src/os/linux/vm/os_linux.cpp

Wed, 29 Apr 2015 19:37:10 -0400

author
dholmes
date
Wed, 29 Apr 2015 19:37:10 -0400
changeset 7793
915ca3e9d15e
parent 7633
8461d0b03127
child 7808
9a23a160ca57
permissions
-rw-r--r--

8078470: [Linux] Replace syscall use in os::fork_and_exec with glibc fork() and execve()
Reviewed-by: stuefe, dsamersoff, dcubed

     1 /*
     2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // no precompiled headers
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "classfile/vmSymbols.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "compiler/compileBroker.hpp"
    32 #include "compiler/disassembler.hpp"
    33 #include "interpreter/interpreter.hpp"
    34 #include "jvm_linux.h"
    35 #include "memory/allocation.inline.hpp"
    36 #include "memory/filemap.hpp"
    37 #include "mutex_linux.inline.hpp"
    38 #include "oops/oop.inline.hpp"
    39 #include "os_share_linux.hpp"
    40 #include "prims/jniFastGetField.hpp"
    41 #include "prims/jvm.h"
    42 #include "prims/jvm_misc.hpp"
    43 #include "runtime/arguments.hpp"
    44 #include "runtime/extendedPC.hpp"
    45 #include "runtime/globals.hpp"
    46 #include "runtime/interfaceSupport.hpp"
    47 #include "runtime/init.hpp"
    48 #include "runtime/java.hpp"
    49 #include "runtime/javaCalls.hpp"
    50 #include "runtime/mutexLocker.hpp"
    51 #include "runtime/objectMonitor.hpp"
    52 #include "runtime/orderAccess.inline.hpp"
    53 #include "runtime/osThread.hpp"
    54 #include "runtime/perfMemory.hpp"
    55 #include "runtime/sharedRuntime.hpp"
    56 #include "runtime/statSampler.hpp"
    57 #include "runtime/stubRoutines.hpp"
    58 #include "runtime/thread.inline.hpp"
    59 #include "runtime/threadCritical.hpp"
    60 #include "runtime/timer.hpp"
    61 #include "services/attachListener.hpp"
    62 #include "services/memTracker.hpp"
    63 #include "services/runtimeService.hpp"
    64 #include "utilities/decoder.hpp"
    65 #include "utilities/defaultStream.hpp"
    66 #include "utilities/events.hpp"
    67 #include "utilities/elfFile.hpp"
    68 #include "utilities/growableArray.hpp"
    69 #include "utilities/vmError.hpp"
    71 // put OS-includes here
    72 # include <sys/types.h>
    73 # include <sys/mman.h>
    74 # include <sys/stat.h>
    75 # include <sys/select.h>
    76 # include <pthread.h>
    77 # include <signal.h>
    78 # include <errno.h>
    79 # include <dlfcn.h>
    80 # include <stdio.h>
    81 # include <unistd.h>
    82 # include <sys/resource.h>
    83 # include <pthread.h>
    84 # include <sys/stat.h>
    85 # include <sys/time.h>
    86 # include <sys/times.h>
    87 # include <sys/utsname.h>
    88 # include <sys/socket.h>
    89 # include <sys/wait.h>
    90 # include <pwd.h>
    91 # include <poll.h>
    92 # include <semaphore.h>
    93 # include <fcntl.h>
    94 # include <string.h>
    95 # include <syscall.h>
    96 # include <sys/sysinfo.h>
    97 # include <gnu/libc-version.h>
    98 # include <sys/ipc.h>
    99 # include <sys/shm.h>
   100 # include <link.h>
   101 # include <stdint.h>
   102 # include <inttypes.h>
   103 # include <sys/ioctl.h>
   105 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
   107 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
   108 // getrusage() is prepared to handle the associated failure.
   109 #ifndef RUSAGE_THREAD
   110 #define RUSAGE_THREAD   (1)               /* only the calling thread */
   111 #endif
   113 #define MAX_PATH    (2 * K)
   115 #define MAX_SECS 100000000
   117 // for timer info max values which include all bits
   118 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
   120 #define LARGEPAGES_BIT (1 << 6)
   121 ////////////////////////////////////////////////////////////////////////////////
   122 // global variables
   123 julong os::Linux::_physical_memory = 0;
   125 address   os::Linux::_initial_thread_stack_bottom = NULL;
   126 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
   128 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
   129 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
   130 Mutex* os::Linux::_createThread_lock = NULL;
   131 pthread_t os::Linux::_main_thread;
   132 int os::Linux::_page_size = -1;
   133 const int os::Linux::_vm_default_page_size = (8 * K);
   134 bool os::Linux::_is_floating_stack = false;
   135 bool os::Linux::_is_NPTL = false;
   136 bool os::Linux::_supports_fast_thread_cpu_time = false;
   137 const char * os::Linux::_glibc_version = NULL;
   138 const char * os::Linux::_libpthread_version = NULL;
   139 pthread_condattr_t os::Linux::_condattr[1];
   141 static jlong initial_time_count=0;
   143 static int clock_tics_per_sec = 100;
   145 // For diagnostics to print a message once. see run_periodic_checks
   146 static sigset_t check_signal_done;
   147 static bool check_signals = true;
   149 static pid_t _initial_pid = 0;
   151 /* Signal number used to suspend/resume a thread */
   153 /* do not use any signal number less than SIGSEGV, see 4355769 */
   154 static int SR_signum = SIGUSR2;
   155 sigset_t SR_sigset;
   157 /* Used to protect dlsym() calls */
   158 static pthread_mutex_t dl_mutex;
   160 // Declarations
   161 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
   163 // utility functions
   165 static int SR_initialize();
   167 julong os::available_memory() {
   168   return Linux::available_memory();
   169 }
   171 julong os::Linux::available_memory() {
   172   // values in struct sysinfo are "unsigned long"
   173   struct sysinfo si;
   174   sysinfo(&si);
   176   return (julong)si.freeram * si.mem_unit;
   177 }
   179 julong os::physical_memory() {
   180   return Linux::physical_memory();
   181 }
   183 ////////////////////////////////////////////////////////////////////////////////
   184 // environment support
   186 bool os::getenv(const char* name, char* buf, int len) {
   187   const char* val = ::getenv(name);
   188   if (val != NULL && strlen(val) < (size_t)len) {
   189     strcpy(buf, val);
   190     return true;
   191   }
   192   if (len > 0) buf[0] = 0;  // return a null string
   193   return false;
   194 }
   197 // Return true if user is running as root.
   199 bool os::have_special_privileges() {
   200   static bool init = false;
   201   static bool privileges = false;
   202   if (!init) {
   203     privileges = (getuid() != geteuid()) || (getgid() != getegid());
   204     init = true;
   205   }
   206   return privileges;
   207 }
   210 #ifndef SYS_gettid
   211 // i386: 224, ia64: 1105, amd64: 186, sparc 143
   212 #ifdef __ia64__
   213 #define SYS_gettid 1105
   214 #elif __i386__
   215 #define SYS_gettid 224
   216 #elif __amd64__
   217 #define SYS_gettid 186
   218 #elif __sparc__
   219 #define SYS_gettid 143
   220 #else
   221 #error define gettid for the arch
   222 #endif
   223 #endif
   225 // Cpu architecture string
   226 static char cpu_arch[] = HOTSPOT_LIB_ARCH;
   228 // pid_t gettid()
   229 //
   230 // Returns the kernel thread id of the currently running thread. Kernel
   231 // thread id is used to access /proc.
   232 //
   233 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
   234 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
   235 //
   236 pid_t os::Linux::gettid() {
   237   int rslt = syscall(SYS_gettid);
   238   if (rslt == -1) {
   239      // old kernel, no NPTL support
   240      return getpid();
   241   } else {
   242      return (pid_t)rslt;
   243   }
   244 }
   246 // Most versions of linux have a bug where the number of processors are
   247 // determined by looking at the /proc file system.  In a chroot environment,
   248 // the system call returns 1.  This causes the VM to act as if it is
   249 // a single processor and elide locking (see is_MP() call).
   250 static bool unsafe_chroot_detected = false;
   251 static const char *unstable_chroot_error = "/proc file system not found.\n"
   252                      "Java may be unstable running multithreaded in a chroot "
   253                      "environment on Linux when /proc filesystem is not mounted.";
   255 void os::Linux::initialize_system_info() {
   256   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
   257   if (processor_count() == 1) {
   258     pid_t pid = os::Linux::gettid();
   259     char fname[32];
   260     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
   261     FILE *fp = fopen(fname, "r");
   262     if (fp == NULL) {
   263       unsafe_chroot_detected = true;
   264     } else {
   265       fclose(fp);
   266     }
   267   }
   268   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
   269   assert(processor_count() > 0, "linux error");
   270 }
   272 void os::init_system_properties_values() {
   273   // The next steps are taken in the product version:
   274   //
   275   // Obtain the JAVA_HOME value from the location of libjvm.so.
