src/share/vm/gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.cpp

Thu, 14 Aug 2008 17:58:35 -0700

author
ysr
date
Thu, 14 Aug 2008 17:58:35 -0700
changeset 718
9199f248b0ee
parent 706
818a18cd69a8
child 775
ebeb6490b814
child 791
1ee8caae33af
permissions
-rw-r--r--

6722112: CMS: Incorrect encoding of overflown object arrays during concurrent precleaning
Summary: When an object array overflows during precleaning, we should have been marking the entire array dirty, not just its first card.
Reviewed-by: jmasa, poonam, tonyp

     1 /*
     2  * Copyright 2001-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_concurrentMarkSweepGeneration.cpp.incl"
    28 // statics
    29 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
    30 bool          CMSCollector::_full_gc_requested          = false;
    32 //////////////////////////////////////////////////////////////////
    33 // In support of CMS/VM thread synchronization
    34 //////////////////////////////////////////////////////////////////
    35 // We split use of the CGC_lock into 2 "levels".
    36 // The low-level locking is of the usual CGC_lock monitor. We introduce
    37 // a higher level "token" (hereafter "CMS token") built on top of the
    38 // low level monitor (hereafter "CGC lock").
    39 // The token-passing protocol gives priority to the VM thread. The
    40 // CMS-lock doesn't provide any fairness guarantees, but clients
    41 // should ensure that it is only held for very short, bounded
    42 // durations.
    43 //
    44 // When either of the CMS thread or the VM thread is involved in
    45 // collection operations during which it does not want the other
    46 // thread to interfere, it obtains the CMS token.
    47 //
    48 // If either thread tries to get the token while the other has
    49 // it, that thread waits. However, if the VM thread and CMS thread
    50 // both want the token, then the VM thread gets priority while the
    51 // CMS thread waits. This ensures, for instance, that the "concurrent"
    52 // phases of the CMS thread's work do not block out the VM thread
    53 // for long periods of time as the CMS thread continues to hog
    54 // the token. (See bug 4616232).
    55 //
    56 // The baton-passing functions are, however, controlled by the
    57 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
    58 // and here the low-level CMS lock, not the high level token,
    59 // ensures mutual exclusion.
    60 //
    61 // Two important conditions that we have to satisfy:
    62 // 1. if a thread does a low-level wait on the CMS lock, then it
    63 //    relinquishes the CMS token if it were holding that token
    64 //    when it acquired the low-level CMS lock.
    65 // 2. any low-level notifications on the low-level lock
    66 //    should only be sent when a thread has relinquished the token.
    67 //
    68 // In the absence of either property, we'd have potential deadlock.
    69 //
    70 // We protect each of the CMS (concurrent and sequential) phases
    71 // with the CMS _token_, not the CMS _lock_.
    72 //
    73 // The only code protected by CMS lock is the token acquisition code
    74 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
    75 // baton-passing code.
    76 //
    77 // Unfortunately, i couldn't come up with a good abstraction to factor and
    78 // hide the naked CGC_lock manipulation in the baton-passing code
    79 // further below. That's something we should try to do. Also, the proof
    80 // of correctness of this 2-level locking scheme is far from obvious,
    81 // and potentially quite slippery. We have an uneasy supsicion, for instance,
    82 // that there may be a theoretical possibility of delay/starvation in the
    83 // low-level lock/wait/notify scheme used for the baton-passing because of
    84 // potential intereference with the priority scheme embodied in the
    85 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
    86 // invocation further below and marked with "XXX 20011219YSR".
    87 // Indeed, as we note elsewhere, this may become yet more slippery
    88 // in the presence of multiple CMS and/or multiple VM threads. XXX
    90 class CMSTokenSync: public StackObj {
    91  private:
    92   bool _is_cms_thread;
    93  public:
    94   CMSTokenSync(bool is_cms_thread):
    95     _is_cms_thread(is_cms_thread) {
    96     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
    97            "Incorrect argument to constructor");
    98     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
    99   }
   101   ~CMSTokenSync() {
   102     assert(_is_cms_thread ?
   103              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
   104              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
   105           "Incorrect state");
   106     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
   107   }
   108 };
   110 // Convenience class that does a CMSTokenSync, and then acquires
   111 // upto three locks.
   112 class CMSTokenSyncWithLocks: public CMSTokenSync {
   113  private:
   114   // Note: locks are acquired in textual declaration order
   115   // and released in the opposite order
   116   MutexLockerEx _locker1, _locker2, _locker3;
   117  public:
   118   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
   119                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
   120     CMSTokenSync(is_cms_thread),
   121     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
   122     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
   123     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
   124   { }
   125 };
   128 // Wrapper class to temporarily disable icms during a foreground cms collection.
   129 class ICMSDisabler: public StackObj {
   130  public:
   131   // The ctor disables icms and wakes up the thread so it notices the change;
   132   // the dtor re-enables icms.  Note that the CMSCollector methods will check
   133   // CMSIncrementalMode.
   134   ICMSDisabler()  { CMSCollector::disable_icms(); CMSCollector::start_icms(); }
   135   ~ICMSDisabler() { CMSCollector::enable_icms(); }
   136 };
   138 //////////////////////////////////////////////////////////////////
   139 //  Concurrent Mark-Sweep Generation /////////////////////////////
   140 //////////////////////////////////////////////////////////////////
   142 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
   144 // This struct contains per-thread things necessary to support parallel
   145 // young-gen collection.
   146 class CMSParGCThreadState: public CHeapObj {
   147  public:
   148   CFLS_LAB lab;
   149   PromotionInfo promo;
   151   // Constructor.
   152   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
   153     promo.setSpace(cfls);
   154   }
   155 };
   157 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
   158      ReservedSpace rs, size_t initial_byte_size, int level,
   159      CardTableRS* ct, bool use_adaptive_freelists,
   160      FreeBlockDictionary::DictionaryChoice dictionaryChoice) :
   161   CardGeneration(rs, initial_byte_size, level, ct),
   162   _dilatation_factor(((double)MinChunkSize)/((double)(oopDesc::header_size()))),
   163   _debug_collection_type(Concurrent_collection_type)
   164 {
   165   HeapWord* bottom = (HeapWord*) _virtual_space.low();
   166   HeapWord* end    = (HeapWord*) _virtual_space.high();
   168   _direct_allocated_words = 0;
   169   NOT_PRODUCT(
   170     _numObjectsPromoted = 0;
   171     _numWordsPromoted = 0;
   172     _numObjectsAllocated = 0;
   173     _numWordsAllocated = 0;
   174   )
   176   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end),
   177                                            use_adaptive_freelists,
   178                                            dictionaryChoice);
   179   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
   180   if (_cmsSpace == NULL) {
   181     vm_exit_during_initialization(
   182       "CompactibleFreeListSpace allocation failure");
   183   }
   184   _cmsSpace->_gen = this;
   186   _gc_stats = new CMSGCStats();
   188   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
   189   // offsets match. The ability to tell free chunks from objects
   190   // depends on this property.
   191   debug_only(
   192     FreeChunk* junk = NULL;
   193     assert(UseCompressedOops ||
   194            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
   195            "Offset of FreeChunk::_prev within FreeChunk must match"
   196            "  that of OopDesc::_klass within OopDesc");
   197   )
   198   if (ParallelGCThreads > 0) {
   199     typedef CMSParGCThreadState* CMSParGCThreadStatePtr;
   200     _par_gc_thread_states =
   201       NEW_C_HEAP_ARRAY(CMSParGCThreadStatePtr, ParallelGCThreads);
   202     if (_par_gc_thread_states == NULL) {
   203       vm_exit_during_initialization("Could not allocate par gc structs");
   204     }
   205     for (uint i = 0; i < ParallelGCThreads; i++) {
   206       _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
   207       if (_par_gc_thread_states[i] == NULL) {
   208         vm_exit_during_initialization("Could not allocate par gc structs");
   209       }
   210     }
   211   } else {
   212     _par_gc_thread_states = NULL;
   213   }
   214   _incremental_collection_failed = false;
   215   // The "dilatation_factor" is the expansion that can occur on
   216   // account of the fact that the minimum object size in the CMS
   217   // generation may be larger than that in, say, a contiguous young
   218   //  generation.
   219   // Ideally, in the calculation below, we'd compute the dilatation
   220   // factor as: MinChunkSize/(promoting_gen's min object size)
   221   // Since we do not have such a general query interface for the
   222   // promoting generation, we'll instead just use the mimimum
   223   // object size (which today is a header's worth of space);
   224   // note that all arithmetic is in units of HeapWords.
   225   assert(MinChunkSize >= oopDesc::header_size(), "just checking");
   226   assert(_dilatation_factor >= 1.0, "from previous assert");
   227 }
   230 // The field "_initiating_occupancy" represents the occupancy percentage
   231 // at which we trigger a new collection cycle.  Unless explicitly specified
   232 // via CMSInitiating[Perm]OccupancyFraction (argument "io" below), it
   233 // is calculated by:
   234 //
   235 //   Let "f" be MinHeapFreeRatio in
   236 //
   237 //    _intiating_occupancy = 100-f +
   238 //                           f * (CMSTrigger[Perm]Ratio/100)
   239 //   where CMSTrigger[Perm]Ratio is the argument "tr" below.
   240 //
   241 // That is, if we assume the heap is at its desired maximum occupancy at the
   242 // end of a collection, we let CMSTrigger[Perm]Ratio of the (purported) free
   243 // space be allocated before initiating a new collection cycle.
   244 //
   245 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, intx tr) {
   246   assert(io <= 100 && tr >= 0 && tr <= 100, "Check the arguments");
   247   if (io >= 0) {
   248     _initiating_occupancy = (double)io / 100.0;
   249   } else {
   250     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
   251                              (double)(tr * MinHeapFreeRatio) / 100.0)
   252                             / 100.0;
   253   }
   254 }
   257 void ConcurrentMarkSweepGeneration::ref_processor_init() {
   258   assert(collector() != NULL, "no collector");
   259   collector()->ref_processor_init();
   260 }
   262 void CMSCollector::ref_processor_init() {
   263   if (_ref_processor == NULL) {
   264     // Allocate and initialize a reference processor
   265     _ref_processor = ReferenceProcessor::create_ref_processor(
   266         _span,                               // span
   267         _cmsGen->refs_discovery_is_atomic(), // atomic_discovery
   268         _cmsGen->refs_discovery_is_mt(),     // mt_discovery
   269         &_is_alive_closure,
   270         ParallelGCThreads,
   271         ParallelRefProcEnabled);
   272     // Initialize the _ref_processor field of CMSGen
   273     _cmsGen->set_ref_processor(_ref_processor);
   275     // Allocate a dummy ref processor for perm gen.
   276     ReferenceProcessor* rp2 = new ReferenceProcessor();
   277     if (rp2 == NULL) {
   278       vm_exit_during_initialization("Could not allocate ReferenceProcessor object");
   279     }
   280     _permGen->set_ref_processor(rp2);
   281   }
   282 }
   284 CMSAdaptiveSizePolicy* CMSCollector::size_policy() {
   285   GenCollectedHeap* gch = GenCollectedHeap::heap();
   286   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
   287     "Wrong type of heap");
   288   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
   289     gch->gen_policy()->size_policy();
   290   assert(sp->is_gc_cms_adaptive_size_policy(),
   291     "Wrong type of size policy");
   292   return sp;
   293 }
   295 CMSGCAdaptivePolicyCounters* CMSCollector::gc_adaptive_policy_counters() {
   296   CMSGCAdaptivePolicyCounters* results =
   297     (CMSGCAdaptivePolicyCounters*) collector_policy()->counters();
   298   assert(
   299     results->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
   300     "Wrong gc policy counter kind");
   301   return results;
   302 }
   305 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
   307   const char* gen_name = "old";
   309   // Generation Counters - generation 1, 1 subspace
   310   _gen_counters = new GenerationCounters(gen_name, 1, 1, &_virtual_space);
   312   _space_counters = new GSpaceCounters(gen_name, 0,
   313                                        _virtual_space.reserved_size(),
   314                                        this, _gen_counters);
   315 }
   317 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
   318   _cms_gen(cms_gen)
   319 {
   320   assert(alpha <= 100, "bad value");
   321   _saved_alpha = alpha;
   323   // Initialize the alphas to the bootstrap value of 100.
   324   _gc0_alpha = _cms_alpha = 100;
   326   _cms_begin_time.update();
   327   _cms_end_time.update();
   329   _gc0_duration = 0.0;
   330   _gc0_period = 0.0;
   331   _gc0_promoted = 0;
   333   _cms_duration = 0.0;
   334   _cms_period = 0.0;
   335   _cms_allocated = 0;
   337   _cms_used_at_gc0_begin = 0;
   338   _cms_used_at_gc0_end = 0;
   339   _allow_duty_cycle_reduction = false;
   340   _valid_bits = 0;
   341   _icms_duty_cycle = CMSIncrementalDutyCycle;
   342 }
   344 // If promotion failure handling is on use
   345 // the padded average size of the promotion for each
   346 // young generation collection.
   347 double CMSStats::time_until_cms_gen_full() const {
   348   size_t cms_free = _cms_gen->cmsSpace()->free();
   349   GenCollectedHeap* gch = GenCollectedHeap::heap();
   350   size_t expected_promotion = gch->get_gen(0)->capacity();
   351   if (HandlePromotionFailure) {
   352     expected_promotion = MIN2(
   353         (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average(),
   354         expected_promotion);
   355   }
   356   if (cms_free > expected_promotion) {
   357     // Start a cms collection if there isn't enough space to promote
   358     // for the next minor collection.  Use the padded average as
   359     // a safety factor.
   360     cms_free -= expected_promotion;
   362     // Adjust by the safety factor.
   363     double cms_free_dbl = (double)cms_free;
   364     cms_free_dbl = cms_free_dbl * (100.0 - CMSIncrementalSafetyFactor) / 100.0;
   366     if (PrintGCDetails && Verbose) {
   367       gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free "
   368         SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
   369         cms_free, expected_promotion);
   370       gclog_or_tty->print_cr("  cms_free_dbl %f cms_consumption_rate %f",
   371         cms_free_dbl, cms_consumption_rate() + 1.0);
   372     }
   373     // Add 1 in case the consumption rate goes to zero.
   374     return cms_free_dbl / (cms_consumption_rate() + 1.0);
   375   }
   376   return 0.0;
   377 }
   379 // Compare the duration of the cms collection to the
   380 // time remaining before the cms generation is empty.
   381 // Note that the time from the start of the cms collection
   382 // to the start of the cms sweep (less than the total
   383 // duration of the cms collection) can be used.  This
   384 // has been tried and some applications experienced
   385 // promotion failures early in execution.  This was
   386 // possibly because the averages were not accurate
   387 // enough at the beginning.
   388 double CMSStats::time_until_cms_start() const {
   389   // We add "gc0_period" to the "work" calculation
   390   // below because this query is done (mostly) at the
   391   // end of a scavenge, so we need to conservatively
   392   // account for that much possible delay
   393   // in the query so as to avoid concurrent mode failures
   394   // due to starting the collection just a wee bit too
   395   // late.
   396   double work = cms_duration() + gc0_period();
   397   double deadline = time_until_cms_gen_full();
   398   if (work > deadline) {
   399     if (Verbose && PrintGCDetails) {
   400       gclog_or_tty->print(
   401         " CMSCollector: collect because of anticipated promotion "
   402         "before full %3.7f + %3.7f > %3.7f ", cms_duration(),
   403         gc0_period(), time_until_cms_gen_full());
   404     }
   405     return 0.0;
   406   }
   407   return work - deadline;
   408 }
   410 // Return a duty cycle based on old_duty_cycle and new_duty_cycle, limiting the
   411 // amount of change to prevent wild oscillation.
   412 unsigned int CMSStats::icms_damped_duty_cycle(unsigned int old_duty_cycle,
   413                                               unsigned int new_duty_cycle) {
   414   assert(old_duty_cycle <= 100, "bad input value");
   415   assert(new_duty_cycle <= 100, "bad input value");
   417   // Note:  use subtraction with caution since it may underflow (values are
   418   // unsigned).  Addition is safe since we're in the range 0-100.
   419   unsigned int damped_duty_cycle = new_duty_cycle;
   420   if (new_duty_cycle < old_duty_cycle) {
   421     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 5U);
   422     if (new_duty_cycle + largest_delta < old_duty_cycle) {
   423       damped_duty_cycle = old_duty_cycle - largest_delta;
   424     }
   425   } else if (new_duty_cycle > old_duty_cycle) {
   426     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 15U);
   427     if (new_duty_cycle > old_duty_cycle + largest_delta) {
   428       damped_duty_cycle = MIN2(old_duty_cycle + largest_delta, 100U);
   429     }
   430   }
   431   assert(damped_duty_cycle <= 100, "invalid duty cycle computed");
   433   if (CMSTraceIncrementalPacing) {
   434     gclog_or_tty->print(" [icms_damped_duty_cycle(%d,%d) = %d] ",
   435                            old_duty_cycle, new_duty_cycle, damped_duty_cycle);
   436   }
   437   return damped_duty_cycle;
   438 }
   440 unsigned int CMSStats::icms_update_duty_cycle_impl() {
   441   assert(CMSIncrementalPacing && valid(),
   442          "should be handled in icms_update_duty_cycle()");
   444   double cms_time_so_far = cms_timer().seconds();
   445   double scaled_duration = cms_duration_per_mb() * _cms_used_at_gc0_end / M;
   446   double scaled_duration_remaining = fabsd(scaled_duration - cms_time_so_far);
   448   // Avoid division by 0.
   449   double time_until_full = MAX2(time_until_cms_gen_full(), 0.01);
   450   double duty_cycle_dbl = 100.0 * scaled_duration_remaining / time_until_full;
   452   unsigned int new_duty_cycle = MIN2((unsigned int)duty_cycle_dbl, 100U);
   453   if (new_duty_cycle > _icms_duty_cycle) {
   454     // Avoid very small duty cycles (1 or 2); 0 is allowed.
   455     if (new_duty_cycle > 2) {
   456       _icms_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle,
   457                                                 new_duty_cycle);
   458     }
   459   } else if (_allow_duty_cycle_reduction) {
   460     // The duty cycle is reduced only once per cms cycle (see record_cms_end()).
   461     new_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle, new_duty_cycle);
   462     // Respect the minimum duty cycle.
   463     unsigned int min_duty_cycle = (unsigned int)CMSIncrementalDutyCycleMin;
   464     _icms_duty_cycle = MAX2(new_duty_cycle, min_duty_cycle);
   465   }
   467   if (PrintGCDetails || CMSTraceIncrementalPacing) {
   468     gclog_or_tty->print(" icms_dc=%d ", _icms_duty_cycle);
   469   }
   471   _allow_duty_cycle_reduction = false;
   472   return _icms_duty_cycle;
   473 }
   475 #ifndef PRODUCT
   476 void CMSStats::print_on(outputStream *st) const {
   477   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
   478   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
   479                gc0_duration(), gc0_period(), gc0_promoted());
   480   st->print(",cms_dur=%g,cms_dur_per_mb=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
   481             cms_duration(), cms_duration_per_mb(),
   482             cms_period(), cms_allocated());
   483   st->print(",cms_since_beg=%g,cms_since_end=%g",
   484             cms_time_since_begin(), cms_time_since_end());
   485   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
   486             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
   487   if (CMSIncrementalMode) {
   488     st->print(",dc=%d", icms_duty_cycle());
   489   }
   491   if (valid()) {
   492     st->print(",promo_rate=%g,cms_alloc_rate=%g",
   493               promotion_rate(), cms_allocation_rate());
   494     st->print(",cms_consumption_rate=%g,time_until_full=%g",
   495               cms_consumption_rate(), time_until_cms_gen_full());
   496   }
   497   st->print(" ");
   498 }
   499 #endif // #ifndef PRODUCT
   501 CMSCollector::CollectorState CMSCollector::_collectorState =
   502                              CMSCollector::Idling;
   503 bool CMSCollector::_foregroundGCIsActive = false;
   504 bool CMSCollector::_foregroundGCShouldWait = false;
   506 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
   507                            ConcurrentMarkSweepGeneration* permGen,
   508                            CardTableRS*                   ct,
   509                            ConcurrentMarkSweepPolicy*     cp):
   510   _cmsGen(cmsGen),
   511   _permGen(permGen),
   512   _ct(ct),
   513   _ref_processor(NULL),    // will be set later
   514   _conc_workers(NULL),     // may be set later
   515   _abort_preclean(false),
   516   _start_sampling(false),
   517   _between_prologue_and_epilogue(false),
   518   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
   519   _perm_gen_verify_bit_map(0, -1 /* no mutex */, "No_lock"),
   520   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
   521                  -1 /* lock-free */, "No_lock" /* dummy */),
   522   _modUnionClosure(&_modUnionTable),
   523   _modUnionClosurePar(&_modUnionTable),
   524   // Adjust my span to cover old (cms) gen and perm gen
   525   _span(cmsGen->reserved()._union(permGen->reserved())),
   526   // Construct the is_alive_closure with _span & markBitMap
   527   _is_alive_closure(_span, &_markBitMap),
   528   _restart_addr(NULL),
   529   _overflow_list(NULL),
   530   _preserved_oop_stack(NULL),
   531   _preserved_mark_stack(NULL),
   532   _stats(cmsGen),
   533   _eden_chunk_array(NULL),     // may be set in ctor body
   534   _eden_chunk_capacity(0),     // -- ditto --
   535   _eden_chunk_index(0),        // -- ditto --
   536   _survivor_plab_array(NULL),  // -- ditto --
   537   _survivor_chunk_array(NULL), // -- ditto --
   538   _survivor_chunk_capacity(0), // -- ditto --
   539   _survivor_chunk_index(0),    // -- ditto --
   540   _ser_pmc_preclean_ovflw(0),
   541   _ser_pmc_remark_ovflw(0),
   542   _par_pmc_remark_ovflw(0),
   543   _ser_kac_ovflw(0),
   544   _par_kac_ovflw(0),
   545 #ifndef PRODUCT
   546   _num_par_pushes(0),
   547 #endif
   548   _collection_count_start(0),
   549   _verifying(false),
   550   _icms_start_limit(NULL),
   551   _icms_stop_limit(NULL),
   552   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
   553   _completed_initialization(false),
   554   _collector_policy(cp),
   555   _should_unload_classes(false),
   556   _concurrent_cycles_since_last_unload(0),
   557   _sweep_estimate(CMS_SweepWeight, CMS_SweepPadding)
   558 {
   559   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
   560     ExplicitGCInvokesConcurrent = true;
   561   }
   562   // Now expand the span and allocate the collection support structures
   563   // (MUT, marking bit map etc.) to cover both generations subject to
   564   // collection.
   566   // First check that _permGen is adjacent to _cmsGen and above it.
   567   assert(   _cmsGen->reserved().word_size()  > 0
   568          && _permGen->reserved().word_size() > 0,
   569          "generations should not be of zero size");
   570   assert(_cmsGen->reserved().intersection(_permGen->reserved()).is_empty(),
   571          "_cmsGen and _permGen should not overlap");
   572   assert(_cmsGen->reserved().end() == _permGen->reserved().start(),
   573          "_cmsGen->end() different from _permGen->start()");
   575   // For use by dirty card to oop closures.
   576   _cmsGen->cmsSpace()->set_collector(this);
   577   _permGen->cmsSpace()->set_collector(this);
   579   // Allocate MUT and marking bit map
   580   {
   581     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
   582     if (!_markBitMap.allocate(_span)) {
   583       warning("Failed to allocate CMS Bit Map");
   584       return;
   585     }
   586     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
   587   }
   588   {
   589     _modUnionTable.allocate(_span);
   590     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
   591   }
   593   if (!_markStack.allocate(CMSMarkStackSize)) {
   594     warning("Failed to allocate CMS Marking Stack");
   595     return;
   596   }
   597   if (!_revisitStack.allocate(CMSRevisitStackSize)) {
   598     warning("Failed to allocate CMS Revisit Stack");
   599     return;
   600   }
   602   // Support for multi-threaded concurrent phases
   603   if (ParallelGCThreads > 0 && CMSConcurrentMTEnabled) {
   604     if (FLAG_IS_DEFAULT(ParallelCMSThreads)) {
   605       // just for now
   606       FLAG_SET_DEFAULT(ParallelCMSThreads, (ParallelGCThreads + 3)/4);
   607     }
   608     if (ParallelCMSThreads > 1) {
   609       _conc_workers = new YieldingFlexibleWorkGang("Parallel CMS Threads",
   610                                  ParallelCMSThreads, true);
   611       if (_conc_workers == NULL) {
   612         warning("GC/CMS: _conc_workers allocation failure: "
   613               "forcing -CMSConcurrentMTEnabled");
   614         CMSConcurrentMTEnabled = false;
   615       }
   616     } else {
   617       CMSConcurrentMTEnabled = false;
   618     }
   619   }
   620   if (!CMSConcurrentMTEnabled) {
   621     ParallelCMSThreads = 0;
   622   } else {
   623     // Turn off CMSCleanOnEnter optimization temporarily for
   624     // the MT case where it's not fixed yet; see 6178663.
   625     CMSCleanOnEnter = false;
   626   }
   627   assert((_conc_workers != NULL) == (ParallelCMSThreads > 1),
   628          "Inconsistency");
   630   // Parallel task queues; these are shared for the
   631   // concurrent and stop-world phases of CMS, but
   632   // are not shared with parallel scavenge (ParNew).
   633   {
   634     uint i;
   635     uint num_queues = (uint) MAX2(ParallelGCThreads, ParallelCMSThreads);
   637     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
   638          || ParallelRefProcEnabled)
   639         && num_queues > 0) {
   640       _task_queues = new OopTaskQueueSet(num_queues);
   641       if (_task_queues == NULL) {
   642         warning("task_queues allocation failure.");
   643         return;
   644       }
   645       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues);
   646       if (_hash_seed == NULL) {
   647         warning("_hash_seed array allocation failure");
   648         return;
   649       }
   651       // XXX use a global constant instead of 64!
   652       typedef struct OopTaskQueuePadded {
   653         OopTaskQueue work_queue;
   654         char pad[64 - sizeof(OopTaskQueue)];  // prevent false sharing
   655       } OopTaskQueuePadded;
   657       for (i = 0; i < num_queues; i++) {
   658         OopTaskQueuePadded *q_padded = new OopTaskQueuePadded();
   659         if (q_padded == NULL) {
   660           warning("work_queue allocation failure.");
   661           return;
   662         }
   663         _task_queues->register_queue(i, &q_padded->work_queue);
   664       }
   665       for (i = 0; i < num_queues; i++) {
   666         _task_queues->queue(i)->initialize();
   667         _hash_seed[i] = 17;  // copied from ParNew
   668       }
   669     }
   670   }
   672   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
   673   _permGen->init_initiating_occupancy(CMSInitiatingPermOccupancyFraction, CMSTriggerPermRatio);
   675   // Clip CMSBootstrapOccupancy between 0 and 100.
   676   _bootstrap_occupancy = ((double)MIN2((uintx)100, MAX2((uintx)0, CMSBootstrapOccupancy)))
   677                          /(double)100;
   679   _full_gcs_since_conc_gc = 0;
   681   // Now tell CMS generations the identity of their collector
   682   ConcurrentMarkSweepGeneration::set_collector(this);
   684   // Create & start a CMS thread for this CMS collector
   685   _cmsThread = ConcurrentMarkSweepThread::start(this);
   686   assert(cmsThread() != NULL, "CMS Thread should have been created");
   687   assert(cmsThread()->collector() == this,
   688          "CMS Thread should refer to this gen");
   689   assert(CGC_lock != NULL, "Where's the CGC_lock?");
   691   // Support for parallelizing young gen rescan
   692   GenCollectedHeap* gch = GenCollectedHeap::heap();
   693   _young_gen = gch->prev_gen(_cmsGen);
   694   if (gch->supports_inline_contig_alloc()) {
   695     _top_addr = gch->top_addr();
   696     _end_addr = gch->end_addr();
   697     assert(_young_gen != NULL, "no _young_gen");
   698     _eden_chunk_index = 0;
   699     _eden_chunk_capacity = (_young_gen->max_capacity()+CMSSamplingGrain)/CMSSamplingGrain;
   700     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity);
   701     if (_eden_chunk_array == NULL) {
   702       _eden_chunk_capacity = 0;
   703       warning("GC/CMS: _eden_chunk_array allocation failure");
   704     }
   705   }
   706   assert(_eden_chunk_array != NULL || _eden_chunk_capacity == 0, "Error");
   708   // Support for parallelizing survivor space rescan
   709   if (CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) {
   710     size_t max_plab_samples = MaxNewSize/((SurvivorRatio+2)*MinTLABSize);
   711     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads);
   712     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, 2*max_plab_samples);
   713     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads);
   714     if (_survivor_plab_array == NULL || _survivor_chunk_array == NULL
   715         || _cursor == NULL) {
   716       warning("Failed to allocate survivor plab/chunk array");
   717       if (_survivor_plab_array  != NULL) {
   718         FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array);
   719         _survivor_plab_array = NULL;
   720       }
   721       if (_survivor_chunk_array != NULL) {
   722         FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array);
   723         _survivor_chunk_array = NULL;
   724       }
   725       if (_cursor != NULL) {
   726         FREE_C_HEAP_ARRAY(size_t, _cursor);
   727         _cursor = NULL;
   728       }
   729     } else {
   730       _survivor_chunk_capacity = 2*max_plab_samples;
   731       for (uint i = 0; i < ParallelGCThreads; i++) {
   732         HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples);
   733         if (vec == NULL) {
   734           warning("Failed to allocate survivor plab array");
   735           for (int j = i; j > 0; j--) {
   736             FREE_C_HEAP_ARRAY(HeapWord*, _survivor_plab_array[j-1].array());
   737           }
   738           FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array);
   739           FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array);
   740           _survivor_plab_array = NULL;
   741           _survivor_chunk_array = NULL;
   742           _survivor_chunk_capacity = 0;
   743           break;
   744         } else {
   745           ChunkArray* cur =
   746             ::new (&_survivor_plab_array[i]) ChunkArray(vec,
   747                                                         max_plab_samples);
   748           assert(cur->end() == 0, "Should be 0");
   749           assert(cur->array() == vec, "Should be vec");
   750           assert(cur->capacity() == max_plab_samples, "Error");
   751         }
   752       }
   753     }
   754   }
   755   assert(   (   _survivor_plab_array  != NULL
   756              && _survivor_chunk_array != NULL)
   757          || (   _survivor_chunk_capacity == 0
   758              && _survivor_chunk_index == 0),
   759          "Error");
   761   // Choose what strong roots should be scanned depending on verification options
   762   // and perm gen collection mode.
   763   if (!CMSClassUnloadingEnabled) {
   764     // If class unloading is disabled we want to include all classes into the root set.
   765     add_root_scanning_option(SharedHeap::SO_AllClasses);
   766   } else {
   767     add_root_scanning_option(SharedHeap::SO_SystemClasses);
   768   }
   770   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
   771   _gc_counters = new CollectorCounters("CMS", 1);
   772   _completed_initialization = true;
   773   _sweep_timer.start();  // start of time
   774 }
   776 const char* ConcurrentMarkSweepGeneration::name() const {
   777   return "concurrent mark-sweep generation";
   778 }
   779 void ConcurrentMarkSweepGeneration::update_counters() {
   780   if (UsePerfData) {
   781     _space_counters->update_all();
   782     _gen_counters->update_all();
   783   }
   784 }
   786 // this is an optimized version of update_counters(). it takes the
   787 // used value as a parameter rather than computing it.
   788 //
   789 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
   790   if (UsePerfData) {
   791     _space_counters->update_used(used);
   792     _space_counters->update_capacity();
   793     _gen_counters->update_all();
   794   }
   795 }
   797 void ConcurrentMarkSweepGeneration::print() const {
   798   Generation::print();
   799   cmsSpace()->print();
   800 }
   802 #ifndef PRODUCT
   803 void ConcurrentMarkSweepGeneration::print_statistics() {
   804   cmsSpace()->printFLCensus(0);
   805 }
   806 #endif
   808 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) {
   809   GenCollectedHeap* gch = GenCollectedHeap::heap();
   810   if (PrintGCDetails) {
   811     if (Verbose) {
   812       gclog_or_tty->print(" [%d %s-%s: "SIZE_FORMAT"("SIZE_FORMAT")]",
   813         level(), short_name(), s, used(), capacity());
   814     } else {
   815       gclog_or_tty->print(" [%d %s-%s: "SIZE_FORMAT"K("SIZE_FORMAT"K)]",
   816         level(), short_name(), s, used() / K, capacity() / K);
   817     }
   818   }
   819   if (Verbose) {
   820     gclog_or_tty->print(" "SIZE_FORMAT"("SIZE_FORMAT")",
   821               gch->used(), gch->capacity());
   822   } else {
   823     gclog_or_tty->print(" "SIZE_FORMAT"K("SIZE_FORMAT"K)",
   824               gch->used() / K, gch->capacity() / K);
   825   }
   826 }
   828 size_t
   829 ConcurrentMarkSweepGeneration::contiguous_available() const {
   830   // dld proposes an improvement in precision here. If the committed
   831   // part of the space ends in a free block we should add that to
   832   // uncommitted size in the calculation below. Will make this
   833   // change later, staying with the approximation below for the
   834   // time being. -- ysr.
   835   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
   836 }
   838 size_t
   839 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
   840   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
   841 }
   843 size_t ConcurrentMarkSweepGeneration::max_available() const {
   844   return free() + _virtual_space.uncommitted_size();
   845 }
   847 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(
   848     size_t max_promotion_in_bytes,
   849     bool younger_handles_promotion_failure) const {
   851   // This is the most conservative test.  Full promotion is
   852   // guaranteed if this is used. The multiplicative factor is to
   853   // account for the worst case "dilatation".
   854   double adjusted_max_promo_bytes = _dilatation_factor * max_promotion_in_bytes;
   855   if (adjusted_max_promo_bytes > (double)max_uintx) { // larger than size_t
   856     adjusted_max_promo_bytes = (double)max_uintx;
   857   }
   858   bool result = (max_contiguous_available() >= (size_t)adjusted_max_promo_bytes);
   860   if (younger_handles_promotion_failure && !result) {
   861     // Full promotion is not guaranteed because fragmentation
   862     // of the cms generation can prevent the full promotion.
   863     result = (max_available() >= (size_t)adjusted_max_promo_bytes);
   865     if (!result) {
   866       // With promotion failure handling the test for the ability
   867       // to support the promotion does not have to be guaranteed.
   868       // Use an average of the amount promoted.
   869       result = max_available() >= (size_t)
   870         gc_stats()->avg_promoted()->padded_average();
   871       if (PrintGC && Verbose && result) {
   872         gclog_or_tty->print_cr(
   873           "\nConcurrentMarkSweepGeneration::promotion_attempt_is_safe"
   874           " max_available: " SIZE_FORMAT
   875           " avg_promoted: " SIZE_FORMAT,
   876           max_available(), (size_t)
   877           gc_stats()->avg_promoted()->padded_average());
   878       }
   879     } else {
   880       if (PrintGC && Verbose) {
   881         gclog_or_tty->print_cr(
   882           "\nConcurrentMarkSweepGeneration::promotion_attempt_is_safe"
   883           " max_available: " SIZE_FORMAT
   884           " adj_max_promo_bytes: " SIZE_FORMAT,
   885           max_available(), (size_t)adjusted_max_promo_bytes);
   886       }
   887     }
   888   } else {
   889     if (PrintGC && Verbose) {
   890       gclog_or_tty->print_cr(
   891         "\nConcurrentMarkSweepGeneration::promotion_attempt_is_safe"
   892         " contiguous_available: " SIZE_FORMAT
   893         " adj_max_promo_bytes: " SIZE_FORMAT,
   894         max_contiguous_available(), (size_t)adjusted_max_promo_bytes);
   895     }
   896   }
   897   return result;
   898 }
   900 CompactibleSpace*
   901 ConcurrentMarkSweepGeneration::first_compaction_space() const {
   902   return _cmsSpace;
   903 }
   905 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
   906   // Clear the promotion information.  These pointers can be adjusted
   907   // along with all the other pointers into the heap but
   908   // compaction is expected to be a rare event with
   909   // a heap using cms so don't do it without seeing the need.
   910   if (ParallelGCThreads > 0) {
   911     for (uint i = 0; i < ParallelGCThreads; i++) {
   912       _par_gc_thread_states[i]->promo.reset();
   913     }
   914   }
   915 }
   917 void ConcurrentMarkSweepGeneration::space_iterate(SpaceClosure* blk, bool usedOnly) {
   918   blk->do_space(_cmsSpace);
   919 }
   921 void ConcurrentMarkSweepGeneration::compute_new_size() {
   922   assert_locked_or_safepoint(Heap_lock);
   924   // If incremental collection failed, we just want to expand
   925   // to the limit.
   926   if (incremental_collection_failed()) {
   927     clear_incremental_collection_failed();
   928     grow_to_reserved();
   929     return;
   930   }
   932   size_t expand_bytes = 0;
   933   double free_percentage = ((double) free()) / capacity();
   934   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
   935   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
   937   // compute expansion delta needed for reaching desired free percentage
   938   if (free_percentage < desired_free_percentage) {
   939     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
   940     assert(desired_capacity >= capacity(), "invalid expansion size");
   941     expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
   942   }
   943   if (expand_bytes > 0) {
   944     if (PrintGCDetails && Verbose) {
   945       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
   946       gclog_or_tty->print_cr("\nFrom compute_new_size: ");
   947       gclog_or_tty->print_cr("  Free fraction %f", free_percentage);
   948       gclog_or_tty->print_cr("  Desired free fraction %f",
   949         desired_free_percentage);
   950       gclog_or_tty->print_cr("  Maximum free fraction %f",
   951         maximum_free_percentage);
   952       gclog_or_tty->print_cr("  Capactiy "SIZE_FORMAT, capacity()/1000);
   953       gclog_or_tty->print_cr("  Desired capacity "SIZE_FORMAT,
   954         desired_capacity/1000);
   955       int prev_level = level() - 1;
   956       if (prev_level >= 0) {
   957         size_t prev_size = 0;
   958         GenCollectedHeap* gch = GenCollectedHeap::heap();
   959         Generation* prev_gen = gch->_gens[prev_level];
   960         prev_size = prev_gen->capacity();
   961           gclog_or_tty->print_cr("  Younger gen size "SIZE_FORMAT,
   962                                  prev_size/1000);
   963       }
   964       gclog_or_tty->print_cr("  unsafe_max_alloc_nogc "SIZE_FORMAT,
   965         unsafe_max_alloc_nogc()/1000);
   966       gclog_or_tty->print_cr("  contiguous available "SIZE_FORMAT,
   967         contiguous_available()/1000);
   968       gclog_or_tty->print_cr("  Expand by "SIZE_FORMAT" (bytes)",
   969         expand_bytes);
   970     }
   971     // safe if expansion fails
   972     expand(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
   973     if (PrintGCDetails && Verbose) {
   974       gclog_or_tty->print_cr("  Expanded free fraction %f",
   975         ((double) free()) / capacity());
   976     }
   977   }
   978 }
   980 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
   981   return cmsSpace()->freelistLock();
   982 }
   984 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size,
   985                                                   bool   tlab) {
   986   CMSSynchronousYieldRequest yr;
   987   MutexLockerEx x(freelistLock(),
   988                   Mutex::_no_safepoint_check_flag);
   989   return have_lock_and_allocate(size, tlab);
   990 }
   992 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
   993                                                   bool   tlab) {
   994   assert_lock_strong(freelistLock());
   995   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
   996   HeapWord* res = cmsSpace()->allocate(adjustedSize);
   997   // Allocate the object live (grey) if the background collector has
   998   // started marking. This is necessary because the marker may
   999   // have passed this address and consequently this object will
  1000   // not otherwise be greyed and would be incorrectly swept up.
  1001   // Note that if this object contains references, the writing
  1002   // of those references will dirty the card containing this object
  1003   // allowing the object to be blackened (and its references scanned)
  1004   // either during a preclean phase or at the final checkpoint.
  1005   if (res != NULL) {
  1006     collector()->direct_allocated(res, adjustedSize);
  1007     _direct_allocated_words += adjustedSize;
  1008     // allocation counters
  1009     NOT_PRODUCT(
  1010       _numObjectsAllocated++;
  1011       _numWordsAllocated += (int)adjustedSize;
  1014   return res;
  1017 // In the case of direct allocation by mutators in a generation that
  1018 // is being concurrently collected, the object must be allocated
  1019 // live (grey) if the background collector has started marking.
  1020 // This is necessary because the marker may
  1021 // have passed this address and consequently this object will
  1022 // not otherwise be greyed and would be incorrectly swept up.
  1023 // Note that if this object contains references, the writing
  1024 // of those references will dirty the card containing this object
  1025 // allowing the object to be blackened (and its references scanned)
  1026 // either during a preclean phase or at the final checkpoint.
  1027 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
  1028   assert(_markBitMap.covers(start, size), "Out of bounds");
  1029   if (_collectorState >= Marking) {
  1030     MutexLockerEx y(_markBitMap.lock(),
  1031                     Mutex::_no_safepoint_check_flag);
  1032     // [see comments preceding SweepClosure::do_blk() below for details]
  1033     // 1. need to mark the object as live so it isn't collected
  1034     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
  1035     // 3. need to mark the end of the object so sweeper can skip over it
  1036     //    if it's uninitialized when the sweeper reaches it.
  1037     _markBitMap.mark(start);          // object is live
  1038     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
  1039     _markBitMap.mark(start + size - 1);
  1040                                       // mark end of object
  1042   // check that oop looks uninitialized
  1043   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
  1046 void CMSCollector::promoted(bool par, HeapWord* start,
  1047                             bool is_obj_array, size_t obj_size) {
  1048   assert(_markBitMap.covers(start), "Out of bounds");
  1049   // See comment in direct_allocated() about when objects should
  1050   // be allocated live.
  1051   if (_collectorState >= Marking) {
  1052     // we already hold the marking bit map lock, taken in
  1053     // the prologue
  1054     if (par) {
  1055       _markBitMap.par_mark(start);
  1056     } else {
  1057       _markBitMap.mark(start);
  1059     // We don't need to mark the object as uninitialized (as
  1060     // in direct_allocated above) because this is being done with the
  1061     // world stopped and the object will be initialized by the
  1062     // time the sweeper gets to look at it.
  1063     assert(SafepointSynchronize::is_at_safepoint(),
  1064            "expect promotion only at safepoints");
  1066     if (_collectorState < Sweeping) {
  1067       // Mark the appropriate cards in the modUnionTable, so that
  1068       // this object gets scanned before the sweep. If this is
  1069       // not done, CMS generation references in the object might
  1070       // not get marked.
  1071       // For the case of arrays, which are otherwise precisely
  1072       // marked, we need to dirty the entire array, not just its head.
  1073       if (is_obj_array) {
  1074         // The [par_]mark_range() method expects mr.end() below to
  1075         // be aligned to the granularity of a bit's representation
  1076         // in the heap. In the case of the MUT below, that's a
  1077         // card size.
