // Since this is a NULL+long form, we have to switch to a rawptr.
  1978     base   = _gvn.transform( new (C, 2) CastX2PNode(offset) );
  1979     offset = MakeConX(0);
  1980     return Type::RawPtr;
  1981   } else if (base_type->base() == Type::RawPtr) {
  1982     return Type::RawPtr;
  1983   } else if (base_type->isa_oopptr()) {
  1984     // Base is never null => always a heap address.
  1985     if (base_type->ptr() == TypePtr::NotNull) {
  1986       return Type::OopPtr;
  1988     // Offset is small => always a heap address.
  1989     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
  1990     if (offset_type != NULL &&
  1991         base_type->offset() == 0 &&     // (should always be?)
  1992         offset_type->_lo >= 0 &&
  1993         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
  1994       return Type::OopPtr;
  1996     // Otherwise, it might either be oop+off or NULL+addr.
  1997     return Type::AnyPtr;
  1998   } else {
  1999     // No information:
  2000     return Type::AnyPtr;
  2004 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
  2005   int kind = classify_unsafe_addr(base, offset);
  2006   if (kind == Type::RawPtr) {
  2007     return basic_plus_adr(top(), base, offset);
  2008   } else {
  2009     return basic_plus_adr(base, offset);
  2013 //-------------------inline_numberOfLeadingZeros_int/long-----------------------
  2014 // inline int Integer.numberOfLeadingZeros(int)
  2015 // inline int Long.numberOfLeadingZeros(long)
  2016 bool LibraryCallKit::inline_numberOfLeadingZeros(vmIntrinsics::ID id) {
  2017   assert(id == vmIntrinsics::_numberOfLeadingZeros_i || id == vmIntrinsics::_numberOfLeadingZeros_l, "not numberOfLeadingZeros");
  2018   if (id == vmIntrinsics::_numberOfLeadingZeros_i && !Matcher::match_rule_supported(Op_CountLeadingZerosI)) return false;
  2019   if (id == vmIntrinsics::_numberOfLeadingZeros_l && !Matcher::match_rule_supported(Op_CountLeadingZerosL)) return false;
  2020   _sp += arg_size();  // restore stack pointer
  2021   switch (id) {
  2022   case vmIntrinsics::_numberOfLeadingZeros_i:
  2023     push(_gvn.transform(new (C, 2) CountLeadingZerosINode(pop())));
  2024     break;
  2025   case vmIntrinsics::_numberOfLeadingZeros_l:
  2026     push(_gvn.transform(new (C, 2) CountLeadingZerosLNode(pop_pair())));
  2027     break;
  2028   default:
  2029     ShouldNotReachHere();
  2031   return true;
  2034 //-------------------inline_numberOfTrailingZeros_int/long----------------------
  2035 // inline int Integer.numberOfTrailingZeros(int)
  2036 // inline int Long.numberOfTrailingZeros(long)
  2037 bool LibraryCallKit::inline_numberOfTrailingZeros(vmIntrinsics::ID id) {
  2038   assert(id == vmIntrinsics::_numberOfTrailingZeros_i || id == vmIntrinsics::_numberOfTrailingZeros_l, "not numberOfTrailingZeros");
  2039   if (id == vmIntrinsics::_numberOfTrailingZeros_i && !Matcher::match_rule_supported(Op_CountTrailingZerosI)) return false;
  2040   if (id == vmIntrinsics::_numberOfTrailingZeros_l && !Matcher::match_rule_supported(Op_CountTrailingZerosL)) return false;
  2041   _sp += arg_size();  // restore stack pointer
  2042   switch (id) {
  2043   case vmIntrinsics::_numberOfTrailingZeros_i:
  2044     push(_gvn.transform(new (C, 2) CountTrailingZerosINode(pop())));
  2045     break;
  2046   case vmIntrinsics::_numberOfTrailingZeros_l:
  2047     push(_gvn.transform(new (C, 2) CountTrailingZerosLNode(pop_pair())));
  2048     break;
  2049   default:
  2050     ShouldNotReachHere();
  2052   return true;
  2055 //----------------------------inline_bitCount_int/long-----------------------
  2056 // inline int Integer.bitCount(int)
  2057 // inline int Long.bitCount(long)
  2058 bool LibraryCallKit::inline_bitCount(vmIntrinsics::ID id) {
  2059   assert(id == vmIntrinsics::_bitCount_i || id == vmIntrinsics::_bitCount_l, "not bitCount");
  2060   if (id == vmIntrinsics::_bitCount_i && !Matcher::has_match_rule(Op_PopCountI)) return false;
  2061   if (id == vmIntrinsics::_bitCount_l && !Matcher::has_match_rule(Op_PopCountL)) return false;
  2062   _sp += arg_size();  // restore stack pointer
  2063   switch (id) {
  2064   case vmIntrinsics::_bitCount_i:
  2065     push(_gvn.transform(new (C, 2) PopCountINode(pop())));
  2066     break;
  2067   case vmIntrinsics::_bitCount_l:
  2068     push(_gvn.transform(new (C, 2) PopCountLNode(pop_pair())));
  2069     break;
  2070   default:
  2071     ShouldNotReachHere();
  2073   return true;
  2076 //----------------------------inline_reverseBytes_int/long/char/short-------------------
  2077 // inline Integer.reverseBytes(int)
  2078 // inline Long.reverseBytes(long)
  2079 // inline Character.reverseBytes(char)
  2080 // inline Short.reverseBytes(short)
  2081 bool LibraryCallKit::inline_reverseBytes(vmIntrinsics::ID id) {
  2082   assert(id == vmIntrinsics::_reverseBytes_i || id == vmIntrinsics::_reverseBytes_l ||
  2083          id == vmIntrinsics::_reverseBytes_c || id == vmIntrinsics::_reverseBytes_s,
  2084          "not reverse Bytes");
  2085   if (id == vmIntrinsics::_reverseBytes_i && !Matcher::has_match_rule(Op_ReverseBytesI))  return false;
  2086   if (id == vmIntrinsics::_reverseBytes_l && !Matcher::has_match_rule(Op_ReverseBytesL))  return false;
  2087   if (id == vmIntrinsics::_reverseBytes_c && !Matcher::has_match_rule(Op_ReverseBytesUS)) return false;
  2088   if (id == vmIntrinsics::_reverseBytes_s && !Matcher::has_match_rule(Op_ReverseBytesS))  return false;
  2089   _sp += arg_size();        // restore stack pointer
  2090   switch (id) {
  2091   case vmIntrinsics::_reverseBytes_i:
  2092     push(_gvn.transform(new (C, 2) ReverseBytesINode(0, pop())));
  2093     break;
  2094   case vmIntrinsics::_reverseBytes_l:
  2095     push_pair(_gvn.transform(new (C, 2) ReverseBytesLNode(0, pop_pair())));
  2096     break;
  2097   case vmIntrinsics::_reverseBytes_c:
  2098     push(_gvn.transform(new (C, 2) ReverseBytesUSNode(0, pop())));
  2099     break;
  2100   case vmIntrinsics::_reverseBytes_s:
  2101     push(_gvn.transform(new (C, 2) ReverseBytesSNode(0, pop())));
  2102     break;
  2103   default:
  2106   return true;
  2109 //----------------------------inline_unsafe_access----------------------------
  2111 const static BasicType T_ADDRESS_HOLDER = T_LONG;
  2113 // Helper that guards and inserts a G1 pre-barrier.
  2114 void LibraryCallKit::insert_g1_pre_barrier(Node* base_oop, Node* offset, Node* pre_val) {
  2115   assert(UseG1GC, "should not call this otherwise");
  2117   // We could be accessing the referent field of a reference object. If so, when G1
  2118   // is enabled, we need to log the value in the referent field in an SATB buffer.
  2119   // This routine performs some compile time filters and generates suitable
  2120   // runtime filters that guard the pre-barrier code.
  2122   // Some compile time checks.
  2124   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
  2125   const TypeX* otype = offset->find_intptr_t_type();
  2126   if (otype != NULL && otype->is_con() &&
  2127       otype->get_con() != java_lang_ref_Reference::referent_offset) {
  2128     // Constant offset but not the reference_offset so just return
  2129     return;
  2132   // We only need to generate the runtime guards for instances.
  2133   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
  2134   if (btype != NULL) {
  2135     if (btype->isa_aryptr()) {
  2136       // Array type so nothing to do
  2137       return;
  2140     const TypeInstPtr* itype = btype->isa_instptr();
  2141     if (itype != NULL) {
  2142       // Can the klass of base_oop be statically determined
  2143       // to be _not_ a sub-class of Reference?
  2144       ciKlass* klass = itype->klass();
  2145       if (klass->is_subtype_of(env()->Reference_klass()) &&
  2146           !env()->Reference_klass()->is_subtype_of(klass)) {
  2147         return;
  2152   // The compile time filters did not reject base_oop/offset so
  2153   // we need to generate the following runtime filters
  2154   //
  2155   // if (offset == java_lang_ref_Reference::_reference_offset) {
  2156   //   if (base != null) {
  2157   //     if (klass(base)->reference_type() != REF_NONE)) {
  2158   //       pre_barrier(_, pre_val, ...);
  2159   //     }
  2160   //   }
  2161   // }
  2163   float likely  = PROB_LIKELY(0.999);
  2164   float unlikely  = PROB_UNLIKELY(0.999);
  2166   IdealKit ideal(gvn(), control(),  merged_memory());
  2167 #define __ ideal.
  2169   const int reference_type_offset = instanceKlass::reference_type_offset_in_bytes() +
  2170                                         sizeof(oopDesc);
  2172   Node* referent_off = __ ConI(java_lang_ref_Reference::referent_offset);
  2174   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
  2175     __ if_then(base_oop, BoolTest::ne, null(), likely); {
  2177       // Update graphKit memory and control from IdealKit.
  2178       set_all_memory(__ merged_memory());
  2179       set_control(__ ctrl());
  2181       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
  2182       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
  2184       // Update IdealKit memory and control from graphKit.
  2185       __ set_all_memory(merged_memory());
  2186       __ set_ctrl(control());
  2188       Node* one = __ ConI(1);
  2190       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
  2192         // Update graphKit from IdeakKit.
  2193         set_all_memory(__ merged_memory());
  2194         set_control(__ ctrl());
  2196         // Use the pre-barrier to record the value in the referent field
  2197         pre_barrier(false /* do_load */,
  2198                     __ ctrl(),
  2199                     NULL /* obj */, NULL /* adr */, -1 /* alias_idx */, NULL /* val */, NULL /* val_type */,
  2200                     pre_val /* pre_val */,
  2201                     T_OBJECT);
  2203         // Update IdealKit from graphKit.
  2204         __ set_all_memory(merged_memory());
  2205         __ set_ctrl(control());
  2207       } __ end_if(); // _ref_type != ref_none
  2208     } __ end_if(); // base  != NULL
  2209   } __ end_if(); // offset == referent_offset
  2211   // Final sync IdealKit and GraphKit.
  2212   sync_kit(ideal);
  2213 #undef __
  2217 // Interpret Unsafe.fieldOffset cookies correctly:
  2218 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
  2220 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
  2221   if (callee()->is_static())  return false;  // caller must have the capability!
  2223 #ifndef PRODUCT
  2225     ResourceMark rm;
  2226     // Check the signatures.
  2227     ciSignature* sig = signature();
  2228 #ifdef ASSERT
  2229     if (!is_store) {
  2230       // Object getObject(Object base, int/long offset), etc.
  2231       BasicType rtype = sig->return_type()->basic_type();
  2232       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
  2233           rtype = T_ADDRESS;  // it is really a C void*
  2234       assert(rtype == type, "getter must return the expected value");
  2235       if (!is_native_ptr) {
  2236         assert(sig->count() == 2, "oop getter has 2 arguments");
  2237         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
  2238         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
  2239       } else {
  2240         assert(sig->count() == 1, "native getter has 1 argument");
  2241         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
  2243     } else {
  2244       // void putObject(Object base, int/long offset, Object x), etc.
  2245       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
  2246       if (!is_native_ptr) {
  2247         assert(sig->count() == 3, "oop putter has 3 arguments");
  2248         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
  2249         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
  2250       } else {
  2251         assert(sig->count() == 2, "native putter has 2 arguments");
  2252         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
  2254       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
  2255       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
  2256         vtype = T_ADDRESS;  // it is really a C void*
  2257       assert(vtype == type, "putter must accept the expected value");
  2259 #endif // ASSERT
  2261 #endif //PRODUCT
  2263   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2265   int type_words = type2size[ (type == T_ADDRESS) ? T_LONG : type ];
  2267   // Argument words:  "this" plus (oop/offset) or (lo/hi) args plus maybe 1 or 2 value words
  2268   int nargs = 1 + (is_native_ptr ? 2 : 3) + (is_store ? type_words : 0);
  2270   debug_only(int saved_sp = _sp);
  2271   _sp += nargs;
  2273   Node* val;
  2274   debug_only(val = (Node*)(uintptr_t)-1);
  2277   if (is_store) {
  2278     // Get the value being stored.  (Pop it first; it was pushed last.)
  2279     switch (type) {
  2280     case T_DOUBLE:
  2281     case T_LONG:
  2282     case T_ADDRESS:
  2283       val = pop_pair();
  2284       break;
  2285     default:
  2286       val = pop();
  2290   // Build address expression.  See the code in inline_unsafe_prefetch.
  2291   Node *adr;
  2292   Node *heap_base_oop = top();
  2293   Node* offset = top();
  2295   if (!is_native_ptr) {
  2296     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2297     offset = pop_pair();
  2298     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2299     Node* base   = pop();
  2300     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2301     // to be plain byte offsets, which are also the same as those accepted
  2302     // by oopDesc::field_base.
  2303     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2304            "fieldOffset must be byte-scaled");
  2305     // 32-bit machines ignore the high half!
  2306     offset = ConvL2X(offset);
  2307     adr = make_unsafe_address(base, offset);
  2308     heap_base_oop = base;
  2309   } else {
  2310     Node* ptr = pop_pair();
  2311     // Adjust Java long to machine word:
  2312     ptr = ConvL2X(ptr);
  2313     adr = make_unsafe_address(NULL, ptr);
  2316   // Pop receiver last:  it was pushed first.
  2317   Node *receiver = pop();
  2319   assert(saved_sp == _sp, "must have correct argument count");
  2321   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2323   // First guess at the value type.
  2324   const Type *value_type = Type::get_const_basic_type(type);
  2326   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
  2327   // there was not enough information to nail it down.
  2328   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2329   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2331   // We will need memory barriers unless we can determine a unique
  2332   // alias category for this reference.  (Note:  If for some reason
  2333   // the barriers get omitted and the unsafe reference begins to "pollute"
  2334   // the alias analysis of the rest of the graph, either Compile::can_alias
  2335   // or Compile::must_alias will throw a diagnostic assert.)
  2336   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
  2338   // If we are reading the value of the referent field of a Reference
  2339   // object (either by using Unsafe directly or through reflection)
  2340   // then, if G1 is enabled, we need to record the referent in an
  2341   // SATB log buffer using the pre-barrier mechanism.
  2342   bool need_read_barrier = UseG1GC && !is_native_ptr && !is_store &&
  2343                            offset != top() && heap_base_oop != top();
  2345   if (!is_store && type == T_OBJECT) {
  2346     // Attempt to infer a sharper value type from the offset and base type.
  2347     ciKlass* sharpened_klass = NULL;
  2349     // See if it is an instance field, with an object type.
  2350     if (alias_type->field() != NULL) {
  2351       assert(!is_native_ptr, "native pointer op cannot use a java address");
  2352       if (alias_type->field()->type()->is_klass()) {
  2353         sharpened_klass = alias_type->field()->type()->as_klass();
  2357     // See if it is a narrow oop array.
  2358     if (adr_type->isa_aryptr()) {
  2359       if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
  2360         const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
  2361         if (elem_type != NULL) {
  2362           sharpened_klass = elem_type->klass();
  2367     if (sharpened_klass != NULL) {
  2368       const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
  2370       // Sharpen the value type.
  2371       value_type = tjp;
  2373 #ifndef PRODUCT
  2374       if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
  2375         tty->print("  from base type:  ");   adr_type->dump();
  2376         tty->print("  sharpened value: "); value_type->dump();
  2378 #endif
  2382   // Null check on self without removing any arguments.  The argument
  2383   // null check technically happens in the wrong place, which can lead to
  2384   // invalid stack traces when the primitive is inlined into a method
  2385   // which handles NullPointerExceptions.
  2386   _sp += nargs;
  2387   do_null_check(receiver, T_OBJECT);
  2388   _sp -= nargs;
  2389   if (stopped()) {
  2390     return true;
  2392   // Heap pointers get a null-check from the interpreter,
  2393   // as a courtesy.  However, this is not guaranteed by Unsafe,
  2394   // and it is not possible to fully distinguish unintended nulls
  2395   // from intended ones in this API.
  2397   if (is_volatile) {
  2398     // We need to emit leading and trailing CPU membars (see below) in
  2399     // addition to memory membars when is_volatile. This is a little
  2400     // too strong, but avoids the need to insert per-alias-type
  2401     // volatile membars (for stores; compare Parse::do_put_xxx), which
  2402     // we cannot do effectively here because we probably only have a
  2403     // rough approximation of type.