   276   // This library should be located at:
   277   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
   278   //
   279   // If "/jre/lib/" appears at the right place in the path, then we
   280   // assume libjvm.so is installed in a JDK and we use this path.
   281   //
   282   // Otherwise exit with message: "Could not create the Java virtual machine."
   283   //
   284   // The following extra steps are taken in the debugging version:
   285   //
   286   // If "/jre/lib/" does NOT appear at the right place in the path
   287   // instead of exit check for $JAVA_HOME environment variable.
   288   //
   289   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
   290   // then we append a fake suffix "hotspot/libjvm.so" to this path so
   291   // it looks like libjvm.so is installed there
   292   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
   293   //
   294   // Otherwise exit.
   295   //
   296   // Important note: if the location of libjvm.so changes this
   297   // code needs to be changed accordingly.
   299 // See ld(1):
   300 //      The linker uses the following search paths to locate required
   301 //      shared libraries:
   302 //        1: ...
   303 //        ...
   304 //        7: The default directories, normally /lib and /usr/lib.
   305 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
   306 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
   307 #else
   308 #define DEFAULT_LIBPATH "/lib:/usr/lib"
   309 #endif
   311 // Base path of extensions installed on the system.
   312 #define SYS_EXT_DIR     "/usr/java/packages"
   313 #define EXTENSIONS_DIR  "/lib/ext"
   314 #define ENDORSED_DIR    "/lib/endorsed"
   316   // Buffer that fits several sprintfs.
   317   // Note that the space for the colon and the trailing null are provided
   318   // by the nulls included by the sizeof operator.
   319   const size_t bufsize =
   320     MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
   321          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR), // extensions dir
   322          (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
   323   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
   325   // sysclasspath, java_home, dll_dir
   326   {
   327     char *pslash;
   328     os::jvm_path(buf, bufsize);
   330     // Found the full path to libjvm.so.
   331     // Now cut the path to <java_home>/jre if we can.
   332     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
   333     pslash = strrchr(buf, '/');
   334     if (pslash != NULL) {
   335       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
   336     }
   337     Arguments::set_dll_dir(buf);
   339     if (pslash != NULL) {
   340       pslash = strrchr(buf, '/');
   341       if (pslash != NULL) {
   342         *pslash = '\0';          // Get rid of /<arch>.
   343         pslash = strrchr(buf, '/');
   344         if (pslash != NULL) {
   345           *pslash = '\0';        // Get rid of /lib.
   346         }
   347       }
   348     }
   349     Arguments::set_java_home(buf);
   350     set_boot_path('/', ':');
   351   }
   353   // Where to look for native libraries.
   354   //
   355   // Note: Due to a legacy implementation, most of the library path
   356   // is set in the launcher. This was to accomodate linking restrictions
   357   // on legacy Linux implementations (which are no longer supported).
   358   // Eventually, all the library path setting will be done here.
   359   //
   360   // However, to prevent the proliferation of improperly built native
   361   // libraries, the new path component /usr/java/packages is added here.
   362   // Eventually, all the library path setting will be done here.
   363   {
   364     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
   365     // should always exist (until the legacy problem cited above is
   366     // addressed).
   367     const char *v = ::getenv("LD_LIBRARY_PATH");
   368     const char *v_colon = ":";
   369     if (v == NULL) { v = ""; v_colon = ""; }
   370     // That's +1 for the colon and +1 for the trailing '\0'.
   371     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
   372                                                      strlen(v) + 1 +
   373                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
   374                                                      mtInternal);
   375     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
   376     Arguments::set_library_path(ld_library_path);
   377     FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
   378   }
   380   // Extensions directories.
   381   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
   382   Arguments::set_ext_dirs(buf);
   384   // Endorsed standards default directory.
   385   sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
   386   Arguments::set_endorsed_dirs(buf);
   388   FREE_C_HEAP_ARRAY(char, buf, mtInternal);
   390 #undef DEFAULT_LIBPATH
   391 #undef SYS_EXT_DIR
   392 #undef EXTENSIONS_DIR
   393 #undef ENDORSED_DIR
   394 }
   396 ////////////////////////////////////////////////////////////////////////////////
   397 // breakpoint support
   399 void os::breakpoint() {
   400   BREAKPOINT;
   401 }
   403 extern "C" void breakpoint() {
   404   // use debugger to set breakpoint here
   405 }
   407 ////////////////////////////////////////////////////////////////////////////////
   408 // signal support
   410 debug_only(static bool signal_sets_initialized = false);
   411 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
   413 bool os::Linux::is_sig_ignored(int sig) {
   414       struct sigaction oact;
   415       sigaction(sig, (struct sigaction*)NULL, &oact);
   416       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
   417                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
   418       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
   419            return true;
   420       else
   421            return false;
   422 }
   424 void os::Linux::signal_sets_init() {
   425   // Should also have an assertion stating we are still single-threaded.
   426   assert(!signal_sets_initialized, "Already initialized");
   427   // Fill in signals that are necessarily unblocked for all threads in
   428   // the VM. Currently, we unblock the following signals:
   429   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
   430   //                         by -Xrs (=ReduceSignalUsage));
   431   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
   432   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
   433   // the dispositions or masks wrt these signals.
   434   // Programs embedding the VM that want to use the above signals for their
   435   // own purposes must, at this time, use the "-Xrs" option to prevent
   436   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
   437   // (See bug 4345157, and other related bugs).
   438   // In reality, though, unblocking these signals is really a nop, since
   439   // these signals are not blocked by default.
   440   sigemptyset(&unblocked_sigs);
   441   sigemptyset(&allowdebug_blocked_sigs);
   442   sigaddset(&unblocked_sigs, SIGILL);
   443   sigaddset(&unblocked_sigs, SIGSEGV);
   444   sigaddset(&unblocked_sigs, SIGBUS);
   445   sigaddset(&unblocked_sigs, SIGFPE);
   446 #if defined(PPC64)
   447   sigaddset(&unblocked_sigs, SIGTRAP);
   448 #endif
   449   sigaddset(&unblocked_sigs, SR_signum);
   451   if (!ReduceSignalUsage) {
   452    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
   453       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
   454       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
   455    }
   456    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
   457       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
   458       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
   459    }
   460    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
   461       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
   462       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
   463    }
   464   }
   465   // Fill in signals that are blocked by all but the VM thread.
   466   sigemptyset(&vm_sigs);
   467   if (!ReduceSignalUsage)
   468     sigaddset(&vm_sigs, BREAK_SIGNAL);
   469   debug_only(signal_sets_initialized = true);
   471 }
   473 // These are signals that are unblocked while a thread is running Java.
   474 // (For some reason, they get blocked by default.)
   475 sigset_t* os::Linux::unblocked_signals() {
   476   assert(signal_sets_initialized, "Not initialized");
   477   return &unblocked_sigs;
   478 }
   480 // These are the signals that are blocked while a (non-VM) thread is
   481 // running Java. Only the VM thread handles these signals.
   482 sigset_t* os::Linux::vm_signals() {
   483   assert(signal_sets_initialized, "Not initialized");
   484   return &vm_sigs;
   485 }
   487 // These are signals that are blocked during cond_wait to allow debugger in
   488 sigset_t* os::Linux::allowdebug_blocked_signals() {
   489   assert(signal_sets_initialized, "Not initialized");
   490   return &allowdebug_blocked_sigs;
   491 }
   493 void os::Linux::hotspot_sigmask(Thread* thread) {
   495   //Save caller's signal mask before setting VM signal mask
   496   sigset_t caller_sigmask;
   497   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
   499   OSThread* osthread = thread->osthread();
   500   osthread->set_caller_sigmask(caller_sigmask);
   502   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
   504   if (!ReduceSignalUsage) {
   505     if (thread->is_VM_thread()) {
   506       // Only the VM thread handles BREAK_SIGNAL ...
   507       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
   508     } else {
   509       // ... all other threads block BREAK_SIGNAL
   510       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
   511     }
   512   }
   513 }
   515 //////////////////////////////////////////////////////////////////////////////
   516 // detecting pthread library
   518 void os::Linux::libpthread_init() {
   519   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
   520   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
   521   // generic name for earlier versions.
   522   // Define macros here so we can build HotSpot on old systems.
