src/share/vm/gc_implementation/g1/g1CollectorPolicy.hpp

Wed, 11 Jul 2012 22:47:38 +0200

author
brutisso
date
Wed, 11 Jul 2012 22:47:38 +0200
changeset 3923
922993931b3d
parent 3812
bbc900c2482a
child 3924
3a431b605145
permissions
-rw-r--r--

7178361: G1: Make sure that PrintGC and PrintGCDetails use the same timing for the GC pause
Summary: Also reviewed by: vitalyd@gmail.com. Move the timing out of G1CollectorPolicy into the G1GCPhaseTimes class
Reviewed-by: johnc

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
    28 #include "gc_implementation/g1/collectionSetChooser.hpp"
    29 #include "gc_implementation/g1/g1MMUTracker.hpp"
    30 #include "memory/collectorPolicy.hpp"
    32 // A G1CollectorPolicy makes policy decisions that determine the
    33 // characteristics of the collector.  Examples include:
    34 //   * choice of collection set.
    35 //   * when to collect.
    37 class HeapRegion;
    38 class CollectionSetChooser;
    39 class G1GCPhaseTimes;
    41 // TraceGen0Time collects data on _both_ young and mixed evacuation pauses
    42 // (the latter may contain non-young regions - i.e. regions that are
    43 // technically in Gen1) while TraceGen1Time collects data about full GCs.
    44 class TraceGen0TimeData : public CHeapObj {
    45  private:
    46   unsigned  _young_pause_num;
    47   unsigned  _mixed_pause_num;
    49   NumberSeq _all_stop_world_times_ms;
    50   NumberSeq _all_yield_times_ms;
    52   NumberSeq _total;
    53   NumberSeq _other;
    54   NumberSeq _root_region_scan_wait;
    55   NumberSeq _parallel;
    56   NumberSeq _ext_root_scan;
    57   NumberSeq _satb_filtering;
    58   NumberSeq _update_rs;
    59   NumberSeq _scan_rs;
    60   NumberSeq _obj_copy;
    61   NumberSeq _termination;
    62   NumberSeq _parallel_other;
    63   NumberSeq _clear_ct;
    65   void print_summary(const char* str, const NumberSeq* seq) const;
    66   void print_summary_sd(const char* str, const NumberSeq* seq) const;
    68 public:
    69    TraceGen0TimeData() : _young_pause_num(0), _mixed_pause_num(0) {};
    70   void record_start_collection(double time_to_stop_the_world_ms);
    71   void record_yield_time(double yield_time_ms);
    72   void record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times);
    73   void increment_young_collection_count();
    74   void increment_mixed_collection_count();
    75   void print() const;
    76 };
    78 class TraceGen1TimeData : public CHeapObj {
    79  private:
    80   NumberSeq _all_full_gc_times;
    82  public:
    83   void record_full_collection(double full_gc_time_ms);
    84   void print() const;
    85 };
    87 // There are three command line options related to the young gen size:
    88 // NewSize, MaxNewSize and NewRatio (There is also -Xmn, but that is
    89 // just a short form for NewSize==MaxNewSize). G1 will use its internal
    90 // heuristics to calculate the actual young gen size, so these options
    91 // basically only limit the range within which G1 can pick a young gen
    92 // size. Also, these are general options taking byte sizes. G1 will
    93 // internally work with a number of regions instead. So, some rounding
    94 // will occur.
    95 //
    96 // If nothing related to the the young gen size is set on the command
    97 // line we should allow the young gen to be between
    98 // G1DefaultMinNewGenPercent and G1DefaultMaxNewGenPercent of the
    99 // heap size. This means that every time the heap size changes the
   100 // limits for the young gen size will be updated.
   101 //
   102 // If only -XX:NewSize is set we should use the specified value as the
   103 // minimum size for young gen. Still using G1DefaultMaxNewGenPercent
   104 // of the heap as maximum.
   105 //
   106 // If only -XX:MaxNewSize is set we should use the specified value as the
   107 // maximum size for young gen. Still using G1DefaultMinNewGenPercent
   108 // of the heap as minimum.
   109 //
   110 // If -XX:NewSize and -XX:MaxNewSize are both specified we use these values.
   111 // No updates when the heap size changes. There is a special case when
   112 // NewSize==MaxNewSize. This is interpreted as "fixed" and will use a
   113 // different heuristic for calculating the collection set when we do mixed
   114 // collection.
