src/cpu/sparc/vm/cppInterpreter_sparc.cpp

Fri, 08 Apr 2011 14:19:50 -0700

author
jmasa
date
Fri, 08 Apr 2011 14:19:50 -0700
changeset 2784
92add02409c9
parent 2698
38fea01eb669
parent 2781
e1162778c1c8
child 2901
3d2ab563047a
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "interpreter/bytecodeHistogram.hpp"
    28 #include "interpreter/cppInterpreter.hpp"
    29 #include "interpreter/interpreter.hpp"
    30 #include "interpreter/interpreterGenerator.hpp"
    31 #include "interpreter/interpreterRuntime.hpp"
    32 #include "oops/arrayOop.hpp"
    33 #include "oops/methodDataOop.hpp"
    34 #include "oops/methodOop.hpp"
    35 #include "oops/oop.inline.hpp"
    36 #include "prims/jvmtiExport.hpp"
    37 #include "prims/jvmtiThreadState.hpp"
    38 #include "runtime/arguments.hpp"
    39 #include "runtime/deoptimization.hpp"
    40 #include "runtime/frame.inline.hpp"
    41 #include "runtime/interfaceSupport.hpp"
    42 #include "runtime/sharedRuntime.hpp"
    43 #include "runtime/stubRoutines.hpp"
    44 #include "runtime/synchronizer.hpp"
    45 #include "runtime/timer.hpp"
    46 #include "runtime/vframeArray.hpp"
    47 #include "utilities/debug.hpp"
    48 #ifdef SHARK
    49 #include "shark/shark_globals.hpp"
    50 #endif
    52 #ifdef CC_INTERP
    54 // Routine exists to make tracebacks look decent in debugger
    55 // while "shadow" interpreter frames are on stack. It is also
    56 // used to distinguish interpreter frames.
    58 extern "C" void RecursiveInterpreterActivation(interpreterState istate) {
    59   ShouldNotReachHere();
    60 }
    62 bool CppInterpreter::contains(address pc) {
    63   return ( _code->contains(pc) ||
    64          ( pc == (CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation) + frame::pc_return_offset)));
    65 }
    67 #define STATE(field_name) Lstate, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
    68 #define __ _masm->
    70 Label frame_manager_entry;
    71 Label fast_accessor_slow_entry_path;  // fast accessor methods need to be able to jmp to unsynchronized
    72                                       // c++ interpreter entry point this holds that entry point label.
    74 static address unctrap_frame_manager_entry  = NULL;
    76 static address interpreter_return_address  = NULL;
    77 static address deopt_frame_manager_return_atos  = NULL;
    78 static address deopt_frame_manager_return_btos  = NULL;
    79 static address deopt_frame_manager_return_itos  = NULL;
    80 static address deopt_frame_manager_return_ltos  = NULL;
    81 static address deopt_frame_manager_return_ftos  = NULL;
    82 static address deopt_frame_manager_return_dtos  = NULL;
    83 static address deopt_frame_manager_return_vtos  = NULL;
    85 const Register prevState = G1_scratch;
    87 void InterpreterGenerator::save_native_result(void) {
    88   // result potentially in O0/O1: save it across calls
    89   __ stf(FloatRegisterImpl::D, F0, STATE(_native_fresult));
    90 #ifdef _LP64
    91   __ stx(O0, STATE(_native_lresult));
    92 #else
    93   __ std(O0, STATE(_native_lresult));
    94 #endif
    95 }
    97 void InterpreterGenerator::restore_native_result(void) {
    99   // Restore any method result value
   100   __ ldf(FloatRegisterImpl::D, STATE(_native_fresult), F0);
   101 #ifdef _LP64
   102   __ ldx(STATE(_native_lresult), O0);
   103 #else
   104   __ ldd(STATE(_native_lresult), O0);
   105 #endif
   106 }
   108 // A result handler converts/unboxes a native call result into
   109 // a java interpreter/compiler result. The current frame is an
   110 // interpreter frame. The activation frame unwind code must be
   111 // consistent with that of TemplateTable::_return(...). In the
   112 // case of native methods, the caller's SP was not modified.
   113 address CppInterpreterGenerator::generate_result_handler_for(BasicType type) {
   114   address entry = __ pc();
   115   Register Itos_i  = Otos_i ->after_save();
   116   Register Itos_l  = Otos_l ->after_save();
   117   Register Itos_l1 = Otos_l1->after_save();
   118   Register Itos_l2 = Otos_l2->after_save();
   119   switch (type) {
   120     case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, Itos_i); break; // !0 => true; 0 => false
   121     case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, Itos_i);   break; // cannot use and3, 0xFFFF too big as immediate value!
   122     case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, Itos_i);   break;
   123     case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, Itos_i);   break;
   124     case T_LONG   :
   125 #ifndef _LP64
   126                     __ mov(O1, Itos_l2);  // move other half of long
   127 #endif              // ifdef or no ifdef, fall through to the T_INT case
   128     case T_INT    : __ mov(O0, Itos_i);                         break;
   129     case T_VOID   : /* nothing to do */                         break;
   130     case T_FLOAT  : assert(F0 == Ftos_f, "fix this code" );     break;
   131     case T_DOUBLE : assert(F0 == Ftos_d, "fix this code" );     break;
   132     case T_OBJECT :
   133       __ ld_ptr(STATE(_oop_temp), Itos_i);
   134       __ verify_oop(Itos_i);
   135       break;
   136     default       : ShouldNotReachHere();
   137   }
   138   __ ret();                           // return from interpreter activation
   139   __ delayed()->restore(I5_savedSP, G0, SP);  // remove interpreter frame
   140   NOT_PRODUCT(__ emit_long(0);)       // marker for disassembly
   141   return entry;
   142 }
   144 // tosca based result to c++ interpreter stack based result.
   145 // Result goes to address in L1_scratch
   147 address CppInterpreterGenerator::generate_tosca_to_stack_converter(BasicType type) {
   148   // A result is in the native abi result register from a native method call.
   149   // We need to return this result to the interpreter by pushing the result on the interpreter's
   150   // stack. This is relatively simple the destination is in L1_scratch
   151   // i.e. L1_scratch is the first free element on the stack. If we "push" a return value we must
   152   // adjust L1_scratch
   153   address entry = __ pc();
   154   switch (type) {
   155     case T_BOOLEAN:
   156       // !0 => true; 0 => false
   157       __ subcc(G0, O0, G0);
   158       __ addc(G0, 0, O0);
   159       __ st(O0, L1_scratch, 0);
   160       __ sub(L1_scratch, wordSize, L1_scratch);
   161       break;
   163     // cannot use and3, 0xFFFF too big as immediate value!
   164     case T_CHAR   :
   165       __ sll(O0, 16, O0);
   166       __ srl(O0, 16, O0);
   167       __ st(O0, L1_scratch, 0);
   168       __ sub(L1_scratch, wordSize, L1_scratch);
   169       break;
   171     case T_BYTE   :
   172       __ sll(O0, 24, O0);
   173       __ sra(O0, 24, O0);
   174       __ st(O0, L1_scratch, 0);
   175       __ sub(L1_scratch, wordSize, L1_scratch);
   176       break;
   178     case T_SHORT  :
   179       __ sll(O0, 16, O0);
   180       __ sra(O0, 16, O0);
   181       __ st(O0, L1_scratch, 0);
   182       __ sub(L1_scratch, wordSize, L1_scratch);
   183       break;
   184     case T_LONG   :
   185 #ifndef _LP64
   186 #if defined(COMPILER2)
   187   // All return values are where we want them, except for Longs.  C2 returns
   188   // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
   189   // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
   190   // build even if we are returning from interpreted we just do a little
   191   // stupid shuffing.
   192   // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
   193   // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
   194   // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
   195       __ stx(G1, L1_scratch, -wordSize);
   196 #else
   197       // native result is in O0, O1
   198       __ st(O1, L1_scratch, 0);                      // Low order
   199       __ st(O0, L1_scratch, -wordSize);              // High order
   200 #endif /* COMPILER2 */
   201 #else
   202       __ stx(O0, L1_scratch, -wordSize);
   203 #endif
   204       __ sub(L1_scratch, 2*wordSize, L1_scratch);
   205       break;
   207     case T_INT    :
   208       __ st(O0, L1_scratch, 0);
   209       __ sub(L1_scratch, wordSize, L1_scratch);
   210       break;
   212     case T_VOID   : /* nothing to do */
   213       break;
   215     case T_FLOAT  :
   216       __ stf(FloatRegisterImpl::S, F0, L1_scratch, 0);
   217       __ sub(L1_scratch, wordSize, L1_scratch);
   218       break;
   220     case T_DOUBLE :
   221       // Every stack slot is aligned on 64 bit, However is this
   222       // the correct stack slot on 64bit?? QQQ
   223       __ stf(FloatRegisterImpl::D, F0, L1_scratch, -wordSize);
   224       __ sub(L1_scratch, 2*wordSize, L1_scratch);
   225       break;
   226     case T_OBJECT :
   227       __ verify_oop(O0);
   228       __ st_ptr(O0, L1_scratch, 0);
   229       __ sub(L1_scratch, wordSize, L1_scratch);
   230       break;
   231     default       : ShouldNotReachHere();
   232   }
   233   __ retl();                          // return from interpreter activation
   234   __ delayed()->nop();                // schedule this better
   235   NOT_PRODUCT(__ emit_long(0);)       // marker for disassembly
   236   return entry;
   237 }
   239 address CppInterpreterGenerator::generate_stack_to_stack_converter(BasicType type) {
   240   // A result is in the java expression stack of the interpreted method that has just
   241   // returned. Place this result on the java expression stack of the caller.
   242   //
   243   // The current interpreter activation in Lstate is for the method just returning its
   244   // result. So we know that the result of this method is on the top of the current
   245   // execution stack (which is pre-pushed) and will be return to the top of the caller
   246   // stack. The top of the callers stack is the bottom of the locals of the current
   247   // activation.
   248   // Because of the way activation are managed by the frame manager the value of esp is
   249   // below both the stack top of the current activation and naturally the stack top
   250   // of the calling activation. This enable this routine to leave the return address
   251   // to the frame manager on the stack and do a vanilla return.
   252   //
   253   // On entry: O0 - points to source (callee stack top)
   254   //           O1 - points to destination (caller stack top [i.e. free location])
   255   // destroys O2, O3
   256   //
   258   address entry = __ pc();
   259   switch (type) {
   260     case T_VOID:  break;
   261       break;
   262     case T_FLOAT  :
   263     case T_BOOLEAN:
   264     case T_CHAR   :
   265     case T_BYTE   :
   266     case T_SHORT  :
   267     case T_INT    :
   268       // 1 word result
   269       __ ld(O0, 0, O2);
   270       __ st(O2, O1, 0);
   271       __ sub(O1, wordSize, O1);
   272       break;
   273     case T_DOUBLE  :
   274     case T_LONG    :
   275       // return top two words on current expression stack to caller's expression stack
   276       // The caller's expression stack is adjacent to the current frame manager's intepretState
   277       // except we allocated one extra word for this intepretState so we won't overwrite it
   278       // when we return a two word result.
   279 #ifdef _LP64
   280       __ ld_ptr(O0, 0, O2);
   281       __ st_ptr(O2, O1, -wordSize);
   282 #else
   283       __ ld(O0, 0, O2);
   284       __ ld(O0, wordSize, O3);
   285       __ st(O3, O1, 0);
   286       __ st(O2, O1, -wordSize);
   287 #endif
   288       __ sub(O1, 2*wordSize, O1);
   289       break;
   290     case T_OBJECT :
   291       __ ld_ptr(O0, 0, O2);
   292       __ verify_oop(O2);                                               // verify it
   293       __ st_ptr(O2, O1, 0);
   294       __ sub(O1, wordSize, O1);
   295       break;
   296     default       : ShouldNotReachHere();
   297   }
   298   __ retl();
   299   __ delayed()->nop(); // QQ schedule this better
   300   return entry;
   301 }
   303 address CppInterpreterGenerator::generate_stack_to_native_abi_converter(BasicType type) {
   304   // A result is in the java expression stack of the interpreted method that has just
   305   // returned. Place this result in the native abi that the caller expects.