  2404     need_mem_bar = true;
  2405     // For Stores, place a memory ordering barrier now.
  2406     if (is_store)
  2407       insert_mem_bar(Op_MemBarRelease);
  2410   // Memory barrier to prevent normal and 'unsafe' accesses from
  2411   // bypassing each other.  Happens after null checks, so the
  2412   // exception paths do not take memory state from the memory barrier,
  2413   // so there's no problems making a strong assert about mixing users
  2414   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
  2415   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
  2416   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2418   if (!is_store) {
  2419     Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
  2420     // load value and push onto stack
  2421     switch (type) {
  2422     case T_BOOLEAN:
  2423     case T_CHAR:
  2424     case T_BYTE:
  2425     case T_SHORT:
  2426     case T_INT:
  2427     case T_FLOAT:
  2428       push(p);
  2429       break;
  2430     case T_OBJECT:
  2431       if (need_read_barrier) {
  2432         insert_g1_pre_barrier(heap_base_oop, offset, p);
  2434       push(p);
  2435       break;
  2436     case T_ADDRESS:
  2437       // Cast to an int type.
  2438       p = _gvn.transform( new (C, 2) CastP2XNode(NULL,p) );
  2439       p = ConvX2L(p);
  2440       push_pair(p);
  2441       break;
  2442     case T_DOUBLE:
  2443     case T_LONG:
  2444       push_pair( p );
  2445       break;
  2446     default: ShouldNotReachHere();
  2448   } else {
  2449     // place effect of store into memory
  2450     switch (type) {
  2451     case T_DOUBLE:
  2452       val = dstore_rounding(val);
  2453       break;
  2454     case T_ADDRESS:
  2455       // Repackage the long as a pointer.
  2456       val = ConvL2X(val);
  2457       val = _gvn.transform( new (C, 2) CastX2PNode(val) );
  2458       break;
  2461     if (type != T_OBJECT ) {
  2462       (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
  2463     } else {
  2464       // Possibly an oop being stored to Java heap or native memory
  2465       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
  2466         // oop to Java heap.
  2467         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
  2468       } else {
  2469         // We can't tell at compile time if we are storing in the Java heap or outside
  2470         // of it. So we need to emit code to conditionally do the proper type of
  2471         // store.
  2473         IdealKit ideal(gvn(), control(),  merged_memory());
  2474 #define __ ideal.
  2475         // QQQ who knows what probability is here??
  2476         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
  2477           // Sync IdealKit and graphKit.
  2478           set_all_memory( __ merged_memory());
  2479           set_control(__ ctrl());
  2480           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
  2481           // Update IdealKit memory.
  2482           __ set_all_memory(merged_memory());
  2483           __ set_ctrl(control());
  2484         } __ else_(); {
  2485           __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
  2486         } __ end_if();
  2487         // Final sync IdealKit and GraphKit.
  2488         sync_kit(ideal);
  2489 #undef __
  2494   if (is_volatile) {
  2495     if (!is_store)
  2496       insert_mem_bar(Op_MemBarAcquire);
  2497     else
  2498       insert_mem_bar(Op_MemBarVolatile);
  2501   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2503   return true;
  2506 //----------------------------inline_unsafe_prefetch----------------------------
  2508 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
  2509 #ifndef PRODUCT
  2511     ResourceMark rm;
  2512     // Check the signatures.
  2513     ciSignature* sig = signature();
  2514 #ifdef ASSERT
  2515     // Object getObject(Object base, int/long offset), etc.
  2516     BasicType rtype = sig->return_type()->basic_type();
  2517     if (!is_native_ptr) {
  2518       assert(sig->count() == 2, "oop prefetch has 2 arguments");
  2519       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
  2520       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
  2521     } else {
  2522       assert(sig->count() == 1, "native prefetch has 1 argument");
  2523       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
  2525 #endif // ASSERT
  2527 #endif // !PRODUCT
  2529   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2531   // Argument words:  "this" if not static, plus (oop/offset) or (lo/hi) args
  2532   int nargs = (is_static ? 0 : 1) + (is_native_ptr ? 2 : 3);
  2534   debug_only(int saved_sp = _sp);
  2535   _sp += nargs;
  2537   // Build address expression.  See the code in inline_unsafe_access.
  2538   Node *adr;
  2539   if (!is_native_ptr) {
  2540     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2541     Node* offset = pop_pair();
  2542     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2543     Node* base   = pop();
  2544     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2545     // to be plain byte offsets, which are also the same as those accepted
  2546     // by oopDesc::field_base.
  2547     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2548            "fieldOffset must be byte-scaled");
  2549     // 32-bit machines ignore the high half!
  2550     offset = ConvL2X(offset);
  2551     adr = make_unsafe_address(base, offset);
  2552   } else {
  2553     Node* ptr = pop_pair();
  2554     // Adjust Java long to machine word:
  2555     ptr = ConvL2X(ptr);
  2556     adr = make_unsafe_address(NULL, ptr);
  2559   if (is_static) {
  2560     assert(saved_sp == _sp, "must have correct argument count");
  2561   } else {
  2562     // Pop receiver last:  it was pushed first.
  2563     Node *receiver = pop();
  2564     assert(saved_sp == _sp, "must have correct argument count");
  2566     // Null check on self without removing any arguments.  The argument
  2567     // null check technically happens in the wrong place, which can lead to
  2568     // invalid stack traces when the primitive is inlined into a method
  2569     // which handles NullPointerExceptions.
  2570     _sp += nargs;
  2571     do_null_check(receiver, T_OBJECT);
  2572     _sp -= nargs;
  2573     if (stopped()) {
  2574       return true;
  2578   // Generate the read or write prefetch
  2579   Node *prefetch;
  2580   if (is_store) {
  2581     prefetch = new (C, 3) PrefetchWriteNode(i_o(), adr);
  2582   } else {
  2583     prefetch = new (C, 3) PrefetchReadNode(i_o(), adr);
  2585   prefetch->init_req(0, control());
  2586   set_i_o(_gvn.transform(prefetch));
  2588   return true;
  2591 //----------------------------inline_unsafe_CAS----------------------------
  2593 bool LibraryCallKit::inline_unsafe_CAS(BasicType type) {
  2594   // This basic scheme here is the same as inline_unsafe_access, but
  2595   // differs in enough details that combining them would make the code
  2596   // overly confusing.  (This is a true fact! I originally combined
  2597   // them, but even I was confused by it!) As much code/comments as
  2598   // possible are retained from inline_unsafe_access though to make
  2599   // the correspondences clearer. - dl
  2601   if (callee()->is_static())  return false;  // caller must have the capability!
  2603 #ifndef PRODUCT
  2605     ResourceMark rm;
  2606     // Check the signatures.
  2607     ciSignature* sig = signature();
  2608 #ifdef ASSERT
  2609     BasicType rtype = sig->return_type()->basic_type();
  2610     assert(rtype == T_BOOLEAN, "CAS must return boolean");
  2611     assert(sig->count() == 4, "CAS has 4 arguments");
  2612     assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
  2613     assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
  2614 #endif // ASSERT
  2616 #endif //PRODUCT
  2618   // number of stack slots per value argument (1 or 2)
  2619   int type_words = type2size[type];
  2621   // Cannot inline wide CAS on machines that don't support it natively
  2622   if (type2aelembytes(type) > BytesPerInt && !VM_Version::supports_cx8())
  2623     return false;
  2625   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2627   // Argument words:  "this" plus oop plus offset plus oldvalue plus newvalue;
  2628   int nargs = 1 + 1 + 2  + type_words + type_words;
  2630   // pop arguments: newval, oldval, offset, base, and receiver
  2631   debug_only(int saved_sp = _sp);
  2632   _sp += nargs;
  2633   Node* newval   = (type_words == 1) ? pop() : pop_pair();
  2634   Node* oldval   = (type_words == 1) ? pop() : pop_pair();
  2635   Node *offset   = pop_pair();
  2636   Node *base     = pop();
  2637   Node *receiver = pop();
  2638   assert(saved_sp == _sp, "must have correct argument count");
  2640   //  Null check receiver.
  2641   _sp += nargs;
  2642   do_null_check(receiver, T_OBJECT);
  2643   _sp -= nargs;
  2644   if (stopped()) {
  2645     return true;
  2648   // Build field offset expression.
  2649   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2650   // to be plain byte offsets, which are also the same as those accepted
  2651   // by oopDesc::field_base.
  2652   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  2653   // 32-bit machines ignore the high half of long offsets
  2654   offset = ConvL2X(offset);
  2655   Node* adr = make_unsafe_address(base, offset);
  2656   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2658   // (Unlike inline_unsafe_access, there seems no point in trying
  2659   // to refine types. Just use the coarse types here.
  2660   const Type *value_type = Type::get_const_basic_type(type);
  2661   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2662   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2663   int alias_idx = C->get_alias_index(adr_type);
  2665   // Memory-model-wise, a CAS acts like a little synchronized block,
  2666   // so needs barriers on each side.  These don't translate into
  2667   // actual barriers on most machines, but we still need rest of
  2668   // compiler to respect ordering.
  2670   insert_mem_bar(Op_MemBarRelease);
  2671   insert_mem_bar(Op_MemBarCPUOrder);
  2673   // 4984716: MemBars must be inserted before this
  2674   //          memory node in order to avoid a false
  2675   //          dependency which will confuse the scheduler.
  2676   Node *mem = memory(alias_idx);
  2678   // For now, we handle only those cases that actually exist: ints,
  2679   // longs, and Object. Adding others should be straightforward.
  2680   Node* cas;
  2681   switch(type) {
  2682   case T_INT:
  2683     cas = _gvn.transform(new (C, 5) CompareAndSwapINode(control(), mem, adr, newval, oldval));
  2684     break;
  2685   case T_LONG:
  2686     cas = _gvn.transform(new (C, 5) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
  2687     break;
  2688   case T_OBJECT:
  2689      // reference stores need a store barrier.
  2690     // (They don't if CAS fails, but it isn't worth checking.)
  2691     pre_barrier(true /* do_load*/,
  2692                 control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
  2693                 NULL /* pre_val*/,
  2694                 T_OBJECT);
  2695 #ifdef _LP64
  2696     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  2697       Node *newval_enc = _gvn.transform(new (C, 2) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
  2698       Node *oldval_enc = _gvn.transform(new (C, 2) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
  2699       cas = _gvn.transform(new (C, 5) CompareAndSwapNNode(control(), mem, adr,
  2700                                                           newval_enc, oldval_enc));
  2701     } else
  2702 #endif
  2704       cas = _gvn.transform(new (C, 5) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
  2706     post_barrier(control(), cas, base, adr, alias_idx, newval, T_OBJECT, true);
  2707     break;
  2708   default:
  2709     ShouldNotReachHere();
  2710     break;
  2713   // SCMemProjNodes represent the memory state of CAS. Their main
  2714   // role is to prevent CAS nodes from being optimized away when their
  2715   // results aren't used.
  2716   Node* proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
  2717   set_memory(proj, alias_idx);
  2719   // Add the trailing membar surrounding the access
  2720   insert_mem_bar(Op_MemBarCPUOrder);
  2721   insert_mem_bar(Op_MemBarAcquire);
  2723   push(cas);
  2724   return true;
  2727 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
  2728   // This is another variant of inline_unsafe_access, differing in
  2729   // that it always issues store-store ("release") barrier and ensures
  2730   // store-atomicity (which only matters for "long").
  2732   if (callee()->is_static())  return false;  // caller must have the capability!
  2734 #ifndef PRODUCT
  2736     ResourceMark rm;
  2737     // Check the signatures.
  2738     ciSignature* sig = signature();
  2739 #ifdef ASSERT
  2740     BasicType rtype = sig->return_type()->basic_type();
  2741     assert(rtype == T_VOID, "must return void");
  2742     assert(sig->count() == 3, "has 3 arguments");
  2743     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
  2744     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
  2745 #endif // ASSERT
  2747 #endif //PRODUCT
  2749   // number of stack slots per value argument (1 or 2)
  2750   int type_words = type2size[type];
  2752   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2754   // Argument words:  "this" plus oop plus offset plus value;
  2755   int nargs = 1 + 1 + 2 + type_words;
  2757   // pop arguments: val, offset, base, and receiver
  2758   debug_only(int saved_sp = _sp);
  2759   _sp += nargs;
  2760   Node* val      = (type_words == 1) ? pop() : pop_pair();
  2761   Node *offset   = pop_pair();
  2762   Node *base     = pop();
  2763   Node *receiver = pop();
  2764   assert(saved_sp == _sp, "must have correct argument count");
  2766   //  Null check receiver.
  2767   _sp += nargs;
  2768   do_null_check(receiver, T_OBJECT);
  2769   _sp -= nargs;
  2770   if (stopped()) {
  2771     return true;
  2774   // Build field offset expression.
  2775   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  2776   // 32-bit machines ignore the high half of long offsets
  2777   offset = ConvL2X(offset);
  2778   Node* adr = make_unsafe_address(base, offset);
  2779   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2780   const Type *value_type = Type::get_const_basic_type(type);
  2781   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2783   insert_mem_bar(Op_MemBarRelease);
  2784   insert_mem_bar(Op_MemBarCPUOrder);
  2785   // Ensure that the store is atomic for longs:
  2786   bool require_atomic_access = true;
  2787   Node* store;
  2788   if (type == T_OBJECT) // reference stores need a store barrier.
  2789     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
  2790   else {
  2791     store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
  2793   insert_mem_bar(Op_MemBarCPUOrder);
  2794   return true;
  2797 bool LibraryCallKit::inline_unsafe_allocate() {
  2798   if (callee()->is_static())  return false;  // caller must have the capability!
  2799   int nargs = 1 + 1;
  2800   assert(signature()->size() == nargs-1, "alloc has 1 argument");
  2801   null_check_receiver(callee());  // check then ignore argument(0)
  2802   _sp += nargs;  // set original stack for use by uncommon_trap
  2803   Node* cls = do_null_check(argument(1), T_OBJECT);
  2804   _sp -= nargs;
  2805   if (stopped())  return true;
  2807   Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0);
  2808   _sp += nargs;  // set original stack for use by uncommon_trap
  2809   kls = do_null_check(kls, T_OBJECT);
  2810   _sp -= nargs;
  2811   if (stopped())  return true;  // argument was like int.class
  2813   // Note:  The argument might still be an illegal value like
  2814   // Serializable.class or Object[].class.   The runtime will handle it.
  2815   // But we must make an explicit check for initialization.
  2816   Node* insp = basic_plus_adr(kls, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc));
  2817   Node* inst = make_load(NULL, insp, TypeInt::INT, T_INT);
  2818   Node* bits = intcon(instanceKlass::fully_initialized);
  2819   Node* test = _gvn.transform( new (C, 3) SubINode(inst, bits) );
  2820   // The 'test' is non-zero if we need to take a slow path.
  2822   Node* obj = new_instance(kls, test);
  2823   push(obj);
  2825   return true;
  2828 //------------------------inline_native_time_funcs--------------
  2829 // inline code for System.currentTimeMillis() and System.nanoTime()
  2830 // these have the same type and signature
  2831 bool LibraryCallKit::inline_native_time_funcs(bool isNano) {
  2832   address funcAddr = isNano ? CAST_FROM_FN_PTR(address, os::javaTimeNanos) :
  2833                               CAST_FROM_FN_PTR(address, os::javaTimeMillis);
  2834   const char * funcName = isNano ? "nanoTime" : "currentTimeMillis";
  2835   const TypeFunc *tf = OptoRuntime::current_time_millis_Type();
  2836   const TypePtr* no_memory_effects = NULL;
  2837   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
  2838   Node* value = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms+0));
  2839 #ifdef ASSERT
  2840   Node* value_top = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms + 1));
  2841   assert(value_top == top(), "second value must be top");
  2842 #endif
  2843   push_pair(value);
  2844   return true;
  2847 //------------------------inline_native_currentThread------------------
  2848 bool LibraryCallKit::inline_native_currentThread() {
  2849   Node* junk = NULL;
  2850   push(generate_current_thread(junk));
  2851   return true;
  2854 //------------------------inline_native_isInterrupted------------------
  2855 bool LibraryCallKit::inline_native_isInterrupted() {
  2856   const int nargs = 1+1;  // receiver + boolean
  2857   assert(nargs == arg_size(), "sanity");
  2858   // Add a fast path to t.isInterrupted(clear_int):
  2859   //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
  2860   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
  2861   // So, in the common case that the interrupt bit is false,
  2862   // we avoid making a call into the VM.  Even if the interrupt bit
  2863   // is true, if the clear_int argument is false, we avoid the VM call.
  2864   // However, if the receiver is not currentThread, we must call the VM,
  2865   // because there must be some locking done around the operation.
  2867   // We only go to the fast case code if we pass two guards.
  2868   // Paths which do not pass are accumulated in the slow_region.