  1078         MemRegion mr(start,
  1079                      (HeapWord*)round_to((intptr_t)(start + obj_size),
  1080                         CardTableModRefBS::card_size /* bytes */));
  1081         if (par) {
  1082           _modUnionTable.par_mark_range(mr);
  1083         } else {
  1084           _modUnionTable.mark_range(mr);
  1086       } else {  // not an obj array; we can just mark the head
  1087         if (par) {
  1088           _modUnionTable.par_mark(start);
  1089         } else {
  1090           _modUnionTable.mark(start);
  1097 static inline size_t percent_of_space(Space* space, HeapWord* addr)
  1099   size_t delta = pointer_delta(addr, space->bottom());
  1100   return (size_t)(delta * 100.0 / (space->capacity() / HeapWordSize));
  1103 void CMSCollector::icms_update_allocation_limits()
  1105   Generation* gen0 = GenCollectedHeap::heap()->get_gen(0);
  1106   EdenSpace* eden = gen0->as_DefNewGeneration()->eden();
  1108   const unsigned int duty_cycle = stats().icms_update_duty_cycle();
  1109   if (CMSTraceIncrementalPacing) {
  1110     stats().print();
  1113   assert(duty_cycle <= 100, "invalid duty cycle");
  1114   if (duty_cycle != 0) {
  1115     // The duty_cycle is a percentage between 0 and 100; convert to words and
  1116     // then compute the offset from the endpoints of the space.
  1117     size_t free_words = eden->free() / HeapWordSize;
  1118     double free_words_dbl = (double)free_words;
  1119     size_t duty_cycle_words = (size_t)(free_words_dbl * duty_cycle / 100.0);
  1120     size_t offset_words = (free_words - duty_cycle_words) / 2;
  1122     _icms_start_limit = eden->top() + offset_words;
  1123     _icms_stop_limit = eden->end() - offset_words;
  1125     // The limits may be adjusted (shifted to the right) by
  1126     // CMSIncrementalOffset, to allow the application more mutator time after a
  1127     // young gen gc (when all mutators were stopped) and before CMS starts and
  1128     // takes away one or more cpus.
  1129     if (CMSIncrementalOffset != 0) {
  1130       double adjustment_dbl = free_words_dbl * CMSIncrementalOffset / 100.0;
  1131       size_t adjustment = (size_t)adjustment_dbl;
  1132       HeapWord* tmp_stop = _icms_stop_limit + adjustment;
  1133       if (tmp_stop > _icms_stop_limit && tmp_stop < eden->end()) {
  1134         _icms_start_limit += adjustment;
  1135         _icms_stop_limit = tmp_stop;
  1139   if (duty_cycle == 0 || (_icms_start_limit == _icms_stop_limit)) {
  1140     _icms_start_limit = _icms_stop_limit = eden->end();
  1143   // Install the new start limit.
  1144   eden->set_soft_end(_icms_start_limit);
  1146   if (CMSTraceIncrementalMode) {
  1147     gclog_or_tty->print(" icms alloc limits:  "
  1148                            PTR_FORMAT "," PTR_FORMAT
  1149                            " (" SIZE_FORMAT "%%," SIZE_FORMAT "%%) ",
  1150                            _icms_start_limit, _icms_stop_limit,
  1151                            percent_of_space(eden, _icms_start_limit),
  1152                            percent_of_space(eden, _icms_stop_limit));
  1153     if (Verbose) {
  1154       gclog_or_tty->print("eden:  ");
  1155       eden->print_on(gclog_or_tty);
  1160 // Any changes here should try to maintain the invariant
  1161 // that if this method is called with _icms_start_limit
  1162 // and _icms_stop_limit both NULL, then it should return NULL
  1163 // and not notify the icms thread.
  1164 HeapWord*
  1165 CMSCollector::allocation_limit_reached(Space* space, HeapWord* top,
  1166                                        size_t word_size)
  1168   // A start_limit equal to end() means the duty cycle is 0, so treat that as a
  1169   // nop.
  1170   if (CMSIncrementalMode && _icms_start_limit != space->end()) {
  1171     if (top <= _icms_start_limit) {
  1172       if (CMSTraceIncrementalMode) {
  1173         space->print_on(gclog_or_tty);
  1174         gclog_or_tty->stamp();
  1175         gclog_or_tty->print_cr(" start limit top=" PTR_FORMAT
  1176                                ", new limit=" PTR_FORMAT
  1177                                " (" SIZE_FORMAT "%%)",
  1178                                top, _icms_stop_limit,
  1179                                percent_of_space(space, _icms_stop_limit));
  1181       ConcurrentMarkSweepThread::start_icms();
  1182       assert(top < _icms_stop_limit, "Tautology");
  1183       if (word_size < pointer_delta(_icms_stop_limit, top)) {
  1184         return _icms_stop_limit;
  1187       // The allocation will cross both the _start and _stop limits, so do the
  1188       // stop notification also and return end().
  1189       if (CMSTraceIncrementalMode) {
  1190         space->print_on(gclog_or_tty);
  1191         gclog_or_tty->stamp();
  1192         gclog_or_tty->print_cr(" +stop limit top=" PTR_FORMAT
  1193                                ", new limit=" PTR_FORMAT
  1194                                " (" SIZE_FORMAT "%%)",
  1195                                top, space->end(),
  1196                                percent_of_space(space, space->end()));
  1198       ConcurrentMarkSweepThread::stop_icms();
  1199       return space->end();
  1202     if (top <= _icms_stop_limit) {
  1203       if (CMSTraceIncrementalMode) {
  1204         space->print_on(gclog_or_tty);
  1205         gclog_or_tty->stamp();
  1206         gclog_or_tty->print_cr(" stop limit top=" PTR_FORMAT
  1207                                ", new limit=" PTR_FORMAT
  1208                                " (" SIZE_FORMAT "%%)",
  1209                                top, space->end(),
  1210                                percent_of_space(space, space->end()));
  1212       ConcurrentMarkSweepThread::stop_icms();
  1213       return space->end();
  1216     if (CMSTraceIncrementalMode) {
  1217       space->print_on(gclog_or_tty);
  1218       gclog_or_tty->stamp();
  1219       gclog_or_tty->print_cr(" end limit top=" PTR_FORMAT
  1220                              ", new limit=" PTR_FORMAT,
  1221                              top, NULL);
  1225   return NULL;
  1228 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
  1229   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
  1230   // allocate, copy and if necessary update promoinfo --
  1231   // delegate to underlying space.
  1232   assert_lock_strong(freelistLock());
  1234 #ifndef PRODUCT
  1235   if (Universe::heap()->promotion_should_fail()) {
  1236     return NULL;
  1238 #endif  // #ifndef PRODUCT
  1240   oop res = _cmsSpace->promote(obj, obj_size);
  1241   if (res == NULL) {
  1242     // expand and retry
  1243     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
  1244     expand(s*HeapWordSize, MinHeapDeltaBytes,
  1245       CMSExpansionCause::_satisfy_promotion);
  1246     // Since there's currently no next generation, we don't try to promote
  1247     // into a more senior generation.
  1248     assert(next_gen() == NULL, "assumption, based upon which no attempt "
  1249                                "is made to pass on a possibly failing "
  1250                                "promotion to next generation");
  1251     res = _cmsSpace->promote(obj, obj_size);
  1253   if (res != NULL) {
  1254     // See comment in allocate() about when objects should
  1255     // be allocated live.
  1256     assert(obj->is_oop(), "Will dereference klass pointer below");
  1257     collector()->promoted(false,           // Not parallel
  1258                           (HeapWord*)res, obj->is_objArray(), obj_size);
  1259     // promotion counters
  1260     NOT_PRODUCT(
  1261       _numObjectsPromoted++;
  1262       _numWordsPromoted +=
  1263         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
  1266   return res;
  1270 HeapWord*
  1271 ConcurrentMarkSweepGeneration::allocation_limit_reached(Space* space,
  1272                                              HeapWord* top,
  1273                                              size_t word_sz)
  1275   return collector()->allocation_limit_reached(space, top, word_sz);
  1278 // Things to support parallel young-gen collection.
  1279 oop
  1280 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
  1281                                            oop old, markOop m,
  1282                                            size_t word_sz) {
  1283 #ifndef PRODUCT
  1284   if (Universe::heap()->promotion_should_fail()) {
  1285     return NULL;
  1287 #endif  // #ifndef PRODUCT
  1289   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
  1290   PromotionInfo* promoInfo = &ps->promo;
  1291   // if we are tracking promotions, then first ensure space for
  1292   // promotion (including spooling space for saving header if necessary).
  1293   // then allocate and copy, then track promoted info if needed.
  1294   // When tracking (see PromotionInfo::track()), the mark word may
  1295   // be displaced and in this case restoration of the mark word
  1296   // occurs in the (oop_since_save_marks_)iterate phase.
  1297   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
  1298     // Out of space for allocating spooling buffers;
  1299     // try expanding and allocating spooling buffers.
  1300     if (!expand_and_ensure_spooling_space(promoInfo)) {
  1301       return NULL;
  1304   assert(promoInfo->has_spooling_space(), "Control point invariant");
  1305   HeapWord* obj_ptr = ps->lab.alloc(word_sz);
  1306   if (obj_ptr == NULL) {
  1307      obj_ptr = expand_and_par_lab_allocate(ps, word_sz);
  1308      if (obj_ptr == NULL) {
  1309        return NULL;
  1312   oop obj = oop(obj_ptr);
  1313   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
  1314   // Otherwise, copy the object.  Here we must be careful to insert the
  1315   // klass pointer last, since this marks the block as an allocated object.
  1316   // Except with compressed oops it's the mark word.
  1317   HeapWord* old_ptr = (HeapWord*)old;
  1318   if (word_sz > (size_t)oopDesc::header_size()) {
  1319     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
  1320                                  obj_ptr + oopDesc::header_size(),
  1321                                  word_sz - oopDesc::header_size());
  1324   if (UseCompressedOops) {
  1325     // Copy gap missed by (aligned) header size calculation above
  1326     obj->set_klass_gap(old->klass_gap());
  1329   // Restore the mark word copied above.
  1330   obj->set_mark(m);
  1332   // Now we can track the promoted object, if necessary.  We take care
  1333   // To delay the transition from uninitialized to full object
  1334   // (i.e., insertion of klass pointer) until after, so that it
  1335   // atomically becomes a promoted object.
  1336   if (promoInfo->tracking()) {
  1337     promoInfo->track((PromotedObject*)obj, old->klass());
  1340   // Finally, install the klass pointer (this should be volatile).
  1341   obj->set_klass(old->klass());
  1343   assert(old->is_oop(), "Will dereference klass ptr below");
  1344   collector()->promoted(true,          // parallel
  1345                         obj_ptr, old->is_objArray(), word_sz);
  1347   NOT_PRODUCT(
  1348     Atomic::inc(&_numObjectsPromoted);
  1349     Atomic::add((jint)CompactibleFreeListSpace::adjustObjectSize(obj->size()),
  1350                 &_numWordsPromoted);
  1353   return obj;
  1356 void
  1357 ConcurrentMarkSweepGeneration::
  1358 par_promote_alloc_undo(int thread_num,
  1359                        HeapWord* obj, size_t word_sz) {
  1360   // CMS does not support promotion undo.
  1361   ShouldNotReachHere();
  1364 void
  1365 ConcurrentMarkSweepGeneration::
  1366 par_promote_alloc_done(int thread_num) {
  1367   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
  1368   ps->lab.retire();
  1369 #if CFLS_LAB_REFILL_STATS
  1370   if (thread_num == 0) {
  1371     _cmsSpace->print_par_alloc_stats();
  1373 #endif
  1376 void
  1377 ConcurrentMarkSweepGeneration::
  1378 par_oop_since_save_marks_iterate_done(int thread_num) {
  1379   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
  1380   ParScanWithoutBarrierClosure* dummy_cl = NULL;
  1381   ps->promo.promoted_oops_iterate_nv(dummy_cl);
  1384 // XXXPERM
  1385 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
  1386                                                    size_t size,
  1387                                                    bool   tlab)
  1389   // We allow a STW collection only if a full
  1390   // collection was requested.
  1391   return full || should_allocate(size, tlab); // FIX ME !!!
  1392   // This and promotion failure handling are connected at the
  1393   // hip and should be fixed by untying them.
  1396 bool CMSCollector::shouldConcurrentCollect() {
  1397   if (_full_gc_requested) {
  1398     assert(ExplicitGCInvokesConcurrent, "Unexpected state");
  1399     if (Verbose && PrintGCDetails) {
  1400       gclog_or_tty->print_cr("CMSCollector: collect because of explicit "
  1401                              " gc request");
  1403     return true;
  1406   // For debugging purposes, change the type of collection.
  1407   // If the rotation is not on the concurrent collection
  1408   // type, don't start a concurrent collection.
  1409   NOT_PRODUCT(
  1410     if (RotateCMSCollectionTypes &&
  1411         (_cmsGen->debug_collection_type() !=
  1412           ConcurrentMarkSweepGeneration::Concurrent_collection_type)) {
  1413       assert(_cmsGen->debug_collection_type() !=
  1414         ConcurrentMarkSweepGeneration::Unknown_collection_type,
  1415         "Bad cms collection type");
  1416       return false;
  1420   FreelistLocker x(this);
  1421   // ------------------------------------------------------------------
  1422   // Print out lots of information which affects the initiation of
  1423   // a collection.
  1424   if (PrintCMSInitiationStatistics && stats().valid()) {
  1425     gclog_or_tty->print("CMSCollector shouldConcurrentCollect: ");
  1426     gclog_or_tty->stamp();
  1427     gclog_or_tty->print_cr("");
  1428     stats().print_on(gclog_or_tty);
  1429     gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f",
  1430       stats().time_until_cms_gen_full());
  1431     gclog_or_tty->print_cr("free="SIZE_FORMAT, _cmsGen->free());
  1432     gclog_or_tty->print_cr("contiguous_available="SIZE_FORMAT,
  1433                            _cmsGen->contiguous_available());
  1434     gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate());
  1435     gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate());
  1436     gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy());
  1437     gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
  1438     gclog_or_tty->print_cr("initiatingPermOccupancy=%3.7f", _permGen->initiating_occupancy());
  1440   // ------------------------------------------------------------------
  1442   // If the estimated time to complete a cms collection (cms_duration())
  1443   // is less than the estimated time remaining until the cms generation
  1444   // is full, start a collection.
  1445   if (!UseCMSInitiatingOccupancyOnly) {
  1446     if (stats().valid()) {
  1447       if (stats().time_until_cms_start() == 0.0) {
  1448         return true;
  1450     } else {
  1451       // We want to conservatively collect somewhat early in order
  1452       // to try and "bootstrap" our CMS/promotion statistics;
  1453       // this branch will not fire after the first successful CMS
  1454       // collection because the stats should then be valid.
  1455       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
  1456         if (Verbose && PrintGCDetails) {
  1457           gclog_or_tty->print_cr(
  1458             " CMSCollector: collect for bootstrapping statistics:"
  1459             " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(),
  1460             _bootstrap_occupancy);
  1462         return true;
  1467   // Otherwise, we start a collection cycle if either the perm gen or
  1468   // old gen want a collection cycle started. Each may use
  1469   // an appropriate criterion for making this decision.
  1470   // XXX We need to make sure that the gen expansion
  1471   // criterion dovetails well with this. XXX NEED TO FIX THIS
  1472   if (_cmsGen->should_concurrent_collect()) {
  1473     if (Verbose && PrintGCDetails) {
  1474       gclog_or_tty->print_cr("CMS old gen initiated");
  1476     return true;
  1479   // We start a collection if we believe an incremental collection may fail;
  1480   // this is not likely to be productive in practice because it's probably too
  1481   // late anyway.
  1482   GenCollectedHeap* gch = GenCollectedHeap::heap();
  1483   assert(gch->collector_policy()->is_two_generation_policy(),
  1484          "You may want to check the correctness of the following");
  1485   if (gch->incremental_collection_will_fail()) {
  1486     if (PrintGCDetails && Verbose) {
  1487       gclog_or_tty->print("CMSCollector: collect because incremental collection will fail ");
  1489     return true;
  1492   if (CMSClassUnloadingEnabled && _permGen->should_concurrent_collect()) {
  1493     bool res = update_should_unload_classes();
  1494     if (res) {
  1495       if (Verbose && PrintGCDetails) {
  1496         gclog_or_tty->print_cr("CMS perm gen initiated");
  1498       return true;
  1501   return false;
  1504 // Clear _expansion_cause fields of constituent generations
  1505 void CMSCollector::clear_expansion_cause() {
  1506   _cmsGen->clear_expansion_cause();
  1507   _permGen->clear_expansion_cause();
  1510 // We should be conservative in starting a collection cycle.  To
  1511 // start too eagerly runs the risk of collecting too often in the
  1512 // extreme.  To collect too rarely falls back on full collections,
  1513 // which works, even if not optimum in terms of concurrent work.
  1514 // As a work around for too eagerly collecting, use the flag
  1515 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
  1516 // giving the user an easily understandable way of controlling the
  1517 // collections.
  1518 // We want to start a new collection cycle if any of the following
  1519 // conditions hold:
  1520 // . our current occupancy exceeds the configured initiating occupancy
  1521 //   for this generation, or
  1522 // . we recently needed to expand this space and have not, since that
  1523 //   expansion, done a collection of this generation, or
  1524 // . the underlying space believes that it may be a good idea to initiate
  1525 //   a concurrent collection (this may be based on criteria such as the
  1526 //   following: the space uses linear allocation and linear allocation is
  1527 //   going to fail, or there is believed to be excessive fragmentation in
  1528 //   the generation, etc... or ...
  1529 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
  1530 //   the case of the old generation, not the perm generation; see CR 6543076):
  1531 //   we may be approaching a point at which allocation requests may fail because
  1532 //   we will be out of sufficient free space given allocation rate estimates.]
  1533 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
  1535   assert_lock_strong(freelistLock());
  1536   if (occupancy() > initiating_occupancy()) {
  1537     if (PrintGCDetails && Verbose) {
  1538       gclog_or_tty->print(" %s: collect because of occupancy %f / %f  ",
  1539         short_name(), occupancy(), initiating_occupancy());
  1541     return true;
  1543   if (UseCMSInitiatingOccupancyOnly) {
  1544     return false;
  1546   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
  1547     if (PrintGCDetails && Verbose) {
  1548       gclog_or_tty->print(" %s: collect because expanded for allocation ",
  1549         short_name());
  1551     return true;
  1553   if (_cmsSpace->should_concurrent_collect()) {
  1554     if (PrintGCDetails && Verbose) {
  1555       gclog_or_tty->print(" %s: collect because cmsSpace says so ",
  1556         short_name());
  1558     return true;
  1560   return false;
  1563 void ConcurrentMarkSweepGeneration::collect(bool   full,
  1564                                             bool   clear_all_soft_refs,
  1565                                             size_t size,
  1566                                             bool   tlab)
  1568   collector()->collect(full, clear_all_soft_refs, size, tlab);
  1571 void CMSCollector::collect(bool   full,
  1572                            bool   clear_all_soft_refs,
  1573                            size_t size,
  1574                            bool   tlab)
  1576   if (!UseCMSCollectionPassing && _collectorState > Idling) {
  1577     // For debugging purposes skip the collection if the state
  1578     // is not currently idle
  1579     if (TraceCMSState) {
  1580       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " skipped full:%d CMS state %d",
  1581         Thread::current(), full, _collectorState);
  1583     return;
  1586   // The following "if" branch is present for defensive reasons.
  1587   // In the current uses of this interface, it can be replaced with:
  1588   // assert(!GC_locker.is_active(), "Can't be called otherwise");
  1589   // But I am not placing that assert here to allow future
  1590   // generality in invoking this interface.
  1591   if (GC_locker::is_active()) {
  1592     // A consistency test for GC_locker
  1593     assert(GC_locker::needs_gc(), "Should have been set already");
  1594     // Skip this foreground collection, instead
  1595     // expanding the heap if necessary.
  1596     // Need the free list locks for the call to free() in compute_new_size()
  1597     compute_new_size();
  1598     return;
  1600   acquire_control_and_collect(full, clear_all_soft_refs);
  1601   _full_gcs_since_conc_gc++;
  1605 void CMSCollector::request_full_gc(unsigned int full_gc_count) {
  1606   GenCollectedHeap* gch = GenCollectedHeap::heap();
  1607   unsigned int gc_count = gch->total_full_collections();
  1608   if (gc_count == full_gc_count) {
  1609     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
  1610     _full_gc_requested = true;
  1611     CGC_lock->notify();   // nudge CMS thread
  1616 // The foreground and background collectors need to coordinate in order
  1617 // to make sure that they do not mutually interfere with CMS collections.
  1618 // When a background collection is active,
  1619 // the foreground collector may need to take over (preempt) and
  1620 // synchronously complete an ongoing collection. Depending on the
  1621 // frequency of the background collections and the heap usage
  1622 // of the application, this preemption can be seldom or frequent.
  1623 // There are only certain
  1624 // points in the background collection that the "collection-baton"
  1625 // can be passed to the foreground collector.
  1626 //
  1627 // The foreground collector will wait for the baton before
  1628 // starting any part of the collection.  The foreground collector
  1629 // will only wait at one location.
  1630 //
  1631 // The background collector will yield the baton before starting a new
  1632 // phase of the collection (e.g., before initial marking, marking from roots,
  1633 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
  1634 // of the loop which switches the phases. The background collector does some
  1635 // of the phases (initial mark, final re-mark) with the world stopped.
  1636 // Because of locking involved in stopping the world,
  1637 // the foreground collector should not block waiting for the background
  1638 // collector when it is doing a stop-the-world phase.  The background
  1639 // collector will yield the baton at an additional point just before
  1640 // it enters a stop-the-world phase.  Once the world is stopped, the
  1641 // background collector checks the phase of the collection.  If the
  1642 // phase has not changed, it proceeds with the collection.  If the
  1643 // phase has changed, it skips that phase of the collection.  See
  1644 // the comments on the use of the Heap_lock in collect_in_background().
  1645 //
  1646 // Variable used in baton passing.
  1647 //   _foregroundGCIsActive - Set to true by the foreground collector when
  1648 //      it wants the baton.  The foreground clears it when it has finished
  1649 //      the collection.
  1650 //   _foregroundGCShouldWait - Set to true by the background collector
  1651 //        when it is running.  The foreground collector waits while
  1652 //      _foregroundGCShouldWait is true.
  1653 //  CGC_lock - monitor used to protect access to the above variables
  1654 //      and to notify the foreground and background collectors.
  1655 //  _collectorState - current state of the CMS collection.
  1656 //
  1657 // The foreground collector
  1658 //   acquires the CGC_lock
  1659 //   sets _foregroundGCIsActive
  1660 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
  1661 //     various locks acquired in preparation for the collection
  1662 //     are released so as not to block the background collector
  1663 //     that is in the midst of a collection
  1664 //   proceeds with the collection
  1665 //   clears _foregroundGCIsActive
  1666 //   returns
  1667 //
  1668 // The background collector in a loop iterating on the phases of the
  1669 //      collection
  1670 //   acquires the CGC_lock
  1671 //   sets _foregroundGCShouldWait
  1672 //   if _foregroundGCIsActive is set
  1673 //     clears _foregroundGCShouldWait, notifies _CGC_lock
  1674 //     waits on _CGC_lock for _foregroundGCIsActive to become false
  1675 //     and exits the loop.
  1676 //   otherwise
  1677 //     proceed with that phase of the collection
  1678 //     if the phase is a stop-the-world phase,
  1679 //       yield the baton once more just before enqueueing
  1680 //       the stop-world CMS operation (executed by the VM thread).
  1681 //   returns after all phases of the collection are done
  1682 //
  1684 void CMSCollector::acquire_control_and_collect(bool full,
  1685         bool clear_all_soft_refs) {
  1686   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  1687   assert(!Thread::current()->is_ConcurrentGC_thread(),
  1688          "shouldn't try to acquire control from self!");
  1690   // Start the protocol for acquiring control of the
  1691   // collection from the background collector (aka CMS thread).
  1692   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
  1693          "VM thread should have CMS token");
  1694   // Remember the possibly interrupted state of an ongoing
  1695   // concurrent collection
  1696   CollectorState first_state = _collectorState;
  1698   // Signal to a possibly ongoing concurrent collection that
  1699   // we want to do a foreground collection.
  1700   _foregroundGCIsActive = true;
  1702   // Disable incremental mode during a foreground collection.
  1703   ICMSDisabler icms_disabler;
  1705   // release locks and wait for a notify from the background collector
  1706   // releasing the locks in only necessary for phases which
  1707   // do yields to improve the granularity of the collection.
  1708   assert_lock_strong(bitMapLock());
  1709   // We need to lock the Free list lock for the space that we are
  1710   // currently collecting.
  1711   assert(haveFreelistLocks(), "Must be holding free list locks");
  1712   bitMapLock()->unlock();
  1713   releaseFreelistLocks();
  1715     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  1716     if (_foregroundGCShouldWait) {
  1717       // We are going to be waiting for action for the CMS thread;
  1718       // it had better not be gone (for instance at shutdown)!
  1719       assert(ConcurrentMarkSweepThread::cmst() != NULL,
  1720              "CMS thread must be running");
  1721       // Wait here until the background collector gives us the go-ahead
  1722       ConcurrentMarkSweepThread::clear_CMS_flag(
  1723         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
  1724       // Get a possibly blocked CMS thread going:
  1725       //   Note that we set _foregroundGCIsActive true above,
  1726       //   without protection of the CGC_lock.
  1727       CGC_lock->notify();
  1728       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
  1729              "Possible deadlock");
  1730       while (_foregroundGCShouldWait) {
  1731         // wait for notification
  1732         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
  1733         // Possibility of delay/starvation here, since CMS token does
  1734         // not know to give priority to VM thread? Actually, i think
  1735         // there wouldn't be any delay/starvation, but the proof of
  1736         // that "fact" (?) appears non-trivial. XXX 20011219YSR
  1738       ConcurrentMarkSweepThread::set_CMS_flag(
  1739         ConcurrentMarkSweepThread::CMS_vm_has_token);
  1742   // The CMS_token is already held.  Get back the other locks.
  1743   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
  1744          "VM thread should have CMS token");
  1745   getFreelistLocks();
  1746   bitMapLock()->lock_without_safepoint_check();
  1747   if (TraceCMSState) {
  1748     gclog_or_tty->print_cr("CMS foreground collector has asked for control "
  1749       INTPTR_FORMAT " with first state %d", Thread::current(), first_state);
  1750     gclog_or_tty->print_cr("    gets control with state %d", _collectorState);
  1753   // Check if we need to do a compaction, or if not, whether
  1754   // we need to start the mark-sweep from scratch.
  1755   bool should_compact    = false;
  1756   bool should_start_over = false;
  1757   decide_foreground_collection_type(clear_all_soft_refs,
  1758     &should_compact, &should_start_over);
  1760 NOT_PRODUCT(
  1761   if (RotateCMSCollectionTypes) {
  1762     if (_cmsGen->debug_collection_type() ==
  1763         ConcurrentMarkSweepGeneration::MSC_foreground_collection_type) {
  1764       should_compact = true;
  1765     } else if (_cmsGen->debug_collection_type() ==
  1766                ConcurrentMarkSweepGeneration::MS_foreground_collection_type) {
  1767       should_compact = false;
  1772   if (PrintGCDetails && first_state > Idling) {
  1773     GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
  1774     if (GCCause::is_user_requested_gc(cause) ||
  1775         GCCause::is_serviceability_requested_gc(cause)) {
  1776       gclog_or_tty->print(" (concurrent mode interrupted)");
  1777     } else {
  1778       gclog_or_tty->print(" (concurrent mode failure)");
  1782   if (should_compact) {
  1783     // If the collection is being acquired from the background
  1784     // collector, there may be references on the discovered
  1785     // references lists that have NULL referents (being those
  1786     // that were concurrently cleared by a mutator) or
  1787     // that are no longer active (having been enqueued concurrently
  1788     // by the mutator).
  1789     // Scrub the list of those references because Mark-Sweep-Compact
  1790     // code assumes referents are not NULL and that all discovered
  1791     // Reference objects are active.
  1792     ref_processor()->clean_up_discovered_references();
  1794     do_compaction_work(clear_all_soft_refs);
  1796     // Has the GC time limit been exceeded?
  1797     check_gc_time_limit();
  1799   } else {
  1800     do_mark_sweep_work(clear_all_soft_refs, first_state,
  1801       should_start_over);
  1803   // Reset the expansion cause, now that we just completed
  1804   // a collection cycle.
  1805   clear_expansion_cause();
  1806   _foregroundGCIsActive = false;
  1807   return;
  1810 void CMSCollector::check_gc_time_limit() {
  1812   // Ignore explicit GC's.  Exiting here does not set the flag and
  1813   // does not reset the count.  Updating of the averages for system
  1814   // GC's is still controlled by UseAdaptiveSizePolicyWithSystemGC.
  1815   GCCause::Cause gc_cause = GenCollectedHeap::heap()->gc_cause();
  1816   if (GCCause::is_user_requested_gc(gc_cause) ||
  1817       GCCause::is_serviceability_requested_gc(gc_cause)) {
  1818     return;
  1821   // Calculate the fraction of the CMS generation was freed during
  1822   // the last collection.
  1823   // Only consider the STW compacting cost for now.
  1824   //
  1825   // Note that the gc time limit test only works for the collections
  1826   // of the young gen + tenured gen and not for collections of the
  1827   // permanent gen.  That is because the calculation of the space
  1828   // freed by the collection is the free space in the young gen +
  1829   // tenured gen.
  1831   double fraction_free =
  1832     ((double)_cmsGen->free())/((double)_cmsGen->max_capacity());
  1833   if ((100.0 * size_policy()->compacting_gc_cost()) >
  1834          ((double) GCTimeLimit) &&
  1835         ((fraction_free * 100) < GCHeapFreeLimit)) {
  1836     size_policy()->inc_gc_time_limit_count();
  1837     if (UseGCOverheadLimit &&
  1838         (size_policy()->gc_time_limit_count() >
  1839          AdaptiveSizePolicyGCTimeLimitThreshold)) {
  1840       size_policy()->set_gc_time_limit_exceeded(true);
  1841       // Avoid consecutive OOM due to the gc time limit by resetting
  1842       // the counter.
  1843       size_policy()->reset_gc_time_limit_count();
  1844       if (PrintGCDetails) {
  1845         gclog_or_tty->print_cr("      GC is exceeding overhead limit "
  1846           "of %d%%", GCTimeLimit);
  1848     } else {
  1849       if (PrintGCDetails) {
  1850         gclog_or_tty->print_cr("      GC would exceed overhead limit "
  1851           "of %d%%", GCTimeLimit);
  1854   } else {
  1855     size_policy()->reset_gc_time_limit_count();
  1859 // Resize the perm generation and the tenured generation
  1860 // after obtaining the free list locks for the
  1861 // two generations.
  1862 void CMSCollector::compute_new_size() {
  1863   assert_locked_or_safepoint(Heap_lock);
  1864   FreelistLocker z(this);
  1865   _permGen->compute_new_size();
  1866   _cmsGen->compute_new_size();
  1869 // A work method used by foreground collection to determine
  1870 // what type of collection (compacting or not, continuing or fresh)
  1871 // it should do.
  1872 // NOTE: the intent is to make UseCMSCompactAtFullCollection
  1873 // and CMSCompactWhenClearAllSoftRefs the default in the future
  1874 // and do away with the flags after a suitable period.
  1875 void CMSCollector::decide_foreground_collection_type(
  1876   bool clear_all_soft_refs, bool* should_compact,
  1877   bool* should_start_over) {
  1878   // Normally, we'll compact only if the UseCMSCompactAtFullCollection
  1879   // flag is set, and we have either requested a System.gc() or
  1880   // the number of full gc's since the last concurrent cycle
  1881   // has exceeded the threshold set by CMSFullGCsBeforeCompaction,
  1882   // or if an incremental collection has failed
  1883   GenCollectedHeap* gch = GenCollectedHeap::heap();
  1884   assert(gch->collector_policy()->is_two_generation_policy(),
  1885          "You may want to check the correctness of the following");
  1886   // Inform cms gen if this was due to partial collection failing.
  1887   // The CMS gen may use this fact to determine its expansion policy.
  1888   if (gch->incremental_collection_will_fail()) {
  1889     assert(!_cmsGen->incremental_collection_failed(),
  1890            "Should have been noticed, reacted to and cleared");
  1891     _cmsGen->set_incremental_collection_failed();
  1893   *should_compact =
  1894     UseCMSCompactAtFullCollection &&
  1895     ((_full_gcs_since_conc_gc >= CMSFullGCsBeforeCompaction) ||
  1896      GCCause::is_user_requested_gc(gch->gc_cause()) ||
  1897      gch->incremental_collection_will_fail());
  1898   *should_start_over = false;
  1899   if (clear_all_soft_refs && !*should_compact) {
  1900     // We are about to do a last ditch collection attempt
  1901     // so it would normally make sense to do a compaction
  1902     // to reclaim as much space as possible.
  1903     if (CMSCompactWhenClearAllSoftRefs) {
  1904       // Default: The rationale is that in this case either
  1905       // we are past the final marking phase, in which case
  1906       // we'd have to start over, or so little has been done
  1907       // that there's little point in saving that work. Compaction
  1908       // appears to be the sensible choice in either case.
  1909       *should_compact = true;
  1910     } else {
  1911       // We have been asked to clear all soft refs, but not to
  1912       // compact. Make sure that we aren't past the final checkpoint
  1913       // phase, for that is where we process soft refs. If we are already
  1914       // past that phase, we'll need to redo the refs discovery phase and
  1915       // if necessary clear soft refs that weren't previously
  1916       // cleared. We do so by remembering the phase in which
  1917       // we came in, and if we are past the refs processing
  1918       // phase, we'll choose to just redo the mark-sweep
  1919       // collection from scratch.
  1920       if (_collectorState > FinalMarking) {
  1921         // We are past the refs processing phase;
  1922         // start over and do a fresh synchronous CMS cycle
  1923         _collectorState = Resetting; // skip to reset to start new cycle
  1924         reset(false /* == !asynch */);
  1925         *should_start_over = true;
  1926       } // else we can continue a possibly ongoing current cycle
  1931 // A work method used by the foreground collector to do
  1932 // a mark-sweep-compact.
  1933 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
  1934   GenCollectedHeap* gch = GenCollectedHeap::heap();
  1935   TraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, gclog_or_tty);
  1936   if (PrintGC && Verbose && !(GCCause::is_user_requested_gc(gch->gc_cause()))) {
  1937     gclog_or_tty->print_cr("Compact ConcurrentMarkSweepGeneration after %d "
  1938       "collections passed to foreground collector", _full_gcs_since_conc_gc);
  1941   // Sample collection interval time and reset for collection pause.
  1942   if (UseAdaptiveSizePolicy) {
  1943     size_policy()->msc_collection_begin();
  1946   // Temporarily widen the span of the weak reference processing to
  1947   // the entire heap.
  1948   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
  1949   ReferenceProcessorSpanMutator x(ref_processor(), new_span);
  1951   // Temporarily, clear the "is_alive_non_header" field of the
  1952   // reference processor.
  1953   ReferenceProcessorIsAliveMutator y(ref_processor(), NULL);
  1955   // Temporarily make reference _processing_ single threaded (non-MT).
  1956   ReferenceProcessorMTProcMutator z(ref_processor(), false);
  1958   // Temporarily make refs discovery atomic
  1959   ReferenceProcessorAtomicMutator w(ref_processor(), true);
  1961   ref_processor()->set_enqueuing_is_done(false);
  1962   ref_processor()->enable_discovery();
  1963   // If an asynchronous collection finishes, the _modUnionTable is
  1964   // all clear.  If we are assuming the collection from an asynchronous
  1965   // collection, clear the _modUnionTable.
  1966   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
  1967     "_modUnionTable should be clear if the baton was not passed");
  1968   _modUnionTable.clear_all();
  1970   // We must adjust the allocation statistics being maintained
  1971   // in the free list space. We do so by reading and clearing
  1972   // the sweep timer and updating the block flux rate estimates below.
  1973   assert(_sweep_timer.is_active(), "We should never see the timer inactive");
  1974   _sweep_timer.stop();
  1975   // Note that we do not use this sample to update the _sweep_estimate.
  1976   _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_sweep_timer.seconds()),
  1977                                           _sweep_estimate.padded_average());
  1979   GenMarkSweep::invoke_at_safepoint(_cmsGen->level(),
  1980     ref_processor(), clear_all_soft_refs);
  1981   #ifdef ASSERT
  1982     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
  1983     size_t free_size = cms_space->free();
  1984     assert(free_size ==
  1985            pointer_delta(cms_space->end(), cms_space->compaction_top())
  1986            * HeapWordSize,
  1987       "All the free space should be compacted into one chunk at top");
  1988     assert(cms_space->dictionary()->totalChunkSize(
  1989                                       debug_only(cms_space->freelistLock())) == 0 ||
  1990            cms_space->totalSizeInIndexedFreeLists() == 0,
  1991       "All the free space should be in a single chunk");
  1992     size_t num = cms_space->totalCount();
  1993     assert((free_size == 0 && num == 0) ||
  1994            (free_size > 0  && (num == 1 || num == 2)),
  1995          "There should be at most 2 free chunks after compaction");
  1996   #endif // ASSERT
  1997   _collectorState = Resetting;
  1998   assert(_restart_addr == NULL,
  1999          "Should have been NULL'd before baton was passed");
  2000   reset(false /* == !asynch */);
  2001   _cmsGen->reset_after_compaction();
  2002   _concurrent_cycles_since_last_unload = 0;
  2004   if (verifying() && !should_unload_classes()) {
  2005     perm_gen_verify_bit_map()->clear_all();
  2008   // Clear any data recorded in the PLAB chunk arrays.
  2009   if (_survivor_plab_array != NULL) {
  2010     reset_survivor_plab_arrays();
  2013   // Adjust the per-size allocation stats for the next epoch.
  2014   _cmsGen->cmsSpace()->endSweepFLCensus(sweepCount() /* fake */);
  2015   // Restart the "sweep timer" for next epoch.
  2016   _sweep_timer.reset();
  2017   _sweep_timer.start();
  2019   // Sample collection pause time and reset for collection interval.
  2020   if (UseAdaptiveSizePolicy) {
  2021     size_policy()->msc_collection_end(gch->gc_cause());
  2024   // For a mark-sweep-compact, compute_new_size() will be called
  2025   // in the heap's do_collection() method.
  2028 // A work method used by the foreground collector to do
  2029 // a mark-sweep, after taking over from a possibly on-going
  2030 // concurrent mark-sweep collection.
  2031 void CMSCollector::do_mark_sweep_work(bool clear_all_soft_refs,
  2032   CollectorState first_state, bool should_start_over) {
  2033   if (PrintGC && Verbose) {
  2034     gclog_or_tty->print_cr("Pass concurrent collection to foreground "
  2035       "collector with count %d",
  2036       _full_gcs_since_conc_gc);
  2038   switch (_collectorState) {
  2039     case Idling:
  2040       if (first_state == Idling || should_start_over) {
  2041         // The background GC was not active, or should
  2042         // restarted from scratch;  start the cycle.
  2043         _collectorState = InitialMarking;
  2045       // If first_state was not Idling, then a background GC
  2046       // was in progress and has now finished.  No need to do it
  2047       // again.  Leave the state as Idling.
  2048       break;
  2049     case Precleaning:
  2050       // In the foreground case don't do the precleaning since
  2051       // it is not done concurrently and there is extra work
  2052       // required.
  2053       _collectorState = FinalMarking;
  2055   if (PrintGCDetails &&
  2056       (_collectorState > Idling ||
  2057        !GCCause::is_user_requested_gc(GenCollectedHeap::heap()->gc_cause()))) {
  2058     gclog_or_tty->print(" (concurrent mode failure)");
  2060   collect_in_foreground(clear_all_soft_refs);
  2062   // For a mark-sweep, compute_new_size() will be called
  2063   // in the heap's do_collection() method.
  2067 void CMSCollector::getFreelistLocks() const {
  2068   // Get locks for all free lists in all generations that this
  2069   // collector is responsible for
  2070   _cmsGen->freelistLock()->lock_without_safepoint_check();
  2071   _permGen->freelistLock()->lock_without_safepoint_check();
  2074 void CMSCollector::releaseFreelistLocks() const {
  2075   // Release locks for all free lists in all generations that this
  2076   // collector is responsible for
  2077   _cmsGen->freelistLock()->unlock();
  2078   _permGen->freelistLock()->unlock();
  2081 bool CMSCollector::haveFreelistLocks() const {
  2082   // Check locks for all free lists in all generations that this
  2083   // collector is responsible for
  2084   assert_lock_strong(_cmsGen->freelistLock());
  2085   assert_lock_strong(_permGen->freelistLock());
  2086   PRODUCT_ONLY(ShouldNotReachHere());
  2087   return true;
  2090 // A utility class that is used by the CMS collector to
  2091 // temporarily "release" the foreground collector from its
  2092 // usual obligation to wait for the background collector to
  2093 // complete an ongoing phase before proceeding.
  2094 class ReleaseForegroundGC: public StackObj {
  2095  private:
  2096   CMSCollector* _c;
  2097  public:
  2098   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
  2099     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
  2100     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2101     // allow a potentially blocked foreground collector to proceed
  2102     _c->_foregroundGCShouldWait = false;
  2103     if (_c->_foregroundGCIsActive) {
  2104       CGC_lock->notify();
  2106     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  2107            "Possible deadlock");
  2110   ~ReleaseForegroundGC() {
  2111     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
  2112     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2113     _c->_foregroundGCShouldWait = true;
  2115 };
  2117 // There are separate collect_in_background and collect_in_foreground because of
  2118 // the different locking requirements of the background collector and the
  2119 // foreground collector.  There was originally an attempt to share
  2120 // one "collect" method between the background collector and the foreground
  2121 // collector but the if-then-else required made it cleaner to have
  2122 // separate methods.
  2123 void CMSCollector::collect_in_background(bool clear_all_soft_refs) {
  2124   assert(Thread::current()->is_ConcurrentGC_thread(),
  2125     "A CMS asynchronous collection is only allowed on a CMS thread.");
  2127   GenCollectedHeap* gch = GenCollectedHeap::heap();
  2129     bool safepoint_check = Mutex::_no_safepoint_check_flag;
  2130     MutexLockerEx hl(Heap_lock, safepoint_check);
  2131     FreelistLocker fll(this);
  2132     MutexLockerEx x(CGC_lock, safepoint_check);
  2133     if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) {
  2134       // The foreground collector is active or we're
  2135       // not using asynchronous collections.  Skip this
  2136       // background collection.
  2137       assert(!_foregroundGCShouldWait, "Should be clear");
  2138       return;
  2139     } else {
  2140       assert(_collectorState == Idling, "Should be idling before start.");
  2141       _collectorState = InitialMarking;
  2142       // Reset the expansion cause, now that we are about to begin
  2143       // a new cycle.
  2144       clear_expansion_cause();
  2146     // Decide if we want to enable class unloading as part of the
  2147     // ensuing concurrent GC cycle.
  2148     update_should_unload_classes();
  2149     _full_gc_requested = false;           // acks all outstanding full gc requests
  2150     // Signal that we are about to start a collection
  2151     gch->increment_total_full_collections();  // ... starting a collection cycle
  2152     _collection_count_start = gch->total_full_collections();
  2155   // Used for PrintGC
  2156   size_t prev_used;
  2157   if (PrintGC && Verbose) {
  2158     prev_used = _cmsGen->used(); // XXXPERM
  2161   // The change of the collection state is normally done at this level;
  2162   // the exceptions are phases that are executed while the world is
  2163   // stopped.  For those phases the change of state is done while the
  2164   // world is stopped.  For baton passing purposes this allows the
  2165   // background collector to finish the phase and change state atomically.
  2166   // The foreground collector cannot wait on a phase that is done
  2167   // while the world is stopped because the foreground collector already
  2168   // has the world stopped and would deadlock.