   115 //
   116 // If only -XX:NewRatio is set we should use the specified ratio of the heap
   117 // as both min and max. This will be interpreted as "fixed" just like the
   118 // NewSize==MaxNewSize case above. But we will update the min and max
   119 // everytime the heap size changes.
   120 //
   121 // NewSize and MaxNewSize override NewRatio. So, NewRatio is ignored if it is
   122 // combined with either NewSize or MaxNewSize. (A warning message is printed.)
   123 class G1YoungGenSizer : public CHeapObj {
   124 private:
   125   enum SizerKind {
   126     SizerDefaults,
   127     SizerNewSizeOnly,
   128     SizerMaxNewSizeOnly,
   129     SizerMaxAndNewSize,
   130     SizerNewRatio
   131   };
   132   SizerKind _sizer_kind;
   133   uint _min_desired_young_length;
   134   uint _max_desired_young_length;
   135   bool _adaptive_size;
   136   uint calculate_default_min_length(uint new_number_of_heap_regions);
   137   uint calculate_default_max_length(uint new_number_of_heap_regions);
   139 public:
   140   G1YoungGenSizer();
   141   void heap_size_changed(uint new_number_of_heap_regions);
   142   uint min_desired_young_length() {
   143     return _min_desired_young_length;
   144   }
   145   uint max_desired_young_length() {
   146     return _max_desired_young_length;
   147   }
   148   bool adaptive_young_list_length() {
   149     return _adaptive_size;
   150   }
   151 };
   153 class G1CollectorPolicy: public CollectorPolicy {
   154 private:
   155   // either equal to the number of parallel threads, if ParallelGCThreads
   156   // has been set, or 1 otherwise
   157   int _parallel_gc_threads;
   159   // The number of GC threads currently active.
   160   uintx _no_of_gc_threads;
   162   enum SomePrivateConstants {
   163     NumPrevPausesForHeuristics = 10
   164   };
   166   G1MMUTracker* _mmu_tracker;
   168   void initialize_flags();
   170   void initialize_all() {
   171     initialize_flags();
   172     initialize_size_info();
   173     initialize_perm_generation(PermGen::MarkSweepCompact);
   174   }
   176   CollectionSetChooser* _collectionSetChooser;
   178   double _full_collection_start_sec;
   179   size_t _cur_collection_pause_used_at_start_bytes;
   180   uint   _cur_collection_pause_used_regions_at_start;
   182   // These exclude marking times.
   183   TruncatedSeq* _recent_gc_times_ms;
   185   TruncatedSeq* _concurrent_mark_remark_times_ms;
   186   TruncatedSeq* _concurrent_mark_cleanup_times_ms;
   188   TraceGen0TimeData _trace_gen0_time_data;
   189   TraceGen1TimeData _trace_gen1_time_data;
   191   double _stop_world_start;
   193   // indicates whether we are in young or mixed GC mode
   194   bool _gcs_are_young;
   196   uint _young_list_target_length;
   197   uint _young_list_fixed_length;
   198   size_t _prev_eden_capacity; // used for logging
   200   // The max number of regions we can extend the eden by while the GC
   201   // locker is active. This should be >= _young_list_target_length;
   202   uint _young_list_max_length;
   204   bool                  _last_gc_was_young;
   206   bool                  _during_marking;
   207   bool                  _in_marking_window;
   208   bool                  _in_marking_window_im;
   210   SurvRateGroup*        _short_lived_surv_rate_group;
   211   SurvRateGroup*        _survivor_surv_rate_group;
   212   // add here any more surv rate groups
   214   double                _gc_overhead_perc;
   216   double _reserve_factor;
   217   uint _reserve_regions;
   219   bool during_marking() {
   220     return _during_marking;
   221   }
   223 private:
   224   enum PredictionConstants {
   225     TruncatedSeqLength = 10
   226   };
   228   TruncatedSeq* _alloc_rate_ms_seq;
   229   double        _prev_collection_pause_end_ms;
   231   TruncatedSeq* _pending_card_diff_seq;
   232   TruncatedSeq* _rs_length_diff_seq;
   233   TruncatedSeq* _cost_per_card_ms_seq;
   234   TruncatedSeq* _young_cards_per_entry_ratio_seq;
   235   TruncatedSeq* _mixed_cards_per_entry_ratio_seq;
   236   TruncatedSeq* _cost_per_entry_ms_seq;
   237   TruncatedSeq* _mixed_cost_per_entry_ms_seq;
   238   TruncatedSeq* _cost_per_byte_ms_seq;
   239   TruncatedSeq* _constant_other_time_ms_seq;
   240   TruncatedSeq* _young_other_cost_per_region_ms_seq;