  2869   RegionNode* slow_region = new (C, 1) RegionNode(1);
  2870   record_for_igvn(slow_region);
  2871   RegionNode* result_rgn = new (C, 4) RegionNode(1+3); // fast1, fast2, slow
  2872   PhiNode*    result_val = new (C, 4) PhiNode(result_rgn, TypeInt::BOOL);
  2873   enum { no_int_result_path   = 1,
  2874          no_clear_result_path = 2,
  2875          slow_result_path     = 3
  2876   };
  2878   // (a) Receiving thread must be the current thread.
  2879   Node* rec_thr = argument(0);
  2880   Node* tls_ptr = NULL;
  2881   Node* cur_thr = generate_current_thread(tls_ptr);
  2882   Node* cmp_thr = _gvn.transform( new (C, 3) CmpPNode(cur_thr, rec_thr) );
  2883   Node* bol_thr = _gvn.transform( new (C, 2) BoolNode(cmp_thr, BoolTest::ne) );
  2885   bool known_current_thread = (_gvn.type(bol_thr) == TypeInt::ZERO);
  2886   if (!known_current_thread)
  2887     generate_slow_guard(bol_thr, slow_region);
  2889   // (b) Interrupt bit on TLS must be false.
  2890   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  2891   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
  2892   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
  2893   // Set the control input on the field _interrupted read to prevent it floating up.
  2894   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
  2895   Node* cmp_bit = _gvn.transform( new (C, 3) CmpINode(int_bit, intcon(0)) );
  2896   Node* bol_bit = _gvn.transform( new (C, 2) BoolNode(cmp_bit, BoolTest::ne) );
  2898   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
  2900   // First fast path:  if (!TLS._interrupted) return false;
  2901   Node* false_bit = _gvn.transform( new (C, 1) IfFalseNode(iff_bit) );
  2902   result_rgn->init_req(no_int_result_path, false_bit);
  2903   result_val->init_req(no_int_result_path, intcon(0));
  2905   // drop through to next case
  2906   set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_bit)) );
  2908   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
  2909   Node* clr_arg = argument(1);
  2910   Node* cmp_arg = _gvn.transform( new (C, 3) CmpINode(clr_arg, intcon(0)) );
  2911   Node* bol_arg = _gvn.transform( new (C, 2) BoolNode(cmp_arg, BoolTest::ne) );
  2912   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
  2914   // Second fast path:  ... else if (!clear_int) return true;
  2915   Node* false_arg = _gvn.transform( new (C, 1) IfFalseNode(iff_arg) );
  2916   result_rgn->init_req(no_clear_result_path, false_arg);
  2917   result_val->init_req(no_clear_result_path, intcon(1));
  2919   // drop through to next case
  2920   set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_arg)) );
  2922   // (d) Otherwise, go to the slow path.
  2923   slow_region->add_req(control());
  2924   set_control( _gvn.transform(slow_region) );
  2926   if (stopped()) {
  2927     // There is no slow path.
  2928     result_rgn->init_req(slow_result_path, top());
  2929     result_val->init_req(slow_result_path, top());
  2930   } else {
  2931     // non-virtual because it is a private non-static
  2932     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
  2934     Node* slow_val = set_results_for_java_call(slow_call);
  2935     // this->control() comes from set_results_for_java_call
  2937     // If we know that the result of the slow call will be true, tell the optimizer!
  2938     if (known_current_thread)  slow_val = intcon(1);
  2940     Node* fast_io  = slow_call->in(TypeFunc::I_O);
  2941     Node* fast_mem = slow_call->in(TypeFunc::Memory);
  2942     // These two phis are pre-filled with copies of of the fast IO and Memory
  2943     Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
  2944     Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
  2946     result_rgn->init_req(slow_result_path, control());
  2947     io_phi    ->init_req(slow_result_path, i_o());
  2948     mem_phi   ->init_req(slow_result_path, reset_memory());
  2949     result_val->init_req(slow_result_path, slow_val);
  2951     set_all_memory( _gvn.transform(mem_phi) );
  2952     set_i_o(        _gvn.transform(io_phi) );
  2955   push_result(result_rgn, result_val);
  2956   C->set_has_split_ifs(true); // Has chance for split-if optimization
  2958   return true;
  2961 //---------------------------load_mirror_from_klass----------------------------
  2962 // Given a klass oop, load its java mirror (a java.lang.Class oop).
  2963 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
  2964   Node* p = basic_plus_adr(klass, Klass::java_mirror_offset_in_bytes() + sizeof(oopDesc));
  2965   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
  2968 //-----------------------load_klass_from_mirror_common-------------------------
  2969 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
  2970 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
  2971 // and branch to the given path on the region.
  2972 // If never_see_null, take an uncommon trap on null, so we can optimistically
  2973 // compile for the non-null case.
  2974 // If the region is NULL, force never_see_null = true.
  2975 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
  2976                                                     bool never_see_null,
  2977                                                     int nargs,
  2978                                                     RegionNode* region,
  2979                                                     int null_path,
  2980                                                     int offset) {
  2981   if (region == NULL)  never_see_null = true;
  2982   Node* p = basic_plus_adr(mirror, offset);
  2983   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  2984   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type) );
  2985   _sp += nargs; // any deopt will start just before call to enclosing method
  2986   Node* null_ctl = top();
  2987   kls = null_check_oop(kls, &null_ctl, never_see_null);
  2988   if (region != NULL) {
  2989     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
  2990     region->init_req(null_path, null_ctl);
  2991   } else {
  2992     assert(null_ctl == top(), "no loose ends");
  2994   _sp -= nargs;
  2995   return kls;
  2998 //--------------------(inline_native_Class_query helpers)---------------------
  2999 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
  3000 // Fall through if (mods & mask) == bits, take the guard otherwise.
  3001 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
  3002   // Branch around if the given klass has the given modifier bit set.
  3003   // Like generate_guard, adds a new path onto the region.
  3004   Node* modp = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
  3005   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
  3006   Node* mask = intcon(modifier_mask);
  3007   Node* bits = intcon(modifier_bits);
  3008   Node* mbit = _gvn.transform( new (C, 3) AndINode(mods, mask) );
  3009   Node* cmp  = _gvn.transform( new (C, 3) CmpINode(mbit, bits) );
  3010   Node* bol  = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ne) );
  3011   return generate_fair_guard(bol, region);
  3013 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
  3014   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
  3017 //-------------------------inline_native_Class_query-------------------
  3018 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
  3019   int nargs = 1+0;  // just the Class mirror, in most cases
  3020   const Type* return_type = TypeInt::BOOL;
  3021   Node* prim_return_value = top();  // what happens if it's a primitive class?
  3022   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3023   bool expect_prim = false;     // most of these guys expect to work on refs
  3025   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
  3027   switch (id) {
  3028   case vmIntrinsics::_isInstance:
  3029     nargs = 1+1;  // the Class mirror, plus the object getting queried about
  3030     // nothing is an instance of a primitive type
  3031     prim_return_value = intcon(0);
  3032     break;
  3033   case vmIntrinsics::_getModifiers:
  3034     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  3035     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
  3036     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
  3037     break;
  3038   case vmIntrinsics::_isInterface:
  3039     prim_return_value = intcon(0);
  3040     break;
  3041   case vmIntrinsics::_isArray:
  3042     prim_return_value = intcon(0);
  3043     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
  3044     break;
  3045   case vmIntrinsics::_isPrimitive:
  3046     prim_return_value = intcon(1);
  3047     expect_prim = true;  // obviously
  3048     break;
  3049   case vmIntrinsics::_getSuperclass:
  3050     prim_return_value = null();
  3051     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  3052     break;
  3053   case vmIntrinsics::_getComponentType:
  3054     prim_return_value = null();
  3055     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  3056     break;
  3057   case vmIntrinsics::_getClassAccessFlags:
  3058     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  3059     return_type = TypeInt::INT;  // not bool!  6297094
  3060     break;
  3061   default:
  3062     ShouldNotReachHere();
  3065   Node* mirror =                      argument(0);
  3066   Node* obj    = (nargs <= 1)? top(): argument(1);
  3068   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
  3069   if (mirror_con == NULL)  return false;  // cannot happen?
  3071 #ifndef PRODUCT
  3072   if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
  3073     ciType* k = mirror_con->java_mirror_type();
  3074     if (k) {
  3075       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
  3076       k->print_name();
  3077       tty->cr();
  3080 #endif
  3082   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
  3083   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  3084   record_for_igvn(region);
  3085   PhiNode* phi = new (C, PATH_LIMIT) PhiNode(region, return_type);
  3087   // The mirror will never be null of Reflection.getClassAccessFlags, however
  3088   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
  3089   // if it is. See bug 4774291.
  3091   // For Reflection.getClassAccessFlags(), the null check occurs in
  3092   // the wrong place; see inline_unsafe_access(), above, for a similar
  3093   // situation.
  3094   _sp += nargs;  // set original stack for use by uncommon_trap
  3095   mirror = do_null_check(mirror, T_OBJECT);
  3096   _sp -= nargs;
  3097   // If mirror or obj is dead, only null-path is taken.
  3098   if (stopped())  return true;
  3100   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
  3102   // Now load the mirror's klass metaobject, and null-check it.
  3103   // Side-effects region with the control path if the klass is null.
  3104   Node* kls = load_klass_from_mirror(mirror, never_see_null, nargs,
  3105                                      region, _prim_path);
  3106   // If kls is null, we have a primitive mirror.
  3107   phi->init_req(_prim_path, prim_return_value);
  3108   if (stopped()) { push_result(region, phi); return true; }
  3110   Node* p;  // handy temp
  3111   Node* null_ctl;
  3113   // Now that we have the non-null klass, we can perform the real query.
  3114   // For constant classes, the query will constant-fold in LoadNode::Value.
  3115   Node* query_value = top();
  3116   switch (id) {
  3117   case vmIntrinsics::_isInstance:
  3118     // nothing is an instance of a primitive type
  3119     _sp += nargs;          // gen_instanceof might do an uncommon trap
  3120     query_value = gen_instanceof(obj, kls);
  3121     _sp -= nargs;
  3122     break;
  3124   case vmIntrinsics::_getModifiers:
  3125     p = basic_plus_adr(kls, Klass::modifier_flags_offset_in_bytes() + sizeof(oopDesc));
  3126     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
  3127     break;
  3129   case vmIntrinsics::_isInterface:
  3130     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  3131     if (generate_interface_guard(kls, region) != NULL)
  3132       // A guard was added.  If the guard is taken, it was an interface.
  3133       phi->add_req(intcon(1));
  3134     // If we fall through, it's a plain class.
  3135     query_value = intcon(0);
  3136     break;
  3138   case vmIntrinsics::_isArray:
  3139     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
  3140     if (generate_array_guard(kls, region) != NULL)
  3141       // A guard was added.  If the guard is taken, it was an array.
  3142       phi->add_req(intcon(1));
  3143     // If we fall through, it's a plain class.
  3144     query_value = intcon(0);
  3145     break;
  3147   case vmIntrinsics::_isPrimitive:
  3148     query_value = intcon(0); // "normal" path produces false
  3149     break;
  3151   case vmIntrinsics::_getSuperclass:
  3152     // The rules here are somewhat unfortunate, but we can still do better
  3153     // with random logic than with a JNI call.
  3154     // Interfaces store null or Object as _super, but must report null.
  3155     // Arrays store an intermediate super as _super, but must report Object.
  3156     // Other types can report the actual _super.
  3157     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  3158     if (generate_interface_guard(kls, region) != NULL)
  3159       // A guard was added.  If the guard is taken, it was an interface.
  3160       phi->add_req(null());
  3161     if (generate_array_guard(kls, region) != NULL)
  3162       // A guard was added.  If the guard is taken, it was an array.
  3163       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
  3164     // If we fall through, it's a plain class.  Get its _super.
  3165     p = basic_plus_adr(kls, Klass::super_offset_in_bytes() + sizeof(oopDesc));
  3166     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL) );
  3167     null_ctl = top();
  3168     kls = null_check_oop(kls, &null_ctl);
  3169     if (null_ctl != top()) {
  3170       // If the guard is taken, Object.superClass is null (both klass and mirror).
  3171       region->add_req(null_ctl);
  3172       phi   ->add_req(null());
  3174     if (!stopped()) {
  3175       query_value = load_mirror_from_klass(kls);
  3177     break;
  3179   case vmIntrinsics::_getComponentType:
  3180     if (generate_array_guard(kls, region) != NULL) {
  3181       // Be sure to pin the oop load to the guard edge just created:
  3182       Node* is_array_ctrl = region->in(region->req()-1);
  3183       Node* cma = basic_plus_adr(kls, in_bytes(arrayKlass::component_mirror_offset()) + sizeof(oopDesc));
  3184       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
  3185       phi->add_req(cmo);
  3187     query_value = null();  // non-array case is null
  3188     break;
  3190   case vmIntrinsics::_getClassAccessFlags:
  3191     p = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
  3192     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
  3193     break;
  3195   default:
  3196     ShouldNotReachHere();
  3199   // Fall-through is the normal case of a query to a real class.
  3200   phi->init_req(1, query_value);
  3201   region->init_req(1, control());
  3203   push_result(region, phi);
  3204   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3206   return true;
  3209 //--------------------------inline_native_subtype_check------------------------
  3210 // This intrinsic takes the JNI calls out of the heart of
  3211 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
  3212 bool LibraryCallKit::inline_native_subtype_check() {
  3213   int nargs = 1+1;  // the Class mirror, plus the other class getting examined
  3215   // Pull both arguments off the stack.
  3216   Node* args[2];                // two java.lang.Class mirrors: superc, subc
  3217   args[0] = argument(0);
  3218   args[1] = argument(1);
  3219   Node* klasses[2];             // corresponding Klasses: superk, subk
  3220   klasses[0] = klasses[1] = top();
  3222   enum {
  3223     // A full decision tree on {superc is prim, subc is prim}:
  3224     _prim_0_path = 1,           // {P,N} => false
  3225                                 // {P,P} & superc!=subc => false
  3226     _prim_same_path,            // {P,P} & superc==subc => true
  3227     _prim_1_path,               // {N,P} => false
  3228     _ref_subtype_path,          // {N,N} & subtype check wins => true
  3229     _both_ref_path,             // {N,N} & subtype check loses => false
  3230     PATH_LIMIT
  3231   };
  3233   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  3234   Node*       phi    = new (C, PATH_LIMIT) PhiNode(region, TypeInt::BOOL);
  3235   record_for_igvn(region);
  3237   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
  3238   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  3239   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
  3241   // First null-check both mirrors and load each mirror's klass metaobject.
  3242   int which_arg;
  3243   for (which_arg = 0; which_arg <= 1; which_arg++) {
  3244     Node* arg = args[which_arg];
  3245     _sp += nargs;  // set original stack for use by uncommon_trap
  3246     arg = do_null_check(arg, T_OBJECT);
  3247     _sp -= nargs;
  3248     if (stopped())  break;
  3249     args[which_arg] = _gvn.transform(arg);
  3251     Node* p = basic_plus_adr(arg, class_klass_offset);
  3252     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
  3253     klasses[which_arg] = _gvn.transform(kls);
  3256   // Having loaded both klasses, test each for null.
  3257   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3258   for (which_arg = 0; which_arg <= 1; which_arg++) {
  3259     Node* kls = klasses[which_arg];
  3260     Node* null_ctl = top();
  3261     _sp += nargs;  // set original stack for use by uncommon_trap
  3262     kls = null_check_oop(kls, &null_ctl, never_see_null);
  3263     _sp -= nargs;
  3264     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
  3265     region->init_req(prim_path, null_ctl);
  3266     if (stopped())  break;
  3267     klasses[which_arg] = kls;
  3270   if (!stopped()) {
  3271     // now we have two reference types, in klasses[0..1]
  3272     Node* subk   = klasses[1];  // the argument to isAssignableFrom
  3273     Node* superk = klasses[0];  // the receiver
  3274     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
  3275     // now we have a successful reference subtype check
  3276     region->set_req(_ref_subtype_path, control());
  3279   // If both operands are primitive (both klasses null), then
  3280   // we must return true when they are identical primitives.
  3281   // It is convenient to test this after the first null klass check.
  3282   set_control(region->in(_prim_0_path)); // go back to first null check
  3283   if (!stopped()) {
  3284     // Since superc is primitive, make a guard for the superc==subc case.
  3285     Node* cmp_eq = _gvn.transform( new (C, 3) CmpPNode(args[0], args[1]) );
  3286     Node* bol_eq = _gvn.transform( new (C, 2) BoolNode(cmp_eq, BoolTest::eq) );
  3287     generate_guard(bol_eq, region, PROB_FAIR);
  3288     if (region->req() == PATH_LIMIT+1) {
  3289       // A guard was added.  If the added guard is taken, superc==subc.
  3290       region->swap_edges(PATH_LIMIT, _prim_same_path);
  3291       region->del_req(PATH_LIMIT);
  3293     region->set_req(_prim_0_path, control()); // Not equal after all.