   306   // We are in a new frame registers we set must be in caller (i.e. callstub) frame.
   307   //
   308   // Similar to generate_stack_to_stack_converter above. Called at a similar time from the
   309   // frame manager execept in this situation the caller is native code (c1/c2/call_stub)
   310   // and so rather than return result onto caller's java expression stack we return the
   311   // result in the expected location based on the native abi.
   312   // On entry: O0 - source (stack top)
   313   // On exit result in expected output register
   314   // QQQ schedule this better
   316   address entry = __ pc();
   317   switch (type) {
   318     case T_VOID:  break;
   319       break;
   320     case T_FLOAT  :
   321       __ ldf(FloatRegisterImpl::S, O0, 0, F0);
   322       break;
   323     case T_BOOLEAN:
   324     case T_CHAR   :
   325     case T_BYTE   :
   326     case T_SHORT  :
   327     case T_INT    :
   328       // 1 word result
   329       __ ld(O0, 0, O0->after_save());
   330       break;
   331     case T_DOUBLE  :
   332       __ ldf(FloatRegisterImpl::D, O0, 0, F0);
   333       break;
   334     case T_LONG    :
   335       // return top two words on current expression stack to caller's expression stack
   336       // The caller's expression stack is adjacent to the current frame manager's interpretState
   337       // except we allocated one extra word for this intepretState so we won't overwrite it
   338       // when we return a two word result.
   339 #ifdef _LP64
   340       __ ld_ptr(O0, 0, O0->after_save());
   341 #else
   342       __ ld(O0, wordSize, O1->after_save());
   343       __ ld(O0, 0, O0->after_save());
   344 #endif
   345 #if defined(COMPILER2) && !defined(_LP64)
   346       // C2 expects long results in G1 we can't tell if we're returning to interpreted
   347       // or compiled so just be safe use G1 and O0/O1
   349       // Shift bits into high (msb) of G1
   350       __ sllx(Otos_l1->after_save(), 32, G1);
   351       // Zero extend low bits
   352       __ srl (Otos_l2->after_save(), 0, Otos_l2->after_save());
   353       __ or3 (Otos_l2->after_save(), G1, G1);
   354 #endif /* COMPILER2 */
   355       break;
   356     case T_OBJECT :
   357       __ ld_ptr(O0, 0, O0->after_save());
   358       __ verify_oop(O0->after_save());                                               // verify it
   359       break;
   360     default       : ShouldNotReachHere();
   361   }
   362   __ retl();
   363   __ delayed()->nop();
   364   return entry;
   365 }
   367 address CppInterpreter::return_entry(TosState state, int length) {
   368   // make it look good in the debugger
   369   return CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation) + frame::pc_return_offset;
   370 }
   372 address CppInterpreter::deopt_entry(TosState state, int length) {
   373   address ret = NULL;
   374   if (length != 0) {
   375     switch (state) {
   376       case atos: ret = deopt_frame_manager_return_atos; break;
   377       case btos: ret = deopt_frame_manager_return_btos; break;
   378       case ctos:
   379       case stos:
   380       case itos: ret = deopt_frame_manager_return_itos; break;
   381       case ltos: ret = deopt_frame_manager_return_ltos; break;
   382       case ftos: ret = deopt_frame_manager_return_ftos; break;
   383       case dtos: ret = deopt_frame_manager_return_dtos; break;
   384       case vtos: ret = deopt_frame_manager_return_vtos; break;
   385     }
   386   } else {
   387     ret = unctrap_frame_manager_entry;  // re-execute the bytecode ( e.g. uncommon trap)
   388   }
   389   assert(ret != NULL, "Not initialized");
   390   return ret;
   391 }
   393 //
   394 // Helpers for commoning out cases in the various type of method entries.
   395 //
   397 // increment invocation count & check for overflow
   398 //
   399 // Note: checking for negative value instead of overflow
   400 //       so we have a 'sticky' overflow test
   401 //
   402 // Lmethod: method
   403 // ??: invocation counter
   404 //
   405 void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
   406   // Update standard invocation counters
   407   __ increment_invocation_counter(O0, G3_scratch);
   408   if (ProfileInterpreter) {  // %%% Merge this into methodDataOop
   409     __ ld_ptr(STATE(_method), G3_scratch);
   410     Address interpreter_invocation_counter(G3_scratch, 0, in_bytes(methodOopDesc::interpreter_invocation_counter_offset()));
   411     __ ld(interpreter_invocation_counter, G3_scratch);
   412     __ inc(G3_scratch);
   413     __ st(G3_scratch, interpreter_invocation_counter);
   414   }
   416   Address invocation_limit(G3_scratch, (address)&InvocationCounter::InterpreterInvocationLimit);
   417   __ sethi(invocation_limit);
   418   __ ld(invocation_limit, G3_scratch);
   419   __ cmp(O0, G3_scratch);
   420   __ br(Assembler::greaterEqualUnsigned, false, Assembler::pn, *overflow);
   421   __ delayed()->nop();
   423 }
   425 address InterpreterGenerator::generate_empty_entry(void) {
   427   // A method that does nothing but return...
   429   address entry = __ pc();
   430   Label slow_path;
   432   __ verify_oop(G5_method);
   434   // do nothing for empty methods (do not even increment invocation counter)
   435   if ( UseFastEmptyMethods) {
   436     // If we need a safepoint check, generate full interpreter entry.
   437     Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
   438     __ load_contents(sync_state, G3_scratch);
   439     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
   440     __ br(Assembler::notEqual, false, Assembler::pn, frame_manager_entry);
   441     __ delayed()->nop();
   443     // Code: _return
   444     __ retl();
   445     __ delayed()->mov(O5_savedSP, SP);
   446     return entry;
   447   }
   448   return NULL;
   449 }
   451 // Call an accessor method (assuming it is resolved, otherwise drop into
   452 // vanilla (slow path) entry
   454 // Generates code to elide accessor methods
   455 // Uses G3_scratch and G1_scratch as scratch
   456 address InterpreterGenerator::generate_accessor_entry(void) {
   458   // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof;
   459   // parameter size = 1
   460   // Note: We can only use this code if the getfield has been resolved
   461   //       and if we don't have a null-pointer exception => check for
   462   //       these conditions first and use slow path if necessary.
   463   address entry = __ pc();
   464   Label slow_path;
   466   if ( UseFastAccessorMethods) {
   467     // Check if we need to reach a safepoint and generate full interpreter
   468     // frame if so.
   469     Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
   470     __ load_contents(sync_state, G3_scratch);
   471     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
   472     __ br(Assembler::notEqual, false, Assembler::pn, slow_path);
   473     __ delayed()->nop();
   475     // Check if local 0 != NULL
   476     __ ld_ptr(Gargs, G0, Otos_i ); // get local 0
   477     __ tst(Otos_i);  // check if local 0 == NULL and go the slow path
   478     __ brx(Assembler::zero, false, Assembler::pn, slow_path);
   479     __ delayed()->nop();
   482     // read first instruction word and extract bytecode @ 1 and index @ 2
   483     // get first 4 bytes of the bytecodes (big endian!)
   484     __ ld_ptr(Address(G5_method, 0, in_bytes(methodOopDesc::const_offset())), G1_scratch);
   485     __ ld(Address(G1_scratch, 0, in_bytes(constMethodOopDesc::codes_offset())), G1_scratch);
   487     // move index @ 2 far left then to the right most two bytes.
   488     __ sll(G1_scratch, 2*BitsPerByte, G1_scratch);
   489     __ srl(G1_scratch, 2*BitsPerByte - exact_log2(in_words(
   490                       ConstantPoolCacheEntry::size()) * BytesPerWord), G1_scratch);
   492     // get constant pool cache
   493     __ ld_ptr(G5_method, in_bytes(methodOopDesc::constants_offset()), G3_scratch);
   494     __ ld_ptr(G3_scratch, constantPoolOopDesc::cache_offset_in_bytes(), G3_scratch);
   496     // get specific constant pool cache entry
   497     __ add(G3_scratch, G1_scratch, G3_scratch);
   499     // Check the constant Pool cache entry to see if it has been resolved.
   500     // If not, need the slow path.
   501     ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
   502     __ ld_ptr(G3_scratch, in_bytes(cp_base_offset + ConstantPoolCacheEntry::indices_offset()), G1_scratch);
   503     __ srl(G1_scratch, 2*BitsPerByte, G1_scratch);
   504     __ and3(G1_scratch, 0xFF, G1_scratch);
   505     __ cmp(G1_scratch, Bytecodes::_getfield);
   506     __ br(Assembler::notEqual, false, Assembler::pn, slow_path);
   507     __ delayed()->nop();
   509     // Get the type and return field offset from the constant pool cache
   510     __ ld_ptr(G3_scratch, in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset()), G1_scratch);
   511     __ ld_ptr(G3_scratch, in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset()), G3_scratch);
   513     Label xreturn_path;
   514     // Need to differentiate between igetfield, agetfield, bgetfield etc.
   515     // because they are different sizes.
   516     // Get the type from the constant pool cache
   517     __ srl(G1_scratch, ConstantPoolCacheEntry::tosBits, G1_scratch);
   518     // Make sure we don't need to mask G1_scratch for tosBits after the above shift
   519     ConstantPoolCacheEntry::verify_tosBits();
   520     __ cmp(G1_scratch, atos );
   521     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   522     __ delayed()->ld_ptr(Otos_i, G3_scratch, Otos_i);
   523     __ cmp(G1_scratch, itos);
   524     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   525     __ delayed()->ld(Otos_i, G3_scratch, Otos_i);
   526     __ cmp(G1_scratch, stos);
   527     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   528     __ delayed()->ldsh(Otos_i, G3_scratch, Otos_i);
   529     __ cmp(G1_scratch, ctos);
   530     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   531     __ delayed()->lduh(Otos_i, G3_scratch, Otos_i);
   532 #ifdef ASSERT
   533     __ cmp(G1_scratch, btos);
   534     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   535     __ delayed()->ldsb(Otos_i, G3_scratch, Otos_i);
   536     __ should_not_reach_here();
   537 #endif
   538     __ ldsb(Otos_i, G3_scratch, Otos_i);
   539     __ bind(xreturn_path);
   541     // _ireturn/_areturn
   542     __ retl();                      // return from leaf routine
   543     __ delayed()->mov(O5_savedSP, SP);
   545     // Generate regular method entry
   546     __ bind(slow_path);
   547     __ ba(false, fast_accessor_slow_entry_path);
   548     __ delayed()->nop();
   549     return entry;
   550   }
   551   return NULL;
   552 }
   554 address InterpreterGenerator::generate_Reference_get_entry(void) {
   555 #ifndef SERIALGC
   556   if (UseG1GC) {
   557     // We need to generate have a routine that generates code to:
   558     //   * load the value in the referent field
   559     //   * passes that value to the pre-barrier.
   560     //
   561     // In the case of G1 this will record the value of the
   562     // referent in an SATB buffer if marking is active.
   563     // This will cause concurrent marking to mark the referent
   564     // field as live.
   565     Unimplemented();
   566   }
   567 #endif // SERIALGC
   569   // If G1 is not enabled then attempt to go through the accessor entry point
   570   // Reference.get is an accessor
   571   return generate_accessor_entry();
   572 }
   574 //
   575 // Interpreter stub for calling a native method. (C++ interpreter)
   576 // This sets up a somewhat different looking stack for calling the native method
   577 // than the typical interpreter frame setup.
   578 //
   580 address InterpreterGenerator::generate_native_entry(bool synchronized) {
   581   address entry = __ pc();
   583   // the following temporary registers are used during frame creation
   584   const Register Gtmp1 = G3_scratch ;
   585   const Register Gtmp2 = G1_scratch;
   586   const Address size_of_parameters(G5_method, 0, in_bytes(methodOopDesc::size_of_parameters_offset()));
   588   bool inc_counter  = UseCompiler || CountCompiledCalls;
   590   // make sure registers are different!
