src/os/linux/vm/os_linux.cpp

Mon, 24 Mar 2014 13:36:32 -0700

author
dcubed
date
Mon, 24 Mar 2014 13:36:32 -0700
changeset 6414
91dc38ae09f3
parent 6387
8cfe6fdbb99a
child 6518
62c54fcc0a35
permissions
-rw-r--r--

8033464: Linux code cleanup
8033931: Several nightly tests failing with assert(imin < imax) failed: Unexpected page size
Summary: cleaned up warnings in linux specific os code.
Reviewed-by: dcubed, hseigel, coleenp, dsamersoff
Contributed-by: gerald.thornbrugh@oracle.com

     1 /*
     2  * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // no precompiled headers
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "classfile/vmSymbols.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "compiler/compileBroker.hpp"
    32 #include "compiler/disassembler.hpp"
    33 #include "interpreter/interpreter.hpp"
    34 #include "jvm_linux.h"
    35 #include "memory/allocation.inline.hpp"
    36 #include "memory/filemap.hpp"
    37 #include "mutex_linux.inline.hpp"
    38 #include "oops/oop.inline.hpp"
    39 #include "os_share_linux.hpp"
    40 #include "prims/jniFastGetField.hpp"
    41 #include "prims/jvm.h"
    42 #include "prims/jvm_misc.hpp"
    43 #include "runtime/arguments.hpp"
    44 #include "runtime/extendedPC.hpp"
    45 #include "runtime/globals.hpp"
    46 #include "runtime/interfaceSupport.hpp"
    47 #include "runtime/init.hpp"
    48 #include "runtime/java.hpp"
    49 #include "runtime/javaCalls.hpp"
    50 #include "runtime/mutexLocker.hpp"
    51 #include "runtime/objectMonitor.hpp"
    52 #include "runtime/osThread.hpp"
    53 #include "runtime/perfMemory.hpp"
    54 #include "runtime/sharedRuntime.hpp"
    55 #include "runtime/statSampler.hpp"
    56 #include "runtime/stubRoutines.hpp"
    57 #include "runtime/thread.inline.hpp"
    58 #include "runtime/threadCritical.hpp"
    59 #include "runtime/timer.hpp"
    60 #include "services/attachListener.hpp"
    61 #include "services/memTracker.hpp"
    62 #include "services/runtimeService.hpp"
    63 #include "utilities/decoder.hpp"
    64 #include "utilities/defaultStream.hpp"
    65 #include "utilities/events.hpp"
    66 #include "utilities/elfFile.hpp"
    67 #include "utilities/growableArray.hpp"
    68 #include "utilities/vmError.hpp"
    70 // put OS-includes here
    71 # include <sys/types.h>
    72 # include <sys/mman.h>
    73 # include <sys/stat.h>
    74 # include <sys/select.h>
    75 # include <pthread.h>
    76 # include <signal.h>
    77 # include <errno.h>
    78 # include <dlfcn.h>
    79 # include <stdio.h>
    80 # include <unistd.h>
    81 # include <sys/resource.h>
    82 # include <pthread.h>
    83 # include <sys/stat.h>
    84 # include <sys/time.h>
    85 # include <sys/times.h>
    86 # include <sys/utsname.h>
    87 # include <sys/socket.h>
    88 # include <sys/wait.h>
    89 # include <pwd.h>
    90 # include <poll.h>
    91 # include <semaphore.h>
    92 # include <fcntl.h>
    93 # include <string.h>
    94 # include <syscall.h>
    95 # include <sys/sysinfo.h>
    96 # include <gnu/libc-version.h>
    97 # include <sys/ipc.h>
    98 # include <sys/shm.h>
    99 # include <link.h>
   100 # include <stdint.h>
   101 # include <inttypes.h>
   102 # include <sys/ioctl.h>
   104 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
   105 // getrusage() is prepared to handle the associated failure.
   106 #ifndef RUSAGE_THREAD
   107 #define RUSAGE_THREAD   (1)               /* only the calling thread */
   108 #endif
   110 #define MAX_PATH    (2 * K)
   112 #define MAX_SECS 100000000
   114 // for timer info max values which include all bits
   115 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
   117 #define LARGEPAGES_BIT (1 << 6)
   118 ////////////////////////////////////////////////////////////////////////////////
   119 // global variables
   120 julong os::Linux::_physical_memory = 0;
   122 address   os::Linux::_initial_thread_stack_bottom = NULL;
   123 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
   125 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
   126 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
   127 Mutex* os::Linux::_createThread_lock = NULL;
   128 pthread_t os::Linux::_main_thread;
   129 int os::Linux::_page_size = -1;
   130 const int os::Linux::_vm_default_page_size = (8 * K);
   131 bool os::Linux::_is_floating_stack = false;
   132 bool os::Linux::_is_NPTL = false;
   133 bool os::Linux::_supports_fast_thread_cpu_time = false;
   134 const char * os::Linux::_glibc_version = NULL;
   135 const char * os::Linux::_libpthread_version = NULL;
   136 pthread_condattr_t os::Linux::_condattr[1];
   138 static jlong initial_time_count=0;
   140 static int clock_tics_per_sec = 100;
   142 // For diagnostics to print a message once. see run_periodic_checks
   143 static sigset_t check_signal_done;
   144 static bool check_signals = true;;
   146 static pid_t _initial_pid = 0;
   148 /* Signal number used to suspend/resume a thread */
   150 /* do not use any signal number less than SIGSEGV, see 4355769 */
   151 static int SR_signum = SIGUSR2;
   152 sigset_t SR_sigset;
   154 /* Used to protect dlsym() calls */
   155 static pthread_mutex_t dl_mutex;
   157 // Declarations
   158 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
   160 #ifdef JAVASE_EMBEDDED
   161 class MemNotifyThread: public Thread {
   162   friend class VMStructs;
   163  public:
   164   virtual void run();
   166  private:
   167   static MemNotifyThread* _memnotify_thread;
   168   int _fd;
   170  public:
   172   // Constructor
   173   MemNotifyThread(int fd);
   175   // Tester
   176   bool is_memnotify_thread() const { return true; }
   178   // Printing
   179   char* name() const { return (char*)"Linux MemNotify Thread"; }
   181   // Returns the single instance of the MemNotifyThread
   182   static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
   184   // Create and start the single instance of MemNotifyThread
   185   static void start();
   186 };
   187 #endif // JAVASE_EMBEDDED
   189 // utility functions
   191 static int SR_initialize();
   193 julong os::available_memory() {
   194   return Linux::available_memory();
   195 }
   197 julong os::Linux::available_memory() {
   198   // values in struct sysinfo are "unsigned long"
   199   struct sysinfo si;
   200   sysinfo(&si);
   202   return (julong)si.freeram * si.mem_unit;
   203 }
   205 julong os::physical_memory() {
   206   return Linux::physical_memory();
   207 }
   209 ////////////////////////////////////////////////////////////////////////////////
   210 // environment support
   212 bool os::getenv(const char* name, char* buf, int len) {
   213   const char* val = ::getenv(name);
   214   if (val != NULL && strlen(val) < (size_t)len) {
   215     strcpy(buf, val);
   216     return true;
   217   }
   218   if (len > 0) buf[0] = 0;  // return a null string
   219   return false;
   220 }
   223 // Return true if user is running as root.
   225 bool os::have_special_privileges() {
   226   static bool init = false;
   227   static bool privileges = false;
   228   if (!init) {
   229     privileges = (getuid() != geteuid()) || (getgid() != getegid());
   230     init = true;
   231   }
   232   return privileges;
   233 }
   236 #ifndef SYS_gettid
   237 // i386: 224, ia64: 1105, amd64: 186, sparc 143
   238 #ifdef __ia64__
   239 #define SYS_gettid 1105
   240 #elif __i386__
   241 #define SYS_gettid 224
   242 #elif __amd64__
   243 #define SYS_gettid 186
   244 #elif __sparc__
   245 #define SYS_gettid 143
   246 #else
   247 #error define gettid for the arch
   248 #endif
   249 #endif
   251 // Cpu architecture string
   252 #if   defined(ZERO)
   253 static char cpu_arch[] = ZERO_LIBARCH;
   254 #elif defined(IA64)
   255 static char cpu_arch[] = "ia64";
   256 #elif defined(IA32)
   257 static char cpu_arch[] = "i386";
   258 #elif defined(AMD64)
   259 static char cpu_arch[] = "amd64";
   260 #elif defined(ARM)
   261 static char cpu_arch[] = "arm";
   262 #elif defined(PPC)
   263 static char cpu_arch[] = "ppc";
   264 #elif defined(SPARC)
   265 #  ifdef _LP64
   266 static char cpu_arch[] = "sparcv9";
   267 #  else
   268 static char cpu_arch[] = "sparc";
   269 #  endif
   270 #else
   271 #error Add appropriate cpu_arch setting
   272 #endif
   275 // pid_t gettid()
   276 //
   277 // Returns the kernel thread id of the currently running thread. Kernel
   278 // thread id is used to access /proc.
   279 //
   280 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
   281 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
   282 //
   283 pid_t os::Linux::gettid() {
   284   int rslt = syscall(SYS_gettid);
   285   if (rslt == -1) {
   286      // old kernel, no NPTL support
   287      return getpid();
   288   } else {
   289      return (pid_t)rslt;
   290   }
   291 }
   293 // Most versions of linux have a bug where the number of processors are
   294 // determined by looking at the /proc file system.  In a chroot environment,
   295 // the system call returns 1.  This causes the VM to act as if it is
   296 // a single processor and elide locking (see is_MP() call).
   297 static bool unsafe_chroot_detected = false;
   298 static const char *unstable_chroot_error = "/proc file system not found.\n"
   299                      "Java may be unstable running multithreaded in a chroot "
   300                      "environment on Linux when /proc filesystem is not mounted.";
   302 void os::Linux::initialize_system_info() {
   303   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
   304   if (processor_count() == 1) {
   305     pid_t pid = os::Linux::gettid();
   306     char fname[32];
   307     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
   308     FILE *fp = fopen(fname, "r");
   309     if (fp == NULL) {
   310       unsafe_chroot_detected = true;
   311     } else {
   312       fclose(fp);
   313     }
   314   }
   315   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
   316   assert(processor_count() > 0, "linux error");
   317 }
   319 void os::init_system_properties_values() {
   320 //  char arch[12];
   321 //  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
   323   // The next steps are taken in the product version:
   324   //
   325   // Obtain the JAVA_HOME value from the location of libjvm.so.
   326   // This library should be located at:
   327   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
   328   //
   329   // If "/jre/lib/" appears at the right place in the path, then we
   330   // assume libjvm.so is installed in a JDK and we use this path.
   331   //
   332   // Otherwise exit with message: "Could not create the Java virtual machine."
   333   //
   334   // The following extra steps are taken in the debugging version:
   335   //
   336   // If "/jre/lib/" does NOT appear at the right place in the path
   337   // instead of exit check for $JAVA_HOME environment variable.
   338   //
   339   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
   340   // then we append a fake suffix "hotspot/libjvm.so" to this path so
   341   // it looks like libjvm.so is installed there
   342   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
   343   //
   344   // Otherwise exit.
   345   //
   346   // Important note: if the location of libjvm.so changes this
   347   // code needs to be changed accordingly.
   349   // The next few definitions allow the code to be verbatim:
   350 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
   351 #define getenv(n) ::getenv(n)
   353 /*
   354  * See ld(1):
   355  *      The linker uses the following search paths to locate required
   356  *      shared libraries:
   357  *        1: ...
   358  *        ...
   359  *        7: The default directories, normally /lib and /usr/lib.
   360  */
   361 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
   362 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
   363 #else
   364 #define DEFAULT_LIBPATH "/lib:/usr/lib"
   365 #endif
   367 #define EXTENSIONS_DIR  "/lib/ext"
   368 #define ENDORSED_DIR    "/lib/endorsed"
   369 #define REG_DIR         "/usr/java/packages"
   371   {
   372     /* sysclasspath, java_home, dll_dir */
   373     {
   374         char *home_path;
   375         char *dll_path;
   376         char *pslash;
   377         char buf[MAXPATHLEN];
   378         os::jvm_path(buf, sizeof(buf));
   380         // Found the full path to libjvm.so.
   381         // Now cut the path to <java_home>/jre if we can.
   382         *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
   383         pslash = strrchr(buf, '/');
   384         if (pslash != NULL)
   385             *pslash = '\0';           /* get rid of /{client|server|hotspot} */
   386         dll_path = malloc(strlen(buf) + 1);
   387         if (dll_path == NULL)
   388             return;
   389         strcpy(dll_path, buf);
   390         Arguments::set_dll_dir(dll_path);
   392         if (pslash != NULL) {
   393             pslash = strrchr(buf, '/');
   394             if (pslash != NULL) {
   395                 *pslash = '\0';       /* get rid of /<arch> */
   396                 pslash = strrchr(buf, '/');
   397                 if (pslash != NULL)
   398                     *pslash = '\0';   /* get rid of /lib */
   399             }
   400         }
   402         home_path = malloc(strlen(buf) + 1);
   403         if (home_path == NULL)
   404             return;
   405         strcpy(home_path, buf);
   406         Arguments::set_java_home(home_path);
   408         if (!set_boot_path('/', ':'))
   409             return;
   410     }
   412     /*
   413      * Where to look for native libraries
   414      *
   415      * Note: Due to a legacy implementation, most of the library path
   416      * is set in the launcher.  This was to accomodate linking restrictions
   417      * on legacy Linux implementations (which are no longer supported).
   418      * Eventually, all the library path setting will be done here.
   419      *
   420      * However, to prevent the proliferation of improperly built native
   421      * libraries, the new path component /usr/java/packages is added here.
   422      * Eventually, all the library path setting will be done here.
   423      */
   424     {
   425         char *ld_library_path;
   427         /*
   428          * Construct the invariant part of ld_library_path. Note that the
   429          * space for the colon and the trailing null are provided by the
   430          * nulls included by the sizeof operator (so actually we allocate
   431          * a byte more than necessary).
   432          */
   433         ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
   434             strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
   435         sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
   437         /*
   438          * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
   439          * should always exist (until the legacy problem cited above is
   440          * addressed).
   441          */
   442         char *v = getenv("LD_LIBRARY_PATH");
   443         if (v != NULL) {
   444             char *t = ld_library_path;
   445             /* That's +1 for the colon and +1 for the trailing '\0' */
   446             ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
   447             sprintf(ld_library_path, "%s:%s", v, t);
   448         }
   449         Arguments::set_library_path(ld_library_path);
   450     }
   452     /*
   453      * Extensions directories.
   454      *
   455      * Note that the space for the colon and the trailing null are provided
   456      * by the nulls included by the sizeof operator (so actually one byte more
   457      * than necessary is allocated).
   458      */
   459     {
   460         char *buf = malloc(strlen(Arguments::get_java_home()) +
   461             sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
   462         sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
   463             Arguments::get_java_home());
   464         Arguments::set_ext_dirs(buf);
   465     }
   467     /* Endorsed standards default directory. */
   468     {
   469         char * buf;
   470         buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
   471         sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
   472         Arguments::set_endorsed_dirs(buf);
   473     }
   474   }
   476 #undef malloc
   477 #undef getenv
   478 #undef EXTENSIONS_DIR
   479 #undef ENDORSED_DIR
   481   // Done
   482   return;
   483 }
   485 ////////////////////////////////////////////////////////////////////////////////
   486 // breakpoint support
   488 void os::breakpoint() {
   489   BREAKPOINT;
   490 }
   492 extern "C" void breakpoint() {
   493   // use debugger to set breakpoint here
   494 }
   496 ////////////////////////////////////////////////////////////////////////////////
   497 // signal support
   499 debug_only(static bool signal_sets_initialized = false);
   500 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
   502 bool os::Linux::is_sig_ignored(int sig) {
   503       struct sigaction oact;
   504       sigaction(sig, (struct sigaction*)NULL, &oact);
   505       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
   506                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
   507       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
   508            return true;
   509       else
   510            return false;
   511 }
   513 void os::Linux::signal_sets_init() {
   514   // Should also have an assertion stating we are still single-threaded.
   515   assert(!signal_sets_initialized, "Already initialized");
   516   // Fill in signals that are necessarily unblocked for all threads in
   517   // the VM. Currently, we unblock the following signals:
   518   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
   519   //                         by -Xrs (=ReduceSignalUsage));
   520   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
   521   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
   522   // the dispositions or masks wrt these signals.
   523   // Programs embedding the VM that want to use the above signals for their
   524   // own purposes must, at this time, use the "-Xrs" option to prevent
   525   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
   526   // (See bug 4345157, and other related bugs).
   527   // In reality, though, unblocking these signals is really a nop, since
   528   // these signals are not blocked by default.
   529   sigemptyset(&unblocked_sigs);
   530   sigemptyset(&allowdebug_blocked_sigs);
   531   sigaddset(&unblocked_sigs, SIGILL);
   532   sigaddset(&unblocked_sigs, SIGSEGV);
   533   sigaddset(&unblocked_sigs, SIGBUS);
   534   sigaddset(&unblocked_sigs, SIGFPE);
   535   sigaddset(&unblocked_sigs, SR_signum);
   537   if (!ReduceSignalUsage) {
   538    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
   539       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
   540       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
   541    }
   542    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
   543       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
   544       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
   545    }
   546    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
   547       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
   548       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
   549    }
   550   }
   551   // Fill in signals that are blocked by all but the VM thread.
   552   sigemptyset(&vm_sigs);
   553   if (!ReduceSignalUsage)
   554     sigaddset(&vm_sigs, BREAK_SIGNAL);
   555   debug_only(signal_sets_initialized = true);
   557 }
   559 // These are signals that are unblocked while a thread is running Java.
   560 // (For some reason, they get blocked by default.)
   561 sigset_t* os::Linux::unblocked_signals() {
   562   assert(signal_sets_initialized, "Not initialized");
   563   return &unblocked_sigs;
   564 }
   566 // These are the signals that are blocked while a (non-VM) thread is
   567 // running Java. Only the VM thread handles these signals.
   568 sigset_t* os::Linux::vm_signals() {
   569   assert(signal_sets_initialized, "Not initialized");
   570   return &vm_sigs;
   571 }
   573 // These are signals that are blocked during cond_wait to allow debugger in
   574 sigset_t* os::Linux::allowdebug_blocked_signals() {
   575   assert(signal_sets_initialized, "Not initialized");
   576   return &allowdebug_blocked_sigs;
   577 }
   579 void os::Linux::hotspot_sigmask(Thread* thread) {
   581   //Save caller's signal mask before setting VM signal mask
   582   sigset_t caller_sigmask;
   583   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
   585   OSThread* osthread = thread->osthread();
   586   osthread->set_caller_sigmask(caller_sigmask);
   588   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
   590   if (!ReduceSignalUsage) {
   591     if (thread->is_VM_thread()) {
   592       // Only the VM thread handles BREAK_SIGNAL ...
   593       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
   594     } else {
   595       // ... all other threads block BREAK_SIGNAL
   596       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
   597     }
   598   }
   599 }
   601 //////////////////////////////////////////////////////////////////////////////
   602 // detecting pthread library
   604 void os::Linux::libpthread_init() {
   605   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
   606   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
   607   // generic name for earlier versions.
   608   // Define macros here so we can build HotSpot on old systems.
   609 # ifndef _CS_GNU_LIBC_VERSION
   610 # define _CS_GNU_LIBC_VERSION 2
   611 # endif
   612 # ifndef _CS_GNU_LIBPTHREAD_VERSION
   613 # define _CS_GNU_LIBPTHREAD_VERSION 3
   614 # endif
   616   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
   617   if (n > 0) {
   618      char *str = (char *)malloc(n, mtInternal);
   619      confstr(_CS_GNU_LIBC_VERSION, str, n);
   620      os::Linux::set_glibc_version(str);
   621   } else {
   622      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
   623      static char _gnu_libc_version[32];
   624      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
   625               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
   626      os::Linux::set_glibc_version(_gnu_libc_version);
   627   }
   629   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
   630   if (n > 0) {
   631      char *str = (char *)malloc(n, mtInternal);
   632      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
   633      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
   634      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
   635      // is the case. LinuxThreads has a hard limit on max number of threads.
   636      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
   637      // On the other hand, NPTL does not have such a limit, sysconf()
   638      // will return -1 and errno is not changed. Check if it is really NPTL.
   639      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
   640          strstr(str, "NPTL") &&
   641          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
   642        free(str);
   643        os::Linux::set_libpthread_version("linuxthreads");
   644      } else {
   645        os::Linux::set_libpthread_version(str);
   646      }
   647   } else {
   648     // glibc before 2.3.2 only has LinuxThreads.
   649     os::Linux::set_libpthread_version("linuxthreads");
   650   }
   652   if (strstr(libpthread_version(), "NPTL")) {
   653      os::Linux::set_is_NPTL();
   654   } else {
   655      os::Linux::set_is_LinuxThreads();
   656   }
   658   // LinuxThreads have two flavors: floating-stack mode, which allows variable
   659   // stack size; and fixed-stack mode. NPTL is always floating-stack.
   660   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
   661      os::Linux::set_is_floating_stack();
   662   }
   663 }
   665 /////////////////////////////////////////////////////////////////////////////
   666 // thread stack
   668 // Force Linux kernel to expand current thread stack. If "bottom" is close
   669 // to the stack guard, caller should block all signals.
   670 //
   671 // MAP_GROWSDOWN:
   672 //   A special mmap() flag that is used to implement thread stacks. It tells
   673 //   kernel that the memory region should extend downwards when needed. This
   674 //   allows early versions of LinuxThreads to only mmap the first few pages
   675 //   when creating a new thread. Linux kernel will automatically expand thread
   676 //   stack as needed (on page faults).
   677 //
   678 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
   679 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
   680 //   region, it's hard to tell if the fault is due to a legitimate stack
   681 //   access or because of reading/writing non-exist memory (e.g. buffer
   682 //   overrun). As a rule, if the fault happens below current stack pointer,
   683 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
   684 //   application (see Linux kernel fault.c).
   685 //
   686 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
   687 //   stack overflow detection.
   688 //
   689 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
   690 //   not use this flag. However, the stack of initial thread is not created
   691 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
   692 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
   693 //   and then attach the thread to JVM.
   694 //
   695 // To get around the problem and allow stack banging on Linux, we need to
   696 // manually expand thread stack after receiving the SIGSEGV.
   697 //
   698 // There are two ways to expand thread stack to address "bottom", we used
   699 // both of them in JVM before 1.5:
   700 //   1. adjust stack pointer first so that it is below "bottom", and then
   701 //      touch "bottom"
   702 //   2. mmap() the page in question
   703 //
   704 // Now alternate signal stack is gone, it's harder to use 2. For instance,
   705 // if current sp is already near the lower end of page 101, and we need to
   706 // call mmap() to map page 100, it is possible that part of the mmap() frame
   707 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
   708 // That will destroy the mmap() frame and cause VM to crash.
   709 //
   710 // The following code works by adjusting sp first, then accessing the "bottom"
   711 // page to force a page fault. Linux kernel will then automatically expand the
   712 // stack mapping.
   713 //
   714 // _expand_stack_to() assumes its frame size is less than page size, which
   715 // should always be true if the function is not inlined.
   717 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
   718 #define NOINLINE
   719 #else
   720 #define NOINLINE __attribute__ ((noinline))
   721 #endif
   723 static void _expand_stack_to(address bottom) NOINLINE;
   725 static void _expand_stack_to(address bottom) {
   726   address sp;
   727   size_t size;
   728   volatile char *p;
   730   // Adjust bottom to point to the largest address within the same page, it
   731   // gives us a one-page buffer if alloca() allocates slightly more memory.
   732   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
   733   bottom += os::Linux::page_size() - 1;
   735   // sp might be slightly above current stack pointer; if that's the case, we
   736   // will alloca() a little more space than necessary, which is OK. Don't use
   737   // os::current_stack_pointer(), as its result can be slightly below current
   738   // stack pointer, causing us to not alloca enough to reach "bottom".