  3296   // these are the only paths that produce 'true':
  3297   phi->set_req(_prim_same_path,   intcon(1));
  3298   phi->set_req(_ref_subtype_path, intcon(1));
  3300   // pull together the cases:
  3301   assert(region->req() == PATH_LIMIT, "sane region");
  3302   for (uint i = 1; i < region->req(); i++) {
  3303     Node* ctl = region->in(i);
  3304     if (ctl == NULL || ctl == top()) {
  3305       region->set_req(i, top());
  3306       phi   ->set_req(i, top());
  3307     } else if (phi->in(i) == NULL) {
  3308       phi->set_req(i, intcon(0)); // all other paths produce 'false'
  3312   set_control(_gvn.transform(region));
  3313   push(_gvn.transform(phi));
  3315   return true;
  3318 //---------------------generate_array_guard_common------------------------
  3319 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
  3320                                                   bool obj_array, bool not_array) {
  3321   // If obj_array/non_array==false/false:
  3322   // Branch around if the given klass is in fact an array (either obj or prim).
  3323   // If obj_array/non_array==false/true:
  3324   // Branch around if the given klass is not an array klass of any kind.
  3325   // If obj_array/non_array==true/true:
  3326   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
  3327   // If obj_array/non_array==true/false:
  3328   // Branch around if the kls is an oop array (Object[] or subtype)
  3329   //
  3330   // Like generate_guard, adds a new path onto the region.
  3331   jint  layout_con = 0;
  3332   Node* layout_val = get_layout_helper(kls, layout_con);
  3333   if (layout_val == NULL) {
  3334     bool query = (obj_array
  3335                   ? Klass::layout_helper_is_objArray(layout_con)
  3336                   : Klass::layout_helper_is_javaArray(layout_con));
  3337     if (query == not_array) {
  3338       return NULL;                       // never a branch
  3339     } else {                             // always a branch
  3340       Node* always_branch = control();
  3341       if (region != NULL)
  3342         region->add_req(always_branch);
  3343       set_control(top());
  3344       return always_branch;
  3347   // Now test the correct condition.
  3348   jint  nval = (obj_array
  3349                 ? ((jint)Klass::_lh_array_tag_type_value
  3350                    <<    Klass::_lh_array_tag_shift)
  3351                 : Klass::_lh_neutral_value);
  3352   Node* cmp = _gvn.transform( new(C, 3) CmpINode(layout_val, intcon(nval)) );
  3353   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
  3354   // invert the test if we are looking for a non-array
  3355   if (not_array)  btest = BoolTest(btest).negate();
  3356   Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, btest) );
  3357   return generate_fair_guard(bol, region);
  3361 //-----------------------inline_native_newArray--------------------------
  3362 bool LibraryCallKit::inline_native_newArray() {
  3363   int nargs = 2;
  3364   Node* mirror    = argument(0);
  3365   Node* count_val = argument(1);
  3367   _sp += nargs;  // set original stack for use by uncommon_trap
  3368   mirror = do_null_check(mirror, T_OBJECT);
  3369   _sp -= nargs;
  3370   // If mirror or obj is dead, only null-path is taken.
  3371   if (stopped())  return true;
  3373   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
  3374   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  3375   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
  3376                                                       TypeInstPtr::NOTNULL);
  3377   PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
  3378   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
  3379                                                       TypePtr::BOTTOM);
  3381   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3382   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
  3383                                                   nargs,
  3384                                                   result_reg, _slow_path);
  3385   Node* normal_ctl   = control();
  3386   Node* no_array_ctl = result_reg->in(_slow_path);
  3388   // Generate code for the slow case.  We make a call to newArray().
  3389   set_control(no_array_ctl);
  3390   if (!stopped()) {
  3391     // Either the input type is void.class, or else the
  3392     // array klass has not yet been cached.  Either the
  3393     // ensuing call will throw an exception, or else it
  3394     // will cache the array klass for next time.
  3395     PreserveJVMState pjvms(this);
  3396     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
  3397     Node* slow_result = set_results_for_java_call(slow_call);
  3398     // this->control() comes from set_results_for_java_call
  3399     result_reg->set_req(_slow_path, control());
  3400     result_val->set_req(_slow_path, slow_result);
  3401     result_io ->set_req(_slow_path, i_o());
  3402     result_mem->set_req(_slow_path, reset_memory());
  3405   set_control(normal_ctl);
  3406   if (!stopped()) {
  3407     // Normal case:  The array type has been cached in the java.lang.Class.
  3408     // The following call works fine even if the array type is polymorphic.
  3409     // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3410     Node* obj = new_array(klass_node, count_val, nargs);
  3411     result_reg->init_req(_normal_path, control());
  3412     result_val->init_req(_normal_path, obj);
  3413     result_io ->init_req(_normal_path, i_o());
  3414     result_mem->init_req(_normal_path, reset_memory());
  3417   // Return the combined state.
  3418   set_i_o(        _gvn.transform(result_io)  );
  3419   set_all_memory( _gvn.transform(result_mem) );
  3420   push_result(result_reg, result_val);
  3421   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3423   return true;
  3426 //----------------------inline_native_getLength--------------------------
  3427 bool LibraryCallKit::inline_native_getLength() {
  3428   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3430   int nargs = 1;
  3431   Node* array = argument(0);
  3433   _sp += nargs;  // set original stack for use by uncommon_trap
  3434   array = do_null_check(array, T_OBJECT);
  3435   _sp -= nargs;
  3437   // If array is dead, only null-path is taken.
  3438   if (stopped())  return true;
  3440   // Deoptimize if it is a non-array.
  3441   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
  3443   if (non_array != NULL) {
  3444     PreserveJVMState pjvms(this);
  3445     set_control(non_array);
  3446     _sp += nargs;  // push the arguments back on the stack
  3447     uncommon_trap(Deoptimization::Reason_intrinsic,
  3448                   Deoptimization::Action_maybe_recompile);
  3451   // If control is dead, only non-array-path is taken.
  3452   if (stopped())  return true;
  3454   // The works fine even if the array type is polymorphic.
  3455   // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3456   push( load_array_length(array) );
  3458   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3460   return true;
  3463 //------------------------inline_array_copyOf----------------------------
  3464 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
  3465   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3467   // Restore the stack and pop off the arguments.
  3468   int nargs = 3 + (is_copyOfRange? 1: 0);
  3469   Node* original          = argument(0);
  3470   Node* start             = is_copyOfRange? argument(1): intcon(0);
  3471   Node* end               = is_copyOfRange? argument(2): argument(1);
  3472   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
  3474   Node* newcopy;
  3476   //set the original stack and the reexecute bit for the interpreter to reexecute
  3477   //the bytecode that invokes Arrays.copyOf if deoptimization happens
  3478   { PreserveReexecuteState preexecs(this);
  3479     _sp += nargs;
  3480     jvms()->set_should_reexecute(true);
  3482     array_type_mirror = do_null_check(array_type_mirror, T_OBJECT);
  3483     original          = do_null_check(original, T_OBJECT);
  3485     // Check if a null path was taken unconditionally.
  3486     if (stopped())  return true;
  3488     Node* orig_length = load_array_length(original);
  3490     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, 0,
  3491                                               NULL, 0);
  3492     klass_node = do_null_check(klass_node, T_OBJECT);
  3494     RegionNode* bailout = new (C, 1) RegionNode(1);
  3495     record_for_igvn(bailout);
  3497     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
  3498     // Bail out if that is so.
  3499     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
  3500     if (not_objArray != NULL) {
  3501       // Improve the klass node's type from the new optimistic assumption:
  3502       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
  3503       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  3504       Node* cast = new (C, 2) CastPPNode(klass_node, akls);
  3505       cast->init_req(0, control());
  3506       klass_node = _gvn.transform(cast);
  3509     // Bail out if either start or end is negative.
  3510     generate_negative_guard(start, bailout, &start);
  3511     generate_negative_guard(end,   bailout, &end);
  3513     Node* length = end;
  3514     if (_gvn.type(start) != TypeInt::ZERO) {
  3515       length = _gvn.transform( new (C, 3) SubINode(end, start) );
  3518     // Bail out if length is negative.
  3519     // ...Not needed, since the new_array will throw the right exception.
  3520     //generate_negative_guard(length, bailout, &length);
  3522     if (bailout->req() > 1) {
  3523       PreserveJVMState pjvms(this);
  3524       set_control( _gvn.transform(bailout) );
  3525       uncommon_trap(Deoptimization::Reason_intrinsic,
  3526                     Deoptimization::Action_maybe_recompile);
  3529     if (!stopped()) {
  3531       // How many elements will we copy from the original?
  3532       // The answer is MinI(orig_length - start, length).
  3533       Node* orig_tail = _gvn.transform( new(C, 3) SubINode(orig_length, start) );
  3534       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
  3536       const bool raw_mem_only = true;
  3537       newcopy = new_array(klass_node, length, 0, raw_mem_only);
  3539       // Generate a direct call to the right arraycopy function(s).
  3540       // We know the copy is disjoint but we might not know if the
  3541       // oop stores need checking.
  3542       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
  3543       // This will fail a store-check if x contains any non-nulls.
  3544       bool disjoint_bases = true;
  3545       bool length_never_negative = true;
  3546       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  3547                          original, start, newcopy, intcon(0), moved,
  3548                          disjoint_bases, length_never_negative);
  3550   } //original reexecute and sp are set back here
  3552   if(!stopped()) {
  3553     push(newcopy);
  3556   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3558   return true;
  3562 //----------------------generate_virtual_guard---------------------------
  3563 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
  3564 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
  3565                                              RegionNode* slow_region) {
  3566   ciMethod* method = callee();
  3567   int vtable_index = method->vtable_index();
  3568   // Get the methodOop out of the appropriate vtable entry.
  3569   int entry_offset  = (instanceKlass::vtable_start_offset() +
  3570                      vtable_index*vtableEntry::size()) * wordSize +
  3571                      vtableEntry::method_offset_in_bytes();
  3572   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
  3573   Node* target_call = make_load(NULL, entry_addr, TypeInstPtr::NOTNULL, T_OBJECT);
  3575   // Compare the target method with the expected method (e.g., Object.hashCode).
  3576   const TypeInstPtr* native_call_addr = TypeInstPtr::make(method);
  3578   Node* native_call = makecon(native_call_addr);
  3579   Node* chk_native  = _gvn.transform( new(C, 3) CmpPNode(target_call, native_call) );
  3580   Node* test_native = _gvn.transform( new(C, 2) BoolNode(chk_native, BoolTest::ne) );
  3582   return generate_slow_guard(test_native, slow_region);
  3585 //-----------------------generate_method_call----------------------------
  3586 // Use generate_method_call to make a slow-call to the real
  3587 // method if the fast path fails.  An alternative would be to
  3588 // use a stub like OptoRuntime::slow_arraycopy_Java.
  3589 // This only works for expanding the current library call,
  3590 // not another intrinsic.  (E.g., don't use this for making an
  3591 // arraycopy call inside of the copyOf intrinsic.)
  3592 CallJavaNode*
  3593 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
  3594   // When compiling the intrinsic method itself, do not use this technique.
  3595   guarantee(callee() != C->method(), "cannot make slow-call to self");
  3597   ciMethod* method = callee();
  3598   // ensure the JVMS we have will be correct for this call
  3599   guarantee(method_id == method->intrinsic_id(), "must match");
  3601   const TypeFunc* tf = TypeFunc::make(method);
  3602   int tfdc = tf->domain()->cnt();
  3603   CallJavaNode* slow_call;
  3604   if (is_static) {
  3605     assert(!is_virtual, "");
  3606     slow_call = new(C, tfdc) CallStaticJavaNode(tf,
  3607                                 SharedRuntime::get_resolve_static_call_stub(),
  3608                                 method, bci());
  3609   } else if (is_virtual) {
  3610     null_check_receiver(method);
  3611     int vtable_index = methodOopDesc::invalid_vtable_index;
  3612     if (UseInlineCaches) {
  3613       // Suppress the vtable call
  3614     } else {
  3615       // hashCode and clone are not a miranda methods,
  3616       // so the vtable index is fixed.
  3617       // No need to use the linkResolver to get it.
  3618        vtable_index = method->vtable_index();
  3620     slow_call = new(C, tfdc) CallDynamicJavaNode(tf,
  3621                                 SharedRuntime::get_resolve_virtual_call_stub(),
  3622                                 method, vtable_index, bci());
  3623   } else {  // neither virtual nor static:  opt_virtual
  3624     null_check_receiver(method);
  3625     slow_call = new(C, tfdc) CallStaticJavaNode(tf,
  3626                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
  3627                                 method, bci());
  3628     slow_call->set_optimized_virtual(true);
  3630   set_arguments_for_java_call(slow_call);
  3631   set_edges_for_java_call(slow_call);
  3632   return slow_call;
  3636 //------------------------------inline_native_hashcode--------------------
  3637 // Build special case code for calls to hashCode on an object.
  3638 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
  3639   assert(is_static == callee()->is_static(), "correct intrinsic selection");
  3640   assert(!(is_virtual && is_static), "either virtual, special, or static");
  3642   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
  3644   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  3645   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
  3646                                                       TypeInt::INT);
  3647   PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
  3648   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
  3649                                                       TypePtr::BOTTOM);
  3650   Node* obj = NULL;
  3651   if (!is_static) {
  3652     // Check for hashing null object
  3653     obj = null_check_receiver(callee());
  3654     if (stopped())  return true;        // unconditionally null
  3655     result_reg->init_req(_null_path, top());
  3656     result_val->init_req(_null_path, top());
  3657   } else {
  3658     // Do a null check, and return zero if null.
  3659     // System.identityHashCode(null) == 0
  3660     obj = argument(0);
  3661     Node* null_ctl = top();
  3662     obj = null_check_oop(obj, &null_ctl);
  3663     result_reg->init_req(_null_path, null_ctl);
  3664     result_val->init_req(_null_path, _gvn.intcon(0));
  3667   // Unconditionally null?  Then return right away.
  3668   if (stopped()) {
  3669     set_control( result_reg->in(_null_path) );
  3670     if (!stopped())
  3671       push(      result_val ->in(_null_path) );
  3672     return true;
  3675   // After null check, get the object's klass.
  3676   Node* obj_klass = load_object_klass(obj);
  3678   // This call may be virtual (invokevirtual) or bound (invokespecial).
  3679   // For each case we generate slightly different code.
  3681   // We only go to the fast case code if we pass a number of guards.  The
  3682   // paths which do not pass are accumulated in the slow_region.
  3683   RegionNode* slow_region = new (C, 1) RegionNode(1);
  3684   record_for_igvn(slow_region);
  3686   // If this is a virtual call, we generate a funny guard.  We pull out
  3687   // the vtable entry corresponding to hashCode() from the target object.
  3688   // If the target method which we are calling happens to be the native
  3689   // Object hashCode() method, we pass the guard.  We do not need this
  3690   // guard for non-virtual calls -- the caller is known to be the native
  3691   // Object hashCode().
  3692   if (is_virtual) {
  3693     generate_virtual_guard(obj_klass, slow_region);
  3696   // Get the header out of the object, use LoadMarkNode when available
  3697   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
  3698   Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type());
  3700   // Test the header to see if it is unlocked.
  3701   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
  3702   Node *lmasked_header = _gvn.transform( new (C, 3) AndXNode(header, lock_mask) );
  3703   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
  3704   Node *chk_unlocked   = _gvn.transform( new (C, 3) CmpXNode( lmasked_header, unlocked_val));
  3705   Node *test_unlocked  = _gvn.transform( new (C, 2) BoolNode( chk_unlocked, BoolTest::ne) );
  3707   generate_slow_guard(test_unlocked, slow_region);
  3709   // Get the hash value and check to see that it has been properly assigned.
  3710   // We depend on hash_mask being at most 32 bits and avoid the use of
  3711   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
  3712   // vm: see markOop.hpp.
  3713   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
  3714   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
  3715   Node *hshifted_header= _gvn.transform( new (C, 3) URShiftXNode(header, hash_shift) );
  3716   // This hack lets the hash bits live anywhere in the mark object now, as long
  3717   // as the shift drops the relevant bits into the low 32 bits.  Note that
  3718   // Java spec says that HashCode is an int so there's no point in capturing
  3719   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
  3720   hshifted_header      = ConvX2I(hshifted_header);
  3721   Node *hash_val       = _gvn.transform( new (C, 3) AndINode(hshifted_header, hash_mask) );
  3723   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
  3724   Node *chk_assigned   = _gvn.transform( new (C, 3) CmpINode( hash_val, no_hash_val));
  3725   Node *test_assigned  = _gvn.transform( new (C, 2) BoolNode( chk_assigned, BoolTest::eq) );
  3727   generate_slow_guard(test_assigned, slow_region);
  3729   Node* init_mem = reset_memory();
  3730   // fill in the rest of the null path:
  3731   result_io ->init_req(_null_path, i_o());
  3732   result_mem->init_req(_null_path, init_mem);
  3734   result_val->init_req(_fast_path, hash_val);
  3735   result_reg->init_req(_fast_path, control());
  3736   result_io ->init_req(_fast_path, i_o());
  3737   result_mem->init_req(_fast_path, init_mem);
  3739   // Generate code for the slow case.  We make a call to hashCode().
  3740   set_control(_gvn.transform(slow_region));
  3741   if (!stopped()) {
  3742     // No need for PreserveJVMState, because we're using up the present state.