  2169   while (_collectorState != Idling) {
  2170     if (TraceCMSState) {
  2171       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
  2172         Thread::current(), _collectorState);
  2174     // The foreground collector
  2175     //   holds the Heap_lock throughout its collection.
  2176     //   holds the CMS token (but not the lock)
  2177     //     except while it is waiting for the background collector to yield.
  2178     //
  2179     // The foreground collector should be blocked (not for long)
  2180     //   if the background collector is about to start a phase
  2181     //   executed with world stopped.  If the background
  2182     //   collector has already started such a phase, the
  2183     //   foreground collector is blocked waiting for the
  2184     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
  2185     //   are executed in the VM thread.
  2186     //
  2187     // The locking order is
  2188     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
  2189     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
  2190     //   CMS token  (claimed in
  2191     //                stop_world_and_do() -->
  2192     //                  safepoint_synchronize() -->
  2193     //                    CMSThread::synchronize())
  2196       // Check if the FG collector wants us to yield.
  2197       CMSTokenSync x(true); // is cms thread
  2198       if (waitForForegroundGC()) {
  2199         // We yielded to a foreground GC, nothing more to be
  2200         // done this round.
  2201         assert(_foregroundGCShouldWait == false, "We set it to false in "
  2202                "waitForForegroundGC()");
  2203         if (TraceCMSState) {
  2204           gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
  2205             " exiting collection CMS state %d",
  2206             Thread::current(), _collectorState);
  2208         return;
  2209       } else {
  2210         // The background collector can run but check to see if the
  2211         // foreground collector has done a collection while the
  2212         // background collector was waiting to get the CGC_lock
  2213         // above.  If yes, break so that _foregroundGCShouldWait
  2214         // is cleared before returning.
  2215         if (_collectorState == Idling) {
  2216           break;
  2221     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
  2222       "should be waiting");
  2224     switch (_collectorState) {
  2225       case InitialMarking:
  2227           ReleaseForegroundGC x(this);
  2228           stats().record_cms_begin();
  2230           VM_CMS_Initial_Mark initial_mark_op(this);
  2231           VMThread::execute(&initial_mark_op);
  2233         // The collector state may be any legal state at this point
  2234         // since the background collector may have yielded to the
  2235         // foreground collector.
  2236         break;
  2237       case Marking:
  2238         // initial marking in checkpointRootsInitialWork has been completed
  2239         if (markFromRoots(true)) { // we were successful
  2240           assert(_collectorState == Precleaning, "Collector state should "
  2241             "have changed");
  2242         } else {
  2243           assert(_foregroundGCIsActive, "Internal state inconsistency");
  2245         break;
  2246       case Precleaning:
  2247         if (UseAdaptiveSizePolicy) {
  2248           size_policy()->concurrent_precleaning_begin();
  2250         // marking from roots in markFromRoots has been completed
  2251         preclean();
  2252         if (UseAdaptiveSizePolicy) {
  2253           size_policy()->concurrent_precleaning_end();
  2255         assert(_collectorState == AbortablePreclean ||
  2256                _collectorState == FinalMarking,
  2257                "Collector state should have changed");
  2258         break;
  2259       case AbortablePreclean:
  2260         if (UseAdaptiveSizePolicy) {
  2261         size_policy()->concurrent_phases_resume();
  2263         abortable_preclean();
  2264         if (UseAdaptiveSizePolicy) {
  2265           size_policy()->concurrent_precleaning_end();
  2267         assert(_collectorState == FinalMarking, "Collector state should "
  2268           "have changed");
  2269         break;
  2270       case FinalMarking:
  2272           ReleaseForegroundGC x(this);
  2274           VM_CMS_Final_Remark final_remark_op(this);
  2275           VMThread::execute(&final_remark_op);
  2277         assert(_foregroundGCShouldWait, "block post-condition");
  2278         break;
  2279       case Sweeping:
  2280         if (UseAdaptiveSizePolicy) {
  2281           size_policy()->concurrent_sweeping_begin();
  2283         // final marking in checkpointRootsFinal has been completed
  2284         sweep(true);
  2285         assert(_collectorState == Resizing, "Collector state change "
  2286           "to Resizing must be done under the free_list_lock");
  2287         _full_gcs_since_conc_gc = 0;
  2289         // Stop the timers for adaptive size policy for the concurrent phases
  2290         if (UseAdaptiveSizePolicy) {
  2291           size_policy()->concurrent_sweeping_end();
  2292           size_policy()->concurrent_phases_end(gch->gc_cause(),
  2293                                              gch->prev_gen(_cmsGen)->capacity(),
  2294                                              _cmsGen->free());
  2297       case Resizing: {
  2298         // Sweeping has been completed...
  2299         // At this point the background collection has completed.
  2300         // Don't move the call to compute_new_size() down
  2301         // into code that might be executed if the background
  2302         // collection was preempted.
  2304           ReleaseForegroundGC x(this);   // unblock FG collection
  2305           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
  2306           CMSTokenSync        z(true);   // not strictly needed.
  2307           if (_collectorState == Resizing) {
  2308             compute_new_size();
  2309             _collectorState = Resetting;
  2310           } else {
  2311             assert(_collectorState == Idling, "The state should only change"
  2312                    " because the foreground collector has finished the collection");
  2315         break;
  2317       case Resetting:
  2318         // CMS heap resizing has been completed
  2319         reset(true);
  2320         assert(_collectorState == Idling, "Collector state should "
  2321           "have changed");
  2322         stats().record_cms_end();
  2323         // Don't move the concurrent_phases_end() and compute_new_size()
  2324         // calls to here because a preempted background collection
  2325         // has it's state set to "Resetting".
  2326         break;
  2327       case Idling:
  2328       default:
  2329         ShouldNotReachHere();
  2330         break;
  2332     if (TraceCMSState) {
  2333       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
  2334         Thread::current(), _collectorState);
  2336     assert(_foregroundGCShouldWait, "block post-condition");
  2339   // Should this be in gc_epilogue?
  2340   collector_policy()->counters()->update_counters();
  2343     // Clear _foregroundGCShouldWait and, in the event that the
  2344     // foreground collector is waiting, notify it, before
  2345     // returning.
  2346     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2347     _foregroundGCShouldWait = false;
  2348     if (_foregroundGCIsActive) {
  2349       CGC_lock->notify();
  2351     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  2352            "Possible deadlock");
  2354   if (TraceCMSState) {
  2355     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
  2356       " exiting collection CMS state %d",
  2357       Thread::current(), _collectorState);
  2359   if (PrintGC && Verbose) {
  2360     _cmsGen->print_heap_change(prev_used);
  2364 void CMSCollector::collect_in_foreground(bool clear_all_soft_refs) {
  2365   assert(_foregroundGCIsActive && !_foregroundGCShouldWait,
  2366          "Foreground collector should be waiting, not executing");
  2367   assert(Thread::current()->is_VM_thread(), "A foreground collection"
  2368     "may only be done by the VM Thread with the world stopped");
  2369   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
  2370          "VM thread should have CMS token");
  2372   NOT_PRODUCT(TraceTime t("CMS:MS (foreground) ", PrintGCDetails && Verbose,
  2373     true, gclog_or_tty);)
  2374   if (UseAdaptiveSizePolicy) {
  2375     size_policy()->ms_collection_begin();
  2377   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact);
  2379   HandleMark hm;  // Discard invalid handles created during verification
  2381   if (VerifyBeforeGC &&
  2382       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2383     Universe::verify(true);
  2386   bool init_mark_was_synchronous = false; // until proven otherwise
  2387   while (_collectorState != Idling) {
  2388     if (TraceCMSState) {
  2389       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
  2390         Thread::current(), _collectorState);
  2392     switch (_collectorState) {
  2393       case InitialMarking:
  2394         init_mark_was_synchronous = true;  // fact to be exploited in re-mark
  2395         checkpointRootsInitial(false);
  2396         assert(_collectorState == Marking, "Collector state should have changed"
  2397           " within checkpointRootsInitial()");
  2398         break;
  2399       case Marking:
  2400         // initial marking in checkpointRootsInitialWork has been completed
  2401         if (VerifyDuringGC &&
  2402             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2403           gclog_or_tty->print("Verify before initial mark: ");
  2404           Universe::verify(true);
  2407           bool res = markFromRoots(false);
  2408           assert(res && _collectorState == FinalMarking, "Collector state should "
  2409             "have changed");
  2410           break;
  2412       case FinalMarking:
  2413         if (VerifyDuringGC &&
  2414             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2415           gclog_or_tty->print("Verify before re-mark: ");
  2416           Universe::verify(true);
  2418         checkpointRootsFinal(false, clear_all_soft_refs,
  2419                              init_mark_was_synchronous);
  2420         assert(_collectorState == Sweeping, "Collector state should not "
  2421           "have changed within checkpointRootsFinal()");
  2422         break;
  2423       case Sweeping:
  2424         // final marking in checkpointRootsFinal has been completed
  2425         if (VerifyDuringGC &&
  2426             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2427           gclog_or_tty->print("Verify before sweep: ");
  2428           Universe::verify(true);
  2430         sweep(false);
  2431         assert(_collectorState == Resizing, "Incorrect state");
  2432         break;
  2433       case Resizing: {
  2434         // Sweeping has been completed; the actual resize in this case
  2435         // is done separately; nothing to be done in this state.
  2436         _collectorState = Resetting;
  2437         break;
  2439       case Resetting:
  2440         // The heap has been resized.
  2441         if (VerifyDuringGC &&
  2442             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2443           gclog_or_tty->print("Verify before reset: ");
  2444           Universe::verify(true);
  2446         reset(false);
  2447         assert(_collectorState == Idling, "Collector state should "
  2448           "have changed");
  2449         break;
  2450       case Precleaning:
  2451       case AbortablePreclean:
  2452         // Elide the preclean phase
  2453         _collectorState = FinalMarking;
  2454         break;
  2455       default:
  2456         ShouldNotReachHere();
  2458     if (TraceCMSState) {
  2459       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
  2460         Thread::current(), _collectorState);
  2464   if (UseAdaptiveSizePolicy) {
  2465     GenCollectedHeap* gch = GenCollectedHeap::heap();
  2466     size_policy()->ms_collection_end(gch->gc_cause());
  2469   if (VerifyAfterGC &&
  2470       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2471     Universe::verify(true);
  2473   if (TraceCMSState) {
  2474     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
  2475       " exiting collection CMS state %d",
  2476       Thread::current(), _collectorState);
  2480 bool CMSCollector::waitForForegroundGC() {
  2481   bool res = false;
  2482   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  2483          "CMS thread should have CMS token");
  2484   // Block the foreground collector until the
  2485   // background collectors decides whether to
  2486   // yield.
  2487   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2488   _foregroundGCShouldWait = true;
  2489   if (_foregroundGCIsActive) {
  2490     // The background collector yields to the
  2491     // foreground collector and returns a value
  2492     // indicating that it has yielded.  The foreground
  2493     // collector can proceed.
  2494     res = true;
  2495     _foregroundGCShouldWait = false;
  2496     ConcurrentMarkSweepThread::clear_CMS_flag(
  2497       ConcurrentMarkSweepThread::CMS_cms_has_token);
  2498     ConcurrentMarkSweepThread::set_CMS_flag(
  2499       ConcurrentMarkSweepThread::CMS_cms_wants_token);
  2500     // Get a possibly blocked foreground thread going
  2501     CGC_lock->notify();
  2502     if (TraceCMSState) {
  2503       gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
  2504         Thread::current(), _collectorState);
  2506     while (_foregroundGCIsActive) {
  2507       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
  2509     ConcurrentMarkSweepThread::set_CMS_flag(
  2510       ConcurrentMarkSweepThread::CMS_cms_has_token);
  2511     ConcurrentMarkSweepThread::clear_CMS_flag(
  2512       ConcurrentMarkSweepThread::CMS_cms_wants_token);
  2514   if (TraceCMSState) {
  2515     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
  2516       Thread::current(), _collectorState);
  2518   return res;
  2521 // Because of the need to lock the free lists and other structures in
  2522 // the collector, common to all the generations that the collector is
  2523 // collecting, we need the gc_prologues of individual CMS generations
  2524 // delegate to their collector. It may have been simpler had the
  2525 // current infrastructure allowed one to call a prologue on a
  2526 // collector. In the absence of that we have the generation's
  2527 // prologue delegate to the collector, which delegates back
  2528 // some "local" work to a worker method in the individual generations
  2529 // that it's responsible for collecting, while itself doing any
  2530 // work common to all generations it's responsible for. A similar
  2531 // comment applies to the  gc_epilogue()'s.
  2532 // The role of the varaible _between_prologue_and_epilogue is to
  2533 // enforce the invocation protocol.
  2534 void CMSCollector::gc_prologue(bool full) {
  2535   // Call gc_prologue_work() for each CMSGen and PermGen that
  2536   // we are responsible for.
  2538   // The following locking discipline assumes that we are only called
  2539   // when the world is stopped.
  2540   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
  2542   // The CMSCollector prologue must call the gc_prologues for the
  2543   // "generations" (including PermGen if any) that it's responsible
  2544   // for.
  2546   assert(   Thread::current()->is_VM_thread()
  2547          || (   CMSScavengeBeforeRemark
  2548              && Thread::current()->is_ConcurrentGC_thread()),
  2549          "Incorrect thread type for prologue execution");
  2551   if (_between_prologue_and_epilogue) {
  2552     // We have already been invoked; this is a gc_prologue delegation
  2553     // from yet another CMS generation that we are responsible for, just
  2554     // ignore it since all relevant work has already been done.
  2555     return;
  2558   // set a bit saying prologue has been called; cleared in epilogue
  2559   _between_prologue_and_epilogue = true;
  2560   // Claim locks for common data structures, then call gc_prologue_work()
  2561   // for each CMSGen and PermGen that we are responsible for.
  2563   getFreelistLocks();   // gets free list locks on constituent spaces
  2564   bitMapLock()->lock_without_safepoint_check();
  2566   // Should call gc_prologue_work() for all cms gens we are responsible for
  2567   bool registerClosure =    _collectorState >= Marking
  2568                          && _collectorState < Sweeping;
  2569   ModUnionClosure* muc = ParallelGCThreads > 0 ? &_modUnionClosurePar
  2570                                                : &_modUnionClosure;
  2571   _cmsGen->gc_prologue_work(full, registerClosure, muc);
  2572   _permGen->gc_prologue_work(full, registerClosure, muc);
  2574   if (!full) {
  2575     stats().record_gc0_begin();
  2579 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
  2580   // Delegate to CMScollector which knows how to coordinate between
  2581   // this and any other CMS generations that it is responsible for
  2582   // collecting.
  2583   collector()->gc_prologue(full);
  2586 // This is a "private" interface for use by this generation's CMSCollector.
  2587 // Not to be called directly by any other entity (for instance,
  2588 // GenCollectedHeap, which calls the "public" gc_prologue method above).
  2589 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
  2590   bool registerClosure, ModUnionClosure* modUnionClosure) {
  2591   assert(!incremental_collection_failed(), "Shouldn't be set yet");
  2592   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
  2593     "Should be NULL");
  2594   if (registerClosure) {
  2595     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
  2597   cmsSpace()->gc_prologue();
  2598   // Clear stat counters
  2599   NOT_PRODUCT(
  2600     assert(_numObjectsPromoted == 0, "check");
  2601     assert(_numWordsPromoted   == 0, "check");
  2602     if (Verbose && PrintGC) {
  2603       gclog_or_tty->print("Allocated "SIZE_FORMAT" objects, "
  2604                           SIZE_FORMAT" bytes concurrently",
  2605       _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
  2607     _numObjectsAllocated = 0;
  2608     _numWordsAllocated   = 0;
  2612 void CMSCollector::gc_epilogue(bool full) {
  2613   // The following locking discipline assumes that we are only called
  2614   // when the world is stopped.
  2615   assert(SafepointSynchronize::is_at_safepoint(),
  2616          "world is stopped assumption");
  2618   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
  2619   // if linear allocation blocks need to be appropriately marked to allow the
  2620   // the blocks to be parsable. We also check here whether we need to nudge the
  2621   // CMS collector thread to start a new cycle (if it's not already active).
  2622   assert(   Thread::current()->is_VM_thread()
  2623          || (   CMSScavengeBeforeRemark
  2624              && Thread::current()->is_ConcurrentGC_thread()),
  2625          "Incorrect thread type for epilogue execution");
  2627   if (!_between_prologue_and_epilogue) {
  2628     // We have already been invoked; this is a gc_epilogue delegation
  2629     // from yet another CMS generation that we are responsible for, just
  2630     // ignore it since all relevant work has already been done.
  2631     return;
  2633   assert(haveFreelistLocks(), "must have freelist locks");
  2634   assert_lock_strong(bitMapLock());
  2636   _cmsGen->gc_epilogue_work(full);
  2637   _permGen->gc_epilogue_work(full);
  2639   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
  2640     // in case sampling was not already enabled, enable it
  2641     _start_sampling = true;
  2643   // reset _eden_chunk_array so sampling starts afresh
  2644   _eden_chunk_index = 0;
  2646   size_t cms_used   = _cmsGen->cmsSpace()->used();
  2647   size_t perm_used  = _permGen->cmsSpace()->used();
  2649   // update performance counters - this uses a special version of
  2650   // update_counters() that allows the utilization to be passed as a
  2651   // parameter, avoiding multiple calls to used().
  2652   //
  2653   _cmsGen->update_counters(cms_used);
  2654   _permGen->update_counters(perm_used);
  2656   if (CMSIncrementalMode) {
  2657     icms_update_allocation_limits();
  2660   bitMapLock()->unlock();
  2661   releaseFreelistLocks();
  2663   _between_prologue_and_epilogue = false;  // ready for next cycle
  2666 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
  2667   collector()->gc_epilogue(full);
  2669   // Also reset promotion tracking in par gc thread states.
  2670   if (ParallelGCThreads > 0) {
  2671     for (uint i = 0; i < ParallelGCThreads; i++) {
  2672       _par_gc_thread_states[i]->promo.stopTrackingPromotions();
  2677 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
  2678   assert(!incremental_collection_failed(), "Should have been cleared");
  2679   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
  2680   cmsSpace()->gc_epilogue();
  2681     // Print stat counters
  2682   NOT_PRODUCT(
  2683     assert(_numObjectsAllocated == 0, "check");
  2684     assert(_numWordsAllocated == 0, "check");
  2685     if (Verbose && PrintGC) {
  2686       gclog_or_tty->print("Promoted "SIZE_FORMAT" objects, "
  2687                           SIZE_FORMAT" bytes",
  2688                  _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
  2690     _numObjectsPromoted = 0;
  2691     _numWordsPromoted   = 0;
  2694   if (PrintGC && Verbose) {
  2695     // Call down the chain in contiguous_available needs the freelistLock
  2696     // so print this out before releasing the freeListLock.
  2697     gclog_or_tty->print(" Contiguous available "SIZE_FORMAT" bytes ",
  2698                         contiguous_available());
  2702 #ifndef PRODUCT
  2703 bool CMSCollector::have_cms_token() {
  2704   Thread* thr = Thread::current();
  2705   if (thr->is_VM_thread()) {
  2706     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
  2707   } else if (thr->is_ConcurrentGC_thread()) {
  2708     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
  2709   } else if (thr->is_GC_task_thread()) {
  2710     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
  2711            ParGCRareEvent_lock->owned_by_self();
  2713   return false;
  2715 #endif
  2717 // Check reachability of the given heap address in CMS generation,
  2718 // treating all other generations as roots.
  2719 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
  2720   // We could "guarantee" below, rather than assert, but i'll
  2721   // leave these as "asserts" so that an adventurous debugger
  2722   // could try this in the product build provided some subset of
  2723   // the conditions were met, provided they were intersted in the
  2724   // results and knew that the computation below wouldn't interfere
  2725   // with other concurrent computations mutating the structures
  2726   // being read or written.
  2727   assert(SafepointSynchronize::is_at_safepoint(),
  2728          "Else mutations in object graph will make answer suspect");
  2729   assert(have_cms_token(), "Should hold cms token");
  2730   assert(haveFreelistLocks(), "must hold free list locks");
  2731   assert_lock_strong(bitMapLock());
  2733   // Clear the marking bit map array before starting, but, just
  2734   // for kicks, first report if the given address is already marked
  2735   gclog_or_tty->print_cr("Start: Address 0x%x is%s marked", addr,
  2736                 _markBitMap.isMarked(addr) ? "" : " not");
  2738   if (verify_after_remark()) {
  2739     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
  2740     bool result = verification_mark_bm()->isMarked(addr);
  2741     gclog_or_tty->print_cr("TransitiveMark: Address 0x%x %s marked", addr,
  2742                            result ? "IS" : "is NOT");
  2743     return result;
  2744   } else {
  2745     gclog_or_tty->print_cr("Could not compute result");
  2746     return false;
  2750 ////////////////////////////////////////////////////////
  2751 // CMS Verification Support
  2752 ////////////////////////////////////////////////////////
  2753 // Following the remark phase, the following invariant
  2754 // should hold -- each object in the CMS heap which is
  2755 // marked in markBitMap() should be marked in the verification_mark_bm().
  2757 class VerifyMarkedClosure: public BitMapClosure {
  2758   CMSBitMap* _marks;
  2759   bool       _failed;
  2761  public:
  2762   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
  2764   void do_bit(size_t offset) {
  2765     HeapWord* addr = _marks->offsetToHeapWord(offset);
  2766     if (!_marks->isMarked(addr)) {
  2767       oop(addr)->print();
  2768       gclog_or_tty->print_cr(" ("INTPTR_FORMAT" should have been marked)", addr);
  2769       _failed = true;
  2773   bool failed() { return _failed; }
  2774 };
  2776 bool CMSCollector::verify_after_remark() {
  2777   gclog_or_tty->print(" [Verifying CMS Marking... ");
  2778   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
  2779   static bool init = false;
  2781   assert(SafepointSynchronize::is_at_safepoint(),
  2782          "Else mutations in object graph will make answer suspect");
  2783   assert(have_cms_token(),
  2784          "Else there may be mutual interference in use of "
  2785          " verification data structures");
  2786   assert(_collectorState > Marking && _collectorState <= Sweeping,
  2787          "Else marking info checked here may be obsolete");
  2788   assert(haveFreelistLocks(), "must hold free list locks");
  2789   assert_lock_strong(bitMapLock());
  2792   // Allocate marking bit map if not already allocated
  2793   if (!init) { // first time
  2794     if (!verification_mark_bm()->allocate(_span)) {
  2795       return false;
  2797     init = true;
  2800   assert(verification_mark_stack()->isEmpty(), "Should be empty");
  2802   // Turn off refs discovery -- so we will be tracing through refs.
  2803   // This is as intended, because by this time
  2804   // GC must already have cleared any refs that need to be cleared,
  2805   // and traced those that need to be marked; moreover,
  2806   // the marking done here is not going to intefere in any
  2807   // way with the marking information used by GC.
  2808   NoRefDiscovery no_discovery(ref_processor());
  2810   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
  2812   // Clear any marks from a previous round
  2813   verification_mark_bm()->clear_all();
  2814   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
  2815   assert(overflow_list_is_empty(), "overflow list should be empty");
  2817   GenCollectedHeap* gch = GenCollectedHeap::heap();
  2818   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
  2819   // Update the saved marks which may affect the root scans.
  2820   gch->save_marks();
  2822   if (CMSRemarkVerifyVariant == 1) {
  2823     // In this first variant of verification, we complete
  2824     // all marking, then check if the new marks-verctor is
  2825     // a subset of the CMS marks-vector.
  2826     verify_after_remark_work_1();
  2827   } else if (CMSRemarkVerifyVariant == 2) {
  2828     // In this second variant of verification, we flag an error
  2829     // (i.e. an object reachable in the new marks-vector not reachable
  2830     // in the CMS marks-vector) immediately, also indicating the
  2831     // identify of an object (A) that references the unmarked object (B) --
  2832     // presumably, a mutation to A failed to be picked up by preclean/remark?
  2833     verify_after_remark_work_2();
  2834   } else {
  2835     warning("Unrecognized value %d for CMSRemarkVerifyVariant",
  2836             CMSRemarkVerifyVariant);
  2838   gclog_or_tty->print(" done] ");
  2839   return true;
  2842 void CMSCollector::verify_after_remark_work_1() {
  2843   ResourceMark rm;
  2844   HandleMark  hm;
  2845   GenCollectedHeap* gch = GenCollectedHeap::heap();
  2847   // Mark from roots one level into CMS
  2848   MarkRefsIntoClosure notOlder(_span, verification_mark_bm(), true /* nmethods */);
  2849   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
  2851   gch->gen_process_strong_roots(_cmsGen->level(),
  2852                                 true,   // younger gens are roots
  2853                                 true,   // collecting perm gen
  2854                                 SharedHeap::ScanningOption(roots_scanning_options()),
  2855                                 NULL, &notOlder);
  2857   // Now mark from the roots
  2858   assert(_revisitStack.isEmpty(), "Should be empty");
  2859   MarkFromRootsClosure markFromRootsClosure(this, _span,
  2860     verification_mark_bm(), verification_mark_stack(), &_revisitStack,
  2861     false /* don't yield */, true /* verifying */);
  2862   assert(_restart_addr == NULL, "Expected pre-condition");
  2863   verification_mark_bm()->iterate(&markFromRootsClosure);
  2864   while (_restart_addr != NULL) {
  2865     // Deal with stack overflow: by restarting at the indicated
  2866     // address.
  2867     HeapWord* ra = _restart_addr;
  2868     markFromRootsClosure.reset(ra);
  2869     _restart_addr = NULL;
  2870     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
  2872   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
  2873   verify_work_stacks_empty();
  2874   // Should reset the revisit stack above, since no class tree
  2875   // surgery is forthcoming.
  2876   _revisitStack.reset(); // throwing away all contents
  2878   // Marking completed -- now verify that each bit marked in
  2879   // verification_mark_bm() is also marked in markBitMap(); flag all
  2880   // errors by printing corresponding objects.
  2881   VerifyMarkedClosure vcl(markBitMap());
  2882   verification_mark_bm()->iterate(&vcl);
  2883   if (vcl.failed()) {
  2884     gclog_or_tty->print("Verification failed");
  2885     Universe::heap()->print();
  2886     fatal(" ... aborting");
  2890 void CMSCollector::verify_after_remark_work_2() {
  2891   ResourceMark rm;
  2892   HandleMark  hm;
  2893   GenCollectedHeap* gch = GenCollectedHeap::heap();
  2895   // Mark from roots one level into CMS
  2896   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
  2897                                      markBitMap(), true /* nmethods */);
  2898   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
  2899   gch->gen_process_strong_roots(_cmsGen->level(),
  2900                                 true,   // younger gens are roots
  2901                                 true,   // collecting perm gen
  2902                                 SharedHeap::ScanningOption(roots_scanning_options()),
  2903                                 NULL, &notOlder);
  2905   // Now mark from the roots
  2906   assert(_revisitStack.isEmpty(), "Should be empty");
  2907   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
  2908     verification_mark_bm(), markBitMap(), verification_mark_stack());
  2909   assert(_restart_addr == NULL, "Expected pre-condition");
  2910   verification_mark_bm()->iterate(&markFromRootsClosure);
  2911   while (_restart_addr != NULL) {
  2912     // Deal with stack overflow: by restarting at the indicated
  2913     // address.
  2914     HeapWord* ra = _restart_addr;
  2915     markFromRootsClosure.reset(ra);
  2916     _restart_addr = NULL;
  2917     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
  2919   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
  2920   verify_work_stacks_empty();
  2921   // Should reset the revisit stack above, since no class tree
  2922   // surgery is forthcoming.
  2923   _revisitStack.reset(); // throwing away all contents
  2925   // Marking completed -- now verify that each bit marked in
  2926   // verification_mark_bm() is also marked in markBitMap(); flag all
  2927   // errors by printing corresponding objects.
  2928   VerifyMarkedClosure vcl(markBitMap());
  2929   verification_mark_bm()->iterate(&vcl);
  2930   assert(!vcl.failed(), "Else verification above should not have succeeded");
  2933 void ConcurrentMarkSweepGeneration::save_marks() {
  2934   // delegate to CMS space
  2935   cmsSpace()->save_marks();
  2936   for (uint i = 0; i < ParallelGCThreads; i++) {
  2937     _par_gc_thread_states[i]->promo.startTrackingPromotions();
  2941 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
  2942   return cmsSpace()->no_allocs_since_save_marks();
  2945 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
  2947 void ConcurrentMarkSweepGeneration::                            \
  2948 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
  2949   cl->set_generation(this);                                     \
  2950   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
  2951   cl->reset_generation();                                       \
  2952   save_marks();                                                 \
  2955 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
  2957 void
  2958 ConcurrentMarkSweepGeneration::object_iterate_since_last_GC(ObjectClosure* blk)
  2960   // Not currently implemented; need to do the following. -- ysr.
  2961   // dld -- I think that is used for some sort of allocation profiler.  So it
  2962   // really means the objects allocated by the mutator since the last
  2963   // GC.  We could potentially implement this cheaply by recording only
  2964   // the direct allocations in a side data structure.
  2965   //
  2966   // I think we probably ought not to be required to support these
  2967   // iterations at any arbitrary point; I think there ought to be some
  2968   // call to enable/disable allocation profiling in a generation/space,
  2969   // and the iterator ought to return the objects allocated in the
  2970   // gen/space since the enable call, or the last iterator call (which
  2971   // will probably be at a GC.)  That way, for gens like CM&S that would
  2972   // require some extra data structure to support this, we only pay the
  2973   // cost when it's in use...
  2974   cmsSpace()->object_iterate_since_last_GC(blk);
  2977 void
  2978 ConcurrentMarkSweepGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
  2979   cl->set_generation(this);
  2980   younger_refs_in_space_iterate(_cmsSpace, cl);
  2981   cl->reset_generation();
  2984 void
  2985 ConcurrentMarkSweepGeneration::oop_iterate(MemRegion mr, OopClosure* cl) {
  2986   if (freelistLock()->owned_by_self()) {
  2987     Generation::oop_iterate(mr, cl);
  2988   } else {
  2989     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  2990     Generation::oop_iterate(mr, cl);
  2994 void
  2995 ConcurrentMarkSweepGeneration::oop_iterate(OopClosure* cl) {
  2996   if (freelistLock()->owned_by_self()) {
  2997     Generation::oop_iterate(cl);
  2998   } else {
  2999     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  3000     Generation::oop_iterate(cl);
  3004 void
  3005 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
  3006   if (freelistLock()->owned_by_self()) {
  3007     Generation::object_iterate(cl);
  3008   } else {
  3009     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  3010     Generation::object_iterate(cl);
  3014 void
  3015 ConcurrentMarkSweepGeneration::pre_adjust_pointers() {
  3018 void
  3019 ConcurrentMarkSweepGeneration::post_compact() {
  3022 void
  3023 ConcurrentMarkSweepGeneration::prepare_for_verify() {
  3024   // Fix the linear allocation blocks to look like free blocks.
  3026   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
  3027   // are not called when the heap is verified during universe initialization and
  3028   // at vm shutdown.
  3029   if (freelistLock()->owned_by_self()) {
  3030     cmsSpace()->prepare_for_verify();
  3031   } else {
  3032     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
  3033     cmsSpace()->prepare_for_verify();
  3037 void
  3038 ConcurrentMarkSweepGeneration::verify(bool allow_dirty /* ignored */) {
  3039   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
  3040   // are not called when the heap is verified during universe initialization and
  3041   // at vm shutdown.
  3042   if (freelistLock()->owned_by_self()) {
  3043     cmsSpace()->verify(false /* ignored */);
  3044   } else {
  3045     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
  3046     cmsSpace()->verify(false /* ignored */);
  3050 void CMSCollector::verify(bool allow_dirty /* ignored */) {
  3051   _cmsGen->verify(allow_dirty);
  3052   _permGen->verify(allow_dirty);
  3055 #ifndef PRODUCT
  3056 bool CMSCollector::overflow_list_is_empty() const {
  3057   assert(_num_par_pushes >= 0, "Inconsistency");
  3058   if (_overflow_list == NULL) {
  3059     assert(_num_par_pushes == 0, "Inconsistency");
  3061   return _overflow_list == NULL;
  3064 // The methods verify_work_stacks_empty() and verify_overflow_empty()
  3065 // merely consolidate assertion checks that appear to occur together frequently.
  3066 void CMSCollector::verify_work_stacks_empty() const {
  3067   assert(_markStack.isEmpty(), "Marking stack should be empty");
  3068   assert(overflow_list_is_empty(), "Overflow list should be empty");
  3071 void CMSCollector::verify_overflow_empty() const {
  3072   assert(overflow_list_is_empty(), "Overflow list should be empty");
  3073   assert(no_preserved_marks(), "No preserved marks");
  3075 #endif // PRODUCT
  3077 // Decide if we want to enable class unloading as part of the
  3078 // ensuing concurrent GC cycle. We will collect the perm gen and
  3079 // unload classes if it's the case that:
  3080 // (1) an explicit gc request has been made and the flag
  3081 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
  3082 // (2) (a) class unloading is enabled at the command line, and
  3083 //     (b) (i)   perm gen threshold has been crossed, or
  3084 //         (ii)  old gen is getting really full, or
  3085 //         (iii) the previous N CMS collections did not collect the
  3086 //               perm gen
  3087 // NOTE: Provided there is no change in the state of the heap between
  3088 // calls to this method, it should have idempotent results. Moreover,
  3089 // its results should be monotonically increasing (i.e. going from 0 to 1,
  3090 // but not 1 to 0) between successive calls between which the heap was
  3091 // not collected. For the implementation below, it must thus rely on
  3092 // the property that concurrent_cycles_since_last_unload()
  3093 // will not decrease unless a collection cycle happened and that
  3094 // _permGen->should_concurrent_collect() and _cmsGen->is_too_full() are
  3095 // themselves also monotonic in that sense. See check_monotonicity()
  3096 // below.
  3097 bool CMSCollector::update_should_unload_classes() {
  3098   _should_unload_classes = false;
  3099   // Condition 1 above
  3100   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
  3101     _should_unload_classes = true;
  3102   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
  3103     // Disjuncts 2.b.(i,ii,iii) above
  3104     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
  3105                               CMSClassUnloadingMaxInterval)
  3106                            || _permGen->should_concurrent_collect()
  3107                            || _cmsGen->is_too_full();
  3109   return _should_unload_classes;
  3112 bool ConcurrentMarkSweepGeneration::is_too_full() const {
  3113   bool res = should_concurrent_collect();
  3114   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
  3115   return res;
  3118 void CMSCollector::setup_cms_unloading_and_verification_state() {
  3119   const  bool should_verify =    VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
  3120                              || VerifyBeforeExit;
  3121   const  int  rso           =    SharedHeap::SO_Symbols | SharedHeap::SO_Strings
  3122                              |   SharedHeap::SO_CodeCache;
  3124   if (should_unload_classes()) {   // Should unload classes this cycle
  3125     remove_root_scanning_option(rso);  // Shrink the root set appropriately
  3126     set_verifying(should_verify);    // Set verification state for this cycle
  3127     return;                            // Nothing else needs to be done at this time
  3130   // Not unloading classes this cycle
  3131   assert(!should_unload_classes(), "Inconsitency!");
  3132   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
  3133     // We were not verifying, or we _were_ unloading classes in the last cycle,
  3134     // AND some verification options are enabled this cycle; in this case,
  3135     // we must make sure that the deadness map is allocated if not already so,
  3136     // and cleared (if already allocated previously --
  3137     // CMSBitMap::sizeInBits() is used to determine if it's allocated).
  3138     if (perm_gen_verify_bit_map()->sizeInBits() == 0) {
  3139       if (!perm_gen_verify_bit_map()->allocate(_permGen->reserved())) {
  3140         warning("Failed to allocate permanent generation verification CMS Bit Map;\n"
  3141                 "permanent generation verification disabled");
  3142         return;  // Note that we leave verification disabled, so we'll retry this
  3143                  // allocation next cycle. We _could_ remember this failure
  3144                  // and skip further attempts and permanently disable verification
  3145                  // attempts if that is considered more desirable.
  3147       assert(perm_gen_verify_bit_map()->covers(_permGen->reserved()),
  3148               "_perm_gen_ver_bit_map inconsistency?");
  3149     } else {
  3150       perm_gen_verify_bit_map()->clear_all();
  3152     // Include symbols, strings and code cache elements to prevent their resurrection.
  3153     add_root_scanning_option(rso);
  3154     set_verifying(true);
  3155   } else if (verifying() && !should_verify) {
  3156     // We were verifying, but some verification flags got disabled.
  3157     set_verifying(false);
  3158     // Exclude symbols, strings and code cache elements from root scanning to
  3159     // reduce IM and RM pauses.
  3160     remove_root_scanning_option(rso);
  3165 #ifndef PRODUCT
  3166 HeapWord* CMSCollector::block_start(const void* p) const {
  3167   const HeapWord* addr = (HeapWord*)p;
  3168   if (_span.contains(p)) {
  3169     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
  3170       return _cmsGen->cmsSpace()->block_start(p);
  3171     } else {
  3172       assert(_permGen->cmsSpace()->is_in_reserved(addr),
  3173              "Inconsistent _span?");
  3174       return _permGen->cmsSpace()->block_start(p);
  3177   return NULL;
  3179 #endif
  3181 HeapWord*
  3182 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
  3183                                                    bool   tlab,
  3184                                                    bool   parallel) {
  3185   assert(!tlab, "Can't deal with TLAB allocation");
  3186   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  3187   expand(word_size*HeapWordSize, MinHeapDeltaBytes,
  3188     CMSExpansionCause::_satisfy_allocation);
  3189   if (GCExpandToAllocateDelayMillis > 0) {
  3190     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
  3192   return have_lock_and_allocate(word_size, tlab);
  3195 // YSR: All of this generation expansion/shrinking stuff is an exact copy of
  3196 // OneContigSpaceCardGeneration, which makes me wonder if we should move this
  3197 // to CardGeneration and share it...
  3198 bool ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes) {
  3199   return CardGeneration::expand(bytes, expand_bytes);
  3202 void ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes,
  3203   CMSExpansionCause::Cause cause)
  3206   bool success = expand(bytes, expand_bytes);
  3208   // remember why we expanded; this information is used
  3209   // by shouldConcurrentCollect() when making decisions on whether to start
  3210   // a new CMS cycle.
  3211   if (success) {
  3212     set_expansion_cause(cause);
  3213     if (PrintGCDetails && Verbose) {
  3214       gclog_or_tty->print_cr("Expanded CMS gen for %s",
  3215         CMSExpansionCause::to_string(cause));
  3220 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
  3221   HeapWord* res = NULL;
  3222   MutexLocker x(ParGCRareEvent_lock);
  3223   while (true) {
  3224     // Expansion by some other thread might make alloc OK now:
  3225     res = ps->lab.alloc(word_sz);
  3226     if (res != NULL) return res;
  3227     // If there's not enough expansion space available, give up.
  3228     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
  3229       return NULL;
  3231     // Otherwise, we try expansion.
  3232     expand(word_sz*HeapWordSize, MinHeapDeltaBytes,
  3233       CMSExpansionCause::_allocate_par_lab);
  3234     // Now go around the loop and try alloc again;
  3235     // A competing par_promote might beat us to the expansion space,
  3236     // so we may go around the loop again if promotion fails agaion.
  3237     if (GCExpandToAllocateDelayMillis > 0) {
  3238       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
  3244 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
  3245   PromotionInfo* promo) {
  3246   MutexLocker x(ParGCRareEvent_lock);
  3247   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
  3248   while (true) {
  3249     // Expansion by some other thread might make alloc OK now:
  3250     if (promo->ensure_spooling_space()) {
  3251       assert(promo->has_spooling_space(),
  3252              "Post-condition of successful ensure_spooling_space()");
  3253       return true;
  3255     // If there's not enough expansion space available, give up.
  3256     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
  3257       return false;
  3259     // Otherwise, we try expansion.
  3260     expand(refill_size_bytes, MinHeapDeltaBytes,
  3261       CMSExpansionCause::_allocate_par_spooling_space);
  3262     // Now go around the loop and try alloc again;
  3263     // A competing allocation might beat us to the expansion space,
  3264     // so we may go around the loop again if allocation fails again.
  3265     if (GCExpandToAllocateDelayMillis > 0) {
  3266       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
  3273 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
  3274   assert_locked_or_safepoint(Heap_lock);
  3275   size_t size = ReservedSpace::page_align_size_down(bytes);
  3276   if (size > 0) {
  3277     shrink_by(size);
  3281 bool ConcurrentMarkSweepGeneration::grow_by(size_t bytes) {
  3282   assert_locked_or_safepoint(Heap_lock);
  3283   bool result = _virtual_space.expand_by(bytes);
  3284   if (result) {
  3285     HeapWord* old_end = _cmsSpace->end();
  3286     size_t new_word_size =
  3287       heap_word_size(_virtual_space.committed_size());
  3288     MemRegion mr(_cmsSpace->bottom(), new_word_size);
  3289     _bts->resize(new_word_size);  // resize the block offset shared array
  3290     Universe::heap()->barrier_set()->resize_covered_region(mr);
  3291     // Hmmmm... why doesn't CFLS::set_end verify locking?
  3292     // This is quite ugly; FIX ME XXX
  3293     _cmsSpace->assert_locked();
  3294     _cmsSpace->set_end((HeapWord*)_virtual_space.high());
  3296     // update the space and generation capacity counters
  3297     if (UsePerfData) {
  3298       _space_counters->update_capacity();
  3299       _gen_counters->update_all();
  3302     if (Verbose && PrintGC) {
  3303       size_t new_mem_size = _virtual_space.committed_size();
  3304       size_t old_mem_size = new_mem_size - bytes;
  3305       gclog_or_tty->print_cr("Expanding %s from %ldK by %ldK to %ldK",
  3306                     name(), old_mem_size/K, bytes/K, new_mem_size/K);
  3309   return result;
  3312 bool ConcurrentMarkSweepGeneration::grow_to_reserved() {
  3313   assert_locked_or_safepoint(Heap_lock);
  3314   bool success = true;
  3315   const size_t remaining_bytes = _virtual_space.uncommitted_size();
  3316   if (remaining_bytes > 0) {
  3317     success = grow_by(remaining_bytes);
  3318     DEBUG_ONLY(if (!success) warning("grow to reserved failed");)
  3320   return success;
  3323 void ConcurrentMarkSweepGeneration::shrink_by(size_t bytes) {
  3324   assert_locked_or_safepoint(Heap_lock);
  3325   assert_lock_strong(freelistLock());
  3326   // XXX Fix when compaction is implemented.
  3327   warning("Shrinking of CMS not yet implemented");
  3328   return;
  3332 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
  3333 // phases.
  3334 class CMSPhaseAccounting: public StackObj {
  3335  public:
  3336   CMSPhaseAccounting(CMSCollector *collector,
  3337                      const char *phase,
  3338                      bool print_cr = true);
  3339   ~CMSPhaseAccounting();
  3341  private:
  3342   CMSCollector *_collector;
  3343   const char *_phase;
  3344   elapsedTimer _wallclock;
  3345   bool _print_cr;
  3347  public:
  3348   // Not MT-safe; so do not pass around these StackObj's
  3349   // where they may be accessed by other threads.