   739   sp = (address)&sp;
   741   if (sp > bottom) {
   742     size = sp - bottom;
   743     p = (volatile char *)alloca(size);
   744     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
   745     p[0] = '\0';
   746   }
   747 }
   749 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
   750   assert(t!=NULL, "just checking");
   751   assert(t->osthread()->expanding_stack(), "expand should be set");
   752   assert(t->stack_base() != NULL, "stack_base was not initialized");
   754   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
   755     sigset_t mask_all, old_sigset;
   756     sigfillset(&mask_all);
   757     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
   758     _expand_stack_to(addr);
   759     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
   760     return true;
   761   }
   762   return false;
   763 }
   765 //////////////////////////////////////////////////////////////////////////////
   766 // create new thread
   768 static address highest_vm_reserved_address();
   770 // check if it's safe to start a new thread
   771 static bool _thread_safety_check(Thread* thread) {
   772   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
   773     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
   774     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
   775     //   allocated (MAP_FIXED) from high address space. Every thread stack
   776     //   occupies a fixed size slot (usually 2Mbytes, but user can change
   777     //   it to other values if they rebuild LinuxThreads).
   778     //
   779     // Problem with MAP_FIXED is that mmap() can still succeed even part of
   780     // the memory region has already been mmap'ed. That means if we have too
   781     // many threads and/or very large heap, eventually thread stack will
   782     // collide with heap.
   783     //
   784     // Here we try to prevent heap/stack collision by comparing current
   785     // stack bottom with the highest address that has been mmap'ed by JVM
   786     // plus a safety margin for memory maps created by native code.
   787     //
   788     // This feature can be disabled by setting ThreadSafetyMargin to 0
   789     //
   790     if (ThreadSafetyMargin > 0) {
   791       address stack_bottom = os::current_stack_base() - os::current_stack_size();
   793       // not safe if our stack extends below the safety margin
   794       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
   795     } else {
   796       return true;
   797     }
   798   } else {
   799     // Floating stack LinuxThreads or NPTL:
   800     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
   801     //   there's not enough space left, pthread_create() will fail. If we come
   802     //   here, that means enough space has been reserved for stack.
   803     return true;
   804   }
   805 }
   807 // Thread start routine for all newly created threads
   808 static void *java_start(Thread *thread) {
   809   // Try to randomize the cache line index of hot stack frames.
   810   // This helps when threads of the same stack traces evict each other's
   811   // cache lines. The threads can be either from the same JVM instance, or
   812   // from different JVM instances. The benefit is especially true for
   813   // processors with hyperthreading technology.
   814   static int counter = 0;
   815   int pid = os::current_process_id();
   816   alloca(((pid ^ counter++) & 7) * 128);
   818   ThreadLocalStorage::set_thread(thread);
   820   OSThread* osthread = thread->osthread();
   821   Monitor* sync = osthread->startThread_lock();
   823   // non floating stack LinuxThreads needs extra check, see above
   824   if (!_thread_safety_check(thread)) {
   825     // notify parent thread
   826     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   827     osthread->set_state(ZOMBIE);
   828     sync->notify_all();
   829     return NULL;
   830   }
   832   // thread_id is kernel thread id (similar to Solaris LWP id)
   833   osthread->set_thread_id(os::Linux::gettid());
   835   if (UseNUMA) {
   836     int lgrp_id = os::numa_get_group_id();
   837     if (lgrp_id != -1) {
   838       thread->set_lgrp_id(lgrp_id);
   839     }
   840   }
   841   // initialize signal mask for this thread
   842   os::Linux::hotspot_sigmask(thread);
   844   // initialize floating point control register
   845   os::Linux::init_thread_fpu_state();
   847   // handshaking with parent thread
   848   {
   849     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   851     // notify parent thread
   852     osthread->set_state(INITIALIZED);
   853     sync->notify_all();
   855     // wait until os::start_thread()
   856     while (osthread->get_state() == INITIALIZED) {
   857       sync->wait(Mutex::_no_safepoint_check_flag);
   858     }
   859   }
   861   // call one more level start routine
   862   thread->run();
   864   return 0;
   865 }
   867 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
   868   assert(thread->osthread() == NULL, "caller responsible");
   870   // Allocate the OSThread object
   871   OSThread* osthread = new OSThread(NULL, NULL);
   872   if (osthread == NULL) {
   873     return false;
   874   }
   876   // set the correct thread state
   877   osthread->set_thread_type(thr_type);
   879   // Initial state is ALLOCATED but not INITIALIZED
   880   osthread->set_state(ALLOCATED);
   882   thread->set_osthread(osthread);
   884   // init thread attributes
   885   pthread_attr_t attr;
   886   pthread_attr_init(&attr);
   887   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
   889   // stack size
   890   if (os::Linux::supports_variable_stack_size()) {
   891     // calculate stack size if it's not specified by caller
   892     if (stack_size == 0) {
   893       stack_size = os::Linux::default_stack_size(thr_type);
   895       switch (thr_type) {
   896       case os::java_thread:
   897         // Java threads use ThreadStackSize which default value can be
   898         // changed with the flag -Xss
   899         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
   900         stack_size = JavaThread::stack_size_at_create();
   901         break;
   902       case os::compiler_thread:
   903         if (CompilerThreadStackSize > 0) {
   904           stack_size = (size_t)(CompilerThreadStackSize * K);
   905           break;
   906         } // else fall through:
   907           // use VMThreadStackSize if CompilerThreadStackSize is not defined
   908       case os::vm_thread:
   909       case os::pgc_thread:
   910       case os::cgc_thread:
   911       case os::watcher_thread:
   912         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
   913         break;
   914       }
   915     }
   917     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
   918     pthread_attr_setstacksize(&attr, stack_size);
   919   } else {
   920     // let pthread_create() pick the default value.
   921   }
   923   // glibc guard page
   924   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
   926   ThreadState state;
   928   {
   929     // Serialize thread creation if we are running with fixed stack LinuxThreads
   930     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
   931     if (lock) {
   932       os::Linux::createThread_lock()->lock_without_safepoint_check();
   933     }
   935     pthread_t tid;
   936     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
   938     pthread_attr_destroy(&attr);
   940     if (ret != 0) {
   941       if (PrintMiscellaneous && (Verbose || WizardMode)) {
   942         perror("pthread_create()");
   943       }
   944       // Need to clean up stuff we've allocated so far
   945       thread->set_osthread(NULL);
   946       delete osthread;
   947       if (lock) os::Linux::createThread_lock()->unlock();
   948       return false;
   949     }
   951     // Store pthread info into the OSThread
   952     osthread->set_pthread_id(tid);
   954     // Wait until child thread is either initialized or aborted
   955     {
   956       Monitor* sync_with_child = osthread->startThread_lock();
   957       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
   958       while ((state = osthread->get_state()) == ALLOCATED) {
   959         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
   960       }
   961     }
   963     if (lock) {
   964       os::Linux::createThread_lock()->unlock();
   965     }
   966   }
   968   // Aborted due to thread limit being reached
   969   if (state == ZOMBIE) {
   970       thread->set_osthread(NULL);
   971       delete osthread;
   972       return false;
   973   }
   975   // The thread is returned suspended (in state INITIALIZED),
   976   // and is started higher up in the call chain
   977   assert(state == INITIALIZED, "race condition");
   978   return true;
   979 }
   981 /////////////////////////////////////////////////////////////////////////////
   982 // attach existing thread
   984 // bootstrap the main thread
   985 bool os::create_main_thread(JavaThread* thread) {
   986   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
   987   return create_attached_thread(thread);
   988 }
   990 bool os::create_attached_thread(JavaThread* thread) {
   991 #ifdef ASSERT
   992     thread->verify_not_published();
   993 #endif
   995   // Allocate the OSThread object
   996   OSThread* osthread = new OSThread(NULL, NULL);
   998   if (osthread == NULL) {
   999     return false;
  1002   // Store pthread info into the OSThread
  1003   osthread->set_thread_id(os::Linux::gettid());
  1004   osthread->set_pthread_id(::pthread_self());
  1006   // initialize floating point control register
  1007   os::Linux::init_thread_fpu_state();
  1009   // Initial thread state is RUNNABLE
  1010   osthread->set_state(RUNNABLE);
  1012   thread->set_osthread(osthread);
  1014   if (UseNUMA) {
  1015     int lgrp_id = os::numa_get_group_id();
  1016     if (lgrp_id != -1) {
  1017       thread->set_lgrp_id(lgrp_id);
  1021   if (os::Linux::is_initial_thread()) {
  1022     // If current thread is initial thread, its stack is mapped on demand,
  1023     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
  1024     // the entire stack region to avoid SEGV in stack banging.
  1025     // It is also useful to get around the heap-stack-gap problem on SuSE
  1026     // kernel (see 4821821 for details). We first expand stack to the top
  1027     // of yellow zone, then enable stack yellow zone (order is significant,
  1028     // enabling yellow zone first will crash JVM on SuSE Linux), so there
  1029     // is no gap between the last two virtual memory regions.
  1031     JavaThread *jt = (JavaThread *)thread;
  1032     address addr = jt->stack_yellow_zone_base();
  1033     assert(addr != NULL, "initialization problem?");
  1034     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
  1036     osthread->set_expanding_stack();
  1037     os::Linux::manually_expand_stack(jt, addr);
  1038     osthread->clear_expanding_stack();
  1041   // initialize signal mask for this thread
  1042   // and save the caller's signal mask
  1043   os::Linux::hotspot_sigmask(thread);
  1045   return true;
  1048 void os::pd_start_thread(Thread* thread) {
  1049   OSThread * osthread = thread->osthread();
  1050   assert(osthread->get_state() != INITIALIZED, "just checking");
  1051   Monitor* sync_with_child = osthread->startThread_lock();
  1052   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
  1053   sync_with_child->notify();
  1056 // Free Linux resources related to the OSThread
  1057 void os::free_thread(OSThread* osthread) {
  1058   assert(osthread != NULL, "osthread not set");
  1060   if (Thread::current()->osthread() == osthread) {
  1061     // Restore caller's signal mask
  1062     sigset_t sigmask = osthread->caller_sigmask();
  1063     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
  1066   delete osthread;
  1069 //////////////////////////////////////////////////////////////////////////////
  1070 // thread local storage
  1072 int os::allocate_thread_local_storage() {
  1073   pthread_key_t key;
  1074   int rslt = pthread_key_create(&key, NULL);
  1075   assert(rslt == 0, "cannot allocate thread local storage");
  1076   return (int)key;
  1079 // Note: This is currently not used by VM, as we don't destroy TLS key
  1080 // on VM exit.
  1081 void os::free_thread_local_storage(int index) {
  1082   int rslt = pthread_key_delete((pthread_key_t)index);
  1083   assert(rslt == 0, "invalid index");
  1086 void os::thread_local_storage_at_put(int index, void* value) {
  1087   int rslt = pthread_setspecific((pthread_key_t)index, value);
  1088   assert(rslt == 0, "pthread_setspecific failed");
  1091 extern "C" Thread* get_thread() {
  1092   return ThreadLocalStorage::thread();
  1095 //////////////////////////////////////////////////////////////////////////////
  1096 // initial thread
  1098 // Check if current thread is the initial thread, similar to Solaris thr_main.
  1099 bool os::Linux::is_initial_thread(void) {
  1100   char dummy;
  1101   // If called before init complete, thread stack bottom will be null.
  1102   // Can be called if fatal error occurs before initialization.
  1103   if (initial_thread_stack_bottom() == NULL) return false;
  1104   assert(initial_thread_stack_bottom() != NULL &&
  1105          initial_thread_stack_size()   != 0,
  1106          "os::init did not locate initial thread's stack region");
  1107   if ((address)&dummy >= initial_thread_stack_bottom() &&
  1108       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
  1109        return true;
  1110   else return false;
  1113 // Find the virtual memory area that contains addr
  1114 static bool find_vma(address addr, address* vma_low, address* vma_high) {
  1115   FILE *fp = fopen("/proc/self/maps", "r");
  1116   if (fp) {
  1117     address low, high;
  1118     while (!feof(fp)) {
  1119       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
  1120         if (low <= addr && addr < high) {
  1121            if (vma_low)  *vma_low  = low;
  1122            if (vma_high) *vma_high = high;
  1123            fclose (fp);
  1124            return true;
  1127       for (;;) {
  1128         int ch = fgetc(fp);
  1129         if (ch == EOF || ch == (int)'\n') break;
  1132     fclose(fp);
  1134   return false;
  1137 // Locate initial thread stack. This special handling of initial thread stack
  1138 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
  1139 // bogus value for initial thread.
  1140 void os::Linux::capture_initial_stack(size_t max_size) {
  1141   // stack size is the easy part, get it from RLIMIT_STACK
  1142   size_t stack_size;
  1143   struct rlimit rlim;
  1144   getrlimit(RLIMIT_STACK, &rlim);
  1145   stack_size = rlim.rlim_cur;
  1147   // 6308388: a bug in ld.so will relocate its own .data section to the
  1148   //   lower end of primordial stack; reduce ulimit -s value a little bit
  1149   //   so we won't install guard page on ld.so's data section.
  1150   stack_size -= 2 * page_size();
  1152   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
  1153   //   7.1, in both cases we will get 2G in return value.
  1154   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
  1155   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
  1156   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
  1157   //   in case other parts in glibc still assumes 2M max stack size.
  1158   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
  1159   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
  1160   if (stack_size > 2 * K * K IA64_ONLY(*2))
  1161       stack_size = 2 * K * K IA64_ONLY(*2);
  1162   // Try to figure out where the stack base (top) is. This is harder.
  1163   //
  1164   // When an application is started, glibc saves the initial stack pointer in
  1165   // a global variable "__libc_stack_end", which is then used by system
  1166   // libraries. __libc_stack_end should be pretty close to stack top. The
  1167   // variable is available since the very early days. However, because it is
  1168   // a private interface, it could disappear in the future.
  1169   //
  1170   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
  1171   // to __libc_stack_end, it is very close to stack top, but isn't the real
  1172   // stack top. Note that /proc may not exist if VM is running as a chroot
  1173   // program, so reading /proc/<pid>/stat could fail. Also the contents of
  1174   // /proc/<pid>/stat could change in the future (though unlikely).
  1175   //
  1176   // We try __libc_stack_end first. If that doesn't work, look for
  1177   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
  1178   // as a hint, which should work well in most cases.
  1180   uintptr_t stack_start;
  1182   // try __libc_stack_end first
  1183   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
  1184   if (p && *p) {
  1185     stack_start = *p;
  1186   } else {
  1187     // see if we can get the start_stack field from /proc/self/stat
  1188     FILE *fp;
  1189     int pid;
  1190     char state;
  1191     int ppid;
  1192     int pgrp;
  1193     int session;
  1194     int nr;
  1195     int tpgrp;
  1196     unsigned long flags;
  1197     unsigned long minflt;
  1198     unsigned long cminflt;
  1199     unsigned long majflt;
  1200     unsigned long cmajflt;
  1201     unsigned long utime;
  1202     unsigned long stime;
  1203     long cutime;
  1204     long cstime;
  1205     long prio;
  1206     long nice;
  1207     long junk;
  1208     long it_real;
  1209     uintptr_t start;
  1210     uintptr_t vsize;
  1211     intptr_t rss;
  1212     uintptr_t rsslim;
  1213     uintptr_t scodes;
  1214     uintptr_t ecode;
  1215     int i;
  1217     // Figure what the primordial thread stack base is. Code is inspired
  1218     // by email from Hans Boehm. /proc/self/stat begins with current pid,
  1219     // followed by command name surrounded by parentheses, state, etc.
  1220     char stat[2048];
  1221     int statlen;
  1223     fp = fopen("/proc/self/stat", "r");
  1224     if (fp) {
  1225       statlen = fread(stat, 1, 2047, fp);
  1226       stat[statlen] = '\0';
  1227       fclose(fp);
  1229       // Skip pid and the command string. Note that we could be dealing with
  1230       // weird command names, e.g. user could decide to rename java launcher
  1231       // to "java 1.4.2 :)", then the stat file would look like
  1232       //                1234 (java 1.4.2 :)) R ... ...
  1233       // We don't really need to know the command string, just find the last
  1234       // occurrence of ")" and then start parsing from there. See bug 4726580.
  1235       char * s = strrchr(stat, ')');
  1237       i = 0;
  1238       if (s) {
  1239         // Skip blank chars
  1240         do s++; while (isspace(*s));
  1242 #define _UFM UINTX_FORMAT
  1243 #define _DFM INTX_FORMAT
  1245         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
  1246         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
  1247         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
  1248              &state,          /* 3  %c  */
  1249              &ppid,           /* 4  %d  */
  1250              &pgrp,           /* 5  %d  */
  1251              &session,        /* 6  %d  */
  1252              &nr,             /* 7  %d  */
  1253              &tpgrp,          /* 8  %d  */
  1254              &flags,          /* 9  %lu  */
  1255              &minflt,         /* 10 %lu  */
  1256              &cminflt,        /* 11 %lu  */
  1257              &majflt,         /* 12 %lu  */
  1258              &cmajflt,        /* 13 %lu  */
  1259              &utime,          /* 14 %lu  */
  1260              &stime,          /* 15 %lu  */
  1261              &cutime,         /* 16 %ld  */
  1262              &cstime,         /* 17 %ld  */
  1263              &prio,           /* 18 %ld  */
  1264              &nice,           /* 19 %ld  */
  1265              &junk,           /* 20 %ld  */
  1266              &it_real,        /* 21 %ld  */
  1267              &start,          /* 22 UINTX_FORMAT */
  1268              &vsize,          /* 23 UINTX_FORMAT */
  1269              &rss,            /* 24 INTX_FORMAT  */
  1270              &rsslim,         /* 25 UINTX_FORMAT */
  1271              &scodes,         /* 26 UINTX_FORMAT */
  1272              &ecode,          /* 27 UINTX_FORMAT */
  1273              &stack_start);   /* 28 UINTX_FORMAT */
  1276 #undef _UFM
  1277 #undef _DFM
  1279       if (i != 28 - 2) {
  1280          assert(false, "Bad conversion from /proc/self/stat");
  1281          // product mode - assume we are the initial thread, good luck in the
  1282          // embedded case.
  1283          warning("Can't detect initial thread stack location - bad conversion");
  1284          stack_start = (uintptr_t) &rlim;
  1286     } else {
  1287       // For some reason we can't open /proc/self/stat (for example, running on
  1288       // FreeBSD with a Linux emulator, or inside chroot), this should work for
  1289       // most cases, so don't abort:
  1290       warning("Can't detect initial thread stack location - no /proc/self/stat");
  1291       stack_start = (uintptr_t) &rlim;
  1295   // Now we have a pointer (stack_start) very close to the stack top, the
  1296   // next thing to do is to figure out the exact location of stack top. We
  1297   // can find out the virtual memory area that contains stack_start by
  1298   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
  1299   // and its upper limit is the real stack top. (again, this would fail if
  1300   // running inside chroot, because /proc may not exist.)
  1302   uintptr_t stack_top;
  1303   address low, high;
  1304   if (find_vma((address)stack_start, &low, &high)) {
  1305     // success, "high" is the true stack top. (ignore "low", because initial
  1306     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
  1307     stack_top = (uintptr_t)high;
  1308   } else {
  1309     // failed, likely because /proc/self/maps does not exist
  1310     warning("Can't detect initial thread stack location - find_vma failed");
  1311     // best effort: stack_start is normally within a few pages below the real
  1312     // stack top, use it as stack top, and reduce stack size so we won't put
  1313     // guard page outside stack.
  1314     stack_top = stack_start;
  1315     stack_size -= 16 * page_size();
  1318   // stack_top could be partially down the page so align it
  1319   stack_top = align_size_up(stack_top, page_size());
  1321   if (max_size && stack_size > max_size) {
  1322      _initial_thread_stack_size = max_size;
  1323   } else {
  1324      _initial_thread_stack_size = stack_size;
  1327   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
  1328   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
  1331 ////////////////////////////////////////////////////////////////////////////////
  1332 // time support
  1334 // Time since start-up in seconds to a fine granularity.
  1335 // Used by VMSelfDestructTimer and the MemProfiler.
  1336 double os::elapsedTime() {
  1338   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
  1341 jlong os::elapsed_counter() {
  1342   return javaTimeNanos() - initial_time_count;
  1345 jlong os::elapsed_frequency() {
  1346   return NANOSECS_PER_SEC; // nanosecond resolution
  1349 bool os::supports_vtime() { return true; }
  1350 bool os::enable_vtime()   { return false; }
  1351 bool os::vtime_enabled()  { return false; }
  1353 double os::elapsedVTime() {
  1354   struct rusage usage;
  1355   int retval = getrusage(RUSAGE_THREAD, &usage);
  1356   if (retval == 0) {
  1357     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
  1358   } else {
  1359     // better than nothing, but not much
  1360     return elapsedTime();
  1364 jlong os::javaTimeMillis() {
  1365   timeval time;
  1366   int status = gettimeofday(&time, NULL);
  1367   assert(status != -1, "linux error");
  1368   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
  1371 #ifndef CLOCK_MONOTONIC
  1372 #define CLOCK_MONOTONIC (1)
  1373 #endif
  1375 void os::Linux::clock_init() {
  1376   // we do dlopen's in this particular order due to bug in linux
  1377   // dynamical loader (see 6348968) leading to crash on exit
  1378   void* handle = dlopen("librt.so.1", RTLD_LAZY);
  1379   if (handle == NULL) {
  1380     handle = dlopen("librt.so", RTLD_LAZY);
  1383   if (handle) {
  1384     int (*clock_getres_func)(clockid_t, struct timespec*) =
  1385            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
  1386     int (*clock_gettime_func)(clockid_t, struct timespec*) =
  1387            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
  1388     if (clock_getres_func && clock_gettime_func) {
  1389       // See if monotonic clock is supported by the kernel. Note that some
  1390       // early implementations simply return kernel jiffies (updated every
  1391       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
  1392       // for nano time (though the monotonic property is still nice to have).
  1393       // It's fixed in newer kernels, however clock_getres() still returns
  1394       // 1/HZ. We check if clock_getres() works, but will ignore its reported
  1395       // resolution for now. Hopefully as people move to new kernels, this
  1396       // won't be a problem.
  1397       struct timespec res;
  1398       struct timespec tp;
  1399       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
  1400           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
  1401         // yes, monotonic clock is supported
  1402         _clock_gettime = clock_gettime_func;
  1403         return;
  1404       } else {
  1405         // close librt if there is no monotonic clock
  1406         dlclose(handle);
  1410   warning("No monotonic clock was available - timed services may " \
  1411           "be adversely affected if the time-of-day clock changes");
  1414 #ifndef SYS_clock_getres
  1416 #if defined(IA32) || defined(AMD64)
  1417 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
  1418 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1419 #else
  1420 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
  1421 #define sys_clock_getres(x,y)  -1
  1422 #endif
  1424 #else
  1425 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1426 #endif
  1428 void os::Linux::fast_thread_clock_init() {
  1429   if (!UseLinuxPosixThreadCPUClocks) {
  1430     return;
  1432   clockid_t clockid;
  1433   struct timespec tp;
  1434   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
  1435       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
  1437   // Switch to using fast clocks for thread cpu time if
  1438   // the sys_clock_getres() returns 0 error code.
  1439   // Note, that some kernels may support the current thread
  1440   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
  1441   // returned by the pthread_getcpuclockid().
  1442   // If the fast Posix clocks are supported then the sys_clock_getres()
  1443   // must return at least tp.tv_sec == 0 which means a resolution
  1444   // better than 1 sec. This is extra check for reliability.
  1446   if(pthread_getcpuclockid_func &&
  1447      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
  1448      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
  1450     _supports_fast_thread_cpu_time = true;
  1451     _pthread_getcpuclockid = pthread_getcpuclockid_func;
  1455 jlong os::javaTimeNanos() {
  1456   if (Linux::supports_monotonic_clock()) {
  1457     struct timespec tp;
  1458     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
  1459     assert(status == 0, "gettime error");
  1460     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
  1461     return result;
  1462   } else {
  1463     timeval time;
  1464     int status = gettimeofday(&time, NULL);
  1465     assert(status != -1, "linux error");
  1466     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
  1467     return 1000 * usecs;
  1471 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
  1472   if (Linux::supports_monotonic_clock()) {
  1473     info_ptr->max_value = ALL_64_BITS;
  1475     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
  1476     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
  1477     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
  1478   } else {
  1479     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
  1480     info_ptr->max_value = ALL_64_BITS;
  1482     // gettimeofday is a real time clock so it skips
  1483     info_ptr->may_skip_backward = true;
  1484     info_ptr->may_skip_forward = true;
  1487   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
  1490 // Return the real, user, and system times in seconds from an
  1491 // arbitrary fixed point in the past.