  3743     set_all_memory(init_mem);
  3744     vmIntrinsics::ID hashCode_id = vmIntrinsics::_hashCode;
  3745     if (is_static)   hashCode_id = vmIntrinsics::_identityHashCode;
  3746     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
  3747     Node* slow_result = set_results_for_java_call(slow_call);
  3748     // this->control() comes from set_results_for_java_call
  3749     result_reg->init_req(_slow_path, control());
  3750     result_val->init_req(_slow_path, slow_result);
  3751     result_io  ->set_req(_slow_path, i_o());
  3752     result_mem ->set_req(_slow_path, reset_memory());
  3755   // Return the combined state.
  3756   set_i_o(        _gvn.transform(result_io)  );
  3757   set_all_memory( _gvn.transform(result_mem) );
  3758   push_result(result_reg, result_val);
  3760   return true;
  3763 //---------------------------inline_native_getClass----------------------------
  3764 // Build special case code for calls to getClass on an object.
  3765 bool LibraryCallKit::inline_native_getClass() {
  3766   Node* obj = null_check_receiver(callee());
  3767   if (stopped())  return true;
  3768   push( load_mirror_from_klass(load_object_klass(obj)) );
  3769   return true;
  3772 //-----------------inline_native_Reflection_getCallerClass---------------------
  3773 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
  3774 //
  3775 // NOTE that this code must perform the same logic as
  3776 // vframeStream::security_get_caller_frame in that it must skip
  3777 // Method.invoke() and auxiliary frames.
  3782 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
  3783   ciMethod*       method = callee();
  3785 #ifndef PRODUCT
  3786   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3787     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
  3789 #endif
  3791   debug_only(int saved_sp = _sp);
  3793   // Argument words:  (int depth)
  3794   int nargs = 1;
  3796   _sp += nargs;
  3797   Node* caller_depth_node = pop();
  3799   assert(saved_sp == _sp, "must have correct argument count");
  3801   // The depth value must be a constant in order for the runtime call
  3802   // to be eliminated.
  3803   const TypeInt* caller_depth_type = _gvn.type(caller_depth_node)->isa_int();
  3804   if (caller_depth_type == NULL || !caller_depth_type->is_con()) {
  3805 #ifndef PRODUCT
  3806     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3807       tty->print_cr("  Bailing out because caller depth was not a constant");
  3809 #endif
  3810     return false;
  3812   // Note that the JVM state at this point does not include the
  3813   // getCallerClass() frame which we are trying to inline. The
  3814   // semantics of getCallerClass(), however, are that the "first"
  3815   // frame is the getCallerClass() frame, so we subtract one from the
  3816   // requested depth before continuing. We don't inline requests of
  3817   // getCallerClass(0).
  3818   int caller_depth = caller_depth_type->get_con() - 1;
  3819   if (caller_depth < 0) {
  3820 #ifndef PRODUCT
  3821     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3822       tty->print_cr("  Bailing out because caller depth was %d", caller_depth);
  3824 #endif
  3825     return false;
  3828   if (!jvms()->has_method()) {
  3829 #ifndef PRODUCT
  3830     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3831       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
  3833 #endif
  3834     return false;
  3836   int _depth = jvms()->depth();  // cache call chain depth
  3838   // Walk back up the JVM state to find the caller at the required
  3839   // depth. NOTE that this code must perform the same logic as
  3840   // vframeStream::security_get_caller_frame in that it must skip
  3841   // Method.invoke() and auxiliary frames. Note also that depth is
  3842   // 1-based (1 is the bottom of the inlining).
  3843   int inlining_depth = _depth;
  3844   JVMState* caller_jvms = NULL;
  3846   if (inlining_depth > 0) {
  3847     caller_jvms = jvms();
  3848     assert(caller_jvms = jvms()->of_depth(inlining_depth), "inlining_depth == our depth");
  3849     do {
  3850       // The following if-tests should be performed in this order
  3851       if (is_method_invoke_or_aux_frame(caller_jvms)) {
  3852         // Skip a Method.invoke() or auxiliary frame
  3853       } else if (caller_depth > 0) {
  3854         // Skip real frame
  3855         --caller_depth;
  3856       } else {
  3857         // We're done: reached desired caller after skipping.
  3858         break;
  3860       caller_jvms = caller_jvms->caller();
  3861       --inlining_depth;
  3862     } while (inlining_depth > 0);
  3865   if (inlining_depth == 0) {
  3866 #ifndef PRODUCT
  3867     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3868       tty->print_cr("  Bailing out because caller depth (%d) exceeded inlining depth (%d)", caller_depth_type->get_con(), _depth);
  3869       tty->print_cr("  JVM state at this point:");
  3870       for (int i = _depth; i >= 1; i--) {
  3871         tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
  3874 #endif
  3875     return false; // Reached end of inlining
  3878   // Acquire method holder as java.lang.Class
  3879   ciInstanceKlass* caller_klass  = caller_jvms->method()->holder();
  3880   ciInstance*      caller_mirror = caller_klass->java_mirror();
  3881   // Push this as a constant
  3882   push(makecon(TypeInstPtr::make(caller_mirror)));
  3883 #ifndef PRODUCT
  3884   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3885     tty->print_cr("  Succeeded: caller = %s.%s, caller depth = %d, depth = %d", caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), caller_depth_type->get_con(), _depth);
  3886     tty->print_cr("  JVM state at this point:");
  3887     for (int i = _depth; i >= 1; i--) {
  3888       tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
  3891 #endif
  3892   return true;
  3895 // Helper routine for above
  3896 bool LibraryCallKit::is_method_invoke_or_aux_frame(JVMState* jvms) {
  3897   ciMethod* method = jvms->method();
  3899   // Is this the Method.invoke method itself?
  3900   if (method->intrinsic_id() == vmIntrinsics::_invoke)
  3901     return true;
  3903   // Is this a helper, defined somewhere underneath MethodAccessorImpl.
  3904   ciKlass* k = method->holder();
  3905   if (k->is_instance_klass()) {
  3906     ciInstanceKlass* ik = k->as_instance_klass();
  3907     for (; ik != NULL; ik = ik->super()) {
  3908       if (ik->name() == ciSymbol::sun_reflect_MethodAccessorImpl() &&
  3909           ik == env()->find_system_klass(ik->name())) {
  3910         return true;
  3914   else if (method->is_method_handle_adapter()) {
  3915     // This is an internal adapter frame from the MethodHandleCompiler -- skip it
  3916     return true;
  3919   return false;
  3922 static int value_field_offset = -1;  // offset of the "value" field of AtomicLongCSImpl.  This is needed by
  3923                                      // inline_native_AtomicLong_attemptUpdate() but it has no way of
  3924                                      // computing it since there is no lookup field by name function in the
  3925                                      // CI interface.  This is computed and set by inline_native_AtomicLong_get().
  3926                                      // Using a static variable here is safe even if we have multiple compilation
  3927                                      // threads because the offset is constant.  At worst the same offset will be
  3928                                      // computed and  stored multiple
  3930 bool LibraryCallKit::inline_native_AtomicLong_get() {
  3931   // Restore the stack and pop off the argument
  3932   _sp+=1;
  3933   Node *obj = pop();
  3935   // get the offset of the "value" field. Since the CI interfaces
  3936   // does not provide a way to look up a field by name, we scan the bytecodes
  3937   // to get the field index.  We expect the first 2 instructions of the method
  3938   // to be:
  3939   //    0 aload_0
  3940   //    1 getfield "value"
  3941   ciMethod* method = callee();
  3942   if (value_field_offset == -1)
  3944     ciField* value_field;
  3945     ciBytecodeStream iter(method);
  3946     Bytecodes::Code bc = iter.next();
  3948     if ((bc != Bytecodes::_aload_0) &&
  3949               ((bc != Bytecodes::_aload) || (iter.get_index() != 0)))
  3950       return false;
  3951     bc = iter.next();
  3952     if (bc != Bytecodes::_getfield)
  3953       return false;
  3954     bool ignore;
  3955     value_field = iter.get_field(ignore);
  3956     value_field_offset = value_field->offset_in_bytes();
  3959   // Null check without removing any arguments.
  3960   _sp++;
  3961   obj = do_null_check(obj, T_OBJECT);
  3962   _sp--;
  3963   // Check for locking null object
  3964   if (stopped()) return true;
  3966   Node *adr = basic_plus_adr(obj, obj, value_field_offset);
  3967   const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
  3968   int alias_idx = C->get_alias_index(adr_type);
  3970   Node *result = _gvn.transform(new (C, 3) LoadLLockedNode(control(), memory(alias_idx), adr));
  3972   push_pair(result);
  3974   return true;
  3977 bool LibraryCallKit::inline_native_AtomicLong_attemptUpdate() {
  3978   // Restore the stack and pop off the arguments
  3979   _sp+=5;
  3980   Node *newVal = pop_pair();
  3981   Node *oldVal = pop_pair();
  3982   Node *obj = pop();
  3984   // we need the offset of the "value" field which was computed when
  3985   // inlining the get() method.  Give up if we don't have it.
  3986   if (value_field_offset == -1)
  3987     return false;
  3989   // Null check without removing any arguments.
  3990   _sp+=5;
  3991   obj = do_null_check(obj, T_OBJECT);
  3992   _sp-=5;
  3993   // Check for locking null object
  3994   if (stopped()) return true;
  3996   Node *adr = basic_plus_adr(obj, obj, value_field_offset);
  3997   const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
  3998   int alias_idx = C->get_alias_index(adr_type);
  4000   Node *cas = _gvn.transform(new (C, 5) StoreLConditionalNode(control(), memory(alias_idx), adr, newVal, oldVal));
  4001   Node *store_proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
  4002   set_memory(store_proj, alias_idx);
  4003   Node *bol = _gvn.transform( new (C, 2) BoolNode( cas, BoolTest::eq ) );
  4005   Node *result;
  4006   // CMove node is not used to be able fold a possible check code
  4007   // after attemptUpdate() call. This code could be transformed
  4008   // into CMove node by loop optimizations.
  4010     RegionNode *r = new (C, 3) RegionNode(3);
  4011     result = new (C, 3) PhiNode(r, TypeInt::BOOL);
  4013     Node *iff = create_and_xform_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN);
  4014     Node *iftrue = opt_iff(r, iff);
  4015     r->init_req(1, iftrue);
  4016     result->init_req(1, intcon(1));
  4017     result->init_req(2, intcon(0));
  4019     set_control(_gvn.transform(r));
  4020     record_for_igvn(r);
  4022     C->set_has_split_ifs(true); // Has chance for split-if optimization
  4025   push(_gvn.transform(result));
  4026   return true;
  4029 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
  4030   // restore the arguments
  4031   _sp += arg_size();
  4033   switch (id) {
  4034   case vmIntrinsics::_floatToRawIntBits:
  4035     push(_gvn.transform( new (C, 2) MoveF2INode(pop())));
  4036     break;
  4038   case vmIntrinsics::_intBitsToFloat:
  4039     push(_gvn.transform( new (C, 2) MoveI2FNode(pop())));
  4040     break;
  4042   case vmIntrinsics::_doubleToRawLongBits:
  4043     push_pair(_gvn.transform( new (C, 2) MoveD2LNode(pop_pair())));
  4044     break;
  4046   case vmIntrinsics::_longBitsToDouble:
  4047     push_pair(_gvn.transform( new (C, 2) MoveL2DNode(pop_pair())));
  4048     break;
  4050   case vmIntrinsics::_doubleToLongBits: {
  4051     Node* value = pop_pair();
  4053     // two paths (plus control) merge in a wood
  4054     RegionNode *r = new (C, 3) RegionNode(3);
  4055     Node *phi = new (C, 3) PhiNode(r, TypeLong::LONG);
  4057     Node *cmpisnan = _gvn.transform( new (C, 3) CmpDNode(value, value));
  4058     // Build the boolean node
  4059     Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
  4061     // Branch either way.
  4062     // NaN case is less traveled, which makes all the difference.
  4063     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  4064     Node *opt_isnan = _gvn.transform(ifisnan);
  4065     assert( opt_isnan->is_If(), "Expect an IfNode");
  4066     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  4067     Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
  4069     set_control(iftrue);
  4071     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  4072     Node *slow_result = longcon(nan_bits); // return NaN
  4073     phi->init_req(1, _gvn.transform( slow_result ));
  4074     r->init_req(1, iftrue);
  4076     // Else fall through
  4077     Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
  4078     set_control(iffalse);
  4080     phi->init_req(2, _gvn.transform( new (C, 2) MoveD2LNode(value)));
  4081     r->init_req(2, iffalse);
  4083     // Post merge
  4084     set_control(_gvn.transform(r));
  4085     record_for_igvn(r);
  4087     Node* result = _gvn.transform(phi);
  4088     assert(result->bottom_type()->isa_long(), "must be");
  4089     push_pair(result);
  4091     C->set_has_split_ifs(true); // Has chance for split-if optimization
  4093     break;
  4096   case vmIntrinsics::_floatToIntBits: {
  4097     Node* value = pop();
  4099     // two paths (plus control) merge in a wood
  4100     RegionNode *r = new (C, 3) RegionNode(3);
  4101     Node *phi = new (C, 3) PhiNode(r, TypeInt::INT);
  4103     Node *cmpisnan = _gvn.transform( new (C, 3) CmpFNode(value, value));
  4104     // Build the boolean node
  4105     Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
  4107     // Branch either way.
  4108     // NaN case is less traveled, which makes all the difference.
  4109     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  4110     Node *opt_isnan = _gvn.transform(ifisnan);
  4111     assert( opt_isnan->is_If(), "Expect an IfNode");
  4112     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  4113     Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
  4115     set_control(iftrue);
  4117     static const jint nan_bits = 0x7fc00000;
  4118     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
  4119     phi->init_req(1, _gvn.transform( slow_result ));
  4120     r->init_req(1, iftrue);
  4122     // Else fall through
  4123     Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
  4124     set_control(iffalse);
  4126     phi->init_req(2, _gvn.transform( new (C, 2) MoveF2INode(value)));
  4127     r->init_req(2, iffalse);
  4129     // Post merge
  4130     set_control(_gvn.transform(r));
  4131     record_for_igvn(r);
  4133     Node* result = _gvn.transform(phi);
  4134     assert(result->bottom_type()->isa_int(), "must be");
  4135     push(result);
  4137     C->set_has_split_ifs(true); // Has chance for split-if optimization
  4139     break;
  4142   default:
  4143     ShouldNotReachHere();
  4146   return true;
  4149 #ifdef _LP64
  4150 #define XTOP ,top() /*additional argument*/
  4151 #else  //_LP64
  4152 #define XTOP        /*no additional argument*/
  4153 #endif //_LP64
  4155 //----------------------inline_unsafe_copyMemory-------------------------
  4156 bool LibraryCallKit::inline_unsafe_copyMemory() {
  4157   if (callee()->is_static())  return false;  // caller must have the capability!
  4158   int nargs = 1 + 5 + 3;  // 5 args:  (src: ptr,off, dst: ptr,off, size)
  4159   assert(signature()->size() == nargs-1, "copy has 5 arguments");
  4160   null_check_receiver(callee());  // check then ignore argument(0)
  4161   if (stopped())  return true;
  4163   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  4165   Node* src_ptr = argument(1);
  4166   Node* src_off = ConvL2X(argument(2));
  4167   assert(argument(3)->is_top(), "2nd half of long");
  4168   Node* dst_ptr = argument(4);
  4169   Node* dst_off = ConvL2X(argument(5));
  4170   assert(argument(6)->is_top(), "2nd half of long");
  4171   Node* size    = ConvL2X(argument(7));
  4172   assert(argument(8)->is_top(), "2nd half of long");
  4174   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  4175          "fieldOffset must be byte-scaled");
  4177   Node* src = make_unsafe_address(src_ptr, src_off);
  4178   Node* dst = make_unsafe_address(dst_ptr, dst_off);
  4180   // Conservatively insert a memory barrier on all memory slices.
  4181   // Do not let writes of the copy source or destination float below the copy.
  4182   insert_mem_bar(Op_MemBarCPUOrder);
  4184   // Call it.  Note that the length argument is not scaled.
  4185   make_runtime_call(RC_LEAF|RC_NO_FP,
  4186                     OptoRuntime::fast_arraycopy_Type(),
  4187                     StubRoutines::unsafe_arraycopy(),
  4188                     "unsafe_arraycopy",
  4189                     TypeRawPtr::BOTTOM,
  4190                     src, dst, size XTOP);
  4192   // Do not let reads of the copy destination float above the copy.
  4193   insert_mem_bar(Op_MemBarCPUOrder);
  4195   return true;
  4198 //------------------------clone_coping-----------------------------------
  4199 // Helper function for inline_native_clone.
  4200 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
  4201   assert(obj_size != NULL, "");
  4202   Node* raw_obj = alloc_obj->in(1);
  4203   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
  4205   if (ReduceBulkZeroing) {
  4206     // We will be completely responsible for initializing this object -
  4207     // mark Initialize node as complete.
  4208     AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
  4209     // The object was just allocated - there should be no any stores!
  4210     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
  4213   // Copy the fastest available way.
  4214   // TODO: generate fields copies for small objects instead.
