src/cpu/x86/vm/sharedRuntime_x86_32.cpp

Fri, 08 Apr 2011 14:19:50 -0700

author
jmasa
date
Fri, 08 Apr 2011 14:19:50 -0700
changeset 2784
92add02409c9
parent 2687
3d58a4983660
child 2895
167b70ff3abc
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "assembler_x86.inline.hpp"
    28 #include "code/debugInfoRec.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "interpreter/interpreter.hpp"
    32 #include "oops/compiledICHolderOop.hpp"
    33 #include "prims/jvmtiRedefineClassesTrace.hpp"
    34 #include "runtime/sharedRuntime.hpp"
    35 #include "runtime/vframeArray.hpp"
    36 #include "vmreg_x86.inline.hpp"
    37 #ifdef COMPILER1
    38 #include "c1/c1_Runtime1.hpp"
    39 #endif
    40 #ifdef COMPILER2
    41 #include "opto/runtime.hpp"
    42 #endif
    44 #define __ masm->
    45 #ifdef COMPILER2
    46 UncommonTrapBlob   *SharedRuntime::_uncommon_trap_blob;
    47 #endif // COMPILER2
    49 DeoptimizationBlob *SharedRuntime::_deopt_blob;
    50 SafepointBlob      *SharedRuntime::_polling_page_safepoint_handler_blob;
    51 SafepointBlob      *SharedRuntime::_polling_page_return_handler_blob;
    52 RuntimeStub*       SharedRuntime::_wrong_method_blob;
    53 RuntimeStub*       SharedRuntime::_ic_miss_blob;
    54 RuntimeStub*       SharedRuntime::_resolve_opt_virtual_call_blob;
    55 RuntimeStub*       SharedRuntime::_resolve_virtual_call_blob;
    56 RuntimeStub*       SharedRuntime::_resolve_static_call_blob;
    58 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
    60 class RegisterSaver {
    61   enum { FPU_regs_live = 8 /*for the FPU stack*/+8/*eight more for XMM registers*/ };
    62   // Capture info about frame layout
    63   enum layout {
    64                 fpu_state_off = 0,
    65                 fpu_state_end = fpu_state_off+FPUStateSizeInWords-1,
    66                 st0_off, st0H_off,
    67                 st1_off, st1H_off,
    68                 st2_off, st2H_off,
    69                 st3_off, st3H_off,
    70                 st4_off, st4H_off,
    71                 st5_off, st5H_off,
    72                 st6_off, st6H_off,
    73                 st7_off, st7H_off,
    75                 xmm0_off, xmm0H_off,
    76                 xmm1_off, xmm1H_off,
    77                 xmm2_off, xmm2H_off,
    78                 xmm3_off, xmm3H_off,
    79                 xmm4_off, xmm4H_off,
    80                 xmm5_off, xmm5H_off,
    81                 xmm6_off, xmm6H_off,
    82                 xmm7_off, xmm7H_off,
    83                 flags_off,
    84                 rdi_off,
    85                 rsi_off,
    86                 ignore_off,  // extra copy of rbp,
    87                 rsp_off,
    88                 rbx_off,
    89                 rdx_off,
    90                 rcx_off,
    91                 rax_off,
    92                 // The frame sender code expects that rbp will be in the "natural" place and
    93                 // will override any oopMap setting for it. We must therefore force the layout
    94                 // so that it agrees with the frame sender code.
    95                 rbp_off,
    96                 return_off,      // slot for return address
    97                 reg_save_size };
   100   public:
   102   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words,
   103                                      int* total_frame_words, bool verify_fpu = true);
   104   static void restore_live_registers(MacroAssembler* masm);
   106   static int rax_offset() { return rax_off; }
   107   static int rbx_offset() { return rbx_off; }
   109   // Offsets into the register save area
   110   // Used by deoptimization when it is managing result register
   111   // values on its own
   113   static int raxOffset(void) { return rax_off; }
   114   static int rdxOffset(void) { return rdx_off; }
   115   static int rbxOffset(void) { return rbx_off; }
   116   static int xmm0Offset(void) { return xmm0_off; }
   117   // This really returns a slot in the fp save area, which one is not important
   118   static int fpResultOffset(void) { return st0_off; }
   120   // During deoptimization only the result register need to be restored
   121   // all the other values have already been extracted.
   123   static void restore_result_registers(MacroAssembler* masm);
   125 };
   127 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words,
   128                                            int* total_frame_words, bool verify_fpu) {
   130   int frame_size_in_bytes =  (reg_save_size + additional_frame_words) * wordSize;
   131   int frame_words = frame_size_in_bytes / wordSize;
   132   *total_frame_words = frame_words;
   134   assert(FPUStateSizeInWords == 27, "update stack layout");
   136   // save registers, fpu state, and flags
   137   // We assume caller has already has return address slot on the stack
   138   // We push epb twice in this sequence because we want the real rbp,
   139   // to be under the return like a normal enter and we want to use pusha
   140   // We push by hand instead of pusing push
   141   __ enter();
   142   __ pusha();
   143   __ pushf();
   144   __ subptr(rsp,FPU_regs_live*sizeof(jdouble)); // Push FPU registers space
   145   __ push_FPU_state();          // Save FPU state & init
   147   if (verify_fpu) {
   148     // Some stubs may have non standard FPU control word settings so
   149     // only check and reset the value when it required to be the
   150     // standard value.  The safepoint blob in particular can be used
   151     // in methods which are using the 24 bit control word for
   152     // optimized float math.
   154 #ifdef ASSERT
   155     // Make sure the control word has the expected value
   156     Label ok;
   157     __ cmpw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
   158     __ jccb(Assembler::equal, ok);
   159     __ stop("corrupted control word detected");
   160     __ bind(ok);
   161 #endif
   163     // Reset the control word to guard against exceptions being unmasked
   164     // since fstp_d can cause FPU stack underflow exceptions.  Write it
   165     // into the on stack copy and then reload that to make sure that the
   166     // current and future values are correct.
   167     __ movw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
   168   }
   170   __ frstor(Address(rsp, 0));
   171   if (!verify_fpu) {
   172     // Set the control word so that exceptions are masked for the
   173     // following code.
   174     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   175   }
   177   // Save the FPU registers in de-opt-able form
   179   __ fstp_d(Address(rsp, st0_off*wordSize)); // st(0)
   180   __ fstp_d(Address(rsp, st1_off*wordSize)); // st(1)
   181   __ fstp_d(Address(rsp, st2_off*wordSize)); // st(2)
   182   __ fstp_d(Address(rsp, st3_off*wordSize)); // st(3)
   183   __ fstp_d(Address(rsp, st4_off*wordSize)); // st(4)
   184   __ fstp_d(Address(rsp, st5_off*wordSize)); // st(5)
   185   __ fstp_d(Address(rsp, st6_off*wordSize)); // st(6)
   186   __ fstp_d(Address(rsp, st7_off*wordSize)); // st(7)
   188   if( UseSSE == 1 ) {           // Save the XMM state
   189     __ movflt(Address(rsp,xmm0_off*wordSize),xmm0);
   190     __ movflt(Address(rsp,xmm1_off*wordSize),xmm1);
   191     __ movflt(Address(rsp,xmm2_off*wordSize),xmm2);
   192     __ movflt(Address(rsp,xmm3_off*wordSize),xmm3);
   193     __ movflt(Address(rsp,xmm4_off*wordSize),xmm4);
   194     __ movflt(Address(rsp,xmm5_off*wordSize),xmm5);
   195     __ movflt(Address(rsp,xmm6_off*wordSize),xmm6);
   196     __ movflt(Address(rsp,xmm7_off*wordSize),xmm7);
   197   } else if( UseSSE >= 2 ) {
   198     __ movdbl(Address(rsp,xmm0_off*wordSize),xmm0);
   199     __ movdbl(Address(rsp,xmm1_off*wordSize),xmm1);
   200     __ movdbl(Address(rsp,xmm2_off*wordSize),xmm2);
   201     __ movdbl(Address(rsp,xmm3_off*wordSize),xmm3);
   202     __ movdbl(Address(rsp,xmm4_off*wordSize),xmm4);
   203     __ movdbl(Address(rsp,xmm5_off*wordSize),xmm5);
   204     __ movdbl(Address(rsp,xmm6_off*wordSize),xmm6);
   205     __ movdbl(Address(rsp,xmm7_off*wordSize),xmm7);
   206   }
   208   // Set an oopmap for the call site.  This oopmap will map all
   209   // oop-registers and debug-info registers as callee-saved.  This
   210   // will allow deoptimization at this safepoint to find all possible
   211   // debug-info recordings, as well as let GC find all oops.
   213   OopMapSet *oop_maps = new OopMapSet();
   214   OopMap* map =  new OopMap( frame_words, 0 );
   216 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_words)
   218   map->set_callee_saved(STACK_OFFSET( rax_off), rax->as_VMReg());
   219   map->set_callee_saved(STACK_OFFSET( rcx_off), rcx->as_VMReg());
   220   map->set_callee_saved(STACK_OFFSET( rdx_off), rdx->as_VMReg());
   221   map->set_callee_saved(STACK_OFFSET( rbx_off), rbx->as_VMReg());
   222   // rbp, location is known implicitly, no oopMap
   223   map->set_callee_saved(STACK_OFFSET( rsi_off), rsi->as_VMReg());
   224   map->set_callee_saved(STACK_OFFSET( rdi_off), rdi->as_VMReg());
   225   map->set_callee_saved(STACK_OFFSET(st0_off), as_FloatRegister(0)->as_VMReg());
   226   map->set_callee_saved(STACK_OFFSET(st1_off), as_FloatRegister(1)->as_VMReg());
   227   map->set_callee_saved(STACK_OFFSET(st2_off), as_FloatRegister(2)->as_VMReg());
   228   map->set_callee_saved(STACK_OFFSET(st3_off), as_FloatRegister(3)->as_VMReg());
   229   map->set_callee_saved(STACK_OFFSET(st4_off), as_FloatRegister(4)->as_VMReg());
   230   map->set_callee_saved(STACK_OFFSET(st5_off), as_FloatRegister(5)->as_VMReg());
   231   map->set_callee_saved(STACK_OFFSET(st6_off), as_FloatRegister(6)->as_VMReg());
   232   map->set_callee_saved(STACK_OFFSET(st7_off), as_FloatRegister(7)->as_VMReg());
   233   map->set_callee_saved(STACK_OFFSET(xmm0_off), xmm0->as_VMReg());
   234   map->set_callee_saved(STACK_OFFSET(xmm1_off), xmm1->as_VMReg());
   235   map->set_callee_saved(STACK_OFFSET(xmm2_off), xmm2->as_VMReg());
   236   map->set_callee_saved(STACK_OFFSET(xmm3_off), xmm3->as_VMReg());
   237   map->set_callee_saved(STACK_OFFSET(xmm4_off), xmm4->as_VMReg());
   238   map->set_callee_saved(STACK_OFFSET(xmm5_off), xmm5->as_VMReg());
   239   map->set_callee_saved(STACK_OFFSET(xmm6_off), xmm6->as_VMReg());
   240   map->set_callee_saved(STACK_OFFSET(xmm7_off), xmm7->as_VMReg());
   241   // %%% This is really a waste but we'll keep things as they were for now
   242   if (true) {
   243 #define NEXTREG(x) (x)->as_VMReg()->next()
   244     map->set_callee_saved(STACK_OFFSET(st0H_off), NEXTREG(as_FloatRegister(0)));
   245     map->set_callee_saved(STACK_OFFSET(st1H_off), NEXTREG(as_FloatRegister(1)));
   246     map->set_callee_saved(STACK_OFFSET(st2H_off), NEXTREG(as_FloatRegister(2)));
   247     map->set_callee_saved(STACK_OFFSET(st3H_off), NEXTREG(as_FloatRegister(3)));
   248     map->set_callee_saved(STACK_OFFSET(st4H_off), NEXTREG(as_FloatRegister(4)));
   249     map->set_callee_saved(STACK_OFFSET(st5H_off), NEXTREG(as_FloatRegister(5)));
   250     map->set_callee_saved(STACK_OFFSET(st6H_off), NEXTREG(as_FloatRegister(6)));
   251     map->set_callee_saved(STACK_OFFSET(st7H_off), NEXTREG(as_FloatRegister(7)));
   252     map->set_callee_saved(STACK_OFFSET(xmm0H_off), NEXTREG(xmm0));
   253     map->set_callee_saved(STACK_OFFSET(xmm1H_off), NEXTREG(xmm1));
   254     map->set_callee_saved(STACK_OFFSET(xmm2H_off), NEXTREG(xmm2));
   255     map->set_callee_saved(STACK_OFFSET(xmm3H_off), NEXTREG(xmm3));
   256     map->set_callee_saved(STACK_OFFSET(xmm4H_off), NEXTREG(xmm4));
   257     map->set_callee_saved(STACK_OFFSET(xmm5H_off), NEXTREG(xmm5));
   258     map->set_callee_saved(STACK_OFFSET(xmm6H_off), NEXTREG(xmm6));
   259     map->set_callee_saved(STACK_OFFSET(xmm7H_off), NEXTREG(xmm7));
   260 #undef NEXTREG
   261 #undef STACK_OFFSET
   262   }
   264   return map;
   266 }
   268 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
   270   // Recover XMM & FPU state
   271   if( UseSSE == 1 ) {
   272     __ movflt(xmm0,Address(rsp,xmm0_off*wordSize));
   273     __ movflt(xmm1,Address(rsp,xmm1_off*wordSize));
   274     __ movflt(xmm2,Address(rsp,xmm2_off*wordSize));
   275     __ movflt(xmm3,Address(rsp,xmm3_off*wordSize));
   276     __ movflt(xmm4,Address(rsp,xmm4_off*wordSize));
   277     __ movflt(xmm5,Address(rsp,xmm5_off*wordSize));
   278     __ movflt(xmm6,Address(rsp,xmm6_off*wordSize));
   279     __ movflt(xmm7,Address(rsp,xmm7_off*wordSize));
   280   } else if( UseSSE >= 2 ) {
   281     __ movdbl(xmm0,Address(rsp,xmm0_off*wordSize));
   282     __ movdbl(xmm1,Address(rsp,xmm1_off*wordSize));
   283     __ movdbl(xmm2,Address(rsp,xmm2_off*wordSize));
   284     __ movdbl(xmm3,Address(rsp,xmm3_off*wordSize));
   285     __ movdbl(xmm4,Address(rsp,xmm4_off*wordSize));
   286     __ movdbl(xmm5,Address(rsp,xmm5_off*wordSize));
   287     __ movdbl(xmm6,Address(rsp,xmm6_off*wordSize));
   288     __ movdbl(xmm7,Address(rsp,xmm7_off*wordSize));
   289   }
   290   __ pop_FPU_state();
   291   __ addptr(rsp, FPU_regs_live*sizeof(jdouble)); // Pop FPU registers
   293   __ popf();
   294   __ popa();
   295   // Get the rbp, described implicitly by the frame sender code (no oopMap)
   296   __ pop(rbp);
   298 }
   300 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
   302   // Just restore result register. Only used by deoptimization. By
   303   // now any callee save register that needs to be restore to a c2
   304   // caller of the deoptee has been extracted into the vframeArray
   305   // and will be stuffed into the c2i adapter we create for later
   306   // restoration so only result registers need to be restored here.