   591   assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
   593   const Address access_flags      (G5_method, 0, in_bytes(methodOopDesc::access_flags_offset()));
   595   Label Lentry;
   596   __ bind(Lentry);
   598   __ verify_oop(G5_method);
   600   const Register Glocals_size = G3;
   601   assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
   603   // make sure method is native & not abstract
   604   // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
   605 #ifdef ASSERT
   606   __ ld(access_flags, Gtmp1);
   607   {
   608     Label L;
   609     __ btst(JVM_ACC_NATIVE, Gtmp1);
   610     __ br(Assembler::notZero, false, Assembler::pt, L);
   611     __ delayed()->nop();
   612     __ stop("tried to execute non-native method as native");
   613     __ bind(L);
   614   }
   615   { Label L;
   616     __ btst(JVM_ACC_ABSTRACT, Gtmp1);
   617     __ br(Assembler::zero, false, Assembler::pt, L);
   618     __ delayed()->nop();
   619     __ stop("tried to execute abstract method as non-abstract");
   620     __ bind(L);
   621   }
   622 #endif // ASSERT
   624   __ lduh(size_of_parameters, Gtmp1);
   625   __ sll(Gtmp1, LogBytesPerWord, Gtmp2);       // parameter size in bytes
   626   __ add(Gargs, Gtmp2, Gargs);                 // points to first local + BytesPerWord
   627   // NEW
   628   __ add(Gargs, -wordSize, Gargs);             // points to first local[0]
   629   // generate the code to allocate the interpreter stack frame
   630   // NEW FRAME ALLOCATED HERE
   631   // save callers original sp
   632   // __ mov(SP, I5_savedSP->after_restore());
   634   generate_compute_interpreter_state(Lstate, G0, true);
   636   // At this point Lstate points to new interpreter state
   637   //
   639   const Address do_not_unlock_if_synchronized(G2_thread, 0,
   640       in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
   641   // Since at this point in the method invocation the exception handler
   642   // would try to exit the monitor of synchronized methods which hasn't
   643   // been entered yet, we set the thread local variable
   644   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
   645   // runtime, exception handling i.e. unlock_if_synchronized_method will
   646   // check this thread local flag.
   647   // This flag has two effects, one is to force an unwind in the topmost
   648   // interpreter frame and not perform an unlock while doing so.
   650   __ movbool(true, G3_scratch);
   651   __ stbool(G3_scratch, do_not_unlock_if_synchronized);
   654   // increment invocation counter and check for overflow
   655   //
   656   // Note: checking for negative value instead of overflow
   657   //       so we have a 'sticky' overflow test (may be of
   658   //       importance as soon as we have true MT/MP)
   659   Label invocation_counter_overflow;
   660   if (inc_counter) {
   661     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
   662   }
   663   Label Lcontinue;
   664   __ bind(Lcontinue);
   666   bang_stack_shadow_pages(true);
   667   // reset the _do_not_unlock_if_synchronized flag
   668   __ stbool(G0, do_not_unlock_if_synchronized);
   670   // check for synchronized methods
   671   // Must happen AFTER invocation_counter check, so method is not locked
   672   // if counter overflows.
   674   if (synchronized) {
   675     lock_method();
   676     // Don't see how G2_thread is preserved here...
   677     // __ verify_thread(); QQQ destroys L0,L1 can't use
   678   } else {
   679 #ifdef ASSERT
   680     { Label ok;
   681       __ ld_ptr(STATE(_method), G5_method);
   682       __ ld(access_flags, O0);
   683       __ btst(JVM_ACC_SYNCHRONIZED, O0);
   684       __ br( Assembler::zero, false, Assembler::pt, ok);
   685       __ delayed()->nop();
   686       __ stop("method needs synchronization");
   687       __ bind(ok);
   688     }
   689 #endif // ASSERT
   690   }
   692   // start execution
   694 //   __ verify_thread(); kills L1,L2 can't  use at the moment
   696   // jvmti/jvmpi support
   697   __ notify_method_entry();
   699   // native call
   701   // (note that O0 is never an oop--at most it is a handle)
   702   // It is important not to smash any handles created by this call,
   703   // until any oop handle in O0 is dereferenced.
   705   // (note that the space for outgoing params is preallocated)
   707   // get signature handler
   709   Label pending_exception_present;
   711   { Label L;
   712     __ ld_ptr(STATE(_method), G5_method);
   713     __ ld_ptr(Address(G5_method, 0, in_bytes(methodOopDesc::signature_handler_offset())), G3_scratch);
   714     __ tst(G3_scratch);
   715     __ brx(Assembler::notZero, false, Assembler::pt, L);
   716     __ delayed()->nop();
   717     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), G5_method, false);
   718     __ ld_ptr(STATE(_method), G5_method);
   720     Address exception_addr(G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
   721     __ ld_ptr(exception_addr, G3_scratch);
   722     __ br_notnull(G3_scratch, false, Assembler::pn, pending_exception_present);
   723     __ delayed()->nop();
   724     __ ld_ptr(Address(G5_method, 0, in_bytes(methodOopDesc::signature_handler_offset())), G3_scratch);
   725     __ bind(L);
   726   }
   728   // Push a new frame so that the args will really be stored in
   729   // Copy a few locals across so the new frame has the variables
   730   // we need but these values will be dead at the jni call and
   731   // therefore not gc volatile like the values in the current
   732   // frame (Lstate in particular)
   734   // Flush the state pointer to the register save area
   735   // Which is the only register we need for a stack walk.
   736   __ st_ptr(Lstate, SP, (Lstate->sp_offset_in_saved_window() * wordSize) + STACK_BIAS);
   738   __ mov(Lstate, O1);         // Need to pass the state pointer across the frame
   740   // Calculate current frame size
   741   __ sub(SP, FP, O3);         // Calculate negative of current frame size
   742   __ save(SP, O3, SP);        // Allocate an identical sized frame
   744   __ mov(I1, Lstate);          // In the "natural" register.
   746   // Note I7 has leftover trash. Slow signature handler will fill it in
   747   // should we get there. Normal jni call will set reasonable last_Java_pc
   748   // below (and fix I7 so the stack trace doesn't have a meaningless frame
   749   // in it).
   752   // call signature handler
   753   __ ld_ptr(STATE(_method), Lmethod);
   754   __ ld_ptr(STATE(_locals), Llocals);
   756   __ callr(G3_scratch, 0);
   757   __ delayed()->nop();
   758   __ ld_ptr(STATE(_thread), G2_thread);        // restore thread (shouldn't be needed)
   760   { Label not_static;
   762     __ ld_ptr(STATE(_method), G5_method);
   763     __ ld(access_flags, O0);
   764     __ btst(JVM_ACC_STATIC, O0);
   765     __ br( Assembler::zero, false, Assembler::pt, not_static);
   766     __ delayed()->
   767       // get native function entry point(O0 is a good temp until the very end)
   768        ld_ptr(Address(G5_method, 0, in_bytes(methodOopDesc::native_function_offset())), O0);
   769     // for static methods insert the mirror argument
   770     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
   772     __ ld_ptr(Address(G5_method, 0, in_bytes(methodOopDesc:: constants_offset())), O1);
   773     __ ld_ptr(Address(O1, 0, constantPoolOopDesc::pool_holder_offset_in_bytes()), O1);
   774     __ ld_ptr(O1, mirror_offset, O1);
   775     // where the mirror handle body is allocated:
   776 #ifdef ASSERT
   777     if (!PrintSignatureHandlers)  // do not dirty the output with this
   778     { Label L;
   779       __ tst(O1);
   780       __ brx(Assembler::notZero, false, Assembler::pt, L);
   781       __ delayed()->nop();
   782       __ stop("mirror is missing");
   783       __ bind(L);
   784     }
   785 #endif // ASSERT
   786     __ st_ptr(O1, STATE(_oop_temp));
   787     __ add(STATE(_oop_temp), O1);            // this is really an LEA not an add
   788     __ bind(not_static);
   789   }
   791   // At this point, arguments have been copied off of stack into
   792   // their JNI positions, which are O1..O5 and SP[68..].
   793   // Oops are boxed in-place on the stack, with handles copied to arguments.
   794   // The result handler is in Lscratch.  O0 will shortly hold the JNIEnv*.
   796 #ifdef ASSERT
   797   { Label L;
   798     __ tst(O0);
   799     __ brx(Assembler::notZero, false, Assembler::pt, L);
   800     __ delayed()->nop();
   801     __ stop("native entry point is missing");
   802     __ bind(L);
   803   }
   804 #endif // ASSERT
   806   //
   807   // setup the java frame anchor
   808   //
   809   // The scavenge function only needs to know that the PC of this frame is
   810   // in the interpreter method entry code, it doesn't need to know the exact
   811   // PC and hence we can use O7 which points to the return address from the
   812   // previous call in the code stream (signature handler function)
   813   //
   814   // The other trick is we set last_Java_sp to FP instead of the usual SP because
   815   // we have pushed the extra frame in order to protect the volatile register(s)
   816   // in that frame when we return from the jni call
   817   //
   820   __ set_last_Java_frame(FP, O7);
   821   __ mov(O7, I7);  // make dummy interpreter frame look like one above,
   822                    // not meaningless information that'll confuse me.
   824   // flush the windows now. We don't care about the current (protection) frame
   825   // only the outer frames
   827   __ flush_windows();
   829   // mark windows as flushed
   830   Address flags(G2_thread,
   831                 0,
   832                 in_bytes(JavaThread::frame_anchor_offset()) + in_bytes(JavaFrameAnchor::flags_offset()));
   833   __ set(JavaFrameAnchor::flushed, G3_scratch);
   834   __ st(G3_scratch, flags);
   836   // Transition from _thread_in_Java to _thread_in_native. We are already safepoint ready.
   838   Address thread_state(G2_thread, 0, in_bytes(JavaThread::thread_state_offset()));
   839 #ifdef ASSERT
   840   { Label L;
   841     __ ld(thread_state, G3_scratch);
   842     __ cmp(G3_scratch, _thread_in_Java);
   843     __ br(Assembler::equal, false, Assembler::pt, L);
   844     __ delayed()->nop();
   845     __ stop("Wrong thread state in native stub");
   846     __ bind(L);
   847   }
   848 #endif // ASSERT
   849   __ set(_thread_in_native, G3_scratch);
   850   __ st(G3_scratch, thread_state);
   852   // Call the jni method, using the delay slot to set the JNIEnv* argument.
   853   __ callr(O0, 0);
   854   __ delayed()->
   855      add(G2_thread, in_bytes(JavaThread::jni_environment_offset()), O0);
   856   __ ld_ptr(STATE(_thread), G2_thread);  // restore thread
   858   // must we block?
   860   // Block, if necessary, before resuming in _thread_in_Java state.
   861   // In order for GC to work, don't clear the last_Java_sp until after blocking.
   862   { Label no_block;
   863     Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
   865     // Switch thread to "native transition" state before reading the synchronization state.
   866     // This additional state is necessary because reading and testing the synchronization
   867     // state is not atomic w.r.t. GC, as this scenario demonstrates:
   868     //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
   869     //     VM thread changes sync state to synchronizing and suspends threads for GC.
   870     //     Thread A is resumed to finish this native method, but doesn't block here since it
   871     //     didn't see any synchronization is progress, and escapes.
   872     __ set(_thread_in_native_trans, G3_scratch);
   873     __ st(G3_scratch, thread_state);
   874     if(os::is_MP()) {
   875       // Write serialization page so VM thread can do a pseudo remote membar.
   876       // We use the current thread pointer to calculate a thread specific
   877       // offset to write to within the page. This minimizes bus traffic
   878       // due to cache line collision.
   879       __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
   880     }
   881     __ load_contents(sync_state, G3_scratch);
   882     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
   885     Label L;
   886     Address suspend_state(G2_thread, 0, in_bytes(JavaThread::suspend_flags_offset()));
   887     __ br(Assembler::notEqual, false, Assembler::pn, L);
   888     __ delayed()->
   889       ld(suspend_state, G3_scratch);
   890     __ cmp(G3_scratch, 0);
   891     __ br(Assembler::equal, false, Assembler::pt, no_block);
   892     __ delayed()->nop();
   893     __ bind(L);
   895     // Block.  Save any potential method result value before the operation and
   896     // use a leaf call to leave the last_Java_frame setup undisturbed.