  1492 bool os::getTimesSecs(double* process_real_time,
  1493                       double* process_user_time,
  1494                       double* process_system_time) {
  1495   struct tms ticks;
  1496   clock_t real_ticks = times(&ticks);
  1498   if (real_ticks == (clock_t) (-1)) {
  1499     return false;
  1500   } else {
  1501     double ticks_per_second = (double) clock_tics_per_sec;
  1502     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
  1503     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
  1504     *process_real_time = ((double) real_ticks) / ticks_per_second;
  1506     return true;
  1511 char * os::local_time_string(char *buf, size_t buflen) {
  1512   struct tm t;
  1513   time_t long_time;
  1514   time(&long_time);
  1515   localtime_r(&long_time, &t);
  1516   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
  1517                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
  1518                t.tm_hour, t.tm_min, t.tm_sec);
  1519   return buf;
  1522 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
  1523   return localtime_r(clock, res);
  1526 ////////////////////////////////////////////////////////////////////////////////
  1527 // runtime exit support
  1529 // Note: os::shutdown() might be called very early during initialization, or
  1530 // called from signal handler. Before adding something to os::shutdown(), make
  1531 // sure it is async-safe and can handle partially initialized VM.
  1532 void os::shutdown() {
  1534   // allow PerfMemory to attempt cleanup of any persistent resources
  1535   perfMemory_exit();
  1537   // needs to remove object in file system
  1538   AttachListener::abort();
  1540   // flush buffered output, finish log files
  1541   ostream_abort();
  1543   // Check for abort hook
  1544   abort_hook_t abort_hook = Arguments::abort_hook();
  1545   if (abort_hook != NULL) {
  1546     abort_hook();
  1551 // Note: os::abort() might be called very early during initialization, or
  1552 // called from signal handler. Before adding something to os::abort(), make
  1553 // sure it is async-safe and can handle partially initialized VM.
  1554 void os::abort(bool dump_core) {
  1555   os::shutdown();
  1556   if (dump_core) {
  1557 #ifndef PRODUCT
  1558     fdStream out(defaultStream::output_fd());
  1559     out.print_raw("Current thread is ");
  1560     char buf[16];
  1561     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
  1562     out.print_raw_cr(buf);
  1563     out.print_raw_cr("Dumping core ...");
  1564 #endif
  1565     ::abort(); // dump core
  1568   ::exit(1);
  1571 // Die immediately, no exit hook, no abort hook, no cleanup.
  1572 void os::die() {
  1573   // _exit() on LinuxThreads only kills current thread
  1574   ::abort();
  1577 // unused on linux for now.
  1578 void os::set_error_file(const char *logfile) {}
  1581 // This method is a copy of JDK's sysGetLastErrorString
  1582 // from src/solaris/hpi/src/system_md.c
  1584 size_t os::lasterror(char *buf, size_t len) {
  1586   if (errno == 0)  return 0;
  1588   const char *s = ::strerror(errno);
  1589   size_t n = ::strlen(s);
  1590   if (n >= len) {
  1591     n = len - 1;
  1593   ::strncpy(buf, s, n);
  1594   buf[n] = '\0';
  1595   return n;
  1598 intx os::current_thread_id() { return (intx)pthread_self(); }
  1599 int os::current_process_id() {
  1601   // Under the old linux thread library, linux gives each thread
  1602   // its own process id. Because of this each thread will return
  1603   // a different pid if this method were to return the result
  1604   // of getpid(2). Linux provides no api that returns the pid
  1605   // of the launcher thread for the vm. This implementation
  1606   // returns a unique pid, the pid of the launcher thread
  1607   // that starts the vm 'process'.
  1609   // Under the NPTL, getpid() returns the same pid as the
  1610   // launcher thread rather than a unique pid per thread.
  1611   // Use gettid() if you want the old pre NPTL behaviour.
  1613   // if you are looking for the result of a call to getpid() that
  1614   // returns a unique pid for the calling thread, then look at the
  1615   // OSThread::thread_id() method in osThread_linux.hpp file
  1617   return (int)(_initial_pid ? _initial_pid : getpid());
  1620 // DLL functions
  1622 const char* os::dll_file_extension() { return ".so"; }
  1624 // This must be hard coded because it's the system's temporary
  1625 // directory not the java application's temp directory, ala java.io.tmpdir.
  1626 const char* os::get_temp_directory() { return "/tmp"; }
  1628 static bool file_exists(const char* filename) {
  1629   struct stat statbuf;
  1630   if (filename == NULL || strlen(filename) == 0) {
  1631     return false;
  1633   return os::stat(filename, &statbuf) == 0;
  1636 bool os::dll_build_name(char* buffer, size_t buflen,
  1637                         const char* pname, const char* fname) {
  1638   bool retval = false;
  1639   // Copied from libhpi
  1640   const size_t pnamelen = pname ? strlen(pname) : 0;
  1642   // Return error on buffer overflow.
  1643   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
  1644     return retval;
  1647   if (pnamelen == 0) {
  1648     snprintf(buffer, buflen, "lib%s.so", fname);
  1649     retval = true;
  1650   } else if (strchr(pname, *os::path_separator()) != NULL) {
  1651     int n;
  1652     char** pelements = split_path(pname, &n);
  1653     if (pelements == NULL) {
  1654       return false;
  1656     for (int i = 0 ; i < n ; i++) {
  1657       // Really shouldn't be NULL, but check can't hurt
  1658       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
  1659         continue; // skip the empty path values
  1661       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
  1662       if (file_exists(buffer)) {
  1663         retval = true;
  1664         break;
  1667     // release the storage
  1668     for (int i = 0 ; i < n ; i++) {
  1669       if (pelements[i] != NULL) {
  1670         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
  1673     if (pelements != NULL) {
  1674       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
  1676   } else {
  1677     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
  1678     retval = true;
  1680   return retval;
  1683 // check if addr is inside libjvm.so
  1684 bool os::address_is_in_vm(address addr) {
  1685   static address libjvm_base_addr;
  1686   Dl_info dlinfo;
  1688   if (libjvm_base_addr == NULL) {
  1689     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
  1690       libjvm_base_addr = (address)dlinfo.dli_fbase;
  1692     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
  1695   if (dladdr((void *)addr, &dlinfo) != 0) {
  1696     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
  1699   return false;
  1702 bool os::dll_address_to_function_name(address addr, char *buf,
  1703                                       int buflen, int *offset) {
  1704   // buf is not optional, but offset is optional
  1705   assert(buf != NULL, "sanity check");
  1707   Dl_info dlinfo;
  1709   if (dladdr((void*)addr, &dlinfo) != 0) {
  1710     // see if we have a matching symbol
  1711     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
  1712       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
  1713         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
  1715       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
  1716       return true;
  1718     // no matching symbol so try for just file info
  1719     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
  1720       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
  1721                           buf, buflen, offset, dlinfo.dli_fname)) {
  1722         return true;
  1727   buf[0] = '\0';
  1728   if (offset != NULL) *offset = -1;
  1729   return false;
  1732 struct _address_to_library_name {
  1733   address addr;          // input : memory address
  1734   size_t  buflen;        //         size of fname
  1735   char*   fname;         // output: library name
  1736   address base;          //         library base addr
  1737 };
  1739 static int address_to_library_name_callback(struct dl_phdr_info *info,
  1740                                             size_t size, void *data) {
  1741   int i;
  1742   bool found = false;
  1743   address libbase = NULL;
  1744   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
  1746   // iterate through all loadable segments
  1747   for (i = 0; i < info->dlpi_phnum; i++) {
  1748     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
  1749     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
  1750       // base address of a library is the lowest address of its loaded
  1751       // segments.
  1752       if (libbase == NULL || libbase > segbase) {
  1753         libbase = segbase;
  1755       // see if 'addr' is within current segment
  1756       if (segbase <= d->addr &&
  1757           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
  1758         found = true;
  1763   // dlpi_name is NULL or empty if the ELF file is executable, return 0
  1764   // so dll_address_to_library_name() can fall through to use dladdr() which
  1765   // can figure out executable name from argv[0].
  1766   if (found && info->dlpi_name && info->dlpi_name[0]) {
  1767     d->base = libbase;
  1768     if (d->fname) {
  1769       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
  1771     return 1;
  1773   return 0;
  1776 bool os::dll_address_to_library_name(address addr, char* buf,
  1777                                      int buflen, int* offset) {
  1778   // buf is not optional, but offset is optional
  1779   assert(buf != NULL, "sanity check");
  1781   Dl_info dlinfo;
  1782   struct _address_to_library_name data;
  1784   // There is a bug in old glibc dladdr() implementation that it could resolve
  1785   // to wrong library name if the .so file has a base address != NULL. Here
  1786   // we iterate through the program headers of all loaded libraries to find
  1787   // out which library 'addr' really belongs to. This workaround can be
  1788   // removed once the minimum requirement for glibc is moved to 2.3.x.
  1789   data.addr = addr;
  1790   data.fname = buf;
  1791   data.buflen = buflen;
  1792   data.base = NULL;
  1793   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
  1795   if (rslt) {
  1796      // buf already contains library name
  1797      if (offset) *offset = addr - data.base;
  1798      return true;
  1800   if (dladdr((void*)addr, &dlinfo) != 0) {
  1801     if (dlinfo.dli_fname != NULL) {
  1802       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
  1804     if (dlinfo.dli_fbase != NULL && offset != NULL) {
  1805       *offset = addr - (address)dlinfo.dli_fbase;
  1807     return true;
  1810   buf[0] = '\0';
  1811   if (offset) *offset = -1;
  1812   return false;
  1815   // Loads .dll/.so and
  1816   // in case of error it checks if .dll/.so was built for the
  1817   // same architecture as Hotspot is running on
  1820 // Remember the stack's state. The Linux dynamic linker will change
  1821 // the stack to 'executable' at most once, so we must safepoint only once.
  1822 bool os::Linux::_stack_is_executable = false;
  1824 // VM operation that loads a library.  This is necessary if stack protection
  1825 // of the Java stacks can be lost during loading the library.  If we
  1826 // do not stop the Java threads, they can stack overflow before the stacks
  1827 // are protected again.
  1828 class VM_LinuxDllLoad: public VM_Operation {
  1829  private:
  1830   const char *_filename;
  1831   char *_ebuf;
  1832   int _ebuflen;
  1833   void *_lib;
  1834  public:
  1835   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
  1836     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
  1837   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
  1838   void doit() {
  1839     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
  1840     os::Linux::_stack_is_executable = true;
  1842   void* loaded_library() { return _lib; }
  1843 };
  1845 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
  1847   void * result = NULL;
  1848   bool load_attempted = false;
  1850   // Check whether the library to load might change execution rights
  1851   // of the stack. If they are changed, the protection of the stack
  1852   // guard pages will be lost. We need a safepoint to fix this.
  1853   //
  1854   // See Linux man page execstack(8) for more info.
  1855   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
  1856     ElfFile ef(filename);
  1857     if (!ef.specifies_noexecstack()) {
  1858       if (!is_init_completed()) {
  1859         os::Linux::_stack_is_executable = true;
  1860         // This is OK - No Java threads have been created yet, and hence no
  1861         // stack guard pages to fix.
  1862         //
  1863         // This should happen only when you are building JDK7 using a very
  1864         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
  1865         //
  1866         // Dynamic loader will make all stacks executable after
  1867         // this function returns, and will not do that again.
  1868         assert(Threads::first() == NULL, "no Java threads should exist yet.");
  1869       } else {
  1870         warning("You have loaded library %s which might have disabled stack guard. "
  1871                 "The VM will try to fix the stack guard now.\n"
  1872                 "It's highly recommended that you fix the library with "
  1873                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
  1874                 filename);
  1876         assert(Thread::current()->is_Java_thread(), "must be Java thread");
  1877         JavaThread *jt = JavaThread::current();
  1878         if (jt->thread_state() != _thread_in_native) {
  1879           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
  1880           // that requires ExecStack. Cannot enter safe point. Let's give up.
  1881           warning("Unable to fix stack guard. Giving up.");
  1882         } else {
  1883           if (!LoadExecStackDllInVMThread) {
  1884             // This is for the case where the DLL has an static
  1885             // constructor function that executes JNI code. We cannot
  1886             // load such DLLs in the VMThread.
  1887             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
  1890           ThreadInVMfromNative tiv(jt);
  1891           debug_only(VMNativeEntryWrapper vew;)
  1893           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
  1894           VMThread::execute(&op);
  1895           if (LoadExecStackDllInVMThread) {
  1896             result = op.loaded_library();
  1898           load_attempted = true;
  1904   if (!load_attempted) {
  1905     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
  1908   if (result != NULL) {
  1909     // Successful loading
  1910     return result;
  1913   Elf32_Ehdr elf_head;
  1914   int diag_msg_max_length=ebuflen-strlen(ebuf);
  1915   char* diag_msg_buf=ebuf+strlen(ebuf);
  1917   if (diag_msg_max_length==0) {
  1918     // No more space in ebuf for additional diagnostics message
  1919     return NULL;
  1923   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
  1925   if (file_descriptor < 0) {
  1926     // Can't open library, report dlerror() message
  1927     return NULL;
  1930   bool failed_to_read_elf_head=
  1931     (sizeof(elf_head)!=
  1932         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
  1934   ::close(file_descriptor);
  1935   if (failed_to_read_elf_head) {
  1936     // file i/o error - report dlerror() msg
  1937     return NULL;
  1940   typedef struct {
  1941     Elf32_Half  code;         // Actual value as defined in elf.h
  1942     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
  1943     char        elf_class;    // 32 or 64 bit
  1944     char        endianess;    // MSB or LSB
  1945     char*       name;         // String representation
  1946   } arch_t;
  1948   #ifndef EM_486
  1949   #define EM_486          6               /* Intel 80486 */
  1950   #endif
  1952   static const arch_t arch_array[]={
  1953     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1954     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1955     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
  1956     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
  1957     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1958     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1959     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
  1960     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
  1961     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
  1962     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
  1963     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
  1964     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
  1965     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
  1966     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
  1967     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
  1968     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
  1969   };
  1971   #if  (defined IA32)
  1972     static  Elf32_Half running_arch_code=EM_386;
  1973   #elif   (defined AMD64)
  1974     static  Elf32_Half running_arch_code=EM_X86_64;
  1975   #elif  (defined IA64)
  1976     static  Elf32_Half running_arch_code=EM_IA_64;
  1977   #elif  (defined __sparc) && (defined _LP64)
  1978     static  Elf32_Half running_arch_code=EM_SPARCV9;
  1979   #elif  (defined __sparc) && (!defined _LP64)
  1980     static  Elf32_Half running_arch_code=EM_SPARC;
  1981   #elif  (defined __powerpc64__)
  1982     static  Elf32_Half running_arch_code=EM_PPC64;
  1983   #elif  (defined __powerpc__)
  1984     static  Elf32_Half running_arch_code=EM_PPC;
  1985   #elif  (defined ARM)
  1986     static  Elf32_Half running_arch_code=EM_ARM;
  1987   #elif  (defined S390)
  1988     static  Elf32_Half running_arch_code=EM_S390;
  1989   #elif  (defined ALPHA)
  1990     static  Elf32_Half running_arch_code=EM_ALPHA;
  1991   #elif  (defined MIPSEL)
  1992     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
  1993   #elif  (defined PARISC)
  1994     static  Elf32_Half running_arch_code=EM_PARISC;
  1995   #elif  (defined MIPS)
  1996     static  Elf32_Half running_arch_code=EM_MIPS;
  1997   #elif  (defined M68K)
  1998     static  Elf32_Half running_arch_code=EM_68K;
  1999   #else
  2000     #error Method os::dll_load requires that one of following is defined:\
  2001          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
  2002   #endif
  2004   // Identify compatability class for VM's architecture and library's architecture
  2005   // Obtain string descriptions for architectures
  2007   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
  2008   int running_arch_index=-1;
  2010   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
  2011     if (running_arch_code == arch_array[i].code) {
  2012       running_arch_index    = i;
  2014     if (lib_arch.code == arch_array[i].code) {
  2015       lib_arch.compat_class = arch_array[i].compat_class;
  2016       lib_arch.name         = arch_array[i].name;
  2020   assert(running_arch_index != -1,
  2021     "Didn't find running architecture code (running_arch_code) in arch_array");
  2022   if (running_arch_index == -1) {
  2023     // Even though running architecture detection failed
  2024     // we may still continue with reporting dlerror() message
  2025     return NULL;
  2028   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
  2029     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
  2030     return NULL;
  2033 #ifndef S390
  2034   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
  2035     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
  2036     return NULL;
  2038 #endif // !S390
  2040   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
  2041     if ( lib_arch.name!=NULL ) {
  2042       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  2043         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
  2044         lib_arch.name, arch_array[running_arch_index].name);
  2045     } else {
  2046       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  2047       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
  2048         lib_arch.code,
  2049         arch_array[running_arch_index].name);
  2053   return NULL;
  2056 void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
  2057   void * result = ::dlopen(filename, RTLD_LAZY);
  2058   if (result == NULL) {
  2059     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
  2060     ebuf[ebuflen-1] = '\0';
  2062   return result;
  2065 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
  2066   void * result = NULL;
  2067   if (LoadExecStackDllInVMThread) {
  2068     result = dlopen_helper(filename, ebuf, ebuflen);
  2071   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
  2072   // library that requires an executable stack, or which does not have this
  2073   // stack attribute set, dlopen changes the stack attribute to executable. The
  2074   // read protection of the guard pages gets lost.
  2075   //
  2076   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
  2077   // may have been queued at the same time.
  2079   if (!_stack_is_executable) {
  2080     JavaThread *jt = Threads::first();
  2082     while (jt) {
  2083       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
  2084           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
  2085         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
  2086                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
  2087           warning("Attempt to reguard stack yellow zone failed.");
  2090       jt = jt->next();
  2094   return result;
  2097 /*
  2098  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
  2099  * chances are you might want to run the generated bits against glibc-2.0
  2100  * libdl.so, so always use locking for any version of glibc.
  2101  */
  2102 void* os::dll_lookup(void* handle, const char* name) {
  2103   pthread_mutex_lock(&dl_mutex);
  2104   void* res = dlsym(handle, name);
  2105   pthread_mutex_unlock(&dl_mutex);
  2106   return res;
  2109 void* os::get_default_process_handle() {
  2110   return (void*)::dlopen(NULL, RTLD_LAZY);
  2113 static bool _print_ascii_file(const char* filename, outputStream* st) {
  2114   int fd = ::open(filename, O_RDONLY);
  2115   if (fd == -1) {
  2116      return false;
  2119   char buf[32];
  2120   int bytes;
  2121   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
  2122     st->print_raw(buf, bytes);
  2125   ::close(fd);
  2127   return true;
  2130 void os::print_dll_info(outputStream *st) {
  2131    st->print_cr("Dynamic libraries:");
  2133    char fname[32];
  2134    pid_t pid = os::Linux::gettid();
  2136    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
  2138    if (!_print_ascii_file(fname, st)) {
  2139      st->print("Can not get library information for pid = %d\n", pid);
  2143 void os::print_os_info_brief(outputStream* st) {
  2144   os::Linux::print_distro_info(st);
  2146   os::Posix::print_uname_info(st);
  2148   os::Linux::print_libversion_info(st);
  2152 void os::print_os_info(outputStream* st) {
  2153   st->print("OS:");
  2155   os::Linux::print_distro_info(st);
  2157   os::Posix::print_uname_info(st);
  2159   // Print warning if unsafe chroot environment detected
  2160   if (unsafe_chroot_detected) {
  2161     st->print("WARNING!! ");
  2162     st->print_cr(unstable_chroot_error);
  2165   os::Linux::print_libversion_info(st);
  2167   os::Posix::print_rlimit_info(st);
  2169   os::Posix::print_load_average(st);
  2171   os::Linux::print_full_memory_info(st);
  2174 // Try to identify popular distros.
  2175 // Most Linux distributions have a /etc/XXX-release file, which contains
  2176 // the OS version string. Newer Linux distributions have a /etc/lsb-release
  2177 // file that also contains the OS version string. Some have more than one
  2178 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
  2179 // /etc/redhat-release.), so the order is important.
  2180 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
  2181 // their own specific XXX-release file as well as a redhat-release file.
  2182 // Because of this the XXX-release file needs to be searched for before the
  2183 // redhat-release file.
  2184 // Since Red Hat has a lsb-release file that is not very descriptive the
  2185 // search for redhat-release needs to be before lsb-release.
  2186 // Since the lsb-release file is the new standard it needs to be searched
  2187 // before the older style release files.
  2188 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
  2189 // next to last resort.  The os-release file is a new standard that contains
  2190 // distribution information and the system-release file seems to be an old
  2191 // standard that has been replaced by the lsb-release and os-release files.
  2192 // Searching for the debian_version file is the last resort.  It contains
  2193 // an informative string like "6.0.6" or "wheezy/sid". Because of this
  2194 // "Debian " is printed before the contents of the debian_version file.
  2195 void os::Linux::print_distro_info(outputStream* st) {
  2196    if (!_print_ascii_file("/etc/oracle-release", st) &&
  2197        !_print_ascii_file("/etc/mandriva-release", st) &&
  2198        !_print_ascii_file("/etc/mandrake-release", st) &&
  2199        !_print_ascii_file("/etc/sun-release", st) &&
  2200        !_print_ascii_file("/etc/redhat-release", st) &&
  2201        !_print_ascii_file("/etc/lsb-release", st) &&
  2202        !_print_ascii_file("/etc/SuSE-release", st) &&
  2203        !_print_ascii_file("/etc/turbolinux-release", st) &&
  2204        !_print_ascii_file("/etc/gentoo-release", st) &&
  2205        !_print_ascii_file("/etc/ltib-release", st) &&
  2206        !_print_ascii_file("/etc/angstrom-version", st) &&
  2207        !_print_ascii_file("/etc/system-release", st) &&
  2208        !_print_ascii_file("/etc/os-release", st)) {
  2210        if (file_exists("/etc/debian_version")) {
  2211          st->print("Debian ");
  2212          _print_ascii_file("/etc/debian_version", st);
  2213        } else {
  2214          st->print("Linux");
  2217    st->cr();
  2220 void os::Linux::print_libversion_info(outputStream* st) {
  2221   // libc, pthread
  2222   st->print("libc:");
  2223   st->print(os::Linux::glibc_version()); st->print(" ");
  2224   st->print(os::Linux::libpthread_version()); st->print(" ");
  2225   if (os::Linux::is_LinuxThreads()) {
  2226      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
  2228   st->cr();
  2231 void os::Linux::print_full_memory_info(outputStream* st) {
  2232    st->print("\n/proc/meminfo:\n");
  2233    _print_ascii_file("/proc/meminfo", st);
  2234    st->cr();
  2237 void os::print_memory_info(outputStream* st) {
  2239   st->print("Memory:");
  2240   st->print(" %dk page", os::vm_page_size()>>10);
  2242   // values in struct sysinfo are "unsigned long"
  2243   struct sysinfo si;
  2244   sysinfo(&si);
  2246   st->print(", physical " UINT64_FORMAT "k",
  2247             os::physical_memory() >> 10);
  2248   st->print("(" UINT64_FORMAT "k free)",
  2249             os::available_memory() >> 10);
  2250   st->print(", swap " UINT64_FORMAT "k",
  2251             ((jlong)si.totalswap * si.mem_unit) >> 10);
  2252   st->print("(" UINT64_FORMAT "k free)",
  2253             ((jlong)si.freeswap * si.mem_unit) >> 10);
  2254   st->cr();
  2257 void os::pd_print_cpu_info(outputStream* st) {
  2258   st->print("\n/proc/cpuinfo:\n");
  2259   if (!_print_ascii_file("/proc/cpuinfo", st)) {
  2260     st->print("  <Not Available>");
  2262   st->cr();
  2265 // Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
  2266 // but they're the same for all the linux arch that we support
  2267 // and they're the same for solaris but there's no common place to put this.