   307   //
   309   __ frstor(Address(rsp, 0));      // Restore fpu state
   311   // Recover XMM & FPU state
   312   if( UseSSE == 1 ) {
   313     __ movflt(xmm0, Address(rsp, xmm0_off*wordSize));
   314   } else if( UseSSE >= 2 ) {
   315     __ movdbl(xmm0, Address(rsp, xmm0_off*wordSize));
   316   }
   317   __ movptr(rax, Address(rsp, rax_off*wordSize));
   318   __ movptr(rdx, Address(rsp, rdx_off*wordSize));
   319   // Pop all of the register save are off the stack except the return address
   320   __ addptr(rsp, return_off * wordSize);
   321 }
   323 // The java_calling_convention describes stack locations as ideal slots on
   324 // a frame with no abi restrictions. Since we must observe abi restrictions
   325 // (like the placement of the register window) the slots must be biased by
   326 // the following value.
   327 static int reg2offset_in(VMReg r) {
   328   // Account for saved rbp, and return address
   329   // This should really be in_preserve_stack_slots
   330   return (r->reg2stack() + 2) * VMRegImpl::stack_slot_size;
   331 }
   333 static int reg2offset_out(VMReg r) {
   334   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
   335 }
   337 // ---------------------------------------------------------------------------
   338 // Read the array of BasicTypes from a signature, and compute where the
   339 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
   340 // quantities.  Values less than SharedInfo::stack0 are registers, those above
   341 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
   342 // as framesizes are fixed.
   343 // VMRegImpl::stack0 refers to the first slot 0(sp).
   344 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
   345 // up to RegisterImpl::number_of_registers) are the 32-bit
   346 // integer registers.
   348 // Pass first two oop/int args in registers ECX and EDX.
   349 // Pass first two float/double args in registers XMM0 and XMM1.
   350 // Doubles have precedence, so if you pass a mix of floats and doubles
   351 // the doubles will grab the registers before the floats will.
   353 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
   354 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
   355 // units regardless of build. Of course for i486 there is no 64 bit build
   358 // ---------------------------------------------------------------------------
   359 // The compiled Java calling convention.
   360 // Pass first two oop/int args in registers ECX and EDX.
   361 // Pass first two float/double args in registers XMM0 and XMM1.
   362 // Doubles have precedence, so if you pass a mix of floats and doubles
   363 // the doubles will grab the registers before the floats will.
   364 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
   365                                            VMRegPair *regs,
   366                                            int total_args_passed,
   367                                            int is_outgoing) {
   368   uint    stack = 0;          // Starting stack position for args on stack
   371   // Pass first two oop/int args in registers ECX and EDX.
   372   uint reg_arg0 = 9999;
   373   uint reg_arg1 = 9999;
   375   // Pass first two float/double args in registers XMM0 and XMM1.
   376   // Doubles have precedence, so if you pass a mix of floats and doubles
   377   // the doubles will grab the registers before the floats will.
   378   // CNC - TURNED OFF FOR non-SSE.
   379   //       On Intel we have to round all doubles (and most floats) at
   380   //       call sites by storing to the stack in any case.
   381   // UseSSE=0 ==> Don't Use ==> 9999+0
   382   // UseSSE=1 ==> Floats only ==> 9999+1
   383   // UseSSE>=2 ==> Floats or doubles ==> 9999+2
   384   enum { fltarg_dontuse = 9999+0, fltarg_float_only = 9999+1, fltarg_flt_dbl = 9999+2 };
   385   uint fargs = (UseSSE>=2) ? 2 : UseSSE;
   386   uint freg_arg0 = 9999+fargs;
   387   uint freg_arg1 = 9999+fargs;
   389   // Pass doubles & longs aligned on the stack.  First count stack slots for doubles
   390   int i;
   391   for( i = 0; i < total_args_passed; i++) {
   392     if( sig_bt[i] == T_DOUBLE ) {
   393       // first 2 doubles go in registers
   394       if( freg_arg0 == fltarg_flt_dbl ) freg_arg0 = i;
   395       else if( freg_arg1 == fltarg_flt_dbl ) freg_arg1 = i;
   396       else // Else double is passed low on the stack to be aligned.
   397         stack += 2;
   398     } else if( sig_bt[i] == T_LONG ) {
   399       stack += 2;
   400     }
   401   }
   402   int dstack = 0;             // Separate counter for placing doubles
   404   // Now pick where all else goes.
   405   for( i = 0; i < total_args_passed; i++) {
   406     // From the type and the argument number (count) compute the location
   407     switch( sig_bt[i] ) {
   408     case T_SHORT:
   409     case T_CHAR:
   410     case T_BYTE:
   411     case T_BOOLEAN:
   412     case T_INT:
   413     case T_ARRAY:
   414     case T_OBJECT:
   415     case T_ADDRESS:
   416       if( reg_arg0 == 9999 )  {
   417         reg_arg0 = i;
   418         regs[i].set1(rcx->as_VMReg());
   419       } else if( reg_arg1 == 9999 )  {
   420         reg_arg1 = i;
   421         regs[i].set1(rdx->as_VMReg());
   422       } else {
   423         regs[i].set1(VMRegImpl::stack2reg(stack++));
   424       }
   425       break;
   426     case T_FLOAT:
   427       if( freg_arg0 == fltarg_flt_dbl || freg_arg0 == fltarg_float_only ) {
   428         freg_arg0 = i;
   429         regs[i].set1(xmm0->as_VMReg());
   430       } else if( freg_arg1 == fltarg_flt_dbl || freg_arg1 == fltarg_float_only ) {
   431         freg_arg1 = i;
   432         regs[i].set1(xmm1->as_VMReg());
   433       } else {
   434         regs[i].set1(VMRegImpl::stack2reg(stack++));
   435       }
   436       break;
   437     case T_LONG:
   438       assert(sig_bt[i+1] == T_VOID, "missing Half" );
   439       regs[i].set2(VMRegImpl::stack2reg(dstack));
   440       dstack += 2;
   441       break;
   442     case T_DOUBLE:
   443       assert(sig_bt[i+1] == T_VOID, "missing Half" );
   444       if( freg_arg0 == (uint)i ) {
   445         regs[i].set2(xmm0->as_VMReg());
   446       } else if( freg_arg1 == (uint)i ) {
   447         regs[i].set2(xmm1->as_VMReg());
   448       } else {
   449         regs[i].set2(VMRegImpl::stack2reg(dstack));
   450         dstack += 2;
   451       }
   452       break;
   453     case T_VOID: regs[i].set_bad(); break;
   454       break;
   455     default:
   456       ShouldNotReachHere();
   457       break;
   458     }
   459   }
   461   // return value can be odd number of VMRegImpl stack slots make multiple of 2
   462   return round_to(stack, 2);
   463 }
   465 // Patch the callers callsite with entry to compiled code if it exists.
   466 static void patch_callers_callsite(MacroAssembler *masm) {
   467   Label L;
   468   __ verify_oop(rbx);
   469   __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
   470   __ jcc(Assembler::equal, L);
   471   // Schedule the branch target address early.
   472   // Call into the VM to patch the caller, then jump to compiled callee
   473   // rax, isn't live so capture return address while we easily can
   474   __ movptr(rax, Address(rsp, 0));
   475   __ pusha();
   476   __ pushf();
   478   if (UseSSE == 1) {
   479     __ subptr(rsp, 2*wordSize);
   480     __ movflt(Address(rsp, 0), xmm0);
   481     __ movflt(Address(rsp, wordSize), xmm1);
   482   }
   483   if (UseSSE >= 2) {
   484     __ subptr(rsp, 4*wordSize);
   485     __ movdbl(Address(rsp, 0), xmm0);
   486     __ movdbl(Address(rsp, 2*wordSize), xmm1);
   487   }
   488 #ifdef COMPILER2
   489   // C2 may leave the stack dirty if not in SSE2+ mode
   490   if (UseSSE >= 2) {
   491     __ verify_FPU(0, "c2i transition should have clean FPU stack");
   492   } else {
   493     __ empty_FPU_stack();
   494   }
   495 #endif /* COMPILER2 */
   497   // VM needs caller's callsite
   498   __ push(rax);
   499   // VM needs target method
   500   __ push(rbx);
   501   __ verify_oop(rbx);
   502   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
   503   __ addptr(rsp, 2*wordSize);
   505   if (UseSSE == 1) {
   506     __ movflt(xmm0, Address(rsp, 0));
   507     __ movflt(xmm1, Address(rsp, wordSize));
   508     __ addptr(rsp, 2*wordSize);
   509   }
   510   if (UseSSE >= 2) {
   511     __ movdbl(xmm0, Address(rsp, 0));
   512     __ movdbl(xmm1, Address(rsp, 2*wordSize));
   513     __ addptr(rsp, 4*wordSize);
   514   }
   516   __ popf();
   517   __ popa();
   518   __ bind(L);
   519 }
   522 static void move_c2i_double(MacroAssembler *masm, XMMRegister r, int st_off) {
   523   int next_off = st_off - Interpreter::stackElementSize;
   524   __ movdbl(Address(rsp, next_off), r);
   525 }
   527 static void gen_c2i_adapter(MacroAssembler *masm,
   528                             int total_args_passed,
   529                             int comp_args_on_stack,
   530                             const BasicType *sig_bt,
   531                             const VMRegPair *regs,
   532                             Label& skip_fixup) {
   533   // Before we get into the guts of the C2I adapter, see if we should be here
   534   // at all.  We've come from compiled code and are attempting to jump to the
   535   // interpreter, which means the caller made a static call to get here
   536   // (vcalls always get a compiled target if there is one).  Check for a
   537   // compiled target.  If there is one, we need to patch the caller's call.
   538   patch_callers_callsite(masm);
   540   __ bind(skip_fixup);
   542 #ifdef COMPILER2
   543   // C2 may leave the stack dirty if not in SSE2+ mode
   544   if (UseSSE >= 2) {
   545     __ verify_FPU(0, "c2i transition should have clean FPU stack");
   546   } else {
   547     __ empty_FPU_stack();
   548   }
   549 #endif /* COMPILER2 */
   551   // Since all args are passed on the stack, total_args_passed * interpreter_
   552   // stack_element_size  is the
   553   // space we need.
   554   int extraspace = total_args_passed * Interpreter::stackElementSize;
   556   // Get return address
   557   __ pop(rax);
   559   // set senderSP value
   560   __ movptr(rsi, rsp);
   562   __ subptr(rsp, extraspace);
   564   // Now write the args into the outgoing interpreter space
   565   for (int i = 0; i < total_args_passed; i++) {
   566     if (sig_bt[i] == T_VOID) {
   567       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
   568       continue;
   569     }
   571     // st_off points to lowest address on stack.
   572     int st_off = ((total_args_passed - 1) - i) * Interpreter::stackElementSize;
   573     int next_off = st_off - Interpreter::stackElementSize;
   575     // Say 4 args:
   576     // i   st_off
   577     // 0   12 T_LONG
   578     // 1    8 T_VOID
   579     // 2    4 T_OBJECT
   580     // 3    0 T_BOOL
   581     VMReg r_1 = regs[i].first();
   582     VMReg r_2 = regs[i].second();
   583     if (!r_1->is_valid()) {
   584       assert(!r_2->is_valid(), "");
   585       continue;
   586     }
   588     if (r_1->is_stack()) {
   589       // memory to memory use fpu stack top
   590       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
   592       if (!r_2->is_valid()) {
   593         __ movl(rdi, Address(rsp, ld_off));
   594         __ movptr(Address(rsp, st_off), rdi);
   595       } else {
   597         // ld_off == LSW, ld_off+VMRegImpl::stack_slot_size == MSW
   598         // st_off == MSW, st_off-wordSize == LSW
   600         __ movptr(rdi, Address(rsp, ld_off));
   601         __ movptr(Address(rsp, next_off), rdi);
   602 #ifndef _LP64
   603         __ movptr(rdi, Address(rsp, ld_off + wordSize));
   604         __ movptr(Address(rsp, st_off), rdi);
   605 #else
   606 #ifdef ASSERT
   607         // Overwrite the unused slot with known junk
   608         __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
   609         __ movptr(Address(rsp, st_off), rax);
   610 #endif /* ASSERT */
   611 #endif // _LP64
   612       }
   613     } else if (r_1->is_Register()) {
   614       Register r = r_1->as_Register();
   615       if (!r_2->is_valid()) {
   616         __ movl(Address(rsp, st_off), r);
   617       } else {
   618         // long/double in gpr
   619         NOT_LP64(ShouldNotReachHere());
   620         // Two VMRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
   621         // T_DOUBLE and T_LONG use two slots in the interpreter
   622         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
   623           // long/double in gpr
   624 #ifdef ASSERT
   625           // Overwrite the unused slot with known junk
   626           LP64_ONLY(__ mov64(rax, CONST64(0xdeadffffdeadaaab)));
   627           __ movptr(Address(rsp, st_off), rax);
   628 #endif /* ASSERT */
   629           __ movptr(Address(rsp, next_off), r);
   630         } else {
   631           __ movptr(Address(rsp, st_off), r);
   632         }
   633       }
   634     } else {
   635       assert(r_1->is_XMMRegister(), "");
   636       if (!r_2->is_valid()) {
   637         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
   638       } else {
   639         assert(sig_bt[i] == T_DOUBLE || sig_bt[i] == T_LONG, "wrong type");
   640         move_c2i_double(masm, r_1->as_XMMRegister(), st_off);
   641       }
   642     }
   643   }
   645   // Schedule the branch target address early.