   523 # ifndef _CS_GNU_LIBC_VERSION
   524 # define _CS_GNU_LIBC_VERSION 2
   525 # endif
   526 # ifndef _CS_GNU_LIBPTHREAD_VERSION
   527 # define _CS_GNU_LIBPTHREAD_VERSION 3
   528 # endif
   530   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
   531   if (n > 0) {
   532      char *str = (char *)malloc(n, mtInternal);
   533      confstr(_CS_GNU_LIBC_VERSION, str, n);
   534      os::Linux::set_glibc_version(str);
   535   } else {
   536      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
   537      static char _gnu_libc_version[32];
   538      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
   539               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
   540      os::Linux::set_glibc_version(_gnu_libc_version);
   541   }
   543   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
   544   if (n > 0) {
   545      char *str = (char *)malloc(n, mtInternal);
   546      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
   547      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
   548      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
   549      // is the case. LinuxThreads has a hard limit on max number of threads.
   550      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
   551      // On the other hand, NPTL does not have such a limit, sysconf()
   552      // will return -1 and errno is not changed. Check if it is really NPTL.
   553      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
   554          strstr(str, "NPTL") &&
   555          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
   556        free(str);
   557        os::Linux::set_libpthread_version("linuxthreads");
   558      } else {
   559        os::Linux::set_libpthread_version(str);
   560      }
   561   } else {
   562     // glibc before 2.3.2 only has LinuxThreads.
   563     os::Linux::set_libpthread_version("linuxthreads");
   564   }
   566   if (strstr(libpthread_version(), "NPTL")) {
   567      os::Linux::set_is_NPTL();
   568   } else {
   569      os::Linux::set_is_LinuxThreads();
   570   }
   572   // LinuxThreads have two flavors: floating-stack mode, which allows variable
   573   // stack size; and fixed-stack mode. NPTL is always floating-stack.
   574   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
   575      os::Linux::set_is_floating_stack();
   576   }
   577 }
   579 /////////////////////////////////////////////////////////////////////////////
   580 // thread stack
   582 // Force Linux kernel to expand current thread stack. If "bottom" is close
   583 // to the stack guard, caller should block all signals.
   584 //
   585 // MAP_GROWSDOWN:
   586 //   A special mmap() flag that is used to implement thread stacks. It tells
   587 //   kernel that the memory region should extend downwards when needed. This
   588 //   allows early versions of LinuxThreads to only mmap the first few pages
   589 //   when creating a new thread. Linux kernel will automatically expand thread
   590 //   stack as needed (on page faults).
   591 //
   592 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
   593 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
   594 //   region, it's hard to tell if the fault is due to a legitimate stack
   595 //   access or because of reading/writing non-exist memory (e.g. buffer
   596 //   overrun). As a rule, if the fault happens below current stack pointer,
   597 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
   598 //   application (see Linux kernel fault.c).
   599 //
   600 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
   601 //   stack overflow detection.
   602 //
   603 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
   604 //   not use this flag. However, the stack of initial thread is not created
   605 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
   606 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
   607 //   and then attach the thread to JVM.
   608 //
   609 // To get around the problem and allow stack banging on Linux, we need to
   610 // manually expand thread stack after receiving the SIGSEGV.
   611 //
   612 // There are two ways to expand thread stack to address "bottom", we used
   613 // both of them in JVM before 1.5:
   614 //   1. adjust stack pointer first so that it is below "bottom", and then
   615 //      touch "bottom"
   616 //   2. mmap() the page in question
   617 //
   618 // Now alternate signal stack is gone, it's harder to use 2. For instance,
   619 // if current sp is already near the lower end of page 101, and we need to
   620 // call mmap() to map page 100, it is possible that part of the mmap() frame
   621 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
   622 // That will destroy the mmap() frame and cause VM to crash.
   623 //
   624 // The following code works by adjusting sp first, then accessing the "bottom"
   625 // page to force a page fault. Linux kernel will then automatically expand the
   626 // stack mapping.
   627 //
   628 // _expand_stack_to() assumes its frame size is less than page size, which
   629 // should always be true if the function is not inlined.
   631 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
   632 #define NOINLINE
   633 #else
   634 #define NOINLINE __attribute__ ((noinline))
   635 #endif
   637 static void _expand_stack_to(address bottom) NOINLINE;
   639 static void _expand_stack_to(address bottom) {
   640   address sp;
   641   size_t size;
   642   volatile char *p;
   644   // Adjust bottom to point to the largest address within the same page, it
   645   // gives us a one-page buffer if alloca() allocates slightly more memory.
   646   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
   647   bottom += os::Linux::page_size() - 1;
   649   // sp might be slightly above current stack pointer; if that's the case, we
   650   // will alloca() a little more space than necessary, which is OK. Don't use
   651   // os::current_stack_pointer(), as its result can be slightly below current
   652   // stack pointer, causing us to not alloca enough to reach "bottom".
   653   sp = (address)&sp;
   655   if (sp > bottom) {
   656     size = sp - bottom;
   657     p = (volatile char *)alloca(size);
   658     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
   659     p[0] = '\0';
   660   }
   661 }
   663 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
   664   assert(t!=NULL, "just checking");
   665   assert(t->osthread()->expanding_stack(), "expand should be set");
   666   assert(t->stack_base() != NULL, "stack_base was not initialized");
   668   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
   669     sigset_t mask_all, old_sigset;
   670     sigfillset(&mask_all);
   671     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
   672     _expand_stack_to(addr);
   673     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
   674     return true;
   675   }
   676   return false;
   677 }
   679 //////////////////////////////////////////////////////////////////////////////
   680 // create new thread
   682 static address highest_vm_reserved_address();
   684 // check if it's safe to start a new thread
   685 static bool _thread_safety_check(Thread* thread) {
   686   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
   687     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
   688     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
   689     //   allocated (MAP_FIXED) from high address space. Every thread stack
   690     //   occupies a fixed size slot (usually 2Mbytes, but user can change
   691     //   it to other values if they rebuild LinuxThreads).
   692     //
   693     // Problem with MAP_FIXED is that mmap() can still succeed even part of
   694     // the memory region has already been mmap'ed. That means if we have too
   695     // many threads and/or very large heap, eventually thread stack will
   696     // collide with heap.
   697     //
   698     // Here we try to prevent heap/stack collision by comparing current
   699     // stack bottom with the highest address that has been mmap'ed by JVM
   700     // plus a safety margin for memory maps created by native code.
   701     //
   702     // This feature can be disabled by setting ThreadSafetyMargin to 0
   703     //
   704     if (ThreadSafetyMargin > 0) {
   705       address stack_bottom = os::current_stack_base() - os::current_stack_size();
   707       // not safe if our stack extends below the safety margin
   708       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
   709     } else {
   710       return true;
   711     }
   712   } else {
   713     // Floating stack LinuxThreads or NPTL:
   714     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
   715     //   there's not enough space left, pthread_create() will fail. If we come
   716     //   here, that means enough space has been reserved for stack.
   717     return true;
   718   }
   719 }
   721 // Thread start routine for all newly created threads
   722 static void *java_start(Thread *thread) {
   723   // Try to randomize the cache line index of hot stack frames.
   724   // This helps when threads of the same stack traces evict each other's
   725   // cache lines. The threads can be either from the same JVM instance, or
   726   // from different JVM instances. The benefit is especially true for
   727   // processors with hyperthreading technology.