  2268 const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
  2269                           "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
  2270                           "ILL_COPROC", "ILL_BADSTK" };
  2272 const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
  2273                           "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
  2274                           "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
  2276 const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
  2278 const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
  2280 void os::print_siginfo(outputStream* st, void* siginfo) {
  2281   st->print("siginfo:");
  2283   const int buflen = 100;
  2284   char buf[buflen];
  2285   siginfo_t *si = (siginfo_t*)siginfo;
  2286   st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
  2287   if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
  2288     st->print("si_errno=%s", buf);
  2289   } else {
  2290     st->print("si_errno=%d", si->si_errno);
  2292   const int c = si->si_code;
  2293   assert(c > 0, "unexpected si_code");
  2294   switch (si->si_signo) {
  2295   case SIGILL:
  2296     st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
  2297     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2298     break;
  2299   case SIGFPE:
  2300     st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
  2301     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2302     break;
  2303   case SIGSEGV:
  2304     st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
  2305     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2306     break;
  2307   case SIGBUS:
  2308     st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
  2309     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2310     break;
  2311   default:
  2312     st->print(", si_code=%d", si->si_code);
  2313     // no si_addr
  2316   if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
  2317       UseSharedSpaces) {
  2318     FileMapInfo* mapinfo = FileMapInfo::current_info();
  2319     if (mapinfo->is_in_shared_space(si->si_addr)) {
  2320       st->print("\n\nError accessing class data sharing archive."   \
  2321                 " Mapped file inaccessible during execution, "      \
  2322                 " possible disk/network problem.");
  2325   st->cr();
  2329 static void print_signal_handler(outputStream* st, int sig,
  2330                                  char* buf, size_t buflen);
  2332 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  2333   st->print_cr("Signal Handlers:");
  2334   print_signal_handler(st, SIGSEGV, buf, buflen);
  2335   print_signal_handler(st, SIGBUS , buf, buflen);
  2336   print_signal_handler(st, SIGFPE , buf, buflen);
  2337   print_signal_handler(st, SIGPIPE, buf, buflen);
  2338   print_signal_handler(st, SIGXFSZ, buf, buflen);
  2339   print_signal_handler(st, SIGILL , buf, buflen);
  2340   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
  2341   print_signal_handler(st, SR_signum, buf, buflen);
  2342   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
  2343   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
  2344   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
  2345   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
  2348 static char saved_jvm_path[MAXPATHLEN] = {0};
  2350 // Find the full path to the current module, libjvm.so
  2351 void os::jvm_path(char *buf, jint buflen) {
  2352   // Error checking.
  2353   if (buflen < MAXPATHLEN) {
  2354     assert(false, "must use a large-enough buffer");
  2355     buf[0] = '\0';
  2356     return;
  2358   // Lazy resolve the path to current module.
  2359   if (saved_jvm_path[0] != 0) {
  2360     strcpy(buf, saved_jvm_path);
  2361     return;
  2364   char dli_fname[MAXPATHLEN];
  2365   bool ret = dll_address_to_library_name(
  2366                 CAST_FROM_FN_PTR(address, os::jvm_path),
  2367                 dli_fname, sizeof(dli_fname), NULL);
  2368   assert(ret, "cannot locate libjvm");
  2369   char *rp = NULL;
  2370   if (ret && dli_fname[0] != '\0') {
  2371     rp = realpath(dli_fname, buf);
  2373   if (rp == NULL)
  2374     return;
  2376   if (Arguments::created_by_gamma_launcher()) {
  2377     // Support for the gamma launcher.  Typical value for buf is
  2378     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
  2379     // the right place in the string, then assume we are installed in a JDK and
  2380     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
  2381     // up the path so it looks like libjvm.so is installed there (append a
  2382     // fake suffix hotspot/libjvm.so).
  2383     const char *p = buf + strlen(buf) - 1;
  2384     for (int count = 0; p > buf && count < 5; ++count) {
  2385       for (--p; p > buf && *p != '/'; --p)
  2386         /* empty */ ;
  2389     if (strncmp(p, "/jre/lib/", 9) != 0) {
  2390       // Look for JAVA_HOME in the environment.
  2391       char* java_home_var = ::getenv("JAVA_HOME");
  2392       if (java_home_var != NULL && java_home_var[0] != 0) {
  2393         char* jrelib_p;
  2394         int len;
  2396         // Check the current module name "libjvm.so".
  2397         p = strrchr(buf, '/');
  2398         assert(strstr(p, "/libjvm") == p, "invalid library name");
  2400         rp = realpath(java_home_var, buf);
  2401         if (rp == NULL)
  2402           return;
  2404         // determine if this is a legacy image or modules image
  2405         // modules image doesn't have "jre" subdirectory
  2406         len = strlen(buf);
  2407         jrelib_p = buf + len;
  2408         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
  2409         if (0 != access(buf, F_OK)) {
  2410           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
  2413         if (0 == access(buf, F_OK)) {
  2414           // Use current module name "libjvm.so"
  2415           len = strlen(buf);
  2416           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
  2417         } else {
  2418           // Go back to path of .so
  2419           rp = realpath(dli_fname, buf);
  2420           if (rp == NULL)
  2421             return;
  2427   strcpy(saved_jvm_path, buf);
  2430 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  2431   // no prefix required, not even "_"
  2434 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  2435   // no suffix required
  2438 ////////////////////////////////////////////////////////////////////////////////
  2439 // sun.misc.Signal support
  2441 static volatile jint sigint_count = 0;
  2443 static void
  2444 UserHandler(int sig, void *siginfo, void *context) {
  2445   // 4511530 - sem_post is serialized and handled by the manager thread. When
  2446   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
  2447   // don't want to flood the manager thread with sem_post requests.
  2448   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
  2449       return;
  2451   // Ctrl-C is pressed during error reporting, likely because the error
  2452   // handler fails to abort. Let VM die immediately.
  2453   if (sig == SIGINT && is_error_reported()) {
  2454      os::die();
  2457   os::signal_notify(sig);
  2460 void* os::user_handler() {
  2461   return CAST_FROM_FN_PTR(void*, UserHandler);
  2464 class Semaphore : public StackObj {
  2465   public:
  2466     Semaphore();
  2467     ~Semaphore();
  2468     void signal();
  2469     void wait();
  2470     bool trywait();
  2471     bool timedwait(unsigned int sec, int nsec);
  2472   private:
  2473     sem_t _semaphore;
  2474 };
  2476 Semaphore::Semaphore() {
  2477   sem_init(&_semaphore, 0, 0);
  2480 Semaphore::~Semaphore() {
  2481   sem_destroy(&_semaphore);
  2484 void Semaphore::signal() {
  2485   sem_post(&_semaphore);
  2488 void Semaphore::wait() {
  2489   sem_wait(&_semaphore);
  2492 bool Semaphore::trywait() {
  2493   return sem_trywait(&_semaphore) == 0;
  2496 bool Semaphore::timedwait(unsigned int sec, int nsec) {
  2498   struct timespec ts;
  2499   // Semaphore's are always associated with CLOCK_REALTIME
  2500   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
  2501   // see unpackTime for discussion on overflow checking
  2502   if (sec >= MAX_SECS) {
  2503     ts.tv_sec += MAX_SECS;
  2504     ts.tv_nsec = 0;
  2505   } else {
  2506     ts.tv_sec += sec;
  2507     ts.tv_nsec += nsec;
  2508     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
  2509       ts.tv_nsec -= NANOSECS_PER_SEC;
  2510       ++ts.tv_sec; // note: this must be <= max_secs
  2514   while (1) {
  2515     int result = sem_timedwait(&_semaphore, &ts);
  2516     if (result == 0) {
  2517       return true;
  2518     } else if (errno == EINTR) {
  2519       continue;
  2520     } else if (errno == ETIMEDOUT) {
  2521       return false;
  2522     } else {
  2523       return false;
  2528 extern "C" {
  2529   typedef void (*sa_handler_t)(int);
  2530   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
  2533 void* os::signal(int signal_number, void* handler) {
  2534   struct sigaction sigAct, oldSigAct;
  2536   sigfillset(&(sigAct.sa_mask));
  2537   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
  2538   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
  2540   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
  2541     // -1 means registration failed
  2542     return (void *)-1;
  2545   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
  2548 void os::signal_raise(int signal_number) {
  2549   ::raise(signal_number);
  2552 /*
  2553  * The following code is moved from os.cpp for making this
  2554  * code platform specific, which it is by its very nature.
  2555  */
  2557 // Will be modified when max signal is changed to be dynamic
  2558 int os::sigexitnum_pd() {
  2559   return NSIG;
  2562 // a counter for each possible signal value
  2563 static volatile jint pending_signals[NSIG+1] = { 0 };
  2565 // Linux(POSIX) specific hand shaking semaphore.
  2566 static sem_t sig_sem;
  2567 static Semaphore sr_semaphore;
  2569 void os::signal_init_pd() {
  2570   // Initialize signal structures
  2571   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
  2573   // Initialize signal semaphore
  2574   ::sem_init(&sig_sem, 0, 0);
  2577 void os::signal_notify(int sig) {
  2578   Atomic::inc(&pending_signals[sig]);
  2579   ::sem_post(&sig_sem);
  2582 static int check_pending_signals(bool wait) {
  2583   Atomic::store(0, &sigint_count);
  2584   for (;;) {
  2585     for (int i = 0; i < NSIG + 1; i++) {
  2586       jint n = pending_signals[i];
  2587       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  2588         return i;
  2591     if (!wait) {
  2592       return -1;
  2594     JavaThread *thread = JavaThread::current();
  2595     ThreadBlockInVM tbivm(thread);
  2597     bool threadIsSuspended;
  2598     do {
  2599       thread->set_suspend_equivalent();
  2600       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  2601       ::sem_wait(&sig_sem);
  2603       // were we externally suspended while we were waiting?
  2604       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  2605       if (threadIsSuspended) {
  2606         //
  2607         // The semaphore has been incremented, but while we were waiting
  2608         // another thread suspended us. We don't want to continue running
  2609         // while suspended because that would surprise the thread that
  2610         // suspended us.
  2611         //
  2612         ::sem_post(&sig_sem);
  2614         thread->java_suspend_self();
  2616     } while (threadIsSuspended);
  2620 int os::signal_lookup() {
  2621   return check_pending_signals(false);
  2624 int os::signal_wait() {
  2625   return check_pending_signals(true);
  2628 ////////////////////////////////////////////////////////////////////////////////
  2629 // Virtual Memory
  2631 int os::vm_page_size() {
  2632   // Seems redundant as all get out
  2633   assert(os::Linux::page_size() != -1, "must call os::init");
  2634   return os::Linux::page_size();
  2637 // Solaris allocates memory by pages.
  2638 int os::vm_allocation_granularity() {
  2639   assert(os::Linux::page_size() != -1, "must call os::init");
  2640   return os::Linux::page_size();
  2643 // Rationale behind this function:
  2644 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
  2645 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
  2646 //  samples for JITted code. Here we create private executable mapping over the code cache
  2647 //  and then we can use standard (well, almost, as mapping can change) way to provide
  2648 //  info for the reporting script by storing timestamp and location of symbol
  2649 void linux_wrap_code(char* base, size_t size) {
  2650   static volatile jint cnt = 0;
  2652   if (!UseOprofile) {
  2653     return;
  2656   char buf[PATH_MAX+1];
  2657   int num = Atomic::add(1, &cnt);
  2659   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
  2660            os::get_temp_directory(), os::current_process_id(), num);
  2661   unlink(buf);
  2663   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
  2665   if (fd != -1) {
  2666     off_t rv = ::lseek(fd, size-2, SEEK_SET);
  2667     if (rv != (off_t)-1) {
  2668       if (::write(fd, "", 1) == 1) {
  2669         mmap(base, size,
  2670              PROT_READ|PROT_WRITE|PROT_EXEC,
  2671              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
  2674     ::close(fd);
  2675     unlink(buf);
  2679 static bool recoverable_mmap_error(int err) {
  2680   // See if the error is one we can let the caller handle. This
  2681   // list of errno values comes from JBS-6843484. I can't find a
  2682   // Linux man page that documents this specific set of errno
  2683   // values so while this list currently matches Solaris, it may
  2684   // change as we gain experience with this failure mode.
  2685   switch (err) {
  2686   case EBADF:
  2687   case EINVAL:
  2688   case ENOTSUP:
  2689     // let the caller deal with these errors
  2690     return true;
  2692   default:
  2693     // Any remaining errors on this OS can cause our reserved mapping
  2694     // to be lost. That can cause confusion where different data
  2695     // structures think they have the same memory mapped. The worst
  2696     // scenario is if both the VM and a library think they have the
  2697     // same memory mapped.
  2698     return false;
  2702 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
  2703                                     int err) {
  2704   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
  2705           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
  2706           strerror(err), err);
  2709 static void warn_fail_commit_memory(char* addr, size_t size,
  2710                                     size_t alignment_hint, bool exec,
  2711                                     int err) {
  2712   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
  2713           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
  2714           alignment_hint, exec, strerror(err), err);
  2717 // NOTE: Linux kernel does not really reserve the pages for us.
  2718 //       All it does is to check if there are enough free pages
  2719 //       left at the time of mmap(). This could be a potential
  2720 //       problem.
  2721 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
  2722   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  2723   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
  2724                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
  2725   if (res != (uintptr_t) MAP_FAILED) {
  2726     if (UseNUMAInterleaving) {
  2727       numa_make_global(addr, size);
  2729     return 0;
  2732   int err = errno;  // save errno from mmap() call above
  2734   if (!recoverable_mmap_error(err)) {
  2735     warn_fail_commit_memory(addr, size, exec, err);
  2736     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
  2739   return err;
  2742 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
  2743   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
  2746 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
  2747                                   const char* mesg) {
  2748   assert(mesg != NULL, "mesg must be specified");
  2749   int err = os::Linux::commit_memory_impl(addr, size, exec);
  2750   if (err != 0) {
  2751     // the caller wants all commit errors to exit with the specified mesg:
  2752     warn_fail_commit_memory(addr, size, exec, err);
  2753     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
  2757 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
  2758 #ifndef MAP_HUGETLB
  2759 #define MAP_HUGETLB 0x40000
  2760 #endif
  2762 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
  2763 #ifndef MADV_HUGEPAGE
  2764 #define MADV_HUGEPAGE 14
  2765 #endif
  2767 int os::Linux::commit_memory_impl(char* addr, size_t size,
  2768                                   size_t alignment_hint, bool exec) {
  2769   int err = os::Linux::commit_memory_impl(addr, size, exec);
  2770   if (err == 0) {
  2771     realign_memory(addr, size, alignment_hint);
  2773   return err;
  2776 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
  2777                           bool exec) {
  2778   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
  2781 void os::pd_commit_memory_or_exit(char* addr, size_t size,
  2782                                   size_t alignment_hint, bool exec,
  2783                                   const char* mesg) {
  2784   assert(mesg != NULL, "mesg must be specified");
  2785   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
  2786   if (err != 0) {
  2787     // the caller wants all commit errors to exit with the specified mesg:
  2788     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
  2789     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
  2793 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2794   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
  2795     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
  2796     // be supported or the memory may already be backed by huge pages.
  2797     ::madvise(addr, bytes, MADV_HUGEPAGE);
  2801 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2802   // This method works by doing an mmap over an existing mmaping and effectively discarding
  2803   // the existing pages. However it won't work for SHM-based large pages that cannot be
  2804   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
  2805   // small pages on top of the SHM segment. This method always works for small pages, so we
  2806   // allow that in any case.
  2807   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
  2808     commit_memory(addr, bytes, alignment_hint, !ExecMem);
  2812 void os::numa_make_global(char *addr, size_t bytes) {
  2813   Linux::numa_interleave_memory(addr, bytes);
  2816 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
  2817 // bind policy to MPOL_PREFERRED for the current thread.
  2818 #define USE_MPOL_PREFERRED 0
  2820 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
  2821   // To make NUMA and large pages more robust when both enabled, we need to ease
  2822   // the requirements on where the memory should be allocated. MPOL_BIND is the
  2823   // default policy and it will force memory to be allocated on the specified
  2824   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
  2825   // the specified node, but will not force it. Using this policy will prevent
  2826   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
  2827   // free large pages.
  2828   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
  2829   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
  2832 bool os::numa_topology_changed()   { return false; }
  2834 size_t os::numa_get_groups_num() {
  2835   int max_node = Linux::numa_max_node();
  2836   return max_node > 0 ? max_node + 1 : 1;
  2839 int os::numa_get_group_id() {
  2840   int cpu_id = Linux::sched_getcpu();
  2841   if (cpu_id != -1) {
  2842     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
  2843     if (lgrp_id != -1) {
  2844       return lgrp_id;
  2847   return 0;
  2850 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  2851   for (size_t i = 0; i < size; i++) {
  2852     ids[i] = i;
  2854   return size;
  2857 bool os::get_page_info(char *start, page_info* info) {
  2858   return false;
  2861 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  2862   return end;
  2866 int os::Linux::sched_getcpu_syscall(void) {
  2867   unsigned int cpu;
  2868   int retval = -1;
  2870 #if defined(IA32)
  2871 # ifndef SYS_getcpu
  2872 # define SYS_getcpu 318
  2873 # endif
  2874   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
  2875 #elif defined(AMD64)
  2876 // Unfortunately we have to bring all these macros here from vsyscall.h
  2877 // to be able to compile on old linuxes.
  2878 # define __NR_vgetcpu 2
  2879 # define VSYSCALL_START (-10UL << 20)
  2880 # define VSYSCALL_SIZE 1024
  2881 # define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
  2882   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
  2883   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
  2884   retval = vgetcpu(&cpu, NULL, NULL);
  2885 #endif
  2887   return (retval == -1) ? retval : cpu;
  2890 // Something to do with the numa-aware allocator needs these symbols
  2891 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
  2892 extern "C" JNIEXPORT void numa_error(char *where) { }
  2893 extern "C" JNIEXPORT int fork1() { return fork(); }
  2896 // If we are running with libnuma version > 2, then we should
  2897 // be trying to use symbols with versions 1.1
  2898 // If we are running with earlier version, which did not have symbol versions,
  2899 // we should use the base version.
  2900 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
  2901   void *f = dlvsym(handle, name, "libnuma_1.1");
  2902   if (f == NULL) {
  2903     f = dlsym(handle, name);
  2905   return f;
  2908 bool os::Linux::libnuma_init() {
  2909   // sched_getcpu() should be in libc.
  2910   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
  2911                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
  2913   // If it's not, try a direct syscall.
  2914   if (sched_getcpu() == -1)
  2915     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
  2917   if (sched_getcpu() != -1) { // Does it work?
  2918     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
  2919     if (handle != NULL) {
  2920       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
  2921                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
  2922       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
  2923                                        libnuma_dlsym(handle, "numa_max_node")));
  2924       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
  2925                                         libnuma_dlsym(handle, "numa_available")));
  2926       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
  2927                                             libnuma_dlsym(handle, "numa_tonode_memory")));
  2928       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
  2929                                             libnuma_dlsym(handle, "numa_interleave_memory")));
  2930       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
  2931                                             libnuma_dlsym(handle, "numa_set_bind_policy")));
  2934       if (numa_available() != -1) {
  2935         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
  2936         // Create a cpu -> node mapping
  2937         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
  2938         rebuild_cpu_to_node_map();
  2939         return true;
  2943   return false;
  2946 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
  2947 // The table is later used in get_node_by_cpu().
  2948 void os::Linux::rebuild_cpu_to_node_map() {
  2949   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
  2950                               // in libnuma (possible values are starting from 16,
  2951                               // and continuing up with every other power of 2, but less
  2952                               // than the maximum number of CPUs supported by kernel), and
  2953                               // is a subject to change (in libnuma version 2 the requirements
  2954                               // are more reasonable) we'll just hardcode the number they use
  2955                               // in the library.
  2956   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
  2958   size_t cpu_num = os::active_processor_count();
  2959   size_t cpu_map_size = NCPUS / BitsPerCLong;
  2960   size_t cpu_map_valid_size =
  2961     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
  2963   cpu_to_node()->clear();
  2964   cpu_to_node()->at_grow(cpu_num - 1);
  2965   size_t node_num = numa_get_groups_num();
  2967   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
  2968   for (size_t i = 0; i < node_num; i++) {
  2969     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
  2970       for (size_t j = 0; j < cpu_map_valid_size; j++) {
  2971         if (cpu_map[j] != 0) {
  2972           for (size_t k = 0; k < BitsPerCLong; k++) {
  2973             if (cpu_map[j] & (1UL << k)) {
  2974               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
  2981   FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
  2984 int os::Linux::get_node_by_cpu(int cpu_id) {
  2985   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
  2986     return cpu_to_node()->at(cpu_id);
  2988   return -1;
  2991 GrowableArray<int>* os::Linux::_cpu_to_node;
  2992 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
  2993 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
  2994 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
  2995 os::Linux::numa_available_func_t os::Linux::_numa_available;
  2996 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
  2997 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
  2998 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
  2999 unsigned long* os::Linux::_numa_all_nodes;
  3001 bool os::pd_uncommit_memory(char* addr, size_t size) {
  3002   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
  3003                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
  3004   return res  != (uintptr_t) MAP_FAILED;
  3007 static
  3008 address get_stack_commited_bottom(address bottom, size_t size) {
  3009   address nbot = bottom;
  3010   address ntop = bottom + size;
  3012   size_t page_sz = os::vm_page_size();
  3013   unsigned pages = size / page_sz;
  3015   unsigned char vec[1];
  3016   unsigned imin = 1, imax = pages + 1, imid;
  3017   int mincore_return_value = 0;
  3019   assert(imin <= imax, "Unexpected page size");
  3021   while (imin < imax) {
  3022     imid = (imax + imin) / 2;
  3023     nbot = ntop - (imid * page_sz);
  3025     // Use a trick with mincore to check whether the page is mapped or not.
  3026     // mincore sets vec to 1 if page resides in memory and to 0 if page
  3027     // is swapped output but if page we are asking for is unmapped
  3028     // it returns -1,ENOMEM
  3029     mincore_return_value = mincore(nbot, page_sz, vec);
  3031     if (mincore_return_value == -1) {
  3032       // Page is not mapped go up
  3033       // to find first mapped page
  3034       if (errno != EAGAIN) {
  3035         assert(errno == ENOMEM, "Unexpected mincore errno");
  3036         imax = imid;
  3038     } else {
  3039       // Page is mapped go down
  3040       // to find first not mapped page
  3041       imin = imid + 1;
  3045   nbot = nbot + page_sz;
  3047   // Adjust stack bottom one page up if last checked page is not mapped
  3048   if (mincore_return_value == -1) {
  3049     nbot = nbot + page_sz;
  3052   return nbot;
  3056 // Linux uses a growable mapping for the stack, and if the mapping for
  3057 // the stack guard pages is not removed when we detach a thread the
  3058 // stack cannot grow beyond the pages where the stack guard was
  3059 // mapped.  If at some point later in the process the stack expands to
  3060 // that point, the Linux kernel cannot expand the stack any further
  3061 // because the guard pages are in the way, and a segfault occurs.
  3062 //
  3063 // However, it's essential not to split the stack region by unmapping
  3064 // a region (leaving a hole) that's already part of the stack mapping,
  3065 // so if the stack mapping has already grown beyond the guard pages at
  3066 // the time we create them, we have to truncate the stack mapping.
  3067 // So, we need to know the extent of the stack mapping when
  3068 // create_stack_guard_pages() is called.
  3070 // We only need this for stacks that are growable: at the time of
  3071 // writing thread stacks don't use growable mappings (i.e. those
  3072 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
  3073 // only applies to the main thread.
  3075 // If the (growable) stack mapping already extends beyond the point
  3076 // where we're going to put our guard pages, truncate the mapping at
  3077 // that point by munmap()ping it.  This ensures that when we later
  3078 // munmap() the guard pages we don't leave a hole in the stack
  3079 // mapping. This only affects the main/initial thread
  3081 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
  3083   if (os::Linux::is_initial_thread()) {
  3084     // As we manually grow stack up to bottom inside create_attached_thread(),
  3085     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
  3086     // we don't need to do anything special.
  3087     // Check it first, before calling heavy function.
  3088     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
  3089     unsigned char vec[1];
  3091     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
  3092       // Fallback to slow path on all errors, including EAGAIN
  3093       stack_extent = (uintptr_t) get_stack_commited_bottom(
  3094                                     os::Linux::initial_thread_stack_bottom(),
  3095                                     (size_t)addr - stack_extent);
  3098     if (stack_extent < (uintptr_t)addr) {
  3099       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
  3103   return os::commit_memory(addr, size, !ExecMem);
  3106 // If this is a growable mapping, remove the guard pages entirely by
  3107 // munmap()ping them.  If not, just call uncommit_memory(). This only
  3108 // affects the main/initial thread, but guard against future OS changes
  3109 // It's safe to always unmap guard pages for initial thread because we
  3110 // always place it right after end of the mapped region
  3112 bool os::remove_stack_guard_pages(char* addr, size_t size) {
  3113   uintptr_t stack_extent, stack_base;
  3115   if (os::Linux::is_initial_thread()) {
  3116     return ::munmap(addr, size) == 0;
  3119   return os::uncommit_memory(addr, size);
  3122 static address _highest_vm_reserved_address = NULL;
  3124 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
  3125 // at 'requested_addr'. If there are existing memory mappings at the same
  3126 // location, however, they will be overwritten. If 'fixed' is false,
  3127 // 'requested_addr' is only treated as a hint, the return value may or
  3128 // may not start from the requested address. Unlike Linux mmap(), this
  3129 // function returns NULL to indicate failure.