  4215   Node* src  = obj;
  4216   Node* dest = alloc_obj;
  4217   Node* size = _gvn.transform(obj_size);
  4219   // Exclude the header but include array length to copy by 8 bytes words.
  4220   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
  4221   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
  4222                             instanceOopDesc::base_offset_in_bytes();
  4223   // base_off:
  4224   // 8  - 32-bit VM
  4225   // 12 - 64-bit VM, compressed oops
  4226   // 16 - 64-bit VM, normal oops
  4227   if (base_off % BytesPerLong != 0) {
  4228     assert(UseCompressedOops, "");
  4229     if (is_array) {
  4230       // Exclude length to copy by 8 bytes words.
  4231       base_off += sizeof(int);
  4232     } else {
  4233       // Include klass to copy by 8 bytes words.
  4234       base_off = instanceOopDesc::klass_offset_in_bytes();
  4236     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
  4238   src  = basic_plus_adr(src,  base_off);
  4239   dest = basic_plus_adr(dest, base_off);
  4241   // Compute the length also, if needed:
  4242   Node* countx = size;
  4243   countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(base_off)) );
  4244   countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong) ));
  4246   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4247   bool disjoint_bases = true;
  4248   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
  4249                                src, NULL, dest, NULL, countx,
  4250                                /*dest_uninitialized*/true);
  4252   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
  4253   if (card_mark) {
  4254     assert(!is_array, "");
  4255     // Put in store barrier for any and all oops we are sticking
  4256     // into this object.  (We could avoid this if we could prove
  4257     // that the object type contains no oop fields at all.)
  4258     Node* no_particular_value = NULL;
  4259     Node* no_particular_field = NULL;
  4260     int raw_adr_idx = Compile::AliasIdxRaw;
  4261     post_barrier(control(),
  4262                  memory(raw_adr_type),
  4263                  alloc_obj,
  4264                  no_particular_field,
  4265                  raw_adr_idx,
  4266                  no_particular_value,
  4267                  T_OBJECT,
  4268                  false);
  4271   // Do not let reads from the cloned object float above the arraycopy.
  4272   insert_mem_bar(Op_MemBarCPUOrder);
  4275 //------------------------inline_native_clone----------------------------
  4276 // Here are the simple edge cases:
  4277 //  null receiver => normal trap
  4278 //  virtual and clone was overridden => slow path to out-of-line clone
  4279 //  not cloneable or finalizer => slow path to out-of-line Object.clone
  4280 //
  4281 // The general case has two steps, allocation and copying.
  4282 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
  4283 //
  4284 // Copying also has two cases, oop arrays and everything else.
  4285 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
  4286 // Everything else uses the tight inline loop supplied by CopyArrayNode.
  4287 //
  4288 // These steps fold up nicely if and when the cloned object's klass
  4289 // can be sharply typed as an object array, a type array, or an instance.
  4290 //
  4291 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
  4292   int nargs = 1;
  4293   PhiNode* result_val;
  4295   //set the original stack and the reexecute bit for the interpreter to reexecute
  4296   //the bytecode that invokes Object.clone if deoptimization happens
  4297   { PreserveReexecuteState preexecs(this);
  4298     jvms()->set_should_reexecute(true);
  4300     //null_check_receiver will adjust _sp (push and pop)
  4301     Node* obj = null_check_receiver(callee());
  4302     if (stopped())  return true;
  4304     _sp += nargs;
  4306     Node* obj_klass = load_object_klass(obj);
  4307     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
  4308     const TypeOopPtr*   toop   = ((tklass != NULL)
  4309                                 ? tklass->as_instance_type()
  4310                                 : TypeInstPtr::NOTNULL);
  4312     // Conservatively insert a memory barrier on all memory slices.
  4313     // Do not let writes into the original float below the clone.
  4314     insert_mem_bar(Op_MemBarCPUOrder);
  4316     // paths into result_reg:
  4317     enum {
  4318       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
  4319       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
  4320       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
  4321       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
  4322       PATH_LIMIT
  4323     };
  4324     RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  4325     result_val             = new(C, PATH_LIMIT) PhiNode(result_reg,
  4326                                                         TypeInstPtr::NOTNULL);
  4327     PhiNode*    result_i_o = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
  4328     PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
  4329                                                         TypePtr::BOTTOM);
  4330     record_for_igvn(result_reg);
  4332     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4333     int raw_adr_idx = Compile::AliasIdxRaw;
  4334     const bool raw_mem_only = true;
  4337     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
  4338     if (array_ctl != NULL) {
  4339       // It's an array.
  4340       PreserveJVMState pjvms(this);
  4341       set_control(array_ctl);
  4342       Node* obj_length = load_array_length(obj);
  4343       Node* obj_size  = NULL;
  4344       Node* alloc_obj = new_array(obj_klass, obj_length, 0,
  4345                                   raw_mem_only, &obj_size);
  4347       if (!use_ReduceInitialCardMarks()) {
  4348         // If it is an oop array, it requires very special treatment,
  4349         // because card marking is required on each card of the array.
  4350         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
  4351         if (is_obja != NULL) {
  4352           PreserveJVMState pjvms2(this);
  4353           set_control(is_obja);
  4354           // Generate a direct call to the right arraycopy function(s).
  4355           bool disjoint_bases = true;
  4356           bool length_never_negative = true;
  4357           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  4358                              obj, intcon(0), alloc_obj, intcon(0),
  4359                              obj_length,
  4360                              disjoint_bases, length_never_negative);
  4361           result_reg->init_req(_objArray_path, control());
  4362           result_val->init_req(_objArray_path, alloc_obj);
  4363           result_i_o ->set_req(_objArray_path, i_o());
  4364           result_mem ->set_req(_objArray_path, reset_memory());
  4367       // Otherwise, there are no card marks to worry about.
  4368       // (We can dispense with card marks if we know the allocation
  4369       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
  4370       //  causes the non-eden paths to take compensating steps to
  4371       //  simulate a fresh allocation, so that no further
  4372       //  card marks are required in compiled code to initialize
  4373       //  the object.)
  4375       if (!stopped()) {
  4376         copy_to_clone(obj, alloc_obj, obj_size, true, false);
  4378         // Present the results of the copy.
  4379         result_reg->init_req(_array_path, control());
  4380         result_val->init_req(_array_path, alloc_obj);
  4381         result_i_o ->set_req(_array_path, i_o());
  4382         result_mem ->set_req(_array_path, reset_memory());
  4386     // We only go to the instance fast case code if we pass a number of guards.
  4387     // The paths which do not pass are accumulated in the slow_region.
  4388     RegionNode* slow_region = new (C, 1) RegionNode(1);
  4389     record_for_igvn(slow_region);
  4390     if (!stopped()) {
  4391       // It's an instance (we did array above).  Make the slow-path tests.
  4392       // If this is a virtual call, we generate a funny guard.  We grab
  4393       // the vtable entry corresponding to clone() from the target object.
  4394       // If the target method which we are calling happens to be the
  4395       // Object clone() method, we pass the guard.  We do not need this
  4396       // guard for non-virtual calls; the caller is known to be the native
  4397       // Object clone().
  4398       if (is_virtual) {
  4399         generate_virtual_guard(obj_klass, slow_region);
  4402       // The object must be cloneable and must not have a finalizer.
  4403       // Both of these conditions may be checked in a single test.
  4404       // We could optimize the cloneable test further, but we don't care.
  4405       generate_access_flags_guard(obj_klass,
  4406                                   // Test both conditions:
  4407                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
  4408                                   // Must be cloneable but not finalizer:
  4409                                   JVM_ACC_IS_CLONEABLE,
  4410                                   slow_region);
  4413     if (!stopped()) {
  4414       // It's an instance, and it passed the slow-path tests.
  4415       PreserveJVMState pjvms(this);
  4416       Node* obj_size  = NULL;
  4417       Node* alloc_obj = new_instance(obj_klass, NULL, raw_mem_only, &obj_size);
  4419       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
  4421       // Present the results of the slow call.
  4422       result_reg->init_req(_instance_path, control());
  4423       result_val->init_req(_instance_path, alloc_obj);
  4424       result_i_o ->set_req(_instance_path, i_o());
  4425       result_mem ->set_req(_instance_path, reset_memory());
  4428     // Generate code for the slow case.  We make a call to clone().
  4429     set_control(_gvn.transform(slow_region));
  4430     if (!stopped()) {
  4431       PreserveJVMState pjvms(this);
  4432       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
  4433       Node* slow_result = set_results_for_java_call(slow_call);
  4434       // this->control() comes from set_results_for_java_call
  4435       result_reg->init_req(_slow_path, control());
  4436       result_val->init_req(_slow_path, slow_result);
  4437       result_i_o ->set_req(_slow_path, i_o());
  4438       result_mem ->set_req(_slow_path, reset_memory());
  4441     // Return the combined state.
  4442     set_control(    _gvn.transform(result_reg) );
  4443     set_i_o(        _gvn.transform(result_i_o) );
  4444     set_all_memory( _gvn.transform(result_mem) );
  4445   } //original reexecute and sp are set back here
  4447   push(_gvn.transform(result_val));
  4449   return true;
  4453 // constants for computing the copy function
  4454 enum {
  4455   COPYFUNC_UNALIGNED = 0,
  4456   COPYFUNC_ALIGNED = 1,                 // src, dest aligned to HeapWordSize
  4457   COPYFUNC_CONJOINT = 0,
  4458   COPYFUNC_DISJOINT = 2                 // src != dest, or transfer can descend
  4459 };
  4461 // Note:  The condition "disjoint" applies also for overlapping copies
  4462 // where an descending copy is permitted (i.e., dest_offset <= src_offset).
  4463 static address
  4464 select_arraycopy_function(BasicType t, bool aligned, bool disjoint, const char* &name, bool dest_uninitialized) {
  4465   int selector =
  4466     (aligned  ? COPYFUNC_ALIGNED  : COPYFUNC_UNALIGNED) +
  4467     (disjoint ? COPYFUNC_DISJOINT : COPYFUNC_CONJOINT);
  4469 #define RETURN_STUB(xxx_arraycopy) { \
  4470   name = #xxx_arraycopy; \
  4471   return StubRoutines::xxx_arraycopy(); }
  4473 #define RETURN_STUB_PARM(xxx_arraycopy, parm) {           \
  4474   name = #xxx_arraycopy; \
  4475   return StubRoutines::xxx_arraycopy(parm); }
  4477   switch (t) {
  4478   case T_BYTE:
  4479   case T_BOOLEAN:
  4480     switch (selector) {
  4481     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jbyte_arraycopy);
  4482     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jbyte_arraycopy);
  4483     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jbyte_disjoint_arraycopy);
  4484     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jbyte_disjoint_arraycopy);
  4486   case T_CHAR:
  4487   case T_SHORT:
  4488     switch (selector) {
  4489     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jshort_arraycopy);
  4490     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jshort_arraycopy);
  4491     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jshort_disjoint_arraycopy);
  4492     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jshort_disjoint_arraycopy);
  4494   case T_INT:
  4495   case T_FLOAT:
  4496     switch (selector) {
  4497     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jint_arraycopy);
  4498     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jint_arraycopy);
  4499     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jint_disjoint_arraycopy);
  4500     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jint_disjoint_arraycopy);
  4502   case T_DOUBLE:
  4503   case T_LONG:
  4504     switch (selector) {
  4505     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jlong_arraycopy);
  4506     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jlong_arraycopy);
  4507     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jlong_disjoint_arraycopy);
  4508     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jlong_disjoint_arraycopy);
  4510   case T_ARRAY:
  4511   case T_OBJECT:
  4512     switch (selector) {
  4513     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB_PARM(oop_arraycopy, dest_uninitialized);
  4514     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB_PARM(arrayof_oop_arraycopy, dest_uninitialized);
  4515     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB_PARM(oop_disjoint_arraycopy, dest_uninitialized);
  4516     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB_PARM(arrayof_oop_disjoint_arraycopy, dest_uninitialized);
  4518   default:
  4519     ShouldNotReachHere();
  4520     return NULL;
  4523 #undef RETURN_STUB
  4524 #undef RETURN_STUB_PARM
  4527 //------------------------------basictype2arraycopy----------------------------
  4528 address LibraryCallKit::basictype2arraycopy(BasicType t,
  4529                                             Node* src_offset,
  4530                                             Node* dest_offset,
  4531                                             bool disjoint_bases,
  4532                                             const char* &name,
  4533                                             bool dest_uninitialized) {
  4534   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
  4535   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
  4537   bool aligned = false;
  4538   bool disjoint = disjoint_bases;
  4540   // if the offsets are the same, we can treat the memory regions as
  4541   // disjoint, because either the memory regions are in different arrays,
  4542   // or they are identical (which we can treat as disjoint.)  We can also
  4543   // treat a copy with a destination index  less that the source index
  4544   // as disjoint since a low->high copy will work correctly in this case.
  4545   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
  4546       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
  4547     // both indices are constants
  4548     int s_offs = src_offset_inttype->get_con();
  4549     int d_offs = dest_offset_inttype->get_con();
  4550     int element_size = type2aelembytes(t);
  4551     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
  4552               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
  4553     if (s_offs >= d_offs)  disjoint = true;
  4554   } else if (src_offset == dest_offset && src_offset != NULL) {
  4555     // This can occur if the offsets are identical non-constants.
  4556     disjoint = true;
  4559   return select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
  4563 //------------------------------inline_arraycopy-----------------------
  4564 bool LibraryCallKit::inline_arraycopy() {
  4565   // Restore the stack and pop off the arguments.
  4566   int nargs = 5;  // 2 oops, 3 ints, no size_t or long
  4567   assert(callee()->signature()->size() == nargs, "copy has 5 arguments");
  4569   Node *src         = argument(0);
  4570   Node *src_offset  = argument(1);
  4571   Node *dest        = argument(2);
  4572   Node *dest_offset = argument(3);
  4573   Node *length      = argument(4);
  4575   // Compile time checks.  If any of these checks cannot be verified at compile time,
  4576   // we do not make a fast path for this call.  Instead, we let the call remain as it
  4577   // is.  The checks we choose to mandate at compile time are:
  4578   //
  4579   // (1) src and dest are arrays.
  4580   const Type* src_type = src->Value(&_gvn);
  4581   const Type* dest_type = dest->Value(&_gvn);
  4582   const TypeAryPtr* top_src = src_type->isa_aryptr();
  4583   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  4584   if (top_src  == NULL || top_src->klass()  == NULL ||
  4585       top_dest == NULL || top_dest->klass() == NULL) {
  4586     // Conservatively insert a memory barrier on all memory slices.
  4587     // Do not let writes into the source float below the arraycopy.
  4588     insert_mem_bar(Op_MemBarCPUOrder);
  4590     // Call StubRoutines::generic_arraycopy stub.
  4591     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
  4592                        src, src_offset, dest, dest_offset, length);
  4594     // Do not let reads from the destination float above the arraycopy.
  4595     // Since we cannot type the arrays, we don't know which slices
  4596     // might be affected.  We could restrict this barrier only to those
  4597     // memory slices which pertain to array elements--but don't bother.
  4598     if (!InsertMemBarAfterArraycopy)
  4599       // (If InsertMemBarAfterArraycopy, there is already one in place.)
  4600       insert_mem_bar(Op_MemBarCPUOrder);
  4601     return true;
  4604   // (2) src and dest arrays must have elements of the same BasicType
  4605   // Figure out the size and type of the elements we will be copying.
  4606   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
  4607   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
  4608   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
  4609   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
  4611   if (src_elem != dest_elem || dest_elem == T_VOID) {
  4612     // The component types are not the same or are not recognized.  Punt.
  4613     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
  4614     generate_slow_arraycopy(TypePtr::BOTTOM,
  4615                             src, src_offset, dest, dest_offset, length,
  4616                             /*dest_uninitialized*/false);
  4617     return true;
  4620   //---------------------------------------------------------------------------
  4621   // We will make a fast path for this call to arraycopy.
  4623   // We have the following tests left to perform:
  4624   //
  4625   // (3) src and dest must not be null.
  4626   // (4) src_offset must not be negative.
  4627   // (5) dest_offset must not be negative.
  4628   // (6) length must not be negative.
  4629   // (7) src_offset + length must not exceed length of src.
  4630   // (8) dest_offset + length must not exceed length of dest.
  4631   // (9) each element of an oop array must be assignable
  4633   RegionNode* slow_region = new (C, 1) RegionNode(1);
  4634   record_for_igvn(slow_region);
  4636   // (3) operands must not be null
  4637   // We currently perform our null checks with the do_null_check routine.
  4638   // This means that the null exceptions will be reported in the caller
  4639   // rather than (correctly) reported inside of the native arraycopy call.
  4640   // This should be corrected, given time.  We do our null check with the
  4641   // stack pointer restored.
  4642   _sp += nargs;
  4643   src  = do_null_check(src,  T_ARRAY);
  4644   dest = do_null_check(dest, T_ARRAY);
  4645   _sp -= nargs;
  4647   // (4) src_offset must not be negative.
  4648   generate_negative_guard(src_offset, slow_region);
  4650   // (5) dest_offset must not be negative.
  4651   generate_negative_guard(dest_offset, slow_region);
  4653   // (6) length must not be negative (moved to generate_arraycopy()).