   241   TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
   243   TruncatedSeq* _pending_cards_seq;
   244   TruncatedSeq* _rs_lengths_seq;
   246   TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
   248   G1YoungGenSizer* _young_gen_sizer;
   250   uint _eden_cset_region_length;
   251   uint _survivor_cset_region_length;
   252   uint _old_cset_region_length;
   254   void init_cset_region_lengths(uint eden_cset_region_length,
   255                                 uint survivor_cset_region_length);
   257   uint eden_cset_region_length()     { return _eden_cset_region_length;     }
   258   uint survivor_cset_region_length() { return _survivor_cset_region_length; }
   259   uint old_cset_region_length()      { return _old_cset_region_length;      }
   261   uint _free_regions_at_end_of_collection;
   263   size_t _recorded_rs_lengths;
   264   size_t _max_rs_lengths;
   265   double _sigma;
   267   size_t _rs_lengths_prediction;
   269   double sigma() { return _sigma; }
   271   // A function that prevents us putting too much stock in small sample
   272   // sets.  Returns a number between 2.0 and 1.0, depending on the number
   273   // of samples.  5 or more samples yields one; fewer scales linearly from
   274   // 2.0 at 1 sample to 1.0 at 5.
   275   double confidence_factor(int samples) {
   276     if (samples > 4) return 1.0;
   277     else return  1.0 + sigma() * ((double)(5 - samples))/2.0;
   278   }
   280   double get_new_neg_prediction(TruncatedSeq* seq) {
   281     return seq->davg() - sigma() * seq->dsd();
   282   }
   284 #ifndef PRODUCT
   285   bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
   286 #endif // PRODUCT
   288   void adjust_concurrent_refinement(double update_rs_time,
   289                                     double update_rs_processed_buffers,
   290                                     double goal_ms);
   292   uintx no_of_gc_threads() { return _no_of_gc_threads; }
   293   void set_no_of_gc_threads(uintx v) { _no_of_gc_threads = v; }
   295   double _pause_time_target_ms;
   297   size_t _pending_cards;
   298   size_t _max_pending_cards;
   300 public:
   301   // Accessors
   303   void set_region_eden(HeapRegion* hr, int young_index_in_cset) {
   304     hr->set_young();
   305     hr->install_surv_rate_group(_short_lived_surv_rate_group);
   306     hr->set_young_index_in_cset(young_index_in_cset);
   307   }
   309   void set_region_survivor(HeapRegion* hr, int young_index_in_cset) {
   310     assert(hr->is_young() && hr->is_survivor(), "pre-condition");
   311     hr->install_surv_rate_group(_survivor_surv_rate_group);
   312     hr->set_young_index_in_cset(young_index_in_cset);
   313   }
   315 #ifndef PRODUCT
   316   bool verify_young_ages();
   317 #endif // PRODUCT
   319   double get_new_prediction(TruncatedSeq* seq) {
   320     return MAX2(seq->davg() + sigma() * seq->dsd(),
   321                 seq->davg() * confidence_factor(seq->num()));
   322   }
   324   void record_max_rs_lengths(size_t rs_lengths) {
   325     _max_rs_lengths = rs_lengths;
   326   }
   328   size_t predict_pending_card_diff() {
   329     double prediction = get_new_neg_prediction(_pending_card_diff_seq);
   330     if (prediction < 0.00001) {
   331       return 0;
   332     } else {
   333       return (size_t) prediction;
   334     }
   335   }
   337   size_t predict_pending_cards() {
   338     size_t max_pending_card_num = _g1->max_pending_card_num();
   339     size_t diff = predict_pending_card_diff();
   340     size_t prediction;
   341     if (diff > max_pending_card_num) {
   342       prediction = max_pending_card_num;
   343     } else {
   344       prediction = max_pending_card_num - diff;
   345     }
   347     return prediction;
   348   }
   350   size_t predict_rs_length_diff() {
   351     return (size_t) get_new_prediction(_rs_length_diff_seq);
   352   }
   354   double predict_alloc_rate_ms() {
   355     return get_new_prediction(_alloc_rate_ms_seq);
   356   }
   358   double predict_cost_per_card_ms() {
   359     return get_new_prediction(_cost_per_card_ms_seq);
   360   }
   362   double predict_rs_update_time_ms(size_t pending_cards) {
   363     return (double) pending_cards * predict_cost_per_card_ms();
   364   }