   646   __ movptr(rcx, Address(rbx, in_bytes(methodOopDesc::interpreter_entry_offset())));
   647   // And repush original return address
   648   __ push(rax);
   649   __ jmp(rcx);
   650 }
   653 static void move_i2c_double(MacroAssembler *masm, XMMRegister r, Register saved_sp, int ld_off) {
   654   int next_val_off = ld_off - Interpreter::stackElementSize;
   655   __ movdbl(r, Address(saved_sp, next_val_off));
   656 }
   658 static void gen_i2c_adapter(MacroAssembler *masm,
   659                             int total_args_passed,
   660                             int comp_args_on_stack,
   661                             const BasicType *sig_bt,
   662                             const VMRegPair *regs) {
   664   // Note: rsi contains the senderSP on entry. We must preserve it since
   665   // we may do a i2c -> c2i transition if we lose a race where compiled
   666   // code goes non-entrant while we get args ready.
   668   // Pick up the return address
   669   __ movptr(rax, Address(rsp, 0));
   671   // Must preserve original SP for loading incoming arguments because
   672   // we need to align the outgoing SP for compiled code.
   673   __ movptr(rdi, rsp);
   675   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
   676   // in registers, we will occasionally have no stack args.
   677   int comp_words_on_stack = 0;
   678   if (comp_args_on_stack) {
   679     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
   680     // registers are below.  By subtracting stack0, we either get a negative
   681     // number (all values in registers) or the maximum stack slot accessed.
   682     // int comp_args_on_stack = VMRegImpl::reg2stack(max_arg);
   683     // Convert 4-byte stack slots to words.
   684     comp_words_on_stack = round_to(comp_args_on_stack*4, wordSize)>>LogBytesPerWord;
   685     // Round up to miminum stack alignment, in wordSize
   686     comp_words_on_stack = round_to(comp_words_on_stack, 2);
   687     __ subptr(rsp, comp_words_on_stack * wordSize);
   688   }
   690   // Align the outgoing SP
   691   __ andptr(rsp, -(StackAlignmentInBytes));
   693   // push the return address on the stack (note that pushing, rather
   694   // than storing it, yields the correct frame alignment for the callee)
   695   __ push(rax);
   697   // Put saved SP in another register
   698   const Register saved_sp = rax;
   699   __ movptr(saved_sp, rdi);
   702   // Will jump to the compiled code just as if compiled code was doing it.
   703   // Pre-load the register-jump target early, to schedule it better.
   704   __ movptr(rdi, Address(rbx, in_bytes(methodOopDesc::from_compiled_offset())));
   706   // Now generate the shuffle code.  Pick up all register args and move the
   707   // rest through the floating point stack top.
   708   for (int i = 0; i < total_args_passed; i++) {
   709     if (sig_bt[i] == T_VOID) {
   710       // Longs and doubles are passed in native word order, but misaligned
   711       // in the 32-bit build.
   712       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
   713       continue;
   714     }
   716     // Pick up 0, 1 or 2 words from SP+offset.
   718     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
   719             "scrambled load targets?");
   720     // Load in argument order going down.
   721     int ld_off = (total_args_passed - i) * Interpreter::stackElementSize;
   722     // Point to interpreter value (vs. tag)
   723     int next_off = ld_off - Interpreter::stackElementSize;
   724     //
   725     //
   726     //
   727     VMReg r_1 = regs[i].first();
   728     VMReg r_2 = regs[i].second();
   729     if (!r_1->is_valid()) {
   730       assert(!r_2->is_valid(), "");
   731       continue;
   732     }
   733     if (r_1->is_stack()) {
   734       // Convert stack slot to an SP offset (+ wordSize to account for return address )
   735       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
   737       // We can use rsi as a temp here because compiled code doesn't need rsi as an input
   738       // and if we end up going thru a c2i because of a miss a reasonable value of rsi
   739       // we be generated.
   740       if (!r_2->is_valid()) {
   741         // __ fld_s(Address(saved_sp, ld_off));
   742         // __ fstp_s(Address(rsp, st_off));
   743         __ movl(rsi, Address(saved_sp, ld_off));
   744         __ movptr(Address(rsp, st_off), rsi);
   745       } else {
   746         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
   747         // are accessed as negative so LSW is at LOW address
   749         // ld_off is MSW so get LSW
   750         // st_off is LSW (i.e. reg.first())
   751         // __ fld_d(Address(saved_sp, next_off));
   752         // __ fstp_d(Address(rsp, st_off));
   753         //
   754         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
   755         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
   756         // So we must adjust where to pick up the data to match the interpreter.
   757         //
   758         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
   759         // are accessed as negative so LSW is at LOW address
   761         // ld_off is MSW so get LSW
   762         const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
   763                            next_off : ld_off;
   764         __ movptr(rsi, Address(saved_sp, offset));
   765         __ movptr(Address(rsp, st_off), rsi);
   766 #ifndef _LP64
   767         __ movptr(rsi, Address(saved_sp, ld_off));
   768         __ movptr(Address(rsp, st_off + wordSize), rsi);
   769 #endif // _LP64
   770       }
   771     } else if (r_1->is_Register()) {  // Register argument
   772       Register r = r_1->as_Register();
   773       assert(r != rax, "must be different");
   774       if (r_2->is_valid()) {
   775         //
   776         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
   777         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
   778         // So we must adjust where to pick up the data to match the interpreter.
   780         const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
   781                            next_off : ld_off;
   783         // this can be a misaligned move
   784         __ movptr(r, Address(saved_sp, offset));
   785 #ifndef _LP64
   786         assert(r_2->as_Register() != rax, "need another temporary register");
   787         // Remember r_1 is low address (and LSB on x86)
   788         // So r_2 gets loaded from high address regardless of the platform
   789         __ movptr(r_2->as_Register(), Address(saved_sp, ld_off));
   790 #endif // _LP64
   791       } else {
   792         __ movl(r, Address(saved_sp, ld_off));
   793       }
   794     } else {
   795       assert(r_1->is_XMMRegister(), "");
   796       if (!r_2->is_valid()) {
   797         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
   798       } else {
   799         move_i2c_double(masm, r_1->as_XMMRegister(), saved_sp, ld_off);
   800       }
   801     }
   802   }
   804   // 6243940 We might end up in handle_wrong_method if
   805   // the callee is deoptimized as we race thru here. If that
   806   // happens we don't want to take a safepoint because the
   807   // caller frame will look interpreted and arguments are now
   808   // "compiled" so it is much better to make this transition
   809   // invisible to the stack walking code. Unfortunately if
   810   // we try and find the callee by normal means a safepoint
   811   // is possible. So we stash the desired callee in the thread
   812   // and the vm will find there should this case occur.
   814   __ get_thread(rax);
   815   __ movptr(Address(rax, JavaThread::callee_target_offset()), rbx);
   817   // move methodOop to rax, in case we end up in an c2i adapter.
   818   // the c2i adapters expect methodOop in rax, (c2) because c2's
   819   // resolve stubs return the result (the method) in rax,.
   820   // I'd love to fix this.
   821   __ mov(rax, rbx);
   823   __ jmp(rdi);
   824 }
   826 // ---------------------------------------------------------------
   827 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
   828                                                             int total_args_passed,
   829                                                             int comp_args_on_stack,
   830                                                             const BasicType *sig_bt,
   831                                                             const VMRegPair *regs,
   832                                                             AdapterFingerPrint* fingerprint) {
   833   address i2c_entry = __ pc();
   835   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
   837   // -------------------------------------------------------------------------
   838   // Generate a C2I adapter.  On entry we know rbx, holds the methodOop during calls
   839   // to the interpreter.  The args start out packed in the compiled layout.  They
   840   // need to be unpacked into the interpreter layout.  This will almost always
   841   // require some stack space.  We grow the current (compiled) stack, then repack
   842   // the args.  We  finally end in a jump to the generic interpreter entry point.
   843   // On exit from the interpreter, the interpreter will restore our SP (lest the
   844   // compiled code, which relys solely on SP and not EBP, get sick).
   846   address c2i_unverified_entry = __ pc();
   847   Label skip_fixup;
   849   Register holder = rax;
   850   Register receiver = rcx;
   851   Register temp = rbx;
   853   {
   855     Label missed;
   857     __ verify_oop(holder);
   858     __ movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes()));
   859     __ verify_oop(temp);
   861     __ cmpptr(temp, Address(holder, compiledICHolderOopDesc::holder_klass_offset()));
   862     __ movptr(rbx, Address(holder, compiledICHolderOopDesc::holder_method_offset()));
   863     __ jcc(Assembler::notEqual, missed);
   864     // Method might have been compiled since the call site was patched to
   865     // interpreted if that is the case treat it as a miss so we can get
   866     // the call site corrected.
   867     __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
   868     __ jcc(Assembler::equal, skip_fixup);
   870     __ bind(missed);
   871     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
   872   }
   874   address c2i_entry = __ pc();
   876   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
   878   __ flush();
   879   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
   880 }
   882 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
   883                                          VMRegPair *regs,
   884                                          int total_args_passed) {
   885 // We return the amount of VMRegImpl stack slots we need to reserve for all
   886 // the arguments NOT counting out_preserve_stack_slots.
   888   uint    stack = 0;        // All arguments on stack
   890   for( int i = 0; i < total_args_passed; i++) {
   891     // From the type and the argument number (count) compute the location
   892     switch( sig_bt[i] ) {
   893     case T_BOOLEAN:
   894     case T_CHAR:
   895     case T_FLOAT:
   896     case T_BYTE:
   897     case T_SHORT:
   898     case T_INT:
   899     case T_OBJECT:
   900     case T_ARRAY:
   901     case T_ADDRESS:
   902       regs[i].set1(VMRegImpl::stack2reg(stack++));
   903       break;
   904     case T_LONG:
   905     case T_DOUBLE: // The stack numbering is reversed from Java
   906       // Since C arguments do not get reversed, the ordering for
   907       // doubles on the stack must be opposite the Java convention
   908       assert(sig_bt[i+1] == T_VOID, "missing Half" );
   909       regs[i].set2(VMRegImpl::stack2reg(stack));
   910       stack += 2;
   911       break;
   912     case T_VOID: regs[i].set_bad(); break;
   913     default:
   914       ShouldNotReachHere();
   915       break;
   916     }
   917   }
   918   return stack;
   919 }
   921 // A simple move of integer like type
   922 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
   923   if (src.first()->is_stack()) {
   924     if (dst.first()->is_stack()) {
   925       // stack to stack
   926       // __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
   927       // __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
   928       __ movl2ptr(rax, Address(rbp, reg2offset_in(src.first())));
   929       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
   930     } else {
   931       // stack to reg
   932       __ movl2ptr(dst.first()->as_Register(),  Address(rbp, reg2offset_in(src.first())));
   933     }
   934   } else if (dst.first()->is_stack()) {
   935     // reg to stack
   936     // no need to sign extend on 64bit
   937     __ movptr(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
   938   } else {
   939     if (dst.first() != src.first()) {
   940       __ mov(dst.first()->as_Register(), src.first()->as_Register());
   941     }
   942   }
   943 }
   945 // An oop arg. Must pass a handle not the oop itself
   946 static void object_move(MacroAssembler* masm,
   947                         OopMap* map,
   948                         int oop_handle_offset,
   949                         int framesize_in_slots,
   950                         VMRegPair src,
   951                         VMRegPair dst,
   952                         bool is_receiver,
   953                         int* receiver_offset) {
   955   // Because of the calling conventions we know that src can be a
   956   // register or a stack location. dst can only be a stack location.
   958   assert(dst.first()->is_stack(), "must be stack");
   959   // must pass a handle. First figure out the location we use as a handle
   961   if (src.first()->is_stack()) {
   962     // Oop is already on the stack as an argument
   963     Register rHandle = rax;
   964     Label nil;
   965     __ xorptr(rHandle, rHandle);
   966     __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
   967     __ jcc(Assembler::equal, nil);
   968     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
   969     __ bind(nil);
   970     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
   972     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
   973     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
   974     if (is_receiver) {
   975       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
   976     }
   977   } else {
   978     // Oop is in an a register we must store it to the space we reserve
   979     // on the stack for oop_handles
   980     const Register rOop = src.first()->as_Register();
   981     const Register rHandle = rax;
   982     int oop_slot = (rOop == rcx ? 0 : 1) * VMRegImpl::slots_per_word + oop_handle_offset;
   983     int offset = oop_slot*VMRegImpl::stack_slot_size;
   984     Label skip;
   985     __ movptr(Address(rsp, offset), rOop);
   986     map->set_oop(VMRegImpl::stack2reg(oop_slot));
   987     __ xorptr(rHandle, rHandle);
   988     __ cmpptr(rOop, (int32_t)NULL_WORD);
   989     __ jcc(Assembler::equal, skip);
   990     __ lea(rHandle, Address(rsp, offset));
   991     __ bind(skip);
   992     // Store the handle parameter
   993     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
   994     if (is_receiver) {
   995       *receiver_offset = offset;
   996     }
   997   }
   998 }
  1000 // A float arg may have to do float reg int reg conversion
  1001 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1002   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
  1004   // Because of the calling convention we know that src is either a stack location
  1005   // or an xmm register. dst can only be a stack location.