   897     save_native_result();
   898     __ call_VM_leaf(noreg,
   899                     CAST_FROM_FN_PTR(address, JavaThread::check_safepoint_and_suspend_for_native_trans),
   900                     G2_thread);
   901     __ ld_ptr(STATE(_thread), G2_thread);  // restore thread
   902     // Restore any method result value
   903     restore_native_result();
   904     __ bind(no_block);
   905   }
   907   // Clear the frame anchor now
   909   __ reset_last_Java_frame();
   911   // Move the result handler address
   912   __ mov(Lscratch, G3_scratch);
   913   // return possible result to the outer frame
   914 #ifndef __LP64
   915   __ mov(O0, I0);
   916   __ restore(O1, G0, O1);
   917 #else
   918   __ restore(O0, G0, O0);
   919 #endif /* __LP64 */
   921   // Move result handler to expected register
   922   __ mov(G3_scratch, Lscratch);
   925   // thread state is thread_in_native_trans. Any safepoint blocking has
   926   // happened in the trampoline we are ready to switch to thread_in_Java.
   928   __ set(_thread_in_Java, G3_scratch);
   929   __ st(G3_scratch, thread_state);
   931   // If we have an oop result store it where it will be safe for any further gc
   932   // until we return now that we've released the handle it might be protected by
   934   {
   935     Label no_oop, store_result;
   937     __ set((intptr_t)AbstractInterpreter::result_handler(T_OBJECT), G3_scratch);
   938     __ cmp(G3_scratch, Lscratch);
   939     __ brx(Assembler::notEqual, false, Assembler::pt, no_oop);
   940     __ delayed()->nop();
   941     __ addcc(G0, O0, O0);
   942     __ brx(Assembler::notZero, true, Assembler::pt, store_result);     // if result is not NULL:
   943     __ delayed()->ld_ptr(O0, 0, O0);                                   // unbox it
   944     __ mov(G0, O0);
   946     __ bind(store_result);
   947     // Store it where gc will look for it and result handler expects it.
   948     __ st_ptr(O0, STATE(_oop_temp));
   950     __ bind(no_oop);
   952   }
   954   // reset handle block
   955   __ ld_ptr(G2_thread, in_bytes(JavaThread::active_handles_offset()), G3_scratch);
   956   __ st_ptr(G0, G3_scratch, JNIHandleBlock::top_offset_in_bytes());
   959   // handle exceptions (exception handling will handle unlocking!)
   960   { Label L;
   961     Address exception_addr (G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
   963     __ ld_ptr(exception_addr, Gtemp);
   964     __ tst(Gtemp);
   965     __ brx(Assembler::equal, false, Assembler::pt, L);
   966     __ delayed()->nop();
   967     __ bind(pending_exception_present);
   968     // With c++ interpreter we just leave it pending caller will do the correct thing. However...
   969     // Like x86 we ignore the result of the native call and leave the method locked. This
   970     // seems wrong to leave things locked.
   972     __ br(Assembler::always, false, Assembler::pt, StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
   973     __ delayed()->restore(I5_savedSP, G0, SP);  // remove interpreter frame
   975     __ bind(L);
   976   }
   978   // jvmdi/jvmpi support (preserves thread register)
   979   __ notify_method_exit(true, ilgl, InterpreterMacroAssembler::NotifyJVMTI);
   981   if (synchronized) {
   982     // save and restore any potential method result value around the unlocking operation
   983     save_native_result();
   985     const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
   986     // Get the initial monitor we allocated
   987     __ sub(Lstate, entry_size, O1);                        // initial monitor
   988     __ unlock_object(O1);
   989     restore_native_result();
   990   }
   992 #if defined(COMPILER2) && !defined(_LP64)
   994   // C2 expects long results in G1 we can't tell if we're returning to interpreted
   995   // or compiled so just be safe.
   997   __ sllx(O0, 32, G1);          // Shift bits into high G1
   998   __ srl (O1, 0, O1);           // Zero extend O1
   999   __ or3 (O1, G1, G1);          // OR 64 bits into G1
  1001 #endif /* COMPILER2 && !_LP64 */
  1003 #ifdef ASSERT
  1005     Label ok;
  1006     __ cmp(I5_savedSP, FP);
  1007     __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, ok);
  1008     __ delayed()->nop();
  1009     __ stop("bad I5_savedSP value");
  1010     __ should_not_reach_here();
  1011     __ bind(ok);
  1013 #endif
  1014   // Calls result handler which POPS FRAME
  1015   if (TraceJumps) {
  1016     // Move target to register that is recordable
  1017     __ mov(Lscratch, G3_scratch);
  1018     __ JMP(G3_scratch, 0);
  1019   } else {
  1020     __ jmp(Lscratch, 0);
  1022   __ delayed()->nop();
  1024   if (inc_counter) {
  1025     // handle invocation counter overflow
  1026     __ bind(invocation_counter_overflow);
  1027     generate_counter_overflow(Lcontinue);
  1031   return entry;
  1034 void CppInterpreterGenerator::generate_compute_interpreter_state(const Register state,
  1035                                                               const Register prev_state,
  1036                                                               bool native) {
  1038   // On entry
  1039   // G5_method - caller's method
  1040   // Gargs - points to initial parameters (i.e. locals[0])
  1041   // G2_thread - valid? (C1 only??)
  1042   // "prev_state" - contains any previous frame manager state which we must save a link
  1043   //
  1044   // On return
  1045   // "state" is a pointer to the newly allocated  state object. We must allocate and initialize
  1046   // a new interpretState object and the method expression stack.
  1048   assert_different_registers(state, prev_state);
  1049   assert_different_registers(prev_state, G3_scratch);
  1050   const Register Gtmp = G3_scratch;
  1051   const Address constants         (G5_method, 0, in_bytes(methodOopDesc::constants_offset()));
  1052   const Address access_flags      (G5_method, 0, in_bytes(methodOopDesc::access_flags_offset()));
  1053   const Address size_of_parameters(G5_method, 0, in_bytes(methodOopDesc::size_of_parameters_offset()));
  1054   const Address max_stack         (G5_method, 0, in_bytes(methodOopDesc::max_stack_offset()));
  1055   const Address size_of_locals    (G5_method, 0, in_bytes(methodOopDesc::size_of_locals_offset()));
  1057   // slop factor is two extra slots on the expression stack so that
  1058   // we always have room to store a result when returning from a call without parameters
  1059   // that returns a result.
  1061   const int slop_factor = 2*wordSize;
  1063   const int fixed_size = ((sizeof(BytecodeInterpreter) + slop_factor) >> LogBytesPerWord) + // what is the slop factor?
  1064                          //6815692//methodOopDesc::extra_stack_words() +  // extra push slots for MH adapters
  1065                          frame::memory_parameter_word_sp_offset +  // register save area + param window
  1066                          (native ?  frame::interpreter_frame_extra_outgoing_argument_words : 0); // JNI, class
  1068   // XXX G5_method valid
  1070   // Now compute new frame size
  1072   if (native) {
  1073     __ lduh( size_of_parameters, Gtmp );
  1074     __ calc_mem_param_words(Gtmp, Gtmp);     // space for native call parameters passed on the stack in words
  1075   } else {
  1076     __ lduh(max_stack, Gtmp);                // Full size expression stack
  1078   __ add(Gtmp, fixed_size, Gtmp);           // plus the fixed portion
  1080   __ neg(Gtmp);                               // negative space for stack/parameters in words
  1081   __ and3(Gtmp, -WordsPerLong, Gtmp);        // make multiple of 2 (SP must be 2-word aligned)
  1082   __ sll(Gtmp, LogBytesPerWord, Gtmp);       // negative space for frame in bytes
  1084   // Need to do stack size check here before we fault on large frames
  1086   Label stack_ok;
  1088   const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
  1089                                                                               (StackRedPages+StackYellowPages);
  1092   __ ld_ptr(G2_thread, in_bytes(Thread::stack_base_offset()), O0);
  1093   __ ld_ptr(G2_thread, in_bytes(Thread::stack_size_offset()), O1);
  1094   // compute stack bottom
  1095   __ sub(O0, O1, O0);
  1097   // Avoid touching the guard pages
  1098   // Also a fudge for frame size of BytecodeInterpreter::run
  1099   // It varies from 1k->4k depending on build type
  1100   const int fudge = 6 * K;
  1102   __ set(fudge + (max_pages * os::vm_page_size()), O1);
  1104   __ add(O0, O1, O0);
  1105   __ sub(O0, Gtmp, O0);
  1106   __ cmp(SP, O0);
  1107   __ brx(Assembler::greaterUnsigned, false, Assembler::pt, stack_ok);
  1108   __ delayed()->nop();
  1110      // throw exception return address becomes throwing pc
  1112   __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
  1113   __ stop("never reached");
  1115   __ bind(stack_ok);
  1117   __ save(SP, Gtmp, SP);                      // setup new frame and register window
  1119   // New window I7 call_stub or previous activation
  1120   // O6 - register save area, BytecodeInterpreter just below it, args/locals just above that
  1121   //
  1122   __ sub(FP, sizeof(BytecodeInterpreter), state);        // Point to new Interpreter state
  1123   __ add(state, STACK_BIAS, state );         // Account for 64bit bias
  1125 #define XXX_STATE(field_name) state, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
  1127   // Initialize a new Interpreter state
  1128   // orig_sp - caller's original sp
  1129   // G2_thread - thread
  1130   // Gargs - &locals[0] (unbiased?)
  1131   // G5_method - method
  1132   // SP (biased) - accounts for full size java stack, BytecodeInterpreter object, register save area, and register parameter save window
  1135   __ set(0xdead0004, O1);
  1138   __ st_ptr(Gargs, XXX_STATE(_locals));
  1139   __ st_ptr(G0, XXX_STATE(_oop_temp));
  1141   __ st_ptr(state, XXX_STATE(_self_link));                // point to self
  1142   __ st_ptr(prev_state->after_save(), XXX_STATE(_prev_link)); // Chain interpreter states
  1143   __ st_ptr(G2_thread, XXX_STATE(_thread));               // Store javathread
  1145   if (native) {
  1146     __ st_ptr(G0, XXX_STATE(_bcp));
  1147   } else {
  1148     __ ld_ptr(G5_method, in_bytes(methodOopDesc::const_offset()), O2); // get constMethodOop
  1149     __ add(O2, in_bytes(constMethodOopDesc::codes_offset()), O2);        // get bcp
  1150     __ st_ptr(O2, XXX_STATE(_bcp));
  1153   __ st_ptr(G0, XXX_STATE(_mdx));
  1154   __ st_ptr(G5_method, XXX_STATE(_method));
  1156   __ set((int) BytecodeInterpreter::method_entry, O1);
  1157   __ st(O1, XXX_STATE(_msg));
  1159   __ ld_ptr(constants, O3);
  1160   __ ld_ptr(O3, constantPoolOopDesc::cache_offset_in_bytes(), O2);
  1161   __ st_ptr(O2, XXX_STATE(_constants));
  1163   __ st_ptr(G0, XXX_STATE(_result._to_call._callee));
  1165   // Monitor base is just start of BytecodeInterpreter object;
  1166   __ mov(state, O2);
  1167   __ st_ptr(O2, XXX_STATE(_monitor_base));
  1169   // Do we need a monitor for synchonized method?