  4654   // generate_negative_guard(length, slow_region);
  4656   // (7) src_offset + length must not exceed length of src.
  4657   generate_limit_guard(src_offset, length,
  4658                        load_array_length(src),
  4659                        slow_region);
  4661   // (8) dest_offset + length must not exceed length of dest.
  4662   generate_limit_guard(dest_offset, length,
  4663                        load_array_length(dest),
  4664                        slow_region);
  4666   // (9) each element of an oop array must be assignable
  4667   // The generate_arraycopy subroutine checks this.
  4669   // This is where the memory effects are placed:
  4670   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
  4671   generate_arraycopy(adr_type, dest_elem,
  4672                      src, src_offset, dest, dest_offset, length,
  4673                      false, false, slow_region);
  4675   return true;
  4678 //-----------------------------generate_arraycopy----------------------
  4679 // Generate an optimized call to arraycopy.
  4680 // Caller must guard against non-arrays.
  4681 // Caller must determine a common array basic-type for both arrays.
  4682 // Caller must validate offsets against array bounds.
  4683 // The slow_region has already collected guard failure paths
  4684 // (such as out of bounds length or non-conformable array types).
  4685 // The generated code has this shape, in general:
  4686 //
  4687 //     if (length == 0)  return   // via zero_path
  4688 //     slowval = -1
  4689 //     if (types unknown) {
  4690 //       slowval = call generic copy loop
  4691 //       if (slowval == 0)  return  // via checked_path
  4692 //     } else if (indexes in bounds) {
  4693 //       if ((is object array) && !(array type check)) {
  4694 //         slowval = call checked copy loop
  4695 //         if (slowval == 0)  return  // via checked_path
  4696 //       } else {
  4697 //         call bulk copy loop
  4698 //         return  // via fast_path
  4699 //       }
  4700 //     }
  4701 //     // adjust params for remaining work:
  4702 //     if (slowval != -1) {
  4703 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
  4704 //     }
  4705 //   slow_region:
  4706 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
  4707 //     return  // via slow_call_path
  4708 //
  4709 // This routine is used from several intrinsics:  System.arraycopy,
  4710 // Object.clone (the array subcase), and Arrays.copyOf[Range].
  4711 //
  4712 void
  4713 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
  4714                                    BasicType basic_elem_type,
  4715                                    Node* src,  Node* src_offset,
  4716                                    Node* dest, Node* dest_offset,
  4717                                    Node* copy_length,
  4718                                    bool disjoint_bases,
  4719                                    bool length_never_negative,
  4720                                    RegionNode* slow_region) {
  4722   if (slow_region == NULL) {
  4723     slow_region = new(C,1) RegionNode(1);
  4724     record_for_igvn(slow_region);
  4727   Node* original_dest      = dest;
  4728   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
  4729   bool  dest_uninitialized = false;
  4731   // See if this is the initialization of a newly-allocated array.
  4732   // If so, we will take responsibility here for initializing it to zero.
  4733   // (Note:  Because tightly_coupled_allocation performs checks on the
  4734   // out-edges of the dest, we need to avoid making derived pointers
  4735   // from it until we have checked its uses.)
  4736   if (ReduceBulkZeroing
  4737       && !ZeroTLAB              // pointless if already zeroed
  4738       && basic_elem_type != T_CONFLICT // avoid corner case
  4739       && !_gvn.eqv_uncast(src, dest)
  4740       && ((alloc = tightly_coupled_allocation(dest, slow_region))
  4741           != NULL)
  4742       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
  4743       && alloc->maybe_set_complete(&_gvn)) {
  4744     // "You break it, you buy it."
  4745     InitializeNode* init = alloc->initialization();
  4746     assert(init->is_complete(), "we just did this");
  4747     assert(dest->is_CheckCastPP(), "sanity");
  4748     assert(dest->in(0)->in(0) == init, "dest pinned");
  4749     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
  4750     // From this point on, every exit path is responsible for
  4751     // initializing any non-copied parts of the object to zero.
  4752     // Also, if this flag is set we make sure that arraycopy interacts properly
  4753     // with G1, eliding pre-barriers. See CR 6627983.
  4754     dest_uninitialized = true;
  4755   } else {
  4756     // No zeroing elimination here.
  4757     alloc             = NULL;
  4758     //original_dest   = dest;
  4759     //dest_uninitialized = false;
  4762   // Results are placed here:
  4763   enum { fast_path        = 1,  // normal void-returning assembly stub
  4764          checked_path     = 2,  // special assembly stub with cleanup
  4765          slow_call_path   = 3,  // something went wrong; call the VM
  4766          zero_path        = 4,  // bypass when length of copy is zero
  4767          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
  4768          PATH_LIMIT       = 6
  4769   };
  4770   RegionNode* result_region = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  4771   PhiNode*    result_i_o    = new(C, PATH_LIMIT) PhiNode(result_region, Type::ABIO);
  4772   PhiNode*    result_memory = new(C, PATH_LIMIT) PhiNode(result_region, Type::MEMORY, adr_type);
  4773   record_for_igvn(result_region);
  4774   _gvn.set_type_bottom(result_i_o);
  4775   _gvn.set_type_bottom(result_memory);
  4776   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
  4778   // The slow_control path:
  4779   Node* slow_control;
  4780   Node* slow_i_o = i_o();
  4781   Node* slow_mem = memory(adr_type);
  4782   debug_only(slow_control = (Node*) badAddress);
  4784   // Checked control path:
  4785   Node* checked_control = top();
  4786   Node* checked_mem     = NULL;
  4787   Node* checked_i_o     = NULL;
  4788   Node* checked_value   = NULL;
  4790   if (basic_elem_type == T_CONFLICT) {
  4791     assert(!dest_uninitialized, "");
  4792     Node* cv = generate_generic_arraycopy(adr_type,
  4793                                           src, src_offset, dest, dest_offset,
  4794                                           copy_length, dest_uninitialized);
  4795     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  4796     checked_control = control();
  4797     checked_i_o     = i_o();
  4798     checked_mem     = memory(adr_type);
  4799     checked_value   = cv;
  4800     set_control(top());         // no fast path
  4803   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
  4804   if (not_pos != NULL) {
  4805     PreserveJVMState pjvms(this);
  4806     set_control(not_pos);
  4808     // (6) length must not be negative.
  4809     if (!length_never_negative) {
  4810       generate_negative_guard(copy_length, slow_region);
  4813     // copy_length is 0.
  4814     if (!stopped() && dest_uninitialized) {
  4815       Node* dest_length = alloc->in(AllocateNode::ALength);
  4816       if (_gvn.eqv_uncast(copy_length, dest_length)
  4817           || _gvn.find_int_con(dest_length, 1) <= 0) {
  4818         // There is no zeroing to do. No need for a secondary raw memory barrier.
  4819       } else {
  4820         // Clear the whole thing since there are no source elements to copy.
  4821         generate_clear_array(adr_type, dest, basic_elem_type,
  4822                              intcon(0), NULL,
  4823                              alloc->in(AllocateNode::AllocSize));
  4824         // Use a secondary InitializeNode as raw memory barrier.
  4825         // Currently it is needed only on this path since other
  4826         // paths have stub or runtime calls as raw memory barriers.
  4827         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
  4828                                                        Compile::AliasIdxRaw,
  4829                                                        top())->as_Initialize();
  4830         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
  4834     // Present the results of the fast call.
  4835     result_region->init_req(zero_path, control());
  4836     result_i_o   ->init_req(zero_path, i_o());
  4837     result_memory->init_req(zero_path, memory(adr_type));
  4840   if (!stopped() && dest_uninitialized) {
  4841     // We have to initialize the *uncopied* part of the array to zero.
  4842     // The copy destination is the slice dest[off..off+len].  The other slices
  4843     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
  4844     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
  4845     Node* dest_length = alloc->in(AllocateNode::ALength);
  4846     Node* dest_tail   = _gvn.transform( new(C,3) AddINode(dest_offset,
  4847                                                           copy_length) );
  4849     // If there is a head section that needs zeroing, do it now.
  4850     if (find_int_con(dest_offset, -1) != 0) {
  4851       generate_clear_array(adr_type, dest, basic_elem_type,
  4852                            intcon(0), dest_offset,
  4853                            NULL);
  4856     // Next, perform a dynamic check on the tail length.
  4857     // It is often zero, and we can win big if we prove this.
  4858     // There are two wins:  Avoid generating the ClearArray
  4859     // with its attendant messy index arithmetic, and upgrade
  4860     // the copy to a more hardware-friendly word size of 64 bits.
  4861     Node* tail_ctl = NULL;
  4862     if (!stopped() && !_gvn.eqv_uncast(dest_tail, dest_length)) {
  4863       Node* cmp_lt   = _gvn.transform( new(C,3) CmpINode(dest_tail, dest_length) );
  4864       Node* bol_lt   = _gvn.transform( new(C,2) BoolNode(cmp_lt, BoolTest::lt) );
  4865       tail_ctl = generate_slow_guard(bol_lt, NULL);
  4866       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
  4869     // At this point, let's assume there is no tail.
  4870     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
  4871       // There is no tail.  Try an upgrade to a 64-bit copy.
  4872       bool didit = false;
  4873       { PreserveJVMState pjvms(this);
  4874         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
  4875                                          src, src_offset, dest, dest_offset,
  4876                                          dest_size, dest_uninitialized);
  4877         if (didit) {
  4878           // Present the results of the block-copying fast call.
  4879           result_region->init_req(bcopy_path, control());
  4880           result_i_o   ->init_req(bcopy_path, i_o());
  4881           result_memory->init_req(bcopy_path, memory(adr_type));
  4884       if (didit)
  4885         set_control(top());     // no regular fast path
  4888     // Clear the tail, if any.
  4889     if (tail_ctl != NULL) {
  4890       Node* notail_ctl = stopped() ? NULL : control();
  4891       set_control(tail_ctl);
  4892       if (notail_ctl == NULL) {
  4893         generate_clear_array(adr_type, dest, basic_elem_type,
  4894                              dest_tail, NULL,
  4895                              dest_size);
  4896       } else {
  4897         // Make a local merge.
  4898         Node* done_ctl = new(C,3) RegionNode(3);
  4899         Node* done_mem = new(C,3) PhiNode(done_ctl, Type::MEMORY, adr_type);
  4900         done_ctl->init_req(1, notail_ctl);
  4901         done_mem->init_req(1, memory(adr_type));
  4902         generate_clear_array(adr_type, dest, basic_elem_type,
  4903                              dest_tail, NULL,
  4904                              dest_size);
  4905         done_ctl->init_req(2, control());
  4906         done_mem->init_req(2, memory(adr_type));
  4907         set_control( _gvn.transform(done_ctl) );
  4908         set_memory(  _gvn.transform(done_mem), adr_type );
  4913   BasicType copy_type = basic_elem_type;
  4914   assert(basic_elem_type != T_ARRAY, "caller must fix this");
  4915   if (!stopped() && copy_type == T_OBJECT) {
  4916     // If src and dest have compatible element types, we can copy bits.
  4917     // Types S[] and D[] are compatible if D is a supertype of S.
  4918     //
  4919     // If they are not, we will use checked_oop_disjoint_arraycopy,
  4920     // which performs a fast optimistic per-oop check, and backs off
  4921     // further to JVM_ArrayCopy on the first per-oop check that fails.
  4922     // (Actually, we don't move raw bits only; the GC requires card marks.)
  4924     // Get the klassOop for both src and dest
  4925     Node* src_klass  = load_object_klass(src);
  4926     Node* dest_klass = load_object_klass(dest);
  4928     // Generate the subtype check.
  4929     // This might fold up statically, or then again it might not.
  4930     //
  4931     // Non-static example:  Copying List<String>.elements to a new String[].
  4932     // The backing store for a List<String> is always an Object[],
  4933     // but its elements are always type String, if the generic types
  4934     // are correct at the source level.
  4935     //
  4936     // Test S[] against D[], not S against D, because (probably)
  4937     // the secondary supertype cache is less busy for S[] than S.
  4938     // This usually only matters when D is an interface.
  4939     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
  4940     // Plug failing path into checked_oop_disjoint_arraycopy
  4941     if (not_subtype_ctrl != top()) {
  4942       PreserveJVMState pjvms(this);
  4943       set_control(not_subtype_ctrl);
  4944       // (At this point we can assume disjoint_bases, since types differ.)
  4945       int ek_offset = objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc);
  4946       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
  4947       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
  4948       Node* dest_elem_klass = _gvn.transform(n1);
  4949       Node* cv = generate_checkcast_arraycopy(adr_type,
  4950                                               dest_elem_klass,
  4951                                               src, src_offset, dest, dest_offset,
  4952                                               ConvI2X(copy_length), dest_uninitialized);
  4953       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  4954       checked_control = control();
  4955       checked_i_o     = i_o();
  4956       checked_mem     = memory(adr_type);
  4957       checked_value   = cv;
  4959     // At this point we know we do not need type checks on oop stores.
  4961     // Let's see if we need card marks:
  4962     if (alloc != NULL && use_ReduceInitialCardMarks()) {
  4963       // If we do not need card marks, copy using the jint or jlong stub.
  4964       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
  4965       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
  4966              "sizes agree");
  4970   if (!stopped()) {
  4971     // Generate the fast path, if possible.
  4972     PreserveJVMState pjvms(this);
  4973     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
  4974                                  src, src_offset, dest, dest_offset,
  4975                                  ConvI2X(copy_length), dest_uninitialized);
  4977     // Present the results of the fast call.
  4978     result_region->init_req(fast_path, control());
  4979     result_i_o   ->init_req(fast_path, i_o());
  4980     result_memory->init_req(fast_path, memory(adr_type));
  4983   // Here are all the slow paths up to this point, in one bundle:
  4984   slow_control = top();
  4985   if (slow_region != NULL)
  4986     slow_control = _gvn.transform(slow_region);
  4987   debug_only(slow_region = (RegionNode*)badAddress);
  4989   set_control(checked_control);
  4990   if (!stopped()) {
  4991     // Clean up after the checked call.
  4992     // The returned value is either 0 or -1^K,
  4993     // where K = number of partially transferred array elements.
  4994     Node* cmp = _gvn.transform( new(C, 3) CmpINode(checked_value, intcon(0)) );
  4995     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
  4996     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
  4998     // If it is 0, we are done, so transfer to the end.
  4999     Node* checks_done = _gvn.transform( new(C, 1) IfTrueNode(iff) );
  5000     result_region->init_req(checked_path, checks_done);
  5001     result_i_o   ->init_req(checked_path, checked_i_o);
  5002     result_memory->init_req(checked_path, checked_mem);
  5004     // If it is not zero, merge into the slow call.
  5005     set_control( _gvn.transform( new(C, 1) IfFalseNode(iff) ));
  5006     RegionNode* slow_reg2 = new(C, 3) RegionNode(3);
  5007     PhiNode*    slow_i_o2 = new(C, 3) PhiNode(slow_reg2, Type::ABIO);
  5008     PhiNode*    slow_mem2 = new(C, 3) PhiNode(slow_reg2, Type::MEMORY, adr_type);
  5009     record_for_igvn(slow_reg2);
  5010     slow_reg2  ->init_req(1, slow_control);
  5011     slow_i_o2  ->init_req(1, slow_i_o);
  5012     slow_mem2  ->init_req(1, slow_mem);
  5013     slow_reg2  ->init_req(2, control());
  5014     slow_i_o2  ->init_req(2, checked_i_o);
  5015     slow_mem2  ->init_req(2, checked_mem);
  5017     slow_control = _gvn.transform(slow_reg2);
  5018     slow_i_o     = _gvn.transform(slow_i_o2);
  5019     slow_mem     = _gvn.transform(slow_mem2);
  5021     if (alloc != NULL) {
  5022       // We'll restart from the very beginning, after zeroing the whole thing.
  5023       // This can cause double writes, but that's OK since dest is brand new.
  5024       // So we ignore the low 31 bits of the value returned from the stub.
  5025     } else {
  5026       // We must continue the copy exactly where it failed, or else
  5027       // another thread might see the wrong number of writes to dest.
  5028       Node* checked_offset = _gvn.transform( new(C, 3) XorINode(checked_value, intcon(-1)) );
  5029       Node* slow_offset    = new(C, 3) PhiNode(slow_reg2, TypeInt::INT);
  5030       slow_offset->init_req(1, intcon(0));
  5031       slow_offset->init_req(2, checked_offset);
  5032       slow_offset  = _gvn.transform(slow_offset);
  5034       // Adjust the arguments by the conditionally incoming offset.
  5035       Node* src_off_plus  = _gvn.transform( new(C, 3) AddINode(src_offset,  slow_offset) );
  5036       Node* dest_off_plus = _gvn.transform( new(C, 3) AddINode(dest_offset, slow_offset) );
  5037       Node* length_minus  = _gvn.transform( new(C, 3) SubINode(copy_length, slow_offset) );
  5039       // Tweak the node variables to adjust the code produced below:
  5040       src_offset  = src_off_plus;
  5041       dest_offset = dest_off_plus;
  5042       copy_length = length_minus;
  5046   set_control(slow_control);
  5047   if (!stopped()) {
  5048     // Generate the slow path, if needed.