  1007   assert(dst.first()->is_stack() && ( src.first()->is_stack() || src.first()->is_XMMRegister()), "bad parameters");
  1009   if (src.first()->is_stack()) {
  1010     __ movl(rax, Address(rbp, reg2offset_in(src.first())));
  1011     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
  1012   } else {
  1013     // reg to stack
  1014     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
  1018 // A long move
  1019 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1021   // The only legal possibility for a long_move VMRegPair is:
  1022   // 1: two stack slots (possibly unaligned)
  1023   // as neither the java  or C calling convention will use registers
  1024   // for longs.
  1026   if (src.first()->is_stack() && dst.first()->is_stack()) {
  1027     assert(src.second()->is_stack() && dst.second()->is_stack(), "must be all stack");
  1028     __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
  1029     NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
  1030     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
  1031     NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
  1032   } else {
  1033     ShouldNotReachHere();
  1037 // A double move
  1038 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1040   // The only legal possibilities for a double_move VMRegPair are:
  1041   // The painful thing here is that like long_move a VMRegPair might be
  1043   // Because of the calling convention we know that src is either
  1044   //   1: a single physical register (xmm registers only)
  1045   //   2: two stack slots (possibly unaligned)
  1046   // dst can only be a pair of stack slots.
  1048   assert(dst.first()->is_stack() && (src.first()->is_XMMRegister() || src.first()->is_stack()), "bad args");
  1050   if (src.first()->is_stack()) {
  1051     // source is all stack
  1052     __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
  1053     NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
  1054     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
  1055     NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
  1056   } else {
  1057     // reg to stack
  1058     // No worries about stack alignment
  1059     __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
  1064 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1065   // We always ignore the frame_slots arg and just use the space just below frame pointer
  1066   // which by this time is free to use
  1067   switch (ret_type) {
  1068   case T_FLOAT:
  1069     __ fstp_s(Address(rbp, -wordSize));
  1070     break;
  1071   case T_DOUBLE:
  1072     __ fstp_d(Address(rbp, -2*wordSize));
  1073     break;
  1074   case T_VOID:  break;
  1075   case T_LONG:
  1076     __ movptr(Address(rbp, -wordSize), rax);
  1077     NOT_LP64(__ movptr(Address(rbp, -2*wordSize), rdx));
  1078     break;
  1079   default: {
  1080     __ movptr(Address(rbp, -wordSize), rax);
  1085 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1086   // We always ignore the frame_slots arg and just use the space just below frame pointer
  1087   // which by this time is free to use
  1088   switch (ret_type) {
  1089   case T_FLOAT:
  1090     __ fld_s(Address(rbp, -wordSize));
  1091     break;
  1092   case T_DOUBLE:
  1093     __ fld_d(Address(rbp, -2*wordSize));
  1094     break;
  1095   case T_LONG:
  1096     __ movptr(rax, Address(rbp, -wordSize));
  1097     NOT_LP64(__ movptr(rdx, Address(rbp, -2*wordSize)));
  1098     break;
  1099   case T_VOID:  break;
  1100   default: {
  1101     __ movptr(rax, Address(rbp, -wordSize));
  1106 // ---------------------------------------------------------------------------
  1107 // Generate a native wrapper for a given method.  The method takes arguments
  1108 // in the Java compiled code convention, marshals them to the native
  1109 // convention (handlizes oops, etc), transitions to native, makes the call,
  1110 // returns to java state (possibly blocking), unhandlizes any result and
  1111 // returns.
  1112 nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler *masm,
  1113                                                 methodHandle method,
  1114                                                 int compile_id,
  1115                                                 int total_in_args,
  1116                                                 int comp_args_on_stack,
  1117                                                 BasicType *in_sig_bt,
  1118                                                 VMRegPair *in_regs,
  1119                                                 BasicType ret_type) {
  1121   // An OopMap for lock (and class if static)
  1122   OopMapSet *oop_maps = new OopMapSet();
  1124   // We have received a description of where all the java arg are located
  1125   // on entry to the wrapper. We need to convert these args to where
  1126   // the jni function will expect them. To figure out where they go
  1127   // we convert the java signature to a C signature by inserting
  1128   // the hidden arguments as arg[0] and possibly arg[1] (static method)
  1130   int total_c_args = total_in_args + 1;
  1131   if (method->is_static()) {
  1132     total_c_args++;
  1135   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
  1136   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair,   total_c_args);
  1138   int argc = 0;
  1139   out_sig_bt[argc++] = T_ADDRESS;
  1140   if (method->is_static()) {
  1141     out_sig_bt[argc++] = T_OBJECT;
  1144   int i;
  1145   for (i = 0; i < total_in_args ; i++ ) {
  1146     out_sig_bt[argc++] = in_sig_bt[i];
  1150   // Now figure out where the args must be stored and how much stack space
  1151   // they require (neglecting out_preserve_stack_slots but space for storing
  1152   // the 1st six register arguments). It's weird see int_stk_helper.
  1153   //
  1154   int out_arg_slots;
  1155   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
  1157   // Compute framesize for the wrapper.  We need to handlize all oops in
  1158   // registers a max of 2 on x86.
  1160   // Calculate the total number of stack slots we will need.
  1162   // First count the abi requirement plus all of the outgoing args
  1163   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
  1165   // Now the space for the inbound oop handle area
  1167   int oop_handle_offset = stack_slots;
  1168   stack_slots += 2*VMRegImpl::slots_per_word;
  1170   // Now any space we need for handlizing a klass if static method
  1172   int klass_slot_offset = 0;
  1173   int klass_offset = -1;
  1174   int lock_slot_offset = 0;
  1175   bool is_static = false;
  1176   int oop_temp_slot_offset = 0;
  1178   if (method->is_static()) {
  1179     klass_slot_offset = stack_slots;
  1180     stack_slots += VMRegImpl::slots_per_word;
  1181     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
  1182     is_static = true;
  1185   // Plus a lock if needed
  1187   if (method->is_synchronized()) {
  1188     lock_slot_offset = stack_slots;
  1189     stack_slots += VMRegImpl::slots_per_word;
  1192   // Now a place (+2) to save return values or temp during shuffling
  1193   // + 2 for return address (which we own) and saved rbp,
  1194   stack_slots += 4;
  1196   // Ok The space we have allocated will look like:
  1197   //
  1198   //
  1199   // FP-> |                     |
  1200   //      |---------------------|
  1201   //      | 2 slots for moves   |
  1202   //      |---------------------|
  1203   //      | lock box (if sync)  |
  1204   //      |---------------------| <- lock_slot_offset  (-lock_slot_rbp_offset)
  1205   //      | klass (if static)   |
  1206   //      |---------------------| <- klass_slot_offset
  1207   //      | oopHandle area      |
  1208   //      |---------------------| <- oop_handle_offset (a max of 2 registers)
  1209   //      | outbound memory     |
  1210   //      | based arguments     |
  1211   //      |                     |
  1212   //      |---------------------|
  1213   //      |                     |
  1214   // SP-> | out_preserved_slots |
  1215   //
  1216   //
  1217   // ****************************************************************************
  1218   // WARNING - on Windows Java Natives use pascal calling convention and pop the
  1219   // arguments off of the stack after the jni call. Before the call we can use
  1220   // instructions that are SP relative. After the jni call we switch to FP
  1221   // relative instructions instead of re-adjusting the stack on windows.
  1222   // ****************************************************************************
  1225   // Now compute actual number of stack words we need rounding to make
  1226   // stack properly aligned.
  1227   stack_slots = round_to(stack_slots, StackAlignmentInSlots);
  1229   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
  1231   intptr_t start = (intptr_t)__ pc();
  1233   // First thing make an ic check to see if we should even be here
  1235   // We are free to use all registers as temps without saving them and
  1236   // restoring them except rbp,. rbp, is the only callee save register
  1237   // as far as the interpreter and the compiler(s) are concerned.
  1240   const Register ic_reg = rax;
  1241   const Register receiver = rcx;
  1242   Label hit;
  1243   Label exception_pending;
  1246   __ verify_oop(receiver);
  1247   __ cmpptr(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
  1248   __ jcc(Assembler::equal, hit);
  1250   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  1252   // verified entry must be aligned for code patching.
  1253   // and the first 5 bytes must be in the same cache line
  1254   // if we align at 8 then we will be sure 5 bytes are in the same line
  1255   __ align(8);
  1257   __ bind(hit);
  1259   int vep_offset = ((intptr_t)__ pc()) - start;
  1261 #ifdef COMPILER1
  1262   if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
  1263     // Object.hashCode can pull the hashCode from the header word
  1264     // instead of doing a full VM transition once it's been computed.
  1265     // Since hashCode is usually polymorphic at call sites we can't do
  1266     // this optimization at the call site without a lot of work.
  1267     Label slowCase;
  1268     Register receiver = rcx;
  1269     Register result = rax;
  1270     __ movptr(result, Address(receiver, oopDesc::mark_offset_in_bytes()));
  1272     // check if locked
  1273     __ testptr(result, markOopDesc::unlocked_value);
  1274     __ jcc (Assembler::zero, slowCase);
  1276     if (UseBiasedLocking) {
  1277       // Check if biased and fall through to runtime if so
  1278       __ testptr(result, markOopDesc::biased_lock_bit_in_place);
  1279       __ jcc (Assembler::notZero, slowCase);
  1282     // get hash
  1283     __ andptr(result, markOopDesc::hash_mask_in_place);
  1284     // test if hashCode exists
  1285     __ jcc  (Assembler::zero, slowCase);
  1286     __ shrptr(result, markOopDesc::hash_shift);
  1287     __ ret(0);
  1288     __ bind (slowCase);
  1290 #endif // COMPILER1
  1292   // The instruction at the verified entry point must be 5 bytes or longer
  1293   // because it can be patched on the fly by make_non_entrant. The stack bang
  1294   // instruction fits that requirement.
  1296   // Generate stack overflow check
  1298   if (UseStackBanging) {
  1299     __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
  1300   } else {
  1301     // need a 5 byte instruction to allow MT safe patching to non-entrant
  1302     __ fat_nop();
  1305   // Generate a new frame for the wrapper.
  1306   __ enter();
  1307   // -2 because return address is already present and so is saved rbp,
  1308   __ subptr(rsp, stack_size - 2*wordSize);
  1310   // Frame is now completed as far a size and linkage.
  1312   int frame_complete = ((intptr_t)__ pc()) - start;
  1314   // Calculate the difference between rsp and rbp,. We need to know it
  1315   // after the native call because on windows Java Natives will pop
  1316   // the arguments and it is painful to do rsp relative addressing
  1317   // in a platform independent way. So after the call we switch to
  1318   // rbp, relative addressing.
  1320   int fp_adjustment = stack_size - 2*wordSize;
  1322 #ifdef COMPILER2
  1323   // C2 may leave the stack dirty if not in SSE2+ mode
  1324   if (UseSSE >= 2) {
  1325     __ verify_FPU(0, "c2i transition should have clean FPU stack");
  1326   } else {
  1327     __ empty_FPU_stack();
  1329 #endif /* COMPILER2 */
  1331   // Compute the rbp, offset for any slots used after the jni call
  1333   int lock_slot_rbp_offset = (lock_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
  1334   int oop_temp_slot_rbp_offset = (oop_temp_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
  1336   // We use rdi as a thread pointer because it is callee save and
  1337   // if we load it once it is usable thru the entire wrapper
  1338   const Register thread = rdi;
  1340   // We use rsi as the oop handle for the receiver/klass
  1341   // It is callee save so it survives the call to native
  1343   const Register oop_handle_reg = rsi;
  1345   __ get_thread(thread);
  1348   //
  1349   // We immediately shuffle the arguments so that any vm call we have to
  1350   // make from here on out (sync slow path, jvmti, etc.) we will have
  1351   // captured the oops from our caller and have a valid oopMap for
  1352   // them.
  1354   // -----------------
  1355   // The Grand Shuffle
  1356   //
  1357   // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
  1358   // and, if static, the class mirror instead of a receiver.  This pretty much
  1359   // guarantees that register layout will not match (and x86 doesn't use reg
  1360   // parms though amd does).  Since the native abi doesn't use register args
  1361   // and the java conventions does we don't have to worry about collisions.
  1362   // All of our moved are reg->stack or stack->stack.
  1363   // We ignore the extra arguments during the shuffle and handle them at the
  1364   // last moment. The shuffle is described by the two calling convention
  1365   // vectors we have in our possession. We simply walk the java vector to
  1366   // get the source locations and the c vector to get the destinations.
  1368   int c_arg = method->is_static() ? 2 : 1 ;
  1370   // Record rsp-based slot for receiver on stack for non-static methods
  1371   int receiver_offset = -1;
  1373   // This is a trick. We double the stack slots so we can claim
  1374   // the oops in the caller's frame. Since we are sure to have
  1375   // more args than the caller doubling is enough to make
  1376   // sure we can capture all the incoming oop args from the
  1377   // caller.
  1378   //
  1379   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  1381   // Mark location of rbp,
  1382   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, rbp->as_VMReg());
  1384   // We know that we only have args in at most two integer registers (rcx, rdx). So rax, rbx
  1385   // Are free to temporaries if we have to do  stack to steck moves.
  1386   // All inbound args are referenced based on rbp, and all outbound args via rsp.