  3130 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
  3131   char * addr;
  3132   int flags;
  3134   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
  3135   if (fixed) {
  3136     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
  3137     flags |= MAP_FIXED;
  3140   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
  3141   // touch an uncommitted page. Otherwise, the read/write might
  3142   // succeed if we have enough swap space to back the physical page.
  3143   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
  3144                        flags, -1, 0);
  3146   if (addr != MAP_FAILED) {
  3147     // anon_mmap() should only get called during VM initialization,
  3148     // don't need lock (actually we can skip locking even it can be called
  3149     // from multiple threads, because _highest_vm_reserved_address is just a
  3150     // hint about the upper limit of non-stack memory regions.)
  3151     if ((address)addr + bytes > _highest_vm_reserved_address) {
  3152       _highest_vm_reserved_address = (address)addr + bytes;
  3156   return addr == MAP_FAILED ? NULL : addr;
  3159 // Don't update _highest_vm_reserved_address, because there might be memory
  3160 // regions above addr + size. If so, releasing a memory region only creates
  3161 // a hole in the address space, it doesn't help prevent heap-stack collision.
  3162 //
  3163 static int anon_munmap(char * addr, size_t size) {
  3164   return ::munmap(addr, size) == 0;
  3167 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
  3168                          size_t alignment_hint) {
  3169   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
  3172 bool os::pd_release_memory(char* addr, size_t size) {
  3173   return anon_munmap(addr, size);
  3176 static address highest_vm_reserved_address() {
  3177   return _highest_vm_reserved_address;
  3180 static bool linux_mprotect(char* addr, size_t size, int prot) {
  3181   // Linux wants the mprotect address argument to be page aligned.
  3182   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
  3184   // According to SUSv3, mprotect() should only be used with mappings
  3185   // established by mmap(), and mmap() always maps whole pages. Unaligned
  3186   // 'addr' likely indicates problem in the VM (e.g. trying to change
  3187   // protection of malloc'ed or statically allocated memory). Check the
  3188   // caller if you hit this assert.
  3189   assert(addr == bottom, "sanity check");
  3191   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
  3192   return ::mprotect(bottom, size, prot) == 0;
  3195 // Set protections specified
  3196 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  3197                         bool is_committed) {
  3198   unsigned int p = 0;
  3199   switch (prot) {
  3200   case MEM_PROT_NONE: p = PROT_NONE; break;
  3201   case MEM_PROT_READ: p = PROT_READ; break;
  3202   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
  3203   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
  3204   default:
  3205     ShouldNotReachHere();
  3207   // is_committed is unused.
  3208   return linux_mprotect(addr, bytes, p);
  3211 bool os::guard_memory(char* addr, size_t size) {
  3212   return linux_mprotect(addr, size, PROT_NONE);
  3215 bool os::unguard_memory(char* addr, size_t size) {
  3216   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
  3219 bool os::Linux::transparent_huge_pages_sanity_check(bool warn, size_t page_size) {
  3220   bool result = false;
  3221   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
  3222                  MAP_ANONYMOUS|MAP_PRIVATE,
  3223                  -1, 0);
  3224   if (p != MAP_FAILED) {
  3225     void *aligned_p = align_ptr_up(p, page_size);
  3227     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
  3229     munmap(p, page_size * 2);
  3232   if (warn && !result) {
  3233     warning("TransparentHugePages is not supported by the operating system.");
  3236   return result;
  3239 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
  3240   bool result = false;
  3241   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
  3242                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
  3243                  -1, 0);
  3245   if (p != MAP_FAILED) {
  3246     // We don't know if this really is a huge page or not.
  3247     FILE *fp = fopen("/proc/self/maps", "r");
  3248     if (fp) {
  3249       while (!feof(fp)) {
  3250         char chars[257];
  3251         long x = 0;
  3252         if (fgets(chars, sizeof(chars), fp)) {
  3253           if (sscanf(chars, "%lx-%*x", &x) == 1
  3254               && x == (long)p) {
  3255             if (strstr (chars, "hugepage")) {
  3256               result = true;
  3257               break;
  3262       fclose(fp);
  3264     munmap(p, page_size);
  3267   if (warn && !result) {
  3268     warning("HugeTLBFS is not supported by the operating system.");
  3271   return result;
  3274 /*
  3275 * Set the coredump_filter bits to include largepages in core dump (bit 6)
  3277 * From the coredump_filter documentation:
  3279 * - (bit 0) anonymous private memory
  3280 * - (bit 1) anonymous shared memory
  3281 * - (bit 2) file-backed private memory
  3282 * - (bit 3) file-backed shared memory
  3283 * - (bit 4) ELF header pages in file-backed private memory areas (it is
  3284 *           effective only if the bit 2 is cleared)
  3285 * - (bit 5) hugetlb private memory
  3286 * - (bit 6) hugetlb shared memory
  3287 */
  3288 static void set_coredump_filter(void) {
  3289   FILE *f;
  3290   long cdm;
  3292   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
  3293     return;
  3296   if (fscanf(f, "%lx", &cdm) != 1) {
  3297     fclose(f);
  3298     return;
  3301   rewind(f);
  3303   if ((cdm & LARGEPAGES_BIT) == 0) {
  3304     cdm |= LARGEPAGES_BIT;
  3305     fprintf(f, "%#lx", cdm);
  3308   fclose(f);
  3311 // Large page support
  3313 static size_t _large_page_size = 0;
  3315 size_t os::Linux::find_large_page_size() {
  3316   size_t large_page_size = 0;
  3318   // large_page_size on Linux is used to round up heap size. x86 uses either
  3319   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
  3320   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
  3321   // page as large as 256M.
  3322   //
  3323   // Here we try to figure out page size by parsing /proc/meminfo and looking
  3324   // for a line with the following format:
  3325   //    Hugepagesize:     2048 kB
  3326   //
  3327   // If we can't determine the value (e.g. /proc is not mounted, or the text
  3328   // format has been changed), we'll use the largest page size supported by
  3329   // the processor.
  3331 #ifndef ZERO
  3332   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
  3333                      ARM_ONLY(2 * M) PPC_ONLY(4 * M);
  3334 #endif // ZERO
  3336   FILE *fp = fopen("/proc/meminfo", "r");
  3337   if (fp) {
  3338     while (!feof(fp)) {
  3339       int x = 0;
  3340       char buf[16];
  3341       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
  3342         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
  3343           large_page_size = x * K;
  3344           break;
  3346       } else {
  3347         // skip to next line
  3348         for (;;) {
  3349           int ch = fgetc(fp);
  3350           if (ch == EOF || ch == (int)'\n') break;
  3354     fclose(fp);
  3357   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
  3358     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
  3359         SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
  3360         proper_unit_for_byte_size(large_page_size));
  3363   return large_page_size;
  3366 size_t os::Linux::setup_large_page_size() {
  3367   _large_page_size = Linux::find_large_page_size();
  3368   const size_t default_page_size = (size_t)Linux::page_size();
  3369   if (_large_page_size > default_page_size) {
  3370     _page_sizes[0] = _large_page_size;
  3371     _page_sizes[1] = default_page_size;
  3372     _page_sizes[2] = 0;
  3375   return _large_page_size;
  3378 bool os::Linux::setup_large_page_type(size_t page_size) {
  3379   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
  3380       FLAG_IS_DEFAULT(UseSHM) &&
  3381       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
  3383     // The type of large pages has not been specified by the user.
  3385     // Try UseHugeTLBFS and then UseSHM.
  3386     UseHugeTLBFS = UseSHM = true;
  3388     // Don't try UseTransparentHugePages since there are known
  3389     // performance issues with it turned on. This might change in the future.
  3390     UseTransparentHugePages = false;
  3393   if (UseTransparentHugePages) {
  3394     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
  3395     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
  3396       UseHugeTLBFS = false;
  3397       UseSHM = false;
  3398       return true;
  3400     UseTransparentHugePages = false;
  3403   if (UseHugeTLBFS) {
  3404     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
  3405     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
  3406       UseSHM = false;
  3407       return true;
  3409     UseHugeTLBFS = false;
  3412   return UseSHM;
  3415 void os::large_page_init() {
  3416   if (!UseLargePages &&
  3417       !UseTransparentHugePages &&
  3418       !UseHugeTLBFS &&
  3419       !UseSHM) {
  3420     // Not using large pages.
  3421     return;
  3424   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
  3425     // The user explicitly turned off large pages.
  3426     // Ignore the rest of the large pages flags.
  3427     UseTransparentHugePages = false;
  3428     UseHugeTLBFS = false;
  3429     UseSHM = false;
  3430     return;
  3433   size_t large_page_size = Linux::setup_large_page_size();
  3434   UseLargePages          = Linux::setup_large_page_type(large_page_size);
  3436   set_coredump_filter();
  3439 #ifndef SHM_HUGETLB
  3440 #define SHM_HUGETLB 04000
  3441 #endif
  3443 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3444   // "exec" is passed in but not used.  Creating the shared image for
  3445   // the code cache doesn't have an SHM_X executable permission to check.
  3446   assert(UseLargePages && UseSHM, "only for SHM large pages");
  3447   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
  3449   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
  3450     return NULL; // Fallback to small pages.
  3453   key_t key = IPC_PRIVATE;
  3454   char *addr;
  3456   bool warn_on_failure = UseLargePages &&
  3457                         (!FLAG_IS_DEFAULT(UseLargePages) ||
  3458                          !FLAG_IS_DEFAULT(UseSHM) ||
  3459                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
  3460                         );
  3461   char msg[128];
  3463   // Create a large shared memory region to attach to based on size.
  3464   // Currently, size is the total size of the heap
  3465   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
  3466   if (shmid == -1) {
  3467      // Possible reasons for shmget failure:
  3468      // 1. shmmax is too small for Java heap.
  3469      //    > check shmmax value: cat /proc/sys/kernel/shmmax
  3470      //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
  3471      // 2. not enough large page memory.
  3472      //    > check available large pages: cat /proc/meminfo
  3473      //    > increase amount of large pages:
  3474      //          echo new_value > /proc/sys/vm/nr_hugepages
  3475      //      Note 1: different Linux may use different name for this property,
  3476      //            e.g. on Redhat AS-3 it is "hugetlb_pool".
  3477      //      Note 2: it's possible there's enough physical memory available but
  3478      //            they are so fragmented after a long run that they can't
  3479      //            coalesce into large pages. Try to reserve large pages when
  3480      //            the system is still "fresh".
  3481      if (warn_on_failure) {
  3482        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
  3483        warning(msg);
  3485      return NULL;
  3488   // attach to the region
  3489   addr = (char*)shmat(shmid, req_addr, 0);
  3490   int err = errno;
  3492   // Remove shmid. If shmat() is successful, the actual shared memory segment
  3493   // will be deleted when it's detached by shmdt() or when the process
  3494   // terminates. If shmat() is not successful this will remove the shared
  3495   // segment immediately.
  3496   shmctl(shmid, IPC_RMID, NULL);
  3498   if ((intptr_t)addr == -1) {
  3499      if (warn_on_failure) {
  3500        jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
  3501        warning(msg);
  3503      return NULL;
  3506   return addr;
  3509 static void warn_on_large_pages_failure(char* req_addr, size_t bytes, int error) {
  3510   assert(error == ENOMEM, "Only expect to fail if no memory is available");
  3512   bool warn_on_failure = UseLargePages &&
  3513       (!FLAG_IS_DEFAULT(UseLargePages) ||
  3514        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
  3515        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
  3517   if (warn_on_failure) {
  3518     char msg[128];
  3519     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
  3520         PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
  3521     warning(msg);
  3525 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes, char* req_addr, bool exec) {
  3526   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
  3527   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
  3528   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
  3530   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  3531   char* addr = (char*)::mmap(req_addr, bytes, prot,
  3532                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
  3533                              -1, 0);
  3535   if (addr == MAP_FAILED) {
  3536     warn_on_large_pages_failure(req_addr, bytes, errno);
  3537     return NULL;
  3540   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
  3542   return addr;
  3545 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3546   size_t large_page_size = os::large_page_size();
  3548   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
  3550   // Allocate small pages.
  3552   char* start;
  3553   if (req_addr != NULL) {
  3554     assert(is_ptr_aligned(req_addr, alignment), "Must be");
  3555     assert(is_size_aligned(bytes, alignment), "Must be");
  3556     start = os::reserve_memory(bytes, req_addr);
  3557     assert(start == NULL || start == req_addr, "Must be");
  3558   } else {
  3559     start = os::reserve_memory_aligned(bytes, alignment);
  3562   if (start == NULL) {
  3563     return NULL;
  3566   assert(is_ptr_aligned(start, alignment), "Must be");
  3568   // os::reserve_memory_special will record this memory area.
  3569   // Need to release it here to prevent overlapping reservations.
  3570   MemTracker::record_virtual_memory_release((address)start, bytes);
  3572   char* end = start + bytes;
  3574   // Find the regions of the allocated chunk that can be promoted to large pages.
  3575   char* lp_start = (char*)align_ptr_up(start, large_page_size);
  3576   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
  3578   size_t lp_bytes = lp_end - lp_start;
  3580   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
  3582   if (lp_bytes == 0) {
  3583     // The mapped region doesn't even span the start and the end of a large page.
  3584     // Fall back to allocate a non-special area.
  3585     ::munmap(start, end - start);
  3586     return NULL;
  3589   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  3592   void* result;
  3594   if (start != lp_start) {
  3595     result = ::mmap(start, lp_start - start, prot,
  3596                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
  3597                     -1, 0);
  3598     if (result == MAP_FAILED) {
  3599       ::munmap(lp_start, end - lp_start);
  3600       return NULL;
  3604   result = ::mmap(lp_start, lp_bytes, prot,
  3605                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
  3606                   -1, 0);
  3607   if (result == MAP_FAILED) {
  3608     warn_on_large_pages_failure(req_addr, bytes, errno);
  3609     // If the mmap above fails, the large pages region will be unmapped and we
  3610     // have regions before and after with small pages. Release these regions.
  3611     //
  3612     // |  mapped  |  unmapped  |  mapped  |
  3613     // ^          ^            ^          ^
  3614     // start      lp_start     lp_end     end
  3615     //
  3616     ::munmap(start, lp_start - start);
  3617     ::munmap(lp_end, end - lp_end);
  3618     return NULL;
  3621   if (lp_end != end) {
  3622       result = ::mmap(lp_end, end - lp_end, prot,
  3623                       MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
  3624                       -1, 0);
  3625     if (result == MAP_FAILED) {
  3626       ::munmap(start, lp_end - start);
  3627       return NULL;
  3631   return start;
  3634 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3635   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
  3636   assert(is_ptr_aligned(req_addr, alignment), "Must be");
  3637   assert(is_power_of_2(alignment), "Must be");
  3638   assert(is_power_of_2(os::large_page_size()), "Must be");
  3639   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
  3641   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
  3642     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
  3643   } else {
  3644     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
  3648 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3649   assert(UseLargePages, "only for large pages");
  3651   char* addr;
  3652   if (UseSHM) {
  3653     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
  3654   } else {
  3655     assert(UseHugeTLBFS, "must be");
  3656     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
  3659   if (addr != NULL) {
  3660     if (UseNUMAInterleaving) {
  3661       numa_make_global(addr, bytes);
  3664     // The memory is committed
  3665     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, mtNone, CALLER_PC);
  3668   return addr;
  3671 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
  3672   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
  3673   return shmdt(base) == 0;
  3676 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
  3677   return pd_release_memory(base, bytes);
  3680 bool os::release_memory_special(char* base, size_t bytes) {
  3681   assert(UseLargePages, "only for large pages");
  3683   MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
  3685   bool res;
  3686   if (UseSHM) {
  3687     res = os::Linux::release_memory_special_shm(base, bytes);
  3688   } else {
  3689     assert(UseHugeTLBFS, "must be");
  3690     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
  3693   if (res) {
  3694     tkr.record((address)base, bytes);
  3695   } else {
  3696     tkr.discard();
  3699   return res;
  3702 size_t os::large_page_size() {
  3703   return _large_page_size;
  3706 // With SysV SHM the entire memory region must be allocated as shared
  3707 // memory.
  3708 // HugeTLBFS allows application to commit large page memory on demand.
  3709 // However, when committing memory with HugeTLBFS fails, the region
  3710 // that was supposed to be committed will lose the old reservation
  3711 // and allow other threads to steal that memory region. Because of this
  3712 // behavior we can't commit HugeTLBFS memory.
  3713 bool os::can_commit_large_page_memory() {
  3714   return UseTransparentHugePages;
  3717 bool os::can_execute_large_page_memory() {
  3718   return UseTransparentHugePages || UseHugeTLBFS;
  3721 // Reserve memory at an arbitrary address, only if that area is
  3722 // available (and not reserved for something else).
  3724 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  3725   const int max_tries = 10;
  3726   char* base[max_tries];
  3727   size_t size[max_tries];
  3728   const size_t gap = 0x000000;
  3730   // Assert only that the size is a multiple of the page size, since
  3731   // that's all that mmap requires, and since that's all we really know
  3732   // about at this low abstraction level.  If we need higher alignment,
  3733   // we can either pass an alignment to this method or verify alignment
  3734   // in one of the methods further up the call chain.  See bug 5044738.
  3735   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
  3737   // Repeatedly allocate blocks until the block is allocated at the
  3738   // right spot. Give up after max_tries. Note that reserve_memory() will
  3739   // automatically update _highest_vm_reserved_address if the call is
  3740   // successful. The variable tracks the highest memory address every reserved
  3741   // by JVM. It is used to detect heap-stack collision if running with
  3742   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
  3743   // space than needed, it could confuse the collision detecting code. To
  3744   // solve the problem, save current _highest_vm_reserved_address and
  3745   // calculate the correct value before return.
  3746   address old_highest = _highest_vm_reserved_address;
  3748   // Linux mmap allows caller to pass an address as hint; give it a try first,
  3749   // if kernel honors the hint then we can return immediately.
  3750   char * addr = anon_mmap(requested_addr, bytes, false);
  3751   if (addr == requested_addr) {
  3752      return requested_addr;
  3755   if (addr != NULL) {
  3756      // mmap() is successful but it fails to reserve at the requested address
  3757      anon_munmap(addr, bytes);
  3760   int i;
  3761   for (i = 0; i < max_tries; ++i) {
  3762     base[i] = reserve_memory(bytes);
  3764     if (base[i] != NULL) {
  3765       // Is this the block we wanted?
  3766       if (base[i] == requested_addr) {
  3767         size[i] = bytes;
  3768         break;
  3771       // Does this overlap the block we wanted? Give back the overlapped
  3772       // parts and try again.
  3774       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
  3775       if (top_overlap >= 0 && top_overlap < bytes) {
  3776         unmap_memory(base[i], top_overlap);
  3777         base[i] += top_overlap;
  3778         size[i] = bytes - top_overlap;
  3779       } else {
  3780         size_t bottom_overlap = base[i] + bytes - requested_addr;
  3781         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
  3782           unmap_memory(requested_addr, bottom_overlap);
  3783           size[i] = bytes - bottom_overlap;
  3784         } else {
  3785           size[i] = bytes;
  3791   // Give back the unused reserved pieces.
  3793   for (int j = 0; j < i; ++j) {
  3794     if (base[j] != NULL) {
  3795       unmap_memory(base[j], size[j]);
  3799   if (i < max_tries) {
  3800     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
  3801     return requested_addr;
  3802   } else {
  3803     _highest_vm_reserved_address = old_highest;
  3804     return NULL;
  3808 size_t os::read(int fd, void *buf, unsigned int nBytes) {
  3809   return ::read(fd, buf, nBytes);
  3812 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
  3813 // Solaris uses poll(), linux uses park().
  3814 // Poll() is likely a better choice, assuming that Thread.interrupt()
  3815 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
  3816 // SIGSEGV, see 4355769.
  3818 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
  3819   assert(thread == Thread::current(),  "thread consistency check");
  3821   ParkEvent * const slp = thread->_SleepEvent ;
  3822   slp->reset() ;
  3823   OrderAccess::fence() ;
  3825   if (interruptible) {
  3826     jlong prevtime = javaTimeNanos();
  3828     for (;;) {
  3829       if (os::is_interrupted(thread, true)) {
  3830         return OS_INTRPT;
  3833       jlong newtime = javaTimeNanos();
  3835       if (newtime - prevtime < 0) {
  3836         // time moving backwards, should only happen if no monotonic clock
  3837         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  3838         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  3839       } else {
  3840         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
  3843       if(millis <= 0) {
  3844         return OS_OK;
  3847       prevtime = newtime;
  3850         assert(thread->is_Java_thread(), "sanity check");
  3851         JavaThread *jt = (JavaThread *) thread;
  3852         ThreadBlockInVM tbivm(jt);
  3853         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
  3855         jt->set_suspend_equivalent();
  3856         // cleared by handle_special_suspend_equivalent_condition() or
  3857         // java_suspend_self() via check_and_wait_while_suspended()
  3859         slp->park(millis);
  3861         // were we externally suspended while we were waiting?
  3862         jt->check_and_wait_while_suspended();
  3865   } else {
  3866     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  3867     jlong prevtime = javaTimeNanos();
  3869     for (;;) {
  3870       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
  3871       // the 1st iteration ...
  3872       jlong newtime = javaTimeNanos();
  3874       if (newtime - prevtime < 0) {
  3875         // time moving backwards, should only happen if no monotonic clock
  3876         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  3877         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  3878       } else {
  3879         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
  3882       if(millis <= 0) break ;
  3884       prevtime = newtime;
  3885       slp->park(millis);
  3887     return OS_OK ;
  3891 //
  3892 // Short sleep, direct OS call.
  3893 //
  3894 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
  3895 // sched_yield(2) will actually give up the CPU:
  3896 //
  3897 //   * Alone on this pariticular CPU, keeps running.
  3898 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
  3899 //     (pre 2.6.39).
  3900 //
  3901 // So calling this with 0 is an alternative.
  3902 //
  3903 void os::naked_short_sleep(jlong ms) {
  3904   struct timespec req;
  3906   assert(ms < 1000, "Un-interruptable sleep, short time use only");
  3907   req.tv_sec = 0;
  3908   if (ms > 0) {
  3909     req.tv_nsec = (ms % 1000) * 1000000;
  3911   else {
  3912     req.tv_nsec = 1;
  3915   nanosleep(&req, NULL);
  3917   return;
  3920 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  3921 void os::infinite_sleep() {
  3922   while (true) {    // sleep forever ...
  3923     ::sleep(100);   // ... 100 seconds at a time
  3927 // Used to convert frequent JVM_Yield() to nops
  3928 bool os::dont_yield() {
  3929   return DontYieldALot;
  3932 void os::yield() {
  3933   sched_yield();
  3936 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
  3938 void os::yield_all(int attempts) {
  3939   // Yields to all threads, including threads with lower priorities
  3940   // Threads on Linux are all with same priority. The Solaris style
  3941   // os::yield_all() with nanosleep(1ms) is not necessary.
  3942   sched_yield();
  3945 // Called from the tight loops to possibly influence time-sharing heuristics
  3946 void os::loop_breaker(int attempts) {
  3947   os::yield_all(attempts);
  3950 ////////////////////////////////////////////////////////////////////////////////
  3951 // thread priority support
  3953 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
  3954 // only supports dynamic priority, static priority must be zero. For real-time
  3955 // applications, Linux supports SCHED_RR which allows static priority (1-99).
  3956 // However, for large multi-threaded applications, SCHED_RR is not only slower
  3957 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
  3958 // of 5 runs - Sep 2005).
  3959 //
  3960 // The following code actually changes the niceness of kernel-thread/LWP. It
  3961 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
  3962 // not the entire user process, and user level threads are 1:1 mapped to kernel
  3963 // threads. It has always been the case, but could change in the future. For
  3964 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
  3965 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
  3967 int os::java_to_os_priority[CriticalPriority + 1] = {
  3968   19,              // 0 Entry should never be used
  3970    4,              // 1 MinPriority
  3971    3,              // 2
  3972    2,              // 3
  3974    1,              // 4
  3975    0,              // 5 NormPriority
  3976   -1,              // 6
  3978   -2,              // 7
  3979   -3,              // 8
  3980   -4,              // 9 NearMaxPriority
  3982   -5,              // 10 MaxPriority
  3984   -5               // 11 CriticalPriority
  3985 };
  3987 static int prio_init() {
  3988   if (ThreadPriorityPolicy == 1) {
  3989     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
  3990     // if effective uid is not root. Perhaps, a more elegant way of doing
  3991     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
  3992     if (geteuid() != 0) {
  3993       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
  3994         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
  3996       ThreadPriorityPolicy = 0;
  3999   if (UseCriticalJavaThreadPriority) {
  4000     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
  4002   return 0;
  4005 OSReturn os::set_native_priority(Thread* thread, int newpri) {
  4006   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
  4008   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
  4009   return (ret == 0) ? OS_OK : OS_ERR;
  4012 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
  4013   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
  4014     *priority_ptr = java_to_os_priority[NormPriority];
  4015     return OS_OK;
  4018   errno = 0;
  4019   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
  4020   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
  4023 // Hint to the underlying OS that a task switch would not be good.