   728   static int counter = 0;
   729   int pid = os::current_process_id();
   730   alloca(((pid ^ counter++) & 7) * 128);
   732   ThreadLocalStorage::set_thread(thread);
   734   OSThread* osthread = thread->osthread();
   735   Monitor* sync = osthread->startThread_lock();
   737   // non floating stack LinuxThreads needs extra check, see above
   738   if (!_thread_safety_check(thread)) {
   739     // notify parent thread
   740     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   741     osthread->set_state(ZOMBIE);
   742     sync->notify_all();
   743     return NULL;
   744   }
   746   // thread_id is kernel thread id (similar to Solaris LWP id)
   747   osthread->set_thread_id(os::Linux::gettid());
   749   if (UseNUMA) {
   750     int lgrp_id = os::numa_get_group_id();
   751     if (lgrp_id != -1) {
   752       thread->set_lgrp_id(lgrp_id);
   753     }
   754   }
   755   // initialize signal mask for this thread
   756   os::Linux::hotspot_sigmask(thread);
   758   // initialize floating point control register
   759   os::Linux::init_thread_fpu_state();
   761   // handshaking with parent thread
   762   {
   763     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   765     // notify parent thread
   766     osthread->set_state(INITIALIZED);
   767     sync->notify_all();
   769     // wait until os::start_thread()
   770     while (osthread->get_state() == INITIALIZED) {
   771       sync->wait(Mutex::_no_safepoint_check_flag);
   772     }
   773   }
   775   // call one more level start routine
   776   thread->run();
   778   return 0;
   779 }
   781 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
   782   assert(thread->osthread() == NULL, "caller responsible");
   784   // Allocate the OSThread object
   785   OSThread* osthread = new OSThread(NULL, NULL);
   786   if (osthread == NULL) {
   787     return false;
   788   }
   790   // set the correct thread state
   791   osthread->set_thread_type(thr_type);
   793   // Initial state is ALLOCATED but not INITIALIZED
   794   osthread->set_state(ALLOCATED);
   796   thread->set_osthread(osthread);
   798   // init thread attributes
   799   pthread_attr_t attr;
   800   pthread_attr_init(&attr);
   801   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
   803   // stack size
   804   if (os::Linux::supports_variable_stack_size()) {
   805     // calculate stack size if it's not specified by caller
   806     if (stack_size == 0) {
   807       stack_size = os::Linux::default_stack_size(thr_type);
   809       switch (thr_type) {
   810       case os::java_thread:
   811         // Java threads use ThreadStackSize which default value can be
   812         // changed with the flag -Xss
   813         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
   814         stack_size = JavaThread::stack_size_at_create();
   815         break;
   816       case os::compiler_thread:
   817         if (CompilerThreadStackSize > 0) {
   818           stack_size = (size_t)(CompilerThreadStackSize * K);
   819           break;
   820         } // else fall through:
   821           // use VMThreadStackSize if CompilerThreadStackSize is not defined
   822       case os::vm_thread:
   823       case os::pgc_thread:
   824       case os::cgc_thread:
   825       case os::watcher_thread:
   826         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
   827         break;
   828       }
   829     }
   831     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
   832     pthread_attr_setstacksize(&attr, stack_size);
   833   } else {
   834     // let pthread_create() pick the default value.
   835   }
   837   // glibc guard page
   838   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
   840   ThreadState state;
   842   {
   843     // Serialize thread creation if we are running with fixed stack LinuxThreads
   844     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
   845     if (lock) {
   846       os::Linux::createThread_lock()->lock_without_safepoint_check();
   847     }
   849     pthread_t tid;
   850     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
   852     pthread_attr_destroy(&attr);
   854     if (ret != 0) {
   855       if (PrintMiscellaneous && (Verbose || WizardMode)) {
   856         perror("pthread_create()");
   857       }
   858       // Need to clean up stuff we've allocated so far
   859       thread->set_osthread(NULL);
   860       delete osthread;
   861       if (lock) os::Linux::createThread_lock()->unlock();
   862       return false;
   863     }
   865     // Store pthread info into the OSThread
   866     osthread->set_pthread_id(tid);
   868     // Wait until child thread is either initialized or aborted
   869     {
   870       Monitor* sync_with_child = osthread->startThread_lock();
   871       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
   872       while ((state = osthread->get_state()) == ALLOCATED) {
   873         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
   874       }
   875     }
   877     if (lock) {
   878       os::Linux::createThread_lock()->unlock();
   879     }
   880   }
   882   // Aborted due to thread limit being reached
   883   if (state == ZOMBIE) {
   884       thread->set_osthread(NULL);
   885       delete osthread;
   886       return false;
   887   }
   889   // The thread is returned suspended (in state INITIALIZED),
   890   // and is started higher up in the call chain
   891   assert(state == INITIALIZED, "race condition");
   892   return true;
   893 }
   895 /////////////////////////////////////////////////////////////////////////////
   896 // attach existing thread
   898 // bootstrap the main thread
   899 bool os::create_main_thread(JavaThread* thread) {
   900   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
   901   return create_attached_thread(thread);
   902 }
   904 bool os::create_attached_thread(JavaThread* thread) {
   905 #ifdef ASSERT
   906     thread->verify_not_published();
   907 #endif
   909   // Allocate the OSThread object
   910   OSThread* osthread = new OSThread(NULL, NULL);
   912   if (osthread == NULL) {
   913     return false;
   914   }
   916   // Store pthread info into the OSThread
   917   osthread->set_thread_id(os::Linux::gettid());
   918   osthread->set_pthread_id(::pthread_self());
   920   // initialize floating point control register
   921   os::Linux::init_thread_fpu_state();
   923   // Initial thread state is RUNNABLE
   924   osthread->set_state(RUNNABLE);
   926   thread->set_osthread(osthread);
   928   if (UseNUMA) {
   929     int lgrp_id = os::numa_get_group_id();
   930     if (lgrp_id != -1) {
   931       thread->set_lgrp_id(lgrp_id);
   932     }
   933   }
   935   if (os::Linux::is_initial_thread()) {
   936     // If current thread is initial thread, its stack is mapped on demand,
   937     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
   938     // the entire stack region to avoid SEGV in stack banging.
   939     // It is also useful to get around the heap-stack-gap problem on SuSE
   940     // kernel (see 4821821 for details). We first expand stack to the top
   941     // of yellow zone, then enable stack yellow zone (order is significant,
   942     // enabling yellow zone first will crash JVM on SuSE Linux), so there
   943     // is no gap between the last two virtual memory regions.
   945     JavaThread *jt = (JavaThread *)thread;
   946     address addr = jt->stack_yellow_zone_base();
   947     assert(addr != NULL, "initialization problem?");
   948     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
   950     osthread->set_expanding_stack();
   951     os::Linux::manually_expand_stack(jt, addr);
   952     osthread->clear_expanding_stack();
   953   }
   955   // initialize signal mask for this thread
   956   // and save the caller's signal mask
   957   os::Linux::hotspot_sigmask(thread);
   959   return true;
   960 }
   962 void os::pd_start_thread(Thread* thread) {
   963   OSThread * osthread = thread->osthread();
   964   assert(osthread->get_state() != INITIALIZED, "just checking");
   965   Monitor* sync_with_child = osthread->startThread_lock();
   966   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
   967   sync_with_child->notify();
   968 }
   970 // Free Linux resources related to the OSThread
   971 void os::free_thread(OSThread* osthread) {
   972   assert(osthread != NULL, "osthread not set");
   974   if (Thread::current()->osthread() == osthread) {
   975     // Restore caller's signal mask
   976     sigset_t sigmask = osthread->caller_sigmask();
   977     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
   978    }
   980   delete osthread;
   981 }
   983 //////////////////////////////////////////////////////////////////////////////
   984 // thread local storage
   986 // Restore the thread pointer if the destructor is called. This is in case
   987 // someone from JNI code sets up a destructor with pthread_key_create to run
   988 // detachCurrentThread on thread death. Unless we restore the thread pointer we
   989 // will hang or crash. When detachCurrentThread is called the key will be set
   990 // to null and we will not be called again. If detachCurrentThread is never
   991 // called we could loop forever depending on the pthread implementation.
   992 static void restore_thread_pointer(void* p) {
   993   Thread* thread = (Thread*) p;
   994   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
   995 }
   997 int os::allocate_thread_local_storage() {
   998   pthread_key_t key;
   999   int rslt = pthread_key_create(&key, restore_thread_pointer);
  1000   assert(rslt == 0, "cannot allocate thread local storage");
  1001   return (int)key;
  1004 // Note: This is currently not used by VM, as we don't destroy TLS key
  1005 // on VM exit.
  1006 void os::free_thread_local_storage(int index) {
  1007   int rslt = pthread_key_delete((pthread_key_t)index);
  1008   assert(rslt == 0, "invalid index");
  1011 void os::thread_local_storage_at_put(int index, void* value) {
  1012   int rslt = pthread_setspecific((pthread_key_t)index, value);
  1013   assert(rslt == 0, "pthread_setspecific failed");
  1016 extern "C" Thread* get_thread() {
  1017   return ThreadLocalStorage::thread();
  1020 //////////////////////////////////////////////////////////////////////////////
  1021 // initial thread
  1023 // Check if current thread is the initial thread, similar to Solaris thr_main.
  1024 bool os::Linux::is_initial_thread(void) {
  1025   char dummy;
  1026   // If called before init complete, thread stack bottom will be null.
  1027   // Can be called if fatal error occurs before initialization.
  1028   if (initial_thread_stack_bottom() == NULL) return false;
  1029   assert(initial_thread_stack_bottom() != NULL &&
  1030          initial_thread_stack_size()   != 0,
  1031          "os::init did not locate initial thread's stack region");
  1032   if ((address)&dummy >= initial_thread_stack_bottom() &&
  1033       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
  1034        return true;
  1035   else return false;
  1038 // Find the virtual memory area that contains addr
  1039 static bool find_vma(address addr, address* vma_low, address* vma_high) {
  1040   FILE *fp = fopen("/proc/self/maps", "r");
  1041   if (fp) {
  1042     address low, high;
  1043     while (!feof(fp)) {
  1044       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
  1045         if (low <= addr && addr < high) {
  1046            if (vma_low)  *vma_low  = low;
  1047            if (vma_high) *vma_high = high;
  1048            fclose (fp);
  1049            return true;
  1052       for (;;) {
  1053         int ch = fgetc(fp);
  1054         if (ch == EOF || ch == (int)'\n') break;
  1057     fclose(fp);
  1059   return false;
  1062 // Locate initial thread stack. This special handling of initial thread stack
  1063 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
  1064 // bogus value for initial thread.