  3350   jlong wallclock_millis() {
  3351     assert(_wallclock.is_active(), "Wall clock should not stop");
  3352     _wallclock.stop();  // to record time
  3353     jlong ret = _wallclock.milliseconds();
  3354     _wallclock.start(); // restart
  3355     return ret;
  3357 };
  3359 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
  3360                                        const char *phase,
  3361                                        bool print_cr) :
  3362   _collector(collector), _phase(phase), _print_cr(print_cr) {
  3364   if (PrintCMSStatistics != 0) {
  3365     _collector->resetYields();
  3367   if (PrintGCDetails && PrintGCTimeStamps) {
  3368     gclog_or_tty->date_stamp(PrintGCDateStamps);
  3369     gclog_or_tty->stamp();
  3370     gclog_or_tty->print_cr(": [%s-concurrent-%s-start]",
  3371       _collector->cmsGen()->short_name(), _phase);
  3373   _collector->resetTimer();
  3374   _wallclock.start();
  3375   _collector->startTimer();
  3378 CMSPhaseAccounting::~CMSPhaseAccounting() {
  3379   assert(_wallclock.is_active(), "Wall clock should not have stopped");
  3380   _collector->stopTimer();
  3381   _wallclock.stop();
  3382   if (PrintGCDetails) {
  3383     gclog_or_tty->date_stamp(PrintGCDateStamps);
  3384     if (PrintGCTimeStamps) {
  3385       gclog_or_tty->stamp();
  3386       gclog_or_tty->print(": ");
  3388     gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]",
  3389                  _collector->cmsGen()->short_name(),
  3390                  _phase, _collector->timerValue(), _wallclock.seconds());
  3391     if (_print_cr) {
  3392       gclog_or_tty->print_cr("");
  3394     if (PrintCMSStatistics != 0) {
  3395       gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase,
  3396                     _collector->yields());
  3401 // CMS work
  3403 // Checkpoint the roots into this generation from outside
  3404 // this generation. [Note this initial checkpoint need only
  3405 // be approximate -- we'll do a catch up phase subsequently.]
  3406 void CMSCollector::checkpointRootsInitial(bool asynch) {
  3407   assert(_collectorState == InitialMarking, "Wrong collector state");
  3408   check_correct_thread_executing();
  3409   ReferenceProcessor* rp = ref_processor();
  3410   SpecializationStats::clear();
  3411   assert(_restart_addr == NULL, "Control point invariant");
  3412   if (asynch) {
  3413     // acquire locks for subsequent manipulations
  3414     MutexLockerEx x(bitMapLock(),
  3415                     Mutex::_no_safepoint_check_flag);
  3416     checkpointRootsInitialWork(asynch);
  3417     rp->verify_no_references_recorded();
  3418     rp->enable_discovery(); // enable ("weak") refs discovery
  3419     _collectorState = Marking;
  3420   } else {
  3421     // (Weak) Refs discovery: this is controlled from genCollectedHeap::do_collection
  3422     // which recognizes if we are a CMS generation, and doesn't try to turn on
  3423     // discovery; verify that they aren't meddling.
  3424     assert(!rp->discovery_is_atomic(),
  3425            "incorrect setting of discovery predicate");
  3426     assert(!rp->discovery_enabled(), "genCollectedHeap shouldn't control "
  3427            "ref discovery for this generation kind");
  3428     // already have locks
  3429     checkpointRootsInitialWork(asynch);
  3430     rp->enable_discovery(); // now enable ("weak") refs discovery
  3431     _collectorState = Marking;
  3433   SpecializationStats::print();
  3436 void CMSCollector::checkpointRootsInitialWork(bool asynch) {
  3437   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
  3438   assert(_collectorState == InitialMarking, "just checking");
  3440   // If there has not been a GC[n-1] since last GC[n] cycle completed,
  3441   // precede our marking with a collection of all
  3442   // younger generations to keep floating garbage to a minimum.
  3443   // XXX: we won't do this for now -- it's an optimization to be done later.
  3445   // already have locks
  3446   assert_lock_strong(bitMapLock());
  3447   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
  3449   // Setup the verification and class unloading state for this
  3450   // CMS collection cycle.
  3451   setup_cms_unloading_and_verification_state();
  3453   NOT_PRODUCT(TraceTime t("\ncheckpointRootsInitialWork",
  3454     PrintGCDetails && Verbose, true, gclog_or_tty);)
  3455   if (UseAdaptiveSizePolicy) {
  3456     size_policy()->checkpoint_roots_initial_begin();
  3459   // Reset all the PLAB chunk arrays if necessary.
  3460   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
  3461     reset_survivor_plab_arrays();
  3464   ResourceMark rm;
  3465   HandleMark  hm;
  3467   FalseClosure falseClosure;
  3468   // In the case of a synchronous collection, we will elide the
  3469   // remark step, so it's important to catch all the nmethod oops
  3470   // in this step; hence the last argument to the constrcutor below.
  3471   MarkRefsIntoClosure notOlder(_span, &_markBitMap, !asynch /* nmethods */);
  3472   GenCollectedHeap* gch = GenCollectedHeap::heap();
  3474   verify_work_stacks_empty();
  3475   verify_overflow_empty();
  3477   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
  3478   // Update the saved marks which may affect the root scans.
  3479   gch->save_marks();
  3481   // weak reference processing has not started yet.
  3482   ref_processor()->set_enqueuing_is_done(false);
  3485     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
  3486     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
  3487     gch->gen_process_strong_roots(_cmsGen->level(),
  3488                                   true,   // younger gens are roots
  3489                                   true,   // collecting perm gen
  3490                                   SharedHeap::ScanningOption(roots_scanning_options()),
  3491                                   NULL, &notOlder);
  3494   // Clear mod-union table; it will be dirtied in the prologue of
  3495   // CMS generation per each younger generation collection.
  3497   assert(_modUnionTable.isAllClear(),
  3498        "Was cleared in most recent final checkpoint phase"
  3499        " or no bits are set in the gc_prologue before the start of the next "
  3500        "subsequent marking phase.");
  3502   // Temporarily disabled, since pre/post-consumption closures don't
  3503   // care about precleaned cards
  3504   #if 0
  3506     MemRegion mr = MemRegion((HeapWord*)_virtual_space.low(),
  3507                              (HeapWord*)_virtual_space.high());
  3508     _ct->ct_bs()->preclean_dirty_cards(mr);
  3510   #endif
  3512   // Save the end of the used_region of the constituent generations
  3513   // to be used to limit the extent of sweep in each generation.
  3514   save_sweep_limits();
  3515   if (UseAdaptiveSizePolicy) {
  3516     size_policy()->checkpoint_roots_initial_end(gch->gc_cause());
  3518   verify_overflow_empty();
  3521 bool CMSCollector::markFromRoots(bool asynch) {
  3522   // we might be tempted to assert that:
  3523   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
  3524   //        "inconsistent argument?");
  3525   // However that wouldn't be right, because it's possible that
  3526   // a safepoint is indeed in progress as a younger generation
  3527   // stop-the-world GC happens even as we mark in this generation.
  3528   assert(_collectorState == Marking, "inconsistent state?");
  3529   check_correct_thread_executing();
  3530   verify_overflow_empty();
  3532   bool res;
  3533   if (asynch) {
  3535     // Start the timers for adaptive size policy for the concurrent phases
  3536     // Do it here so that the foreground MS can use the concurrent
  3537     // timer since a foreground MS might has the sweep done concurrently
  3538     // or STW.
  3539     if (UseAdaptiveSizePolicy) {
  3540       size_policy()->concurrent_marking_begin();
  3543     // Weak ref discovery note: We may be discovering weak
  3544     // refs in this generation concurrent (but interleaved) with
  3545     // weak ref discovery by a younger generation collector.
  3547     CMSTokenSyncWithLocks ts(true, bitMapLock());
  3548     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  3549     CMSPhaseAccounting pa(this, "mark", !PrintGCDetails);
  3550     res = markFromRootsWork(asynch);
  3551     if (res) {
  3552       _collectorState = Precleaning;
  3553     } else { // We failed and a foreground collection wants to take over
  3554       assert(_foregroundGCIsActive, "internal state inconsistency");
  3555       assert(_restart_addr == NULL,  "foreground will restart from scratch");
  3556       if (PrintGCDetails) {
  3557         gclog_or_tty->print_cr("bailing out to foreground collection");
  3560     if (UseAdaptiveSizePolicy) {
  3561       size_policy()->concurrent_marking_end();
  3563   } else {
  3564     assert(SafepointSynchronize::is_at_safepoint(),
  3565            "inconsistent with asynch == false");
  3566     if (UseAdaptiveSizePolicy) {
  3567       size_policy()->ms_collection_marking_begin();
  3569     // already have locks
  3570     res = markFromRootsWork(asynch);
  3571     _collectorState = FinalMarking;
  3572     if (UseAdaptiveSizePolicy) {
  3573       GenCollectedHeap* gch = GenCollectedHeap::heap();
  3574       size_policy()->ms_collection_marking_end(gch->gc_cause());
  3577   verify_overflow_empty();
  3578   return res;
  3581 bool CMSCollector::markFromRootsWork(bool asynch) {
  3582   // iterate over marked bits in bit map, doing a full scan and mark
  3583   // from these roots using the following algorithm:
  3584   // . if oop is to the right of the current scan pointer,
  3585   //   mark corresponding bit (we'll process it later)
  3586   // . else (oop is to left of current scan pointer)
  3587   //   push oop on marking stack
  3588   // . drain the marking stack
  3590   // Note that when we do a marking step we need to hold the
  3591   // bit map lock -- recall that direct allocation (by mutators)
  3592   // and promotion (by younger generation collectors) is also
  3593   // marking the bit map. [the so-called allocate live policy.]
  3594   // Because the implementation of bit map marking is not
  3595   // robust wrt simultaneous marking of bits in the same word,
  3596   // we need to make sure that there is no such interference
  3597   // between concurrent such updates.
  3599   // already have locks
  3600   assert_lock_strong(bitMapLock());
  3602   // Clear the revisit stack, just in case there are any
  3603   // obsolete contents from a short-circuited previous CMS cycle.
  3604   _revisitStack.reset();
  3605   verify_work_stacks_empty();
  3606   verify_overflow_empty();
  3607   assert(_revisitStack.isEmpty(), "tabula rasa");
  3609   bool result = false;
  3610   if (CMSConcurrentMTEnabled && ParallelCMSThreads > 0) {
  3611     result = do_marking_mt(asynch);
  3612   } else {
  3613     result = do_marking_st(asynch);
  3615   return result;
  3618 // Forward decl
  3619 class CMSConcMarkingTask;
  3621 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
  3622   CMSCollector*       _collector;
  3623   CMSConcMarkingTask* _task;
  3624   bool _yield;
  3625  protected:
  3626   virtual void yield();
  3627  public:
  3628   // "n_threads" is the number of threads to be terminated.
  3629   // "queue_set" is a set of work queues of other threads.
  3630   // "collector" is the CMS collector associated with this task terminator.
  3631   // "yield" indicates whether we need the gang as a whole to yield.
  3632   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set,
  3633                            CMSCollector* collector, bool yield) :
  3634     ParallelTaskTerminator(n_threads, queue_set),
  3635     _collector(collector),
  3636     _yield(yield) { }
  3638   void set_task(CMSConcMarkingTask* task) {
  3639     _task = task;
  3641 };
  3643 // MT Concurrent Marking Task
  3644 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
  3645   CMSCollector* _collector;
  3646   YieldingFlexibleWorkGang* _workers;        // the whole gang
  3647   int           _n_workers;                  // requested/desired # workers
  3648   bool          _asynch;
  3649   bool          _result;
  3650   CompactibleFreeListSpace*  _cms_space;
  3651   CompactibleFreeListSpace* _perm_space;
  3652   HeapWord*     _global_finger;
  3654   //  Exposed here for yielding support
  3655   Mutex* const _bit_map_lock;
  3657   // The per thread work queues, available here for stealing
  3658   OopTaskQueueSet*  _task_queues;
  3659   CMSConcMarkingTerminator _term;
  3661  public:
  3662   CMSConcMarkingTask(CMSCollector* collector,
  3663                  CompactibleFreeListSpace* cms_space,
  3664                  CompactibleFreeListSpace* perm_space,
  3665                  bool asynch, int n_workers,
  3666                  YieldingFlexibleWorkGang* workers,
  3667                  OopTaskQueueSet* task_queues):
  3668     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
  3669     _collector(collector),
  3670     _cms_space(cms_space),
  3671     _perm_space(perm_space),
  3672     _asynch(asynch), _n_workers(n_workers), _result(true),
  3673     _workers(workers), _task_queues(task_queues),
  3674     _term(n_workers, task_queues, _collector, asynch),
  3675     _bit_map_lock(collector->bitMapLock())
  3677     assert(n_workers <= workers->total_workers(),
  3678            "Else termination won't work correctly today"); // XXX FIX ME!
  3679     _requested_size = n_workers;
  3680     _term.set_task(this);
  3681     assert(_cms_space->bottom() < _perm_space->bottom(),
  3682            "Finger incorrectly initialized below");
  3683     _global_finger = _cms_space->bottom();
  3687   OopTaskQueueSet* task_queues()  { return _task_queues; }
  3689   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
  3691   HeapWord** global_finger_addr() { return &_global_finger; }
  3693   CMSConcMarkingTerminator* terminator() { return &_term; }
  3695   void work(int i);
  3697   virtual void coordinator_yield();  // stuff done by coordinator
  3698   bool result() { return _result; }
  3700   void reset(HeapWord* ra) {
  3701     _term.reset_for_reuse();
  3704   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
  3705                                            OopTaskQueue* work_q);
  3707  private:
  3708   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
  3709   void do_work_steal(int i);
  3710   void bump_global_finger(HeapWord* f);
  3711 };
  3713 void CMSConcMarkingTerminator::yield() {
  3714   if (ConcurrentMarkSweepThread::should_yield() &&
  3715       !_collector->foregroundGCIsActive() &&
  3716       _yield) {
  3717     _task->yield();
  3718   } else {
  3719     ParallelTaskTerminator::yield();
  3723 ////////////////////////////////////////////////////////////////
  3724 // Concurrent Marking Algorithm Sketch
  3725 ////////////////////////////////////////////////////////////////
  3726 // Until all tasks exhausted (both spaces):
  3727 // -- claim next available chunk
  3728 // -- bump global finger via CAS
  3729 // -- find first object that starts in this chunk
  3730 //    and start scanning bitmap from that position
  3731 // -- scan marked objects for oops
  3732 // -- CAS-mark target, and if successful:
  3733 //    . if target oop is above global finger (volatile read)
  3734 //      nothing to do
  3735 //    . if target oop is in chunk and above local finger
  3736 //        then nothing to do
  3737 //    . else push on work-queue
  3738 // -- Deal with possible overflow issues:
  3739 //    . local work-queue overflow causes stuff to be pushed on
  3740 //      global (common) overflow queue
  3741 //    . always first empty local work queue
  3742 //    . then get a batch of oops from global work queue if any
  3743 //    . then do work stealing
  3744 // -- When all tasks claimed (both spaces)
  3745 //    and local work queue empty,
  3746 //    then in a loop do:
  3747 //    . check global overflow stack; steal a batch of oops and trace
  3748 //    . try to steal from other threads oif GOS is empty
  3749 //    . if neither is available, offer termination
  3750 // -- Terminate and return result
  3751 //
  3752 void CMSConcMarkingTask::work(int i) {
  3753   elapsedTimer _timer;
  3754   ResourceMark rm;
  3755   HandleMark hm;
  3757   DEBUG_ONLY(_collector->verify_overflow_empty();)
  3759   // Before we begin work, our work queue should be empty
  3760   assert(work_queue(i)->size() == 0, "Expected to be empty");
  3761   // Scan the bitmap covering _cms_space, tracing through grey objects.
  3762   _timer.start();
  3763   do_scan_and_mark(i, _cms_space);
  3764   _timer.stop();
  3765   if (PrintCMSStatistics != 0) {
  3766     gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
  3767       i, _timer.seconds()); // XXX: need xxx/xxx type of notation, two timers
  3770   // ... do the same for the _perm_space
  3771   _timer.reset();
  3772   _timer.start();
  3773   do_scan_and_mark(i, _perm_space);
  3774   _timer.stop();
  3775   if (PrintCMSStatistics != 0) {
  3776     gclog_or_tty->print_cr("Finished perm space scanning in %dth thread: %3.3f sec",
  3777       i, _timer.seconds()); // XXX: need xxx/xxx type of notation, two timers
  3780   // ... do work stealing
  3781   _timer.reset();
  3782   _timer.start();
  3783   do_work_steal(i);
  3784   _timer.stop();
  3785   if (PrintCMSStatistics != 0) {
  3786     gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
  3787       i, _timer.seconds()); // XXX: need xxx/xxx type of notation, two timers
  3789   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
  3790   assert(work_queue(i)->size() == 0, "Should have been emptied");
  3791   // Note that under the current task protocol, the
  3792   // following assertion is true even of the spaces
  3793   // expanded since the completion of the concurrent
  3794   // marking. XXX This will likely change under a strict
  3795   // ABORT semantics.
  3796   assert(_global_finger >  _cms_space->end() &&
  3797          _global_finger >= _perm_space->end(),
  3798          "All tasks have been completed");
  3799   DEBUG_ONLY(_collector->verify_overflow_empty();)
  3802 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
  3803   HeapWord* read = _global_finger;
  3804   HeapWord* cur  = read;
  3805   while (f > read) {
  3806     cur = read;
  3807     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
  3808     if (cur == read) {
  3809       // our cas succeeded
  3810       assert(_global_finger >= f, "protocol consistency");
  3811       break;
  3816 // This is really inefficient, and should be redone by
  3817 // using (not yet available) block-read and -write interfaces to the
  3818 // stack and the work_queue. XXX FIX ME !!!
  3819 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
  3820                                                       OopTaskQueue* work_q) {
  3821   // Fast lock-free check
  3822   if (ovflw_stk->length() == 0) {
  3823     return false;
  3825   assert(work_q->size() == 0, "Shouldn't steal");
  3826   MutexLockerEx ml(ovflw_stk->par_lock(),
  3827                    Mutex::_no_safepoint_check_flag);
  3828   // Grab up to 1/4 the size of the work queue
  3829   size_t num = MIN2((size_t)work_q->max_elems()/4,
  3830                     (size_t)ParGCDesiredObjsFromOverflowList);
  3831   num = MIN2(num, ovflw_stk->length());
  3832   for (int i = (int) num; i > 0; i--) {
  3833     oop cur = ovflw_stk->pop();
  3834     assert(cur != NULL, "Counted wrong?");
  3835     work_q->push(cur);
  3837   return num > 0;
  3840 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
  3841   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
  3842   int n_tasks = pst->n_tasks();
  3843   // We allow that there may be no tasks to do here because
  3844   // we are restarting after a stack overflow.
  3845   assert(pst->valid() || n_tasks == 0, "Uninitializd use?");
  3846   int nth_task = 0;
  3848   HeapWord* start = sp->bottom();
  3849   size_t chunk_size = sp->marking_task_size();
  3850   while (!pst->is_task_claimed(/* reference */ nth_task)) {
  3851     // Having claimed the nth task in this space,
  3852     // compute the chunk that it corresponds to:
  3853     MemRegion span = MemRegion(start + nth_task*chunk_size,
  3854                                start + (nth_task+1)*chunk_size);
  3855     // Try and bump the global finger via a CAS;
  3856     // note that we need to do the global finger bump
  3857     // _before_ taking the intersection below, because
  3858     // the task corresponding to that region will be
  3859     // deemed done even if the used_region() expands
  3860     // because of allocation -- as it almost certainly will
  3861     // during start-up while the threads yield in the
  3862     // closure below.
  3863     HeapWord* finger = span.end();
  3864     bump_global_finger(finger);   // atomically
  3865     // There are null tasks here corresponding to chunks
  3866     // beyond the "top" address of the space.
  3867     span = span.intersection(sp->used_region());
  3868     if (!span.is_empty()) {  // Non-null task
  3869       // We want to skip the first object because
  3870       // the protocol is to scan any object in its entirety
  3871       // that _starts_ in this span; a fortiori, any
  3872       // object starting in an earlier span is scanned
  3873       // as part of an earlier claimed task.
  3874       // Below we use the "careful" version of block_start
  3875       // so we do not try to navigate uninitialized objects.
  3876       HeapWord* prev_obj = sp->block_start_careful(span.start());
  3877       // Below we use a variant of block_size that uses the
  3878       // Printezis bits to avoid waiting for allocated
  3879       // objects to become initialized/parsable.
  3880       while (prev_obj < span.start()) {
  3881         size_t sz = sp->block_size_no_stall(prev_obj, _collector);
  3882         if (sz > 0) {
  3883           prev_obj += sz;
  3884         } else {
  3885           // In this case we may end up doing a bit of redundant
  3886           // scanning, but that appears unavoidable, short of
  3887           // locking the free list locks; see bug 6324141.
  3888           break;
  3891       if (prev_obj < span.end()) {
  3892         MemRegion my_span = MemRegion(prev_obj, span.end());
  3893         // Do the marking work within a non-empty span --
  3894         // the last argument to the constructor indicates whether the
  3895         // iteration should be incremental with periodic yields.
  3896         Par_MarkFromRootsClosure cl(this, _collector, my_span,
  3897                                     &_collector->_markBitMap,
  3898                                     work_queue(i),
  3899                                     &_collector->_markStack,
  3900                                     &_collector->_revisitStack,
  3901                                     _asynch);
  3902         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
  3903       } // else nothing to do for this task
  3904     }   // else nothing to do for this task
  3906   // We'd be tempted to assert here that since there are no
  3907   // more tasks left to claim in this space, the global_finger
  3908   // must exceed space->top() and a fortiori space->end(). However,
  3909   // that would not quite be correct because the bumping of
  3910   // global_finger occurs strictly after the claiming of a task,
  3911   // so by the time we reach here the global finger may not yet
  3912   // have been bumped up by the thread that claimed the last
  3913   // task.
  3914   pst->all_tasks_completed();
  3917 class Par_ConcMarkingClosure: public OopClosure {
  3918  private:
  3919   CMSCollector* _collector;
  3920   MemRegion     _span;
  3921   CMSBitMap*    _bit_map;
  3922   CMSMarkStack* _overflow_stack;
  3923   CMSMarkStack* _revisit_stack;     // XXXXXX Check proper use
  3924   OopTaskQueue* _work_queue;
  3925  protected:
  3926   DO_OOP_WORK_DEFN
  3927  public:
  3928   Par_ConcMarkingClosure(CMSCollector* collector, OopTaskQueue* work_queue,
  3929                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
  3930     _collector(collector),
  3931     _span(_collector->_span),
  3932     _work_queue(work_queue),
  3933     _bit_map(bit_map),
  3934     _overflow_stack(overflow_stack) { }   // need to initialize revisit stack etc.
  3935   virtual void do_oop(oop* p);
  3936   virtual void do_oop(narrowOop* p);
  3937   void trim_queue(size_t max);
  3938   void handle_stack_overflow(HeapWord* lost);
  3939 };
  3941 // Grey object rescan during work stealing phase --
  3942 // the salient assumption here is that stolen oops must
  3943 // always be initialized, so we do not need to check for
  3944 // uninitialized objects before scanning here.
  3945 void Par_ConcMarkingClosure::do_oop(oop obj) {
  3946   assert(obj->is_oop_or_null(), "expected an oop or NULL");
  3947   HeapWord* addr = (HeapWord*)obj;
  3948   // Check if oop points into the CMS generation
  3949   // and is not marked
  3950   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
  3951     // a white object ...
  3952     // If we manage to "claim" the object, by being the
  3953     // first thread to mark it, then we push it on our
  3954     // marking stack
  3955     if (_bit_map->par_mark(addr)) {     // ... now grey
  3956       // push on work queue (grey set)
  3957       bool simulate_overflow = false;
  3958       NOT_PRODUCT(
  3959         if (CMSMarkStackOverflowALot &&
  3960             _collector->simulate_overflow()) {
  3961           // simulate a stack overflow
  3962           simulate_overflow = true;
  3965       if (simulate_overflow ||
  3966           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
  3967         // stack overflow
  3968         if (PrintCMSStatistics != 0) {
  3969           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
  3970                                  SIZE_FORMAT, _overflow_stack->capacity());
  3972         // We cannot assert that the overflow stack is full because
  3973         // it may have been emptied since.
  3974         assert(simulate_overflow ||
  3975                _work_queue->size() == _work_queue->max_elems(),
  3976               "Else push should have succeeded");
  3977         handle_stack_overflow(addr);
  3979     } // Else, some other thread got there first
  3983 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
  3984 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
  3986 void Par_ConcMarkingClosure::trim_queue(size_t max) {
  3987   while (_work_queue->size() > max) {
  3988     oop new_oop;
  3989     if (_work_queue->pop_local(new_oop)) {
  3990       assert(new_oop->is_oop(), "Should be an oop");
  3991       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
  3992       assert(_span.contains((HeapWord*)new_oop), "Not in span");
  3993       assert(new_oop->is_parsable(), "Should be parsable");
  3994       new_oop->oop_iterate(this);  // do_oop() above
  3999 // Upon stack overflow, we discard (part of) the stack,
  4000 // remembering the least address amongst those discarded
  4001 // in CMSCollector's _restart_address.
  4002 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
  4003   // We need to do this under a mutex to prevent other
  4004   // workers from interfering with the expansion below.
  4005   MutexLockerEx ml(_overflow_stack->par_lock(),
  4006                    Mutex::_no_safepoint_check_flag);
  4007   // Remember the least grey address discarded
  4008   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
  4009   _collector->lower_restart_addr(ra);
  4010   _overflow_stack->reset();  // discard stack contents
  4011   _overflow_stack->expand(); // expand the stack if possible
  4015 void CMSConcMarkingTask::do_work_steal(int i) {
  4016   OopTaskQueue* work_q = work_queue(i);
  4017   oop obj_to_scan;
  4018   CMSBitMap* bm = &(_collector->_markBitMap);
  4019   CMSMarkStack* ovflw = &(_collector->_markStack);
  4020   int* seed = _collector->hash_seed(i);
  4021   Par_ConcMarkingClosure cl(_collector, work_q, bm, ovflw);
  4022   while (true) {
  4023     cl.trim_queue(0);
  4024     assert(work_q->size() == 0, "Should have been emptied above");
  4025     if (get_work_from_overflow_stack(ovflw, work_q)) {
  4026       // Can't assert below because the work obtained from the
  4027       // overflow stack may already have been stolen from us.
  4028       // assert(work_q->size() > 0, "Work from overflow stack");
  4029       continue;
  4030     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
  4031       assert(obj_to_scan->is_oop(), "Should be an oop");
  4032       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
  4033       obj_to_scan->oop_iterate(&cl);
  4034     } else if (terminator()->offer_termination()) {
  4035       assert(work_q->size() == 0, "Impossible!");
  4036       break;
  4041 // This is run by the CMS (coordinator) thread.
  4042 void CMSConcMarkingTask::coordinator_yield() {
  4043   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  4044          "CMS thread should hold CMS token");
  4046   // First give up the locks, then yield, then re-lock
  4047   // We should probably use a constructor/destructor idiom to
  4048   // do this unlock/lock or modify the MutexUnlocker class to
  4049   // serve our purpose. XXX
  4050   assert_lock_strong(_bit_map_lock);
  4051   _bit_map_lock->unlock();
  4052   ConcurrentMarkSweepThread::desynchronize(true);
  4053   ConcurrentMarkSweepThread::acknowledge_yield_request();
  4054   _collector->stopTimer();
  4055   if (PrintCMSStatistics != 0) {
  4056     _collector->incrementYields();
  4058   _collector->icms_wait();
  4060   // It is possible for whichever thread initiated the yield request
  4061   // not to get a chance to wake up and take the bitmap lock between
  4062   // this thread releasing it and reacquiring it. So, while the
  4063   // should_yield() flag is on, let's sleep for a bit to give the
  4064   // other thread a chance to wake up. The limit imposed on the number
  4065   // of iterations is defensive, to avoid any unforseen circumstances
  4066   // putting us into an infinite loop. Since it's always been this
  4067   // (coordinator_yield()) method that was observed to cause the
  4068   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
  4069   // which is by default non-zero. For the other seven methods that
  4070   // also perform the yield operation, as are using a different
  4071   // parameter (CMSYieldSleepCount) which is by default zero. This way we
  4072   // can enable the sleeping for those methods too, if necessary.
  4073   // See 6442774.
  4074   //
  4075   // We really need to reconsider the synchronization between the GC
  4076   // thread and the yield-requesting threads in the future and we
  4077   // should really use wait/notify, which is the recommended
  4078   // way of doing this type of interaction. Additionally, we should
  4079   // consolidate the eight methods that do the yield operation and they
  4080   // are almost identical into one for better maintenability and
  4081   // readability. See 6445193.
  4082   //
  4083   // Tony 2006.06.29
  4084   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
  4085                    ConcurrentMarkSweepThread::should_yield() &&
  4086                    !CMSCollector::foregroundGCIsActive(); ++i) {
  4087     os::sleep(Thread::current(), 1, false);
  4088     ConcurrentMarkSweepThread::acknowledge_yield_request();
  4091   ConcurrentMarkSweepThread::synchronize(true);
  4092   _bit_map_lock->lock_without_safepoint_check();
  4093   _collector->startTimer();
  4096 bool CMSCollector::do_marking_mt(bool asynch) {
  4097   assert(ParallelCMSThreads > 0 && conc_workers() != NULL, "precondition");
  4098   // In the future this would be determined ergonomically, based
  4099   // on #cpu's, # active mutator threads (and load), and mutation rate.
  4100   int num_workers = ParallelCMSThreads;
  4102   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
  4103   CompactibleFreeListSpace* perm_space = _permGen->cmsSpace();
  4105   CMSConcMarkingTask tsk(this, cms_space, perm_space,
  4106                          asynch, num_workers /* number requested XXX */,
  4107                          conc_workers(), task_queues());
  4109   // Since the actual number of workers we get may be different
  4110   // from the number we requested above, do we need to do anything different
  4111   // below? In particular, may be we need to subclass the SequantialSubTasksDone
  4112   // class?? XXX
  4113   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
  4114   perm_space->initialize_sequential_subtasks_for_marking(num_workers);
  4116   // Refs discovery is already non-atomic.
  4117   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
  4118   // Mutate the Refs discovery so it is MT during the
  4119   // multi-threaded marking phase.
  4120   ReferenceProcessorMTMutator mt(ref_processor(), num_workers > 1);
  4122   conc_workers()->start_task(&tsk);
  4123   while (tsk.yielded()) {
  4124     tsk.coordinator_yield();
  4125     conc_workers()->continue_task(&tsk);
  4127   // If the task was aborted, _restart_addr will be non-NULL
  4128   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
  4129   while (_restart_addr != NULL) {
  4130     // XXX For now we do not make use of ABORTED state and have not
  4131     // yet implemented the right abort semantics (even in the original
  4132     // single-threaded CMS case). That needs some more investigation
  4133     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
  4134     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
  4135     // If _restart_addr is non-NULL, a marking stack overflow
  4136     // occured; we need to do a fresh marking iteration from the
  4137     // indicated restart address.
  4138     if (_foregroundGCIsActive && asynch) {
  4139       // We may be running into repeated stack overflows, having
  4140       // reached the limit of the stack size, while making very
  4141       // slow forward progress. It may be best to bail out and
  4142       // let the foreground collector do its job.
  4143       // Clear _restart_addr, so that foreground GC
  4144       // works from scratch. This avoids the headache of
  4145       // a "rescan" which would otherwise be needed because
  4146       // of the dirty mod union table & card table.
  4147       _restart_addr = NULL;
  4148       return false;
  4150     // Adjust the task to restart from _restart_addr
  4151     tsk.reset(_restart_addr);
  4152     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
  4153                   _restart_addr);
  4154     perm_space->initialize_sequential_subtasks_for_marking(num_workers,
  4155                   _restart_addr);
  4156     _restart_addr = NULL;
  4157     // Get the workers going again
  4158     conc_workers()->start_task(&tsk);
  4159     while (tsk.yielded()) {
  4160       tsk.coordinator_yield();
  4161       conc_workers()->continue_task(&tsk);
  4164   assert(tsk.completed(), "Inconsistency");
  4165   assert(tsk.result() == true, "Inconsistency");
  4166   return true;
  4169 bool CMSCollector::do_marking_st(bool asynch) {
  4170   ResourceMark rm;
  4171   HandleMark   hm;
  4173   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
  4174     &_markStack, &_revisitStack, CMSYield && asynch);
  4175   // the last argument to iterate indicates whether the iteration
  4176   // should be incremental with periodic yields.
  4177   _markBitMap.iterate(&markFromRootsClosure);
  4178   // If _restart_addr is non-NULL, a marking stack overflow
  4179   // occured; we need to do a fresh iteration from the
  4180   // indicated restart address.
  4181   while (_restart_addr != NULL) {
  4182     if (_foregroundGCIsActive && asynch) {
  4183       // We may be running into repeated stack overflows, having
  4184       // reached the limit of the stack size, while making very
  4185       // slow forward progress. It may be best to bail out and
  4186       // let the foreground collector do its job.
  4187       // Clear _restart_addr, so that foreground GC
  4188       // works from scratch. This avoids the headache of
  4189       // a "rescan" which would otherwise be needed because
  4190       // of the dirty mod union table & card table.
  4191       _restart_addr = NULL;
  4192       return false;  // indicating failure to complete marking
  4194     // Deal with stack overflow:
  4195     // we restart marking from _restart_addr
  4196     HeapWord* ra = _restart_addr;
  4197     markFromRootsClosure.reset(ra);
  4198     _restart_addr = NULL;
  4199     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
  4201   return true;
  4204 void CMSCollector::preclean() {
  4205   check_correct_thread_executing();
  4206   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
  4207   verify_work_stacks_empty();
  4208   verify_overflow_empty();
  4209   _abort_preclean = false;
  4210   if (CMSPrecleaningEnabled) {
  4211     _eden_chunk_index = 0;
  4212     size_t used = get_eden_used();
  4213     size_t capacity = get_eden_capacity();
  4214     // Don't start sampling unless we will get sufficiently
  4215     // many samples.
  4216     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
  4217                 * CMSScheduleRemarkEdenPenetration)) {
  4218       _start_sampling = true;
  4219     } else {
  4220       _start_sampling = false;
  4222     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  4223     CMSPhaseAccounting pa(this, "preclean", !PrintGCDetails);
  4224     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
  4226   CMSTokenSync x(true); // is cms thread
  4227   if (CMSPrecleaningEnabled) {
  4228     sample_eden();
  4229     _collectorState = AbortablePreclean;
  4230   } else {
  4231     _collectorState = FinalMarking;
  4233   verify_work_stacks_empty();
  4234   verify_overflow_empty();
  4237 // Try and schedule the remark such that young gen
  4238 // occupancy is CMSScheduleRemarkEdenPenetration %.
  4239 void CMSCollector::abortable_preclean() {
  4240   check_correct_thread_executing();
  4241   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
  4242   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
  4244   // If Eden's current occupancy is below this threshold,
  4245   // immediately schedule the remark; else preclean
  4246   // past the next scavenge in an effort to
  4247   // schedule the pause as described avove. By choosing
  4248   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
  4249   // we will never do an actual abortable preclean cycle.
  4250   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
  4251     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  4252     CMSPhaseAccounting pa(this, "abortable-preclean", !PrintGCDetails);
  4253     // We need more smarts in the abortable preclean
  4254     // loop below to deal with cases where allocation
  4255     // in young gen is very very slow, and our precleaning
  4256     // is running a losing race against a horde of
  4257     // mutators intent on flooding us with CMS updates
  4258     // (dirty cards).
  4259     // One, admittedly dumb, strategy is to give up
  4260     // after a certain number of abortable precleaning loops
  4261     // or after a certain maximum time. We want to make
  4262     // this smarter in the next iteration.
  4263     // XXX FIX ME!!! YSR
  4264     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
  4265     while (!(should_abort_preclean() ||
  4266              ConcurrentMarkSweepThread::should_terminate())) {
  4267       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
  4268       cumworkdone += workdone;
  4269       loops++;
  4270       // Voluntarily terminate abortable preclean phase if we have
  4271       // been at it for too long.
  4272       if ((CMSMaxAbortablePrecleanLoops != 0) &&
  4273           loops >= CMSMaxAbortablePrecleanLoops) {
  4274         if (PrintGCDetails) {
  4275           gclog_or_tty->print(" CMS: abort preclean due to loops ");
  4277         break;
  4279       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
  4280         if (PrintGCDetails) {
  4281           gclog_or_tty->print(" CMS: abort preclean due to time ");
  4283         break;
  4285       // If we are doing little work each iteration, we should
  4286       // take a short break.
  4287       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
  4288         // Sleep for some time, waiting for work to accumulate
  4289         stopTimer();
  4290         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
  4291         startTimer();
  4292         waited++;
  4295     if (PrintCMSStatistics > 0) {
  4296       gclog_or_tty->print(" [%d iterations, %d waits, %d cards)] ",
  4297                           loops, waited, cumworkdone);
  4300   CMSTokenSync x(true); // is cms thread
  4301   if (_collectorState != Idling) {
  4302     assert(_collectorState == AbortablePreclean,
  4303            "Spontaneous state transition?");
  4304     _collectorState = FinalMarking;
  4305   } // Else, a foreground collection completed this CMS cycle.
  4306   return;
  4309 // Respond to an Eden sampling opportunity
  4310 void CMSCollector::sample_eden() {
  4311   // Make sure a young gc cannot sneak in between our
  4312   // reading and recording of a sample.
  4313   assert(Thread::current()->is_ConcurrentGC_thread(),
  4314          "Only the cms thread may collect Eden samples");
  4315   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  4316          "Should collect samples while holding CMS token");
  4317   if (!_start_sampling) {
  4318     return;
  4320   if (_eden_chunk_array) {
  4321     if (_eden_chunk_index < _eden_chunk_capacity) {
  4322       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
  4323       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
  4324              "Unexpected state of Eden");
  4325       // We'd like to check that what we just sampled is an oop-start address;
  4326       // however, we cannot do that here since the object may not yet have been
  4327       // initialized. So we'll instead do the check when we _use_ this sample
  4328       // later.
  4329       if (_eden_chunk_index == 0 ||
  4330           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
  4331                          _eden_chunk_array[_eden_chunk_index-1])
  4332            >= CMSSamplingGrain)) {
  4333         _eden_chunk_index++;  // commit sample
  4337   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
  4338     size_t used = get_eden_used();
  4339     size_t capacity = get_eden_capacity();
  4340     assert(used <= capacity, "Unexpected state of Eden");
  4341     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
  4342       _abort_preclean = true;
  4348 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
  4349   assert(_collectorState == Precleaning ||
  4350          _collectorState == AbortablePreclean, "incorrect state");
  4351   ResourceMark rm;
  4352   HandleMark   hm;
  4353   // Do one pass of scrubbing the discovered reference lists
  4354   // to remove any reference objects with strongly-reachable
  4355   // referents.
  4356   if (clean_refs) {
  4357     ReferenceProcessor* rp = ref_processor();
  4358     CMSPrecleanRefsYieldClosure yield_cl(this);
  4359     assert(rp->span().equals(_span), "Spans should be equal");
  4360     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
  4361                                    &_markStack);
  4362     CMSDrainMarkingStackClosure complete_trace(this,
  4363                                   _span, &_markBitMap, &_markStack,
  4364                                   &keep_alive);
  4366     // We don't want this step to interfere with a young
  4367     // collection because we don't want to take CPU
  4368     // or memory bandwidth away from the young GC threads
  4369     // (which may be as many as there are CPUs).
  4370     // Note that we don't need to protect ourselves from
  4371     // interference with mutators because they can't
  4372     // manipulate the discovered reference lists nor affect
  4373     // the computed reachability of the referents, the
  4374     // only properties manipulated by the precleaning
  4375     // of these reference lists.
  4376     stopTimer();
  4377     CMSTokenSyncWithLocks x(true /* is cms thread */,
  4378                             bitMapLock());
  4379     startTimer();
  4380     sample_eden();
  4381     // The following will yield to allow foreground
  4382     // collection to proceed promptly. XXX YSR:
  4383     // The code in this method may need further
  4384     // tweaking for better performance and some restructuring
  4385     // for cleaner interfaces.
  4386     rp->preclean_discovered_references(
  4387           rp->is_alive_non_header(), &keep_alive, &complete_trace,
  4388           &yield_cl);
  4391   if (clean_survivor) {  // preclean the active survivor space(s)
  4392     assert(_young_gen->kind() == Generation::DefNew ||
  4393            _young_gen->kind() == Generation::ParNew ||
  4394            _young_gen->kind() == Generation::ASParNew,
  4395          "incorrect type for cast");
  4396     DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
  4397     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
  4398                              &_markBitMap, &_modUnionTable,
  4399                              &_markStack, &_revisitStack,
  4400                              true /* precleaning phase */);
  4401     stopTimer();
  4402     CMSTokenSyncWithLocks ts(true /* is cms thread */,
  4403                              bitMapLock());
  4404     startTimer();
  4405     unsigned int before_count =
  4406       GenCollectedHeap::heap()->total_collections();
  4407     SurvivorSpacePrecleanClosure
  4408       sss_cl(this, _span, &_markBitMap, &_markStack,
  4409              &pam_cl, before_count, CMSYield);
  4410     dng->from()->object_iterate_careful(&sss_cl);
  4411     dng->to()->object_iterate_careful(&sss_cl);
  4413   MarkRefsIntoAndScanClosure
  4414     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
  4415              &_markStack, &_revisitStack, this, CMSYield,
  4416              true /* precleaning phase */);
  4417   // CAUTION: The following closure has persistent state that may need to
  4418   // be reset upon a decrease in the sequence of addresses it
  4419   // processes.
  4420   ScanMarkedObjectsAgainCarefullyClosure
  4421     smoac_cl(this, _span,
  4422       &_markBitMap, &_markStack, &_revisitStack, &mrias_cl, CMSYield);
  4424   // Preclean dirty cards in ModUnionTable and CardTable using
  4425   // appropriate convergence criterion;
  4426   // repeat CMSPrecleanIter times unless we find that
  4427   // we are losing.
  4428   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
  4429   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
  4430          "Bad convergence multiplier");
  4431   assert(CMSPrecleanThreshold >= 100,
  4432          "Unreasonably low CMSPrecleanThreshold");
  4434   size_t numIter, cumNumCards, lastNumCards, curNumCards;
  4435   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
  4436        numIter < CMSPrecleanIter;
  4437        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
  4438     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
  4439     if (CMSPermGenPrecleaningEnabled) {
  4440       curNumCards  += preclean_mod_union_table(_permGen, &smoac_cl);
  4442     if (Verbose && PrintGCDetails) {
  4443       gclog_or_tty->print(" (modUnionTable: %d cards)", curNumCards);
  4445     // Either there are very few dirty cards, so re-mark
  4446     // pause will be small anyway, or our pre-cleaning isn't
  4447     // that much faster than the rate at which cards are being
  4448     // dirtied, so we might as well stop and re-mark since
  4449     // precleaning won't improve our re-mark time by much.
  4450     if (curNumCards <= CMSPrecleanThreshold ||
  4451         (numIter > 0 &&
  4452          (curNumCards * CMSPrecleanDenominator >
  4453          lastNumCards * CMSPrecleanNumerator))) {
  4454       numIter++;
  4455       cumNumCards += curNumCards;
  4456       break;
  4459   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
  4460   if (CMSPermGenPrecleaningEnabled) {
  4461     curNumCards += preclean_card_table(_permGen, &smoac_cl);
  4463   cumNumCards += curNumCards;
  4464   if (PrintGCDetails && PrintCMSStatistics != 0) {
  4465     gclog_or_tty->print_cr(" (cardTable: %d cards, re-scanned %d cards, %d iterations)",
  4466                   curNumCards, cumNumCards, numIter);
  4468   return cumNumCards;   // as a measure of useful work done
  4471 // PRECLEANING NOTES:
  4472 // Precleaning involves:
  4473 // . reading the bits of the modUnionTable and clearing the set bits.