  1388   for (i = 0; i < total_in_args ; i++, c_arg++ ) {
  1389     switch (in_sig_bt[i]) {
  1390       case T_ARRAY:
  1391       case T_OBJECT:
  1392         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
  1393                     ((i == 0) && (!is_static)),
  1394                     &receiver_offset);
  1395         break;
  1396       case T_VOID:
  1397         break;
  1399       case T_FLOAT:
  1400         float_move(masm, in_regs[i], out_regs[c_arg]);
  1401           break;
  1403       case T_DOUBLE:
  1404         assert( i + 1 < total_in_args &&
  1405                 in_sig_bt[i + 1] == T_VOID &&
  1406                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
  1407         double_move(masm, in_regs[i], out_regs[c_arg]);
  1408         break;
  1410       case T_LONG :
  1411         long_move(masm, in_regs[i], out_regs[c_arg]);
  1412         break;
  1414       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
  1416       default:
  1417         simple_move32(masm, in_regs[i], out_regs[c_arg]);
  1421   // Pre-load a static method's oop into rsi.  Used both by locking code and
  1422   // the normal JNI call code.
  1423   if (method->is_static()) {
  1425     //  load opp into a register
  1426     __ movoop(oop_handle_reg, JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()));
  1428     // Now handlize the static class mirror it's known not-null.
  1429     __ movptr(Address(rsp, klass_offset), oop_handle_reg);
  1430     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
  1432     // Now get the handle
  1433     __ lea(oop_handle_reg, Address(rsp, klass_offset));
  1434     // store the klass handle as second argument
  1435     __ movptr(Address(rsp, wordSize), oop_handle_reg);
  1438   // Change state to native (we save the return address in the thread, since it might not
  1439   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
  1440   // points into the right code segment. It does not have to be the correct return pc.
  1441   // We use the same pc/oopMap repeatedly when we call out
  1443   intptr_t the_pc = (intptr_t) __ pc();
  1444   oop_maps->add_gc_map(the_pc - start, map);
  1446   __ set_last_Java_frame(thread, rsp, noreg, (address)the_pc);
  1449   // We have all of the arguments setup at this point. We must not touch any register
  1450   // argument registers at this point (what if we save/restore them there are no oop?
  1453     SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
  1454     __ movoop(rax, JNIHandles::make_local(method()));
  1455     __ call_VM_leaf(
  1456          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
  1457          thread, rax);
  1460   // RedefineClasses() tracing support for obsolete method entry
  1461   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
  1462     __ movoop(rax, JNIHandles::make_local(method()));
  1463     __ call_VM_leaf(
  1464          CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
  1465          thread, rax);
  1468   // These are register definitions we need for locking/unlocking
  1469   const Register swap_reg = rax;  // Must use rax, for cmpxchg instruction
  1470   const Register obj_reg  = rcx;  // Will contain the oop
  1471   const Register lock_reg = rdx;  // Address of compiler lock object (BasicLock)
  1473   Label slow_path_lock;
  1474   Label lock_done;
  1476   // Lock a synchronized method
  1477   if (method->is_synchronized()) {
  1480     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
  1482     // Get the handle (the 2nd argument)
  1483     __ movptr(oop_handle_reg, Address(rsp, wordSize));
  1485     // Get address of the box
  1487     __ lea(lock_reg, Address(rbp, lock_slot_rbp_offset));
  1489     // Load the oop from the handle
  1490     __ movptr(obj_reg, Address(oop_handle_reg, 0));
  1492     if (UseBiasedLocking) {
  1493       // Note that oop_handle_reg is trashed during this call
  1494       __ biased_locking_enter(lock_reg, obj_reg, swap_reg, oop_handle_reg, false, lock_done, &slow_path_lock);
  1497     // Load immediate 1 into swap_reg %rax,
  1498     __ movptr(swap_reg, 1);
  1500     // Load (object->mark() | 1) into swap_reg %rax,
  1501     __ orptr(swap_reg, Address(obj_reg, 0));
  1503     // Save (object->mark() | 1) into BasicLock's displaced header
  1504     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
  1506     if (os::is_MP()) {
  1507       __ lock();
  1510     // src -> dest iff dest == rax, else rax, <- dest
  1511     // *obj_reg = lock_reg iff *obj_reg == rax, else rax, = *(obj_reg)
  1512     __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
  1513     __ jcc(Assembler::equal, lock_done);
  1515     // Test if the oopMark is an obvious stack pointer, i.e.,
  1516     //  1) (mark & 3) == 0, and
  1517     //  2) rsp <= mark < mark + os::pagesize()
  1518     // These 3 tests can be done by evaluating the following
  1519     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
  1520     // assuming both stack pointer and pagesize have their
  1521     // least significant 2 bits clear.
  1522     // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
  1524     __ subptr(swap_reg, rsp);
  1525     __ andptr(swap_reg, 3 - os::vm_page_size());
  1527     // Save the test result, for recursive case, the result is zero
  1528     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
  1529     __ jcc(Assembler::notEqual, slow_path_lock);
  1530     // Slow path will re-enter here
  1531     __ bind(lock_done);
  1533     if (UseBiasedLocking) {
  1534       // Re-fetch oop_handle_reg as we trashed it above
  1535       __ movptr(oop_handle_reg, Address(rsp, wordSize));
  1540   // Finally just about ready to make the JNI call
  1543   // get JNIEnv* which is first argument to native
  1545   __ lea(rdx, Address(thread, in_bytes(JavaThread::jni_environment_offset())));
  1546   __ movptr(Address(rsp, 0), rdx);
  1548   // Now set thread in native
  1549   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
  1551   __ call(RuntimeAddress(method->native_function()));
  1553   // WARNING - on Windows Java Natives use pascal calling convention and pop the
  1554   // arguments off of the stack. We could just re-adjust the stack pointer here
  1555   // and continue to do SP relative addressing but we instead switch to FP
  1556   // relative addressing.
  1558   // Unpack native results.
  1559   switch (ret_type) {
  1560   case T_BOOLEAN: __ c2bool(rax);            break;
  1561   case T_CHAR   : __ andptr(rax, 0xFFFF);    break;
  1562   case T_BYTE   : __ sign_extend_byte (rax); break;
  1563   case T_SHORT  : __ sign_extend_short(rax); break;
  1564   case T_INT    : /* nothing to do */        break;
  1565   case T_DOUBLE :
  1566   case T_FLOAT  :
  1567     // Result is in st0 we'll save as needed
  1568     break;
  1569   case T_ARRAY:                 // Really a handle
  1570   case T_OBJECT:                // Really a handle
  1571       break; // can't de-handlize until after safepoint check
  1572   case T_VOID: break;
  1573   case T_LONG: break;
  1574   default       : ShouldNotReachHere();
  1577   // Switch thread to "native transition" state before reading the synchronization state.
  1578   // This additional state is necessary because reading and testing the synchronization
  1579   // state is not atomic w.r.t. GC, as this scenario demonstrates:
  1580   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
  1581   //     VM thread changes sync state to synchronizing and suspends threads for GC.
  1582   //     Thread A is resumed to finish this native method, but doesn't block here since it
  1583   //     didn't see any synchronization is progress, and escapes.
  1584   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
  1586   if(os::is_MP()) {
  1587     if (UseMembar) {
  1588       // Force this write out before the read below
  1589       __ membar(Assembler::Membar_mask_bits(
  1590            Assembler::LoadLoad | Assembler::LoadStore |
  1591            Assembler::StoreLoad | Assembler::StoreStore));
  1592     } else {
  1593       // Write serialization page so VM thread can do a pseudo remote membar.
  1594       // We use the current thread pointer to calculate a thread specific
  1595       // offset to write to within the page. This minimizes bus traffic
  1596       // due to cache line collision.
  1597       __ serialize_memory(thread, rcx);
  1601   if (AlwaysRestoreFPU) {
  1602     // Make sure the control word is correct.
  1603     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  1606   // check for safepoint operation in progress and/or pending suspend requests
  1607   { Label Continue;
  1609     __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
  1610              SafepointSynchronize::_not_synchronized);
  1612     Label L;
  1613     __ jcc(Assembler::notEqual, L);
  1614     __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
  1615     __ jcc(Assembler::equal, Continue);
  1616     __ bind(L);
  1618     // Don't use call_VM as it will see a possible pending exception and forward it
  1619     // and never return here preventing us from clearing _last_native_pc down below.
  1620     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
  1621     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
  1622     // by hand.
  1623     //
  1624     save_native_result(masm, ret_type, stack_slots);
  1625     __ push(thread);
  1626     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
  1627                                             JavaThread::check_special_condition_for_native_trans)));
  1628     __ increment(rsp, wordSize);
  1629     // Restore any method result value
  1630     restore_native_result(masm, ret_type, stack_slots);
  1632     __ bind(Continue);
  1635   // change thread state
  1636   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
  1638   Label reguard;
  1639   Label reguard_done;
  1640   __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
  1641   __ jcc(Assembler::equal, reguard);
  1643   // slow path reguard  re-enters here
  1644   __ bind(reguard_done);
  1646   // Handle possible exception (will unlock if necessary)
  1648   // native result if any is live
  1650   // Unlock
  1651   Label slow_path_unlock;
  1652   Label unlock_done;
  1653   if (method->is_synchronized()) {
  1655     Label done;
  1657     // Get locked oop from the handle we passed to jni
  1658     __ movptr(obj_reg, Address(oop_handle_reg, 0));
  1660     if (UseBiasedLocking) {
  1661       __ biased_locking_exit(obj_reg, rbx, done);
  1664     // Simple recursive lock?
  1666     __ cmpptr(Address(rbp, lock_slot_rbp_offset), (int32_t)NULL_WORD);
  1667     __ jcc(Assembler::equal, done);
  1669     // Must save rax, if if it is live now because cmpxchg must use it
  1670     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
  1671       save_native_result(masm, ret_type, stack_slots);
  1674     //  get old displaced header
  1675     __ movptr(rbx, Address(rbp, lock_slot_rbp_offset));
  1677     // get address of the stack lock
  1678     __ lea(rax, Address(rbp, lock_slot_rbp_offset));
  1680     // Atomic swap old header if oop still contains the stack lock
  1681     if (os::is_MP()) {
  1682     __ lock();
  1685     // src -> dest iff dest == rax, else rax, <- dest
  1686     // *obj_reg = rbx, iff *obj_reg == rax, else rax, = *(obj_reg)
  1687     __ cmpxchgptr(rbx, Address(obj_reg, 0));
  1688     __ jcc(Assembler::notEqual, slow_path_unlock);
  1690     // slow path re-enters here
  1691     __ bind(unlock_done);
  1692     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
  1693       restore_native_result(masm, ret_type, stack_slots);
  1696     __ bind(done);
  1701     SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
  1702     // Tell dtrace about this method exit
  1703     save_native_result(masm, ret_type, stack_slots);
  1704     __ movoop(rax, JNIHandles::make_local(method()));
  1705     __ call_VM_leaf(
  1706          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
  1707          thread, rax);
  1708     restore_native_result(masm, ret_type, stack_slots);
  1711   // We can finally stop using that last_Java_frame we setup ages ago
  1713   __ reset_last_Java_frame(thread, false, true);
  1715   // Unpack oop result
  1716   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
  1717       Label L;
  1718       __ cmpptr(rax, (int32_t)NULL_WORD);
  1719       __ jcc(Assembler::equal, L);
  1720       __ movptr(rax, Address(rax, 0));
  1721       __ bind(L);
  1722       __ verify_oop(rax);
  1725   // reset handle block
  1726   __ movptr(rcx, Address(thread, JavaThread::active_handles_offset()));
  1728   __ movptr(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), NULL_WORD);
  1730   // Any exception pending?
  1731   __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
  1732   __ jcc(Assembler::notEqual, exception_pending);
  1735   // no exception, we're almost done
  1737   // check that only result value is on FPU stack
  1738   __ verify_FPU(ret_type == T_FLOAT || ret_type == T_DOUBLE ? 1 : 0, "native_wrapper normal exit");
  1740   // Fixup floating pointer results so that result looks like a return from a compiled method
  1741   if (ret_type == T_FLOAT) {
  1742     if (UseSSE >= 1) {
  1743       // Pop st0 and store as float and reload into xmm register
  1744       __ fstp_s(Address(rbp, -4));
  1745       __ movflt(xmm0, Address(rbp, -4));
  1747   } else if (ret_type == T_DOUBLE) {
  1748     if (UseSSE >= 2) {
  1749       // Pop st0 and store as double and reload into xmm register
  1750       __ fstp_d(Address(rbp, -8));
  1751       __ movdbl(xmm0, Address(rbp, -8));
  1755   // Return
  1757   __ leave();
  1758   __ ret(0);
  1760   // Unexpected paths are out of line and go here
  1762   // Slow path locking & unlocking
  1763   if (method->is_synchronized()) {
  1765     // BEGIN Slow path lock
  1767     __ bind(slow_path_lock);
  1769     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
  1770     // args are (oop obj, BasicLock* lock, JavaThread* thread)
  1771     __ push(thread);
  1772     __ push(lock_reg);
  1773     __ push(obj_reg);
  1774     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C)));
  1775     __ addptr(rsp, 3*wordSize);
  1777 #ifdef ASSERT
  1778     { Label L;
  1779     __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
  1780     __ jcc(Assembler::equal, L);
  1781     __ stop("no pending exception allowed on exit from monitorenter");
  1782     __ bind(L);
  1784 #endif
  1785     __ jmp(lock_done);
  1787     // END Slow path lock
  1789     // BEGIN Slow path unlock
  1790     __ bind(slow_path_unlock);
  1792     // Slow path unlock
  1794     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
  1795       save_native_result(masm, ret_type, stack_slots);
  1797     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
  1799     __ pushptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
  1800     __ movptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
  1803     // should be a peal
  1804     // +wordSize because of the push above
  1805     __ lea(rax, Address(rbp, lock_slot_rbp_offset));
  1806     __ push(rax);
  1808     __ push(obj_reg);
  1809     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
  1810     __ addptr(rsp, 2*wordSize);
  1811 #ifdef ASSERT
  1813       Label L;
  1814       __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
  1815       __ jcc(Assembler::equal, L);
  1816       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
  1817       __ bind(L);
  1819 #endif /* ASSERT */
  1821     __ popptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
  1823     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
  1824       restore_native_result(masm, ret_type, stack_slots);
  1826     __ jmp(unlock_done);
  1827     // END Slow path unlock
  1831   // SLOW PATH Reguard the stack if needed
  1833   __ bind(reguard);
  1834   save_native_result(masm, ret_type, stack_slots);
  1836     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
  1838   restore_native_result(masm, ret_type, stack_slots);
  1839   __ jmp(reguard_done);
  1842   // BEGIN EXCEPTION PROCESSING
  1844   // Forward  the exception
  1845   __ bind(exception_pending);
  1847   // remove possible return value from FPU register stack
  1848   __ empty_FPU_stack();
  1850   // pop our frame
  1851   __ leave();
  1852   // and forward the exception
  1853   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  1855   __ flush();
  1857   nmethod *nm = nmethod::new_native_nmethod(method,
  1858                                             compile_id,
  1859                                             masm->code(),
  1860                                             vep_offset,
  1861                                             frame_complete,
  1862                                             stack_slots / VMRegImpl::slots_per_word,
  1863                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
  1864                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
  1865                                             oop_maps);
  1866   return nm;
  1870 #ifdef HAVE_DTRACE_H
  1871 // ---------------------------------------------------------------------------
  1872 // Generate a dtrace nmethod for a given signature.  The method takes arguments
  1873 // in the Java compiled code convention, marshals them to the native
  1874 // abi and then leaves nops at the position you would expect to call a native
  1875 // function. When the probe is enabled the nops are replaced with a trap
  1876 // instruction that dtrace inserts and the trace will cause a notification
  1877 // to dtrace.