  1065 void os::Linux::capture_initial_stack(size_t max_size) {
  1066   // stack size is the easy part, get it from RLIMIT_STACK
  1067   size_t stack_size;
  1068   struct rlimit rlim;
  1069   getrlimit(RLIMIT_STACK, &rlim);
  1070   stack_size = rlim.rlim_cur;
  1072   // 6308388: a bug in ld.so will relocate its own .data section to the
  1073   //   lower end of primordial stack; reduce ulimit -s value a little bit
  1074   //   so we won't install guard page on ld.so's data section.
  1075   stack_size -= 2 * page_size();
  1077   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
  1078   //   7.1, in both cases we will get 2G in return value.
  1079   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
  1080   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
  1081   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
  1082   //   in case other parts in glibc still assumes 2M max stack size.
  1083   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
  1084   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
  1085   if (stack_size > 2 * K * K IA64_ONLY(*2))
  1086       stack_size = 2 * K * K IA64_ONLY(*2);
  1087   // Try to figure out where the stack base (top) is. This is harder.
  1088   //
  1089   // When an application is started, glibc saves the initial stack pointer in
  1090   // a global variable "__libc_stack_end", which is then used by system
  1091   // libraries. __libc_stack_end should be pretty close to stack top. The
  1092   // variable is available since the very early days. However, because it is
  1093   // a private interface, it could disappear in the future.
  1094   //
  1095   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
  1096   // to __libc_stack_end, it is very close to stack top, but isn't the real
  1097   // stack top. Note that /proc may not exist if VM is running as a chroot
  1098   // program, so reading /proc/<pid>/stat could fail. Also the contents of
  1099   // /proc/<pid>/stat could change in the future (though unlikely).
  1100   //
  1101   // We try __libc_stack_end first. If that doesn't work, look for
  1102   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
  1103   // as a hint, which should work well in most cases.
  1105   uintptr_t stack_start;
  1107   // try __libc_stack_end first
  1108   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
  1109   if (p && *p) {
  1110     stack_start = *p;
  1111   } else {
  1112     // see if we can get the start_stack field from /proc/self/stat
  1113     FILE *fp;
  1114     int pid;
  1115     char state;
  1116     int ppid;
  1117     int pgrp;
  1118     int session;
  1119     int nr;
  1120     int tpgrp;
  1121     unsigned long flags;
  1122     unsigned long minflt;
  1123     unsigned long cminflt;
  1124     unsigned long majflt;
  1125     unsigned long cmajflt;
  1126     unsigned long utime;
  1127     unsigned long stime;
  1128     long cutime;
  1129     long cstime;
  1130     long prio;
  1131     long nice;
  1132     long junk;
  1133     long it_real;
  1134     uintptr_t start;
  1135     uintptr_t vsize;
  1136     intptr_t rss;
  1137     uintptr_t rsslim;
  1138     uintptr_t scodes;
  1139     uintptr_t ecode;
  1140     int i;
  1142     // Figure what the primordial thread stack base is. Code is inspired
  1143     // by email from Hans Boehm. /proc/self/stat begins with current pid,
  1144     // followed by command name surrounded by parentheses, state, etc.
  1145     char stat[2048];
  1146     int statlen;
  1148     fp = fopen("/proc/self/stat", "r");
  1149     if (fp) {
  1150       statlen = fread(stat, 1, 2047, fp);
  1151       stat[statlen] = '\0';
  1152       fclose(fp);
  1154       // Skip pid and the command string. Note that we could be dealing with
  1155       // weird command names, e.g. user could decide to rename java launcher
  1156       // to "java 1.4.2 :)", then the stat file would look like
  1157       //                1234 (java 1.4.2 :)) R ... ...
  1158       // We don't really need to know the command string, just find the last
  1159       // occurrence of ")" and then start parsing from there. See bug 4726580.
  1160       char * s = strrchr(stat, ')');
  1162       i = 0;
  1163       if (s) {
  1164         // Skip blank chars
  1165         do s++; while (isspace(*s));
  1167 #define _UFM UINTX_FORMAT
  1168 #define _DFM INTX_FORMAT
  1170         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
  1171         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
  1172         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
  1173              &state,          /* 3  %c  */
  1174              &ppid,           /* 4  %d  */
  1175              &pgrp,           /* 5  %d  */
  1176              &session,        /* 6  %d  */
  1177              &nr,             /* 7  %d  */
  1178              &tpgrp,          /* 8  %d  */
  1179              &flags,          /* 9  %lu  */
  1180              &minflt,         /* 10 %lu  */
  1181              &cminflt,        /* 11 %lu  */
  1182              &majflt,         /* 12 %lu  */
  1183              &cmajflt,        /* 13 %lu  */
  1184              &utime,          /* 14 %lu  */
  1185              &stime,          /* 15 %lu  */
  1186              &cutime,         /* 16 %ld  */
  1187              &cstime,         /* 17 %ld  */
  1188              &prio,           /* 18 %ld  */
  1189              &nice,           /* 19 %ld  */
  1190              &junk,           /* 20 %ld  */
  1191              &it_real,        /* 21 %ld  */
  1192              &start,          /* 22 UINTX_FORMAT */
  1193              &vsize,          /* 23 UINTX_FORMAT */
  1194              &rss,            /* 24 INTX_FORMAT  */
  1195              &rsslim,         /* 25 UINTX_FORMAT */
  1196              &scodes,         /* 26 UINTX_FORMAT */
  1197              &ecode,          /* 27 UINTX_FORMAT */
  1198              &stack_start);   /* 28 UINTX_FORMAT */
  1201 #undef _UFM
  1202 #undef _DFM
  1204       if (i != 28 - 2) {
  1205          assert(false, "Bad conversion from /proc/self/stat");
  1206          // product mode - assume we are the initial thread, good luck in the
  1207          // embedded case.
  1208          warning("Can't detect initial thread stack location - bad conversion");
  1209          stack_start = (uintptr_t) &rlim;
  1211     } else {
  1212       // For some reason we can't open /proc/self/stat (for example, running on
  1213       // FreeBSD with a Linux emulator, or inside chroot), this should work for
  1214       // most cases, so don't abort:
  1215       warning("Can't detect initial thread stack location - no /proc/self/stat");
  1216       stack_start = (uintptr_t) &rlim;
  1220   // Now we have a pointer (stack_start) very close to the stack top, the
  1221   // next thing to do is to figure out the exact location of stack top. We
  1222   // can find out the virtual memory area that contains stack_start by
  1223   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
  1224   // and its upper limit is the real stack top. (again, this would fail if
  1225   // running inside chroot, because /proc may not exist.)
  1227   uintptr_t stack_top;
  1228   address low, high;
  1229   if (find_vma((address)stack_start, &low, &high)) {
  1230     // success, "high" is the true stack top. (ignore "low", because initial
  1231     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
  1232     stack_top = (uintptr_t)high;
  1233   } else {
  1234     // failed, likely because /proc/self/maps does not exist
  1235     warning("Can't detect initial thread stack location - find_vma failed");
  1236     // best effort: stack_start is normally within a few pages below the real
  1237     // stack top, use it as stack top, and reduce stack size so we won't put
  1238     // guard page outside stack.
  1239     stack_top = stack_start;
  1240     stack_size -= 16 * page_size();
  1243   // stack_top could be partially down the page so align it
  1244   stack_top = align_size_up(stack_top, page_size());
  1246   if (max_size && stack_size > max_size) {
  1247      _initial_thread_stack_size = max_size;
  1248   } else {
  1249      _initial_thread_stack_size = stack_size;
  1252   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
  1253   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
  1256 ////////////////////////////////////////////////////////////////////////////////
  1257 // time support
  1259 // Time since start-up in seconds to a fine granularity.
  1260 // Used by VMSelfDestructTimer and the MemProfiler.