  4474 // . For the cards corresponding to the set bits, we scan the
  4475 //   objects on those cards. This means we need the free_list_lock
  4476 //   so that we can safely iterate over the CMS space when scanning
  4477 //   for oops.
  4478 // . When we scan the objects, we'll be both reading and setting
  4479 //   marks in the marking bit map, so we'll need the marking bit map.
  4480 // . For protecting _collector_state transitions, we take the CGC_lock.
  4481 //   Note that any races in the reading of of card table entries by the
  4482 //   CMS thread on the one hand and the clearing of those entries by the
  4483 //   VM thread or the setting of those entries by the mutator threads on the
  4484 //   other are quite benign. However, for efficiency it makes sense to keep
  4485 //   the VM thread from racing with the CMS thread while the latter is
  4486 //   dirty card info to the modUnionTable. We therefore also use the
  4487 //   CGC_lock to protect the reading of the card table and the mod union
  4488 //   table by the CM thread.
  4489 // . We run concurrently with mutator updates, so scanning
  4490 //   needs to be done carefully  -- we should not try to scan
  4491 //   potentially uninitialized objects.
  4492 //
  4493 // Locking strategy: While holding the CGC_lock, we scan over and
  4494 // reset a maximal dirty range of the mod union / card tables, then lock
  4495 // the free_list_lock and bitmap lock to do a full marking, then
  4496 // release these locks; and repeat the cycle. This allows for a
  4497 // certain amount of fairness in the sharing of these locks between
  4498 // the CMS collector on the one hand, and the VM thread and the
  4499 // mutators on the other.
  4501 // NOTE: preclean_mod_union_table() and preclean_card_table()
  4502 // further below are largely identical; if you need to modify
  4503 // one of these methods, please check the other method too.
  4505 size_t CMSCollector::preclean_mod_union_table(
  4506   ConcurrentMarkSweepGeneration* gen,
  4507   ScanMarkedObjectsAgainCarefullyClosure* cl) {
  4508   verify_work_stacks_empty();
  4509   verify_overflow_empty();
  4511   // strategy: starting with the first card, accumulate contiguous
  4512   // ranges of dirty cards; clear these cards, then scan the region
  4513   // covered by these cards.
  4515   // Since all of the MUT is committed ahead, we can just use
  4516   // that, in case the generations expand while we are precleaning.
  4517   // It might also be fine to just use the committed part of the
  4518   // generation, but we might potentially miss cards when the
  4519   // generation is rapidly expanding while we are in the midst
  4520   // of precleaning.
  4521   HeapWord* startAddr = gen->reserved().start();
  4522   HeapWord* endAddr   = gen->reserved().end();
  4524   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
  4526   size_t numDirtyCards, cumNumDirtyCards;
  4527   HeapWord *nextAddr, *lastAddr;
  4528   for (cumNumDirtyCards = numDirtyCards = 0,
  4529        nextAddr = lastAddr = startAddr;
  4530        nextAddr < endAddr;
  4531        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
  4533     ResourceMark rm;
  4534     HandleMark   hm;
  4536     MemRegion dirtyRegion;
  4538       stopTimer();
  4539       CMSTokenSync ts(true);
  4540       startTimer();
  4541       sample_eden();
  4542       // Get dirty region starting at nextOffset (inclusive),
  4543       // simultaneously clearing it.
  4544       dirtyRegion =
  4545         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
  4546       assert(dirtyRegion.start() >= nextAddr,
  4547              "returned region inconsistent?");
  4549     // Remember where the next search should begin.
  4550     // The returned region (if non-empty) is a right open interval,
  4551     // so lastOffset is obtained from the right end of that
  4552     // interval.
  4553     lastAddr = dirtyRegion.end();
  4554     // Should do something more transparent and less hacky XXX
  4555     numDirtyCards =
  4556       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
  4558     // We'll scan the cards in the dirty region (with periodic
  4559     // yields for foreground GC as needed).
  4560     if (!dirtyRegion.is_empty()) {
  4561       assert(numDirtyCards > 0, "consistency check");
  4562       HeapWord* stop_point = NULL;
  4564         stopTimer();
  4565         CMSTokenSyncWithLocks ts(true, gen->freelistLock(),
  4566                                  bitMapLock());
  4567         startTimer();
  4568         verify_work_stacks_empty();
  4569         verify_overflow_empty();
  4570         sample_eden();
  4571         stop_point =
  4572           gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
  4574       if (stop_point != NULL) {
  4575         // The careful iteration stopped early either because it found an
  4576         // uninitialized object, or because we were in the midst of an
  4577         // "abortable preclean", which should now be aborted. Redirty
  4578         // the bits corresponding to the partially-scanned or unscanned
  4579         // cards. We'll either restart at the next block boundary or
  4580         // abort the preclean.
  4581         assert((CMSPermGenPrecleaningEnabled && (gen == _permGen)) ||
  4582                (_collectorState == AbortablePreclean && should_abort_preclean()),
  4583                "Unparsable objects should only be in perm gen.");
  4585         stopTimer();
  4586         CMSTokenSyncWithLocks ts(true, bitMapLock());
  4587         startTimer();
  4588         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
  4589         if (should_abort_preclean()) {
  4590           break; // out of preclean loop
  4591         } else {
  4592           // Compute the next address at which preclean should pick up;
  4593           // might need bitMapLock in order to read P-bits.
  4594           lastAddr = next_card_start_after_block(stop_point);
  4597     } else {
  4598       assert(lastAddr == endAddr, "consistency check");
  4599       assert(numDirtyCards == 0, "consistency check");
  4600       break;
  4603   verify_work_stacks_empty();
  4604   verify_overflow_empty();
  4605   return cumNumDirtyCards;
  4608 // NOTE: preclean_mod_union_table() above and preclean_card_table()
  4609 // below are largely identical; if you need to modify
  4610 // one of these methods, please check the other method too.
  4612 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* gen,
  4613   ScanMarkedObjectsAgainCarefullyClosure* cl) {
  4614   // strategy: it's similar to precleamModUnionTable above, in that
  4615   // we accumulate contiguous ranges of dirty cards, mark these cards
  4616   // precleaned, then scan the region covered by these cards.
  4617   HeapWord* endAddr   = (HeapWord*)(gen->_virtual_space.high());
  4618   HeapWord* startAddr = (HeapWord*)(gen->_virtual_space.low());
  4620   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
  4622   size_t numDirtyCards, cumNumDirtyCards;
  4623   HeapWord *lastAddr, *nextAddr;
  4625   for (cumNumDirtyCards = numDirtyCards = 0,
  4626        nextAddr = lastAddr = startAddr;
  4627        nextAddr < endAddr;
  4628        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
  4630     ResourceMark rm;
  4631     HandleMark   hm;
  4633     MemRegion dirtyRegion;
  4635       // See comments in "Precleaning notes" above on why we
  4636       // do this locking. XXX Could the locking overheads be
  4637       // too high when dirty cards are sparse? [I don't think so.]
  4638       stopTimer();
  4639       CMSTokenSync x(true); // is cms thread
  4640       startTimer();
  4641       sample_eden();
  4642       // Get and clear dirty region from card table
  4643       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_preclean(
  4644                                     MemRegion(nextAddr, endAddr));
  4645       assert(dirtyRegion.start() >= nextAddr,
  4646              "returned region inconsistent?");
  4648     lastAddr = dirtyRegion.end();
  4649     numDirtyCards =
  4650       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
  4652     if (!dirtyRegion.is_empty()) {
  4653       stopTimer();
  4654       CMSTokenSyncWithLocks ts(true, gen->freelistLock(), bitMapLock());
  4655       startTimer();
  4656       sample_eden();
  4657       verify_work_stacks_empty();
  4658       verify_overflow_empty();
  4659       HeapWord* stop_point =
  4660         gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
  4661       if (stop_point != NULL) {
  4662         // The careful iteration stopped early because it found an
  4663         // uninitialized object.  Redirty the bits corresponding to the
  4664         // partially-scanned or unscanned cards, and start again at the
  4665         // next block boundary.
  4666         assert(CMSPermGenPrecleaningEnabled ||
  4667                (_collectorState == AbortablePreclean && should_abort_preclean()),
  4668                "Unparsable objects should only be in perm gen.");
  4669         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
  4670         if (should_abort_preclean()) {
  4671           break; // out of preclean loop
  4672         } else {
  4673           // Compute the next address at which preclean should pick up.
  4674           lastAddr = next_card_start_after_block(stop_point);
  4677     } else {
  4678       break;
  4681   verify_work_stacks_empty();
  4682   verify_overflow_empty();
  4683   return cumNumDirtyCards;
  4686 void CMSCollector::checkpointRootsFinal(bool asynch,
  4687   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
  4688   assert(_collectorState == FinalMarking, "incorrect state transition?");
  4689   check_correct_thread_executing();
  4690   // world is stopped at this checkpoint
  4691   assert(SafepointSynchronize::is_at_safepoint(),
  4692          "world should be stopped");
  4693   verify_work_stacks_empty();
  4694   verify_overflow_empty();
  4696   SpecializationStats::clear();
  4697   if (PrintGCDetails) {
  4698     gclog_or_tty->print("[YG occupancy: "SIZE_FORMAT" K ("SIZE_FORMAT" K)]",
  4699                         _young_gen->used() / K,
  4700                         _young_gen->capacity() / K);
  4702   if (asynch) {
  4703     if (CMSScavengeBeforeRemark) {
  4704       GenCollectedHeap* gch = GenCollectedHeap::heap();
  4705       // Temporarily set flag to false, GCH->do_collection will
  4706       // expect it to be false and set to true
  4707       FlagSetting fl(gch->_is_gc_active, false);
  4708       NOT_PRODUCT(TraceTime t("Scavenge-Before-Remark",
  4709         PrintGCDetails && Verbose, true, gclog_or_tty);)
  4710       int level = _cmsGen->level() - 1;
  4711       if (level >= 0) {
  4712         gch->do_collection(true,        // full (i.e. force, see below)
  4713                            false,       // !clear_all_soft_refs
  4714                            0,           // size
  4715                            false,       // is_tlab
  4716                            level        // max_level
  4717                           );
  4720     FreelistLocker x(this);
  4721     MutexLockerEx y(bitMapLock(),
  4722                     Mutex::_no_safepoint_check_flag);
  4723     assert(!init_mark_was_synchronous, "but that's impossible!");
  4724     checkpointRootsFinalWork(asynch, clear_all_soft_refs, false);
  4725   } else {
  4726     // already have all the locks
  4727     checkpointRootsFinalWork(asynch, clear_all_soft_refs,
  4728                              init_mark_was_synchronous);
  4730   verify_work_stacks_empty();
  4731   verify_overflow_empty();
  4732   SpecializationStats::print();
  4735 void CMSCollector::checkpointRootsFinalWork(bool asynch,
  4736   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
  4738   NOT_PRODUCT(TraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, gclog_or_tty);)
  4740   assert(haveFreelistLocks(), "must have free list locks");
  4741   assert_lock_strong(bitMapLock());
  4743   if (UseAdaptiveSizePolicy) {
  4744     size_policy()->checkpoint_roots_final_begin();
  4747   ResourceMark rm;
  4748   HandleMark   hm;
  4750   GenCollectedHeap* gch = GenCollectedHeap::heap();
  4752   if (should_unload_classes()) {
  4753     CodeCache::gc_prologue();
  4755   assert(haveFreelistLocks(), "must have free list locks");
  4756   assert_lock_strong(bitMapLock());
  4758   if (!init_mark_was_synchronous) {
  4759     // We might assume that we need not fill TLAB's when
  4760     // CMSScavengeBeforeRemark is set, because we may have just done
  4761     // a scavenge which would have filled all TLAB's -- and besides
  4762     // Eden would be empty. This however may not always be the case --
  4763     // for instance although we asked for a scavenge, it may not have
  4764     // happened because of a JNI critical section. We probably need
  4765     // a policy for deciding whether we can in that case wait until
  4766     // the critical section releases and then do the remark following
  4767     // the scavenge, and skip it here. In the absence of that policy,
  4768     // or of an indication of whether the scavenge did indeed occur,
  4769     // we cannot rely on TLAB's having been filled and must do
  4770     // so here just in case a scavenge did not happen.
  4771     gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
  4772     // Update the saved marks which may affect the root scans.
  4773     gch->save_marks();
  4776       COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
  4778       // Note on the role of the mod union table:
  4779       // Since the marker in "markFromRoots" marks concurrently with
  4780       // mutators, it is possible for some reachable objects not to have been
  4781       // scanned. For instance, an only reference to an object A was
  4782       // placed in object B after the marker scanned B. Unless B is rescanned,
  4783       // A would be collected. Such updates to references in marked objects
  4784       // are detected via the mod union table which is the set of all cards
  4785       // dirtied since the first checkpoint in this GC cycle and prior to
  4786       // the most recent young generation GC, minus those cleaned up by the
  4787       // concurrent precleaning.
  4788       if (CMSParallelRemarkEnabled && ParallelGCThreads > 0) {
  4789         TraceTime t("Rescan (parallel) ", PrintGCDetails, false, gclog_or_tty);
  4790         do_remark_parallel();
  4791       } else {
  4792         TraceTime t("Rescan (non-parallel) ", PrintGCDetails, false,
  4793                     gclog_or_tty);
  4794         do_remark_non_parallel();
  4797   } else {
  4798     assert(!asynch, "Can't have init_mark_was_synchronous in asynch mode");
  4799     // The initial mark was stop-world, so there's no rescanning to
  4800     // do; go straight on to the next step below.
  4802   verify_work_stacks_empty();
  4803   verify_overflow_empty();
  4806     NOT_PRODUCT(TraceTime ts("refProcessingWork", PrintGCDetails, false, gclog_or_tty);)
  4807     refProcessingWork(asynch, clear_all_soft_refs);
  4809   verify_work_stacks_empty();
  4810   verify_overflow_empty();
  4812   if (should_unload_classes()) {
  4813     CodeCache::gc_epilogue();
  4816   // If we encountered any (marking stack / work queue) overflow
  4817   // events during the current CMS cycle, take appropriate
  4818   // remedial measures, where possible, so as to try and avoid
  4819   // recurrence of that condition.
  4820   assert(_markStack.isEmpty(), "No grey objects");
  4821   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
  4822                      _ser_kac_ovflw;
  4823   if (ser_ovflw > 0) {
  4824     if (PrintCMSStatistics != 0) {
  4825       gclog_or_tty->print_cr("Marking stack overflow (benign) "
  4826         "(pmc_pc="SIZE_FORMAT", pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT")",
  4827         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw,
  4828         _ser_kac_ovflw);
  4830     _markStack.expand();
  4831     _ser_pmc_remark_ovflw = 0;
  4832     _ser_pmc_preclean_ovflw = 0;
  4833     _ser_kac_ovflw = 0;
  4835   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
  4836     if (PrintCMSStatistics != 0) {
  4837       gclog_or_tty->print_cr("Work queue overflow (benign) "
  4838         "(pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT")",
  4839         _par_pmc_remark_ovflw, _par_kac_ovflw);
  4841     _par_pmc_remark_ovflw = 0;
  4842     _par_kac_ovflw = 0;
  4844   if (PrintCMSStatistics != 0) {
  4845      if (_markStack._hit_limit > 0) {
  4846        gclog_or_tty->print_cr(" (benign) Hit max stack size limit ("SIZE_FORMAT")",
  4847                               _markStack._hit_limit);
  4849      if (_markStack._failed_double > 0) {
  4850        gclog_or_tty->print_cr(" (benign) Failed stack doubling ("SIZE_FORMAT"),"
  4851                               " current capacity "SIZE_FORMAT,
  4852                               _markStack._failed_double,
  4853                               _markStack.capacity());
  4856   _markStack._hit_limit = 0;
  4857   _markStack._failed_double = 0;
  4859   if ((VerifyAfterGC || VerifyDuringGC) &&
  4860       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  4861     verify_after_remark();
  4864   // Change under the freelistLocks.
  4865   _collectorState = Sweeping;
  4866   // Call isAllClear() under bitMapLock
  4867   assert(_modUnionTable.isAllClear(), "Should be clear by end of the"
  4868     " final marking");
  4869   if (UseAdaptiveSizePolicy) {
  4870     size_policy()->checkpoint_roots_final_end(gch->gc_cause());
  4874 // Parallel remark task
  4875 class CMSParRemarkTask: public AbstractGangTask {
  4876   CMSCollector* _collector;
  4877   WorkGang*     _workers;
  4878   int           _n_workers;
  4879   CompactibleFreeListSpace* _cms_space;
  4880   CompactibleFreeListSpace* _perm_space;
  4882   // The per-thread work queues, available here for stealing.
  4883   OopTaskQueueSet*       _task_queues;
  4884   ParallelTaskTerminator _term;
  4886  public:
  4887   CMSParRemarkTask(CMSCollector* collector,
  4888                    CompactibleFreeListSpace* cms_space,
  4889                    CompactibleFreeListSpace* perm_space,
  4890                    int n_workers, WorkGang* workers,
  4891                    OopTaskQueueSet* task_queues):
  4892     AbstractGangTask("Rescan roots and grey objects in parallel"),
  4893     _collector(collector),
  4894     _cms_space(cms_space), _perm_space(perm_space),
  4895     _n_workers(n_workers),
  4896     _workers(workers),
  4897     _task_queues(task_queues),
  4898     _term(workers->total_workers(), task_queues) { }
  4900   OopTaskQueueSet* task_queues() { return _task_queues; }
  4902   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
  4904   ParallelTaskTerminator* terminator() { return &_term; }
  4906   void work(int i);
  4908  private:
  4909   // Work method in support of parallel rescan ... of young gen spaces
  4910   void do_young_space_rescan(int i, Par_MarkRefsIntoAndScanClosure* cl,
  4911                              ContiguousSpace* space,
  4912                              HeapWord** chunk_array, size_t chunk_top);
  4914   // ... of  dirty cards in old space
  4915   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
  4916                                   Par_MarkRefsIntoAndScanClosure* cl);
  4918   // ... work stealing for the above
  4919   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
  4920 };
  4922 void CMSParRemarkTask::work(int i) {
  4923   elapsedTimer _timer;
  4924   ResourceMark rm;
  4925   HandleMark   hm;
  4927   // ---------- rescan from roots --------------
  4928   _timer.start();
  4929   GenCollectedHeap* gch = GenCollectedHeap::heap();
  4930   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
  4931     _collector->_span, _collector->ref_processor(),
  4932     &(_collector->_markBitMap),
  4933     work_queue(i), &(_collector->_revisitStack));
  4935   // Rescan young gen roots first since these are likely
  4936   // coarsely partitioned and may, on that account, constitute
  4937   // the critical path; thus, it's best to start off that
  4938   // work first.
  4939   // ---------- young gen roots --------------
  4941     DefNewGeneration* dng = _collector->_young_gen->as_DefNewGeneration();
  4942     EdenSpace* eden_space = dng->eden();
  4943     ContiguousSpace* from_space = dng->from();
  4944     ContiguousSpace* to_space   = dng->to();
  4946     HeapWord** eca = _collector->_eden_chunk_array;
  4947     size_t     ect = _collector->_eden_chunk_index;
  4948     HeapWord** sca = _collector->_survivor_chunk_array;
  4949     size_t     sct = _collector->_survivor_chunk_index;
  4951     assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
  4952     assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
  4954     do_young_space_rescan(i, &par_mrias_cl, to_space, NULL, 0);
  4955     do_young_space_rescan(i, &par_mrias_cl, from_space, sca, sct);
  4956     do_young_space_rescan(i, &par_mrias_cl, eden_space, eca, ect);
  4958     _timer.stop();
  4959     if (PrintCMSStatistics != 0) {
  4960       gclog_or_tty->print_cr(
  4961         "Finished young gen rescan work in %dth thread: %3.3f sec",
  4962         i, _timer.seconds());
  4966   // ---------- remaining roots --------------
  4967   _timer.reset();
  4968   _timer.start();
  4969   gch->gen_process_strong_roots(_collector->_cmsGen->level(),
  4970                                 false,     // yg was scanned above
  4971                                 true,      // collecting perm gen
  4972                                 SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
  4973                                 NULL, &par_mrias_cl);
  4974   _timer.stop();
  4975   if (PrintCMSStatistics != 0) {
  4976     gclog_or_tty->print_cr(
  4977       "Finished remaining root rescan work in %dth thread: %3.3f sec",
  4978       i, _timer.seconds());
  4981   // ---------- rescan dirty cards ------------
  4982   _timer.reset();
  4983   _timer.start();
  4985   // Do the rescan tasks for each of the two spaces
  4986   // (cms_space and perm_space) in turn.
  4987   do_dirty_card_rescan_tasks(_cms_space, i, &par_mrias_cl);
  4988   do_dirty_card_rescan_tasks(_perm_space, i, &par_mrias_cl);
  4989   _timer.stop();
  4990   if (PrintCMSStatistics != 0) {
  4991     gclog_or_tty->print_cr(
  4992       "Finished dirty card rescan work in %dth thread: %3.3f sec",
  4993       i, _timer.seconds());
  4996   // ---------- steal work from other threads ...
  4997   // ---------- ... and drain overflow list.
  4998   _timer.reset();
  4999   _timer.start();
  5000   do_work_steal(i, &par_mrias_cl, _collector->hash_seed(i));
  5001   _timer.stop();
  5002   if (PrintCMSStatistics != 0) {
  5003     gclog_or_tty->print_cr(
  5004       "Finished work stealing in %dth thread: %3.3f sec",
  5005       i, _timer.seconds());
  5009 void
  5010 CMSParRemarkTask::do_young_space_rescan(int i,
  5011   Par_MarkRefsIntoAndScanClosure* cl, ContiguousSpace* space,
  5012   HeapWord** chunk_array, size_t chunk_top) {
  5013   // Until all tasks completed:
  5014   // . claim an unclaimed task
  5015   // . compute region boundaries corresponding to task claimed
  5016   //   using chunk_array
  5017   // . par_oop_iterate(cl) over that region
  5019   ResourceMark rm;
  5020   HandleMark   hm;
  5022   SequentialSubTasksDone* pst = space->par_seq_tasks();
  5023   assert(pst->valid(), "Uninitialized use?");
  5025   int nth_task = 0;
  5026   int n_tasks  = pst->n_tasks();
  5028   HeapWord *start, *end;
  5029   while (!pst->is_task_claimed(/* reference */ nth_task)) {
  5030     // We claimed task # nth_task; compute its boundaries.
  5031     if (chunk_top == 0) {  // no samples were taken
  5032       assert(nth_task == 0 && n_tasks == 1, "Can have only 1 EdenSpace task");
  5033       start = space->bottom();
  5034       end   = space->top();
  5035     } else if (nth_task == 0) {
  5036       start = space->bottom();
  5037       end   = chunk_array[nth_task];
  5038     } else if (nth_task < (jint)chunk_top) {
  5039       assert(nth_task >= 1, "Control point invariant");
  5040       start = chunk_array[nth_task - 1];
  5041       end   = chunk_array[nth_task];
  5042     } else {
  5043       assert(nth_task == (jint)chunk_top, "Control point invariant");
  5044       start = chunk_array[chunk_top - 1];
  5045       end   = space->top();
  5047     MemRegion mr(start, end);
  5048     // Verify that mr is in space
  5049     assert(mr.is_empty() || space->used_region().contains(mr),
  5050            "Should be in space");
  5051     // Verify that "start" is an object boundary
  5052     assert(mr.is_empty() || oop(mr.start())->is_oop(),
  5053            "Should be an oop");
  5054     space->par_oop_iterate(mr, cl);
  5056   pst->all_tasks_completed();
  5059 void
  5060 CMSParRemarkTask::do_dirty_card_rescan_tasks(
  5061   CompactibleFreeListSpace* sp, int i,
  5062   Par_MarkRefsIntoAndScanClosure* cl) {
  5063   // Until all tasks completed:
  5064   // . claim an unclaimed task
  5065   // . compute region boundaries corresponding to task claimed
  5066   // . transfer dirty bits ct->mut for that region
  5067   // . apply rescanclosure to dirty mut bits for that region
  5069   ResourceMark rm;
  5070   HandleMark   hm;
  5072   OopTaskQueue* work_q = work_queue(i);
  5073   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
  5074   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
  5075   // CAUTION: This closure has state that persists across calls to
  5076   // the work method dirty_range_iterate_clear() in that it has
  5077   // imbedded in it a (subtype of) UpwardsObjectClosure. The
  5078   // use of that state in the imbedded UpwardsObjectClosure instance
  5079   // assumes that the cards are always iterated (even if in parallel
  5080   // by several threads) in monotonically increasing order per each
  5081   // thread. This is true of the implementation below which picks
  5082   // card ranges (chunks) in monotonically increasing order globally
  5083   // and, a-fortiori, in monotonically increasing order per thread
  5084   // (the latter order being a subsequence of the former).
  5085   // If the work code below is ever reorganized into a more chaotic
  5086   // work-partitioning form than the current "sequential tasks"
  5087   // paradigm, the use of that persistent state will have to be
  5088   // revisited and modified appropriately. See also related
  5089   // bug 4756801 work on which should examine this code to make
  5090   // sure that the changes there do not run counter to the
  5091   // assumptions made here and necessary for correctness and
  5092   // efficiency. Note also that this code might yield inefficient
  5093   // behaviour in the case of very large objects that span one or
  5094   // more work chunks. Such objects would potentially be scanned
  5095   // several times redundantly. Work on 4756801 should try and
  5096   // address that performance anomaly if at all possible. XXX
  5097   MemRegion  full_span  = _collector->_span;
  5098   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
  5099   CMSMarkStack* rs = &(_collector->_revisitStack);   // shared
  5100   MarkFromDirtyCardsClosure
  5101     greyRescanClosure(_collector, full_span, // entire span of interest
  5102                       sp, bm, work_q, rs, cl);
  5104   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
  5105   assert(pst->valid(), "Uninitialized use?");
  5106   int nth_task = 0;
  5107   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
  5108   MemRegion span = sp->used_region();
  5109   HeapWord* start_addr = span.start();
  5110   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
  5111                                            alignment);
  5112   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
  5113   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
  5114          start_addr, "Check alignment");
  5115   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
  5116          chunk_size, "Check alignment");
  5118   while (!pst->is_task_claimed(/* reference */ nth_task)) {
  5119     // Having claimed the nth_task, compute corresponding mem-region,
  5120     // which is a-fortiori aligned correctly (i.e. at a MUT bopundary).
  5121     // The alignment restriction ensures that we do not need any
  5122     // synchronization with other gang-workers while setting or
  5123     // clearing bits in thus chunk of the MUT.
  5124     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
  5125                                     start_addr + (nth_task+1)*chunk_size);
  5126     // The last chunk's end might be way beyond end of the
  5127     // used region. In that case pull back appropriately.
  5128     if (this_span.end() > end_addr) {
  5129       this_span.set_end(end_addr);
  5130       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
  5132     // Iterate over the dirty cards covering this chunk, marking them
  5133     // precleaned, and setting the corresponding bits in the mod union
  5134     // table. Since we have been careful to partition at Card and MUT-word
  5135     // boundaries no synchronization is needed between parallel threads.
  5136     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
  5137                                                  &modUnionClosure);
  5139     // Having transferred these marks into the modUnionTable,
  5140     // rescan the marked objects on the dirty cards in the modUnionTable.
  5141     // Even if this is at a synchronous collection, the initial marking
  5142     // may have been done during an asynchronous collection so there
  5143     // may be dirty bits in the mod-union table.
  5144     _collector->_modUnionTable.dirty_range_iterate_clear(
  5145                   this_span, &greyRescanClosure);
  5146     _collector->_modUnionTable.verifyNoOneBitsInRange(
  5147                                  this_span.start(),
  5148                                  this_span.end());
  5150   pst->all_tasks_completed();  // declare that i am done
  5153 // . see if we can share work_queues with ParNew? XXX
  5154 void
  5155 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
  5156                                 int* seed) {
  5157   OopTaskQueue* work_q = work_queue(i);
  5158   NOT_PRODUCT(int num_steals = 0;)
  5159   oop obj_to_scan;
  5160   CMSBitMap* bm = &(_collector->_markBitMap);
  5161   size_t num_from_overflow_list =
  5162            MIN2((size_t)work_q->max_elems()/4,
  5163                 (size_t)ParGCDesiredObjsFromOverflowList);
  5165   while (true) {
  5166     // Completely finish any left over work from (an) earlier round(s)
  5167     cl->trim_queue(0);
  5168     // Now check if there's any work in the overflow list
  5169     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
  5170                                                 work_q)) {
  5171       // found something in global overflow list;
  5172       // not yet ready to go stealing work from others.
  5173       // We'd like to assert(work_q->size() != 0, ...)
  5174       // because we just took work from the overflow list,
  5175       // but of course we can't since all of that could have
  5176       // been already stolen from us.
  5177       // "He giveth and He taketh away."
  5178       continue;
  5180     // Verify that we have no work before we resort to stealing
  5181     assert(work_q->size() == 0, "Have work, shouldn't steal");
  5182     // Try to steal from other queues that have work
  5183     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
  5184       NOT_PRODUCT(num_steals++;)
  5185       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
  5186       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
  5187       // Do scanning work
  5188       obj_to_scan->oop_iterate(cl);
  5189       // Loop around, finish this work, and try to steal some more
  5190     } else if (terminator()->offer_termination()) {
  5191         break;  // nirvana from the infinite cycle
  5194   NOT_PRODUCT(
  5195     if (PrintCMSStatistics != 0) {
  5196       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
  5199   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
  5200          "Else our work is not yet done");
  5203 // Return a thread-local PLAB recording array, as appropriate.
  5204 void* CMSCollector::get_data_recorder(int thr_num) {
  5205   if (_survivor_plab_array != NULL &&
  5206       (CMSPLABRecordAlways ||
  5207        (_collectorState > Marking && _collectorState < FinalMarking))) {
  5208     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
  5209     ChunkArray* ca = &_survivor_plab_array[thr_num];
  5210     ca->reset();   // clear it so that fresh data is recorded
  5211     return (void*) ca;
  5212   } else {
  5213     return NULL;
  5217 // Reset all the thread-local PLAB recording arrays
  5218 void CMSCollector::reset_survivor_plab_arrays() {
  5219   for (uint i = 0; i < ParallelGCThreads; i++) {
  5220     _survivor_plab_array[i].reset();
  5224 // Merge the per-thread plab arrays into the global survivor chunk
  5225 // array which will provide the partitioning of the survivor space
  5226 // for CMS rescan.
  5227 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv) {
  5228   assert(_survivor_plab_array  != NULL, "Error");
  5229   assert(_survivor_chunk_array != NULL, "Error");
  5230   assert(_collectorState == FinalMarking, "Error");
  5231   for (uint j = 0; j < ParallelGCThreads; j++) {
  5232     _cursor[j] = 0;
  5234   HeapWord* top = surv->top();
  5235   size_t i;
  5236   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
  5237     HeapWord* min_val = top;          // Higher than any PLAB address
  5238     uint      min_tid = 0;            // position of min_val this round
  5239     for (uint j = 0; j < ParallelGCThreads; j++) {
  5240       ChunkArray* cur_sca = &_survivor_plab_array[j];
  5241       if (_cursor[j] == cur_sca->end()) {
  5242         continue;
  5244       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
  5245       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
  5246       assert(surv->used_region().contains(cur_val), "Out of bounds value");
  5247       if (cur_val < min_val) {
  5248         min_tid = j;
  5249         min_val = cur_val;
  5250       } else {
  5251         assert(cur_val < top, "All recorded addresses should be less");
  5254     // At this point min_val and min_tid are respectively
  5255     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
  5256     // and the thread (j) that witnesses that address.
  5257     // We record this address in the _survivor_chunk_array[i]
  5258     // and increment _cursor[min_tid] prior to the next round i.
  5259     if (min_val == top) {
  5260       break;
  5262     _survivor_chunk_array[i] = min_val;
  5263     _cursor[min_tid]++;
  5265   // We are all done; record the size of the _survivor_chunk_array
  5266   _survivor_chunk_index = i; // exclusive: [0, i)
  5267   if (PrintCMSStatistics > 0) {
  5268     gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i);
  5270   // Verify that we used up all the recorded entries
  5271   #ifdef ASSERT
  5272     size_t total = 0;
  5273     for (uint j = 0; j < ParallelGCThreads; j++) {
  5274       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
  5275       total += _cursor[j];
  5277     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
  5278     // Check that the merged array is in sorted order
  5279     if (total > 0) {
  5280       for (size_t i = 0; i < total - 1; i++) {
  5281         if (PrintCMSStatistics > 0) {
  5282           gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
  5283                               i, _survivor_chunk_array[i]);
  5285         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
  5286                "Not sorted");
  5289   #endif // ASSERT
  5292 // Set up the space's par_seq_tasks structure for work claiming
  5293 // for parallel rescan of young gen.
  5294 // See ParRescanTask where this is currently used.
  5295 void
  5296 CMSCollector::
  5297 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
  5298   assert(n_threads > 0, "Unexpected n_threads argument");
  5299   DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
  5301   // Eden space
  5303     SequentialSubTasksDone* pst = dng->eden()->par_seq_tasks();
  5304     assert(!pst->valid(), "Clobbering existing data?");
  5305     // Each valid entry in [0, _eden_chunk_index) represents a task.
  5306     size_t n_tasks = _eden_chunk_index + 1;
  5307     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
  5308     pst->set_par_threads(n_threads);
  5309     pst->set_n_tasks((int)n_tasks);
  5312   // Merge the survivor plab arrays into _survivor_chunk_array
  5313   if (_survivor_plab_array != NULL) {
  5314     merge_survivor_plab_arrays(dng->from());
  5315   } else {
  5316     assert(_survivor_chunk_index == 0, "Error");
  5319   // To space
  5321     SequentialSubTasksDone* pst = dng->to()->par_seq_tasks();
  5322     assert(!pst->valid(), "Clobbering existing data?");
  5323     pst->set_par_threads(n_threads);
  5324     pst->set_n_tasks(1);
  5325     assert(pst->valid(), "Error");
  5328   // From space
  5330     SequentialSubTasksDone* pst = dng->from()->par_seq_tasks();
  5331     assert(!pst->valid(), "Clobbering existing data?");
  5332     size_t n_tasks = _survivor_chunk_index + 1;
  5333     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
  5334     pst->set_par_threads(n_threads);
  5335     pst->set_n_tasks((int)n_tasks);
  5336     assert(pst->valid(), "Error");
  5340 // Parallel version of remark
  5341 void CMSCollector::do_remark_parallel() {
  5342   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5343   WorkGang* workers = gch->workers();
  5344   assert(workers != NULL, "Need parallel worker threads.");
  5345   int n_workers = workers->total_workers();
  5346   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
  5347   CompactibleFreeListSpace* perm_space = _permGen->cmsSpace();
  5349   CMSParRemarkTask tsk(this,
  5350     cms_space, perm_space,
  5351     n_workers, workers, task_queues());
  5353   // Set up for parallel process_strong_roots work.
  5354   gch->set_par_threads(n_workers);
  5355   gch->change_strong_roots_parity();
  5356   // We won't be iterating over the cards in the card table updating
  5357   // the younger_gen cards, so we shouldn't call the following else
  5358   // the verification code as well as subsequent younger_refs_iterate
  5359   // code would get confused. XXX
  5360   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
  5362   // The young gen rescan work will not be done as part of
  5363   // process_strong_roots (which currently doesn't knw how to
  5364   // parallelize such a scan), but rather will be broken up into
  5365   // a set of parallel tasks (via the sampling that the [abortable]
  5366   // preclean phase did of EdenSpace, plus the [two] tasks of
  5367   // scanning the [two] survivor spaces. Further fine-grain
  5368   // parallelization of the scanning of the survivor spaces
  5369   // themselves, and of precleaning of the younger gen itself
  5370   // is deferred to the future.
  5371   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
  5373   // The dirty card rescan work is broken up into a "sequence"
  5374   // of parallel tasks (per constituent space) that are dynamically
  5375   // claimed by the parallel threads.
  5376   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
  5377   perm_space->initialize_sequential_subtasks_for_rescan(n_workers);
  5379   // It turns out that even when we're using 1 thread, doing the work in a
  5380   // separate thread causes wide variance in run times.  We can't help this
  5381   // in the multi-threaded case, but we special-case n=1 here to get
  5382   // repeatable measurements of the 1-thread overhead of the parallel code.
  5383   if (n_workers > 1) {
  5384     // Make refs discovery MT-safe
  5385     ReferenceProcessorMTMutator mt(ref_processor(), true);
  5386     workers->run_task(&tsk);
  5387   } else {
  5388     tsk.work(0);
  5390   gch->set_par_threads(0);  // 0 ==> non-parallel.
  5391   // restore, single-threaded for now, any preserved marks
  5392   // as a result of work_q overflow
  5393   restore_preserved_marks_if_any();
  5396 // Non-parallel version of remark
  5397 void CMSCollector::do_remark_non_parallel() {
  5398   ResourceMark rm;
  5399   HandleMark   hm;
  5400   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5401   MarkRefsIntoAndScanClosure
  5402     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
  5403              &_markStack, &_revisitStack, this,
  5404              false /* should_yield */, false /* not precleaning */);
  5405   MarkFromDirtyCardsClosure
  5406     markFromDirtyCardsClosure(this, _span,
  5407                               NULL,  // space is set further below
  5408                               &_markBitMap, &_markStack, &_revisitStack,
  5409                               &mrias_cl);
  5411     TraceTime t("grey object rescan", PrintGCDetails, false, gclog_or_tty);
  5412     // Iterate over the dirty cards, marking them precleaned, and
  5413     // setting the corresponding bits in the mod union table.
  5415       ModUnionClosure modUnionClosure(&_modUnionTable);
  5416       _ct->ct_bs()->dirty_card_iterate(
  5417                       _cmsGen->used_region(),
  5418                       &modUnionClosure);
  5419       _ct->ct_bs()->dirty_card_iterate(
  5420                       _permGen->used_region(),
  5421                       &modUnionClosure);
  5423     // Having transferred these marks into the modUnionTable, we just need
  5424     // to rescan the marked objects on the dirty cards in the modUnionTable.
  5425     // The initial marking may have been done during an asynchronous
  5426     // collection so there may be dirty bits in the mod-union table.
  5427     const int alignment =
  5428       CardTableModRefBS::card_size * BitsPerWord;
  5430       // ... First handle dirty cards in CMS gen
  5431       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
  5432       MemRegion ur = _cmsGen->used_region();
  5433       HeapWord* lb = ur.start();
  5434       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
  5435       MemRegion cms_span(lb, ub);
  5436       _modUnionTable.dirty_range_iterate_clear(cms_span,
  5437                                                &markFromDirtyCardsClosure);
  5438       verify_work_stacks_empty();
  5439       if (PrintCMSStatistics != 0) {
  5440         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in cms gen) ",
  5441           markFromDirtyCardsClosure.num_dirty_cards());
  5445       // .. and then repeat for dirty cards in perm gen
  5446       markFromDirtyCardsClosure.set_space(_permGen->cmsSpace());
  5447       MemRegion ur = _permGen->used_region();
  5448       HeapWord* lb = ur.start();
  5449       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
  5450       MemRegion perm_span(lb, ub);
  5451       _modUnionTable.dirty_range_iterate_clear(perm_span,
  5452                                                &markFromDirtyCardsClosure);
  5453       verify_work_stacks_empty();
  5454       if (PrintCMSStatistics != 0) {
  5455         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in perm gen) ",
  5456           markFromDirtyCardsClosure.num_dirty_cards());
  5460   if (VerifyDuringGC &&
  5461       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  5462     HandleMark hm;  // Discard invalid handles created during verification
  5463     Universe::verify(true);
  5466     TraceTime t("root rescan", PrintGCDetails, false, gclog_or_tty);
  5468     verify_work_stacks_empty();
  5470     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
  5471     gch->gen_process_strong_roots(_cmsGen->level(),
  5472                                   true,  // younger gens as roots
  5473                                   true,  // collecting perm gen
  5474                                   SharedHeap::ScanningOption(roots_scanning_options()),
  5475                                   NULL, &mrias_cl);
  5477   verify_work_stacks_empty();
  5478   // Restore evacuated mark words, if any, used for overflow list links
  5479   if (!CMSOverflowEarlyRestoration) {
  5480     restore_preserved_marks_if_any();
  5482   verify_overflow_empty();
  5485 ////////////////////////////////////////////////////////
  5486 // Parallel Reference Processing Task Proxy Class
  5487 ////////////////////////////////////////////////////////
  5488 class CMSRefProcTaskProxy: public AbstractGangTask {
  5489   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  5490   CMSCollector*          _collector;
  5491   CMSBitMap*             _mark_bit_map;
  5492   const MemRegion        _span;
  5493   OopTaskQueueSet*       _task_queues;
  5494   ParallelTaskTerminator _term;
  5495   ProcessTask&           _task;
  5497 public:
  5498   CMSRefProcTaskProxy(ProcessTask&     task,
  5499                       CMSCollector*    collector,
  5500                       const MemRegion& span,
  5501                       CMSBitMap*       mark_bit_map,
  5502                       int              total_workers,
  5503                       OopTaskQueueSet* task_queues):
  5504     AbstractGangTask("Process referents by policy in parallel"),
  5505     _task(task),
  5506     _collector(collector), _span(span), _mark_bit_map(mark_bit_map),
  5507     _task_queues(task_queues),
  5508     _term(total_workers, task_queues)
  5510       assert(_collector->_span.equals(_span) && !_span.is_empty(),
  5511              "Inconsistency in _span");
  5514   OopTaskQueueSet* task_queues() { return _task_queues; }
  5516   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
  5518   ParallelTaskTerminator* terminator() { return &_term; }
  5520   void do_work_steal(int i,
  5521                      CMSParDrainMarkingStackClosure* drain,
  5522                      CMSParKeepAliveClosure* keep_alive,
  5523                      int* seed);
  5525   virtual void work(int i);
  5526 };
  5528 void CMSRefProcTaskProxy::work(int i) {
  5529   assert(_collector->_span.equals(_span), "Inconsistency in _span");
  5530   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
  5531                                         _mark_bit_map, work_queue(i));
  5532   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
  5533                                                  _mark_bit_map, work_queue(i));
  5534   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
  5535   _task.work(i, is_alive_closure, par_keep_alive, par_drain_stack);
  5536   if (_task.marks_oops_alive()) {
  5537     do_work_steal(i, &par_drain_stack, &par_keep_alive,
  5538                   _collector->hash_seed(i));
  5540   assert(work_queue(i)->size() == 0, "work_queue should be empty");
  5541   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
  5544 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
  5545   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  5546   EnqueueTask& _task;
  5548 public:
  5549   CMSRefEnqueueTaskProxy(EnqueueTask& task)
  5550     : AbstractGangTask("Enqueue reference objects in parallel"),
  5551       _task(task)
  5552   { }
  5554   virtual void work(int i)
  5556     _task.work(i);
  5558 };
  5560 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
  5561   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
  5562    _collector(collector),
  5563    _span(span),
  5564    _bit_map(bit_map),
  5565    _work_queue(work_queue),
  5566    _mark_and_push(collector, span, bit_map, work_queue),
  5567    _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
  5568                         (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads)))
  5569 { }
  5571 // . see if we can share work_queues with ParNew? XXX
  5572 void CMSRefProcTaskProxy::do_work_steal(int i,
  5573   CMSParDrainMarkingStackClosure* drain,
  5574   CMSParKeepAliveClosure* keep_alive,
  5575   int* seed) {
  5576   OopTaskQueue* work_q = work_queue(i);
  5577   NOT_PRODUCT(int num_steals = 0;)
  5578   oop obj_to_scan;
  5579   size_t num_from_overflow_list =
  5580            MIN2((size_t)work_q->max_elems()/4,
  5581                 (size_t)ParGCDesiredObjsFromOverflowList);
  5583   while (true) {
  5584     // Completely finish any left over work from (an) earlier round(s)
  5585     drain->trim_queue(0);
  5586     // Now check if there's any work in the overflow list
  5587     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
  5588                                                 work_q)) {
  5589       // Found something in global overflow list;
  5590       // not yet ready to go stealing work from others.