  4024 // Void return because it's a hint and can fail.
  4025 void os::hint_no_preempt() {}
  4027 ////////////////////////////////////////////////////////////////////////////////
  4028 // suspend/resume support
  4030 //  the low-level signal-based suspend/resume support is a remnant from the
  4031 //  old VM-suspension that used to be for java-suspension, safepoints etc,
  4032 //  within hotspot. Now there is a single use-case for this:
  4033 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
  4034 //      that runs in the watcher thread.
  4035 //  The remaining code is greatly simplified from the more general suspension
  4036 //  code that used to be used.
  4037 //
  4038 //  The protocol is quite simple:
  4039 //  - suspend:
  4040 //      - sends a signal to the target thread
  4041 //      - polls the suspend state of the osthread using a yield loop
  4042 //      - target thread signal handler (SR_handler) sets suspend state
  4043 //        and blocks in sigsuspend until continued
  4044 //  - resume:
  4045 //      - sets target osthread state to continue
  4046 //      - sends signal to end the sigsuspend loop in the SR_handler
  4047 //
  4048 //  Note that the SR_lock plays no role in this suspend/resume protocol.
  4049 //
  4051 static void resume_clear_context(OSThread *osthread) {
  4052   osthread->set_ucontext(NULL);
  4053   osthread->set_siginfo(NULL);
  4056 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
  4057   osthread->set_ucontext(context);
  4058   osthread->set_siginfo(siginfo);
  4061 //
  4062 // Handler function invoked when a thread's execution is suspended or
  4063 // resumed. We have to be careful that only async-safe functions are
  4064 // called here (Note: most pthread functions are not async safe and
  4065 // should be avoided.)
  4066 //
  4067 // Note: sigwait() is a more natural fit than sigsuspend() from an
  4068 // interface point of view, but sigwait() prevents the signal hander
  4069 // from being run. libpthread would get very confused by not having
  4070 // its signal handlers run and prevents sigwait()'s use with the
  4071 // mutex granting granting signal.
  4072 //
  4073 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
  4074 //
  4075 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
  4076   // Save and restore errno to avoid confusing native code with EINTR
  4077   // after sigsuspend.
  4078   int old_errno = errno;
  4080   Thread* thread = Thread::current();
  4081   OSThread* osthread = thread->osthread();
  4082   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
  4084   os::SuspendResume::State current = osthread->sr.state();
  4085   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
  4086     suspend_save_context(osthread, siginfo, context);
  4088     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
  4089     os::SuspendResume::State state = osthread->sr.suspended();
  4090     if (state == os::SuspendResume::SR_SUSPENDED) {
  4091       sigset_t suspend_set;  // signals for sigsuspend()
  4093       // get current set of blocked signals and unblock resume signal
  4094       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
  4095       sigdelset(&suspend_set, SR_signum);
  4097       sr_semaphore.signal();
  4098       // wait here until we are resumed
  4099       while (1) {
  4100         sigsuspend(&suspend_set);
  4102         os::SuspendResume::State result = osthread->sr.running();
  4103         if (result == os::SuspendResume::SR_RUNNING) {
  4104           sr_semaphore.signal();
  4105           break;
  4109     } else if (state == os::SuspendResume::SR_RUNNING) {
  4110       // request was cancelled, continue
  4111     } else {
  4112       ShouldNotReachHere();
  4115     resume_clear_context(osthread);
  4116   } else if (current == os::SuspendResume::SR_RUNNING) {
  4117     // request was cancelled, continue
  4118   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
  4119     // ignore
  4120   } else {
  4121     // ignore
  4124   errno = old_errno;
  4128 static int SR_initialize() {
  4129   struct sigaction act;
  4130   char *s;
  4131   /* Get signal number to use for suspend/resume */
  4132   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
  4133     int sig = ::strtol(s, 0, 10);
  4134     if (sig > 0 || sig < _NSIG) {
  4135         SR_signum = sig;
  4139   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
  4140         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
  4142   sigemptyset(&SR_sigset);
  4143   sigaddset(&SR_sigset, SR_signum);
  4145   /* Set up signal handler for suspend/resume */
  4146   act.sa_flags = SA_RESTART|SA_SIGINFO;
  4147   act.sa_handler = (void (*)(int)) SR_handler;
  4149   // SR_signum is blocked by default.
  4150   // 4528190 - We also need to block pthread restart signal (32 on all
  4151   // supported Linux platforms). Note that LinuxThreads need to block
  4152   // this signal for all threads to work properly. So we don't have
  4153   // to use hard-coded signal number when setting up the mask.
  4154   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
  4156   if (sigaction(SR_signum, &act, 0) == -1) {
  4157     return -1;
  4160   // Save signal flag
  4161   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
  4162   return 0;
  4165 static int sr_notify(OSThread* osthread) {
  4166   int status = pthread_kill(osthread->pthread_id(), SR_signum);
  4167   assert_status(status == 0, status, "pthread_kill");
  4168   return status;
  4171 // "Randomly" selected value for how long we want to spin
  4172 // before bailing out on suspending a thread, also how often
  4173 // we send a signal to a thread we want to resume
  4174 static const int RANDOMLY_LARGE_INTEGER = 1000000;
  4175 static const int RANDOMLY_LARGE_INTEGER2 = 100;
  4177 // returns true on success and false on error - really an error is fatal
  4178 // but this seems the normal response to library errors
  4179 static bool do_suspend(OSThread* osthread) {
  4180   assert(osthread->sr.is_running(), "thread should be running");
  4181   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
  4183   // mark as suspended and send signal
  4184   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
  4185     // failed to switch, state wasn't running?
  4186     ShouldNotReachHere();
  4187     return false;
  4190   if (sr_notify(osthread) != 0) {
  4191     ShouldNotReachHere();
  4194   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
  4195   while (true) {
  4196     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
  4197       break;
  4198     } else {
  4199       // timeout
  4200       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
  4201       if (cancelled == os::SuspendResume::SR_RUNNING) {
  4202         return false;
  4203       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
  4204         // make sure that we consume the signal on the semaphore as well
  4205         sr_semaphore.wait();
  4206         break;
  4207       } else {
  4208         ShouldNotReachHere();
  4209         return false;
  4214   guarantee(osthread->sr.is_suspended(), "Must be suspended");
  4215   return true;
  4218 static void do_resume(OSThread* osthread) {
  4219   assert(osthread->sr.is_suspended(), "thread should be suspended");
  4220   assert(!sr_semaphore.trywait(), "invalid semaphore state");
  4222   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
  4223     // failed to switch to WAKEUP_REQUEST
  4224     ShouldNotReachHere();
  4225     return;
  4228   while (true) {
  4229     if (sr_notify(osthread) == 0) {
  4230       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
  4231         if (osthread->sr.is_running()) {
  4232           return;
  4235     } else {
  4236       ShouldNotReachHere();
  4240   guarantee(osthread->sr.is_running(), "Must be running!");
  4243 ////////////////////////////////////////////////////////////////////////////////
  4244 // interrupt support
  4246 void os::interrupt(Thread* thread) {
  4247   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  4248     "possibility of dangling Thread pointer");
  4250   OSThread* osthread = thread->osthread();
  4252   if (!osthread->interrupted()) {
  4253     osthread->set_interrupted(true);
  4254     // More than one thread can get here with the same value of osthread,
  4255     // resulting in multiple notifications.  We do, however, want the store
  4256     // to interrupted() to be visible to other threads before we execute unpark().
  4257     OrderAccess::fence();
  4258     ParkEvent * const slp = thread->_SleepEvent ;
  4259     if (slp != NULL) slp->unpark() ;
  4262   // For JSR166. Unpark even if interrupt status already was set
  4263   if (thread->is_Java_thread())
  4264     ((JavaThread*)thread)->parker()->unpark();
  4266   ParkEvent * ev = thread->_ParkEvent ;
  4267   if (ev != NULL) ev->unpark() ;
  4271 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  4272   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  4273     "possibility of dangling Thread pointer");
  4275   OSThread* osthread = thread->osthread();
  4277   bool interrupted = osthread->interrupted();
  4279   if (interrupted && clear_interrupted) {
  4280     osthread->set_interrupted(false);
  4281     // consider thread->_SleepEvent->reset() ... optional optimization
  4284   return interrupted;
  4287 ///////////////////////////////////////////////////////////////////////////////////
  4288 // signal handling (except suspend/resume)
  4290 // This routine may be used by user applications as a "hook" to catch signals.
  4291 // The user-defined signal handler must pass unrecognized signals to this
  4292 // routine, and if it returns true (non-zero), then the signal handler must
  4293 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
  4294 // routine will never retun false (zero), but instead will execute a VM panic
  4295 // routine kill the process.
  4296 //
  4297 // If this routine returns false, it is OK to call it again.  This allows
  4298 // the user-defined signal handler to perform checks either before or after
  4299 // the VM performs its own checks.  Naturally, the user code would be making
  4300 // a serious error if it tried to handle an exception (such as a null check
  4301 // or breakpoint) that the VM was generating for its own correct operation.
  4302 //
  4303 // This routine may recognize any of the following kinds of signals:
  4304 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
  4305 // It should be consulted by handlers for any of those signals.
  4306 //
  4307 // The caller of this routine must pass in the three arguments supplied
  4308 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
  4309 // field of the structure passed to sigaction().  This routine assumes that
  4310 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
  4311 //
  4312 // Note that the VM will print warnings if it detects conflicting signal
  4313 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
  4314 //
  4315 extern "C" JNIEXPORT int
  4316 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
  4317                         void* ucontext, int abort_if_unrecognized);
  4319 void signalHandler(int sig, siginfo_t* info, void* uc) {
  4320   assert(info != NULL && uc != NULL, "it must be old kernel");
  4321   int orig_errno = errno;  // Preserve errno value over signal handler.
  4322   JVM_handle_linux_signal(sig, info, uc, true);
  4323   errno = orig_errno;
  4327 // This boolean allows users to forward their own non-matching signals
  4328 // to JVM_handle_linux_signal, harmlessly.
  4329 bool os::Linux::signal_handlers_are_installed = false;
  4331 // For signal-chaining
  4332 struct sigaction os::Linux::sigact[MAXSIGNUM];
  4333 unsigned int os::Linux::sigs = 0;
  4334 bool os::Linux::libjsig_is_loaded = false;
  4335 typedef struct sigaction *(*get_signal_t)(int);
  4336 get_signal_t os::Linux::get_signal_action = NULL;
  4338 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
  4339   struct sigaction *actp = NULL;
  4341   if (libjsig_is_loaded) {
  4342     // Retrieve the old signal handler from libjsig
  4343     actp = (*get_signal_action)(sig);
  4345   if (actp == NULL) {
  4346     // Retrieve the preinstalled signal handler from jvm
  4347     actp = get_preinstalled_handler(sig);
  4350   return actp;
  4353 static bool call_chained_handler(struct sigaction *actp, int sig,
  4354                                  siginfo_t *siginfo, void *context) {
  4355   // Call the old signal handler
  4356   if (actp->sa_handler == SIG_DFL) {
  4357     // It's more reasonable to let jvm treat it as an unexpected exception
  4358     // instead of taking the default action.
  4359     return false;
  4360   } else if (actp->sa_handler != SIG_IGN) {
  4361     if ((actp->sa_flags & SA_NODEFER) == 0) {
  4362       // automaticlly block the signal
  4363       sigaddset(&(actp->sa_mask), sig);
  4366     sa_handler_t hand;
  4367     sa_sigaction_t sa;
  4368     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
  4369     // retrieve the chained handler
  4370     if (siginfo_flag_set) {
  4371       sa = actp->sa_sigaction;
  4372     } else {
  4373       hand = actp->sa_handler;
  4376     if ((actp->sa_flags & SA_RESETHAND) != 0) {
  4377       actp->sa_handler = SIG_DFL;
  4380     // try to honor the signal mask
  4381     sigset_t oset;
  4382     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
  4384     // call into the chained handler
  4385     if (siginfo_flag_set) {
  4386       (*sa)(sig, siginfo, context);
  4387     } else {
  4388       (*hand)(sig);
  4391     // restore the signal mask
  4392     pthread_sigmask(SIG_SETMASK, &oset, 0);
  4394   // Tell jvm's signal handler the signal is taken care of.
  4395   return true;
  4398 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
  4399   bool chained = false;
  4400   // signal-chaining
  4401   if (UseSignalChaining) {
  4402     struct sigaction *actp = get_chained_signal_action(sig);
  4403     if (actp != NULL) {
  4404       chained = call_chained_handler(actp, sig, siginfo, context);
  4407   return chained;
  4410 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
  4411   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
  4412     return &sigact[sig];
  4414   return NULL;
  4417 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
  4418   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4419   sigact[sig] = oldAct;
  4420   sigs |= (unsigned int)1 << sig;
  4423 // for diagnostic
  4424 int os::Linux::sigflags[MAXSIGNUM];
  4426 int os::Linux::get_our_sigflags(int sig) {
  4427   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4428   return sigflags[sig];
  4431 void os::Linux::set_our_sigflags(int sig, int flags) {
  4432   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4433   sigflags[sig] = flags;
  4436 void os::Linux::set_signal_handler(int sig, bool set_installed) {
  4437   // Check for overwrite.
  4438   struct sigaction oldAct;
  4439   sigaction(sig, (struct sigaction*)NULL, &oldAct);
  4441   void* oldhand = oldAct.sa_sigaction
  4442                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
  4443                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
  4444   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
  4445       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
  4446       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
  4447     if (AllowUserSignalHandlers || !set_installed) {
  4448       // Do not overwrite; user takes responsibility to forward to us.
  4449       return;
  4450     } else if (UseSignalChaining) {
  4451       // save the old handler in jvm
  4452       save_preinstalled_handler(sig, oldAct);
  4453       // libjsig also interposes the sigaction() call below and saves the
  4454       // old sigaction on it own.
  4455     } else {
  4456       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
  4457                     "%#lx for signal %d.", (long)oldhand, sig));
  4461   struct sigaction sigAct;
  4462   sigfillset(&(sigAct.sa_mask));
  4463   sigAct.sa_handler = SIG_DFL;
  4464   if (!set_installed) {
  4465     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  4466   } else {
  4467     sigAct.sa_sigaction = signalHandler;
  4468     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  4470   // Save flags, which are set by ours
  4471   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4472   sigflags[sig] = sigAct.sa_flags;
  4474   int ret = sigaction(sig, &sigAct, &oldAct);
  4475   assert(ret == 0, "check");
  4477   void* oldhand2  = oldAct.sa_sigaction
  4478                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
  4479                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
  4480   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
  4483 // install signal handlers for signals that HotSpot needs to
  4484 // handle in order to support Java-level exception handling.
  4486 void os::Linux::install_signal_handlers() {
  4487   if (!signal_handlers_are_installed) {
  4488     signal_handlers_are_installed = true;
  4490     // signal-chaining
  4491     typedef void (*signal_setting_t)();
  4492     signal_setting_t begin_signal_setting = NULL;
  4493     signal_setting_t end_signal_setting = NULL;
  4494     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  4495                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
  4496     if (begin_signal_setting != NULL) {
  4497       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  4498                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
  4499       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
  4500                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
  4501       libjsig_is_loaded = true;
  4502       assert(UseSignalChaining, "should enable signal-chaining");
  4504     if (libjsig_is_loaded) {
  4505       // Tell libjsig jvm is setting signal handlers
  4506       (*begin_signal_setting)();
  4509     set_signal_handler(SIGSEGV, true);
  4510     set_signal_handler(SIGPIPE, true);
  4511     set_signal_handler(SIGBUS, true);
  4512     set_signal_handler(SIGILL, true);
  4513     set_signal_handler(SIGFPE, true);
  4514     set_signal_handler(SIGXFSZ, true);
  4516     if (libjsig_is_loaded) {
  4517       // Tell libjsig jvm finishes setting signal handlers
  4518       (*end_signal_setting)();
  4521     // We don't activate signal checker if libjsig is in place, we trust ourselves
  4522     // and if UserSignalHandler is installed all bets are off.
  4523     // Log that signal checking is off only if -verbose:jni is specified.
  4524     if (CheckJNICalls) {
  4525       if (libjsig_is_loaded) {
  4526         if (PrintJNIResolving) {
  4527           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
  4529         check_signals = false;
  4531       if (AllowUserSignalHandlers) {
  4532         if (PrintJNIResolving) {
  4533           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
  4535         check_signals = false;
  4541 // This is the fastest way to get thread cpu time on Linux.
  4542 // Returns cpu time (user+sys) for any thread, not only for current.
  4543 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
  4544 // It might work on 2.6.10+ with a special kernel/glibc patch.
  4545 // For reference, please, see IEEE Std 1003.1-2004:
  4546 //   http://www.unix.org/single_unix_specification
  4548 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
  4549   struct timespec tp;
  4550   int rc = os::Linux::clock_gettime(clockid, &tp);
  4551   assert(rc == 0, "clock_gettime is expected to return 0 code");
  4553   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
  4556 /////
  4557 // glibc on Linux platform uses non-documented flag
  4558 // to indicate, that some special sort of signal
  4559 // trampoline is used.
  4560 // We will never set this flag, and we should
  4561 // ignore this flag in our diagnostic
  4562 #ifdef SIGNIFICANT_SIGNAL_MASK
  4563 #undef SIGNIFICANT_SIGNAL_MASK
  4564 #endif
  4565 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
  4567 static const char* get_signal_handler_name(address handler,
  4568                                            char* buf, int buflen) {
  4569   int offset;
  4570   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
  4571   if (found) {
  4572     // skip directory names
  4573     const char *p1, *p2;
  4574     p1 = buf;
  4575     size_t len = strlen(os::file_separator());
  4576     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
  4577     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
  4578   } else {
  4579     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
  4581   return buf;
  4584 static void print_signal_handler(outputStream* st, int sig,
  4585                                  char* buf, size_t buflen) {
  4586   struct sigaction sa;
  4588   sigaction(sig, NULL, &sa);
  4590   // See comment for SIGNIFICANT_SIGNAL_MASK define
  4591   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  4593   st->print("%s: ", os::exception_name(sig, buf, buflen));
  4595   address handler = (sa.sa_flags & SA_SIGINFO)
  4596     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
  4597     : CAST_FROM_FN_PTR(address, sa.sa_handler);
  4599   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
  4600     st->print("SIG_DFL");
  4601   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
  4602     st->print("SIG_IGN");
  4603   } else {
  4604     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
  4607   st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
  4609   address rh = VMError::get_resetted_sighandler(sig);
  4610   // May be, handler was resetted by VMError?
  4611   if(rh != NULL) {
  4612     handler = rh;
  4613     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
  4616   st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
  4618   // Check: is it our handler?
  4619   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
  4620      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
  4621     // It is our signal handler
  4622     // check for flags, reset system-used one!
  4623     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
  4624       st->print(
  4625                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
  4626                 os::Linux::get_our_sigflags(sig));
  4629   st->cr();
  4633 #define DO_SIGNAL_CHECK(sig) \
  4634   if (!sigismember(&check_signal_done, sig)) \
  4635     os::Linux::check_signal_handler(sig)
  4637 // This method is a periodic task to check for misbehaving JNI applications
  4638 // under CheckJNI, we can add any periodic checks here
  4640 void os::run_periodic_checks() {
  4642   if (check_signals == false) return;
  4644   // SEGV and BUS if overridden could potentially prevent
  4645   // generation of hs*.log in the event of a crash, debugging
  4646   // such a case can be very challenging, so we absolutely
  4647   // check the following for a good measure:
  4648   DO_SIGNAL_CHECK(SIGSEGV);
  4649   DO_SIGNAL_CHECK(SIGILL);
  4650   DO_SIGNAL_CHECK(SIGFPE);
  4651   DO_SIGNAL_CHECK(SIGBUS);
  4652   DO_SIGNAL_CHECK(SIGPIPE);
  4653   DO_SIGNAL_CHECK(SIGXFSZ);
  4656   // ReduceSignalUsage allows the user to override these handlers
  4657   // see comments at the very top and jvm_solaris.h
  4658   if (!ReduceSignalUsage) {
  4659     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
  4660     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
  4661     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
  4662     DO_SIGNAL_CHECK(BREAK_SIGNAL);
  4665   DO_SIGNAL_CHECK(SR_signum);
  4666   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
  4669 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
  4671 static os_sigaction_t os_sigaction = NULL;
  4673 void os::Linux::check_signal_handler(int sig) {
  4674   char buf[O_BUFLEN];
  4675   address jvmHandler = NULL;
  4678   struct sigaction act;
  4679   if (os_sigaction == NULL) {
  4680     // only trust the default sigaction, in case it has been interposed
  4681     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
  4682     if (os_sigaction == NULL) return;
  4685   os_sigaction(sig, (struct sigaction*)NULL, &act);
  4688   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  4690   address thisHandler = (act.sa_flags & SA_SIGINFO)
  4691     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
  4692     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
  4695   switch(sig) {
  4696   case SIGSEGV:
  4697   case SIGBUS:
  4698   case SIGFPE:
  4699   case SIGPIPE:
  4700   case SIGILL:
  4701   case SIGXFSZ:
  4702     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
  4703     break;
  4705   case SHUTDOWN1_SIGNAL:
  4706   case SHUTDOWN2_SIGNAL:
  4707   case SHUTDOWN3_SIGNAL:
  4708   case BREAK_SIGNAL:
  4709     jvmHandler = (address)user_handler();
  4710     break;
  4712   case INTERRUPT_SIGNAL:
  4713     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
  4714     break;
  4716   default:
  4717     if (sig == SR_signum) {
  4718       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
  4719     } else {
  4720       return;
  4722     break;
  4725   if (thisHandler != jvmHandler) {
  4726     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
  4727     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
  4728     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
  4729     // No need to check this sig any longer
  4730     sigaddset(&check_signal_done, sig);
  4731   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
  4732     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
  4733     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
  4734     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
  4735     // No need to check this sig any longer
  4736     sigaddset(&check_signal_done, sig);
  4739   // Dump all the signal
  4740   if (sigismember(&check_signal_done, sig)) {
  4741     print_signal_handlers(tty, buf, O_BUFLEN);
  4745 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
  4747 extern bool signal_name(int signo, char* buf, size_t len);
  4749 const char* os::exception_name(int exception_code, char* buf, size_t size) {
  4750   if (0 < exception_code && exception_code <= SIGRTMAX) {
  4751     // signal
  4752     if (!signal_name(exception_code, buf, size)) {
  4753       jio_snprintf(buf, size, "SIG%d", exception_code);
  4755     return buf;
  4756   } else {
  4757     return NULL;
  4761 // this is called _before_ the most of global arguments have been parsed
  4762 void os::init(void) {
  4763   char dummy;   /* used to get a guess on initial stack address */
  4764 //  first_hrtime = gethrtime();
  4766   // With LinuxThreads the JavaMain thread pid (primordial thread)
  4767   // is different than the pid of the java launcher thread.
  4768   // So, on Linux, the launcher thread pid is passed to the VM
  4769   // via the sun.java.launcher.pid property.
  4770   // Use this property instead of getpid() if it was correctly passed.
  4771   // See bug 6351349.