  1171     __ ld(access_flags, O1);
  1172     Label done;
  1173     Label got_obj;
  1174     __ btst(JVM_ACC_SYNCHRONIZED, O1);
  1175     __ br( Assembler::zero, false, Assembler::pt, done);
  1177     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
  1178     __ delayed()->btst(JVM_ACC_STATIC, O1);
  1179     __ ld_ptr(XXX_STATE(_locals), O1);
  1180     __ br( Assembler::zero, true, Assembler::pt, got_obj);
  1181     __ delayed()->ld_ptr(O1, 0, O1);                  // get receiver for not-static case
  1182     __ ld_ptr(constants, O1);
  1183     __ ld_ptr( O1, constantPoolOopDesc::pool_holder_offset_in_bytes(), O1);
  1184     // lock the mirror, not the klassOop
  1185     __ ld_ptr( O1, mirror_offset, O1);
  1187     __ bind(got_obj);
  1189   #ifdef ASSERT
  1190     __ tst(O1);
  1191     __ breakpoint_trap(Assembler::zero);
  1192   #endif // ASSERT
  1194     const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
  1195     __ sub(SP, entry_size, SP);                         // account for initial monitor
  1196     __ sub(O2, entry_size, O2);                        // initial monitor
  1197     __ st_ptr(O1, O2, BasicObjectLock::obj_offset_in_bytes()); // and allocate it for interpreter use
  1198     __ bind(done);
  1201   // Remember initial frame bottom
  1203   __ st_ptr(SP, XXX_STATE(_frame_bottom));
  1205   __ st_ptr(O2, XXX_STATE(_stack_base));
  1207   __ sub(O2, wordSize, O2);                    // prepush
  1208   __ st_ptr(O2, XXX_STATE(_stack));                // PREPUSH
  1210   __ lduh(max_stack, O3);                      // Full size expression stack
  1211   guarantee(!EnableInvokeDynamic, "no support yet for java.lang.invoke.MethodHandle"); //6815692
  1212   //6815692//if (EnableInvokeDynamic)
  1213   //6815692//  __ inc(O3, methodOopDesc::extra_stack_entries());
  1214   __ sll(O3, LogBytesPerWord, O3);
  1215   __ sub(O2, O3, O3);
  1216 //  __ sub(O3, wordSize, O3);                    // so prepush doesn't look out of bounds
  1217   __ st_ptr(O3, XXX_STATE(_stack_limit));
  1219   if (!native) {
  1220     //
  1221     // Code to initialize locals
  1222     //
  1223     Register init_value = noreg;    // will be G0 if we must clear locals
  1224     // Now zero locals
  1225     if (true /* zerolocals */ || ClearInterpreterLocals) {
  1226       // explicitly initialize locals
  1227       init_value = G0;
  1228     } else {
  1229     #ifdef ASSERT
  1230       // initialize locals to a garbage pattern for better debugging
  1231       init_value = O3;
  1232       __ set( 0x0F0F0F0F, init_value );
  1233     #endif // ASSERT
  1235     if (init_value != noreg) {
  1236       Label clear_loop;
  1238       // NOTE: If you change the frame layout, this code will need to
  1239       // be updated!
  1240       __ lduh( size_of_locals, O2 );
  1241       __ lduh( size_of_parameters, O1 );
  1242       __ sll( O2, LogBytesPerWord, O2);
  1243       __ sll( O1, LogBytesPerWord, O1 );
  1244       __ ld_ptr(XXX_STATE(_locals), L2_scratch);
  1245       __ sub( L2_scratch, O2, O2 );
  1246       __ sub( L2_scratch, O1, O1 );
  1248       __ bind( clear_loop );
  1249       __ inc( O2, wordSize );
  1251       __ cmp( O2, O1 );
  1252       __ br( Assembler::lessEqualUnsigned, true, Assembler::pt, clear_loop );
  1253       __ delayed()->st_ptr( init_value, O2, 0 );
  1257 // Find preallocated  monitor and lock method (C++ interpreter)
  1258 //
  1259 void InterpreterGenerator::lock_method(void) {
  1260 // Lock the current method.
  1261 // Destroys registers L2_scratch, L3_scratch, O0
  1262 //
  1263 // Find everything relative to Lstate
  1265 #ifdef ASSERT
  1266   __ ld_ptr(STATE(_method), L2_scratch);
  1267   __ ld(L2_scratch, in_bytes(methodOopDesc::access_flags_offset()), O0);
  1269  { Label ok;
  1270    __ btst(JVM_ACC_SYNCHRONIZED, O0);
  1271    __ br( Assembler::notZero, false, Assembler::pt, ok);
  1272    __ delayed()->nop();
  1273    __ stop("method doesn't need synchronization");
  1274    __ bind(ok);
  1276 #endif // ASSERT
  1278   // monitor is already allocated at stack base
  1279   // and the lockee is already present
  1280   __ ld_ptr(STATE(_stack_base), L2_scratch);
  1281   __ ld_ptr(L2_scratch, BasicObjectLock::obj_offset_in_bytes(), O0);   // get object
  1282   __ lock_object(L2_scratch, O0);
  1286 //  Generate code for handling resuming a deopted method
  1287 void CppInterpreterGenerator::generate_deopt_handling() {
  1289   Label return_from_deopt_common;
  1291   // deopt needs to jump to here to enter the interpreter (return a result)
  1292   deopt_frame_manager_return_atos  = __ pc();
  1294   // O0/O1 live
  1295   __ ba(false, return_from_deopt_common);
  1296   __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_OBJECT), L3_scratch);    // Result stub address array index
  1299   // deopt needs to jump to here to enter the interpreter (return a result)
  1300   deopt_frame_manager_return_btos  = __ pc();
  1302   // O0/O1 live
  1303   __ ba(false, return_from_deopt_common);
  1304   __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_BOOLEAN), L3_scratch);    // Result stub address array index
  1306   // deopt needs to jump to here to enter the interpreter (return a result)
  1307   deopt_frame_manager_return_itos  = __ pc();
  1309   // O0/O1 live
  1310   __ ba(false, return_from_deopt_common);
  1311   __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_INT), L3_scratch);    // Result stub address array index
  1313   // deopt needs to jump to here to enter the interpreter (return a result)
  1315   deopt_frame_manager_return_ltos  = __ pc();
  1316 #if !defined(_LP64) && defined(COMPILER2)
  1317   // All return values are where we want them, except for Longs.  C2 returns
  1318   // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
  1319   // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
  1320   // build even if we are returning from interpreted we just do a little
  1321   // stupid shuffing.
  1322   // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
  1323   // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
  1324   // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
  1326   __ srl (G1, 0,O1);
  1327   __ srlx(G1,32,O0);
  1328 #endif /* !_LP64 && COMPILER2 */
  1329   // O0/O1 live
  1330   __ ba(false, return_from_deopt_common);
  1331   __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_LONG), L3_scratch);    // Result stub address array index
  1333   // deopt needs to jump to here to enter the interpreter (return a result)
  1335   deopt_frame_manager_return_ftos  = __ pc();
  1336   // O0/O1 live
  1337   __ ba(false, return_from_deopt_common);
  1338   __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_FLOAT), L3_scratch);    // Result stub address array index
  1340   // deopt needs to jump to here to enter the interpreter (return a result)
  1341   deopt_frame_manager_return_dtos  = __ pc();
  1343   // O0/O1 live
  1344   __ ba(false, return_from_deopt_common);
  1345   __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_DOUBLE), L3_scratch);    // Result stub address array index
  1347   // deopt needs to jump to here to enter the interpreter (return a result)
  1348   deopt_frame_manager_return_vtos  = __ pc();
  1350   // O0/O1 live
  1351   __ set(AbstractInterpreter::BasicType_as_index(T_VOID), L3_scratch);
  1353   // Deopt return common
  1354   // an index is present that lets us move any possible result being
  1355   // return to the interpreter's stack
  1356   //
  1357   __ bind(return_from_deopt_common);
  1359   // Result if any is in native abi result (O0..O1/F0..F1). The java expression
  1360   // stack is in the state that the  calling convention left it.
  1361   // Copy the result from native abi result and place it on java expression stack.
  1363   // Current interpreter state is present in Lstate
  1365   // Get current pre-pushed top of interpreter stack
  1366   // Any result (if any) is in native abi
  1367   // result type index is in L3_scratch
  1369   __ ld_ptr(STATE(_stack), L1_scratch);                                          // get top of java expr stack
  1371   __ set((intptr_t)CppInterpreter::_tosca_to_stack, L4_scratch);
  1372   __ sll(L3_scratch, LogBytesPerWord, L3_scratch);
  1373   __ ld_ptr(L4_scratch, L3_scratch, Lscratch);                                       // get typed result converter address
  1374   __ jmpl(Lscratch, G0, O7);                                         // and convert it
  1375   __ delayed()->nop();
  1377   // L1_scratch points to top of stack (prepushed)
  1378   __ st_ptr(L1_scratch, STATE(_stack));
  1381 // Generate the code to handle a more_monitors message from the c++ interpreter
  1382 void CppInterpreterGenerator::generate_more_monitors() {
  1384   Label entry, loop;
  1385   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
  1386   // 1. compute new pointers                                // esp: old expression stack top
  1387   __ delayed()->ld_ptr(STATE(_stack_base), L4_scratch);            // current expression stack bottom
  1388   __ sub(L4_scratch, entry_size, L4_scratch);
  1389   __ st_ptr(L4_scratch, STATE(_stack_base));
  1391   __ sub(SP, entry_size, SP);                  // Grow stack
  1392   __ st_ptr(SP, STATE(_frame_bottom));
  1394   __ ld_ptr(STATE(_stack_limit), L2_scratch);
  1395   __ sub(L2_scratch, entry_size, L2_scratch);
  1396   __ st_ptr(L2_scratch, STATE(_stack_limit));
  1398   __ ld_ptr(STATE(_stack), L1_scratch);                // Get current stack top
  1399   __ sub(L1_scratch, entry_size, L1_scratch);
  1400   __ st_ptr(L1_scratch, STATE(_stack));
  1401   __ ba(false, entry);
  1402   __ delayed()->add(L1_scratch, wordSize, L1_scratch);        // first real entry (undo prepush)
  1404   // 2. move expression stack
  1406   __ bind(loop);
  1407   __ st_ptr(L3_scratch, Address(L1_scratch, 0));
  1408   __ add(L1_scratch, wordSize, L1_scratch);
  1409   __ bind(entry);
  1410   __ cmp(L1_scratch, L4_scratch);
  1411   __ br(Assembler::notEqual, false, Assembler::pt, loop);
  1412   __ delayed()->ld_ptr(L1_scratch, entry_size, L3_scratch);
  1414   // now zero the slot so we can find it.
  1415   __ st_ptr(G0, L4_scratch, BasicObjectLock::obj_offset_in_bytes());
  1419 // Initial entry to C++ interpreter from the call_stub.
  1420 // This entry point is called the frame manager since it handles the generation
  1421 // of interpreter activation frames via requests directly from the vm (via call_stub)
  1422 // and via requests from the interpreter. The requests from the call_stub happen
  1423 // directly thru the entry point. Requests from the interpreter happen via returning
  1424 // from the interpreter and examining the message the interpreter has returned to
  1425 // the frame manager. The frame manager can take the following requests:
  1427 // NO_REQUEST - error, should never happen.
  1428 // MORE_MONITORS - need a new monitor. Shuffle the expression stack on down and
  1429 //                 allocate a new monitor.
  1430 // CALL_METHOD - setup a new activation to call a new method. Very similar to what
  1431 //               happens during entry during the entry via the call stub.
  1432 // RETURN_FROM_METHOD - remove an activation. Return to interpreter or call stub.
  1433 //
  1434 // Arguments:
  1435 //
  1436 // ebx: methodOop
  1437 // ecx: receiver - unused (retrieved from stack as needed)
  1438 // esi: previous frame manager state (NULL from the call_stub/c1/c2)
  1439 //
  1440 //
  1441 // Stack layout at entry
  1442 //
  1443 // [ return address     ] <--- esp
  1444 // [ parameter n        ]
  1445 //   ...
  1446 // [ parameter 1        ]
  1447 // [ expression stack   ]
  1448 //
  1449 //
  1450 // We are free to blow any registers we like because the call_stub which brought us here
  1451 // initially has preserved the callee save registers already.
  1452 //
  1453 //
  1455 static address interpreter_frame_manager = NULL;
  1457 #ifdef ASSERT
  1458   #define VALIDATE_STATE(scratch, marker)                         \
  1459   {                                                               \
  1460     Label skip;                                                   \
  1461     __ ld_ptr(STATE(_self_link), scratch);                        \
  1462     __ cmp(Lstate, scratch);                                      \
  1463     __ brx(Assembler::equal, false, Assembler::pt, skip);         \
  1464     __ delayed()->nop();                                          \
  1465     __ breakpoint_trap();                                         \
  1466     __ emit_long(marker);                                         \
  1467     __ bind(skip);                                                \
  1469 #else
  1470   #define VALIDATE_STATE(scratch, marker)
  1471 #endif /* ASSERT */
  1473 void CppInterpreterGenerator::adjust_callers_stack(Register args) {
  1474 //
  1475 // Adjust caller's stack so that all the locals can be contiguous with
  1476 // the parameters.