  1878 //
  1879 // The probes are only able to take primitive types and java/lang/String as
  1880 // arguments.  No other java types are allowed. Strings are converted to utf8
  1881 // strings so that from dtrace point of view java strings are converted to C
  1882 // strings. There is an arbitrary fixed limit on the total space that a method
  1883 // can use for converting the strings. (256 chars per string in the signature).
  1884 // So any java string larger then this is truncated.
  1886 nmethod *SharedRuntime::generate_dtrace_nmethod(
  1887     MacroAssembler *masm, methodHandle method) {
  1889   // generate_dtrace_nmethod is guarded by a mutex so we are sure to
  1890   // be single threaded in this method.
  1891   assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
  1893   // Fill in the signature array, for the calling-convention call.
  1894   int total_args_passed = method->size_of_parameters();
  1896   BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
  1897   VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
  1899   // The signature we are going to use for the trap that dtrace will see
  1900   // java/lang/String is converted. We drop "this" and any other object
  1901   // is converted to NULL.  (A one-slot java/lang/Long object reference
  1902   // is converted to a two-slot long, which is why we double the allocation).
  1903   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
  1904   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
  1906   int i=0;
  1907   int total_strings = 0;
  1908   int first_arg_to_pass = 0;
  1909   int total_c_args = 0;
  1911   if( !method->is_static() ) {  // Pass in receiver first
  1912     in_sig_bt[i++] = T_OBJECT;
  1913     first_arg_to_pass = 1;
  1916   // We need to convert the java args to where a native (non-jni) function
  1917   // would expect them. To figure out where they go we convert the java
  1918   // signature to a C signature.
  1920   SignatureStream ss(method->signature());
  1921   for ( ; !ss.at_return_type(); ss.next()) {
  1922     BasicType bt = ss.type();
  1923     in_sig_bt[i++] = bt;  // Collect remaining bits of signature
  1924     out_sig_bt[total_c_args++] = bt;
  1925     if( bt == T_OBJECT) {
  1926       Symbol* s = ss.as_symbol_or_null();   // symbol is created
  1927       if (s == vmSymbols::java_lang_String()) {
  1928         total_strings++;
  1929         out_sig_bt[total_c_args-1] = T_ADDRESS;
  1930       } else if (s == vmSymbols::java_lang_Boolean() ||
  1931                  s == vmSymbols::java_lang_Character() ||
  1932                  s == vmSymbols::java_lang_Byte() ||
  1933                  s == vmSymbols::java_lang_Short() ||
  1934                  s == vmSymbols::java_lang_Integer() ||
  1935                  s == vmSymbols::java_lang_Float()) {
  1936         out_sig_bt[total_c_args-1] = T_INT;
  1937       } else if (s == vmSymbols::java_lang_Long() ||
  1938                  s == vmSymbols::java_lang_Double()) {
  1939         out_sig_bt[total_c_args-1] = T_LONG;
  1940         out_sig_bt[total_c_args++] = T_VOID;
  1942     } else if ( bt == T_LONG || bt == T_DOUBLE ) {
  1943       in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  1944       out_sig_bt[total_c_args++] = T_VOID;
  1948   assert(i==total_args_passed, "validly parsed signature");
  1950   // Now get the compiled-Java layout as input arguments
  1951   int comp_args_on_stack;
  1952   comp_args_on_stack = SharedRuntime::java_calling_convention(
  1953       in_sig_bt, in_regs, total_args_passed, false);
  1955   // Now figure out where the args must be stored and how much stack space
  1956   // they require (neglecting out_preserve_stack_slots).
  1958   int out_arg_slots;
  1959   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
  1961   // Calculate the total number of stack slots we will need.
  1963   // First count the abi requirement plus all of the outgoing args
  1964   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
  1966   // Now space for the string(s) we must convert
  1968   int* string_locs   = NEW_RESOURCE_ARRAY(int, total_strings + 1);
  1969   for (i = 0; i < total_strings ; i++) {
  1970     string_locs[i] = stack_slots;
  1971     stack_slots += max_dtrace_string_size / VMRegImpl::stack_slot_size;
  1974   // + 2 for return address (which we own) and saved rbp,
  1976   stack_slots += 2;
  1978   // Ok The space we have allocated will look like:
  1979   //
  1980   //
  1981   // FP-> |                     |
  1982   //      |---------------------|
  1983   //      | string[n]           |
  1984   //      |---------------------| <- string_locs[n]
  1985   //      | string[n-1]         |
  1986   //      |---------------------| <- string_locs[n-1]
  1987   //      | ...                 |
  1988   //      | ...                 |
  1989   //      |---------------------| <- string_locs[1]
  1990   //      | string[0]           |
  1991   //      |---------------------| <- string_locs[0]
  1992   //      | outbound memory     |
  1993   //      | based arguments     |
  1994   //      |                     |
  1995   //      |---------------------|
  1996   //      |                     |
  1997   // SP-> | out_preserved_slots |
  1998   //
  1999   //
  2001   // Now compute actual number of stack words we need rounding to make
  2002   // stack properly aligned.
  2003   stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
  2005   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
  2007   intptr_t start = (intptr_t)__ pc();
  2009   // First thing make an ic check to see if we should even be here
  2011   // We are free to use all registers as temps without saving them and
  2012   // restoring them except rbp. rbp, is the only callee save register
  2013   // as far as the interpreter and the compiler(s) are concerned.
  2015   const Register ic_reg = rax;
  2016   const Register receiver = rcx;
  2017   Label hit;
  2018   Label exception_pending;
  2021   __ verify_oop(receiver);
  2022   __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
  2023   __ jcc(Assembler::equal, hit);
  2025   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  2027   // verified entry must be aligned for code patching.
  2028   // and the first 5 bytes must be in the same cache line
  2029   // if we align at 8 then we will be sure 5 bytes are in the same line
  2030   __ align(8);
  2032   __ bind(hit);
  2034   int vep_offset = ((intptr_t)__ pc()) - start;
  2037   // The instruction at the verified entry point must be 5 bytes or longer
  2038   // because it can be patched on the fly by make_non_entrant. The stack bang
  2039   // instruction fits that requirement.
  2041   // Generate stack overflow check
  2044   if (UseStackBanging) {
  2045     if (stack_size <= StackShadowPages*os::vm_page_size()) {
  2046       __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
  2047     } else {
  2048       __ movl(rax, stack_size);
  2049       __ bang_stack_size(rax, rbx);
  2051   } else {
  2052     // need a 5 byte instruction to allow MT safe patching to non-entrant
  2053     __ fat_nop();
  2056   assert(((int)__ pc() - start - vep_offset) >= 5,
  2057          "valid size for make_non_entrant");
  2059   // Generate a new frame for the wrapper.
  2060   __ enter();
  2062   // -2 because return address is already present and so is saved rbp,
  2063   if (stack_size - 2*wordSize != 0) {
  2064     __ subl(rsp, stack_size - 2*wordSize);
  2067   // Frame is now completed as far a size and linkage.
  2069   int frame_complete = ((intptr_t)__ pc()) - start;
  2071   // First thing we do store all the args as if we are doing the call.
  2072   // Since the C calling convention is stack based that ensures that
  2073   // all the Java register args are stored before we need to convert any
  2074   // string we might have.
  2076   int sid = 0;
  2077   int c_arg, j_arg;
  2078   int string_reg = 0;
  2080   for (j_arg = first_arg_to_pass, c_arg = 0 ;
  2081        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
  2083     VMRegPair src = in_regs[j_arg];
  2084     VMRegPair dst = out_regs[c_arg];
  2085     assert(dst.first()->is_stack() || in_sig_bt[j_arg] == T_VOID,
  2086            "stack based abi assumed");
  2088     switch (in_sig_bt[j_arg]) {
  2090       case T_ARRAY:
  2091       case T_OBJECT:
  2092         if (out_sig_bt[c_arg] == T_ADDRESS) {
  2093           // Any register based arg for a java string after the first
  2094           // will be destroyed by the call to get_utf so we store
  2095           // the original value in the location the utf string address
  2096           // will eventually be stored.
  2097           if (src.first()->is_reg()) {
  2098             if (string_reg++ != 0) {
  2099               simple_move32(masm, src, dst);
  2102         } else if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
  2103           // need to unbox a one-word value
  2104           Register in_reg = rax;
  2105           if ( src.first()->is_reg() ) {
  2106             in_reg = src.first()->as_Register();
  2107           } else {
  2108             simple_move32(masm, src, in_reg->as_VMReg());
  2110           Label skipUnbox;
  2111           __ movl(Address(rsp, reg2offset_out(dst.first())), NULL_WORD);
  2112           if ( out_sig_bt[c_arg] == T_LONG ) {
  2113             __ movl(Address(rsp, reg2offset_out(dst.second())), NULL_WORD);
  2115           __ testl(in_reg, in_reg);
  2116           __ jcc(Assembler::zero, skipUnbox);
  2117           assert(dst.first()->is_stack() &&
  2118                  (!dst.second()->is_valid() || dst.second()->is_stack()),
  2119                  "value(s) must go into stack slots");
  2121           BasicType bt = out_sig_bt[c_arg];
  2122           int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
  2123           if ( bt == T_LONG ) {
  2124             __ movl(rbx, Address(in_reg,
  2125                                  box_offset + VMRegImpl::stack_slot_size));
  2126             __ movl(Address(rsp, reg2offset_out(dst.second())), rbx);
  2128           __ movl(in_reg,  Address(in_reg, box_offset));
  2129           __ movl(Address(rsp, reg2offset_out(dst.first())), in_reg);
  2130           __ bind(skipUnbox);
  2131         } else {
  2132           // Convert the arg to NULL
  2133           __ movl(Address(rsp, reg2offset_out(dst.first())), NULL_WORD);
  2135         if (out_sig_bt[c_arg] == T_LONG) {
  2136           assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  2137           ++c_arg; // Move over the T_VOID To keep the loop indices in sync
  2139         break;
  2141       case T_VOID:
  2142         break;
  2144       case T_FLOAT:
  2145         float_move(masm, src, dst);
  2146         break;
  2148       case T_DOUBLE:
  2149         assert( j_arg + 1 < total_args_passed &&
  2150                 in_sig_bt[j_arg + 1] == T_VOID, "bad arg list");
  2151         double_move(masm, src, dst);
  2152         break;
  2154       case T_LONG :
  2155         long_move(masm, src, dst);
  2156         break;
  2158       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
  2160       default:
  2161         simple_move32(masm, src, dst);
  2165   // Now we must convert any string we have to utf8
  2166   //
  2168   for (sid = 0, j_arg = first_arg_to_pass, c_arg = 0 ;
  2169        sid < total_strings ; j_arg++, c_arg++ ) {
  2171     if (out_sig_bt[c_arg] == T_ADDRESS) {
  2173       Address utf8_addr = Address(
  2174           rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
  2175       __ leal(rax, utf8_addr);
  2177       // The first string we find might still be in the original java arg
  2178       // register
  2179       VMReg orig_loc = in_regs[j_arg].first();
  2180       Register string_oop;
  2182       // This is where the argument will eventually reside
  2183       Address dest = Address(rsp, reg2offset_out(out_regs[c_arg].first()));
  2185       if (sid == 1 && orig_loc->is_reg()) {
  2186         string_oop = orig_loc->as_Register();
  2187         assert(string_oop != rax, "smashed arg");
  2188       } else {
  2190         if (orig_loc->is_reg()) {
  2191           // Get the copy of the jls object
  2192           __ movl(rcx, dest);
  2193         } else {
  2194           // arg is still in the original location
  2195           __ movl(rcx, Address(rbp, reg2offset_in(orig_loc)));
  2197         string_oop = rcx;
  2200       Label nullString;
  2201       __ movl(dest, NULL_WORD);
  2202       __ testl(string_oop, string_oop);
  2203       __ jcc(Assembler::zero, nullString);
  2205       // Now we can store the address of the utf string as the argument
  2206       __ movl(dest, rax);
  2208       // And do the conversion
  2209       __ call_VM_leaf(CAST_FROM_FN_PTR(
  2210              address, SharedRuntime::get_utf), string_oop, rax);
  2211       __ bind(nullString);
  2214     if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
  2215       assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  2216       ++c_arg; // Move over the T_VOID To keep the loop indices in sync
  2221   // Ok now we are done. Need to place the nop that dtrace wants in order to
  2222   // patch in the trap
  2224   int patch_offset = ((intptr_t)__ pc()) - start;
  2226   __ nop();
  2229   // Return
  2231   __ leave();
  2232   __ ret(0);
  2234   __ flush();
  2236   nmethod *nm = nmethod::new_dtrace_nmethod(
  2237       method, masm->code(), vep_offset, patch_offset, frame_complete,
  2238       stack_slots / VMRegImpl::slots_per_word);
  2239   return nm;
  2243 #endif // HAVE_DTRACE_H
  2245 // this function returns the adjust size (in number of words) to a c2i adapter
  2246 // activation for use during deoptimization
  2247 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
  2248   return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
  2252 uint SharedRuntime::out_preserve_stack_slots() {
  2253   return 0;
  2257 //------------------------------generate_deopt_blob----------------------------
  2258 void SharedRuntime::generate_deopt_blob() {
  2259   // allocate space for the code
  2260   ResourceMark rm;
  2261   // setup code generation tools
  2262   CodeBuffer   buffer("deopt_blob", 1024, 1024);
  2263   MacroAssembler* masm = new MacroAssembler(&buffer);
  2264   int frame_size_in_words;
  2265   OopMap* map = NULL;
  2266   // Account for the extra args we place on the stack
  2267   // by the time we call fetch_unroll_info
  2268   const int additional_words = 2; // deopt kind, thread
  2270   OopMapSet *oop_maps = new OopMapSet();
  2272   // -------------
  2273   // This code enters when returning to a de-optimized nmethod.  A return
  2274   // address has been pushed on the the stack, and return values are in
  2275   // registers.