  5049     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
  5051     set_memory(slow_mem, adr_type);
  5052     set_i_o(slow_i_o);
  5054     if (dest_uninitialized) {
  5055       generate_clear_array(adr_type, dest, basic_elem_type,
  5056                            intcon(0), NULL,
  5057                            alloc->in(AllocateNode::AllocSize));
  5060     generate_slow_arraycopy(adr_type,
  5061                             src, src_offset, dest, dest_offset,
  5062                             copy_length, /*dest_uninitialized*/false);
  5064     result_region->init_req(slow_call_path, control());
  5065     result_i_o   ->init_req(slow_call_path, i_o());
  5066     result_memory->init_req(slow_call_path, memory(adr_type));
  5069   // Remove unused edges.
  5070   for (uint i = 1; i < result_region->req(); i++) {
  5071     if (result_region->in(i) == NULL)
  5072       result_region->init_req(i, top());
  5075   // Finished; return the combined state.
  5076   set_control( _gvn.transform(result_region) );
  5077   set_i_o(     _gvn.transform(result_i_o)    );
  5078   set_memory(  _gvn.transform(result_memory), adr_type );
  5080   // The memory edges above are precise in order to model effects around
  5081   // array copies accurately to allow value numbering of field loads around
  5082   // arraycopy.  Such field loads, both before and after, are common in Java
  5083   // collections and similar classes involving header/array data structures.
  5084   //
  5085   // But with low number of register or when some registers are used or killed
  5086   // by arraycopy calls it causes registers spilling on stack. See 6544710.
  5087   // The next memory barrier is added to avoid it. If the arraycopy can be
  5088   // optimized away (which it can, sometimes) then we can manually remove
  5089   // the membar also.
  5090   //
  5091   // Do not let reads from the cloned object float above the arraycopy.
  5092   if (InsertMemBarAfterArraycopy || alloc != NULL)
  5093     insert_mem_bar(Op_MemBarCPUOrder);
  5097 // Helper function which determines if an arraycopy immediately follows
  5098 // an allocation, with no intervening tests or other escapes for the object.
  5099 AllocateArrayNode*
  5100 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
  5101                                            RegionNode* slow_region) {
  5102   if (stopped())             return NULL;  // no fast path
  5103   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
  5105   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
  5106   if (alloc == NULL)  return NULL;
  5108   Node* rawmem = memory(Compile::AliasIdxRaw);
  5109   // Is the allocation's memory state untouched?
  5110   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
  5111     // Bail out if there have been raw-memory effects since the allocation.
  5112     // (Example:  There might have been a call or safepoint.)
  5113     return NULL;
  5115   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
  5116   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
  5117     return NULL;
  5120   // There must be no unexpected observers of this allocation.
  5121   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
  5122     Node* obs = ptr->fast_out(i);
  5123     if (obs != this->map()) {
  5124       return NULL;
  5128   // This arraycopy must unconditionally follow the allocation of the ptr.
  5129   Node* alloc_ctl = ptr->in(0);
  5130   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
  5132   Node* ctl = control();
  5133   while (ctl != alloc_ctl) {
  5134     // There may be guards which feed into the slow_region.
  5135     // Any other control flow means that we might not get a chance
  5136     // to finish initializing the allocated object.
  5137     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
  5138       IfNode* iff = ctl->in(0)->as_If();
  5139       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
  5140       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
  5141       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
  5142         ctl = iff->in(0);       // This test feeds the known slow_region.
  5143         continue;
  5145       // One more try:  Various low-level checks bottom out in
  5146       // uncommon traps.  If the debug-info of the trap omits
  5147       // any reference to the allocation, as we've already
  5148       // observed, then there can be no objection to the trap.
  5149       bool found_trap = false;
  5150       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
  5151         Node* obs = not_ctl->fast_out(j);
  5152         if (obs->in(0) == not_ctl && obs->is_Call() &&
  5153             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
  5154           found_trap = true; break;
  5157       if (found_trap) {
  5158         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
  5159         continue;
  5162     return NULL;
  5165   // If we get this far, we have an allocation which immediately
  5166   // precedes the arraycopy, and we can take over zeroing the new object.
  5167   // The arraycopy will finish the initialization, and provide
  5168   // a new control state to which we will anchor the destination pointer.
  5170   return alloc;
  5173 // Helper for initialization of arrays, creating a ClearArray.
  5174 // It writes zero bits in [start..end), within the body of an array object.
  5175 // The memory effects are all chained onto the 'adr_type' alias category.
  5176 //
  5177 // Since the object is otherwise uninitialized, we are free
  5178 // to put a little "slop" around the edges of the cleared area,
  5179 // as long as it does not go back into the array's header,
  5180 // or beyond the array end within the heap.
  5181 //
  5182 // The lower edge can be rounded down to the nearest jint and the
  5183 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
  5184 //
  5185 // Arguments:
  5186 //   adr_type           memory slice where writes are generated
  5187 //   dest               oop of the destination array
  5188 //   basic_elem_type    element type of the destination
  5189 //   slice_idx          array index of first element to store
  5190 //   slice_len          number of elements to store (or NULL)
  5191 //   dest_size          total size in bytes of the array object
  5192 //
  5193 // Exactly one of slice_len or dest_size must be non-NULL.
  5194 // If dest_size is non-NULL, zeroing extends to the end of the object.
  5195 // If slice_len is non-NULL, the slice_idx value must be a constant.
  5196 void
  5197 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
  5198                                      Node* dest,
  5199                                      BasicType basic_elem_type,
  5200                                      Node* slice_idx,
  5201                                      Node* slice_len,
  5202                                      Node* dest_size) {
  5203   // one or the other but not both of slice_len and dest_size:
  5204   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
  5205   if (slice_len == NULL)  slice_len = top();
  5206   if (dest_size == NULL)  dest_size = top();
  5208   // operate on this memory slice:
  5209   Node* mem = memory(adr_type); // memory slice to operate on
  5211   // scaling and rounding of indexes:
  5212   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5213   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5214   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
  5215   int bump_bit  = (-1 << scale) & BytesPerInt;
  5217   // determine constant starts and ends
  5218   const intptr_t BIG_NEG = -128;
  5219   assert(BIG_NEG + 2*abase < 0, "neg enough");
  5220   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
  5221   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
  5222   if (slice_len_con == 0) {
  5223     return;                     // nothing to do here
  5225   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
  5226   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
  5227   if (slice_idx_con >= 0 && slice_len_con >= 0) {
  5228     assert(end_con < 0, "not two cons");
  5229     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
  5230                        BytesPerLong);
  5233   if (start_con >= 0 && end_con >= 0) {
  5234     // Constant start and end.  Simple.
  5235     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5236                                        start_con, end_con, &_gvn);
  5237   } else if (start_con >= 0 && dest_size != top()) {
  5238     // Constant start, pre-rounded end after the tail of the array.
  5239     Node* end = dest_size;
  5240     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5241                                        start_con, end, &_gvn);
  5242   } else if (start_con >= 0 && slice_len != top()) {
  5243     // Constant start, non-constant end.  End needs rounding up.
  5244     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
  5245     intptr_t end_base  = abase + (slice_idx_con << scale);
  5246     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
  5247     Node*    end       = ConvI2X(slice_len);
  5248     if (scale != 0)
  5249       end = _gvn.transform( new(C,3) LShiftXNode(end, intcon(scale) ));
  5250     end_base += end_round;
  5251     end = _gvn.transform( new(C,3) AddXNode(end, MakeConX(end_base)) );
  5252     end = _gvn.transform( new(C,3) AndXNode(end, MakeConX(~end_round)) );
  5253     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5254                                        start_con, end, &_gvn);
  5255   } else if (start_con < 0 && dest_size != top()) {
  5256     // Non-constant start, pre-rounded end after the tail of the array.
  5257     // This is almost certainly a "round-to-end" operation.
  5258     Node* start = slice_idx;
  5259     start = ConvI2X(start);
  5260     if (scale != 0)
  5261       start = _gvn.transform( new(C,3) LShiftXNode( start, intcon(scale) ));
  5262     start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(abase)) );
  5263     if ((bump_bit | clear_low) != 0) {
  5264       int to_clear = (bump_bit | clear_low);
  5265       // Align up mod 8, then store a jint zero unconditionally
  5266       // just before the mod-8 boundary.
  5267       if (((abase + bump_bit) & ~to_clear) - bump_bit
  5268           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
  5269         bump_bit = 0;
  5270         assert((abase & to_clear) == 0, "array base must be long-aligned");
  5271       } else {
  5272         // Bump 'start' up to (or past) the next jint boundary:
  5273         start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(bump_bit)) );
  5274         assert((abase & clear_low) == 0, "array base must be int-aligned");
  5276       // Round bumped 'start' down to jlong boundary in body of array.
  5277       start = _gvn.transform( new(C,3) AndXNode(start, MakeConX(~to_clear)) );
  5278       if (bump_bit != 0) {
  5279         // Store a zero to the immediately preceding jint:
  5280         Node* x1 = _gvn.transform( new(C,3) AddXNode(start, MakeConX(-bump_bit)) );
  5281         Node* p1 = basic_plus_adr(dest, x1);
  5282         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
  5283         mem = _gvn.transform(mem);
  5286     Node* end = dest_size; // pre-rounded
  5287     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5288                                        start, end, &_gvn);
  5289   } else {
  5290     // Non-constant start, unrounded non-constant end.
  5291     // (Nobody zeroes a random midsection of an array using this routine.)
  5292     ShouldNotReachHere();       // fix caller
  5295   // Done.
  5296   set_memory(mem, adr_type);
  5300 bool
  5301 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
  5302                                          BasicType basic_elem_type,
  5303                                          AllocateNode* alloc,
  5304                                          Node* src,  Node* src_offset,
  5305                                          Node* dest, Node* dest_offset,
  5306                                          Node* dest_size, bool dest_uninitialized) {
  5307   // See if there is an advantage from block transfer.
  5308   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5309   if (scale >= LogBytesPerLong)
  5310     return false;               // it is already a block transfer
  5312   // Look at the alignment of the starting offsets.
  5313   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5314   const intptr_t BIG_NEG = -128;
  5315   assert(BIG_NEG + 2*abase < 0, "neg enough");
  5317   intptr_t src_off  = abase + ((intptr_t) find_int_con(src_offset, -1)  << scale);
  5318   intptr_t dest_off = abase + ((intptr_t) find_int_con(dest_offset, -1) << scale);
  5319   if (src_off < 0 || dest_off < 0)
  5320     // At present, we can only understand constants.
  5321     return false;
  5323   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
  5324     // Non-aligned; too bad.
  5325     // One more chance:  Pick off an initial 32-bit word.
  5326     // This is a common case, since abase can be odd mod 8.
  5327     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
  5328         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
  5329       Node* sptr = basic_plus_adr(src,  src_off);
  5330       Node* dptr = basic_plus_adr(dest, dest_off);
  5331       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
  5332       store_to_memory(control(), dptr, sval, T_INT, adr_type);
  5333       src_off += BytesPerInt;
  5334       dest_off += BytesPerInt;
  5335     } else {
  5336       return false;
  5339   assert(src_off % BytesPerLong == 0, "");
  5340   assert(dest_off % BytesPerLong == 0, "");
  5342   // Do this copy by giant steps.
  5343   Node* sptr  = basic_plus_adr(src,  src_off);
  5344   Node* dptr  = basic_plus_adr(dest, dest_off);
  5345   Node* countx = dest_size;
  5346   countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(dest_off)) );
  5347   countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong)) );
  5349   bool disjoint_bases = true;   // since alloc != NULL
  5350   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
  5351                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
  5353   return true;
  5357 // Helper function; generates code for the slow case.
  5358 // We make a call to a runtime method which emulates the native method,
  5359 // but without the native wrapper overhead.
  5360 void
  5361 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
  5362                                         Node* src,  Node* src_offset,
  5363                                         Node* dest, Node* dest_offset,
  5364                                         Node* copy_length, bool dest_uninitialized) {
  5365   assert(!dest_uninitialized, "Invariant");
  5366   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
  5367                                  OptoRuntime::slow_arraycopy_Type(),
  5368                                  OptoRuntime::slow_arraycopy_Java(),
  5369                                  "slow_arraycopy", adr_type,
  5370                                  src, src_offset, dest, dest_offset,
  5371                                  copy_length);
  5373   // Handle exceptions thrown by this fellow:
  5374   make_slow_call_ex(call, env()->Throwable_klass(), false);
  5377 // Helper function; generates code for cases requiring runtime checks.
  5378 Node*
  5379 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
  5380                                              Node* dest_elem_klass,
  5381                                              Node* src,  Node* src_offset,
  5382                                              Node* dest, Node* dest_offset,
  5383                                              Node* copy_length, bool dest_uninitialized) {
  5384   if (stopped())  return NULL;
  5386   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
  5387   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5388     return NULL;
  5391   // Pick out the parameters required to perform a store-check
  5392   // for the target array.  This is an optimistic check.  It will
  5393   // look in each non-null element's class, at the desired klass's
  5394   // super_check_offset, for the desired klass.
  5395   int sco_offset = Klass::super_check_offset_offset_in_bytes() + sizeof(oopDesc);
  5396   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
  5397   Node* n3 = new(C, 3) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr());
  5398   Node* check_offset = ConvI2X(_gvn.transform(n3));
  5399   Node* check_value  = dest_elem_klass;
  5401   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
  5402   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
  5404   // (We know the arrays are never conjoint, because their types differ.)
  5405   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5406                                  OptoRuntime::checkcast_arraycopy_Type(),
  5407                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
  5408                                  // five arguments, of which two are
  5409                                  // intptr_t (jlong in LP64)
  5410                                  src_start, dest_start,
  5411                                  copy_length XTOP,
  5412                                  check_offset XTOP,
  5413                                  check_value);
  5415   return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
  5419 // Helper function; generates code for cases requiring runtime checks.
  5420 Node*
  5421 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
  5422                                            Node* src,  Node* src_offset,
  5423                                            Node* dest, Node* dest_offset,
  5424                                            Node* copy_length, bool dest_uninitialized) {
  5425   assert(!dest_uninitialized, "Invariant");
  5426   if (stopped())  return NULL;
  5427   address copyfunc_addr = StubRoutines::generic_arraycopy();
  5428   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5429     return NULL;
  5432   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5433                     OptoRuntime::generic_arraycopy_Type(),
  5434                     copyfunc_addr, "generic_arraycopy", adr_type,
  5435                     src, src_offset, dest, dest_offset, copy_length);
  5437   return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
  5440 // Helper function; generates the fast out-of-line call to an arraycopy stub.
  5441 void
  5442 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
  5443                                              BasicType basic_elem_type,
  5444                                              bool disjoint_bases,
  5445                                              Node* src,  Node* src_offset,
  5446                                              Node* dest, Node* dest_offset,
  5447                                              Node* copy_length, bool dest_uninitialized) {
  5448   if (stopped())  return;               // nothing to do
  5450   Node* src_start  = src;
  5451   Node* dest_start = dest;
  5452   if (src_offset != NULL || dest_offset != NULL) {
  5453     assert(src_offset != NULL && dest_offset != NULL, "");
  5454     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
  5455     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
  5458   // Figure out which arraycopy runtime method to call.
  5459   const char* copyfunc_name = "arraycopy";
  5460   address     copyfunc_addr =
  5461       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
  5462                           disjoint_bases, copyfunc_name, dest_uninitialized);
  5464   // Call it.  Note that the count_ix value is not scaled to a byte-size.
  5465   make_runtime_call(RC_LEAF|RC_NO_FP,
  5466                     OptoRuntime::fast_arraycopy_Type(),
  5467                     copyfunc_addr, copyfunc_name, adr_type,
  5468                     src_start, dest_start, copy_length XTOP);
  5471 //----------------------------inline_reference_get----------------------------
  5473 bool LibraryCallKit::inline_reference_get() {
  5474   const int nargs = 1; // self
  5476   guarantee(java_lang_ref_Reference::referent_offset > 0,
  5477             "should have already been set");
  5479   int referent_offset = java_lang_ref_Reference::referent_offset;
  5481   // Restore the stack and pop off the argument
  5482   _sp += nargs;
  5483   Node *reference_obj = pop();
  5485   // Null check on self without removing any arguments.
  5486   _sp += nargs;
  5487   reference_obj = do_null_check(reference_obj, T_OBJECT);
  5488   _sp -= nargs;;
  5490   if (stopped()) return true;
  5492   Node *adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
  5494   ciInstanceKlass* klass = env()->Object_klass();
  5495   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
  5497   Node* no_ctrl = NULL;
  5498   Node *result = make_load(no_ctrl, adr, object_type, T_OBJECT);
  5500   // Use the pre-barrier to record the value in the referent field
  5501   pre_barrier(false /* do_load */,
  5502               control(),
  5503               NULL /* obj */, NULL /* adr */, -1 /* alias_idx */, NULL /* val */, NULL /* val_type */,
  5504               result /* pre_val */,
  5505               T_OBJECT);
  5507   push(result);
  5508   return true;

mercurial