  1477 // Worries about stack overflow make this a pain.
  1478 //
  1479 // Destroys args, G3_scratch, G3_scratch
  1480 // In/Out O5_savedSP (sender's original SP)
  1481 //
  1482 //  assert_different_registers(state, prev_state);
  1483   const Register Gtmp = G3_scratch;
  1484   const Register tmp = O2;
  1485   const Address size_of_parameters(G5_method, 0, in_bytes(methodOopDesc::size_of_parameters_offset()));
  1486   const Address size_of_locals    (G5_method, 0, in_bytes(methodOopDesc::size_of_locals_offset()));
  1488   __ lduh(size_of_parameters, tmp);
  1489   __ sll(tmp, LogBytesPerWord, Gtmp);       // parameter size in bytes
  1490   __ add(args, Gtmp, Gargs);                // points to first local + BytesPerWord
  1491   // NEW
  1492   __ add(Gargs, -wordSize, Gargs);             // points to first local[0]
  1493   // determine extra space for non-argument locals & adjust caller's SP
  1494   // Gtmp1: parameter size in words
  1495   __ lduh(size_of_locals, Gtmp);
  1496   __ compute_extra_locals_size_in_bytes(tmp, Gtmp, Gtmp);
  1498 #if 1
  1499   // c2i adapters place the final interpreter argument in the register save area for O0/I0
  1500   // the call_stub will place the final interpreter argument at
  1501   // frame::memory_parameter_word_sp_offset. This is mostly not noticable for either asm
  1502   // or c++ interpreter. However with the c++ interpreter when we do a recursive call
  1503   // and try to make it look good in the debugger we will store the argument to
  1504   // RecursiveInterpreterActivation in the register argument save area. Without allocating
  1505   // extra space for the compiler this will overwrite locals in the local array of the
  1506   // interpreter.
  1507   // QQQ still needed with frameless adapters???
  1509   const int c2i_adjust_words = frame::memory_parameter_word_sp_offset - frame::callee_register_argument_save_area_sp_offset;
  1511   __ add(Gtmp, c2i_adjust_words*wordSize, Gtmp);
  1512 #endif // 1
  1515   __ sub(SP, Gtmp, SP);                      // just caller's frame for the additional space we need.
  1518 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
  1520   // G5_method: methodOop
  1521   // G2_thread: thread (unused)
  1522   // Gargs:   bottom of args (sender_sp)
  1523   // O5: sender's sp
  1525   // A single frame manager is plenty as we don't specialize for synchronized. We could and
  1526   // the code is pretty much ready. Would need to change the test below and for good measure
  1527   // modify generate_interpreter_state to only do the (pre) sync stuff stuff for synchronized
  1528   // routines. Not clear this is worth it yet.
  1530   if (interpreter_frame_manager) {
  1531     return interpreter_frame_manager;
  1534   __ bind(frame_manager_entry);
  1536   // the following temporary registers are used during frame creation
  1537   const Register Gtmp1 = G3_scratch;
  1538   // const Register Lmirror = L1;     // native mirror (native calls only)
  1540   const Address constants         (G5_method, 0, in_bytes(methodOopDesc::constants_offset()));
  1541   const Address access_flags      (G5_method, 0, in_bytes(methodOopDesc::access_flags_offset()));
  1542   const Address size_of_parameters(G5_method, 0, in_bytes(methodOopDesc::size_of_parameters_offset()));
  1543   const Address max_stack         (G5_method, 0, in_bytes(methodOopDesc::max_stack_offset()));
  1544   const Address size_of_locals    (G5_method, 0, in_bytes(methodOopDesc::size_of_locals_offset()));
  1546   address entry_point = __ pc();
  1547   __ mov(G0, prevState);                                                 // no current activation
  1550   Label re_dispatch;
  1552   __ bind(re_dispatch);
  1554   // Interpreter needs to have locals completely contiguous. In order to do that
  1555   // We must adjust the caller's stack pointer for any locals beyond just the
  1556   // parameters
  1557   adjust_callers_stack(Gargs);
  1559   // O5_savedSP still contains sender's sp
  1561   // NEW FRAME
  1563   generate_compute_interpreter_state(Lstate, prevState, false);
  1565   // At this point a new interpreter frame and state object are created and initialized
  1566   // Lstate has the pointer to the new activation
  1567   // Any stack banging or limit check should already be done.
  1569   Label call_interpreter;
  1571   __ bind(call_interpreter);
  1574 #if 1
  1575   __ set(0xdead002, Lmirror);
  1576   __ set(0xdead002, L2_scratch);
  1577   __ set(0xdead003, L3_scratch);
  1578   __ set(0xdead004, L4_scratch);
  1579   __ set(0xdead005, Lscratch);
  1580   __ set(0xdead006, Lscratch2);
  1581   __ set(0xdead007, L7_scratch);
  1583   __ set(0xdeaf002, O2);
  1584   __ set(0xdeaf003, O3);
  1585   __ set(0xdeaf004, O4);
  1586   __ set(0xdeaf005, O5);
  1587 #endif
  1589   // Call interpreter (stack bang complete) enter here if message is
  1590   // set and we know stack size is valid
  1592   Label call_interpreter_2;
  1594   __ bind(call_interpreter_2);
  1596 #ifdef ASSERT
  1598     Label skip;
  1599     __ ld_ptr(STATE(_frame_bottom), G3_scratch);
  1600     __ cmp(G3_scratch, SP);
  1601     __ brx(Assembler::equal, false, Assembler::pt, skip);
  1602     __ delayed()->nop();
  1603     __ stop("SP not restored to frame bottom");
  1604     __ bind(skip);
  1606 #endif
  1608   VALIDATE_STATE(G3_scratch, 4);
  1609   __ set_last_Java_frame(SP, noreg);
  1610   __ mov(Lstate, O0);                 // (arg) pointer to current state
  1612   __ call(CAST_FROM_FN_PTR(address,
  1613                            JvmtiExport::can_post_interpreter_events() ?
  1614                                                                   BytecodeInterpreter::runWithChecks
  1615                                                                 : BytecodeInterpreter::run),
  1616          relocInfo::runtime_call_type);
  1618   __ delayed()->nop();
  1620   __ ld_ptr(STATE(_thread), G2_thread);
  1621   __ reset_last_Java_frame();
  1623   // examine msg from interpreter to determine next action
  1624   __ ld_ptr(STATE(_thread), G2_thread);                                  // restore G2_thread
  1626   __ ld(STATE(_msg), L1_scratch);                                       // Get new message
  1628   Label call_method;
  1629   Label return_from_interpreted_method;
  1630   Label throw_exception;
  1631   Label do_OSR;
  1632   Label bad_msg;
  1633   Label resume_interpreter;
  1635   __ cmp(L1_scratch, (int)BytecodeInterpreter::call_method);
  1636   __ br(Assembler::equal, false, Assembler::pt, call_method);
  1637   __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::return_from_method);
  1638   __ br(Assembler::equal, false, Assembler::pt, return_from_interpreted_method);
  1639   __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::throwing_exception);
  1640   __ br(Assembler::equal, false, Assembler::pt, throw_exception);
  1641   __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::do_osr);
  1642   __ br(Assembler::equal, false, Assembler::pt, do_OSR);
  1643   __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::more_monitors);
  1644   __ br(Assembler::notEqual, false, Assembler::pt, bad_msg);
  1646   // Allocate more monitor space, shuffle expression stack....
  1648   generate_more_monitors();
  1650   // new monitor slot allocated, resume the interpreter.
  1652   __ set((int)BytecodeInterpreter::got_monitors, L1_scratch);
  1653   VALIDATE_STATE(G3_scratch, 5);
  1654   __ ba(false, call_interpreter);
  1655   __ delayed()->st(L1_scratch, STATE(_msg));
  1657   // uncommon trap needs to jump to here to enter the interpreter (re-execute current bytecode)
  1658   unctrap_frame_manager_entry  = __ pc();
  1660   // QQQ what message do we send
  1662   __ ba(false, call_interpreter);
  1663   __ delayed()->ld_ptr(STATE(_frame_bottom), SP);                  // restore to full stack frame
  1665   //=============================================================================
  1666   // Returning from a compiled method into a deopted method. The bytecode at the
  1667   // bcp has completed. The result of the bytecode is in the native abi (the tosca
  1668   // for the template based interpreter). Any stack space that was used by the
  1669   // bytecode that has completed has been removed (e.g. parameters for an invoke)
  1670   // so all that we have to do is place any pending result on the expression stack
  1671   // and resume execution on the next bytecode.
  1673   generate_deopt_handling();
  1675   // ready to resume the interpreter
  1677   __ set((int)BytecodeInterpreter::deopt_resume, L1_scratch);
  1678   __ ba(false, call_interpreter);
  1679   __ delayed()->st(L1_scratch, STATE(_msg));
  1681   // Current frame has caught an exception we need to dispatch to the
  1682   // handler. We can get here because a native interpreter frame caught
  1683   // an exception in which case there is no handler and we must rethrow
  1684   // If it is a vanilla interpreted frame the we simply drop into the
  1685   // interpreter and let it do the lookup.
  1687   Interpreter::_rethrow_exception_entry = __ pc();
  1689   Label return_with_exception;
  1690   Label unwind_and_forward;
  1692   // O0: exception
  1693   // O7: throwing pc
  1695   // We want exception in the thread no matter what we ultimately decide about frame type.
  1697   Address exception_addr (G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
  1698   __ verify_thread();
  1699   __ st_ptr(O0, exception_addr);
  1701   // get the methodOop
  1702   __ ld_ptr(STATE(_method), G5_method);
  1704   // if this current frame vanilla or native?
  1706   __ ld(access_flags, Gtmp1);
  1707   __ btst(JVM_ACC_NATIVE, Gtmp1);
  1708   __ br(Assembler::zero, false, Assembler::pt, return_with_exception);  // vanilla interpreted frame handle directly
  1709   __ delayed()->nop();
  1711   // We drop thru to unwind a native interpreted frame with a pending exception
  1712   // We jump here for the initial interpreter frame with exception pending
  1713   // We unwind the current acivation and forward it to our caller.
  1715   __ bind(unwind_and_forward);
  1717   // Unwind frame and jump to forward exception. unwinding will place throwing pc in O7
  1718   // as expected by forward_exception.
  1720   __ restore(FP, G0, SP);                  // unwind interpreter state frame
  1721   __ br(Assembler::always, false, Assembler::pt, StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
  1722   __ delayed()->mov(I5_savedSP->after_restore(), SP);
  1724   // Return point from a call which returns a result in the native abi
  1725   // (c1/c2/jni-native). This result must be processed onto the java
  1726   // expression stack.
  1727   //
  1728   // A pending exception may be present in which case there is no result present
  1730   address return_from_native_method = __ pc();
  1732   VALIDATE_STATE(G3_scratch, 6);
  1734   // Result if any is in native abi result (O0..O1/F0..F1). The java expression
  1735   // stack is in the state that the  calling convention left it.
  1736   // Copy the result from native abi result and place it on java expression stack.
  1738   // Current interpreter state is present in Lstate
  1740   // Exception pending?
  1742   __ ld_ptr(STATE(_frame_bottom), SP);                             // restore to full stack frame
  1743   __ ld_ptr(exception_addr, Lscratch);                                         // get any pending exception
  1744   __ tst(Lscratch);                                                            // exception pending?