   366   double predict_young_cards_per_entry_ratio() {
   367     return get_new_prediction(_young_cards_per_entry_ratio_seq);
   368   }
   370   double predict_mixed_cards_per_entry_ratio() {
   371     if (_mixed_cards_per_entry_ratio_seq->num() < 2) {
   372       return predict_young_cards_per_entry_ratio();
   373     } else {
   374       return get_new_prediction(_mixed_cards_per_entry_ratio_seq);
   375     }
   376   }
   378   size_t predict_young_card_num(size_t rs_length) {
   379     return (size_t) ((double) rs_length *
   380                      predict_young_cards_per_entry_ratio());
   381   }
   383   size_t predict_non_young_card_num(size_t rs_length) {
   384     return (size_t) ((double) rs_length *
   385                      predict_mixed_cards_per_entry_ratio());
   386   }
   388   double predict_rs_scan_time_ms(size_t card_num) {
   389     if (gcs_are_young()) {
   390       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
   391     } else {
   392       return predict_mixed_rs_scan_time_ms(card_num);
   393     }
   394   }
   396   double predict_mixed_rs_scan_time_ms(size_t card_num) {
   397     if (_mixed_cost_per_entry_ms_seq->num() < 3) {
   398       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
   399     } else {
   400       return (double) (card_num *
   401                        get_new_prediction(_mixed_cost_per_entry_ms_seq));
   402     }
   403   }
   405   double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
   406     if (_cost_per_byte_ms_during_cm_seq->num() < 3) {
   407       return (1.1 * (double) bytes_to_copy) *
   408               get_new_prediction(_cost_per_byte_ms_seq);
   409     } else {
   410       return (double) bytes_to_copy *
   411              get_new_prediction(_cost_per_byte_ms_during_cm_seq);
   412     }
   413   }
   415   double predict_object_copy_time_ms(size_t bytes_to_copy) {
   416     if (_in_marking_window && !_in_marking_window_im) {
   417       return predict_object_copy_time_ms_during_cm(bytes_to_copy);
   418     } else {
   419       return (double) bytes_to_copy *
   420               get_new_prediction(_cost_per_byte_ms_seq);
   421     }
   422   }
   424   double predict_constant_other_time_ms() {
   425     return get_new_prediction(_constant_other_time_ms_seq);
   426   }
   428   double predict_young_other_time_ms(size_t young_num) {
   429     return (double) young_num *
   430            get_new_prediction(_young_other_cost_per_region_ms_seq);
   431   }
   433   double predict_non_young_other_time_ms(size_t non_young_num) {
   434     return (double) non_young_num *
   435            get_new_prediction(_non_young_other_cost_per_region_ms_seq);
   436   }
   438   double predict_base_elapsed_time_ms(size_t pending_cards);
   439   double predict_base_elapsed_time_ms(size_t pending_cards,
   440                                       size_t scanned_cards);
   441   size_t predict_bytes_to_copy(HeapRegion* hr);
   442   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
   444   void set_recorded_rs_lengths(size_t rs_lengths);
   446   uint cset_region_length()       { return young_cset_region_length() +
   447                                            old_cset_region_length(); }
   448   uint young_cset_region_length() { return eden_cset_region_length() +
   449                                            survivor_cset_region_length(); }
   451   double predict_survivor_regions_evac_time();
   453   void cset_regions_freed() {
   454     bool propagate = _last_gc_was_young && !_in_marking_window;
   455     _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
   456     _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
   457     // also call it on any more surv rate groups
   458   }
   460   G1MMUTracker* mmu_tracker() {
   461     return _mmu_tracker;
   462   }
   464   double max_pause_time_ms() {
   465     return _mmu_tracker->max_gc_time() * 1000.0;
   466   }
   468   double predict_remark_time_ms() {
   469     return get_new_prediction(_concurrent_mark_remark_times_ms);
   470   }
   472   double predict_cleanup_time_ms() {
   473     return get_new_prediction(_concurrent_mark_cleanup_times_ms);
   474   }
   476   // Returns an estimate of the survival rate of the region at yg-age
   477   // "yg_age".