  4772   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
  4774   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
  4776   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
  4778   init_random(1234567);
  4780   ThreadCritical::initialize();
  4782   Linux::set_page_size(sysconf(_SC_PAGESIZE));
  4783   if (Linux::page_size() == -1) {
  4784     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
  4785                   strerror(errno)));
  4787   init_page_sizes((size_t) Linux::page_size());
  4789   Linux::initialize_system_info();
  4791   // main_thread points to the aboriginal thread
  4792   Linux::_main_thread = pthread_self();
  4794   Linux::clock_init();
  4795   initial_time_count = javaTimeNanos();
  4797   // pthread_condattr initialization for monotonic clock
  4798   int status;
  4799   pthread_condattr_t* _condattr = os::Linux::condAttr();
  4800   if ((status = pthread_condattr_init(_condattr)) != 0) {
  4801     fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
  4803   // Only set the clock if CLOCK_MONOTONIC is available
  4804   if (Linux::supports_monotonic_clock()) {
  4805     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
  4806       if (status == EINVAL) {
  4807         warning("Unable to use monotonic clock with relative timed-waits" \
  4808                 " - changes to the time-of-day clock may have adverse affects");
  4809       } else {
  4810         fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
  4814   // else it defaults to CLOCK_REALTIME
  4816   pthread_mutex_init(&dl_mutex, NULL);
  4818   // If the pagesize of the VM is greater than 8K determine the appropriate
  4819   // number of initial guard pages.  The user can change this with the
  4820   // command line arguments, if needed.
  4821   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
  4822     StackYellowPages = 1;
  4823     StackRedPages = 1;
  4824     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
  4828 // To install functions for atexit system call
  4829 extern "C" {
  4830   static void perfMemory_exit_helper() {
  4831     perfMemory_exit();
  4835 // this is called _after_ the global arguments have been parsed
  4836 jint os::init_2(void)
  4838   Linux::fast_thread_clock_init();
  4840   // Allocate a single page and mark it as readable for safepoint polling
  4841   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  4842   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
  4844   os::set_polling_page( polling_page );
  4846 #ifndef PRODUCT
  4847   if(Verbose && PrintMiscellaneous)
  4848     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  4849 #endif
  4851   if (!UseMembar) {
  4852     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  4853     guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
  4854     os::set_memory_serialize_page( mem_serialize_page );
  4856 #ifndef PRODUCT
  4857     if(Verbose && PrintMiscellaneous)
  4858       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  4859 #endif
  4862   // initialize suspend/resume support - must do this before signal_sets_init()
  4863   if (SR_initialize() != 0) {
  4864     perror("SR_initialize failed");
  4865     return JNI_ERR;
  4868   Linux::signal_sets_init();
  4869   Linux::install_signal_handlers();
  4871   // Check minimum allowable stack size for thread creation and to initialize
  4872   // the java system classes, including StackOverflowError - depends on page
  4873   // size.  Add a page for compiler2 recursion in main thread.
  4874   // Add in 2*BytesPerWord times page size to account for VM stack during
  4875   // class initialization depending on 32 or 64 bit VM.
  4876   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
  4877             (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
  4878                     (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
  4880   size_t threadStackSizeInBytes = ThreadStackSize * K;
  4881   if (threadStackSizeInBytes != 0 &&
  4882       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
  4883         tty->print_cr("\nThe stack size specified is too small, "
  4884                       "Specify at least %dk",
  4885                       os::Linux::min_stack_allowed/ K);
  4886         return JNI_ERR;
  4889   // Make the stack size a multiple of the page size so that
  4890   // the yellow/red zones can be guarded.
  4891   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
  4892         vm_page_size()));
  4894   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
  4896 #if defined(IA32)
  4897   workaround_expand_exec_shield_cs_limit();
  4898 #endif
  4900   Linux::libpthread_init();
  4901   if (PrintMiscellaneous && (Verbose || WizardMode)) {
  4902      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
  4903           Linux::glibc_version(), Linux::libpthread_version(),
  4904           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
  4907   if (UseNUMA) {
  4908     if (!Linux::libnuma_init()) {
  4909       UseNUMA = false;
  4910     } else {
  4911       if ((Linux::numa_max_node() < 1)) {
  4912         // There's only one node(they start from 0), disable NUMA.
  4913         UseNUMA = false;
  4916     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
  4917     // we can make the adaptive lgrp chunk resizing work. If the user specified
  4918     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
  4919     // disable adaptive resizing.
  4920     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
  4921       if (FLAG_IS_DEFAULT(UseNUMA)) {
  4922         UseNUMA = false;
  4923       } else {
  4924         if (FLAG_IS_DEFAULT(UseLargePages) &&
  4925             FLAG_IS_DEFAULT(UseSHM) &&
  4926             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
  4927           UseLargePages = false;
  4928         } else {
  4929           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
  4930           UseAdaptiveSizePolicy = false;
  4931           UseAdaptiveNUMAChunkSizing = false;
  4935     if (!UseNUMA && ForceNUMA) {
  4936       UseNUMA = true;
  4940   if (MaxFDLimit) {
  4941     // set the number of file descriptors to max. print out error
  4942     // if getrlimit/setrlimit fails but continue regardless.
  4943     struct rlimit nbr_files;
  4944     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
  4945     if (status != 0) {
  4946       if (PrintMiscellaneous && (Verbose || WizardMode))
  4947         perror("os::init_2 getrlimit failed");
  4948     } else {
  4949       nbr_files.rlim_cur = nbr_files.rlim_max;
  4950       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
  4951       if (status != 0) {
  4952         if (PrintMiscellaneous && (Verbose || WizardMode))
  4953           perror("os::init_2 setrlimit failed");
  4958   // Initialize lock used to serialize thread creation (see os::create_thread)
  4959   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
  4961   // at-exit methods are called in the reverse order of their registration.
  4962   // atexit functions are called on return from main or as a result of a
  4963   // call to exit(3C). There can be only 32 of these functions registered
  4964   // and atexit() does not set errno.
  4966   if (PerfAllowAtExitRegistration) {
  4967     // only register atexit functions if PerfAllowAtExitRegistration is set.
  4968     // atexit functions can be delayed until process exit time, which
  4969     // can be problematic for embedded VM situations. Embedded VMs should
  4970     // call DestroyJavaVM() to assure that VM resources are released.
  4972     // note: perfMemory_exit_helper atexit function may be removed in
  4973     // the future if the appropriate cleanup code can be added to the
  4974     // VM_Exit VMOperation's doit method.
  4975     if (atexit(perfMemory_exit_helper) != 0) {
  4976       warning("os::init2 atexit(perfMemory_exit_helper) failed");
  4980   // initialize thread priority policy
  4981   prio_init();
  4983   return JNI_OK;
  4986 // this is called at the end of vm_initialization
  4987 void os::init_3(void)
  4989 #ifdef JAVASE_EMBEDDED
  4990   // Start the MemNotifyThread
  4991   if (LowMemoryProtection) {
  4992     MemNotifyThread::start();
  4994   return;
  4995 #endif
  4998 // Mark the polling page as unreadable
  4999 void os::make_polling_page_unreadable(void) {
  5000   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
  5001     fatal("Could not disable polling page");
  5002 };
  5004 // Mark the polling page as readable
  5005 void os::make_polling_page_readable(void) {
  5006   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
  5007     fatal("Could not enable polling page");
  5009 };
  5011 int os::active_processor_count() {
  5012   // Linux doesn't yet have a (official) notion of processor sets,
  5013   // so just return the number of online processors.
  5014   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
  5015   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
  5016   return online_cpus;
  5019 void os::set_native_thread_name(const char *name) {
  5020   // Not yet implemented.
  5021   return;
  5024 bool os::distribute_processes(uint length, uint* distribution) {
  5025   // Not yet implemented.
  5026   return false;
  5029 bool os::bind_to_processor(uint processor_id) {
  5030   // Not yet implemented.
  5031   return false;
  5034 ///
  5036 void os::SuspendedThreadTask::internal_do_task() {
  5037   if (do_suspend(_thread->osthread())) {
  5038     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
  5039     do_task(context);
  5040     do_resume(_thread->osthread());
  5044 class PcFetcher : public os::SuspendedThreadTask {
  5045 public:
  5046   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
  5047   ExtendedPC result();
  5048 protected:
  5049   void do_task(const os::SuspendedThreadTaskContext& context);
  5050 private:
  5051   ExtendedPC _epc;
  5052 };
  5054 ExtendedPC PcFetcher::result() {
  5055   guarantee(is_done(), "task is not done yet.");
  5056   return _epc;
  5059 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
  5060   Thread* thread = context.thread();
  5061   OSThread* osthread = thread->osthread();
  5062   if (osthread->ucontext() != NULL) {
  5063     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
  5064   } else {
  5065     // NULL context is unexpected, double-check this is the VMThread
  5066     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
  5070 // Suspends the target using the signal mechanism and then grabs the PC before
  5071 // resuming the target. Used by the flat-profiler only
  5072 ExtendedPC os::get_thread_pc(Thread* thread) {
  5073   // Make sure that it is called by the watcher for the VMThread
  5074   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
  5075   assert(thread->is_VM_thread(), "Can only be called for VMThread");
  5077   PcFetcher fetcher(thread);
  5078   fetcher.run();
  5079   return fetcher.result();
  5082 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
  5084    if (is_NPTL()) {
  5085       return pthread_cond_timedwait(_cond, _mutex, _abstime);
  5086    } else {
  5087       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
  5088       // word back to default 64bit precision if condvar is signaled. Java
  5089       // wants 53bit precision.  Save and restore current value.
  5090       int fpu = get_fpu_control_word();
  5091       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
  5092       set_fpu_control_word(fpu);
  5093       return status;
  5097 ////////////////////////////////////////////////////////////////////////////////
  5098 // debug support
  5100 bool os::find(address addr, outputStream* st) {
  5101   Dl_info dlinfo;
  5102   memset(&dlinfo, 0, sizeof(dlinfo));
  5103   if (dladdr(addr, &dlinfo) != 0) {
  5104     st->print(PTR_FORMAT ": ", addr);
  5105     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
  5106       st->print("%s+%#x", dlinfo.dli_sname,
  5107                  addr - (intptr_t)dlinfo.dli_saddr);
  5108     } else if (dlinfo.dli_fbase != NULL) {
  5109       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
  5110     } else {
  5111       st->print("<absolute address>");
  5113     if (dlinfo.dli_fname != NULL) {
  5114       st->print(" in %s", dlinfo.dli_fname);
  5116     if (dlinfo.dli_fbase != NULL) {
  5117       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
  5119     st->cr();
  5121     if (Verbose) {
  5122       // decode some bytes around the PC
  5123       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
  5124       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
  5125       address       lowest = (address) dlinfo.dli_sname;
  5126       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
  5127       if (begin < lowest)  begin = lowest;
  5128       Dl_info dlinfo2;
  5129       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
  5130           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
  5131         end = (address) dlinfo2.dli_saddr;
  5132       Disassembler::decode(begin, end, st);
  5134     return true;
  5136   return false;
  5139 ////////////////////////////////////////////////////////////////////////////////
  5140 // misc
  5142 // This does not do anything on Linux. This is basically a hook for being
  5143 // able to use structured exception handling (thread-local exception filters)
  5144 // on, e.g., Win32.
  5145 void
  5146 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
  5147                          JavaCallArguments* args, Thread* thread) {
  5148   f(value, method, args, thread);
  5151 void os::print_statistics() {
  5154 int os::message_box(const char* title, const char* message) {
  5155   int i;
  5156   fdStream err(defaultStream::error_fd());
  5157   for (i = 0; i < 78; i++) err.print_raw("=");
  5158   err.cr();
  5159   err.print_raw_cr(title);
  5160   for (i = 0; i < 78; i++) err.print_raw("-");
  5161   err.cr();
  5162   err.print_raw_cr(message);
  5163   for (i = 0; i < 78; i++) err.print_raw("=");
  5164   err.cr();
  5166   char buf[16];
  5167   // Prevent process from exiting upon "read error" without consuming all CPU
  5168   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
  5170   return buf[0] == 'y' || buf[0] == 'Y';
  5173 int os::stat(const char *path, struct stat *sbuf) {
  5174   char pathbuf[MAX_PATH];
  5175   if (strlen(path) > MAX_PATH - 1) {
  5176     errno = ENAMETOOLONG;
  5177     return -1;
  5179   os::native_path(strcpy(pathbuf, path));
  5180   return ::stat(pathbuf, sbuf);
  5183 bool os::check_heap(bool force) {
  5184   return true;
  5187 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
  5188   return ::vsnprintf(buf, count, format, args);
  5191 // Is a (classpath) directory empty?
  5192 bool os::dir_is_empty(const char* path) {
  5193   DIR *dir = NULL;
  5194   struct dirent *ptr;
  5196   dir = opendir(path);
  5197   if (dir == NULL) return true;
  5199   /* Scan the directory */
  5200   bool result = true;
  5201   char buf[sizeof(struct dirent) + MAX_PATH];
  5202   while (result && (ptr = ::readdir(dir)) != NULL) {
  5203     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
  5204       result = false;
  5207   closedir(dir);
  5208   return result;
  5211 // This code originates from JDK's sysOpen and open64_w
  5212 // from src/solaris/hpi/src/system_md.c
  5214 #ifndef O_DELETE
  5215 #define O_DELETE 0x10000
  5216 #endif
  5218 // Open a file. Unlink the file immediately after open returns
  5219 // if the specified oflag has the O_DELETE flag set.
  5220 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
  5222 int os::open(const char *path, int oflag, int mode) {
  5224   if (strlen(path) > MAX_PATH - 1) {
  5225     errno = ENAMETOOLONG;
  5226     return -1;
  5228   int fd;
  5229   int o_delete = (oflag & O_DELETE);
  5230   oflag = oflag & ~O_DELETE;
  5232   fd = ::open64(path, oflag, mode);
  5233   if (fd == -1) return -1;
  5235   //If the open succeeded, the file might still be a directory
  5237     struct stat64 buf64;
  5238     int ret = ::fstat64(fd, &buf64);
  5239     int st_mode = buf64.st_mode;
  5241     if (ret != -1) {
  5242       if ((st_mode & S_IFMT) == S_IFDIR) {
  5243         errno = EISDIR;
  5244         ::close(fd);
  5245         return -1;
  5247     } else {
  5248       ::close(fd);
  5249       return -1;
  5253     /*
  5254      * All file descriptors that are opened in the JVM and not
  5255      * specifically destined for a subprocess should have the
  5256      * close-on-exec flag set.  If we don't set it, then careless 3rd
  5257      * party native code might fork and exec without closing all
  5258      * appropriate file descriptors (e.g. as we do in closeDescriptors in
  5259      * UNIXProcess.c), and this in turn might:
  5261      * - cause end-of-file to fail to be detected on some file
  5262      *   descriptors, resulting in mysterious hangs, or
  5264      * - might cause an fopen in the subprocess to fail on a system
  5265      *   suffering from bug 1085341.
  5267      * (Yes, the default setting of the close-on-exec flag is a Unix
  5268      * design flaw)
  5270      * See:
  5271      * 1085341: 32-bit stdio routines should support file descriptors >255
  5272      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
  5273      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
  5274      */
  5275 #ifdef FD_CLOEXEC
  5277         int flags = ::fcntl(fd, F_GETFD);
  5278         if (flags != -1)
  5279             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
  5281 #endif
  5283   if (o_delete != 0) {
  5284     ::unlink(path);
  5286   return fd;
  5290 // create binary file, rewriting existing file if required
  5291 int os::create_binary_file(const char* path, bool rewrite_existing) {
  5292   int oflags = O_WRONLY | O_CREAT;
  5293   if (!rewrite_existing) {
  5294     oflags |= O_EXCL;
  5296   return ::open64(path, oflags, S_IREAD | S_IWRITE);
  5299 // return current position of file pointer
  5300 jlong os::current_file_offset(int fd) {
  5301   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
  5304 // move file pointer to the specified offset
  5305 jlong os::seek_to_file_offset(int fd, jlong offset) {
  5306   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
  5309 // This code originates from JDK's sysAvailable
  5310 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
  5312 int os::available(int fd, jlong *bytes) {
  5313   jlong cur, end;
  5314   int mode;
  5315   struct stat64 buf64;
  5317   if (::fstat64(fd, &buf64) >= 0) {
  5318     mode = buf64.st_mode;
  5319     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
  5320       /*
  5321       * XXX: is the following call interruptible? If so, this might
  5322       * need to go through the INTERRUPT_IO() wrapper as for other
  5323       * blocking, interruptible calls in this file.
  5324       */
  5325       int n;
  5326       if (::ioctl(fd, FIONREAD, &n) >= 0) {
  5327         *bytes = n;
  5328         return 1;
  5332   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
  5333     return 0;
  5334   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
  5335     return 0;
  5336   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
  5337     return 0;
  5339   *bytes = end - cur;
  5340   return 1;
  5343 int os::socket_available(int fd, jint *pbytes) {
  5344   // Linux doc says EINTR not returned, unlike Solaris
  5345   int ret = ::ioctl(fd, FIONREAD, pbytes);
  5347   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
  5348   // is expected to return 0 on failure and 1 on success to the jdk.
  5349   return (ret < 0) ? 0 : 1;
  5352 // Map a block of memory.
  5353 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
  5354                      char *addr, size_t bytes, bool read_only,
  5355                      bool allow_exec) {
  5356   int prot;
  5357   int flags = MAP_PRIVATE;
  5359   if (read_only) {
  5360     prot = PROT_READ;
  5361   } else {
  5362     prot = PROT_READ | PROT_WRITE;
  5365   if (allow_exec) {
  5366     prot |= PROT_EXEC;
  5369   if (addr != NULL) {
  5370     flags |= MAP_FIXED;
  5373   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
  5374                                      fd, file_offset);
  5375   if (mapped_address == MAP_FAILED) {
  5376     return NULL;
  5378   return mapped_address;
  5382 // Remap a block of memory.
  5383 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
  5384                        char *addr, size_t bytes, bool read_only,
  5385                        bool allow_exec) {
  5386   // same as map_memory() on this OS
  5387   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
  5388                         allow_exec);
  5392 // Unmap a block of memory.
  5393 bool os::pd_unmap_memory(char* addr, size_t bytes) {
  5394   return munmap(addr, bytes) == 0;
  5397 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
  5399 static clockid_t thread_cpu_clockid(Thread* thread) {
  5400   pthread_t tid = thread->osthread()->pthread_id();
  5401   clockid_t clockid;
  5403   // Get thread clockid
  5404   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
  5405   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
  5406   return clockid;
  5409 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  5410 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  5411 // of a thread.
  5412 //
  5413 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
  5414 // the fast estimate available on the platform.
  5416 jlong os::current_thread_cpu_time() {
  5417   if (os::Linux::supports_fast_thread_cpu_time()) {
  5418     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  5419   } else {
  5420     // return user + sys since the cost is the same
  5421     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
  5425 jlong os::thread_cpu_time(Thread* thread) {
  5426   // consistent with what current_thread_cpu_time() returns
  5427   if (os::Linux::supports_fast_thread_cpu_time()) {
  5428     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  5429   } else {
  5430     return slow_thread_cpu_time(thread, true /* user + sys */);
  5434 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  5435   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  5436     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  5437   } else {
  5438     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
  5442 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  5443   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  5444     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  5445   } else {
  5446     return slow_thread_cpu_time(thread, user_sys_cpu_time);
  5450 //
  5451 //  -1 on error.
  5452 //
  5454 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  5455   static bool proc_task_unchecked = true;
  5456   static const char *proc_stat_path = "/proc/%d/stat";
  5457   pid_t  tid = thread->osthread()->thread_id();
  5458   char *s;
  5459   char stat[2048];
  5460   int statlen;
  5461   char proc_name[64];
  5462   int count;
  5463   long sys_time, user_time;
  5464   char cdummy;
  5465   int idummy;
  5466   long ldummy;
  5467   FILE *fp;
  5469   // The /proc/<tid>/stat aggregates per-process usage on
  5470   // new Linux kernels 2.6+ where NPTL is supported.
  5471   // The /proc/self/task/<tid>/stat still has the per-thread usage.
  5472   // See bug 6328462.
  5473   // There possibly can be cases where there is no directory
  5474   // /proc/self/task, so we check its availability.
  5475   if (proc_task_unchecked && os::Linux::is_NPTL()) {
  5476     // This is executed only once
  5477     proc_task_unchecked = false;
  5478     fp = fopen("/proc/self/task", "r");
  5479     if (fp != NULL) {
  5480       proc_stat_path = "/proc/self/task/%d/stat";
  5481       fclose(fp);
  5485   sprintf(proc_name, proc_stat_path, tid);
  5486   fp = fopen(proc_name, "r");
  5487   if ( fp == NULL ) return -1;
  5488   statlen = fread(stat, 1, 2047, fp);
  5489   stat[statlen] = '\0';
  5490   fclose(fp);
  5492   // Skip pid and the command string. Note that we could be dealing with
  5493   // weird command names, e.g. user could decide to rename java launcher
  5494   // to "java 1.4.2 :)", then the stat file would look like
  5495   //                1234 (java 1.4.2 :)) R ... ...
  5496   // We don't really need to know the command string, just find the last
  5497   // occurrence of ")" and then start parsing from there. See bug 4726580.
  5498   s = strrchr(stat, ')');
  5499   if (s == NULL ) return -1;
  5501   // Skip blank chars
  5502   do s++; while (isspace(*s));
  5504   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
  5505                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
  5506                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
  5507                  &user_time, &sys_time);
  5508   if ( count != 13 ) return -1;
  5509   if (user_sys_cpu_time) {
  5510     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
  5511   } else {
  5512     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
  5516 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  5517   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  5518   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  5519   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  5520   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  5523 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  5524   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  5525   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  5526   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  5527   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  5530 bool os::is_thread_cpu_time_supported() {
  5531   return true;
  5534 // System loadavg support.  Returns -1 if load average cannot be obtained.
  5535 // Linux doesn't yet have a (official) notion of processor sets,
  5536 // so just return the system wide load average.
  5537 int os::loadavg(double loadavg[], int nelem) {
  5538   return ::getloadavg(loadavg, nelem);
  5541 void os::pause() {
  5542   char filename[MAX_PATH];
  5543   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  5544     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  5545   } else {
  5546     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  5549   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  5550   if (fd != -1) {
  5551     struct stat buf;
  5552     ::close(fd);
  5553     while (::stat(filename, &buf) == 0) {
  5554       (void)::poll(NULL, 0, 100);
  5556   } else {
  5557     jio_fprintf(stderr,
  5558       "Could not open pause file '%s', continuing immediately.\n", filename);
  5563 // Refer to the comments in os_solaris.cpp park-unpark.
  5564 //
  5565 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
  5566 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
  5567 // For specifics regarding the bug see GLIBC BUGID 261237 :
  5568 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
  5569 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
  5570 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
  5571 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
  5572 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
  5573 // and monitorenter when we're using 1-0 locking.  All those operations may result in
  5574 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
  5575 // of libpthread avoids the problem, but isn't practical.
  5576 //
  5577 // Possible remedies:
  5578 //
  5579 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
  5580 //      This is palliative and probabilistic, however.  If the thread is preempted
  5581 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
  5582 //      than the minimum period may have passed, and the abstime may be stale (in the
  5583 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
  5584 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
  5585 //
  5586 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
  5587 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
  5588 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
  5589 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
  5590 //      thread.
  5591 //
  5592 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
  5593 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
  5594 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
  5595 //      This also works well.  In fact it avoids kernel-level scalability impediments
  5596 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
  5597 //      timers in a graceful fashion.
  5598 //
  5599 // 4.   When the abstime value is in the past it appears that control returns
  5600 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
  5601 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
  5602 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
  5603 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
  5604 //      It may be possible to avoid reinitialization by checking the return
  5605 //      value from pthread_cond_timedwait().  In addition to reinitializing the
  5606 //      condvar we must establish the invariant that cond_signal() is only called
  5607 //      within critical sections protected by the adjunct mutex.  This prevents
  5608 //      cond_signal() from "seeing" a condvar that's in the midst of being
  5609 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
  5610 //      desirable signal-after-unlock optimization that avoids futile context switching.
  5611 //
  5612 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
  5613 //      structure when a condvar is used or initialized.  cond_destroy()  would
  5614 //      release the helper structure.  Our reinitialize-after-timedwait fix
  5615 //      put excessive stress on malloc/free and locks protecting the c-heap.
  5616 //
  5617 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
  5618 // It may be possible to refine (4) by checking the kernel and NTPL verisons
  5619 // and only enabling the work-around for vulnerable environments.