  1261 double os::elapsedTime() {
  1263   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
  1266 jlong os::elapsed_counter() {
  1267   return javaTimeNanos() - initial_time_count;
  1270 jlong os::elapsed_frequency() {
  1271   return NANOSECS_PER_SEC; // nanosecond resolution
  1274 bool os::supports_vtime() { return true; }
  1275 bool os::enable_vtime()   { return false; }
  1276 bool os::vtime_enabled()  { return false; }
  1278 double os::elapsedVTime() {
  1279   struct rusage usage;
  1280   int retval = getrusage(RUSAGE_THREAD, &usage);
  1281   if (retval == 0) {
  1282     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
  1283   } else {
  1284     // better than nothing, but not much
  1285     return elapsedTime();
  1289 jlong os::javaTimeMillis() {
  1290   timeval time;
  1291   int status = gettimeofday(&time, NULL);
  1292   assert(status != -1, "linux error");
  1293   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
  1296 #ifndef CLOCK_MONOTONIC
  1297 #define CLOCK_MONOTONIC (1)
  1298 #endif
  1300 void os::Linux::clock_init() {
  1301   // we do dlopen's in this particular order due to bug in linux
  1302   // dynamical loader (see 6348968) leading to crash on exit
  1303   void* handle = dlopen("librt.so.1", RTLD_LAZY);
  1304   if (handle == NULL) {
  1305     handle = dlopen("librt.so", RTLD_LAZY);
  1308   if (handle) {
  1309     int (*clock_getres_func)(clockid_t, struct timespec*) =
  1310            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
  1311     int (*clock_gettime_func)(clockid_t, struct timespec*) =
  1312            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
  1313     if (clock_getres_func && clock_gettime_func) {
  1314       // See if monotonic clock is supported by the kernel. Note that some
  1315       // early implementations simply return kernel jiffies (updated every
  1316       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
  1317       // for nano time (though the monotonic property is still nice to have).
  1318       // It's fixed in newer kernels, however clock_getres() still returns
  1319       // 1/HZ. We check if clock_getres() works, but will ignore its reported
  1320       // resolution for now. Hopefully as people move to new kernels, this
  1321       // won't be a problem.
  1322       struct timespec res;
  1323       struct timespec tp;
  1324       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
  1325           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
  1326         // yes, monotonic clock is supported
  1327         _clock_gettime = clock_gettime_func;
  1328         return;
  1329       } else {
  1330         // close librt if there is no monotonic clock
  1331         dlclose(handle);
  1335   warning("No monotonic clock was available - timed services may " \
  1336           "be adversely affected if the time-of-day clock changes");
  1339 #ifndef SYS_clock_getres
  1341 #if defined(IA32) || defined(AMD64)
  1342 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
  1343 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1344 #else
  1345 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
  1346 #define sys_clock_getres(x,y)  -1
  1347 #endif
  1349 #else
  1350 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1351 #endif
  1353 void os::Linux::fast_thread_clock_init() {
  1354   if (!UseLinuxPosixThreadCPUClocks) {
  1355     return;
  1357   clockid_t clockid;
  1358   struct timespec tp;
  1359   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
  1360       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
  1362   // Switch to using fast clocks for thread cpu time if
  1363   // the sys_clock_getres() returns 0 error code.
  1364   // Note, that some kernels may support the current thread
  1365   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
  1366   // returned by the pthread_getcpuclockid().
  1367   // If the fast Posix clocks are supported then the sys_clock_getres()
  1368   // must return at least tp.tv_sec == 0 which means a resolution
  1369   // better than 1 sec. This is extra check for reliability.
  1371   if(pthread_getcpuclockid_func &&
  1372      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
  1373      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
  1375     _supports_fast_thread_cpu_time = true;
  1376     _pthread_getcpuclockid = pthread_getcpuclockid_func;
  1380 jlong os::javaTimeNanos() {
  1381   if (Linux::supports_monotonic_clock()) {
  1382     struct timespec tp;
  1383     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
  1384     assert(status == 0, "gettime error");
  1385     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
  1386     return result;
  1387   } else {
  1388     timeval time;
  1389     int status = gettimeofday(&time, NULL);
  1390     assert(status != -1, "linux error");
  1391     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
  1392     return 1000 * usecs;
  1396 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
  1397   if (Linux::supports_monotonic_clock()) {
  1398     info_ptr->max_value = ALL_64_BITS;
  1400     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
  1401     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
  1402     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
  1403   } else {
  1404     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
  1405     info_ptr->max_value = ALL_64_BITS;
  1407     // gettimeofday is a real time clock so it skips
  1408     info_ptr->may_skip_backward = true;
  1409     info_ptr->may_skip_forward = true;
  1412   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
  1415 // Return the real, user, and system times in seconds from an
  1416 // arbitrary fixed point in the past.
  1417 bool os::getTimesSecs(double* process_real_time,
  1418                       double* process_user_time,
  1419                       double* process_system_time) {
  1420   struct tms ticks;
  1421   clock_t real_ticks = times(&ticks);
  1423   if (real_ticks == (clock_t) (-1)) {
  1424     return false;
  1425   } else {
  1426     double ticks_per_second = (double) clock_tics_per_sec;
  1427     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
  1428     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
  1429     *process_real_time = ((double) real_ticks) / ticks_per_second;
  1431     return true;
  1436 char * os::local_time_string(char *buf, size_t buflen) {
  1437   struct tm t;
  1438   time_t long_time;
  1439   time(&long_time);
  1440   localtime_r(&long_time, &t);
  1441   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
  1442                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
  1443                t.tm_hour, t.tm_min, t.tm_sec);
  1444   return buf;
  1447 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
  1448   return localtime_r(clock, res);
  1451 ////////////////////////////////////////////////////////////////////////////////
  1452 // runtime exit support
  1454 // Note: os::shutdown() might be called very early during initialization, or
  1455 // called from signal handler. Before adding something to os::shutdown(), make
  1456 // sure it is async-safe and can handle partially initialized VM.
  1457 void os::shutdown() {
  1459   // allow PerfMemory to attempt cleanup of any persistent resources
  1460   perfMemory_exit();
  1462   // needs to remove object in file system
  1463   AttachListener::abort();
  1465   // flush buffered output, finish log files
  1466   ostream_abort();
  1468   // Check for abort hook
  1469   abort_hook_t abort_hook = Arguments::abort_hook();
  1470   if (abort_hook != NULL) {
  1471     abort_hook();
  1476 // Note: os::abort() might be called very early during initialization, or
  1477 // called from signal handler. Before adding something to os::abort(), make
  1478 // sure it is async-safe and can handle partially initialized VM.
  1479 void os::abort(bool dump_core) {
  1480   os::shutdown();
  1481   if (dump_core) {
  1482 #ifndef PRODUCT
  1483     fdStream out(defaultStream::output_fd());
  1484     out.print_raw("Current thread is ");
  1485     char buf[16];
  1486     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
  1487     out.print_raw_cr(buf);
  1488     out.print_raw_cr("Dumping core ...");
  1489 #endif
  1490     ::abort(); // dump core
  1493   ::exit(1);
  1496 // Die immediately, no exit hook, no abort hook, no cleanup.
  1497 void os::die() {
  1498   // _exit() on LinuxThreads only kills current thread
  1499   ::abort();
  1503 // This method is a copy of JDK's sysGetLastErrorString
  1504 // from src/solaris/hpi/src/system_md.c
  1506 size_t os::lasterror(char *buf, size_t len) {
  1508   if (errno == 0)  return 0;
  1510   const char *s = ::strerror(errno);
  1511   size_t n = ::strlen(s);
  1512   if (n >= len) {
  1513     n = len - 1;
  1515   ::strncpy(buf, s, n);
  1516   buf[n] = '\0';
  1517   return n;
  1520 intx os::current_thread_id() { return (intx)pthread_self(); }
  1521 int os::current_process_id() {
  1523   // Under the old linux thread library, linux gives each thread
  1524   // its own process id. Because of this each thread will return
  1525   // a different pid if this method were to return the result
  1526   // of getpid(2). Linux provides no api that returns the pid
  1527   // of the launcher thread for the vm. This implementation
  1528   // returns a unique pid, the pid of the launcher thread
  1529   // that starts the vm 'process'.
  1531   // Under the NPTL, getpid() returns the same pid as the
  1532   // launcher thread rather than a unique pid per thread.
  1533   // Use gettid() if you want the old pre NPTL behaviour.
  1535   // if you are looking for the result of a call to getpid() that
  1536   // returns a unique pid for the calling thread, then look at the
  1537   // OSThread::thread_id() method in osThread_linux.hpp file
  1539   return (int)(_initial_pid ? _initial_pid : getpid());
  1542 // DLL functions
  1544 const char* os::dll_file_extension() { return ".so"; }
  1546 // This must be hard coded because it's the system's temporary
  1547 // directory not the java application's temp directory, ala java.io.tmpdir.