  5591       // We'd like to assert(work_q->size() != 0, ...)
  5592       // because we just took work from the overflow list,
  5593       // but of course we can't, since all of that might have
  5594       // been already stolen from us.
  5595       continue;
  5597     // Verify that we have no work before we resort to stealing
  5598     assert(work_q->size() == 0, "Have work, shouldn't steal");
  5599     // Try to steal from other queues that have work
  5600     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
  5601       NOT_PRODUCT(num_steals++;)
  5602       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
  5603       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
  5604       // Do scanning work
  5605       obj_to_scan->oop_iterate(keep_alive);
  5606       // Loop around, finish this work, and try to steal some more
  5607     } else if (terminator()->offer_termination()) {
  5608       break;  // nirvana from the infinite cycle
  5611   NOT_PRODUCT(
  5612     if (PrintCMSStatistics != 0) {
  5613       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
  5618 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
  5620   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5621   WorkGang* workers = gch->workers();
  5622   assert(workers != NULL, "Need parallel worker threads.");
  5623   int n_workers = workers->total_workers();
  5624   CMSRefProcTaskProxy rp_task(task, &_collector,
  5625                               _collector.ref_processor()->span(),
  5626                               _collector.markBitMap(),
  5627                               n_workers, _collector.task_queues());
  5628   workers->run_task(&rp_task);
  5631 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
  5634   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5635   WorkGang* workers = gch->workers();
  5636   assert(workers != NULL, "Need parallel worker threads.");
  5637   CMSRefEnqueueTaskProxy enq_task(task);
  5638   workers->run_task(&enq_task);
  5641 void CMSCollector::refProcessingWork(bool asynch, bool clear_all_soft_refs) {
  5643   ResourceMark rm;
  5644   HandleMark   hm;
  5645   ReferencePolicy* soft_ref_policy;
  5647   assert(!ref_processor()->enqueuing_is_done(), "Enqueuing should not be complete");
  5648   // Process weak references.
  5649   if (clear_all_soft_refs) {
  5650     soft_ref_policy = new AlwaysClearPolicy();
  5651   } else {
  5652 #ifdef COMPILER2
  5653     soft_ref_policy = new LRUMaxHeapPolicy();
  5654 #else
  5655     soft_ref_policy = new LRUCurrentHeapPolicy();
  5656 #endif // COMPILER2
  5658   verify_work_stacks_empty();
  5660   ReferenceProcessor* rp = ref_processor();
  5661   assert(rp->span().equals(_span), "Spans should be equal");
  5662   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
  5663                                           &_markStack);
  5664   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
  5665                                 _span, &_markBitMap, &_markStack,
  5666                                 &cmsKeepAliveClosure);
  5668     TraceTime t("weak refs processing", PrintGCDetails, false, gclog_or_tty);
  5669     if (rp->processing_is_mt()) {
  5670       CMSRefProcTaskExecutor task_executor(*this);
  5671       rp->process_discovered_references(soft_ref_policy,
  5672                                         &_is_alive_closure,
  5673                                         &cmsKeepAliveClosure,
  5674                                         &cmsDrainMarkingStackClosure,
  5675                                         &task_executor);
  5676     } else {
  5677       rp->process_discovered_references(soft_ref_policy,
  5678                                         &_is_alive_closure,
  5679                                         &cmsKeepAliveClosure,
  5680                                         &cmsDrainMarkingStackClosure,
  5681                                         NULL);
  5683     verify_work_stacks_empty();
  5686   if (should_unload_classes()) {
  5688       TraceTime t("class unloading", PrintGCDetails, false, gclog_or_tty);
  5690       // Follow SystemDictionary roots and unload classes
  5691       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
  5693       // Follow CodeCache roots and unload any methods marked for unloading
  5694       CodeCache::do_unloading(&_is_alive_closure,
  5695                               &cmsKeepAliveClosure,
  5696                               purged_class);
  5698       cmsDrainMarkingStackClosure.do_void();
  5699       verify_work_stacks_empty();
  5701       // Update subklass/sibling/implementor links in KlassKlass descendants
  5702       assert(!_revisitStack.isEmpty(), "revisit stack should not be empty");
  5703       oop k;
  5704       while ((k = _revisitStack.pop()) != NULL) {
  5705         ((Klass*)(oopDesc*)k)->follow_weak_klass_links(
  5706                        &_is_alive_closure,
  5707                        &cmsKeepAliveClosure);
  5709       assert(!ClassUnloading ||
  5710              (_markStack.isEmpty() && overflow_list_is_empty()),
  5711              "Should not have found new reachable objects");
  5712       assert(_revisitStack.isEmpty(), "revisit stack should have been drained");
  5713       cmsDrainMarkingStackClosure.do_void();
  5714       verify_work_stacks_empty();
  5718       TraceTime t("scrub symbol & string tables", PrintGCDetails, false, gclog_or_tty);
  5719       // Now clean up stale oops in SymbolTable and StringTable
  5720       SymbolTable::unlink(&_is_alive_closure);
  5721       StringTable::unlink(&_is_alive_closure);
  5725   verify_work_stacks_empty();
  5726   // Restore any preserved marks as a result of mark stack or
  5727   // work queue overflow
  5728   restore_preserved_marks_if_any();  // done single-threaded for now
  5730   rp->set_enqueuing_is_done(true);
  5731   if (rp->processing_is_mt()) {
  5732     CMSRefProcTaskExecutor task_executor(*this);
  5733     rp->enqueue_discovered_references(&task_executor);
  5734   } else {
  5735     rp->enqueue_discovered_references(NULL);
  5737   rp->verify_no_references_recorded();
  5738   assert(!rp->discovery_enabled(), "should have been disabled");
  5740   // JVMTI object tagging is based on JNI weak refs. If any of these
  5741   // refs were cleared then JVMTI needs to update its maps and
  5742   // maybe post ObjectFrees to agents.
  5743   JvmtiExport::cms_ref_processing_epilogue();
  5746 #ifndef PRODUCT
  5747 void CMSCollector::check_correct_thread_executing() {
  5748   Thread* t = Thread::current();
  5749   // Only the VM thread or the CMS thread should be here.
  5750   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
  5751          "Unexpected thread type");
  5752   // If this is the vm thread, the foreground process
  5753   // should not be waiting.  Note that _foregroundGCIsActive is
  5754   // true while the foreground collector is waiting.
  5755   if (_foregroundGCShouldWait) {
  5756     // We cannot be the VM thread
  5757     assert(t->is_ConcurrentGC_thread(),
  5758            "Should be CMS thread");
  5759   } else {
  5760     // We can be the CMS thread only if we are in a stop-world
  5761     // phase of CMS collection.
  5762     if (t->is_ConcurrentGC_thread()) {
  5763       assert(_collectorState == InitialMarking ||
  5764              _collectorState == FinalMarking,
  5765              "Should be a stop-world phase");
  5766       // The CMS thread should be holding the CMS_token.
  5767       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  5768              "Potential interference with concurrently "
  5769              "executing VM thread");
  5773 #endif
  5775 void CMSCollector::sweep(bool asynch) {
  5776   assert(_collectorState == Sweeping, "just checking");
  5777   check_correct_thread_executing();
  5778   verify_work_stacks_empty();
  5779   verify_overflow_empty();
  5780   incrementSweepCount();
  5781   _sweep_timer.stop();
  5782   _sweep_estimate.sample(_sweep_timer.seconds());
  5783   size_policy()->avg_cms_free_at_sweep()->sample(_cmsGen->free());
  5785   // PermGen verification support: If perm gen sweeping is disabled in
  5786   // this cycle, we preserve the perm gen object "deadness" information
  5787   // in the perm_gen_verify_bit_map. In order to do that we traverse
  5788   // all blocks in perm gen and mark all dead objects.
  5789   if (verifying() && !should_unload_classes()) {
  5790     assert(perm_gen_verify_bit_map()->sizeInBits() != 0,
  5791            "Should have already been allocated");
  5792     MarkDeadObjectsClosure mdo(this, _permGen->cmsSpace(),
  5793                                markBitMap(), perm_gen_verify_bit_map());
  5794     if (asynch) {
  5795       CMSTokenSyncWithLocks ts(true, _permGen->freelistLock(),
  5796                                bitMapLock());
  5797       _permGen->cmsSpace()->blk_iterate(&mdo);
  5798     } else {
  5799       // In the case of synchronous sweep, we already have
  5800       // the requisite locks/tokens.
  5801       _permGen->cmsSpace()->blk_iterate(&mdo);
  5805   if (asynch) {
  5806     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  5807     CMSPhaseAccounting pa(this, "sweep", !PrintGCDetails);
  5808     // First sweep the old gen then the perm gen
  5810       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
  5811                                bitMapLock());
  5812       sweepWork(_cmsGen, asynch);
  5815     // Now repeat for perm gen
  5816     if (should_unload_classes()) {
  5817       CMSTokenSyncWithLocks ts(true, _permGen->freelistLock(),
  5818                              bitMapLock());
  5819       sweepWork(_permGen, asynch);
  5822     // Update Universe::_heap_*_at_gc figures.
  5823     // We need all the free list locks to make the abstract state
  5824     // transition from Sweeping to Resetting. See detailed note
  5825     // further below.
  5827       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
  5828                                _permGen->freelistLock());
  5829       // Update heap occupancy information which is used as
  5830       // input to soft ref clearing policy at the next gc.
  5831       Universe::update_heap_info_at_gc();
  5832       _collectorState = Resizing;
  5834   } else {
  5835     // already have needed locks
  5836     sweepWork(_cmsGen,  asynch);
  5838     if (should_unload_classes()) {
  5839       sweepWork(_permGen, asynch);
  5841     // Update heap occupancy information which is used as
  5842     // input to soft ref clearing policy at the next gc.
  5843     Universe::update_heap_info_at_gc();
  5844     _collectorState = Resizing;
  5846   verify_work_stacks_empty();
  5847   verify_overflow_empty();
  5849   _sweep_timer.reset();
  5850   _sweep_timer.start();
  5852   update_time_of_last_gc(os::javaTimeMillis());
  5854   // NOTE on abstract state transitions:
  5855   // Mutators allocate-live and/or mark the mod-union table dirty
  5856   // based on the state of the collection.  The former is done in
  5857   // the interval [Marking, Sweeping] and the latter in the interval
  5858   // [Marking, Sweeping).  Thus the transitions into the Marking state
  5859   // and out of the Sweeping state must be synchronously visible
  5860   // globally to the mutators.
  5861   // The transition into the Marking state happens with the world
  5862   // stopped so the mutators will globally see it.  Sweeping is
  5863   // done asynchronously by the background collector so the transition
  5864   // from the Sweeping state to the Resizing state must be done
  5865   // under the freelistLock (as is the check for whether to
  5866   // allocate-live and whether to dirty the mod-union table).
  5867   assert(_collectorState == Resizing, "Change of collector state to"
  5868     " Resizing must be done under the freelistLocks (plural)");
  5870   // Now that sweeping has been completed, if the GCH's
  5871   // incremental_collection_will_fail flag is set, clear it,
  5872   // thus inviting a younger gen collection to promote into
  5873   // this generation. If such a promotion may still fail,
  5874   // the flag will be set again when a young collection is
  5875   // attempted.
  5876   // I think the incremental_collection_will_fail flag's use
  5877   // is specific to a 2 generation collection policy, so i'll
  5878   // assert that that's the configuration we are operating within.
  5879   // The use of the flag can and should be generalized appropriately
  5880   // in the future to deal with a general n-generation system.
  5882   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5883   assert(gch->collector_policy()->is_two_generation_policy(),
  5884          "Resetting of incremental_collection_will_fail flag"
  5885          " may be incorrect otherwise");
  5886   gch->clear_incremental_collection_will_fail();
  5887   gch->update_full_collections_completed(_collection_count_start);
  5890 // FIX ME!!! Looks like this belongs in CFLSpace, with
  5891 // CMSGen merely delegating to it.
  5892 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
  5893   double nearLargestPercent = 0.999;
  5894   HeapWord*  minAddr        = _cmsSpace->bottom();
  5895   HeapWord*  largestAddr    =
  5896     (HeapWord*) _cmsSpace->dictionary()->findLargestDict();
  5897   if (largestAddr == 0) {
  5898     // The dictionary appears to be empty.  In this case
  5899     // try to coalesce at the end of the heap.
  5900     largestAddr = _cmsSpace->end();
  5902   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
  5903   size_t nearLargestOffset =
  5904     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
  5905   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
  5908 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
  5909   return addr >= _cmsSpace->nearLargestChunk();
  5912 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
  5913   return _cmsSpace->find_chunk_at_end();
  5916 void ConcurrentMarkSweepGeneration::update_gc_stats(int current_level,
  5917                                                     bool full) {
  5918   // The next lower level has been collected.  Gather any statistics
  5919   // that are of interest at this point.
  5920   if (!full && (current_level + 1) == level()) {
  5921     // Gather statistics on the young generation collection.
  5922     collector()->stats().record_gc0_end(used());
  5926 CMSAdaptiveSizePolicy* ConcurrentMarkSweepGeneration::size_policy() {
  5927   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5928   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
  5929     "Wrong type of heap");
  5930   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
  5931     gch->gen_policy()->size_policy();
  5932   assert(sp->is_gc_cms_adaptive_size_policy(),
  5933     "Wrong type of size policy");
  5934   return sp;
  5937 void ConcurrentMarkSweepGeneration::rotate_debug_collection_type() {
  5938   if (PrintGCDetails && Verbose) {
  5939     gclog_or_tty->print("Rotate from %d ", _debug_collection_type);
  5941   _debug_collection_type = (CollectionTypes) (_debug_collection_type + 1);
  5942   _debug_collection_type =
  5943     (CollectionTypes) (_debug_collection_type % Unknown_collection_type);
  5944   if (PrintGCDetails && Verbose) {
  5945     gclog_or_tty->print_cr("to %d ", _debug_collection_type);
  5949 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* gen,
  5950   bool asynch) {
  5951   // We iterate over the space(s) underlying this generation,
  5952   // checking the mark bit map to see if the bits corresponding
  5953   // to specific blocks are marked or not. Blocks that are
  5954   // marked are live and are not swept up. All remaining blocks
  5955   // are swept up, with coalescing on-the-fly as we sweep up
  5956   // contiguous free and/or garbage blocks:
  5957   // We need to ensure that the sweeper synchronizes with allocators
  5958   // and stop-the-world collectors. In particular, the following
  5959   // locks are used:
  5960   // . CMS token: if this is held, a stop the world collection cannot occur
  5961   // . freelistLock: if this is held no allocation can occur from this
  5962   //                 generation by another thread
  5963   // . bitMapLock: if this is held, no other thread can access or update
  5964   //
  5966   // Note that we need to hold the freelistLock if we use
  5967   // block iterate below; else the iterator might go awry if
  5968   // a mutator (or promotion) causes block contents to change
  5969   // (for instance if the allocator divvies up a block).
  5970   // If we hold the free list lock, for all practical purposes
  5971   // young generation GC's can't occur (they'll usually need to
  5972   // promote), so we might as well prevent all young generation
  5973   // GC's while we do a sweeping step. For the same reason, we might
  5974   // as well take the bit map lock for the entire duration
  5976   // check that we hold the requisite locks
  5977   assert(have_cms_token(), "Should hold cms token");
  5978   assert(   (asynch && ConcurrentMarkSweepThread::cms_thread_has_cms_token())
  5979          || (!asynch && ConcurrentMarkSweepThread::vm_thread_has_cms_token()),
  5980         "Should possess CMS token to sweep");
  5981   assert_lock_strong(gen->freelistLock());
  5982   assert_lock_strong(bitMapLock());
  5984   assert(!_sweep_timer.is_active(), "Was switched off in an outer context");
  5985   gen->cmsSpace()->beginSweepFLCensus((float)(_sweep_timer.seconds()),
  5986                                       _sweep_estimate.padded_average());
  5987   gen->setNearLargestChunk();
  5990     SweepClosure sweepClosure(this, gen, &_markBitMap,
  5991                             CMSYield && asynch);
  5992     gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
  5993     // We need to free-up/coalesce garbage/blocks from a
  5994     // co-terminal free run. This is done in the SweepClosure
  5995     // destructor; so, do not remove this scope, else the
  5996     // end-of-sweep-census below will be off by a little bit.
  5998   gen->cmsSpace()->sweep_completed();
  5999   gen->cmsSpace()->endSweepFLCensus(sweepCount());
  6000   if (should_unload_classes()) {                // unloaded classes this cycle,
  6001     _concurrent_cycles_since_last_unload = 0;   // ... reset count
  6002   } else {                                      // did not unload classes,
  6003     _concurrent_cycles_since_last_unload++;     // ... increment count
  6007 // Reset CMS data structures (for now just the marking bit map)
  6008 // preparatory for the next cycle.
  6009 void CMSCollector::reset(bool asynch) {
  6010   GenCollectedHeap* gch = GenCollectedHeap::heap();
  6011   CMSAdaptiveSizePolicy* sp = size_policy();
  6012   AdaptiveSizePolicyOutput(sp, gch->total_collections());
  6013   if (asynch) {
  6014     CMSTokenSyncWithLocks ts(true, bitMapLock());
  6016     // If the state is not "Resetting", the foreground  thread
  6017     // has done a collection and the resetting.
  6018     if (_collectorState != Resetting) {
  6019       assert(_collectorState == Idling, "The state should only change"
  6020         " because the foreground collector has finished the collection");
  6021       return;
  6024     // Clear the mark bitmap (no grey objects to start with)
  6025     // for the next cycle.
  6026     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  6027     CMSPhaseAccounting cmspa(this, "reset", !PrintGCDetails);
  6029     HeapWord* curAddr = _markBitMap.startWord();
  6030     while (curAddr < _markBitMap.endWord()) {
  6031       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
  6032       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
  6033       _markBitMap.clear_large_range(chunk);
  6034       if (ConcurrentMarkSweepThread::should_yield() &&
  6035           !foregroundGCIsActive() &&
  6036           CMSYield) {
  6037         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  6038                "CMS thread should hold CMS token");
  6039         assert_lock_strong(bitMapLock());
  6040         bitMapLock()->unlock();
  6041         ConcurrentMarkSweepThread::desynchronize(true);
  6042         ConcurrentMarkSweepThread::acknowledge_yield_request();
  6043         stopTimer();
  6044         if (PrintCMSStatistics != 0) {
  6045           incrementYields();
  6047         icms_wait();
  6049         // See the comment in coordinator_yield()
  6050         for (unsigned i = 0; i < CMSYieldSleepCount &&
  6051                          ConcurrentMarkSweepThread::should_yield() &&
  6052                          !CMSCollector::foregroundGCIsActive(); ++i) {
  6053           os::sleep(Thread::current(), 1, false);
  6054           ConcurrentMarkSweepThread::acknowledge_yield_request();
  6057         ConcurrentMarkSweepThread::synchronize(true);
  6058         bitMapLock()->lock_without_safepoint_check();
  6059         startTimer();
  6061       curAddr = chunk.end();
  6063     _collectorState = Idling;
  6064   } else {
  6065     // already have the lock
  6066     assert(_collectorState == Resetting, "just checking");
  6067     assert_lock_strong(bitMapLock());
  6068     _markBitMap.clear_all();
  6069     _collectorState = Idling;
  6072   // Stop incremental mode after a cycle completes, so that any future cycles
  6073   // are triggered by allocation.
  6074   stop_icms();
  6076   NOT_PRODUCT(
  6077     if (RotateCMSCollectionTypes) {
  6078       _cmsGen->rotate_debug_collection_type();
  6083 void CMSCollector::do_CMS_operation(CMS_op_type op) {
  6084   gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
  6085   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  6086   TraceTime t("GC", PrintGC, !PrintGCDetails, gclog_or_tty);
  6087   TraceCollectorStats tcs(counters());
  6089   switch (op) {
  6090     case CMS_op_checkpointRootsInitial: {
  6091       checkpointRootsInitial(true);       // asynch
  6092       if (PrintGC) {
  6093         _cmsGen->printOccupancy("initial-mark");
  6095       break;
  6097     case CMS_op_checkpointRootsFinal: {
  6098       checkpointRootsFinal(true,    // asynch
  6099                            false,   // !clear_all_soft_refs
  6100                            false);  // !init_mark_was_synchronous
  6101       if (PrintGC) {
  6102         _cmsGen->printOccupancy("remark");
  6104       break;
  6106     default:
  6107       fatal("No such CMS_op");
  6111 #ifndef PRODUCT
  6112 size_t const CMSCollector::skip_header_HeapWords() {
  6113   return FreeChunk::header_size();
  6116 // Try and collect here conditions that should hold when
  6117 // CMS thread is exiting. The idea is that the foreground GC
  6118 // thread should not be blocked if it wants to terminate
  6119 // the CMS thread and yet continue to run the VM for a while
  6120 // after that.
  6121 void CMSCollector::verify_ok_to_terminate() const {
  6122   assert(Thread::current()->is_ConcurrentGC_thread(),
  6123          "should be called by CMS thread");
  6124   assert(!_foregroundGCShouldWait, "should be false");
  6125   // We could check here that all the various low-level locks
  6126   // are not held by the CMS thread, but that is overkill; see
  6127   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
  6128   // is checked.
  6130 #endif
  6132 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
  6133   assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
  6134          "missing Printezis mark?");
  6135   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
  6136   size_t size = pointer_delta(nextOneAddr + 1, addr);
  6137   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  6138          "alignment problem");
  6139   assert(size >= 3, "Necessary for Printezis marks to work");
  6140   return size;
  6143 // A variant of the above (block_size_using_printezis_bits()) except
  6144 // that we return 0 if the P-bits are not yet set.
  6145 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
  6146   if (_markBitMap.isMarked(addr)) {
  6147     assert(_markBitMap.isMarked(addr + 1), "Missing Printezis bit?");
  6148     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
  6149     size_t size = pointer_delta(nextOneAddr + 1, addr);
  6150     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  6151            "alignment problem");
  6152     assert(size >= 3, "Necessary for Printezis marks to work");
  6153     return size;
  6154   } else {
  6155     assert(!_markBitMap.isMarked(addr + 1), "Bit map inconsistency?");
  6156     return 0;
  6160 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
  6161   size_t sz = 0;
  6162   oop p = (oop)addr;
  6163   if (p->klass_or_null() != NULL && p->is_parsable()) {
  6164     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
  6165   } else {
  6166     sz = block_size_using_printezis_bits(addr);
  6168   assert(sz > 0, "size must be nonzero");
  6169   HeapWord* next_block = addr + sz;
  6170   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
  6171                                              CardTableModRefBS::card_size);
  6172   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
  6173          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
  6174          "must be different cards");
  6175   return next_card;
  6179 // CMS Bit Map Wrapper /////////////////////////////////////////
  6181 // Construct a CMS bit map infrastructure, but don't create the
  6182 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
  6183 // further below.
  6184 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
  6185   _bm(NULL,0),
  6186   _shifter(shifter),
  6187   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true) : NULL)
  6189   _bmStartWord = 0;
  6190   _bmWordSize  = 0;
  6193 bool CMSBitMap::allocate(MemRegion mr) {
  6194   _bmStartWord = mr.start();
  6195   _bmWordSize  = mr.word_size();
  6196   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
  6197                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
  6198   if (!brs.is_reserved()) {
  6199     warning("CMS bit map allocation failure");
  6200     return false;
  6202   // For now we'll just commit all of the bit map up fromt.
  6203   // Later on we'll try to be more parsimonious with swap.
  6204   if (!_virtual_space.initialize(brs, brs.size())) {
  6205     warning("CMS bit map backing store failure");
  6206     return false;
  6208   assert(_virtual_space.committed_size() == brs.size(),
  6209          "didn't reserve backing store for all of CMS bit map?");
  6210   _bm.set_map((uintptr_t*)_virtual_space.low());
  6211   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
  6212          _bmWordSize, "inconsistency in bit map sizing");
  6213   _bm.set_size(_bmWordSize >> _shifter);
  6215   // bm.clear(); // can we rely on getting zero'd memory? verify below
  6216   assert(isAllClear(),
  6217          "Expected zero'd memory from ReservedSpace constructor");
  6218   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
  6219          "consistency check");
  6220   return true;
  6223 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
  6224   HeapWord *next_addr, *end_addr, *last_addr;
  6225   assert_locked();
  6226   assert(covers(mr), "out-of-range error");
  6227   // XXX assert that start and end are appropriately aligned
  6228   for (next_addr = mr.start(), end_addr = mr.end();
  6229        next_addr < end_addr; next_addr = last_addr) {
  6230     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
  6231     last_addr = dirty_region.end();
  6232     if (!dirty_region.is_empty()) {
  6233       cl->do_MemRegion(dirty_region);
  6234     } else {
  6235       assert(last_addr == end_addr, "program logic");
  6236       return;
  6241 #ifndef PRODUCT
  6242 void CMSBitMap::assert_locked() const {
  6243   CMSLockVerifier::assert_locked(lock());
  6246 bool CMSBitMap::covers(MemRegion mr) const {
  6247   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
  6248   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
  6249          "size inconsistency");
  6250   return (mr.start() >= _bmStartWord) &&
  6251          (mr.end()   <= endWord());
  6254 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
  6255     return (start >= _bmStartWord && (start + size) <= endWord());
  6258 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
  6259   // verify that there are no 1 bits in the interval [left, right)
  6260   FalseBitMapClosure falseBitMapClosure;
  6261   iterate(&falseBitMapClosure, left, right);
  6264 void CMSBitMap::region_invariant(MemRegion mr)
  6266   assert_locked();
  6267   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
  6268   assert(!mr.is_empty(), "unexpected empty region");
  6269   assert(covers(mr), "mr should be covered by bit map");
  6270   // convert address range into offset range
  6271   size_t start_ofs = heapWordToOffset(mr.start());
  6272   // Make sure that end() is appropriately aligned
  6273   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
  6274                         (1 << (_shifter+LogHeapWordSize))),
  6275          "Misaligned mr.end()");
  6276   size_t end_ofs   = heapWordToOffset(mr.end());
  6277   assert(end_ofs > start_ofs, "Should mark at least one bit");
  6280 #endif
  6282 bool CMSMarkStack::allocate(size_t size) {
  6283   // allocate a stack of the requisite depth
  6284   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
  6285                    size * sizeof(oop)));
  6286   if (!rs.is_reserved()) {
  6287     warning("CMSMarkStack allocation failure");
  6288     return false;
  6290   if (!_virtual_space.initialize(rs, rs.size())) {
  6291     warning("CMSMarkStack backing store failure");
  6292     return false;
  6294   assert(_virtual_space.committed_size() == rs.size(),
  6295          "didn't reserve backing store for all of CMS stack?");
  6296   _base = (oop*)(_virtual_space.low());
  6297   _index = 0;
  6298   _capacity = size;
  6299   NOT_PRODUCT(_max_depth = 0);
  6300   return true;
  6303 // XXX FIX ME !!! In the MT case we come in here holding a
  6304 // leaf lock. For printing we need to take a further lock
  6305 // which has lower rank. We need to recallibrate the two
  6306 // lock-ranks involved in order to be able to rpint the
  6307 // messages below. (Or defer the printing to the caller.
  6308 // For now we take the expedient path of just disabling the
  6309 // messages for the problematic case.)
  6310 void CMSMarkStack::expand() {
  6311   assert(_capacity <= CMSMarkStackSizeMax, "stack bigger than permitted");
  6312   if (_capacity == CMSMarkStackSizeMax) {
  6313     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
  6314       // We print a warning message only once per CMS cycle.
  6315       gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
  6317     return;
  6319   // Double capacity if possible
  6320   size_t new_capacity = MIN2(_capacity*2, CMSMarkStackSizeMax);
  6321   // Do not give up existing stack until we have managed to
  6322   // get the double capacity that we desired.
  6323   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
  6324                    new_capacity * sizeof(oop)));
  6325   if (rs.is_reserved()) {
  6326     // Release the backing store associated with old stack
  6327     _virtual_space.release();
  6328     // Reinitialize virtual space for new stack
  6329     if (!_virtual_space.initialize(rs, rs.size())) {
  6330       fatal("Not enough swap for expanded marking stack");
  6332     _base = (oop*)(_virtual_space.low());
  6333     _index = 0;
  6334     _capacity = new_capacity;
  6335   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
  6336     // Failed to double capacity, continue;
  6337     // we print a detail message only once per CMS cycle.
  6338     gclog_or_tty->print(" (benign) Failed to expand marking stack from "SIZE_FORMAT"K to "
  6339             SIZE_FORMAT"K",
  6340             _capacity / K, new_capacity / K);
  6345 // Closures
  6346 // XXX: there seems to be a lot of code  duplication here;
  6347 // should refactor and consolidate common code.
  6349 // This closure is used to mark refs into the CMS generation in
  6350 // the CMS bit map. Called at the first checkpoint. This closure
  6351 // assumes that we do not need to re-mark dirty cards; if the CMS
  6352 // generation on which this is used is not an oldest (modulo perm gen)
  6353 // generation then this will lose younger_gen cards!
  6355 MarkRefsIntoClosure::MarkRefsIntoClosure(
  6356   MemRegion span, CMSBitMap* bitMap, bool should_do_nmethods):
  6357     _span(span),
  6358     _bitMap(bitMap),
  6359     _should_do_nmethods(should_do_nmethods)
  6361     assert(_ref_processor == NULL, "deliberately left NULL");
  6362     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
  6365 void MarkRefsIntoClosure::do_oop(oop obj) {
  6366   // if p points into _span, then mark corresponding bit in _markBitMap
  6367   assert(obj->is_oop(), "expected an oop");
  6368   HeapWord* addr = (HeapWord*)obj;
  6369   if (_span.contains(addr)) {
  6370     // this should be made more efficient
  6371     _bitMap->mark(addr);
  6375 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
  6376 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
  6378 // A variant of the above, used for CMS marking verification.
  6379 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
  6380   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm,
  6381   bool should_do_nmethods):
  6382     _span(span),
  6383     _verification_bm(verification_bm),
  6384     _cms_bm(cms_bm),
  6385     _should_do_nmethods(should_do_nmethods) {
  6386     assert(_ref_processor == NULL, "deliberately left NULL");
  6387     assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
  6390 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
  6391   // if p points into _span, then mark corresponding bit in _markBitMap
  6392   assert(obj->is_oop(), "expected an oop");
  6393   HeapWord* addr = (HeapWord*)obj;
  6394   if (_span.contains(addr)) {
  6395     _verification_bm->mark(addr);
  6396     if (!_cms_bm->isMarked(addr)) {
  6397       oop(addr)->print();
  6398       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", addr);
  6399       fatal("... aborting");
  6404 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
  6405 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
  6407 //////////////////////////////////////////////////
  6408 // MarkRefsIntoAndScanClosure
  6409 //////////////////////////////////////////////////
  6411 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
  6412                                                        ReferenceProcessor* rp,
  6413                                                        CMSBitMap* bit_map,
  6414                                                        CMSBitMap* mod_union_table,
  6415                                                        CMSMarkStack*  mark_stack,
  6416                                                        CMSMarkStack*  revisit_stack,
  6417                                                        CMSCollector* collector,
  6418                                                        bool should_yield,
  6419                                                        bool concurrent_precleaning):
  6420   _collector(collector),
  6421   _span(span),
  6422   _bit_map(bit_map),
  6423   _mark_stack(mark_stack),
  6424   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
  6425                       mark_stack, revisit_stack, concurrent_precleaning),
  6426   _yield(should_yield),
  6427   _concurrent_precleaning(concurrent_precleaning),
  6428   _freelistLock(NULL)
  6430   _ref_processor = rp;
  6431   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
  6434 // This closure is used to mark refs into the CMS generation at the
  6435 // second (final) checkpoint, and to scan and transitively follow
  6436 // the unmarked oops. It is also used during the concurrent precleaning
  6437 // phase while scanning objects on dirty cards in the CMS generation.
  6438 // The marks are made in the marking bit map and the marking stack is
  6439 // used for keeping the (newly) grey objects during the scan.
  6440 // The parallel version (Par_...) appears further below.
  6441 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
  6442   if (obj != NULL) {
  6443     assert(obj->is_oop(), "expected an oop");
  6444     HeapWord* addr = (HeapWord*)obj;
  6445     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
  6446     assert(_collector->overflow_list_is_empty(),
  6447            "overflow list should be empty");
  6448     if (_span.contains(addr) &&
  6449         !_bit_map->isMarked(addr)) {
  6450       // mark bit map (object is now grey)
  6451       _bit_map->mark(addr);
  6452       // push on marking stack (stack should be empty), and drain the
  6453       // stack by applying this closure to the oops in the oops popped
  6454       // from the stack (i.e. blacken the grey objects)
  6455       bool res = _mark_stack->push(obj);
  6456       assert(res, "Should have space to push on empty stack");
  6457       do {
  6458         oop new_oop = _mark_stack->pop();
  6459         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
  6460         assert(new_oop->is_parsable(), "Found unparsable oop");
  6461         assert(_bit_map->isMarked((HeapWord*)new_oop),
  6462                "only grey objects on this stack");
  6463         // iterate over the oops in this oop, marking and pushing
  6464         // the ones in CMS heap (i.e. in _span).
  6465         new_oop->oop_iterate(&_pushAndMarkClosure);
  6466         // check if it's time to yield
  6467         do_yield_check();
  6468       } while (!_mark_stack->isEmpty() ||
  6469                (!_concurrent_precleaning && take_from_overflow_list()));
  6470         // if marking stack is empty, and we are not doing this
  6471         // during precleaning, then check the overflow list
  6473     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
  6474     assert(_collector->overflow_list_is_empty(),
  6475            "overflow list was drained above");
  6476     // We could restore evacuated mark words, if any, used for
  6477     // overflow list links here because the overflow list is
  6478     // provably empty here. That would reduce the maximum
  6479     // size requirements for preserved_{oop,mark}_stack.
  6480     // But we'll just postpone it until we are all done
  6481     // so we can just stream through.
  6482     if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) {
  6483       _collector->restore_preserved_marks_if_any();
  6484       assert(_collector->no_preserved_marks(), "No preserved marks");
  6486     assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(),
  6487            "All preserved marks should have been restored above");
  6491 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
  6492 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
  6494 void MarkRefsIntoAndScanClosure::do_yield_work() {
  6495   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  6496          "CMS thread should hold CMS token");
  6497   assert_lock_strong(_freelistLock);
  6498   assert_lock_strong(_bit_map->lock());
  6499   // relinquish the free_list_lock and bitMaplock()
  6500   _bit_map->lock()->unlock();
  6501   _freelistLock->unlock();
  6502   ConcurrentMarkSweepThread::desynchronize(true);
  6503   ConcurrentMarkSweepThread::acknowledge_yield_request();
  6504   _collector->stopTimer();
  6505   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  6506   if (PrintCMSStatistics != 0) {
  6507     _collector->incrementYields();
  6509   _collector->icms_wait();
  6511   // See the comment in coordinator_yield()
  6512   for (unsigned i = 0;
  6513        i < CMSYieldSleepCount &&
  6514        ConcurrentMarkSweepThread::should_yield() &&
  6515        !CMSCollector::foregroundGCIsActive();
  6516        ++i) {
  6517     os::sleep(Thread::current(), 1, false);
  6518     ConcurrentMarkSweepThread::acknowledge_yield_request();
  6521   ConcurrentMarkSweepThread::synchronize(true);
  6522   _freelistLock->lock_without_safepoint_check();
  6523   _bit_map->lock()->lock_without_safepoint_check();
  6524   _collector->startTimer();
  6527 ///////////////////////////////////////////////////////////
  6528 // Par_MarkRefsIntoAndScanClosure: a parallel version of
  6529 //                                 MarkRefsIntoAndScanClosure
  6530 ///////////////////////////////////////////////////////////
  6531 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
  6532   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
  6533   CMSBitMap* bit_map, OopTaskQueue* work_queue, CMSMarkStack*  revisit_stack):
  6534   _span(span),
  6535   _bit_map(bit_map),
  6536   _work_queue(work_queue),
  6537   _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
  6538                        (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))),
  6539   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue,
  6540                           revisit_stack)
  6542   _ref_processor = rp;
  6543   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
  6546 // This closure is used to mark refs into the CMS generation at the
  6547 // second (final) checkpoint, and to scan and transitively follow
  6548 // the unmarked oops. The marks are made in the marking bit map and
  6549 // the work_queue is used for keeping the (newly) grey objects during
  6550 // the scan phase whence they are also available for stealing by parallel
  6551 // threads. Since the marking bit map is shared, updates are
  6552 // synchronized (via CAS).
  6553 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
  6554   if (obj != NULL) {
  6555     // Ignore mark word because this could be an already marked oop
  6556     // that may be chained at the end of the overflow list.
  6557     assert(obj->is_oop(), "expected an oop");
  6558     HeapWord* addr = (HeapWord*)obj;
  6559     if (_span.contains(addr) &&
  6560         !_bit_map->isMarked(addr)) {
  6561       // mark bit map (object will become grey):
  6562       // It is possible for several threads to be
  6563       // trying to "claim" this object concurrently;
  6564       // the unique thread that succeeds in marking the
  6565       // object first will do the subsequent push on
  6566       // to the work queue (or overflow list).
  6567       if (_bit_map->par_mark(addr)) {
  6568         // push on work_queue (which may not be empty), and trim the
  6569         // queue to an appropriate length by applying this closure to
  6570         // the oops in the oops popped from the stack (i.e. blacken the
  6571         // grey objects)
  6572         bool res = _work_queue->push(obj);
  6573         assert(res, "Low water mark should be less than capacity?");
  6574         trim_queue(_low_water_mark);
  6575       } // Else, another thread claimed the object
  6580 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
  6581 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
  6583 // This closure is used to rescan the marked objects on the dirty cards
  6584 // in the mod union table and the card table proper.
  6585 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
  6586   oop p, MemRegion mr) {
  6588   size_t size = 0;
  6589   HeapWord* addr = (HeapWord*)p;
  6590   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
  6591   assert(_span.contains(addr), "we are scanning the CMS generation");
  6592   // check if it's time to yield
  6593   if (do_yield_check()) {
  6594     // We yielded for some foreground stop-world work,
  6595     // and we have been asked to abort this ongoing preclean cycle.
  6596     return 0;
  6598   if (_bitMap->isMarked(addr)) {
  6599     // it's marked; is it potentially uninitialized?
  6600     if (p->klass_or_null() != NULL) {
  6601       if (CMSPermGenPrecleaningEnabled && !p->is_parsable()) {
  6602         // Signal precleaning to redirty the card since
  6603         // the klass pointer is already installed.
  6604         assert(size == 0, "Initial value");
  6605       } else {
  6606         assert(p->is_parsable(), "must be parsable.");
  6607         // an initialized object; ignore mark word in verification below
  6608         // since we are running concurrent with mutators
  6609         assert(p->is_oop(true), "should be an oop");
  6610         if (p->is_objArray()) {
  6611           // objArrays are precisely marked; restrict scanning
  6612           // to dirty cards only.
  6613           size = CompactibleFreeListSpace::adjustObjectSize(
  6614                    p->oop_iterate(_scanningClosure, mr));
  6615         } else {
  6616           // A non-array may have been imprecisely marked; we need
  6617           // to scan object in its entirety.
  6618           size = CompactibleFreeListSpace::adjustObjectSize(
  6619                    p->oop_iterate(_scanningClosure));
  6621         #ifdef DEBUG
  6622           size_t direct_size =
  6623             CompactibleFreeListSpace::adjustObjectSize(p->size());
  6624           assert(size == direct_size, "Inconsistency in size");
  6625           assert(size >= 3, "Necessary for Printezis marks to work");
  6626           if (!_bitMap->isMarked(addr+1)) {
  6627             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
  6628           } else {
  6629             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
  6630             assert(_bitMap->isMarked(addr+size-1),
  6631                    "inconsistent Printezis mark");
  6633         #endif // DEBUG
  6635     } else {
  6636       // an unitialized object
  6637       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
  6638       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
  6639       size = pointer_delta(nextOneAddr + 1, addr);
  6640       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  6641              "alignment problem");
  6642       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
  6643       // will dirty the card when the klass pointer is installed in the
  6644       // object (signalling the completion of initialization).
  6646   } else {
  6647     // Either a not yet marked object or an uninitialized object
  6648     if (p->klass_or_null() == NULL || !p->is_parsable()) {
  6649       // An uninitialized object, skip to the next card, since
  6650       // we may not be able to read its P-bits yet.
  6651       assert(size == 0, "Initial value");
  6652     } else {
  6653       // An object not (yet) reached by marking: we merely need to
  6654       // compute its size so as to go look at the next block.
  6655       assert(p->is_oop(true), "should be an oop");
  6656       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
  6659   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
  6660   return size;
  6663 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
  6664   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  6665          "CMS thread should hold CMS token");
  6666   assert_lock_strong(_freelistLock);
  6667   assert_lock_strong(_bitMap->lock());
  6668   // relinquish the free_list_lock and bitMaplock()
  6669   _bitMap->lock()->unlock();
  6670   _freelistLock->unlock();
  6671   ConcurrentMarkSweepThread::desynchronize(true);
  6672   ConcurrentMarkSweepThread::acknowledge_yield_request();
  6673   _collector->stopTimer();
  6674   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  6675   if (PrintCMSStatistics != 0) {
  6676     _collector->incrementYields();
  6678   _collector->icms_wait();
  6680   // See the comment in coordinator_yield()
  6681   for (unsigned i = 0; i < CMSYieldSleepCount &&
  6682                    ConcurrentMarkSweepThread::should_yield() &&
  6683                    !CMSCollector::foregroundGCIsActive(); ++i) {
  6684     os::sleep(Thread::current(), 1, false);
  6685     ConcurrentMarkSweepThread::acknowledge_yield_request();
  6688   ConcurrentMarkSweepThread::synchronize(true);
  6689   _freelistLock->lock_without_safepoint_check();
  6690   _bitMap->lock()->lock_without_safepoint_check();
  6691   _collector->startTimer();
  6695 //////////////////////////////////////////////////////////////////
  6696 // SurvivorSpacePrecleanClosure
  6697 //////////////////////////////////////////////////////////////////
  6698 // This (single-threaded) closure is used to preclean the oops in
  6699 // the survivor spaces.
  6700 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
  6702   HeapWord* addr = (HeapWord*)p;
  6703   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
  6704   assert(!_span.contains(addr), "we are scanning the survivor spaces");
  6705   assert(p->klass_or_null() != NULL, "object should be initializd");
  6706   assert(p->is_parsable(), "must be parsable.");
  6707   // an initialized object; ignore mark word in verification below
  6708   // since we are running concurrent with mutators
  6709   assert(p->is_oop(true), "should be an oop");
  6710   // Note that we do not yield while we iterate over
  6711   // the interior oops of p, pushing the relevant ones
  6712   // on our marking stack.