  5621 // utility to compute the abstime argument to timedwait:
  5622 // millis is the relative timeout time
  5623 // abstime will be the absolute timeout time
  5624 // TODO: replace compute_abstime() with unpackTime()
  5626 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
  5627   if (millis < 0)  millis = 0;
  5629   jlong seconds = millis / 1000;
  5630   millis %= 1000;
  5631   if (seconds > 50000000) { // see man cond_timedwait(3T)
  5632     seconds = 50000000;
  5635   if (os::Linux::supports_monotonic_clock()) {
  5636     struct timespec now;
  5637     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
  5638     assert_status(status == 0, status, "clock_gettime");
  5639     abstime->tv_sec = now.tv_sec  + seconds;
  5640     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
  5641     if (nanos >= NANOSECS_PER_SEC) {
  5642       abstime->tv_sec += 1;
  5643       nanos -= NANOSECS_PER_SEC;
  5645     abstime->tv_nsec = nanos;
  5646   } else {
  5647     struct timeval now;
  5648     int status = gettimeofday(&now, NULL);
  5649     assert(status == 0, "gettimeofday");
  5650     abstime->tv_sec = now.tv_sec  + seconds;
  5651     long usec = now.tv_usec + millis * 1000;
  5652     if (usec >= 1000000) {
  5653       abstime->tv_sec += 1;
  5654       usec -= 1000000;
  5656     abstime->tv_nsec = usec * 1000;
  5658   return abstime;
  5662 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
  5663 // Conceptually TryPark() should be equivalent to park(0).
  5665 int os::PlatformEvent::TryPark() {
  5666   for (;;) {
  5667     const int v = _Event ;
  5668     guarantee ((v == 0) || (v == 1), "invariant") ;
  5669     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
  5673 void os::PlatformEvent::park() {       // AKA "down()"
  5674   // Invariant: Only the thread associated with the Event/PlatformEvent
  5675   // may call park().
  5676   // TODO: assert that _Assoc != NULL or _Assoc == Self
  5677   int v ;
  5678   for (;;) {
  5679       v = _Event ;
  5680       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  5682   guarantee (v >= 0, "invariant") ;
  5683   if (v == 0) {
  5684      // Do this the hard way by blocking ...
  5685      int status = pthread_mutex_lock(_mutex);
  5686      assert_status(status == 0, status, "mutex_lock");
  5687      guarantee (_nParked == 0, "invariant") ;
  5688      ++ _nParked ;
  5689      while (_Event < 0) {
  5690         status = pthread_cond_wait(_cond, _mutex);
  5691         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
  5692         // Treat this the same as if the wait was interrupted
  5693         if (status == ETIME) { status = EINTR; }
  5694         assert_status(status == 0 || status == EINTR, status, "cond_wait");
  5696      -- _nParked ;
  5698     _Event = 0 ;
  5699      status = pthread_mutex_unlock(_mutex);
  5700      assert_status(status == 0, status, "mutex_unlock");
  5701     // Paranoia to ensure our locked and lock-free paths interact
  5702     // correctly with each other.
  5703     OrderAccess::fence();
  5705   guarantee (_Event >= 0, "invariant") ;
  5708 int os::PlatformEvent::park(jlong millis) {
  5709   guarantee (_nParked == 0, "invariant") ;
  5711   int v ;
  5712   for (;;) {
  5713       v = _Event ;
  5714       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  5716   guarantee (v >= 0, "invariant") ;
  5717   if (v != 0) return OS_OK ;
  5719   // We do this the hard way, by blocking the thread.
  5720   // Consider enforcing a minimum timeout value.
  5721   struct timespec abst;
  5722   compute_abstime(&abst, millis);
  5724   int ret = OS_TIMEOUT;
  5725   int status = pthread_mutex_lock(_mutex);
  5726   assert_status(status == 0, status, "mutex_lock");
  5727   guarantee (_nParked == 0, "invariant") ;
  5728   ++_nParked ;
  5730   // Object.wait(timo) will return because of
  5731   // (a) notification
  5732   // (b) timeout
  5733   // (c) thread.interrupt
  5734   //
  5735   // Thread.interrupt and object.notify{All} both call Event::set.
  5736   // That is, we treat thread.interrupt as a special case of notification.
  5737   // The underlying Solaris implementation, cond_timedwait, admits
  5738   // spurious/premature wakeups, but the JLS/JVM spec prevents the
  5739   // JVM from making those visible to Java code.  As such, we must
  5740   // filter out spurious wakeups.  We assume all ETIME returns are valid.
  5741   //
  5742   // TODO: properly differentiate simultaneous notify+interrupt.
  5743   // In that case, we should propagate the notify to another waiter.
  5745   while (_Event < 0) {
  5746     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
  5747     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  5748       pthread_cond_destroy (_cond);
  5749       pthread_cond_init (_cond, os::Linux::condAttr()) ;
  5751     assert_status(status == 0 || status == EINTR ||
  5752                   status == ETIME || status == ETIMEDOUT,
  5753                   status, "cond_timedwait");
  5754     if (!FilterSpuriousWakeups) break ;                 // previous semantics
  5755     if (status == ETIME || status == ETIMEDOUT) break ;
  5756     // We consume and ignore EINTR and spurious wakeups.
  5758   --_nParked ;
  5759   if (_Event >= 0) {
  5760      ret = OS_OK;
  5762   _Event = 0 ;
  5763   status = pthread_mutex_unlock(_mutex);
  5764   assert_status(status == 0, status, "mutex_unlock");
  5765   assert (_nParked == 0, "invariant") ;
  5766   // Paranoia to ensure our locked and lock-free paths interact
  5767   // correctly with each other.
  5768   OrderAccess::fence();
  5769   return ret;
  5772 void os::PlatformEvent::unpark() {
  5773   // Transitions for _Event:
  5774   //    0 :=> 1
  5775   //    1 :=> 1
  5776   //   -1 :=> either 0 or 1; must signal target thread
  5777   //          That is, we can safely transition _Event from -1 to either
  5778   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
  5779   //          unpark() calls.
  5780   // See also: "Semaphores in Plan 9" by Mullender & Cox
  5781   //
  5782   // Note: Forcing a transition from "-1" to "1" on an unpark() means
  5783   // that it will take two back-to-back park() calls for the owning
  5784   // thread to block. This has the benefit of forcing a spurious return
  5785   // from the first park() call after an unpark() call which will help
  5786   // shake out uses of park() and unpark() without condition variables.
  5788   if (Atomic::xchg(1, &_Event) >= 0) return;
  5790   // Wait for the thread associated with the event to vacate
  5791   int status = pthread_mutex_lock(_mutex);
  5792   assert_status(status == 0, status, "mutex_lock");
  5793   int AnyWaiters = _nParked;
  5794   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
  5795   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
  5796     AnyWaiters = 0;
  5797     pthread_cond_signal(_cond);
  5799   status = pthread_mutex_unlock(_mutex);
  5800   assert_status(status == 0, status, "mutex_unlock");
  5801   if (AnyWaiters != 0) {
  5802     status = pthread_cond_signal(_cond);
  5803     assert_status(status == 0, status, "cond_signal");
  5806   // Note that we signal() _after dropping the lock for "immortal" Events.
  5807   // This is safe and avoids a common class of  futile wakeups.  In rare
  5808   // circumstances this can cause a thread to return prematurely from
  5809   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
  5810   // simply re-test the condition and re-park itself.
  5814 // JSR166
  5815 // -------------------------------------------------------
  5817 /*
  5818  * The solaris and linux implementations of park/unpark are fairly
  5819  * conservative for now, but can be improved. They currently use a
  5820  * mutex/condvar pair, plus a a count.
  5821  * Park decrements count if > 0, else does a condvar wait.  Unpark
  5822  * sets count to 1 and signals condvar.  Only one thread ever waits
  5823  * on the condvar. Contention seen when trying to park implies that someone
  5824  * is unparking you, so don't wait. And spurious returns are fine, so there
  5825  * is no need to track notifications.
  5826  */
  5828 /*
  5829  * This code is common to linux and solaris and will be moved to a
  5830  * common place in dolphin.
  5832  * The passed in time value is either a relative time in nanoseconds
  5833  * or an absolute time in milliseconds. Either way it has to be unpacked
  5834  * into suitable seconds and nanoseconds components and stored in the
  5835  * given timespec structure.
  5836  * Given time is a 64-bit value and the time_t used in the timespec is only
  5837  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
  5838  * overflow if times way in the future are given. Further on Solaris versions
  5839  * prior to 10 there is a restriction (see cond_timedwait) that the specified
  5840  * number of seconds, in abstime, is less than current_time  + 100,000,000.
  5841  * As it will be 28 years before "now + 100000000" will overflow we can
  5842  * ignore overflow and just impose a hard-limit on seconds using the value
  5843  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
  5844  * years from "now".
  5845  */
  5847 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
  5848   assert (time > 0, "convertTime");
  5849   time_t max_secs = 0;
  5851   if (!os::Linux::supports_monotonic_clock() || isAbsolute) {
  5852     struct timeval now;
  5853     int status = gettimeofday(&now, NULL);
  5854     assert(status == 0, "gettimeofday");
  5856     max_secs = now.tv_sec + MAX_SECS;
  5858     if (isAbsolute) {
  5859       jlong secs = time / 1000;
  5860       if (secs > max_secs) {
  5861         absTime->tv_sec = max_secs;
  5862       } else {
  5863         absTime->tv_sec = secs;
  5865       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
  5866     } else {
  5867       jlong secs = time / NANOSECS_PER_SEC;
  5868       if (secs >= MAX_SECS) {
  5869         absTime->tv_sec = max_secs;
  5870         absTime->tv_nsec = 0;
  5871       } else {
  5872         absTime->tv_sec = now.tv_sec + secs;
  5873         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
  5874         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  5875           absTime->tv_nsec -= NANOSECS_PER_SEC;
  5876           ++absTime->tv_sec; // note: this must be <= max_secs
  5880   } else {
  5881     // must be relative using monotonic clock
  5882     struct timespec now;
  5883     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
  5884     assert_status(status == 0, status, "clock_gettime");
  5885     max_secs = now.tv_sec + MAX_SECS;
  5886     jlong secs = time / NANOSECS_PER_SEC;
  5887     if (secs >= MAX_SECS) {
  5888       absTime->tv_sec = max_secs;
  5889       absTime->tv_nsec = 0;
  5890     } else {
  5891       absTime->tv_sec = now.tv_sec + secs;
  5892       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
  5893       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  5894         absTime->tv_nsec -= NANOSECS_PER_SEC;
  5895         ++absTime->tv_sec; // note: this must be <= max_secs
  5899   assert(absTime->tv_sec >= 0, "tv_sec < 0");
  5900   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
  5901   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
  5902   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
  5905 void Parker::park(bool isAbsolute, jlong time) {
  5906   // Ideally we'd do something useful while spinning, such
  5907   // as calling unpackTime().
  5909   // Optional fast-path check:
  5910   // Return immediately if a permit is available.
  5911   // We depend on Atomic::xchg() having full barrier semantics
  5912   // since we are doing a lock-free update to _counter.
  5913   if (Atomic::xchg(0, &_counter) > 0) return;
  5915   Thread* thread = Thread::current();
  5916   assert(thread->is_Java_thread(), "Must be JavaThread");
  5917   JavaThread *jt = (JavaThread *)thread;
  5919   // Optional optimization -- avoid state transitions if there's an interrupt pending.
  5920   // Check interrupt before trying to wait
  5921   if (Thread::is_interrupted(thread, false)) {
  5922     return;
  5925   // Next, demultiplex/decode time arguments
  5926   timespec absTime;
  5927   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
  5928     return;
  5930   if (time > 0) {
  5931     unpackTime(&absTime, isAbsolute, time);
  5935   // Enter safepoint region
  5936   // Beware of deadlocks such as 6317397.
  5937   // The per-thread Parker:: mutex is a classic leaf-lock.
  5938   // In particular a thread must never block on the Threads_lock while
  5939   // holding the Parker:: mutex.  If safepoints are pending both the
  5940   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
  5941   ThreadBlockInVM tbivm(jt);
  5943   // Don't wait if cannot get lock since interference arises from
  5944   // unblocking.  Also. check interrupt before trying wait
  5945   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
  5946     return;
  5949   int status ;
  5950   if (_counter > 0)  { // no wait needed
  5951     _counter = 0;
  5952     status = pthread_mutex_unlock(_mutex);
  5953     assert (status == 0, "invariant") ;
  5954     // Paranoia to ensure our locked and lock-free paths interact
  5955     // correctly with each other and Java-level accesses.
  5956     OrderAccess::fence();
  5957     return;
  5960 #ifdef ASSERT
  5961   // Don't catch signals while blocked; let the running threads have the signals.
  5962   // (This allows a debugger to break into the running thread.)
  5963   sigset_t oldsigs;
  5964   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
  5965   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
  5966 #endif
  5968   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  5969   jt->set_suspend_equivalent();
  5970   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  5972   assert(_cur_index == -1, "invariant");
  5973   if (time == 0) {
  5974     _cur_index = REL_INDEX; // arbitrary choice when not timed
  5975     status = pthread_cond_wait (&_cond[_cur_index], _mutex) ;
  5976   } else {
  5977     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
  5978     status = os::Linux::safe_cond_timedwait (&_cond[_cur_index], _mutex, &absTime) ;
  5979     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  5980       pthread_cond_destroy (&_cond[_cur_index]) ;
  5981       pthread_cond_init    (&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
  5984   _cur_index = -1;
  5985   assert_status(status == 0 || status == EINTR ||
  5986                 status == ETIME || status == ETIMEDOUT,
  5987                 status, "cond_timedwait");
  5989 #ifdef ASSERT
  5990   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
  5991 #endif
  5993   _counter = 0 ;
  5994   status = pthread_mutex_unlock(_mutex) ;
  5995   assert_status(status == 0, status, "invariant") ;
  5996   // Paranoia to ensure our locked and lock-free paths interact
  5997   // correctly with each other and Java-level accesses.
  5998   OrderAccess::fence();
  6000   // If externally suspended while waiting, re-suspend
  6001   if (jt->handle_special_suspend_equivalent_condition()) {
  6002     jt->java_suspend_self();
  6006 void Parker::unpark() {
  6007   int s, status ;
  6008   status = pthread_mutex_lock(_mutex);
  6009   assert (status == 0, "invariant") ;
  6010   s = _counter;
  6011   _counter = 1;
  6012   if (s < 1) {
  6013     // thread might be parked
  6014     if (_cur_index != -1) {
  6015       // thread is definitely parked
  6016       if (WorkAroundNPTLTimedWaitHang) {
  6017         status = pthread_cond_signal (&_cond[_cur_index]);
  6018         assert (status == 0, "invariant");
  6019         status = pthread_mutex_unlock(_mutex);
  6020         assert (status == 0, "invariant");
  6021       } else {
  6022         status = pthread_mutex_unlock(_mutex);
  6023         assert (status == 0, "invariant");
  6024         status = pthread_cond_signal (&_cond[_cur_index]);
  6025         assert (status == 0, "invariant");
  6027     } else {
  6028       pthread_mutex_unlock(_mutex);
  6029       assert (status == 0, "invariant") ;
  6031   } else {
  6032     pthread_mutex_unlock(_mutex);
  6033     assert (status == 0, "invariant") ;
  6038 extern char** environ;
  6040 #ifndef __NR_fork
  6041 #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
  6042 #endif
  6044 #ifndef __NR_execve
  6045 #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
  6046 #endif
  6048 // Run the specified command in a separate process. Return its exit value,
  6049 // or -1 on failure (e.g. can't fork a new process).
  6050 // Unlike system(), this function can be called from signal handler. It
  6051 // doesn't block SIGINT et al.
  6052 int os::fork_and_exec(char* cmd) {
  6053   const char * argv[4] = {"sh", "-c", cmd, NULL};
  6055   // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
  6056   // pthread_atfork handlers and reset pthread library. All we need is a
  6057   // separate process to execve. Make a direct syscall to fork process.
  6058   // On IA64 there's no fork syscall, we have to use fork() and hope for
  6059   // the best...
  6060   pid_t pid = NOT_IA64(syscall(__NR_fork);)
  6061               IA64_ONLY(fork();)
  6063   if (pid < 0) {
  6064     // fork failed
  6065     return -1;
  6067   } else if (pid == 0) {
  6068     // child process
  6070     // execve() in LinuxThreads will call pthread_kill_other_threads_np()
  6071     // first to kill every thread on the thread list. Because this list is
  6072     // not reset by fork() (see notes above), execve() will instead kill
  6073     // every thread in the parent process. We know this is the only thread
  6074     // in the new process, so make a system call directly.
  6075     // IA64 should use normal execve() from glibc to match the glibc fork()
  6076     // above.
  6077     NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
  6078     IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
  6080     // execve failed
  6081     _exit(-1);
  6083   } else  {
  6084     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
  6085     // care about the actual exit code, for now.
  6087     int status;
  6089     // Wait for the child process to exit.  This returns immediately if
  6090     // the child has already exited. */
  6091     while (waitpid(pid, &status, 0) < 0) {
  6092         switch (errno) {
  6093         case ECHILD: return 0;
  6094         case EINTR: break;
  6095         default: return -1;
  6099     if (WIFEXITED(status)) {
  6100        // The child exited normally; get its exit code.
  6101        return WEXITSTATUS(status);
  6102     } else if (WIFSIGNALED(status)) {
  6103        // The child exited because of a signal
  6104        // The best value to return is 0x80 + signal number,
  6105        // because that is what all Unix shells do, and because
  6106        // it allows callers to distinguish between process exit and
  6107        // process death by signal.
  6108        return 0x80 + WTERMSIG(status);
  6109     } else {
  6110        // Unknown exit code; pass it through
  6111        return status;
  6116 // is_headless_jre()
  6117 //
  6118 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
  6119 // in order to report if we are running in a headless jre
  6120 //
  6121 // Since JDK8 xawt/libmawt.so was moved into the same directory
  6122 // as libawt.so, and renamed libawt_xawt.so
  6123 //
  6124 bool os::is_headless_jre() {
  6125     struct stat statbuf;
  6126     char buf[MAXPATHLEN];
  6127     char libmawtpath[MAXPATHLEN];
  6128     const char *xawtstr  = "/xawt/libmawt.so";
  6129     const char *new_xawtstr = "/libawt_xawt.so";
  6130     char *p;
  6132     // Get path to libjvm.so
  6133     os::jvm_path(buf, sizeof(buf));
  6135     // Get rid of libjvm.so
  6136     p = strrchr(buf, '/');
  6137     if (p == NULL) return false;
  6138     else *p = '\0';
  6140     // Get rid of client or server
  6141     p = strrchr(buf, '/');
  6142     if (p == NULL) return false;
  6143     else *p = '\0';
  6145     // check xawt/libmawt.so
  6146     strcpy(libmawtpath, buf);
  6147     strcat(libmawtpath, xawtstr);
  6148     if (::stat(libmawtpath, &statbuf) == 0) return false;
  6150     // check libawt_xawt.so
  6151     strcpy(libmawtpath, buf);
  6152     strcat(libmawtpath, new_xawtstr);
  6153     if (::stat(libmawtpath, &statbuf) == 0) return false;
  6155     return true;
  6158 // Get the default path to the core file
  6159 // Returns the length of the string
  6160 int os::get_core_path(char* buffer, size_t bufferSize) {
  6161   const char* p = get_current_directory(buffer, bufferSize);
  6163   if (p == NULL) {
  6164     assert(p != NULL, "failed to get current directory");
  6165     return 0;
  6168   return strlen(buffer);
  6171 #ifdef JAVASE_EMBEDDED
  6172 //
  6173 // A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
  6174 //
  6175 MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
  6177 // ctor
  6178 //
  6179 MemNotifyThread::MemNotifyThread(int fd): Thread() {
  6180   assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
  6181   _fd = fd;
  6183   if (os::create_thread(this, os::os_thread)) {
  6184     _memnotify_thread = this;
  6185     os::set_priority(this, NearMaxPriority);
  6186     os::start_thread(this);
  6190 // Where all the work gets done
  6191 //
  6192 void MemNotifyThread::run() {
  6193   assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
  6195   // Set up the select arguments
  6196   fd_set rfds;
  6197   if (_fd != -1) {
  6198     FD_ZERO(&rfds);
  6199     FD_SET(_fd, &rfds);
  6202   // Now wait for the mem_notify device to wake up
  6203   while (1) {
  6204     // Wait for the mem_notify device to signal us..
  6205     int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
  6206     if (rc == -1) {
  6207       perror("select!\n");
  6208       break;
  6209     } else if (rc) {
  6210       //ssize_t free_before = os::available_memory();
  6211       //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
  6213       // The kernel is telling us there is not much memory left...
  6214       // try to do something about that
  6216       // If we are not already in a GC, try one.
  6217       if (!Universe::heap()->is_gc_active()) {
  6218         Universe::heap()->collect(GCCause::_allocation_failure);
  6220         //ssize_t free_after = os::available_memory();
  6221         //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
  6222         //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
  6224       // We might want to do something like the following if we find the GC's are not helping...
  6225       // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
  6230 //
  6231 // See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
  6232 //
  6233 void MemNotifyThread::start() {
  6234   int    fd;
  6235   fd = open ("/dev/mem_notify", O_RDONLY, 0);
  6236   if (fd < 0) {
  6237       return;
  6240   if (memnotify_thread() == NULL) {
  6241     new MemNotifyThread(fd);
  6245 #endif // JAVASE_EMBEDDED
  6248 /////////////// Unit tests ///////////////
  6250 #ifndef PRODUCT
  6252 #define test_log(...) \
  6253   do {\
  6254     if (VerboseInternalVMTests) { \
  6255       tty->print_cr(__VA_ARGS__); \
  6256       tty->flush(); \
  6257     }\
  6258   } while (false)
  6260 class TestReserveMemorySpecial : AllStatic {
  6261  public:
  6262   static void small_page_write(void* addr, size_t size) {
  6263     size_t page_size = os::vm_page_size();
  6265     char* end = (char*)addr + size;
  6266     for (char* p = (char*)addr; p < end; p += page_size) {
  6267       *p = 1;
  6271   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
  6272     if (!UseHugeTLBFS) {
  6273       return;
  6276     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
  6278     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
  6280     if (addr != NULL) {
  6281       small_page_write(addr, size);
  6283       os::Linux::release_memory_special_huge_tlbfs(addr, size);
  6287   static void test_reserve_memory_special_huge_tlbfs_only() {
  6288     if (!UseHugeTLBFS) {
  6289       return;
  6292     size_t lp = os::large_page_size();
  6294     for (size_t size = lp; size <= lp * 10; size += lp) {
  6295       test_reserve_memory_special_huge_tlbfs_only(size);
  6299   static void test_reserve_memory_special_huge_tlbfs_mixed(size_t size, size_t alignment) {
  6300     if (!UseHugeTLBFS) {
  6301         return;
  6304     test_log("test_reserve_memory_special_huge_tlbfs_mixed(" SIZE_FORMAT ", " SIZE_FORMAT ")",
  6305         size, alignment);
  6307     assert(size >= os::large_page_size(), "Incorrect input to test");
  6309     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
  6311     if (addr != NULL) {
  6312       small_page_write(addr, size);
  6314       os::Linux::release_memory_special_huge_tlbfs(addr, size);
  6318   static void test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(size_t size) {
  6319     size_t lp = os::large_page_size();
  6320     size_t ag = os::vm_allocation_granularity();
  6322     for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
  6323       test_reserve_memory_special_huge_tlbfs_mixed(size, alignment);
  6327   static void test_reserve_memory_special_huge_tlbfs_mixed() {
  6328     size_t lp = os::large_page_size();
  6329     size_t ag = os::vm_allocation_granularity();
  6331     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp);
  6332     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + ag);
  6333     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + lp / 2);
  6334     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2);
  6335     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + ag);
  6336     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 - ag);
  6337     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + lp / 2);
  6338     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10);
  6339     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10 + lp / 2);
  6342   static void test_reserve_memory_special_huge_tlbfs() {
  6343     if (!UseHugeTLBFS) {
  6344       return;
  6347     test_reserve_memory_special_huge_tlbfs_only();
  6348     test_reserve_memory_special_huge_tlbfs_mixed();
  6351   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
  6352     if (!UseSHM) {
  6353       return;
  6356     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
  6358     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
  6360     if (addr != NULL) {
  6361       assert(is_ptr_aligned(addr, alignment), "Check");
  6362       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
  6364       small_page_write(addr, size);
  6366       os::Linux::release_memory_special_shm(addr, size);
  6370   static void test_reserve_memory_special_shm() {
  6371     size_t lp = os::large_page_size();
  6372     size_t ag = os::vm_allocation_granularity();
  6374     for (size_t size = ag; size < lp * 3; size += ag) {
  6375       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
  6376         test_reserve_memory_special_shm(size, alignment);
  6381   static void test() {
  6382     test_reserve_memory_special_huge_tlbfs();
  6383     test_reserve_memory_special_shm();
  6385 };
  6387 void TestReserveMemorySpecial_test() {
  6388   TestReserveMemorySpecial::test();
  6391 #endif

mercurial