  1548 const char* os::get_temp_directory() { return "/tmp"; }
  1550 static bool file_exists(const char* filename) {
  1551   struct stat statbuf;
  1552   if (filename == NULL || strlen(filename) == 0) {
  1553     return false;
  1555   return os::stat(filename, &statbuf) == 0;
  1558 bool os::dll_build_name(char* buffer, size_t buflen,
  1559                         const char* pname, const char* fname) {
  1560   bool retval = false;
  1561   // Copied from libhpi
  1562   const size_t pnamelen = pname ? strlen(pname) : 0;
  1564   // Return error on buffer overflow.
  1565   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
  1566     return retval;
  1569   if (pnamelen == 0) {
  1570     snprintf(buffer, buflen, "lib%s.so", fname);
  1571     retval = true;
  1572   } else if (strchr(pname, *os::path_separator()) != NULL) {
  1573     int n;
  1574     char** pelements = split_path(pname, &n);
  1575     if (pelements == NULL) {
  1576       return false;
  1578     for (int i = 0 ; i < n ; i++) {
  1579       // Really shouldn't be NULL, but check can't hurt
  1580       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
  1581         continue; // skip the empty path values
  1583       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
  1584       if (file_exists(buffer)) {
  1585         retval = true;
  1586         break;
  1589     // release the storage
  1590     for (int i = 0 ; i < n ; i++) {
  1591       if (pelements[i] != NULL) {
  1592         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
  1595     if (pelements != NULL) {
  1596       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
  1598   } else {
  1599     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
  1600     retval = true;
  1602   return retval;
  1605 // check if addr is inside libjvm.so
  1606 bool os::address_is_in_vm(address addr) {
  1607   static address libjvm_base_addr;
  1608   Dl_info dlinfo;
  1610   if (libjvm_base_addr == NULL) {
  1611     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
  1612       libjvm_base_addr = (address)dlinfo.dli_fbase;
  1614     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
  1617   if (dladdr((void *)addr, &dlinfo) != 0) {
  1618     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
  1621   return false;
  1624 bool os::dll_address_to_function_name(address addr, char *buf,
  1625                                       int buflen, int *offset) {
  1626   // buf is not optional, but offset is optional
  1627   assert(buf != NULL, "sanity check");
  1629   Dl_info dlinfo;
  1631   if (dladdr((void*)addr, &dlinfo) != 0) {
  1632     // see if we have a matching symbol
  1633     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
  1634       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
  1635         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
  1637       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
  1638       return true;
  1640     // no matching symbol so try for just file info
  1641     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
  1642       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
  1643                           buf, buflen, offset, dlinfo.dli_fname)) {
  1644         return true;
  1649   buf[0] = '\0';
  1650   if (offset != NULL) *offset = -1;
  1651   return false;
  1654 struct _address_to_library_name {
  1655   address addr;          // input : memory address
  1656   size_t  buflen;        //         size of fname
  1657   char*   fname;         // output: library name
  1658   address base;          //         library base addr
  1659 };
  1661 static int address_to_library_name_callback(struct dl_phdr_info *info,
  1662                                             size_t size, void *data) {
  1663   int i;
  1664   bool found = false;
  1665   address libbase = NULL;
  1666   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
  1668   // iterate through all loadable segments
  1669   for (i = 0; i < info->dlpi_phnum; i++) {
  1670     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
  1671     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
  1672       // base address of a library is the lowest address of its loaded
  1673       // segments.
  1674       if (libbase == NULL || libbase > segbase) {
  1675         libbase = segbase;
  1677       // see if 'addr' is within current segment
  1678       if (segbase <= d->addr &&
  1679           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
  1680         found = true;
  1685   // dlpi_name is NULL or empty if the ELF file is executable, return 0
  1686   // so dll_address_to_library_name() can fall through to use dladdr() which
  1687   // can figure out executable name from argv[0].
  1688   if (found && info->dlpi_name && info->dlpi_name[0]) {
  1689     d->base = libbase;
  1690     if (d->fname) {
  1691       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
  1693     return 1;
  1695   return 0;
  1698 bool os::dll_address_to_library_name(address addr, char* buf,
  1699                                      int buflen, int* offset) {
  1700   // buf is not optional, but offset is optional
  1701   assert(buf != NULL, "sanity check");
  1703   Dl_info dlinfo;
  1704   struct _address_to_library_name data;
  1706   // There is a bug in old glibc dladdr() implementation that it could resolve
  1707   // to wrong library name if the .so file has a base address != NULL. Here
  1708   // we iterate through the program headers of all loaded libraries to find
  1709   // out which library 'addr' really belongs to. This workaround can be
  1710   // removed once the minimum requirement for glibc is moved to 2.3.x.
  1711   data.addr = addr;
  1712   data.fname = buf;
  1713   data.buflen = buflen;
  1714   data.base = NULL;
  1715   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
  1717   if (rslt) {
  1718      // buf already contains library name
  1719      if (offset) *offset = addr - data.base;
  1720      return true;
  1722   if (dladdr((void*)addr, &dlinfo) != 0) {
  1723     if (dlinfo.dli_fname != NULL) {
  1724       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
  1726     if (dlinfo.dli_fbase != NULL && offset != NULL) {
  1727       *offset = addr - (address)dlinfo.dli_fbase;
  1729     return true;
  1732   buf[0] = '\0';
  1733   if (offset) *offset = -1;
  1734   return false;
  1737   // Loads .dll/.so and
  1738   // in case of error it checks if .dll/.so was built for the
  1739   // same architecture as Hotspot is running on
  1742 // Remember the stack's state. The Linux dynamic linker will change
  1743 // the stack to 'executable' at most once, so we must safepoint only once.
  1744 bool os::Linux::_stack_is_executable = false;
  1746 // VM operation that loads a library.  This is necessary if stack protection
  1747 // of the Java stacks can be lost during loading the library.  If we
  1748 // do not stop the Java threads, they can stack overflow before the stacks
  1749 // are protected again.
  1750 class VM_LinuxDllLoad: public VM_Operation {
  1751  private:
  1752   const char *_filename;
  1753   char *_ebuf;
  1754   int _ebuflen;
  1755   void *_lib;
  1756  public:
  1757   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
  1758     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
  1759   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
  1760   void doit() {
  1761     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
  1762     os::Linux::_stack_is_executable = true;
  1764   void* loaded_library() { return _lib; }
  1765 };
  1767 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
  1769   void * result = NULL;
  1770   bool load_attempted = false;
  1772   // Check whether the library to load might change execution rights
  1773   // of the stack. If they are changed, the protection of the stack
  1774   // guard pages will be lost. We need a safepoint to fix this.
  1775   //
  1776   // See Linux man page execstack(8) for more info.
  1777   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
  1778     ElfFile ef(filename);
  1779     if (!ef.specifies_noexecstack()) {
  1780       if (!is_init_completed()) {
  1781         os::Linux::_stack_is_executable = true;
  1782         // This is OK - No Java threads have been created yet, and hence no
  1783         // stack guard pages to fix.
  1784         //
  1785         // This should happen only when you are building JDK7 using a very
  1786         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
  1787         //
  1788         // Dynamic loader will make all stacks executable after
  1789         // this function returns, and will not do that again.
  1790         assert(Threads::first() == NULL, "no Java threads should exist yet.");
  1791       } else {
  1792         warning("You have loaded library %s which might have disabled stack guard. "
  1793                 "The VM will try to fix the stack guard now.\n"
  1794                 "It's highly recommended that you fix the library with "
  1795                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
  1796                 filename);
  1798         assert(Thread::current()->is_Java_thread(), "must be Java thread");
  1799         JavaThread *jt = JavaThread::current();
  1800         if (jt->thread_state() != _thread_in_native) {
  1801           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
  1802           // that requires ExecStack. Cannot enter safe point. Let's give up.
  1803           warning("Unable to fix stack guard. Giving up.");
  1804         } else {
  1805           if (!LoadExecStackDllInVMThread) {
  1806             // This is for the case where the DLL has an static
  1807             // constructor function that executes JNI code. We cannot
  1808             // load such DLLs in the VMThread.