  6713   size_t size = p->oop_iterate(_scanning_closure);
  6714   do_yield_check();
  6715   // Observe that below, we do not abandon the preclean
  6716   // phase as soon as we should; rather we empty the
  6717   // marking stack before returning. This is to satisfy
  6718   // some existing assertions. In general, it may be a
  6719   // good idea to abort immediately and complete the marking
  6720   // from the grey objects at a later time.
  6721   while (!_mark_stack->isEmpty()) {
  6722     oop new_oop = _mark_stack->pop();
  6723     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
  6724     assert(new_oop->is_parsable(), "Found unparsable oop");
  6725     assert(_bit_map->isMarked((HeapWord*)new_oop),
  6726            "only grey objects on this stack");
  6727     // iterate over the oops in this oop, marking and pushing
  6728     // the ones in CMS heap (i.e. in _span).
  6729     new_oop->oop_iterate(_scanning_closure);
  6730     // check if it's time to yield
  6731     do_yield_check();
  6733   unsigned int after_count =
  6734     GenCollectedHeap::heap()->total_collections();
  6735   bool abort = (_before_count != after_count) ||
  6736                _collector->should_abort_preclean();
  6737   return abort ? 0 : size;
  6740 void SurvivorSpacePrecleanClosure::do_yield_work() {
  6741   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  6742          "CMS thread should hold CMS token");
  6743   assert_lock_strong(_bit_map->lock());
  6744   // Relinquish the bit map lock
  6745   _bit_map->lock()->unlock();
  6746   ConcurrentMarkSweepThread::desynchronize(true);
  6747   ConcurrentMarkSweepThread::acknowledge_yield_request();
  6748   _collector->stopTimer();
  6749   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  6750   if (PrintCMSStatistics != 0) {
  6751     _collector->incrementYields();
  6753   _collector->icms_wait();
  6755   // See the comment in coordinator_yield()
  6756   for (unsigned i = 0; i < CMSYieldSleepCount &&
  6757                        ConcurrentMarkSweepThread::should_yield() &&
  6758                        !CMSCollector::foregroundGCIsActive(); ++i) {
  6759     os::sleep(Thread::current(), 1, false);
  6760     ConcurrentMarkSweepThread::acknowledge_yield_request();
  6763   ConcurrentMarkSweepThread::synchronize(true);
  6764   _bit_map->lock()->lock_without_safepoint_check();
  6765   _collector->startTimer();
  6768 // This closure is used to rescan the marked objects on the dirty cards
  6769 // in the mod union table and the card table proper. In the parallel
  6770 // case, although the bitMap is shared, we do a single read so the
  6771 // isMarked() query is "safe".
  6772 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
  6773   // Ignore mark word because we are running concurrent with mutators
  6774   assert(p->is_oop_or_null(true), "expected an oop or null");
  6775   HeapWord* addr = (HeapWord*)p;
  6776   assert(_span.contains(addr), "we are scanning the CMS generation");
  6777   bool is_obj_array = false;
  6778   #ifdef DEBUG
  6779     if (!_parallel) {
  6780       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
  6781       assert(_collector->overflow_list_is_empty(),
  6782              "overflow list should be empty");
  6785   #endif // DEBUG
  6786   if (_bit_map->isMarked(addr)) {
  6787     // Obj arrays are precisely marked, non-arrays are not;
  6788     // so we scan objArrays precisely and non-arrays in their
  6789     // entirety.
  6790     if (p->is_objArray()) {
  6791       is_obj_array = true;
  6792       if (_parallel) {
  6793         p->oop_iterate(_par_scan_closure, mr);
  6794       } else {
  6795         p->oop_iterate(_scan_closure, mr);
  6797     } else {
  6798       if (_parallel) {
  6799         p->oop_iterate(_par_scan_closure);
  6800       } else {
  6801         p->oop_iterate(_scan_closure);
  6805   #ifdef DEBUG
  6806     if (!_parallel) {
  6807       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
  6808       assert(_collector->overflow_list_is_empty(),
  6809              "overflow list should be empty");
  6812   #endif // DEBUG
  6813   return is_obj_array;
  6816 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
  6817                         MemRegion span,
  6818                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
  6819                         CMSMarkStack*  revisitStack,
  6820                         bool should_yield, bool verifying):
  6821   _collector(collector),
  6822   _span(span),
  6823   _bitMap(bitMap),
  6824   _mut(&collector->_modUnionTable),
  6825   _markStack(markStack),
  6826   _revisitStack(revisitStack),
  6827   _yield(should_yield),
  6828   _skipBits(0)
  6830   assert(_markStack->isEmpty(), "stack should be empty");
  6831   _finger = _bitMap->startWord();
  6832   _threshold = _finger;
  6833   assert(_collector->_restart_addr == NULL, "Sanity check");
  6834   assert(_span.contains(_finger), "Out of bounds _finger?");
  6835   DEBUG_ONLY(_verifying = verifying;)
  6838 void MarkFromRootsClosure::reset(HeapWord* addr) {
  6839   assert(_markStack->isEmpty(), "would cause duplicates on stack");
  6840   assert(_span.contains(addr), "Out of bounds _finger?");
  6841   _finger = addr;
  6842   _threshold = (HeapWord*)round_to(
  6843                  (intptr_t)_finger, CardTableModRefBS::card_size);
  6846 // Should revisit to see if this should be restructured for
  6847 // greater efficiency.
  6848 void MarkFromRootsClosure::do_bit(size_t offset) {
  6849   if (_skipBits > 0) {
  6850     _skipBits--;
  6851     return;
  6853   // convert offset into a HeapWord*
  6854   HeapWord* addr = _bitMap->startWord() + offset;
  6855   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
  6856          "address out of range");
  6857   assert(_bitMap->isMarked(addr), "tautology");
  6858   if (_bitMap->isMarked(addr+1)) {
  6859     // this is an allocated but not yet initialized object
  6860     assert(_skipBits == 0, "tautology");
  6861     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
  6862     oop p = oop(addr);
  6863     if (p->klass_or_null() == NULL || !p->is_parsable()) {
  6864       DEBUG_ONLY(if (!_verifying) {)
  6865         // We re-dirty the cards on which this object lies and increase
  6866         // the _threshold so that we'll come back to scan this object
  6867         // during the preclean or remark phase. (CMSCleanOnEnter)
  6868         if (CMSCleanOnEnter) {
  6869           size_t sz = _collector->block_size_using_printezis_bits(addr);
  6870           HeapWord* end_card_addr   = (HeapWord*)round_to(
  6871                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
  6872           MemRegion redirty_range = MemRegion(addr, end_card_addr);
  6873           assert(!redirty_range.is_empty(), "Arithmetical tautology");
  6874           // Bump _threshold to end_card_addr; note that
  6875           // _threshold cannot possibly exceed end_card_addr, anyhow.
  6876           // This prevents future clearing of the card as the scan proceeds
  6877           // to the right.
  6878           assert(_threshold <= end_card_addr,
  6879                  "Because we are just scanning into this object");
  6880           if (_threshold < end_card_addr) {
  6881             _threshold = end_card_addr;
  6883           if (p->klass_or_null() != NULL) {
  6884             // Redirty the range of cards...
  6885             _mut->mark_range(redirty_range);
  6886           } // ...else the setting of klass will dirty the card anyway.
  6888       DEBUG_ONLY(})
  6889       return;
  6892   scanOopsInOop(addr);
  6895 // We take a break if we've been at this for a while,
  6896 // so as to avoid monopolizing the locks involved.
  6897 void MarkFromRootsClosure::do_yield_work() {
  6898   // First give up the locks, then yield, then re-lock
  6899   // We should probably use a constructor/destructor idiom to
  6900   // do this unlock/lock or modify the MutexUnlocker class to
  6901   // serve our purpose. XXX
  6902   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  6903          "CMS thread should hold CMS token");
  6904   assert_lock_strong(_bitMap->lock());
  6905   _bitMap->lock()->unlock();
  6906   ConcurrentMarkSweepThread::desynchronize(true);
  6907   ConcurrentMarkSweepThread::acknowledge_yield_request();
  6908   _collector->stopTimer();
  6909   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  6910   if (PrintCMSStatistics != 0) {
  6911     _collector->incrementYields();
  6913   _collector->icms_wait();
  6915   // See the comment in coordinator_yield()
  6916   for (unsigned i = 0; i < CMSYieldSleepCount &&
  6917                        ConcurrentMarkSweepThread::should_yield() &&
  6918                        !CMSCollector::foregroundGCIsActive(); ++i) {
  6919     os::sleep(Thread::current(), 1, false);
  6920     ConcurrentMarkSweepThread::acknowledge_yield_request();
  6923   ConcurrentMarkSweepThread::synchronize(true);
  6924   _bitMap->lock()->lock_without_safepoint_check();
  6925   _collector->startTimer();
  6928 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
  6929   assert(_bitMap->isMarked(ptr), "expected bit to be set");
  6930   assert(_markStack->isEmpty(),
  6931          "should drain stack to limit stack usage");
  6932   // convert ptr to an oop preparatory to scanning
  6933   oop obj = oop(ptr);
  6934   // Ignore mark word in verification below, since we
  6935   // may be running concurrent with mutators.
  6936   assert(obj->is_oop(true), "should be an oop");
  6937   assert(_finger <= ptr, "_finger runneth ahead");
  6938   // advance the finger to right end of this object
  6939   _finger = ptr + obj->size();
  6940   assert(_finger > ptr, "we just incremented it above");
  6941   // On large heaps, it may take us some time to get through
  6942   // the marking phase (especially if running iCMS). During
  6943   // this time it's possible that a lot of mutations have
  6944   // accumulated in the card table and the mod union table --
  6945   // these mutation records are redundant until we have
  6946   // actually traced into the corresponding card.
  6947   // Here, we check whether advancing the finger would make
  6948   // us cross into a new card, and if so clear corresponding
  6949   // cards in the MUT (preclean them in the card-table in the
  6950   // future).
  6952   DEBUG_ONLY(if (!_verifying) {)
  6953     // The clean-on-enter optimization is disabled by default,
  6954     // until we fix 6178663.
  6955     if (CMSCleanOnEnter && (_finger > _threshold)) {
  6956       // [_threshold, _finger) represents the interval
  6957       // of cards to be cleared  in MUT (or precleaned in card table).
  6958       // The set of cards to be cleared is all those that overlap
  6959       // with the interval [_threshold, _finger); note that
  6960       // _threshold is always kept card-aligned but _finger isn't
  6961       // always card-aligned.
  6962       HeapWord* old_threshold = _threshold;
  6963       assert(old_threshold == (HeapWord*)round_to(
  6964               (intptr_t)old_threshold, CardTableModRefBS::card_size),
  6965              "_threshold should always be card-aligned");
  6966       _threshold = (HeapWord*)round_to(
  6967                      (intptr_t)_finger, CardTableModRefBS::card_size);
  6968       MemRegion mr(old_threshold, _threshold);
  6969       assert(!mr.is_empty(), "Control point invariant");
  6970       assert(_span.contains(mr), "Should clear within span");
  6971       // XXX When _finger crosses from old gen into perm gen
  6972       // we may be doing unnecessary cleaning; do better in the
  6973       // future by detecting that condition and clearing fewer
  6974       // MUT/CT entries.
  6975       _mut->clear_range(mr);
  6977   DEBUG_ONLY(})
  6979   // Note: the finger doesn't advance while we drain
  6980   // the stack below.
  6981   PushOrMarkClosure pushOrMarkClosure(_collector,
  6982                                       _span, _bitMap, _markStack,
  6983                                       _revisitStack,
  6984                                       _finger, this);
  6985   bool res = _markStack->push(obj);
  6986   assert(res, "Empty non-zero size stack should have space for single push");
  6987   while (!_markStack->isEmpty()) {
  6988     oop new_oop = _markStack->pop();
  6989     // Skip verifying header mark word below because we are
  6990     // running concurrent with mutators.
  6991     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
  6992     // now scan this oop's oops
  6993     new_oop->oop_iterate(&pushOrMarkClosure);
  6994     do_yield_check();
  6996   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
  6999 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
  7000                        CMSCollector* collector, MemRegion span,
  7001                        CMSBitMap* bit_map,
  7002                        OopTaskQueue* work_queue,
  7003                        CMSMarkStack*  overflow_stack,
  7004                        CMSMarkStack*  revisit_stack,
  7005                        bool should_yield):
  7006   _collector(collector),
  7007   _whole_span(collector->_span),
  7008   _span(span),
  7009   _bit_map(bit_map),
  7010   _mut(&collector->_modUnionTable),
  7011   _work_queue(work_queue),
  7012   _overflow_stack(overflow_stack),
  7013   _revisit_stack(revisit_stack),
  7014   _yield(should_yield),
  7015   _skip_bits(0),
  7016   _task(task)
  7018   assert(_work_queue->size() == 0, "work_queue should be empty");
  7019   _finger = span.start();
  7020   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
  7021   assert(_span.contains(_finger), "Out of bounds _finger?");
  7024 // Should revisit to see if this should be restructured for
  7025 // greater efficiency.
  7026 void Par_MarkFromRootsClosure::do_bit(size_t offset) {
  7027   if (_skip_bits > 0) {
  7028     _skip_bits--;
  7029     return;
  7031   // convert offset into a HeapWord*
  7032   HeapWord* addr = _bit_map->startWord() + offset;
  7033   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
  7034          "address out of range");
  7035   assert(_bit_map->isMarked(addr), "tautology");
  7036   if (_bit_map->isMarked(addr+1)) {
  7037     // this is an allocated object that might not yet be initialized
  7038     assert(_skip_bits == 0, "tautology");
  7039     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
  7040     oop p = oop(addr);
  7041     if (p->klass_or_null() == NULL || !p->is_parsable()) {
  7042       // in the case of Clean-on-Enter optimization, redirty card
  7043       // and avoid clearing card by increasing  the threshold.
  7044       return;
  7047   scan_oops_in_oop(addr);
  7050 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
  7051   assert(_bit_map->isMarked(ptr), "expected bit to be set");
  7052   // Should we assert that our work queue is empty or
  7053   // below some drain limit?
  7054   assert(_work_queue->size() == 0,
  7055          "should drain stack to limit stack usage");
  7056   // convert ptr to an oop preparatory to scanning
  7057   oop obj = oop(ptr);
  7058   // Ignore mark word in verification below, since we
  7059   // may be running concurrent with mutators.
  7060   assert(obj->is_oop(true), "should be an oop");
  7061   assert(_finger <= ptr, "_finger runneth ahead");
  7062   // advance the finger to right end of this object
  7063   _finger = ptr + obj->size();
  7064   assert(_finger > ptr, "we just incremented it above");
  7065   // On large heaps, it may take us some time to get through
  7066   // the marking phase (especially if running iCMS). During
  7067   // this time it's possible that a lot of mutations have
  7068   // accumulated in the card table and the mod union table --
  7069   // these mutation records are redundant until we have
  7070   // actually traced into the corresponding card.
  7071   // Here, we check whether advancing the finger would make
  7072   // us cross into a new card, and if so clear corresponding
  7073   // cards in the MUT (preclean them in the card-table in the
  7074   // future).
  7076   // The clean-on-enter optimization is disabled by default,
  7077   // until we fix 6178663.
  7078   if (CMSCleanOnEnter && (_finger > _threshold)) {
  7079     // [_threshold, _finger) represents the interval
  7080     // of cards to be cleared  in MUT (or precleaned in card table).
  7081     // The set of cards to be cleared is all those that overlap
  7082     // with the interval [_threshold, _finger); note that
  7083     // _threshold is always kept card-aligned but _finger isn't
  7084     // always card-aligned.
  7085     HeapWord* old_threshold = _threshold;
  7086     assert(old_threshold == (HeapWord*)round_to(
  7087             (intptr_t)old_threshold, CardTableModRefBS::card_size),
  7088            "_threshold should always be card-aligned");
  7089     _threshold = (HeapWord*)round_to(
  7090                    (intptr_t)_finger, CardTableModRefBS::card_size);
  7091     MemRegion mr(old_threshold, _threshold);
  7092     assert(!mr.is_empty(), "Control point invariant");
  7093     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
  7094     // XXX When _finger crosses from old gen into perm gen
  7095     // we may be doing unnecessary cleaning; do better in the
  7096     // future by detecting that condition and clearing fewer
  7097     // MUT/CT entries.
  7098     _mut->clear_range(mr);
  7101   // Note: the local finger doesn't advance while we drain
  7102   // the stack below, but the global finger sure can and will.
  7103   HeapWord** gfa = _task->global_finger_addr();
  7104   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
  7105                                       _span, _bit_map,
  7106                                       _work_queue,
  7107                                       _overflow_stack,
  7108                                       _revisit_stack,
  7109                                       _finger,
  7110                                       gfa, this);
  7111   bool res = _work_queue->push(obj);   // overflow could occur here
  7112   assert(res, "Will hold once we use workqueues");
  7113   while (true) {
  7114     oop new_oop;
  7115     if (!_work_queue->pop_local(new_oop)) {
  7116       // We emptied our work_queue; check if there's stuff that can
  7117       // be gotten from the overflow stack.
  7118       if (CMSConcMarkingTask::get_work_from_overflow_stack(
  7119             _overflow_stack, _work_queue)) {
  7120         do_yield_check();
  7121         continue;
  7122       } else {  // done
  7123         break;
  7126     // Skip verifying header mark word below because we are
  7127     // running concurrent with mutators.
  7128     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
  7129     // now scan this oop's oops
  7130     new_oop->oop_iterate(&pushOrMarkClosure);
  7131     do_yield_check();
  7133   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
  7136 // Yield in response to a request from VM Thread or
  7137 // from mutators.
  7138 void Par_MarkFromRootsClosure::do_yield_work() {
  7139   assert(_task != NULL, "sanity");
  7140   _task->yield();
  7143 // A variant of the above used for verifying CMS marking work.
  7144 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
  7145                         MemRegion span,
  7146                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
  7147                         CMSMarkStack*  mark_stack):
  7148   _collector(collector),
  7149   _span(span),
  7150   _verification_bm(verification_bm),
  7151   _cms_bm(cms_bm),
  7152   _mark_stack(mark_stack),
  7153   _pam_verify_closure(collector, span, verification_bm, cms_bm,
  7154                       mark_stack)
  7156   assert(_mark_stack->isEmpty(), "stack should be empty");
  7157   _finger = _verification_bm->startWord();
  7158   assert(_collector->_restart_addr == NULL, "Sanity check");
  7159   assert(_span.contains(_finger), "Out of bounds _finger?");
  7162 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
  7163   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
  7164   assert(_span.contains(addr), "Out of bounds _finger?");
  7165   _finger = addr;
  7168 // Should revisit to see if this should be restructured for
  7169 // greater efficiency.
  7170 void MarkFromRootsVerifyClosure::do_bit(size_t offset) {
  7171   // convert offset into a HeapWord*
  7172   HeapWord* addr = _verification_bm->startWord() + offset;
  7173   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
  7174          "address out of range");
  7175   assert(_verification_bm->isMarked(addr), "tautology");
  7176   assert(_cms_bm->isMarked(addr), "tautology");
  7178   assert(_mark_stack->isEmpty(),
  7179          "should drain stack to limit stack usage");
  7180   // convert addr to an oop preparatory to scanning
  7181   oop obj = oop(addr);
  7182   assert(obj->is_oop(), "should be an oop");
  7183   assert(_finger <= addr, "_finger runneth ahead");
  7184   // advance the finger to right end of this object
  7185   _finger = addr + obj->size();
  7186   assert(_finger > addr, "we just incremented it above");
  7187   // Note: the finger doesn't advance while we drain
  7188   // the stack below.
  7189   bool res = _mark_stack->push(obj);
  7190   assert(res, "Empty non-zero size stack should have space for single push");
  7191   while (!_mark_stack->isEmpty()) {
  7192     oop new_oop = _mark_stack->pop();
  7193     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
  7194     // now scan this oop's oops
  7195     new_oop->oop_iterate(&_pam_verify_closure);
  7197   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
  7200 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
  7201   CMSCollector* collector, MemRegion span,
  7202   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
  7203   CMSMarkStack*  mark_stack):
  7204   OopClosure(collector->ref_processor()),
  7205   _collector(collector),
  7206   _span(span),
  7207   _verification_bm(verification_bm),
  7208   _cms_bm(cms_bm),
  7209   _mark_stack(mark_stack)
  7210 { }
  7212 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
  7213 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
  7215 // Upon stack overflow, we discard (part of) the stack,
  7216 // remembering the least address amongst those discarded
  7217 // in CMSCollector's _restart_address.
  7218 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
  7219   // Remember the least grey address discarded
  7220   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
  7221   _collector->lower_restart_addr(ra);
  7222   _mark_stack->reset();  // discard stack contents
  7223   _mark_stack->expand(); // expand the stack if possible
  7226 void PushAndMarkVerifyClosure::do_oop(oop obj) {
  7227   assert(obj->is_oop_or_null(), "expected an oop or NULL");
  7228   HeapWord* addr = (HeapWord*)obj;
  7229   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
  7230     // Oop lies in _span and isn't yet grey or black
  7231     _verification_bm->mark(addr);            // now grey
  7232     if (!_cms_bm->isMarked(addr)) {
  7233       oop(addr)->print();
  7234       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)",
  7235                              addr);
  7236       fatal("... aborting");
  7239     if (!_mark_stack->push(obj)) { // stack overflow
  7240       if (PrintCMSStatistics != 0) {
  7241         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
  7242                                SIZE_FORMAT, _mark_stack->capacity());
  7244       assert(_mark_stack->isFull(), "Else push should have succeeded");
  7245       handle_stack_overflow(addr);
  7247     // anything including and to the right of _finger
  7248     // will be scanned as we iterate over the remainder of the
  7249     // bit map
  7253 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
  7254                      MemRegion span,
  7255                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
  7256                      CMSMarkStack*  revisitStack,
  7257                      HeapWord* finger, MarkFromRootsClosure* parent) :
  7258   OopClosure(collector->ref_processor()),
  7259   _collector(collector),
  7260   _span(span),
  7261   _bitMap(bitMap),
  7262   _markStack(markStack),
  7263   _revisitStack(revisitStack),
  7264   _finger(finger),
  7265   _parent(parent),
  7266   _should_remember_klasses(collector->should_unload_classes())
  7267 { }
  7269 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
  7270                      MemRegion span,
  7271                      CMSBitMap* bit_map,
  7272                      OopTaskQueue* work_queue,
  7273                      CMSMarkStack*  overflow_stack,
  7274                      CMSMarkStack*  revisit_stack,
  7275                      HeapWord* finger,
  7276                      HeapWord** global_finger_addr,
  7277                      Par_MarkFromRootsClosure* parent) :
  7278   OopClosure(collector->ref_processor()),
  7279   _collector(collector),
  7280   _whole_span(collector->_span),
  7281   _span(span),
  7282   _bit_map(bit_map),
  7283   _work_queue(work_queue),
  7284   _overflow_stack(overflow_stack),
  7285   _revisit_stack(revisit_stack),
  7286   _finger(finger),
  7287   _global_finger_addr(global_finger_addr),
  7288   _parent(parent),
  7289   _should_remember_klasses(collector->should_unload_classes())
  7290 { }
  7292 void CMSCollector::lower_restart_addr(HeapWord* low) {
  7293   assert(_span.contains(low), "Out of bounds addr");
  7294   if (_restart_addr == NULL) {
  7295     _restart_addr = low;
  7296   } else {
  7297     _restart_addr = MIN2(_restart_addr, low);
  7301 // Upon stack overflow, we discard (part of) the stack,
  7302 // remembering the least address amongst those discarded
  7303 // in CMSCollector's _restart_address.
  7304 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
  7305   // Remember the least grey address discarded
  7306   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
  7307   _collector->lower_restart_addr(ra);
  7308   _markStack->reset();  // discard stack contents
  7309   _markStack->expand(); // expand the stack if possible
  7312 // Upon stack overflow, we discard (part of) the stack,
  7313 // remembering the least address amongst those discarded
  7314 // in CMSCollector's _restart_address.
  7315 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
  7316   // We need to do this under a mutex to prevent other
  7317   // workers from interfering with the expansion below.
  7318   MutexLockerEx ml(_overflow_stack->par_lock(),
  7319                    Mutex::_no_safepoint_check_flag);
  7320   // Remember the least grey address discarded
  7321   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
  7322   _collector->lower_restart_addr(ra);
  7323   _overflow_stack->reset();  // discard stack contents
  7324   _overflow_stack->expand(); // expand the stack if possible
  7327 void PushOrMarkClosure::do_oop(oop obj) {
  7328   // Ignore mark word because we are running concurrent with mutators.
  7329   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
  7330   HeapWord* addr = (HeapWord*)obj;
  7331   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
  7332     // Oop lies in _span and isn't yet grey or black
  7333     _bitMap->mark(addr);            // now grey
  7334     if (addr < _finger) {
  7335       // the bit map iteration has already either passed, or
  7336       // sampled, this bit in the bit map; we'll need to
  7337       // use the marking stack to scan this oop's oops.
  7338       bool simulate_overflow = false;
  7339       NOT_PRODUCT(
  7340         if (CMSMarkStackOverflowALot &&
  7341             _collector->simulate_overflow()) {
  7342           // simulate a stack overflow
  7343           simulate_overflow = true;
  7346       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
  7347         if (PrintCMSStatistics != 0) {
  7348           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
  7349                                  SIZE_FORMAT, _markStack->capacity());
  7351         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
  7352         handle_stack_overflow(addr);
  7355     // anything including and to the right of _finger
  7356     // will be scanned as we iterate over the remainder of the
  7357     // bit map
  7358     do_yield_check();
  7362 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
  7363 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
  7365 void Par_PushOrMarkClosure::do_oop(oop obj) {
  7366   // Ignore mark word because we are running concurrent with mutators.
  7367   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
  7368   HeapWord* addr = (HeapWord*)obj;
  7369   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
  7370     // Oop lies in _span and isn't yet grey or black
  7371     // We read the global_finger (volatile read) strictly after marking oop
  7372     bool res = _bit_map->par_mark(addr);    // now grey
  7373     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
  7374     // Should we push this marked oop on our stack?
  7375     // -- if someone else marked it, nothing to do
  7376     // -- if target oop is above global finger nothing to do
  7377     // -- if target oop is in chunk and above local finger
  7378     //      then nothing to do
  7379     // -- else push on work queue
  7380     if (   !res       // someone else marked it, they will deal with it
  7381         || (addr >= *gfa)  // will be scanned in a later task
  7382         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
  7383       return;
  7385     // the bit map iteration has already either passed, or
  7386     // sampled, this bit in the bit map; we'll need to
  7387     // use the marking stack to scan this oop's oops.
  7388     bool simulate_overflow = false;
  7389     NOT_PRODUCT(
  7390       if (CMSMarkStackOverflowALot &&
  7391           _collector->simulate_overflow()) {
  7392         // simulate a stack overflow
  7393         simulate_overflow = true;
  7396     if (simulate_overflow ||
  7397         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
  7398       // stack overflow
  7399       if (PrintCMSStatistics != 0) {
  7400         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
  7401                                SIZE_FORMAT, _overflow_stack->capacity());
  7403       // We cannot assert that the overflow stack is full because
  7404       // it may have been emptied since.
  7405       assert(simulate_overflow ||
  7406              _work_queue->size() == _work_queue->max_elems(),
  7407             "Else push should have succeeded");
  7408       handle_stack_overflow(addr);
  7410     do_yield_check();
  7414 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
  7415 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
  7417 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
  7418                                        MemRegion span,
  7419                                        ReferenceProcessor* rp,
  7420                                        CMSBitMap* bit_map,
  7421                                        CMSBitMap* mod_union_table,
  7422                                        CMSMarkStack*  mark_stack,
  7423                                        CMSMarkStack*  revisit_stack,
  7424                                        bool           concurrent_precleaning):
  7425   OopClosure(rp),
  7426   _collector(collector),
  7427   _span(span),
  7428   _bit_map(bit_map),
  7429   _mod_union_table(mod_union_table),
  7430   _mark_stack(mark_stack),
  7431   _revisit_stack(revisit_stack),
  7432   _concurrent_precleaning(concurrent_precleaning),
  7433   _should_remember_klasses(collector->should_unload_classes())
  7435   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
  7438 // Grey object rescan during pre-cleaning and second checkpoint phases --
  7439 // the non-parallel version (the parallel version appears further below.)
  7440 void PushAndMarkClosure::do_oop(oop obj) {
  7441   // If _concurrent_precleaning, ignore mark word verification
  7442   assert(obj->is_oop_or_null(_concurrent_precleaning),
  7443          "expected an oop or NULL");
  7444   HeapWord* addr = (HeapWord*)obj;
  7445   // Check if oop points into the CMS generation
  7446   // and is not marked
  7447   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
  7448     // a white object ...
  7449     _bit_map->mark(addr);         // ... now grey
  7450     // push on the marking stack (grey set)
  7451     bool simulate_overflow = false;
  7452     NOT_PRODUCT(
  7453       if (CMSMarkStackOverflowALot &&
  7454           _collector->simulate_overflow()) {
  7455         // simulate a stack overflow
  7456         simulate_overflow = true;
  7459     if (simulate_overflow || !_mark_stack->push(obj)) {
  7460       if (_concurrent_precleaning) {
  7461          // During precleaning we can just dirty the appropriate card(s)
  7462          // in the mod union table, thus ensuring that the object remains
  7463          // in the grey set  and continue. In the case of object arrays
  7464          // we need to dirty all of the cards that the object spans,
  7465          // since the rescan of object arrays will be limited to the
  7466          // dirty cards.
  7467          // Note that no one can be intefering with us in this action
  7468          // of dirtying the mod union table, so no locking or atomics
  7469          // are required.
  7470          if (obj->is_objArray()) {
  7471            size_t sz = obj->size();
  7472            HeapWord* end_card_addr = (HeapWord*)round_to(
  7473                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
  7474            MemRegion redirty_range = MemRegion(addr, end_card_addr);
  7475            assert(!redirty_range.is_empty(), "Arithmetical tautology");
  7476            _mod_union_table->mark_range(redirty_range);
  7477          } else {
  7478            _mod_union_table->mark(addr);
  7480          _collector->_ser_pmc_preclean_ovflw++;
  7481       } else {
  7482          // During the remark phase, we need to remember this oop
  7483          // in the overflow list.
  7484          _collector->push_on_overflow_list(obj);
  7485          _collector->_ser_pmc_remark_ovflw++;
  7491 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
  7492                                                MemRegion span,
  7493                                                ReferenceProcessor* rp,
  7494                                                CMSBitMap* bit_map,
  7495                                                OopTaskQueue* work_queue,
  7496                                                CMSMarkStack* revisit_stack):
  7497   OopClosure(rp),
  7498   _collector(collector),
  7499   _span(span),
  7500   _bit_map(bit_map),
  7501   _work_queue(work_queue),
  7502   _revisit_stack(revisit_stack),
  7503   _should_remember_klasses(collector->should_unload_classes())
  7505   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
  7508 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
  7509 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
  7511 // Grey object rescan during second checkpoint phase --
  7512 // the parallel version.
  7513 void Par_PushAndMarkClosure::do_oop(oop obj) {
  7514   // In the assert below, we ignore the mark word because
  7515   // this oop may point to an already visited object that is
  7516   // on the overflow stack (in which case the mark word has
  7517   // been hijacked for chaining into the overflow stack --
  7518   // if this is the last object in the overflow stack then
  7519   // its mark word will be NULL). Because this object may
  7520   // have been subsequently popped off the global overflow
  7521   // stack, and the mark word possibly restored to the prototypical
  7522   // value, by the time we get to examined this failing assert in
  7523   // the debugger, is_oop_or_null(false) may subsequently start
  7524   // to hold.
  7525   assert(obj->is_oop_or_null(true),
  7526          "expected an oop or NULL");
  7527   HeapWord* addr = (HeapWord*)obj;
  7528   // Check if oop points into the CMS generation
  7529   // and is not marked
  7530   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
  7531     // a white object ...
  7532     // If we manage to "claim" the object, by being the
  7533     // first thread to mark it, then we push it on our
  7534     // marking stack
  7535     if (_bit_map->par_mark(addr)) {     // ... now grey
  7536       // push on work queue (grey set)
  7537       bool simulate_overflow = false;
  7538       NOT_PRODUCT(
  7539         if (CMSMarkStackOverflowALot &&
  7540             _collector->par_simulate_overflow()) {
  7541           // simulate a stack overflow
  7542           simulate_overflow = true;
  7545       if (simulate_overflow || !_work_queue->push(obj)) {
  7546         _collector->par_push_on_overflow_list(obj);
  7547         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
  7549     } // Else, some other thread got there first
  7553 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
  7554 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
  7556 void PushAndMarkClosure::remember_klass(Klass* k) {
  7557   if (!_revisit_stack->push(oop(k))) {
  7558     fatal("Revisit stack overflowed in PushAndMarkClosure");
  7562 void Par_PushAndMarkClosure::remember_klass(Klass* k) {
  7563   if (!_revisit_stack->par_push(oop(k))) {
  7564     fatal("Revist stack overflowed in Par_PushAndMarkClosure");
  7568 void CMSPrecleanRefsYieldClosure::do_yield_work() {
  7569   Mutex* bml = _collector->bitMapLock();
  7570   assert_lock_strong(bml);
  7571   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  7572          "CMS thread should hold CMS token");
  7574   bml->unlock();
  7575   ConcurrentMarkSweepThread::desynchronize(true);
  7577   ConcurrentMarkSweepThread::acknowledge_yield_request();
  7579   _collector->stopTimer();
  7580   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  7581   if (PrintCMSStatistics != 0) {
  7582     _collector->incrementYields();
  7584   _collector->icms_wait();
  7586   // See the comment in coordinator_yield()
  7587   for (unsigned i = 0; i < CMSYieldSleepCount &&
  7588                        ConcurrentMarkSweepThread::should_yield() &&
  7589                        !CMSCollector::foregroundGCIsActive(); ++i) {
  7590     os::sleep(Thread::current(), 1, false);
  7591     ConcurrentMarkSweepThread::acknowledge_yield_request();
  7594   ConcurrentMarkSweepThread::synchronize(true);
  7595   bml->lock();
  7597   _collector->startTimer();
  7600 bool CMSPrecleanRefsYieldClosure::should_return() {
  7601   if (ConcurrentMarkSweepThread::should_yield()) {
  7602     do_yield_work();
  7604   return _collector->foregroundGCIsActive();
  7607 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
  7608   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
  7609          "mr should be aligned to start at a card boundary");
  7610   // We'd like to assert:
  7611   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
  7612   //        "mr should be a range of cards");
  7613   // However, that would be too strong in one case -- the last
  7614   // partition ends at _unallocated_block which, in general, can be
  7615   // an arbitrary boundary, not necessarily card aligned.
  7616   if (PrintCMSStatistics != 0) {
  7617     _num_dirty_cards +=
  7618          mr.word_size()/CardTableModRefBS::card_size_in_words;
  7620   _space->object_iterate_mem(mr, &_scan_cl);
  7623 SweepClosure::SweepClosure(CMSCollector* collector,
  7624                            ConcurrentMarkSweepGeneration* g,
  7625                            CMSBitMap* bitMap, bool should_yield) :
  7626   _collector(collector),
  7627   _g(g),
  7628   _sp(g->cmsSpace()),
  7629   _limit(_sp->sweep_limit()),
  7630   _freelistLock(_sp->freelistLock()),
  7631   _bitMap(bitMap),
  7632   _yield(should_yield),
  7633   _inFreeRange(false),           // No free range at beginning of sweep
  7634   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
  7635   _lastFreeRangeCoalesced(false),
  7636   _freeFinger(g->used_region().start())
  7638   NOT_PRODUCT(
  7639     _numObjectsFreed = 0;
  7640     _numWordsFreed   = 0;
  7641     _numObjectsLive = 0;
  7642     _numWordsLive = 0;
  7643     _numObjectsAlreadyFree = 0;
  7644     _numWordsAlreadyFree = 0;
  7645     _last_fc = NULL;
  7647     _sp->initializeIndexedFreeListArrayReturnedBytes();
  7648     _sp->dictionary()->initializeDictReturnedBytes();
  7650   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
  7651          "sweep _limit out of bounds");
  7652   if (CMSTraceSweeper) {
  7653     gclog_or_tty->print("\n====================\nStarting new sweep\n");
  7657 // We need this destructor to reclaim any space at the end
  7658 // of the space, which do_blk below may not have added back to
  7659 // the free lists. [basically dealing with the "fringe effect"]
  7660 SweepClosure::~SweepClosure() {
  7661   assert_lock_strong(_freelistLock);
  7662   // this should be treated as the end of a free run if any
  7663   // The current free range should be returned to the free lists
  7664   // as one coalesced chunk.
  7665   if (inFreeRange()) {
  7666     flushCurFreeChunk(freeFinger(),
  7667       pointer_delta(_limit, freeFinger()));
  7668     assert(freeFinger() < _limit, "the finger pointeth off base");
  7669     if (CMSTraceSweeper) {
  7670       gclog_or_tty->print("destructor:");
  7671       gclog_or_tty->print("Sweep:put_free_blk 0x%x ("SIZE_FORMAT") "
  7672                  "[coalesced:"SIZE_FORMAT"]\n",
  7673                  freeFinger(), pointer_delta(_limit, freeFinger()),
  7674                  lastFreeRangeCoalesced());
  7677   NOT_PRODUCT(
  7678     if (Verbose && PrintGC) {
  7679       gclog_or_tty->print("Collected "SIZE_FORMAT" objects, "
  7680                           SIZE_FORMAT " bytes",
  7681                  _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
  7682       gclog_or_tty->print_cr("\nLive "SIZE_FORMAT" objects,  "
  7683                              SIZE_FORMAT" bytes  "
  7684         "Already free "SIZE_FORMAT" objects, "SIZE_FORMAT" bytes",
  7685         _numObjectsLive, _numWordsLive*sizeof(HeapWord),
  7686         _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
  7687       size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree) *
  7688         sizeof(HeapWord);
  7689       gclog_or_tty->print_cr("Total sweep: "SIZE_FORMAT" bytes", totalBytes);
  7691       if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
  7692         size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
  7693         size_t dictReturnedBytes = _sp->dictionary()->sumDictReturnedBytes();
  7694         size_t returnedBytes = indexListReturnedBytes + dictReturnedBytes;
  7695         gclog_or_tty->print("Returned "SIZE_FORMAT" bytes", returnedBytes);
  7696         gclog_or_tty->print("   Indexed List Returned "SIZE_FORMAT" bytes",
  7697           indexListReturnedBytes);
  7698         gclog_or_tty->print_cr("        Dictionary Returned "SIZE_FORMAT" bytes",
  7699           dictReturnedBytes);
  7703   // Now, in debug mode, just null out the sweep_limit
  7704   NOT_PRODUCT(_sp->clear_sweep_limit();)
  7705   if (CMSTraceSweeper) {
  7706     gclog_or_tty->print("end of sweep\n================\n");
  7710 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
  7711     bool freeRangeInFreeLists) {
  7712   if (CMSTraceSweeper) {
  7713     gclog_or_tty->print("---- Start free range 0x%x with free block [%d] (%d)\n",
  7714                freeFinger, _sp->block_size(freeFinger),
  7715                freeRangeInFreeLists);
  7717   assert(!inFreeRange(), "Trampling existing free range");
  7718   set_inFreeRange(true);
  7719   set_lastFreeRangeCoalesced(false);
  7721   set_freeFinger(freeFinger);
  7722   set_freeRangeInFreeLists(freeRangeInFreeLists);
  7723   if (CMSTestInFreeList) {
  7724     if (freeRangeInFreeLists) {
  7725       FreeChunk* fc = (FreeChunk*) freeFinger;
  7726       assert(fc->isFree(), "A chunk on the free list should be free.");
  7727       assert(fc->size() > 0, "Free range should have a size");
  7728       assert(_sp->verifyChunkInFreeLists(fc), "Chunk is not in free lists");
  7733 // Note that the sweeper runs concurrently with mutators. Thus,
  7734 // it is possible for direct allocation in this generation to happen
  7735 // in the middle of the sweep. Note that the sweeper also coalesces
  7736 // contiguous free blocks. Thus, unless the sweeper and the allocator
  7737 // synchronize appropriately freshly allocated blocks may get swept up.
  7738 // This is accomplished by the sweeper locking the free lists while
  7739 // it is sweeping. Thus blocks that are determined to be free are
  7740 // indeed free. There is however one additional complication:
  7741 // blocks that have been allocated since the final checkpoint and
  7742 // mark, will not have been marked and so would be treated as
  7743 // unreachable and swept up. To prevent this, the allocator marks
  7744 // the bit map when allocating during the sweep phase. This leads,
  7745 // however, to a further complication -- objects may have been allocated
  7746 // but not yet initialized -- in the sense that the header isn't yet
  7747 // installed. The sweeper can not then determine the size of the block
  7748 // in order to skip over it. To deal with this case, we use a technique
  7749 // (due to Printezis) to encode such uninitialized block sizes in the
  7750 // bit map. Since the bit map uses a bit per every HeapWord, but the
  7751 // CMS generation has a minimum object size of 3 HeapWords, it follows
  7752 // that "normal marks" won't be adjacent in the bit map (there will
  7753 // always be at least two 0 bits between successive 1 bits). We make use
  7754 // of these "unused" bits to represent uninitialized blocks -- the bit
  7755 // corresponding to the start of the uninitialized object and the next
  7756 // bit are both set. Finally, a 1 bit marks the end of the object that
  7757 // started with the two consecutive 1 bits to indicate its potentially
  7758 // uninitialized state.
  7760 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
  7761   FreeChunk* fc = (FreeChunk*)addr;
  7762   size_t res;
  7764   // check if we are done sweepinrg
  7765   if (addr == _limit) { // we have swept up to the limit, do nothing more
  7766     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
  7767            "sweep _limit out of bounds");
  7768     // help the closure application finish
  7769     return pointer_delta(_sp->end(), _limit);
  7771   assert(addr <= _limit, "sweep invariant");
  7773   // check if we should yield
  7774   do_yield_check(addr);
  7775   if (fc->isFree()) {
  7776     // Chunk that is already free
  7777     res = fc->size();
  7778     doAlreadyFreeChunk(fc);
  7779     debug_only(_sp->verifyFreeLists());
  7780     assert(res == fc->size(), "Don't expect the size to change");
  7781     NOT_PRODUCT(
  7782       _numObjectsAlreadyFree++;
  7783       _numWordsAlreadyFree += res;
  7785     NOT_PRODUCT(_last_fc = fc;)
  7786   } else if (!_bitMap->isMarked(addr)) {
  7787     // Chunk is fresh garbage
  7788     res = doGarbageChunk(fc);
  7789     debug_only(_sp->verifyFreeLists());
  7790     NOT_PRODUCT(
  7791       _numObjectsFreed++;
  7792       _numWordsFreed += res;
  7794   } else {
  7795     // Chunk that is alive.
  7796     res = doLiveChunk(fc);
  7797     debug_only(_sp->verifyFreeLists());
  7798     NOT_PRODUCT(
  7799         _numObjectsLive++;
  7800         _numWordsLive += res;
  7803   return res;
  7806 // For the smart allocation, record following
  7807 //  split deaths - a free chunk is removed from its free list because
  7808 //      it is being split into two or more chunks.
  7809 //  split birth - a free chunk is being added to its free list because
  7810 //      a larger free chunk has been split and resulted in this free chunk.
  7811 //  coal death - a free chunk is being removed from its free list because
  7812 //      it is being coalesced into a large free chunk.
  7813 //  coal birth - a free chunk is being added to its free list because
  7814 //      it was created when two or more free chunks where coalesced into
  7815 //      this free chunk.