  1745   __ brx(Assembler::notZero, false, Assembler::pt, return_with_exception);
  1746   __ delayed()->nop();
  1748   // Process the native abi result to java expression stack
  1750   __ ld_ptr(STATE(_result._to_call._callee), L4_scratch);                        // called method
  1751   __ ld_ptr(STATE(_stack), L1_scratch);                                          // get top of java expr stack
  1752   __ lduh(L4_scratch, in_bytes(methodOopDesc::size_of_parameters_offset()), L2_scratch); // get parameter size
  1753   __ sll(L2_scratch, LogBytesPerWord, L2_scratch     );                           // parameter size in bytes
  1754   __ add(L1_scratch, L2_scratch, L1_scratch);                                      // stack destination for result
  1755   __ ld(L4_scratch, in_bytes(methodOopDesc::result_index_offset()), L3_scratch); // called method result type index
  1757   // tosca is really just native abi
  1758   __ set((intptr_t)CppInterpreter::_tosca_to_stack, L4_scratch);
  1759   __ sll(L3_scratch, LogBytesPerWord, L3_scratch);
  1760   __ ld_ptr(L4_scratch, L3_scratch, Lscratch);                                       // get typed result converter address
  1761   __ jmpl(Lscratch, G0, O7);                                                   // and convert it
  1762   __ delayed()->nop();
  1764   // L1_scratch points to top of stack (prepushed)
  1766   __ ba(false, resume_interpreter);
  1767   __ delayed()->mov(L1_scratch, O1);
  1769   // An exception is being caught on return to a vanilla interpreter frame.
  1770   // Empty the stack and resume interpreter
  1772   __ bind(return_with_exception);
  1774   __ ld_ptr(STATE(_frame_bottom), SP);                             // restore to full stack frame
  1775   __ ld_ptr(STATE(_stack_base), O1);                               // empty java expression stack
  1776   __ ba(false, resume_interpreter);
  1777   __ delayed()->sub(O1, wordSize, O1);                             // account for prepush
  1779   // Return from interpreted method we return result appropriate to the caller (i.e. "recursive"
  1780   // interpreter call, or native) and unwind this interpreter activation.
  1781   // All monitors should be unlocked.
  1783   __ bind(return_from_interpreted_method);
  1785   VALIDATE_STATE(G3_scratch, 7);
  1787   Label return_to_initial_caller;
  1789   // Interpreted result is on the top of the completed activation expression stack.
  1790   // We must return it to the top of the callers stack if caller was interpreted
  1791   // otherwise we convert to native abi result and return to call_stub/c1/c2
  1792   // The caller's expression stack was truncated by the call however the current activation
  1793   // has enough stuff on the stack that we have usable space there no matter what. The
  1794   // other thing that makes it easy is that the top of the caller's stack is stored in STATE(_locals)
  1795   // for the current activation
  1797   __ ld_ptr(STATE(_prev_link), L1_scratch);
  1798   __ ld_ptr(STATE(_method), L2_scratch);                               // get method just executed
  1799   __ ld(L2_scratch, in_bytes(methodOopDesc::result_index_offset()), L2_scratch);
  1800   __ tst(L1_scratch);
  1801   __ brx(Assembler::zero, false, Assembler::pt, return_to_initial_caller);
  1802   __ delayed()->sll(L2_scratch, LogBytesPerWord, L2_scratch);
  1804   // Copy result to callers java stack
  1806   __ set((intptr_t)CppInterpreter::_stack_to_stack, L4_scratch);
  1807   __ ld_ptr(L4_scratch, L2_scratch, Lscratch);                          // get typed result converter address
  1808   __ ld_ptr(STATE(_stack), O0);                                       // current top (prepushed)
  1809   __ ld_ptr(STATE(_locals), O1);                                      // stack destination
  1811   // O0 - will be source, O1 - will be destination (preserved)
  1812   __ jmpl(Lscratch, G0, O7);                                          // and convert it
  1813   __ delayed()->add(O0, wordSize, O0);                                // get source (top of current expr stack)
  1815   // O1 == &locals[0]
  1817   // Result is now on caller's stack. Just unwind current activation and resume
  1819   Label unwind_recursive_activation;
  1822   __ bind(unwind_recursive_activation);
  1824   // O1 == &locals[0] (really callers stacktop) for activation now returning
  1825   // returning to interpreter method from "recursive" interpreter call
  1826   // result converter left O1 pointing to top of the( prepushed) java stack for method we are returning
  1827   // to. Now all we must do is unwind the state from the completed call
  1829   // Must restore stack
  1830   VALIDATE_STATE(G3_scratch, 8);
  1832   // Return to interpreter method after a method call (interpreted/native/c1/c2) has completed.
  1833   // Result if any is already on the caller's stack. All we must do now is remove the now dead
  1834   // frame and tell interpreter to resume.
  1837   __ mov(O1, I1);                                                     // pass back new stack top across activation
  1838   // POP FRAME HERE ==================================
  1839   __ restore(FP, G0, SP);                                             // unwind interpreter state frame
  1840   __ ld_ptr(STATE(_frame_bottom), SP);                                // restore to full stack frame
  1843   // Resume the interpreter. The current frame contains the current interpreter
  1844   // state object.
  1845   //
  1846   // O1 == new java stack pointer
  1848   __ bind(resume_interpreter);
  1849   VALIDATE_STATE(G3_scratch, 10);
  1851   // A frame we have already used before so no need to bang stack so use call_interpreter_2 entry
  1853   __ set((int)BytecodeInterpreter::method_resume, L1_scratch);
  1854   __ st(L1_scratch, STATE(_msg));
  1855   __ ba(false, call_interpreter_2);
  1856   __ delayed()->st_ptr(O1, STATE(_stack));
  1859   // Fast accessor methods share this entry point.
  1860   // This works because frame manager is in the same codelet
  1861   // This can either be an entry via call_stub/c1/c2 or a recursive interpreter call
  1862   // we need to do a little register fixup here once we distinguish the two of them
  1863   if (UseFastAccessorMethods && !synchronized) {
  1864   // Call stub_return address still in O7
  1865     __ bind(fast_accessor_slow_entry_path);
  1866     __ set((intptr_t)return_from_native_method - 8, Gtmp1);
  1867     __ cmp(Gtmp1, O7);                                                // returning to interpreter?
  1868     __ brx(Assembler::equal, true, Assembler::pt, re_dispatch);       // yep
  1869     __ delayed()->nop();
  1870     __ ba(false, re_dispatch);
  1871     __ delayed()->mov(G0, prevState);                                   // initial entry
  1875   // interpreter returning to native code (call_stub/c1/c2)
  1876   // convert result and unwind initial activation
  1877   // L2_scratch - scaled result type index
  1879   __ bind(return_to_initial_caller);
  1881   __ set((intptr_t)CppInterpreter::_stack_to_native_abi, L4_scratch);
  1882   __ ld_ptr(L4_scratch, L2_scratch, Lscratch);                           // get typed result converter address
  1883   __ ld_ptr(STATE(_stack), O0);                                        // current top (prepushed)
  1884   __ jmpl(Lscratch, G0, O7);                                           // and convert it
  1885   __ delayed()->add(O0, wordSize, O0);                                 // get source (top of current expr stack)
  1887   Label unwind_initial_activation;
  1888   __ bind(unwind_initial_activation);
  1890   // RETURN TO CALL_STUB/C1/C2 code (result if any in I0..I1/(F0/..F1)
  1891   // we can return here with an exception that wasn't handled by interpreted code
  1892   // how does c1/c2 see it on return?
  1894   // compute resulting sp before/after args popped depending upon calling convention
  1895   // __ ld_ptr(STATE(_saved_sp), Gtmp1);
  1896   //
  1897   // POP FRAME HERE ==================================
  1898   __ restore(FP, G0, SP);
  1899   __ retl();
  1900   __ delayed()->mov(I5_savedSP->after_restore(), SP);
  1902   // OSR request, unwind the current frame and transfer to the OSR entry
  1903   // and enter OSR nmethod
  1905   __ bind(do_OSR);
  1906   Label remove_initial_frame;
  1907   __ ld_ptr(STATE(_prev_link), L1_scratch);
  1908   __ ld_ptr(STATE(_result._osr._osr_buf), G1_scratch);
  1910   // We are going to pop this frame. Is there another interpreter frame underneath
  1911   // it or is it callstub/compiled?
  1913   __ tst(L1_scratch);
  1914   __ brx(Assembler::zero, false, Assembler::pt, remove_initial_frame);
  1915   __ delayed()->ld_ptr(STATE(_result._osr._osr_entry), G3_scratch);
  1917   // Frame underneath is an interpreter frame simply unwind
  1918   // POP FRAME HERE ==================================
  1919   __ restore(FP, G0, SP);                                             // unwind interpreter state frame
  1920   __ mov(I5_savedSP->after_restore(), SP);
  1922   // Since we are now calling native need to change our "return address" from the
  1923   // dummy RecursiveInterpreterActivation to a return from native
  1925   __ set((intptr_t)return_from_native_method - 8, O7);
  1927   __ jmpl(G3_scratch, G0, G0);
  1928   __ delayed()->mov(G1_scratch, O0);
  1930   __ bind(remove_initial_frame);
  1932   // POP FRAME HERE ==================================
  1933   __ restore(FP, G0, SP);
  1934   __ mov(I5_savedSP->after_restore(), SP);
  1935   __ jmpl(G3_scratch, G0, G0);
  1936   __ delayed()->mov(G1_scratch, O0);
  1938   // Call a new method. All we do is (temporarily) trim the expression stack
  1939   // push a return address to bring us back to here and leap to the new entry.
  1940   // At this point we have a topmost frame that was allocated by the frame manager
  1941   // which contains the current method interpreted state. We trim this frame
  1942   // of excess java expression stack entries and then recurse.
  1944   __ bind(call_method);
  1946   // stack points to next free location and not top element on expression stack
  1947   // method expects sp to be pointing to topmost element
  1949   __ ld_ptr(STATE(_thread), G2_thread);
  1950   __ ld_ptr(STATE(_result._to_call._callee), G5_method);
  1953   // SP already takes in to account the 2 extra words we use for slop
  1954   // when we call a "static long no_params()" method. So if
  1955   // we trim back sp by the amount of unused java expression stack
  1956   // there will be automagically the 2 extra words we need.
  1957   // We also have to worry about keeping SP aligned.
  1959   __ ld_ptr(STATE(_stack), Gargs);
  1960   __ ld_ptr(STATE(_stack_limit), L1_scratch);
  1962   // compute the unused java stack size
  1963   __ sub(Gargs, L1_scratch, L2_scratch);                       // compute unused space
  1965   // Round down the unused space to that stack is always 16-byte aligned
  1966   // by making the unused space a multiple of the size of two longs.
  1968   __ and3(L2_scratch, -2*BytesPerLong, L2_scratch);
  1970   // Now trim the stack
  1971   __ add(SP, L2_scratch, SP);
  1974   // Now point to the final argument (account for prepush)
  1975   __ add(Gargs, wordSize, Gargs);
  1976 #ifdef ASSERT
  1977   // Make sure we have space for the window
  1978   __ sub(Gargs, SP, L1_scratch);
  1979   __ cmp(L1_scratch, 16*wordSize);
  1981     Label skip;
  1982     __ brx(Assembler::greaterEqual, false, Assembler::pt, skip);
  1983     __ delayed()->nop();
  1984     __ stop("killed stack");
  1985     __ bind(skip);
  1987 #endif // ASSERT
  1989   // Create a new frame where we can store values that make it look like the interpreter
  1990   // really recursed.
  1992   // prepare to recurse or call specialized entry
  1994   // First link the registers we need
  1996   // make the pc look good in debugger
  1997   __ set(CAST_FROM_FN_PTR(intptr_t, RecursiveInterpreterActivation), O7);
  1998   // argument too
  1999   __ mov(Lstate, I0);
  2001   // Record our sending SP
  2002   __ mov(SP, O5_savedSP);
  2004   __ ld_ptr(STATE(_result._to_call._callee_entry_point), L2_scratch);
  2005   __ set((intptr_t) entry_point, L1_scratch);
  2006   __ cmp(L1_scratch, L2_scratch);
  2007   __ brx(Assembler::equal, false, Assembler::pt, re_dispatch);
  2008   __ delayed()->mov(Lstate, prevState);                                // link activations
  2010   // method uses specialized entry, push a return so we look like call stub setup
  2011   // this path will handle fact that result is returned in registers and not
  2012   // on the java stack.