   478   double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
   479     TruncatedSeq* seq = surv_rate_group->get_seq(age);
   480     if (seq->num() == 0)
   481       gclog_or_tty->print("BARF! age is %d", age);
   482     guarantee( seq->num() > 0, "invariant" );
   483     double pred = get_new_prediction(seq);
   484     if (pred > 1.0)
   485       pred = 1.0;
   486     return pred;
   487   }
   489   double predict_yg_surv_rate(int age) {
   490     return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
   491   }
   493   double accum_yg_surv_rate_pred(int age) {
   494     return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
   495   }
   497 private:
   498   size_t _bytes_in_collection_set_before_gc;
   499   size_t _bytes_copied_during_gc;
   501   // Used to count used bytes in CS.
   502   friend class CountCSClosure;
   504   // Statistics kept per GC stoppage, pause or full.
   505   TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
   507   // Add a new GC of the given duration and end time to the record.
   508   void update_recent_gc_times(double end_time_sec, double elapsed_ms);
   510   // The head of the list (via "next_in_collection_set()") representing the
   511   // current collection set. Set from the incrementally built collection
   512   // set at the start of the pause.
   513   HeapRegion* _collection_set;
   515   // The number of bytes in the collection set before the pause. Set from
   516   // the incrementally built collection set at the start of an evacuation
   517   // pause.
   518   size_t _collection_set_bytes_used_before;
   520   // The associated information that is maintained while the incremental
   521   // collection set is being built with young regions. Used to populate
   522   // the recorded info for the evacuation pause.
   524   enum CSetBuildType {
   525     Active,             // We are actively building the collection set
   526     Inactive            // We are not actively building the collection set
   527   };
   529   CSetBuildType _inc_cset_build_state;
   531   // The head of the incrementally built collection set.
   532   HeapRegion* _inc_cset_head;
   534   // The tail of the incrementally built collection set.
   535   HeapRegion* _inc_cset_tail;
   537   // The number of bytes in the incrementally built collection set.
   538   // Used to set _collection_set_bytes_used_before at the start of
   539   // an evacuation pause.
   540   size_t _inc_cset_bytes_used_before;
   542   // Used to record the highest end of heap region in collection set
   543   HeapWord* _inc_cset_max_finger;
   545   // The RSet lengths recorded for regions in the CSet. It is updated
   546   // by the thread that adds a new region to the CSet. We assume that
   547   // only one thread can be allocating a new CSet region (currently,
   548   // it does so after taking the Heap_lock) hence no need to
   549   // synchronize updates to this field.
   550   size_t _inc_cset_recorded_rs_lengths;
   552   // A concurrent refinement thread periodcially samples the young
   553   // region RSets and needs to update _inc_cset_recorded_rs_lengths as
   554   // the RSets grow. Instead of having to syncronize updates to that
   555   // field we accumulate them in this field and add it to
   556   // _inc_cset_recorded_rs_lengths_diffs at the start of a GC.
   557   ssize_t _inc_cset_recorded_rs_lengths_diffs;
   559   // The predicted elapsed time it will take to collect the regions in
   560   // the CSet. This is updated by the thread that adds a new region to
   561   // the CSet. See the comment for _inc_cset_recorded_rs_lengths about
   562   // MT-safety assumptions.
   563   double _inc_cset_predicted_elapsed_time_ms;
   565   // See the comment for _inc_cset_recorded_rs_lengths_diffs.
   566   double _inc_cset_predicted_elapsed_time_ms_diffs;
   568   // Stash a pointer to the g1 heap.
   569   G1CollectedHeap* _g1;
   571   G1GCPhaseTimes* _phase_times;
   573   // The ratio of gc time to elapsed time, computed over recent pauses.
   574   double _recent_avg_pause_time_ratio;
   576   double recent_avg_pause_time_ratio() {
   577     return _recent_avg_pause_time_ratio;
   578   }
   580   // At the end of a pause we check the heap occupancy and we decide
   581   // whether we will start a marking cycle during the next pause. If
   582   // we decide that we want to do that, we will set this parameter to
   583   // true. So, this parameter will stay true between the end of a
   584   // pause and the beginning of a subsequent pause (not necessarily
   585   // the next one, see the comments on the next field) when we decide
   586   // that we will indeed start a marking cycle and do the initial-mark
   587   // work.