  7816 //
  7817 // These statistics are used to determine the desired number of free
  7818 // chunks of a given size.  The desired number is chosen to be relative
  7819 // to the end of a CMS sweep.  The desired number at the end of a sweep
  7820 // is the
  7821 //      count-at-end-of-previous-sweep (an amount that was enough)
  7822 //              - count-at-beginning-of-current-sweep  (the excess)
  7823 //              + split-births  (gains in this size during interval)
  7824 //              - split-deaths  (demands on this size during interval)
  7825 // where the interval is from the end of one sweep to the end of the
  7826 // next.
  7827 //
  7828 // When sweeping the sweeper maintains an accumulated chunk which is
  7829 // the chunk that is made up of chunks that have been coalesced.  That
  7830 // will be termed the left-hand chunk.  A new chunk of garbage that
  7831 // is being considered for coalescing will be referred to as the
  7832 // right-hand chunk.
  7833 //
  7834 // When making a decision on whether to coalesce a right-hand chunk with
  7835 // the current left-hand chunk, the current count vs. the desired count
  7836 // of the left-hand chunk is considered.  Also if the right-hand chunk
  7837 // is near the large chunk at the end of the heap (see
  7838 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
  7839 // left-hand chunk is coalesced.
  7840 //
  7841 // When making a decision about whether to split a chunk, the desired count
  7842 // vs. the current count of the candidate to be split is also considered.
  7843 // If the candidate is underpopulated (currently fewer chunks than desired)
  7844 // a chunk of an overpopulated (currently more chunks than desired) size may
  7845 // be chosen.  The "hint" associated with a free list, if non-null, points
  7846 // to a free list which may be overpopulated.
  7847 //
  7849 void SweepClosure::doAlreadyFreeChunk(FreeChunk* fc) {
  7850   size_t size = fc->size();
  7851   // Chunks that cannot be coalesced are not in the
  7852   // free lists.
  7853   if (CMSTestInFreeList && !fc->cantCoalesce()) {
  7854     assert(_sp->verifyChunkInFreeLists(fc),
  7855       "free chunk should be in free lists");
  7857   // a chunk that is already free, should not have been
  7858   // marked in the bit map
  7859   HeapWord* addr = (HeapWord*) fc;
  7860   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
  7861   // Verify that the bit map has no bits marked between
  7862   // addr and purported end of this block.
  7863   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
  7865   // Some chunks cannot be coalesced in under any circumstances.
  7866   // See the definition of cantCoalesce().
  7867   if (!fc->cantCoalesce()) {
  7868     // This chunk can potentially be coalesced.
  7869     if (_sp->adaptive_freelists()) {
  7870       // All the work is done in
  7871       doPostIsFreeOrGarbageChunk(fc, size);
  7872     } else {  // Not adaptive free lists
  7873       // this is a free chunk that can potentially be coalesced by the sweeper;
  7874       if (!inFreeRange()) {
  7875         // if the next chunk is a free block that can't be coalesced
  7876         // it doesn't make sense to remove this chunk from the free lists
  7877         FreeChunk* nextChunk = (FreeChunk*)(addr + size);
  7878         assert((HeapWord*)nextChunk <= _limit, "sweep invariant");
  7879         if ((HeapWord*)nextChunk < _limit  &&    // there's a next chunk...
  7880             nextChunk->isFree()    &&            // which is free...
  7881             nextChunk->cantCoalesce()) {         // ... but cant be coalesced
  7882           // nothing to do
  7883         } else {
  7884           // Potentially the start of a new free range:
  7885           // Don't eagerly remove it from the free lists.
  7886           // No need to remove it if it will just be put
  7887           // back again.  (Also from a pragmatic point of view
  7888           // if it is a free block in a region that is beyond
  7889           // any allocated blocks, an assertion will fail)
  7890           // Remember the start of a free run.
  7891           initialize_free_range(addr, true);
  7892           // end - can coalesce with next chunk
  7894       } else {
  7895         // the midst of a free range, we are coalescing
  7896         debug_only(record_free_block_coalesced(fc);)
  7897         if (CMSTraceSweeper) {
  7898           gclog_or_tty->print("  -- pick up free block 0x%x (%d)\n", fc, size);
  7900         // remove it from the free lists
  7901         _sp->removeFreeChunkFromFreeLists(fc);
  7902         set_lastFreeRangeCoalesced(true);
  7903         // If the chunk is being coalesced and the current free range is
  7904         // in the free lists, remove the current free range so that it
  7905         // will be returned to the free lists in its entirety - all
  7906         // the coalesced pieces included.
  7907         if (freeRangeInFreeLists()) {
  7908           FreeChunk* ffc = (FreeChunk*) freeFinger();
  7909           assert(ffc->size() == pointer_delta(addr, freeFinger()),
  7910             "Size of free range is inconsistent with chunk size.");
  7911           if (CMSTestInFreeList) {
  7912             assert(_sp->verifyChunkInFreeLists(ffc),
  7913               "free range is not in free lists");
  7915           _sp->removeFreeChunkFromFreeLists(ffc);
  7916           set_freeRangeInFreeLists(false);
  7920   } else {
  7921     // Code path common to both original and adaptive free lists.
  7923     // cant coalesce with previous block; this should be treated
  7924     // as the end of a free run if any
  7925     if (inFreeRange()) {
  7926       // we kicked some butt; time to pick up the garbage
  7927       assert(freeFinger() < addr, "the finger pointeth off base");
  7928       flushCurFreeChunk(freeFinger(), pointer_delta(addr, freeFinger()));
  7930     // else, nothing to do, just continue
  7934 size_t SweepClosure::doGarbageChunk(FreeChunk* fc) {
  7935   // This is a chunk of garbage.  It is not in any free list.
  7936   // Add it to a free list or let it possibly be coalesced into
  7937   // a larger chunk.
  7938   HeapWord* addr = (HeapWord*) fc;
  7939   size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
  7941   if (_sp->adaptive_freelists()) {
  7942     // Verify that the bit map has no bits marked between
  7943     // addr and purported end of just dead object.
  7944     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
  7946     doPostIsFreeOrGarbageChunk(fc, size);
  7947   } else {
  7948     if (!inFreeRange()) {
  7949       // start of a new free range
  7950       assert(size > 0, "A free range should have a size");
  7951       initialize_free_range(addr, false);
  7953     } else {
  7954       // this will be swept up when we hit the end of the
  7955       // free range
  7956       if (CMSTraceSweeper) {
  7957         gclog_or_tty->print("  -- pick up garbage 0x%x (%d) \n", fc, size);
  7959       // If the chunk is being coalesced and the current free range is
  7960       // in the free lists, remove the current free range so that it
  7961       // will be returned to the free lists in its entirety - all
  7962       // the coalesced pieces included.
  7963       if (freeRangeInFreeLists()) {
  7964         FreeChunk* ffc = (FreeChunk*)freeFinger();
  7965         assert(ffc->size() == pointer_delta(addr, freeFinger()),
  7966           "Size of free range is inconsistent with chunk size.");
  7967         if (CMSTestInFreeList) {
  7968           assert(_sp->verifyChunkInFreeLists(ffc),
  7969             "free range is not in free lists");
  7971         _sp->removeFreeChunkFromFreeLists(ffc);
  7972         set_freeRangeInFreeLists(false);
  7974       set_lastFreeRangeCoalesced(true);
  7976     // this will be swept up when we hit the end of the free range
  7978     // Verify that the bit map has no bits marked between
  7979     // addr and purported end of just dead object.
  7980     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
  7982   return size;
  7985 size_t SweepClosure::doLiveChunk(FreeChunk* fc) {
  7986   HeapWord* addr = (HeapWord*) fc;
  7987   // The sweeper has just found a live object. Return any accumulated
  7988   // left hand chunk to the free lists.
  7989   if (inFreeRange()) {
  7990     if (_sp->adaptive_freelists()) {
  7991       flushCurFreeChunk(freeFinger(),
  7992                         pointer_delta(addr, freeFinger()));
  7993     } else { // not adaptive freelists
  7994       set_inFreeRange(false);
  7995       // Add the free range back to the free list if it is not already
  7996       // there.
  7997       if (!freeRangeInFreeLists()) {
  7998         assert(freeFinger() < addr, "the finger pointeth off base");
  7999         if (CMSTraceSweeper) {
  8000           gclog_or_tty->print("Sweep:put_free_blk 0x%x (%d) "
  8001             "[coalesced:%d]\n",
  8002             freeFinger(), pointer_delta(addr, freeFinger()),
  8003             lastFreeRangeCoalesced());
  8005         _sp->addChunkAndRepairOffsetTable(freeFinger(),
  8006           pointer_delta(addr, freeFinger()), lastFreeRangeCoalesced());
  8011   // Common code path for original and adaptive free lists.
  8013   // this object is live: we'd normally expect this to be
  8014   // an oop, and like to assert the following:
  8015   // assert(oop(addr)->is_oop(), "live block should be an oop");
  8016   // However, as we commented above, this may be an object whose
  8017   // header hasn't yet been initialized.
  8018   size_t size;
  8019   assert(_bitMap->isMarked(addr), "Tautology for this control point");
  8020   if (_bitMap->isMarked(addr + 1)) {
  8021     // Determine the size from the bit map, rather than trying to
  8022     // compute it from the object header.
  8023     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
  8024     size = pointer_delta(nextOneAddr + 1, addr);
  8025     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  8026            "alignment problem");
  8028     #ifdef DEBUG
  8029       if (oop(addr)->klass_or_null() != NULL &&
  8030           (   !_collector->should_unload_classes()
  8031            || oop(addr)->is_parsable())) {
  8032         // Ignore mark word because we are running concurrent with mutators
  8033         assert(oop(addr)->is_oop(true), "live block should be an oop");
  8034         assert(size ==
  8035                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
  8036                "P-mark and computed size do not agree");
  8038     #endif
  8040   } else {
  8041     // This should be an initialized object that's alive.
  8042     assert(oop(addr)->klass_or_null() != NULL &&
  8043            (!_collector->should_unload_classes()
  8044             || oop(addr)->is_parsable()),
  8045            "Should be an initialized object");
  8046     // Ignore mark word because we are running concurrent with mutators
  8047     assert(oop(addr)->is_oop(true), "live block should be an oop");
  8048     // Verify that the bit map has no bits marked between
  8049     // addr and purported end of this block.
  8050     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
  8051     assert(size >= 3, "Necessary for Printezis marks to work");
  8052     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
  8053     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
  8055   return size;
  8058 void SweepClosure::doPostIsFreeOrGarbageChunk(FreeChunk* fc,
  8059                                             size_t chunkSize) {
  8060   // doPostIsFreeOrGarbageChunk() should only be called in the smart allocation
  8061   // scheme.
  8062   bool fcInFreeLists = fc->isFree();
  8063   assert(_sp->adaptive_freelists(), "Should only be used in this case.");
  8064   assert((HeapWord*)fc <= _limit, "sweep invariant");
  8065   if (CMSTestInFreeList && fcInFreeLists) {
  8066     assert(_sp->verifyChunkInFreeLists(fc),
  8067       "free chunk is not in free lists");
  8071   if (CMSTraceSweeper) {
  8072     gclog_or_tty->print_cr("  -- pick up another chunk at 0x%x (%d)", fc, chunkSize);
  8075   HeapWord* addr = (HeapWord*) fc;
  8077   bool coalesce;
  8078   size_t left  = pointer_delta(addr, freeFinger());
  8079   size_t right = chunkSize;
  8080   switch (FLSCoalescePolicy) {
  8081     // numeric value forms a coalition aggressiveness metric
  8082     case 0:  { // never coalesce
  8083       coalesce = false;
  8084       break;
  8086     case 1: { // coalesce if left & right chunks on overpopulated lists
  8087       coalesce = _sp->coalOverPopulated(left) &&
  8088                  _sp->coalOverPopulated(right);
  8089       break;
  8091     case 2: { // coalesce if left chunk on overpopulated list (default)
  8092       coalesce = _sp->coalOverPopulated(left);
  8093       break;
  8095     case 3: { // coalesce if left OR right chunk on overpopulated list
  8096       coalesce = _sp->coalOverPopulated(left) ||
  8097                  _sp->coalOverPopulated(right);
  8098       break;
  8100     case 4: { // always coalesce
  8101       coalesce = true;
  8102       break;
  8104     default:
  8105      ShouldNotReachHere();
  8108   // Should the current free range be coalesced?
  8109   // If the chunk is in a free range and either we decided to coalesce above
  8110   // or the chunk is near the large block at the end of the heap
  8111   // (isNearLargestChunk() returns true), then coalesce this chunk.
  8112   bool doCoalesce = inFreeRange() &&
  8113     (coalesce || _g->isNearLargestChunk((HeapWord*)fc));
  8114   if (doCoalesce) {
  8115     // Coalesce the current free range on the left with the new
  8116     // chunk on the right.  If either is on a free list,
  8117     // it must be removed from the list and stashed in the closure.
  8118     if (freeRangeInFreeLists()) {
  8119       FreeChunk* ffc = (FreeChunk*)freeFinger();
  8120       assert(ffc->size() == pointer_delta(addr, freeFinger()),
  8121         "Size of free range is inconsistent with chunk size.");
  8122       if (CMSTestInFreeList) {
  8123         assert(_sp->verifyChunkInFreeLists(ffc),
  8124           "Chunk is not in free lists");
  8126       _sp->coalDeath(ffc->size());
  8127       _sp->removeFreeChunkFromFreeLists(ffc);
  8128       set_freeRangeInFreeLists(false);
  8130     if (fcInFreeLists) {
  8131       _sp->coalDeath(chunkSize);
  8132       assert(fc->size() == chunkSize,
  8133         "The chunk has the wrong size or is not in the free lists");
  8134       _sp->removeFreeChunkFromFreeLists(fc);
  8136     set_lastFreeRangeCoalesced(true);
  8137   } else {  // not in a free range and/or should not coalesce
  8138     // Return the current free range and start a new one.
  8139     if (inFreeRange()) {
  8140       // In a free range but cannot coalesce with the right hand chunk.
  8141       // Put the current free range into the free lists.
  8142       flushCurFreeChunk(freeFinger(),
  8143         pointer_delta(addr, freeFinger()));
  8145     // Set up for new free range.  Pass along whether the right hand
  8146     // chunk is in the free lists.
  8147     initialize_free_range((HeapWord*)fc, fcInFreeLists);
  8150 void SweepClosure::flushCurFreeChunk(HeapWord* chunk, size_t size) {
  8151   assert(inFreeRange(), "Should only be called if currently in a free range.");
  8152   assert(size > 0,
  8153     "A zero sized chunk cannot be added to the free lists.");
  8154   if (!freeRangeInFreeLists()) {
  8155     if(CMSTestInFreeList) {
  8156       FreeChunk* fc = (FreeChunk*) chunk;
  8157       fc->setSize(size);
  8158       assert(!_sp->verifyChunkInFreeLists(fc),
  8159         "chunk should not be in free lists yet");
  8161     if (CMSTraceSweeper) {
  8162       gclog_or_tty->print_cr(" -- add free block 0x%x (%d) to free lists",
  8163                     chunk, size);
  8165     // A new free range is going to be starting.  The current
  8166     // free range has not been added to the free lists yet or
  8167     // was removed so add it back.
  8168     // If the current free range was coalesced, then the death
  8169     // of the free range was recorded.  Record a birth now.
  8170     if (lastFreeRangeCoalesced()) {
  8171       _sp->coalBirth(size);
  8173     _sp->addChunkAndRepairOffsetTable(chunk, size,
  8174             lastFreeRangeCoalesced());
  8176   set_inFreeRange(false);
  8177   set_freeRangeInFreeLists(false);
  8180 // We take a break if we've been at this for a while,
  8181 // so as to avoid monopolizing the locks involved.
  8182 void SweepClosure::do_yield_work(HeapWord* addr) {
  8183   // Return current free chunk being used for coalescing (if any)
  8184   // to the appropriate freelist.  After yielding, the next
  8185   // free block encountered will start a coalescing range of
  8186   // free blocks.  If the next free block is adjacent to the
  8187   // chunk just flushed, they will need to wait for the next
  8188   // sweep to be coalesced.
  8189   if (inFreeRange()) {
  8190     flushCurFreeChunk(freeFinger(), pointer_delta(addr, freeFinger()));
  8193   // First give up the locks, then yield, then re-lock.
  8194   // We should probably use a constructor/destructor idiom to
  8195   // do this unlock/lock or modify the MutexUnlocker class to
  8196   // serve our purpose. XXX
  8197   assert_lock_strong(_bitMap->lock());
  8198   assert_lock_strong(_freelistLock);
  8199   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  8200          "CMS thread should hold CMS token");
  8201   _bitMap->lock()->unlock();
  8202   _freelistLock->unlock();
  8203   ConcurrentMarkSweepThread::desynchronize(true);
  8204   ConcurrentMarkSweepThread::acknowledge_yield_request();
  8205   _collector->stopTimer();
  8206   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  8207   if (PrintCMSStatistics != 0) {
  8208     _collector->incrementYields();
  8210   _collector->icms_wait();
  8212   // See the comment in coordinator_yield()
  8213   for (unsigned i = 0; i < CMSYieldSleepCount &&
  8214                        ConcurrentMarkSweepThread::should_yield() &&
  8215                        !CMSCollector::foregroundGCIsActive(); ++i) {
  8216     os::sleep(Thread::current(), 1, false);
  8217     ConcurrentMarkSweepThread::acknowledge_yield_request();
  8220   ConcurrentMarkSweepThread::synchronize(true);
  8221   _freelistLock->lock();
  8222   _bitMap->lock()->lock_without_safepoint_check();
  8223   _collector->startTimer();
  8226 #ifndef PRODUCT
  8227 // This is actually very useful in a product build if it can
  8228 // be called from the debugger.  Compile it into the product
  8229 // as needed.
  8230 bool debug_verifyChunkInFreeLists(FreeChunk* fc) {
  8231   return debug_cms_space->verifyChunkInFreeLists(fc);
  8234 void SweepClosure::record_free_block_coalesced(FreeChunk* fc) const {
  8235   if (CMSTraceSweeper) {
  8236     gclog_or_tty->print("Sweep:coal_free_blk 0x%x (%d)\n", fc, fc->size());
  8239 #endif
  8241 // CMSIsAliveClosure
  8242 bool CMSIsAliveClosure::do_object_b(oop obj) {
  8243   HeapWord* addr = (HeapWord*)obj;
  8244   return addr != NULL &&
  8245          (!_span.contains(addr) || _bit_map->isMarked(addr));
  8248 // CMSKeepAliveClosure: the serial version
  8249 void CMSKeepAliveClosure::do_oop(oop obj) {
  8250   HeapWord* addr = (HeapWord*)obj;
  8251   if (_span.contains(addr) &&
  8252       !_bit_map->isMarked(addr)) {
  8253     _bit_map->mark(addr);
  8254     bool simulate_overflow = false;
  8255     NOT_PRODUCT(
  8256       if (CMSMarkStackOverflowALot &&
  8257           _collector->simulate_overflow()) {
  8258         // simulate a stack overflow
  8259         simulate_overflow = true;
  8262     if (simulate_overflow || !_mark_stack->push(obj)) {
  8263       _collector->push_on_overflow_list(obj);
  8264       _collector->_ser_kac_ovflw++;
  8269 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
  8270 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
  8272 // CMSParKeepAliveClosure: a parallel version of the above.
  8273 // The work queues are private to each closure (thread),
  8274 // but (may be) available for stealing by other threads.
  8275 void CMSParKeepAliveClosure::do_oop(oop obj) {
  8276   HeapWord* addr = (HeapWord*)obj;
  8277   if (_span.contains(addr) &&
  8278       !_bit_map->isMarked(addr)) {
  8279     // In general, during recursive tracing, several threads
  8280     // may be concurrently getting here; the first one to
  8281     // "tag" it, claims it.
  8282     if (_bit_map->par_mark(addr)) {
  8283       bool res = _work_queue->push(obj);
  8284       assert(res, "Low water mark should be much less than capacity");
  8285       // Do a recursive trim in the hope that this will keep
  8286       // stack usage lower, but leave some oops for potential stealers
  8287       trim_queue(_low_water_mark);
  8288     } // Else, another thread got there first
  8292 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
  8293 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
  8295 void CMSParKeepAliveClosure::trim_queue(uint max) {
  8296   while (_work_queue->size() > max) {
  8297     oop new_oop;
  8298     if (_work_queue->pop_local(new_oop)) {
  8299       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
  8300       assert(_bit_map->isMarked((HeapWord*)new_oop),
  8301              "no white objects on this stack!");
  8302       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
  8303       // iterate over the oops in this oop, marking and pushing
  8304       // the ones in CMS heap (i.e. in _span).
  8305       new_oop->oop_iterate(&_mark_and_push);
  8310 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
  8311   HeapWord* addr = (HeapWord*)obj;
  8312   if (_span.contains(addr) &&
  8313       !_bit_map->isMarked(addr)) {
  8314     if (_bit_map->par_mark(addr)) {
  8315       bool simulate_overflow = false;
  8316       NOT_PRODUCT(
  8317         if (CMSMarkStackOverflowALot &&
  8318             _collector->par_simulate_overflow()) {
  8319           // simulate a stack overflow
  8320           simulate_overflow = true;
  8323       if (simulate_overflow || !_work_queue->push(obj)) {
  8324         _collector->par_push_on_overflow_list(obj);
  8325         _collector->_par_kac_ovflw++;
  8327     } // Else another thread got there already
  8331 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
  8332 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
  8334 //////////////////////////////////////////////////////////////////
  8335 //  CMSExpansionCause                /////////////////////////////
  8336 //////////////////////////////////////////////////////////////////
  8337 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
  8338   switch (cause) {
  8339     case _no_expansion:
  8340       return "No expansion";
  8341     case _satisfy_free_ratio:
  8342       return "Free ratio";
  8343     case _satisfy_promotion:
  8344       return "Satisfy promotion";
  8345     case _satisfy_allocation:
  8346       return "allocation";
  8347     case _allocate_par_lab:
  8348       return "Par LAB";
  8349     case _allocate_par_spooling_space:
  8350       return "Par Spooling Space";
  8351     case _adaptive_size_policy:
  8352       return "Ergonomics";
  8353     default:
  8354       return "unknown";
  8358 void CMSDrainMarkingStackClosure::do_void() {
  8359   // the max number to take from overflow list at a time
  8360   const size_t num = _mark_stack->capacity()/4;
  8361   while (!_mark_stack->isEmpty() ||
  8362          // if stack is empty, check the overflow list
  8363          _collector->take_from_overflow_list(num, _mark_stack)) {
  8364     oop obj = _mark_stack->pop();
  8365     HeapWord* addr = (HeapWord*)obj;
  8366     assert(_span.contains(addr), "Should be within span");
  8367     assert(_bit_map->isMarked(addr), "Should be marked");
  8368     assert(obj->is_oop(), "Should be an oop");
  8369     obj->oop_iterate(_keep_alive);
  8373 void CMSParDrainMarkingStackClosure::do_void() {
  8374   // drain queue
  8375   trim_queue(0);
  8378 // Trim our work_queue so its length is below max at return
  8379 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
  8380   while (_work_queue->size() > max) {
  8381     oop new_oop;
  8382     if (_work_queue->pop_local(new_oop)) {
  8383       assert(new_oop->is_oop(), "Expected an oop");
  8384       assert(_bit_map->isMarked((HeapWord*)new_oop),
  8385              "no white objects on this stack!");
  8386       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
  8387       // iterate over the oops in this oop, marking and pushing
  8388       // the ones in CMS heap (i.e. in _span).
  8389       new_oop->oop_iterate(&_mark_and_push);
  8394 ////////////////////////////////////////////////////////////////////
  8395 // Support for Marking Stack Overflow list handling and related code
  8396 ////////////////////////////////////////////////////////////////////
  8397 // Much of the following code is similar in shape and spirit to the
  8398 // code used in ParNewGC. We should try and share that code
  8399 // as much as possible in the future.
  8401 #ifndef PRODUCT
  8402 // Debugging support for CMSStackOverflowALot
  8404 // It's OK to call this multi-threaded;  the worst thing
  8405 // that can happen is that we'll get a bunch of closely
  8406 // spaced simulated oveflows, but that's OK, in fact
  8407 // probably good as it would exercise the overflow code
  8408 // under contention.
  8409 bool CMSCollector::simulate_overflow() {
  8410   if (_overflow_counter-- <= 0) { // just being defensive
  8411     _overflow_counter = CMSMarkStackOverflowInterval;
  8412     return true;
  8413   } else {
  8414     return false;
  8418 bool CMSCollector::par_simulate_overflow() {
  8419   return simulate_overflow();
  8421 #endif
  8423 // Single-threaded
  8424 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
  8425   assert(stack->isEmpty(), "Expected precondition");
  8426   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
  8427   size_t i = num;
  8428   oop  cur = _overflow_list;
  8429   const markOop proto = markOopDesc::prototype();
  8430   NOT_PRODUCT(size_t n = 0;)
  8431   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
  8432     next = oop(cur->mark());
  8433     cur->set_mark(proto);   // until proven otherwise
  8434     assert(cur->is_oop(), "Should be an oop");
  8435     bool res = stack->push(cur);
  8436     assert(res, "Bit off more than can chew?");
  8437     NOT_PRODUCT(n++;)
  8439   _overflow_list = cur;
  8440 #ifndef PRODUCT
  8441   assert(_num_par_pushes >= n, "Too many pops?");
  8442   _num_par_pushes -=n;
  8443 #endif
  8444   return !stack->isEmpty();
  8447 // Multi-threaded; use CAS to break off a prefix
  8448 bool CMSCollector::par_take_from_overflow_list(size_t num,
  8449                                                OopTaskQueue* work_q) {
  8450   assert(work_q->size() == 0, "That's the current policy");
  8451   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
  8452   if (_overflow_list == NULL) {
  8453     return false;
  8455   // Grab the entire list; we'll put back a suffix
  8456   oop prefix = (oop)Atomic::xchg_ptr(NULL, &_overflow_list);
  8457   if (prefix == NULL) {  // someone grabbed it before we did ...
  8458     // ... we could spin for a short while, but for now we don't
  8459     return false;
  8461   size_t i = num;
  8462   oop cur = prefix;
  8463   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
  8464   if (cur->mark() != NULL) {
  8465     oop suffix_head = cur->mark(); // suffix will be put back on global list
  8466     cur->set_mark(NULL);           // break off suffix
  8467     // Find tail of suffix so we can prepend suffix to global list
  8468     for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
  8469     oop suffix_tail = cur;
  8470     assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
  8471            "Tautology");
  8472     oop observed_overflow_list = _overflow_list;
  8473     do {
  8474       cur = observed_overflow_list;
  8475       suffix_tail->set_mark(markOop(cur));
  8476       observed_overflow_list =
  8477         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur);
  8478     } while (cur != observed_overflow_list);
  8481   // Push the prefix elements on work_q
  8482   assert(prefix != NULL, "control point invariant");
  8483   const markOop proto = markOopDesc::prototype();
  8484   oop next;
  8485   NOT_PRODUCT(size_t n = 0;)
  8486   for (cur = prefix; cur != NULL; cur = next) {
  8487     next = oop(cur->mark());
  8488     cur->set_mark(proto);   // until proven otherwise
  8489     assert(cur->is_oop(), "Should be an oop");
  8490     bool res = work_q->push(cur);
  8491     assert(res, "Bit off more than we can chew?");
  8492     NOT_PRODUCT(n++;)
  8494 #ifndef PRODUCT
  8495   assert(_num_par_pushes >= n, "Too many pops?");
  8496   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
  8497 #endif
  8498   return true;
  8501 // Single-threaded
  8502 void CMSCollector::push_on_overflow_list(oop p) {
  8503   NOT_PRODUCT(_num_par_pushes++;)
  8504   assert(p->is_oop(), "Not an oop");
  8505   preserve_mark_if_necessary(p);
  8506   p->set_mark((markOop)_overflow_list);
  8507   _overflow_list = p;
  8510 // Multi-threaded; use CAS to prepend to overflow list
  8511 void CMSCollector::par_push_on_overflow_list(oop p) {
  8512   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
  8513   assert(p->is_oop(), "Not an oop");
  8514   par_preserve_mark_if_necessary(p);
  8515   oop observed_overflow_list = _overflow_list;
  8516   oop cur_overflow_list;
  8517   do {
  8518     cur_overflow_list = observed_overflow_list;
  8519     p->set_mark(markOop(cur_overflow_list));
  8520     observed_overflow_list =
  8521       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
  8522   } while (cur_overflow_list != observed_overflow_list);
  8525 // Single threaded
  8526 // General Note on GrowableArray: pushes may silently fail
  8527 // because we are (temporarily) out of C-heap for expanding
  8528 // the stack. The problem is quite ubiquitous and affects
  8529 // a lot of code in the JVM. The prudent thing for GrowableArray
  8530 // to do (for now) is to exit with an error. However, that may
  8531 // be too draconian in some cases because the caller may be
  8532 // able to recover without much harm. For suych cases, we
  8533 // should probably introduce a "soft_push" method which returns
  8534 // an indication of success or failure with the assumption that
  8535 // the caller may be able to recover from a failure; code in
  8536 // the VM can then be changed, incrementally, to deal with such
  8537 // failures where possible, thus, incrementally hardening the VM
  8538 // in such low resource situations.
  8539 void CMSCollector::preserve_mark_work(oop p, markOop m) {
  8540   int PreserveMarkStackSize = 128;
  8542   if (_preserved_oop_stack == NULL) {
  8543     assert(_preserved_mark_stack == NULL,
  8544            "bijection with preserved_oop_stack");
  8545     // Allocate the stacks
  8546     _preserved_oop_stack  = new (ResourceObj::C_HEAP)
  8547       GrowableArray<oop>(PreserveMarkStackSize, true);
  8548     _preserved_mark_stack = new (ResourceObj::C_HEAP)
  8549       GrowableArray<markOop>(PreserveMarkStackSize, true);
  8550     if (_preserved_oop_stack == NULL || _preserved_mark_stack == NULL) {
  8551       vm_exit_out_of_memory(2* PreserveMarkStackSize * sizeof(oop) /* punt */,
  8552                             "Preserved Mark/Oop Stack for CMS (C-heap)");
  8555   _preserved_oop_stack->push(p);
  8556   _preserved_mark_stack->push(m);
  8557   assert(m == p->mark(), "Mark word changed");
  8558   assert(_preserved_oop_stack->length() == _preserved_mark_stack->length(),
  8559          "bijection");
  8562 // Single threaded
  8563 void CMSCollector::preserve_mark_if_necessary(oop p) {
  8564   markOop m = p->mark();
  8565   if (m->must_be_preserved(p)) {
  8566     preserve_mark_work(p, m);
  8570 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
  8571   markOop m = p->mark();
  8572   if (m->must_be_preserved(p)) {
  8573     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  8574     // Even though we read the mark word without holding
  8575     // the lock, we are assured that it will not change
  8576     // because we "own" this oop, so no other thread can
  8577     // be trying to push it on the overflow list; see
  8578     // the assertion in preserve_mark_work() that checks
  8579     // that m == p->mark().
  8580     preserve_mark_work(p, m);
  8584 // We should be able to do this multi-threaded,
  8585 // a chunk of stack being a task (this is
  8586 // correct because each oop only ever appears
  8587 // once in the overflow list. However, it's
  8588 // not very easy to completely overlap this with
  8589 // other operations, so will generally not be done
  8590 // until all work's been completed. Because we
  8591 // expect the preserved oop stack (set) to be small,
  8592 // it's probably fine to do this single-threaded.
  8593 // We can explore cleverer concurrent/overlapped/parallel
  8594 // processing of preserved marks if we feel the
  8595 // need for this in the future. Stack overflow should
  8596 // be so rare in practice and, when it happens, its
  8597 // effect on performance so great that this will
  8598 // likely just be in the noise anyway.
  8599 void CMSCollector::restore_preserved_marks_if_any() {
  8600   if (_preserved_oop_stack == NULL) {
  8601     assert(_preserved_mark_stack == NULL,
  8602            "bijection with preserved_oop_stack");
  8603     return;
  8606   assert(SafepointSynchronize::is_at_safepoint(),
  8607          "world should be stopped");
  8608   assert(Thread::current()->is_ConcurrentGC_thread() ||
  8609          Thread::current()->is_VM_thread(),
  8610          "should be single-threaded");
  8612   int length = _preserved_oop_stack->length();
  8613   assert(_preserved_mark_stack->length() == length, "bijection");
  8614   for (int i = 0; i < length; i++) {
  8615     oop p = _preserved_oop_stack->at(i);
  8616     assert(p->is_oop(), "Should be an oop");
  8617     assert(_span.contains(p), "oop should be in _span");
  8618     assert(p->mark() == markOopDesc::prototype(),
  8619            "Set when taken from overflow list");
  8620     markOop m = _preserved_mark_stack->at(i);
  8621     p->set_mark(m);
  8623   _preserved_mark_stack->clear();
  8624   _preserved_oop_stack->clear();
  8625   assert(_preserved_mark_stack->is_empty() &&
  8626          _preserved_oop_stack->is_empty(),
  8627          "stacks were cleared above");
  8630 #ifndef PRODUCT
  8631 bool CMSCollector::no_preserved_marks() const {
  8632   return (   (   _preserved_mark_stack == NULL
  8633               && _preserved_oop_stack == NULL)
  8634           || (   _preserved_mark_stack->is_empty()
  8635               && _preserved_oop_stack->is_empty()));
  8637 #endif
  8639 CMSAdaptiveSizePolicy* ASConcurrentMarkSweepGeneration::cms_size_policy() const
  8641   GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap();
  8642   CMSAdaptiveSizePolicy* size_policy =
  8643     (CMSAdaptiveSizePolicy*) gch->gen_policy()->size_policy();
  8644   assert(size_policy->is_gc_cms_adaptive_size_policy(),
  8645     "Wrong type for size policy");
  8646   return size_policy;
  8649 void ASConcurrentMarkSweepGeneration::resize(size_t cur_promo_size,
  8650                                            size_t desired_promo_size) {
  8651   if (cur_promo_size < desired_promo_size) {
  8652     size_t expand_bytes = desired_promo_size - cur_promo_size;
  8653     if (PrintAdaptiveSizePolicy && Verbose) {
  8654       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
  8655         "Expanding tenured generation by " SIZE_FORMAT " (bytes)",
  8656         expand_bytes);
  8658     expand(expand_bytes,
  8659            MinHeapDeltaBytes,
  8660            CMSExpansionCause::_adaptive_size_policy);
  8661   } else if (desired_promo_size < cur_promo_size) {
  8662     size_t shrink_bytes = cur_promo_size - desired_promo_size;
  8663     if (PrintAdaptiveSizePolicy && Verbose) {
  8664       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
  8665         "Shrinking tenured generation by " SIZE_FORMAT " (bytes)",
  8666         shrink_bytes);
  8668     shrink(shrink_bytes);
  8672 CMSGCAdaptivePolicyCounters* ASConcurrentMarkSweepGeneration::gc_adaptive_policy_counters() {
  8673   GenCollectedHeap* gch = GenCollectedHeap::heap();
  8674   CMSGCAdaptivePolicyCounters* counters =
  8675     (CMSGCAdaptivePolicyCounters*) gch->collector_policy()->counters();
  8676   assert(counters->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
  8677     "Wrong kind of counters");
  8678   return counters;
  8682 void ASConcurrentMarkSweepGeneration::update_counters() {
  8683   if (UsePerfData) {
  8684     _space_counters->update_all();
  8685     _gen_counters->update_all();
  8686     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
  8687     GenCollectedHeap* gch = GenCollectedHeap::heap();
  8688     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
  8689     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
  8690       "Wrong gc statistics type");
  8691     counters->update_counters(gc_stats_l);
  8695 void ASConcurrentMarkSweepGeneration::update_counters(size_t used) {
  8696   if (UsePerfData) {
  8697     _space_counters->update_used(used);
  8698     _space_counters->update_capacity();
  8699     _gen_counters->update_all();
  8701     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
  8702     GenCollectedHeap* gch = GenCollectedHeap::heap();
  8703     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
  8704     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
  8705       "Wrong gc statistics type");
  8706     counters->update_counters(gc_stats_l);
  8710 // The desired expansion delta is computed so that:
  8711 // . desired free percentage or greater is used
  8712 void ASConcurrentMarkSweepGeneration::compute_new_size() {
  8713   assert_locked_or_safepoint(Heap_lock);
  8715   GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap();
  8717   // If incremental collection failed, we just want to expand
  8718   // to the limit.
  8719   if (incremental_collection_failed()) {
  8720     clear_incremental_collection_failed();
  8721     grow_to_reserved();
  8722     return;
  8725   assert(UseAdaptiveSizePolicy, "Should be using adaptive sizing");
  8727   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
  8728     "Wrong type of heap");
  8729   int prev_level = level() - 1;
  8730   assert(prev_level >= 0, "The cms generation is the lowest generation");
  8731   Generation* prev_gen = gch->get_gen(prev_level);
  8732   assert(prev_gen->kind() == Generation::ASParNew,
  8733     "Wrong type of young generation");
  8734   ParNewGeneration* younger_gen = (ParNewGeneration*) prev_gen;
  8735   size_t cur_eden = younger_gen->eden()->capacity();
  8736   CMSAdaptiveSizePolicy* size_policy = cms_size_policy();
  8737   size_t cur_promo = free();
  8738   size_policy->compute_tenured_generation_free_space(cur_promo,
  8739                                                        max_available(),
  8740                                                        cur_eden);
  8741   resize(cur_promo, size_policy->promo_size());
  8743   // Record the new size of the space in the cms generation
  8744   // that is available for promotions.  This is temporary.
  8745   // It should be the desired promo size.
  8746   size_policy->avg_cms_promo()->sample(free());
  8747   size_policy->avg_old_live()->sample(used());
  8749   if (UsePerfData) {
  8750     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
  8751     counters->update_cms_capacity_counter(capacity());
  8755 void ASConcurrentMarkSweepGeneration::shrink_by(size_t desired_bytes) {
  8756   assert_locked_or_safepoint(Heap_lock);
  8757   assert_lock_strong(freelistLock());
  8758   HeapWord* old_end = _cmsSpace->end();
  8759   HeapWord* unallocated_start = _cmsSpace->unallocated_block();
  8760   assert(old_end >= unallocated_start, "Miscalculation of unallocated_start");
  8761   FreeChunk* chunk_at_end = find_chunk_at_end();
  8762   if (chunk_at_end == NULL) {
  8763     // No room to shrink
  8764     if (PrintGCDetails && Verbose) {
  8765       gclog_or_tty->print_cr("No room to shrink: old_end  "
  8766         PTR_FORMAT "  unallocated_start  " PTR_FORMAT
  8767         " chunk_at_end  " PTR_FORMAT,
  8768         old_end, unallocated_start, chunk_at_end);
  8770     return;
  8771   } else {
  8773     // Find the chunk at the end of the space and determine
  8774     // how much it can be shrunk.
  8775     size_t shrinkable_size_in_bytes = chunk_at_end->size();
  8776     size_t aligned_shrinkable_size_in_bytes =
  8777       align_size_down(shrinkable_size_in_bytes, os::vm_page_size());
  8778     assert(unallocated_start <= chunk_at_end->end(),
  8779       "Inconsistent chunk at end of space");
  8780     size_t bytes = MIN2(desired_bytes, aligned_shrinkable_size_in_bytes);
  8781     size_t word_size_before = heap_word_size(_virtual_space.committed_size());
  8783     // Shrink the underlying space
  8784     _virtual_space.shrink_by(bytes);
  8785     if (PrintGCDetails && Verbose) {
  8786       gclog_or_tty->print_cr("ConcurrentMarkSweepGeneration::shrink_by:"
  8787         " desired_bytes " SIZE_FORMAT
  8788         " shrinkable_size_in_bytes " SIZE_FORMAT
  8789         " aligned_shrinkable_size_in_bytes " SIZE_FORMAT
  8790         "  bytes  " SIZE_FORMAT,
  8791         desired_bytes, shrinkable_size_in_bytes,
  8792         aligned_shrinkable_size_in_bytes, bytes);
  8793       gclog_or_tty->print_cr("          old_end  " SIZE_FORMAT
  8794         "  unallocated_start  " SIZE_FORMAT,
  8795         old_end, unallocated_start);
  8798     // If the space did shrink (shrinking is not guaranteed),
  8799     // shrink the chunk at the end by the appropriate amount.
  8800     if (((HeapWord*)_virtual_space.high()) < old_end) {
  8801       size_t new_word_size =
  8802         heap_word_size(_virtual_space.committed_size());
  8804       // Have to remove the chunk from the dictionary because it is changing
  8805       // size and might be someplace elsewhere in the dictionary.
  8807       // Get the chunk at end, shrink it, and put it
  8808       // back.
  8809       _cmsSpace->removeChunkFromDictionary(chunk_at_end);
  8810       size_t word_size_change = word_size_before - new_word_size;
  8811       size_t chunk_at_end_old_size = chunk_at_end->size();
  8812       assert(chunk_at_end_old_size >= word_size_change,
  8813         "Shrink is too large");
  8814       chunk_at_end->setSize(chunk_at_end_old_size -
  8815                           word_size_change);
  8816       _cmsSpace->freed((HeapWord*) chunk_at_end->end(),
  8817         word_size_change);
  8819       _cmsSpace->returnChunkToDictionary(chunk_at_end);
  8821       MemRegion mr(_cmsSpace->bottom(), new_word_size);
  8822       _bts->resize(new_word_size);  // resize the block offset shared array
  8823       Universe::heap()->barrier_set()->resize_covered_region(mr);
  8824       _cmsSpace->assert_locked();
  8825       _cmsSpace->set_end((HeapWord*)_virtual_space.high());
  8827       NOT_PRODUCT(_cmsSpace->dictionary()->verify());
  8829       // update the space and generation capacity counters
  8830       if (UsePerfData) {
  8831         _space_counters->update_capacity();
  8832         _gen_counters->update_all();
  8835       if (Verbose && PrintGCDetails) {
  8836         size_t new_mem_size = _virtual_space.committed_size();
  8837         size_t old_mem_size = new_mem_size + bytes;
  8838         gclog_or_tty->print_cr("Shrinking %s from %ldK by %ldK to %ldK",
  8839                       name(), old_mem_size/K, bytes/K, new_mem_size/K);
  8843     assert(_cmsSpace->unallocated_block() <= _cmsSpace->end(),
  8844       "Inconsistency at end of space");
  8845     assert(chunk_at_end->end() == _cmsSpace->end(),
  8846       "Shrinking is inconsistent");
  8847     return;
  8851 // Transfer some number of overflown objects to usual marking
  8852 // stack. Return true if some objects were transferred.
  8853 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
  8854   size_t num = MIN2((size_t)_mark_stack->capacity()/4,
  8855                     (size_t)ParGCDesiredObjsFromOverflowList);
  8857   bool res = _collector->take_from_overflow_list(num, _mark_stack);
  8858   assert(_collector->overflow_list_is_empty() || res,
  8859          "If list is not empty, we should have taken something");
  8860   assert(!res || !_mark_stack->isEmpty(),
  8861          "If we took something, it should now be on our stack");
  8862   return res;
  8865 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
  8866   size_t res = _sp->block_size_no_stall(addr, _collector);
  8867   assert(res != 0, "Should always be able to compute a size");
  8868   if (_sp->block_is_obj(addr)) {
  8869     if (_live_bit_map->isMarked(addr)) {
  8870       // It can't have been dead in a previous cycle
  8871       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
  8872     } else {
  8873       _dead_bit_map->mark(addr);      // mark the dead object
  8876   return res;

mercurial