  2014   __ set((intptr_t)return_from_native_method - 8, O7);
  2015   __ jmpl(L2_scratch, G0, G0);                               // Do specialized entry
  2016   __ delayed()->nop();
  2018   //
  2019   // Bad Message from interpreter
  2020   //
  2021   __ bind(bad_msg);
  2022   __ stop("Bad message from interpreter");
  2024   // Interpreted method "returned" with an exception pass it on...
  2025   // Pass result, unwind activation and continue/return to interpreter/call_stub
  2026   // We handle result (if any) differently based on return to interpreter or call_stub
  2028   __ bind(throw_exception);
  2029   __ ld_ptr(STATE(_prev_link), L1_scratch);
  2030   __ tst(L1_scratch);
  2031   __ brx(Assembler::zero, false, Assembler::pt, unwind_and_forward);
  2032   __ delayed()->nop();
  2034   __ ld_ptr(STATE(_locals), O1);                                   // get result of popping callee's args
  2035   __ ba(false, unwind_recursive_activation);
  2036   __ delayed()->nop();
  2038   interpreter_frame_manager = entry_point;
  2039   return entry_point;
  2042 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
  2043  : CppInterpreterGenerator(code) {
  2044    generate_all(); // down here so it can be "virtual"
  2048 static int size_activation_helper(int callee_extra_locals, int max_stack, int monitor_size) {
  2050   // Figure out the size of an interpreter frame (in words) given that we have a fully allocated
  2051   // expression stack, the callee will have callee_extra_locals (so we can account for
  2052   // frame extension) and monitor_size for monitors. Basically we need to calculate
  2053   // this exactly like generate_fixed_frame/generate_compute_interpreter_state.
  2054   //
  2055   //
  2056   // The big complicating thing here is that we must ensure that the stack stays properly
  2057   // aligned. This would be even uglier if monitor size wasn't modulo what the stack
  2058   // needs to be aligned for). We are given that the sp (fp) is already aligned by
  2059   // the caller so we must ensure that it is properly aligned for our callee.
  2060   //
  2061   // Ths c++ interpreter always makes sure that we have a enough extra space on the
  2062   // stack at all times to deal with the "stack long no_params()" method issue. This
  2063   // is "slop_factor" here.
  2064   const int slop_factor = 2;
  2066   const int fixed_size = sizeof(BytecodeInterpreter)/wordSize +           // interpreter state object
  2067                          frame::memory_parameter_word_sp_offset;   // register save area + param window
  2068   const int extra_stack = 0; //6815692//methodOopDesc::extra_stack_entries();
  2069   return (round_to(max_stack +
  2070                    extra_stack +
  2071                    slop_factor +
  2072                    fixed_size +
  2073                    monitor_size +
  2074                    (callee_extra_locals * Interpreter::stackElementWords()), WordsPerLong));
  2078 int AbstractInterpreter::size_top_interpreter_activation(methodOop method) {
  2080   // See call_stub code
  2081   int call_stub_size  = round_to(7 + frame::memory_parameter_word_sp_offset,
  2082                                  WordsPerLong);    // 7 + register save area
  2084   // Save space for one monitor to get into the interpreted method in case
  2085   // the method is synchronized
  2086   int monitor_size    = method->is_synchronized() ?
  2087                                 1*frame::interpreter_frame_monitor_size() : 0;
  2088   return size_activation_helper(method->max_locals(), method->max_stack(),
  2089                                  monitor_size) + call_stub_size;
  2092 void BytecodeInterpreter::layout_interpreterState(interpreterState to_fill,
  2093                                            frame* caller,
  2094                                            frame* current,
  2095                                            methodOop method,
  2096                                            intptr_t* locals,
  2097                                            intptr_t* stack,
  2098                                            intptr_t* stack_base,
  2099                                            intptr_t* monitor_base,
  2100                                            intptr_t* frame_bottom,
  2101                                            bool is_top_frame
  2104   // What about any vtable?
  2105   //
  2106   to_fill->_thread = JavaThread::current();
  2107   // This gets filled in later but make it something recognizable for now
  2108   to_fill->_bcp = method->code_base();
  2109   to_fill->_locals = locals;
  2110   to_fill->_constants = method->constants()->cache();
  2111   to_fill->_method = method;
  2112   to_fill->_mdx = NULL;
  2113   to_fill->_stack = stack;
  2114   if (is_top_frame && JavaThread::current()->popframe_forcing_deopt_reexecution() ) {
  2115     to_fill->_msg = deopt_resume2;
  2116   } else {
  2117     to_fill->_msg = method_resume;
  2119   to_fill->_result._to_call._bcp_advance = 0;
  2120   to_fill->_result._to_call._callee_entry_point = NULL; // doesn't matter to anyone
  2121   to_fill->_result._to_call._callee = NULL; // doesn't matter to anyone
  2122   to_fill->_prev_link = NULL;
  2124   // Fill in the registers for the frame
  2126   // Need to install _sender_sp. Actually not too hard in C++!
  2127   // When the skeletal frames are layed out we fill in a value
  2128   // for _sender_sp. That value is only correct for the oldest
  2129   // skeletal frame constructed (because there is only a single
  2130   // entry for "caller_adjustment". While the skeletal frames
  2131   // exist that is good enough. We correct that calculation
  2132   // here and get all the frames correct.
  2134   // to_fill->_sender_sp = locals - (method->size_of_parameters() - 1);
  2136   *current->register_addr(Lstate) = (intptr_t) to_fill;
  2137   // skeletal already places a useful value here and this doesn't account
  2138   // for alignment so don't bother.
  2139   // *current->register_addr(I5_savedSP) =     (intptr_t) locals - (method->size_of_parameters() - 1);
  2141   if (caller->is_interpreted_frame()) {
  2142     interpreterState prev  = caller->get_interpreterState();
  2143     to_fill->_prev_link = prev;
  2144     // Make the prev callee look proper
  2145     prev->_result._to_call._callee = method;
  2146     if (*prev->_bcp == Bytecodes::_invokeinterface) {
  2147       prev->_result._to_call._bcp_advance = 5;
  2148     } else {
  2149       prev->_result._to_call._bcp_advance = 3;
  2152   to_fill->_oop_temp = NULL;
  2153   to_fill->_stack_base = stack_base;
  2154   // Need +1 here because stack_base points to the word just above the first expr stack entry
  2155   // and stack_limit is supposed to point to the word just below the last expr stack entry.
  2156   // See generate_compute_interpreter_state.
  2157   int extra_stack = 0; //6815692//methodOopDesc::extra_stack_entries();
  2158   to_fill->_stack_limit = stack_base - (method->max_stack() + 1 + extra_stack);
  2159   to_fill->_monitor_base = (BasicObjectLock*) monitor_base;
  2161   // sparc specific
  2162   to_fill->_frame_bottom = frame_bottom;
  2163   to_fill->_self_link = to_fill;
  2164 #ifdef ASSERT
  2165   to_fill->_native_fresult = 123456.789;
  2166   to_fill->_native_lresult = CONST64(0xdeadcafedeafcafe);
  2167 #endif
  2170 void BytecodeInterpreter::pd_layout_interpreterState(interpreterState istate, address last_Java_pc, intptr_t* last_Java_fp) {
  2171   istate->_last_Java_pc = (intptr_t*) last_Java_pc;
  2175 int AbstractInterpreter::layout_activation(methodOop method,
  2176                                            int tempcount, // Number of slots on java expression stack in use
  2177                                            int popframe_extra_args,
  2178                                            int moncount,  // Number of active monitors
  2179                                            int callee_param_size,
  2180                                            int callee_locals_size,
  2181                                            frame* caller,
  2182                                            frame* interpreter_frame,
  2183                                            bool is_top_frame) {
  2185   assert(popframe_extra_args == 0, "NEED TO FIX");
  2186   // NOTE this code must exactly mimic what InterpreterGenerator::generate_compute_interpreter_state()
  2187   // does as far as allocating an interpreter frame.
  2188   // If interpreter_frame!=NULL, set up the method, locals, and monitors.
  2189   // The frame interpreter_frame, if not NULL, is guaranteed to be the right size,
  2190   // as determined by a previous call to this method.
  2191   // It is also guaranteed to be walkable even though it is in a skeletal state
  2192   // NOTE: return size is in words not bytes
  2193   // NOTE: tempcount is the current size of the java expression stack. For top most
  2194   //       frames we will allocate a full sized expression stack and not the curback
  2195   //       version that non-top frames have.
  2197   // Calculate the amount our frame will be adjust by the callee. For top frame
  2198   // this is zero.
  2200   // NOTE: ia64 seems to do this wrong (or at least backwards) in that it
  2201   // calculates the extra locals based on itself. Not what the callee does
  2202   // to it. So it ignores last_frame_adjust value. Seems suspicious as far
  2203   // as getting sender_sp correct.
  2205   int extra_locals_size = callee_locals_size - callee_param_size;
  2206   int monitor_size = (sizeof(BasicObjectLock) * moncount) / wordSize;
  2207   int full_frame_words = size_activation_helper(extra_locals_size, method->max_stack(), monitor_size);
  2208   int short_frame_words = size_activation_helper(extra_locals_size, method->max_stack(), monitor_size);
  2209   int frame_words = is_top_frame ? full_frame_words : short_frame_words;
  2212   /*
  2213     if we actually have a frame to layout we must now fill in all the pieces. This means both
  2214     the interpreterState and the registers.
  2215   */
  2216   if (interpreter_frame != NULL) {
  2218     // MUCHO HACK
  2220     intptr_t* frame_bottom = interpreter_frame->sp() - (full_frame_words - frame_words);
  2221     // 'interpreter_frame->sp()' is unbiased while 'frame_bottom' must be a biased value in 64bit mode.
  2222     assert(((intptr_t)frame_bottom & 0xf) == 0, "SP biased in layout_activation");
  2223     frame_bottom = (intptr_t*)((intptr_t)frame_bottom - STACK_BIAS);
  2225     /* Now fillin the interpreterState object */
  2227     interpreterState cur_state = (interpreterState) ((intptr_t)interpreter_frame->fp() -  sizeof(BytecodeInterpreter));
  2230     intptr_t* locals;
  2232     // Calculate the postion of locals[0]. This is painful because of
  2233     // stack alignment (same as ia64). The problem is that we can
  2234     // not compute the location of locals from fp(). fp() will account
  2235     // for the extra locals but it also accounts for aligning the stack
  2236     // and we can't determine if the locals[0] was misaligned but max_locals
  2237     // was enough to have the
  2238     // calculate postion of locals. fp already accounts for extra locals.
  2239     // +2 for the static long no_params() issue.
  2241     if (caller->is_interpreted_frame()) {
  2242       // locals must agree with the caller because it will be used to set the
  2243       // caller's tos when we return.
  2244       interpreterState prev  = caller->get_interpreterState();
  2245       // stack() is prepushed.
  2246       locals = prev->stack() + method->size_of_parameters();
  2247     } else {
  2248       // Lay out locals block in the caller adjacent to the register window save area.
  2249       //
  2250       // Compiled frames do not allocate a varargs area which is why this if
  2251       // statement is needed.
  2252       //
  2253       intptr_t* fp = interpreter_frame->fp();
  2254       int local_words = method->max_locals() * Interpreter::stackElementWords();
  2256       if (caller->is_compiled_frame()) {
  2257         locals = fp + frame::register_save_words + local_words - 1;
  2258       } else {
  2259         locals = fp + frame::memory_parameter_word_sp_offset + local_words - 1;
  2263     // END MUCHO HACK
  2265     intptr_t* monitor_base = (intptr_t*) cur_state;
  2266     intptr_t* stack_base =  monitor_base - monitor_size;
  2267     /* +1 because stack is always prepushed */
  2268     intptr_t* stack = stack_base - (tempcount + 1);
  2271     BytecodeInterpreter::layout_interpreterState(cur_state,
  2272                                           caller,
  2273                                           interpreter_frame,
  2274                                           method,
  2275                                           locals,
  2276                                           stack,
  2277                                           stack_base,
  2278                                           monitor_base,
  2279                                           frame_bottom,
  2280                                           is_top_frame);
  2282     BytecodeInterpreter::pd_layout_interpreterState(cur_state, interpreter_return_address, interpreter_frame->fp());
  2285   return frame_words;
  2288 #endif // CC_INTERP

mercurial