   588   volatile bool _initiate_conc_mark_if_possible;
   590   // If initiate_conc_mark_if_possible() is set at the beginning of a
   591   // pause, it is a suggestion that the pause should start a marking
   592   // cycle by doing the initial-mark work. However, it is possible
   593   // that the concurrent marking thread is still finishing up the
   594   // previous marking cycle (e.g., clearing the next marking
   595   // bitmap). If that is the case we cannot start a new cycle and
   596   // we'll have to wait for the concurrent marking thread to finish
   597   // what it is doing. In this case we will postpone the marking cycle
   598   // initiation decision for the next pause. When we eventually decide
   599   // to start a cycle, we will set _during_initial_mark_pause which
   600   // will stay true until the end of the initial-mark pause and it's
   601   // the condition that indicates that a pause is doing the
   602   // initial-mark work.
   603   volatile bool _during_initial_mark_pause;
   605   bool _last_young_gc;
   607   // This set of variables tracks the collector efficiency, in order to
   608   // determine whether we should initiate a new marking.
   609   double _cur_mark_stop_world_time_ms;
   610   double _mark_remark_start_sec;
   611   double _mark_cleanup_start_sec;
   613   // Update the young list target length either by setting it to the
   614   // desired fixed value or by calculating it using G1's pause
   615   // prediction model. If no rs_lengths parameter is passed, predict
   616   // the RS lengths using the prediction model, otherwise use the
   617   // given rs_lengths as the prediction.
   618   void update_young_list_target_length(size_t rs_lengths = (size_t) -1);
   620   // Calculate and return the minimum desired young list target
   621   // length. This is the minimum desired young list length according
   622   // to the user's inputs.
   623   uint calculate_young_list_desired_min_length(uint base_min_length);
   625   // Calculate and return the maximum desired young list target
   626   // length. This is the maximum desired young list length according
   627   // to the user's inputs.
   628   uint calculate_young_list_desired_max_length();
   630   // Calculate and return the maximum young list target length that
   631   // can fit into the pause time goal. The parameters are: rs_lengths
   632   // represent the prediction of how large the young RSet lengths will
   633   // be, base_min_length is the alreay existing number of regions in
   634   // the young list, min_length and max_length are the desired min and
   635   // max young list length according to the user's inputs.
   636   uint calculate_young_list_target_length(size_t rs_lengths,
   637                                           uint base_min_length,
   638                                           uint desired_min_length,
   639                                           uint desired_max_length);
   641   // Check whether a given young length (young_length) fits into the
   642   // given target pause time and whether the prediction for the amount
   643   // of objects to be copied for the given length will fit into the
   644   // given free space (expressed by base_free_regions).  It is used by
   645   // calculate_young_list_target_length().
   646   bool predict_will_fit(uint young_length, double base_time_ms,
   647                         uint base_free_regions, double target_pause_time_ms);
   649   // Count the number of bytes used in the CS.
   650   void count_CS_bytes_used();
   652 public:
   654   G1CollectorPolicy();
   656   virtual G1CollectorPolicy* as_g1_policy() { return this; }
   658   virtual CollectorPolicy::Name kind() {
   659     return CollectorPolicy::G1CollectorPolicyKind;
   660   }
   662   G1GCPhaseTimes* phase_times() const { return _phase_times; }
   664   // Check the current value of the young list RSet lengths and
   665   // compare it against the last prediction. If the current value is
   666   // higher, recalculate the young list target length prediction.
   667   void revise_young_list_target_length_if_necessary();
   669   size_t bytes_in_collection_set() {
   670     return _bytes_in_collection_set_before_gc;
   671   }
   673   // This should be called after the heap is resized.
   674   void record_new_heap_size(uint new_number_of_regions);
   676   void init();
   678   // Create jstat counters for the policy.
   679   virtual void initialize_gc_policy_counters();
   681   virtual HeapWord* mem_allocate_work(size_t size,
   682                                       bool is_tlab,
   683                                       bool* gc_overhead_limit_was_exceeded);
   685   // This method controls how a collector handles one or more
   686   // of its generations being fully allocated.
   687   virtual HeapWord* satisfy_failed_allocation(size_t size,
   688                                               bool is_tlab);
   690   BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }
   692   GenRemSet::Name  rem_set_name()     { return GenRemSet::CardTable; }
   694   bool need_to_start_conc_mark(const char* source, size_t alloc_word_size = 0);
   696   // Update the heuristic info to record a collection pause of the given
   697   // start time, where the given number of bytes were used at the start.
   698   // This may involve changing the desired size of a collection set.
   700   void record_stop_world_start();
   702   void record_collection_pause_start(double start_time_sec, size_t start_used);
   704   // Must currently be called while the world is stopped.