  2276   // If we are doing a normal deopt then we were called from the patched
  2277   // nmethod from the point we returned to the nmethod. So the return
  2278   // address on the stack is wrong by NativeCall::instruction_size
  2279   // We will adjust the value to it looks like we have the original return
  2280   // address on the stack (like when we eagerly deoptimized).
  2281   // In the case of an exception pending with deoptimized then we enter
  2282   // with a return address on the stack that points after the call we patched
  2283   // into the exception handler. We have the following register state:
  2284   //    rax,: exception
  2285   //    rbx,: exception handler
  2286   //    rdx: throwing pc
  2287   // So in this case we simply jam rdx into the useless return address and
  2288   // the stack looks just like we want.
  2289   //
  2290   // At this point we need to de-opt.  We save the argument return
  2291   // registers.  We call the first C routine, fetch_unroll_info().  This
  2292   // routine captures the return values and returns a structure which
  2293   // describes the current frame size and the sizes of all replacement frames.
  2294   // The current frame is compiled code and may contain many inlined
  2295   // functions, each with their own JVM state.  We pop the current frame, then
  2296   // push all the new frames.  Then we call the C routine unpack_frames() to
  2297   // populate these frames.  Finally unpack_frames() returns us the new target
  2298   // address.  Notice that callee-save registers are BLOWN here; they have
  2299   // already been captured in the vframeArray at the time the return PC was
  2300   // patched.
  2301   address start = __ pc();
  2302   Label cont;
  2304   // Prolog for non exception case!
  2306   // Save everything in sight.
  2308   map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
  2309   // Normal deoptimization
  2310   __ push(Deoptimization::Unpack_deopt);
  2311   __ jmp(cont);
  2313   int reexecute_offset = __ pc() - start;
  2315   // Reexecute case
  2316   // return address is the pc describes what bci to do re-execute at
  2318   // No need to update map as each call to save_live_registers will produce identical oopmap
  2319   (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
  2321   __ push(Deoptimization::Unpack_reexecute);
  2322   __ jmp(cont);
  2324   int exception_offset = __ pc() - start;
  2326   // Prolog for exception case
  2328   // all registers are dead at this entry point, except for rax, and
  2329   // rdx which contain the exception oop and exception pc
  2330   // respectively.  Set them in TLS and fall thru to the
  2331   // unpack_with_exception_in_tls entry point.
  2333   __ get_thread(rdi);
  2334   __ movptr(Address(rdi, JavaThread::exception_pc_offset()), rdx);
  2335   __ movptr(Address(rdi, JavaThread::exception_oop_offset()), rax);
  2337   int exception_in_tls_offset = __ pc() - start;
  2339   // new implementation because exception oop is now passed in JavaThread
  2341   // Prolog for exception case
  2342   // All registers must be preserved because they might be used by LinearScan
  2343   // Exceptiop oop and throwing PC are passed in JavaThread
  2344   // tos: stack at point of call to method that threw the exception (i.e. only
  2345   // args are on the stack, no return address)
  2347   // make room on stack for the return address
  2348   // It will be patched later with the throwing pc. The correct value is not
  2349   // available now because loading it from memory would destroy registers.
  2350   __ push(0);
  2352   // Save everything in sight.
  2354   // No need to update map as each call to save_live_registers will produce identical oopmap
  2355   (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
  2357   // Now it is safe to overwrite any register
  2359   // store the correct deoptimization type
  2360   __ push(Deoptimization::Unpack_exception);
  2362   // load throwing pc from JavaThread and patch it as the return address
  2363   // of the current frame. Then clear the field in JavaThread
  2364   __ get_thread(rdi);
  2365   __ movptr(rdx, Address(rdi, JavaThread::exception_pc_offset()));
  2366   __ movptr(Address(rbp, wordSize), rdx);
  2367   __ movptr(Address(rdi, JavaThread::exception_pc_offset()), NULL_WORD);
  2369 #ifdef ASSERT
  2370   // verify that there is really an exception oop in JavaThread
  2371   __ movptr(rax, Address(rdi, JavaThread::exception_oop_offset()));
  2372   __ verify_oop(rax);
  2374   // verify that there is no pending exception
  2375   Label no_pending_exception;
  2376   __ movptr(rax, Address(rdi, Thread::pending_exception_offset()));
  2377   __ testptr(rax, rax);
  2378   __ jcc(Assembler::zero, no_pending_exception);
  2379   __ stop("must not have pending exception here");
  2380   __ bind(no_pending_exception);
  2381 #endif
  2383   __ bind(cont);
  2385   // Compiled code leaves the floating point stack dirty, empty it.
  2386   __ empty_FPU_stack();
  2389   // Call C code.  Need thread and this frame, but NOT official VM entry
  2390   // crud.  We cannot block on this call, no GC can happen.
  2391   __ get_thread(rcx);
  2392   __ push(rcx);
  2393   // fetch_unroll_info needs to call last_java_frame()
  2394   __ set_last_Java_frame(rcx, noreg, noreg, NULL);
  2396   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
  2398   // Need to have an oopmap that tells fetch_unroll_info where to
  2399   // find any register it might need.
  2401   oop_maps->add_gc_map( __ pc()-start, map);
  2403   // Discard arg to fetch_unroll_info
  2404   __ pop(rcx);
  2406   __ get_thread(rcx);
  2407   __ reset_last_Java_frame(rcx, false, false);
  2409   // Load UnrollBlock into EDI
  2410   __ mov(rdi, rax);
  2412   // Move the unpack kind to a safe place in the UnrollBlock because
  2413   // we are very short of registers
  2415   Address unpack_kind(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes());
  2416   // retrieve the deopt kind from where we left it.
  2417   __ pop(rax);
  2418   __ movl(unpack_kind, rax);                      // save the unpack_kind value
  2420    Label noException;
  2421   __ cmpl(rax, Deoptimization::Unpack_exception);   // Was exception pending?
  2422   __ jcc(Assembler::notEqual, noException);
  2423   __ movptr(rax, Address(rcx, JavaThread::exception_oop_offset()));
  2424   __ movptr(rdx, Address(rcx, JavaThread::exception_pc_offset()));
  2425   __ movptr(Address(rcx, JavaThread::exception_oop_offset()), NULL_WORD);
  2426   __ movptr(Address(rcx, JavaThread::exception_pc_offset()), NULL_WORD);
  2428   __ verify_oop(rax);
  2430   // Overwrite the result registers with the exception results.
  2431   __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
  2432   __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
  2434   __ bind(noException);
  2436   // Stack is back to only having register save data on the stack.
  2437   // Now restore the result registers. Everything else is either dead or captured
  2438   // in the vframeArray.
  2440   RegisterSaver::restore_result_registers(masm);
  2442   // Non standard control word may be leaked out through a safepoint blob, and we can
  2443   // deopt at a poll point with the non standard control word. However, we should make
  2444   // sure the control word is correct after restore_result_registers.
  2445   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  2447   // All of the register save area has been popped of the stack. Only the
  2448   // return address remains.
  2450   // Pop all the frames we must move/replace.
  2451   //
  2452   // Frame picture (youngest to oldest)
  2453   // 1: self-frame (no frame link)
  2454   // 2: deopting frame  (no frame link)
  2455   // 3: caller of deopting frame (could be compiled/interpreted).
  2456   //
  2457   // Note: by leaving the return address of self-frame on the stack
  2458   // and using the size of frame 2 to adjust the stack
  2459   // when we are done the return to frame 3 will still be on the stack.
  2461   // Pop deoptimized frame
  2462   __ addptr(rsp, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
  2464   // sp should be pointing at the return address to the caller (3)
  2466   // Stack bang to make sure there's enough room for these interpreter frames.
  2467   if (UseStackBanging) {
  2468     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
  2469     __ bang_stack_size(rbx, rcx);
  2472   // Load array of frame pcs into ECX
  2473   __ movptr(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
  2475   __ pop(rsi); // trash the old pc
  2477   // Load array of frame sizes into ESI
  2478   __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
  2480   Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
  2482   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
  2483   __ movl(counter, rbx);
  2485   // Pick up the initial fp we should save
  2486   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_fp_offset_in_bytes()));
  2488   // Now adjust the caller's stack to make up for the extra locals
  2489   // but record the original sp so that we can save it in the skeletal interpreter
  2490   // frame and the stack walking of interpreter_sender will get the unextended sp
  2491   // value and not the "real" sp value.
  2493   Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
  2494   __ movptr(sp_temp, rsp);
  2495   __ movl2ptr(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
  2496   __ subptr(rsp, rbx);
  2498   // Push interpreter frames in a loop
  2499   Label loop;
  2500   __ bind(loop);
  2501   __ movptr(rbx, Address(rsi, 0));      // Load frame size
  2502 #ifdef CC_INTERP
  2503   __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
  2504 #ifdef ASSERT
  2505   __ push(0xDEADDEAD);                  // Make a recognizable pattern
  2506   __ push(0xDEADDEAD);
  2507 #else /* ASSERT */
  2508   __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
  2509 #endif /* ASSERT */
  2510 #else /* CC_INTERP */
  2511   __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
  2512 #endif /* CC_INTERP */
  2513   __ pushptr(Address(rcx, 0));          // save return address
  2514   __ enter();                           // save old & set new rbp,
  2515   __ subptr(rsp, rbx);                  // Prolog!
  2516   __ movptr(rbx, sp_temp);              // sender's sp
  2517 #ifdef CC_INTERP
  2518   __ movptr(Address(rbp,
  2519                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
  2520           rbx); // Make it walkable
  2521 #else /* CC_INTERP */
  2522   // This value is corrected by layout_activation_impl
  2523   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
  2524   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
  2525 #endif /* CC_INTERP */
  2526   __ movptr(sp_temp, rsp);              // pass to next frame
  2527   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
  2528   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
  2529   __ decrementl(counter);             // decrement counter
  2530   __ jcc(Assembler::notZero, loop);
  2531   __ pushptr(Address(rcx, 0));          // save final return address
  2533   // Re-push self-frame
  2534   __ enter();                           // save old & set new rbp,
  2536   //  Return address and rbp, are in place
  2537   // We'll push additional args later. Just allocate a full sized
  2538   // register save area
  2539   __ subptr(rsp, (frame_size_in_words-additional_words - 2) * wordSize);
  2541   // Restore frame locals after moving the frame
  2542   __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
  2543   __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
  2544   __ fstp_d(Address(rsp, RegisterSaver::fpResultOffset()*wordSize));   // Pop float stack and store in local
  2545   if( UseSSE>=2 ) __ movdbl(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
  2546   if( UseSSE==1 ) __ movflt(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
  2548   // Set up the args to unpack_frame
  2550   __ pushl(unpack_kind);                     // get the unpack_kind value
  2551   __ get_thread(rcx);
  2552   __ push(rcx);
  2554   // set last_Java_sp, last_Java_fp
  2555   __ set_last_Java_frame(rcx, noreg, rbp, NULL);
  2557   // Call C code.  Need thread but NOT official VM entry
  2558   // crud.  We cannot block on this call, no GC can happen.  Call should
  2559   // restore return values to their stack-slots with the new SP.
  2560   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
  2561   // Set an oopmap for the call site
  2562   oop_maps->add_gc_map( __ pc()-start, new OopMap( frame_size_in_words, 0 ));
  2564   // rax, contains the return result type
  2565   __ push(rax);
  2567   __ get_thread(rcx);
  2568   __ reset_last_Java_frame(rcx, false, false);
  2570   // Collect return values
  2571   __ movptr(rax,Address(rsp, (RegisterSaver::raxOffset() + additional_words + 1)*wordSize));
  2572   __ movptr(rdx,Address(rsp, (RegisterSaver::rdxOffset() + additional_words + 1)*wordSize));
  2574   // Clear floating point stack before returning to interpreter
  2575   __ empty_FPU_stack();
  2577   // Check if we should push the float or double return value.
  2578   Label results_done, yes_double_value;
  2579   __ cmpl(Address(rsp, 0), T_DOUBLE);
  2580   __ jcc (Assembler::zero, yes_double_value);
  2581   __ cmpl(Address(rsp, 0), T_FLOAT);
  2582   __ jcc (Assembler::notZero, results_done);
  2584   // return float value as expected by interpreter
  2585   if( UseSSE>=1 ) __ movflt(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
  2586   else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
  2587   __ jmp(results_done);
  2589   // return double value as expected by interpreter
  2590   __ bind(yes_double_value);
  2591   if( UseSSE>=2 ) __ movdbl(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
  2592   else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
  2594   __ bind(results_done);
  2596   // Pop self-frame.