   705   void record_concurrent_mark_init_end(double
   706                                            mark_init_elapsed_time_ms);
   708   void record_concurrent_mark_remark_start();
   709   void record_concurrent_mark_remark_end();
   711   void record_concurrent_mark_cleanup_start();
   712   void record_concurrent_mark_cleanup_end(int no_of_gc_threads);
   713   void record_concurrent_mark_cleanup_completed();
   715   void record_concurrent_pause();
   717   void record_collection_pause_end(double pause_time);
   718   void print_heap_transition();
   720   // Record the fact that a full collection occurred.
   721   void record_full_collection_start();
   722   void record_full_collection_end();
   724   // Record how much space we copied during a GC. This is typically
   725   // called when a GC alloc region is being retired.
   726   void record_bytes_copied_during_gc(size_t bytes) {
   727     _bytes_copied_during_gc += bytes;
   728   }
   730   // The amount of space we copied during a GC.
   731   size_t bytes_copied_during_gc() {
   732     return _bytes_copied_during_gc;
   733   }
   735   // Determine whether there are candidate regions so that the
   736   // next GC should be mixed. The two action strings are used
   737   // in the ergo output when the method returns true or false.
   738   bool next_gc_should_be_mixed(const char* true_action_str,
   739                                const char* false_action_str);
   741   // Choose a new collection set.  Marks the chosen regions as being
   742   // "in_collection_set", and links them together.  The head and number of
   743   // the collection set are available via access methods.
   744   void finalize_cset(double target_pause_time_ms);
   746   // The head of the list (via "next_in_collection_set()") representing the
   747   // current collection set.
   748   HeapRegion* collection_set() { return _collection_set; }
   750   void clear_collection_set() { _collection_set = NULL; }
   752   // Add old region "hr" to the CSet.
   753   void add_old_region_to_cset(HeapRegion* hr);
   755   // Incremental CSet Support
   757   // The head of the incrementally built collection set.
   758   HeapRegion* inc_cset_head() { return _inc_cset_head; }
   760   // The tail of the incrementally built collection set.
   761   HeapRegion* inc_set_tail() { return _inc_cset_tail; }
   763   // Initialize incremental collection set info.
   764   void start_incremental_cset_building();
   766   // Perform any final calculations on the incremental CSet fields
   767   // before we can use them.
   768   void finalize_incremental_cset_building();
   770   void clear_incremental_cset() {
   771     _inc_cset_head = NULL;
   772     _inc_cset_tail = NULL;
   773   }
   775   // Stop adding regions to the incremental collection set
   776   void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }
   778   // Add information about hr to the aggregated information for the
   779   // incrementally built collection set.
   780   void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);
   782   // Update information about hr in the aggregated information for
   783   // the incrementally built collection set.
   784   void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
   786 private:
   787   // Update the incremental cset information when adding a region
   788   // (should not be called directly).
   789   void add_region_to_incremental_cset_common(HeapRegion* hr);
   791 public:
   792   // Add hr to the LHS of the incremental collection set.
   793   void add_region_to_incremental_cset_lhs(HeapRegion* hr);
   795   // Add hr to the RHS of the incremental collection set.
   796   void add_region_to_incremental_cset_rhs(HeapRegion* hr);
   798 #ifndef PRODUCT
   799   void print_collection_set(HeapRegion* list_head, outputStream* st);
   800 #endif // !PRODUCT
   802   bool initiate_conc_mark_if_possible()       { return _initiate_conc_mark_if_possible;  }
   803   void set_initiate_conc_mark_if_possible()   { _initiate_conc_mark_if_possible = true;  }
   804   void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }
   806   bool during_initial_mark_pause()      { return _during_initial_mark_pause;  }
   807   void set_during_initial_mark_pause()  { _during_initial_mark_pause = true;  }
   808   void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }
   810   // This sets the initiate_conc_mark_if_possible() flag to start a
   811   // new cycle, as long as we are not already in one. It's best if it
   812   // is called during a safepoint when the test whether a cycle is in
   813   // progress or not is stable.
   814   bool force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause);
   816   // This is called at the very beginning of an evacuation pause (it
   817   // has to be the first thing that the pause does). If
   818   // initiate_conc_mark_if_possible() is true, and the concurrent
   819   // marking thread has completed its work during the previous cycle,
   820   // it will set during_initial_mark_pause() to so that the pause does
   821   // the initial-mark work and start a marking cycle.