  2597   __ leave();                              // Epilog!
  2599   // Jump to interpreter
  2600   __ ret(0);
  2602   // -------------
  2603   // make sure all code is generated
  2604   masm->flush();
  2606   _deopt_blob = DeoptimizationBlob::create( &buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
  2607   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
  2611 #ifdef COMPILER2
  2612 //------------------------------generate_uncommon_trap_blob--------------------
  2613 void SharedRuntime::generate_uncommon_trap_blob() {
  2614   // allocate space for the code
  2615   ResourceMark rm;
  2616   // setup code generation tools
  2617   CodeBuffer   buffer("uncommon_trap_blob", 512, 512);
  2618   MacroAssembler* masm = new MacroAssembler(&buffer);
  2620   enum frame_layout {
  2621     arg0_off,      // thread                     sp + 0 // Arg location for
  2622     arg1_off,      // unloaded_class_index       sp + 1 // calling C
  2623     // The frame sender code expects that rbp will be in the "natural" place and
  2624     // will override any oopMap setting for it. We must therefore force the layout
  2625     // so that it agrees with the frame sender code.
  2626     rbp_off,       // callee saved register      sp + 2
  2627     return_off,    // slot for return address    sp + 3
  2628     framesize
  2629   };
  2631   address start = __ pc();
  2632   // Push self-frame.
  2633   __ subptr(rsp, return_off*wordSize);     // Epilog!
  2635   // rbp, is an implicitly saved callee saved register (i.e. the calling
  2636   // convention will save restore it in prolog/epilog) Other than that
  2637   // there are no callee save registers no that adapter frames are gone.
  2638   __ movptr(Address(rsp, rbp_off*wordSize), rbp);
  2640   // Clear the floating point exception stack
  2641   __ empty_FPU_stack();
  2643   // set last_Java_sp
  2644   __ get_thread(rdx);
  2645   __ set_last_Java_frame(rdx, noreg, noreg, NULL);
  2647   // Call C code.  Need thread but NOT official VM entry
  2648   // crud.  We cannot block on this call, no GC can happen.  Call should
  2649   // capture callee-saved registers as well as return values.
  2650   __ movptr(Address(rsp, arg0_off*wordSize), rdx);
  2651   // argument already in ECX
  2652   __ movl(Address(rsp, arg1_off*wordSize),rcx);
  2653   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
  2655   // Set an oopmap for the call site
  2656   OopMapSet *oop_maps = new OopMapSet();
  2657   OopMap* map =  new OopMap( framesize, 0 );
  2658   // No oopMap for rbp, it is known implicitly
  2660   oop_maps->add_gc_map( __ pc()-start, map);
  2662   __ get_thread(rcx);
  2664   __ reset_last_Java_frame(rcx, false, false);
  2666   // Load UnrollBlock into EDI
  2667   __ movptr(rdi, rax);
  2669   // Pop all the frames we must move/replace.
  2670   //
  2671   // Frame picture (youngest to oldest)
  2672   // 1: self-frame (no frame link)
  2673   // 2: deopting frame  (no frame link)
  2674   // 3: caller of deopting frame (could be compiled/interpreted).
  2676   // Pop self-frame.  We have no frame, and must rely only on EAX and ESP.
  2677   __ addptr(rsp,(framesize-1)*wordSize);     // Epilog!
  2679   // Pop deoptimized frame
  2680   __ movl2ptr(rcx, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
  2681   __ addptr(rsp, rcx);
  2683   // sp should be pointing at the return address to the caller (3)
  2685   // Stack bang to make sure there's enough room for these interpreter frames.
  2686   if (UseStackBanging) {
  2687     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
  2688     __ bang_stack_size(rbx, rcx);
  2692   // Load array of frame pcs into ECX
  2693   __ movl(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
  2695   __ pop(rsi); // trash the pc
  2697   // Load array of frame sizes into ESI
  2698   __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
  2700   Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
  2702   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
  2703   __ movl(counter, rbx);
  2705   // Pick up the initial fp we should save
  2706   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_fp_offset_in_bytes()));
  2708   // Now adjust the caller's stack to make up for the extra locals
  2709   // but record the original sp so that we can save it in the skeletal interpreter
  2710   // frame and the stack walking of interpreter_sender will get the unextended sp
  2711   // value and not the "real" sp value.
  2713   Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
  2714   __ movptr(sp_temp, rsp);
  2715   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
  2716   __ subptr(rsp, rbx);
  2718   // Push interpreter frames in a loop
  2719   Label loop;
  2720   __ bind(loop);
  2721   __ movptr(rbx, Address(rsi, 0));      // Load frame size
  2722 #ifdef CC_INTERP
  2723   __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
  2724 #ifdef ASSERT
  2725   __ push(0xDEADDEAD);                  // Make a recognizable pattern
  2726   __ push(0xDEADDEAD);                  // (parm to RecursiveInterpreter...)
  2727 #else /* ASSERT */
  2728   __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
  2729 #endif /* ASSERT */
  2730 #else /* CC_INTERP */
  2731   __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
  2732 #endif /* CC_INTERP */
  2733   __ pushptr(Address(rcx, 0));          // save return address
  2734   __ enter();                           // save old & set new rbp,
  2735   __ subptr(rsp, rbx);                  // Prolog!
  2736   __ movptr(rbx, sp_temp);              // sender's sp
  2737 #ifdef CC_INTERP
  2738   __ movptr(Address(rbp,
  2739                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
  2740           rbx); // Make it walkable
  2741 #else /* CC_INTERP */
  2742   // This value is corrected by layout_activation_impl
  2743   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD );
  2744   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
  2745 #endif /* CC_INTERP */
  2746   __ movptr(sp_temp, rsp);              // pass to next frame
  2747   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
  2748   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
  2749   __ decrementl(counter);             // decrement counter
  2750   __ jcc(Assembler::notZero, loop);
  2751   __ pushptr(Address(rcx, 0));            // save final return address
  2753   // Re-push self-frame
  2754   __ enter();                           // save old & set new rbp,
  2755   __ subptr(rsp, (framesize-2) * wordSize);   // Prolog!
  2758   // set last_Java_sp, last_Java_fp
  2759   __ get_thread(rdi);
  2760   __ set_last_Java_frame(rdi, noreg, rbp, NULL);
  2762   // Call C code.  Need thread but NOT official VM entry
  2763   // crud.  We cannot block on this call, no GC can happen.  Call should
  2764   // restore return values to their stack-slots with the new SP.
  2765   __ movptr(Address(rsp,arg0_off*wordSize),rdi);
  2766   __ movl(Address(rsp,arg1_off*wordSize), Deoptimization::Unpack_uncommon_trap);
  2767   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
  2768   // Set an oopmap for the call site
  2769   oop_maps->add_gc_map( __ pc()-start, new OopMap( framesize, 0 ) );
  2771   __ get_thread(rdi);
  2772   __ reset_last_Java_frame(rdi, true, false);
  2774   // Pop self-frame.
  2775   __ leave();     // Epilog!
  2777   // Jump to interpreter
  2778   __ ret(0);
  2780   // -------------
  2781   // make sure all code is generated
  2782   masm->flush();
  2784    _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, framesize);
  2786 #endif // COMPILER2
  2788 //------------------------------generate_handler_blob------
  2789 //
  2790 // Generate a special Compile2Runtime blob that saves all registers,
  2791 // setup oopmap, and calls safepoint code to stop the compiled code for
  2792 // a safepoint.
  2793 //
  2794 static SafepointBlob* generate_handler_blob(address call_ptr, bool cause_return) {
  2796   // Account for thread arg in our frame
  2797   const int additional_words = 1;
  2798   int frame_size_in_words;
  2800   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
  2802   ResourceMark rm;
  2803   OopMapSet *oop_maps = new OopMapSet();
  2804   OopMap* map;
  2806   // allocate space for the code
  2807   // setup code generation tools
  2808   CodeBuffer   buffer("handler_blob", 1024, 512);
  2809   MacroAssembler* masm = new MacroAssembler(&buffer);
  2811   const Register java_thread = rdi; // callee-saved for VC++
  2812   address start   = __ pc();
  2813   address call_pc = NULL;
  2815   // If cause_return is true we are at a poll_return and there is
  2816   // the return address on the stack to the caller on the nmethod
  2817   // that is safepoint. We can leave this return on the stack and
  2818   // effectively complete the return and safepoint in the caller.
  2819   // Otherwise we push space for a return address that the safepoint
  2820   // handler will install later to make the stack walking sensible.
  2821   if( !cause_return )
  2822     __ push(rbx);                // Make room for return address (or push it again)
  2824   map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
  2826   // The following is basically a call_VM. However, we need the precise
  2827   // address of the call in order to generate an oopmap. Hence, we do all the
  2828   // work ourselves.
  2830   // Push thread argument and setup last_Java_sp
  2831   __ get_thread(java_thread);
  2832   __ push(java_thread);
  2833   __ set_last_Java_frame(java_thread, noreg, noreg, NULL);
  2835   // if this was not a poll_return then we need to correct the return address now.
  2836   if( !cause_return ) {
  2837     __ movptr(rax, Address(java_thread, JavaThread::saved_exception_pc_offset()));
  2838     __ movptr(Address(rbp, wordSize), rax);
  2841   // do the call
  2842   __ call(RuntimeAddress(call_ptr));
  2844   // Set an oopmap for the call site.  This oopmap will map all
  2845   // oop-registers and debug-info registers as callee-saved.  This
  2846   // will allow deoptimization at this safepoint to find all possible
  2847   // debug-info recordings, as well as let GC find all oops.
  2849   oop_maps->add_gc_map( __ pc() - start, map);
  2851   // Discard arg
  2852   __ pop(rcx);
  2854   Label noException;
  2856   // Clear last_Java_sp again
  2857   __ get_thread(java_thread);
  2858   __ reset_last_Java_frame(java_thread, false, false);
  2860   __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  2861   __ jcc(Assembler::equal, noException);
  2863   // Exception pending
  2865   RegisterSaver::restore_live_registers(masm);
  2867   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  2869   __ bind(noException);
  2871   // Normal exit, register restoring and exit
  2872   RegisterSaver::restore_live_registers(masm);
  2874   __ ret(0);
  2876   // make sure all code is generated
  2877   masm->flush();
  2879   // Fill-out other meta info
  2880   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
  2883 //
  2884 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
  2885 //
  2886 // Generate a stub that calls into vm to find out the proper destination
  2887 // of a java call. All the argument registers are live at this point
  2888 // but since this is generic code we don't know what they are and the caller
  2889 // must do any gc of the args.
  2890 //
  2891 static RuntimeStub* generate_resolve_blob(address destination, const char* name) {
  2892   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
  2894   // allocate space for the code
  2895   ResourceMark rm;
  2897   CodeBuffer buffer(name, 1000, 512);
  2898   MacroAssembler* masm                = new MacroAssembler(&buffer);
  2900   int frame_size_words;
  2901   enum frame_layout {
  2902                 thread_off,
  2903                 extra_words };
  2905   OopMapSet *oop_maps = new OopMapSet();
  2906   OopMap* map = NULL;
  2908   int start = __ offset();
  2910   map = RegisterSaver::save_live_registers(masm, extra_words, &frame_size_words);
  2912   int frame_complete = __ offset();
  2914   const Register thread = rdi;
  2915   __ get_thread(rdi);
  2917   __ push(thread);
  2918   __ set_last_Java_frame(thread, noreg, rbp, NULL);
  2920   __ call(RuntimeAddress(destination));
  2923   // Set an oopmap for the call site.
  2924   // We need this not only for callee-saved registers, but also for volatile
  2925   // registers that the compiler might be keeping live across a safepoint.
  2927   oop_maps->add_gc_map( __ offset() - start, map);
  2929   // rax, contains the address we are going to jump to assuming no exception got installed
  2931   __ addptr(rsp, wordSize);
  2933   // clear last_Java_sp
  2934   __ reset_last_Java_frame(thread, true, false);
  2935   // check for pending exceptions
  2936   Label pending;
  2937   __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  2938   __ jcc(Assembler::notEqual, pending);
  2940   // get the returned methodOop
  2941   __ movptr(rbx, Address(thread, JavaThread::vm_result_offset()));
  2942   __ movptr(Address(rsp, RegisterSaver::rbx_offset() * wordSize), rbx);
  2944   __ movptr(Address(rsp, RegisterSaver::rax_offset() * wordSize), rax);
  2946   RegisterSaver::restore_live_registers(masm);
  2948   // We are back the the original state on entry and ready to go.
  2950   __ jmp(rax);
  2952   // Pending exception after the safepoint
  2954   __ bind(pending);
  2956   RegisterSaver::restore_live_registers(masm);
  2958   // exception pending => remove activation and forward to exception handler
  2960   __ get_thread(thread);
  2961   __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
  2962   __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
  2963   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  2965   // -------------
  2966   // make sure all code is generated
  2967   masm->flush();
  2969   // return the  blob
  2970   // frame_size_words or bytes??
  2971   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
  2974 void SharedRuntime::generate_stubs() {
  2976   _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),
  2977                                         "wrong_method_stub");
  2979   _ic_miss_blob      = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),
  2980                                         "ic_miss_stub");
  2982   _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),
  2983                                         "resolve_opt_virtual_call");
  2985   _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),
  2986                                         "resolve_virtual_call");
  2988   _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),
  2989                                         "resolve_static_call");
  2991   _polling_page_safepoint_handler_blob =
  2992     generate_handler_blob(CAST_FROM_FN_PTR(address,
  2993                    SafepointSynchronize::handle_polling_page_exception), false);
  2995   _polling_page_return_handler_blob =
  2996     generate_handler_blob(CAST_FROM_FN_PTR(address,
  2997                    SafepointSynchronize::handle_polling_page_exception), true);
  2999   generate_deopt_blob();
  3000 #ifdef COMPILER2
  3001   generate_uncommon_trap_blob();
  3002 #endif // COMPILER2

mercurial