   822   void decide_on_conc_mark_initiation();
   824   // If an expansion would be appropriate, because recent GC overhead had
   825   // exceeded the desired limit, return an amount to expand by.
   826   size_t expansion_amount();
   828   // Print tracing information.
   829   void print_tracing_info() const;
   831   // Print stats on young survival ratio
   832   void print_yg_surv_rate_info() const;
   834   void finished_recalculating_age_indexes(bool is_survivors) {
   835     if (is_survivors) {
   836       _survivor_surv_rate_group->finished_recalculating_age_indexes();
   837     } else {
   838       _short_lived_surv_rate_group->finished_recalculating_age_indexes();
   839     }
   840     // do that for any other surv rate groups
   841   }
   843   bool is_young_list_full() {
   844     uint young_list_length = _g1->young_list()->length();
   845     uint young_list_target_length = _young_list_target_length;
   846     return young_list_length >= young_list_target_length;
   847   }
   849   bool can_expand_young_list() {
   850     uint young_list_length = _g1->young_list()->length();
   851     uint young_list_max_length = _young_list_max_length;
   852     return young_list_length < young_list_max_length;
   853   }
   855   uint young_list_max_length() {
   856     return _young_list_max_length;
   857   }
   859   bool gcs_are_young() {
   860     return _gcs_are_young;
   861   }
   862   void set_gcs_are_young(bool gcs_are_young) {
   863     _gcs_are_young = gcs_are_young;
   864   }
   866   bool adaptive_young_list_length() {
   867     return _young_gen_sizer->adaptive_young_list_length();
   868   }
   870 private:
   871   //
   872   // Survivor regions policy.
   873   //
   875   // Current tenuring threshold, set to 0 if the collector reaches the
   876   // maximum amount of suvivors regions.
   877   int _tenuring_threshold;
   879   // The limit on the number of regions allocated for survivors.
   880   uint _max_survivor_regions;
   882   // For reporting purposes.
   883   size_t _eden_bytes_before_gc;
   884   size_t _survivor_bytes_before_gc;
   885   size_t _capacity_before_gc;
   887   // The amount of survor regions after a collection.
   888   uint _recorded_survivor_regions;
   889   // List of survivor regions.
   890   HeapRegion* _recorded_survivor_head;
   891   HeapRegion* _recorded_survivor_tail;
   893   ageTable _survivors_age_table;
   895 public:
   897   inline GCAllocPurpose
   898     evacuation_destination(HeapRegion* src_region, int age, size_t word_sz) {
   899       if (age < _tenuring_threshold && src_region->is_young()) {
   900         return GCAllocForSurvived;
   901       } else {
   902         return GCAllocForTenured;
   903       }
   904   }
   906   inline bool track_object_age(GCAllocPurpose purpose) {
   907     return purpose == GCAllocForSurvived;
   908   }
   910   static const uint REGIONS_UNLIMITED = (uint) -1;
   912   uint max_regions(int purpose);
   914   // The limit on regions for a particular purpose is reached.
   915   void note_alloc_region_limit_reached(int purpose) {
   916     if (purpose == GCAllocForSurvived) {
   917       _tenuring_threshold = 0;
   918     }
   919   }
   921   void note_start_adding_survivor_regions() {
   922     _survivor_surv_rate_group->start_adding_regions();
   923   }
   925   void note_stop_adding_survivor_regions() {
   926     _survivor_surv_rate_group->stop_adding_regions();
   927   }
   929   void record_survivor_regions(uint regions,
   930                                HeapRegion* head,
   931                                HeapRegion* tail) {
   932     _recorded_survivor_regions = regions;
   933     _recorded_survivor_head    = head;
   934     _recorded_survivor_tail    = tail;
   935   }
   937   uint recorded_survivor_regions() {
   938     return _recorded_survivor_regions;
   939   }
   941   void record_thread_age_table(ageTable* age_table) {
   942     _survivors_age_table.merge_par(age_table);
   943   }
   945   void update_max_gc_locker_expansion();
   947   // Calculates survivor space parameters.
   948   void update_survivors_policy();
   950 };
   952 // This should move to some place more general...
   954 // If we have "n" measurements, and we've kept track of their "sum" and the
   955 // "sum_of_squares" of the measurements, this returns the variance of the
   956 // sequence.
   957 inline double variance(int n, double sum_of_squares, double sum) {
   958   double n_d = (double)n;
   959   double avg = sum/n_d;
   960   return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
   961 }
   963 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP

mercurial