  1809             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
  1812           ThreadInVMfromNative tiv(jt);
  1813           debug_only(VMNativeEntryWrapper vew;)
  1815           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
  1816           VMThread::execute(&op);
  1817           if (LoadExecStackDllInVMThread) {
  1818             result = op.loaded_library();
  1820           load_attempted = true;
  1826   if (!load_attempted) {
  1827     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
  1830   if (result != NULL) {
  1831     // Successful loading
  1832     return result;
  1835   Elf32_Ehdr elf_head;
  1836   int diag_msg_max_length=ebuflen-strlen(ebuf);
  1837   char* diag_msg_buf=ebuf+strlen(ebuf);
  1839   if (diag_msg_max_length==0) {
  1840     // No more space in ebuf for additional diagnostics message
  1841     return NULL;
  1845   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
  1847   if (file_descriptor < 0) {
  1848     // Can't open library, report dlerror() message
  1849     return NULL;
  1852   bool failed_to_read_elf_head=
  1853     (sizeof(elf_head)!=
  1854         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
  1856   ::close(file_descriptor);
  1857   if (failed_to_read_elf_head) {
  1858     // file i/o error - report dlerror() msg
  1859     return NULL;
  1862   typedef struct {
  1863     Elf32_Half  code;         // Actual value as defined in elf.h
  1864     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
  1865     char        elf_class;    // 32 or 64 bit
  1866     char        endianess;    // MSB or LSB
  1867     char*       name;         // String representation
  1868   } arch_t;
  1870   #ifndef EM_486
  1871   #define EM_486          6               /* Intel 80486 */
  1872   #endif
  1874   static const arch_t arch_array[]={
  1875     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1876     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1877     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
  1878     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
  1879     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1880     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1881     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
  1882     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
  1883 #if defined(VM_LITTLE_ENDIAN)
  1884     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
  1885 #else
  1886     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
  1887 #endif
  1888     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
  1889     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
  1890     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
  1891     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
  1892     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
  1893     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
  1894     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
  1895   };
  1897   #if  (defined IA32)
  1898     static  Elf32_Half running_arch_code=EM_386;
  1899   #elif   (defined AMD64)
  1900     static  Elf32_Half running_arch_code=EM_X86_64;
  1901   #elif  (defined IA64)
  1902     static  Elf32_Half running_arch_code=EM_IA_64;
  1903   #elif  (defined __sparc) && (defined _LP64)
  1904     static  Elf32_Half running_arch_code=EM_SPARCV9;
  1905   #elif  (defined __sparc) && (!defined _LP64)
  1906     static  Elf32_Half running_arch_code=EM_SPARC;
  1907   #elif  (defined __powerpc64__)
  1908     static  Elf32_Half running_arch_code=EM_PPC64;
  1909   #elif  (defined __powerpc__)
  1910     static  Elf32_Half running_arch_code=EM_PPC;
  1911   #elif  (defined ARM)
  1912     static  Elf32_Half running_arch_code=EM_ARM;
  1913   #elif  (defined S390)
  1914     static  Elf32_Half running_arch_code=EM_S390;
  1915   #elif  (defined ALPHA)
  1916     static  Elf32_Half running_arch_code=EM_ALPHA;
  1917   #elif  (defined MIPSEL)
  1918     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
  1919   #elif  (defined PARISC)
  1920     static  Elf32_Half running_arch_code=EM_PARISC;
  1921   #elif  (defined MIPS)
  1922     static  Elf32_Half running_arch_code=EM_MIPS;
  1923   #elif  (defined M68K)
  1924     static  Elf32_Half running_arch_code=EM_68K;
  1925   #else
  1926     #error Method os::dll_load requires that one of following is defined:\
  1927          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
  1928   #endif
  1930   // Identify compatability class for VM's architecture and library's architecture
  1931   // Obtain string descriptions for architectures
  1933   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
  1934   int running_arch_index=-1;
  1936   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
  1937     if (running_arch_code == arch_array[i].code) {
  1938       running_arch_index    = i;
  1940     if (lib_arch.code == arch_array[i].code) {
  1941       lib_arch.compat_class = arch_array[i].compat_class;
  1942       lib_arch.name         = arch_array[i].name;
  1946   assert(running_arch_index != -1,
  1947     "Didn't find running architecture code (running_arch_code) in arch_array");
  1948   if (running_arch_index == -1) {
  1949     // Even though running architecture detection failed
  1950     // we may still continue with reporting dlerror() message
  1951     return NULL;
  1954   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
  1955     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
  1956     return NULL;
  1959 #ifndef S390
  1960   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
  1961     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
  1962     return NULL;
  1964 #endif // !S390
  1966   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
  1967     if ( lib_arch.name!=NULL ) {
  1968       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  1969         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
  1970         lib_arch.name, arch_array[running_arch_index].name);
  1971     } else {
  1972       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  1973       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
  1974         lib_arch.code,
  1975         arch_array[running_arch_index].name);
  1979   return NULL;
  1982 void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
  1983   void * result = ::dlopen(filename, RTLD_LAZY);
  1984   if (result == NULL) {
  1985     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
  1986     ebuf[ebuflen-1] = '\0';
  1988   return result;
  1991 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
  1992   void * result = NULL;
  1993   if (LoadExecStackDllInVMThread) {
  1994     result = dlopen_helper(filename, ebuf, ebuflen);
  1997   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
  1998   // library that requires an executable stack, or which does not have this
  1999   // stack attribute set, dlopen changes the stack attribute to executable. The
  2000   // read protection of the guard pages gets lost.
  2001   //
  2002   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
  2003   // may have been queued at the same time.
  2005   if (!_stack_is_executable) {
  2006     JavaThread *jt = Threads::first();
  2008     while (jt) {
  2009       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
  2010           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
  2011         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
  2012                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
  2013           warning("Attempt to reguard stack yellow zone failed.");
  2016       jt = jt->next();
  2020   return result;
  2023 /*
  2024  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
  2025  * chances are you might want to run the generated bits against glibc-2.0
  2026  * libdl.so, so always use locking for any version of glibc.
  2027  */
  2028 void* os::dll_lookup(void* handle, const char* name) {
  2029   pthread_mutex_lock(&dl_mutex);
  2030   void* res = dlsym(handle, name);
  2031   pthread_mutex_unlock(&dl_mutex);
  2032   return res;
  2035 void* os::get_default_process_handle() {
  2036   return (void*)::dlopen(NULL, RTLD_LAZY);
  2039 static bool _print_ascii_file(const char* filename, outputStream* st) {
  2040   int fd = ::open(filename, O_RDONLY);
  2041   if (fd == -1) {
  2042      return false;
  2045   char buf[32];
  2046   int bytes;
  2047   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
  2048     st->print_raw(buf, bytes);
  2051   ::close(fd);
  2053   return true;
  2056 void os::print_dll_info(outputStream *st) {
  2057    st->print_cr("Dynamic libraries:");
  2059    char fname[32];
  2060    pid_t pid = os::Linux::gettid();
  2062    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
  2064    if (!_print_ascii_file(fname, st)) {
  2065      st->print("Can not get library information for pid = %d\n", pid);
  2069 void os::print_os_info_brief(outputStream* st) {
  2070   os::Linux::print_distro_info(st);
  2072   os::Posix::print_uname_info(st);
  2074   os::Linux::print_libversion_info(st);
  2078 void os::print_os_info(outputStream* st) {
  2079   st->print("OS:");
  2081   os::Linux::print_distro_info(st);
  2083   os::Posix::print_uname_info(st);
  2085   // Print warning if unsafe chroot environment detected
  2086   if (unsafe_chroot_detected) {
  2087     st->print("WARNING!! ");
  2088     st->print_cr("%s", unstable_chroot_error);
  2091   os::Linux::print_libversion_info(st);
  2093   os::Posix::print_rlimit_info(st);
  2095   os::Posix::print_load_average(st);
  2097   os::Linux::print_full_memory_info(st);
  2100 // Try to identify popular distros.
  2101 // Most Linux distributions have a /etc/XXX-release file, which contains
  2102 // the OS version string. Newer Linux distributions have a /etc/lsb-release
  2103 // file that also contains the OS version string. Some have more than one
  2104 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
  2105 // /etc/redhat-release.), so the order is important.
  2106 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
  2107 // their own specific XXX-release file as well as a redhat-release file.
  2108 // Because of this the XXX-release file needs to be searched for before the
  2109 // redhat-release file.
  2110 // Since Red Hat has a lsb-release file that is not very descriptive the
  2111 // search for redhat-release needs to be before lsb-release.
  2112 // Since the lsb-release file is the new standard it needs to be searched
  2113 // before the older style release files.
  2114 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
  2115 // next to last resort.  The os-release file is a new standard that contains
  2116 // distribution information and the system-release file seems to be an old
  2117 // standard that has been replaced by the lsb-release and os-release files.
  2118 // Searching for the debian_version file is the last resort.  It contains
  2119 // an informative string like "6.0.6" or "wheezy/sid". Because of this
  2120 // "Debian " is printed before the contents of the debian_version file.
  2121 void os::Linux::print_distro_info(outputStream* st) {
  2122    if (!_print_ascii_file("/etc/oracle-release", st) &&
  2123        !_print_ascii_file("/etc/mandriva-release", st) &&
  2124        !_print_ascii_file("/etc/mandrake-release", st) &&
  2125        !_print_ascii_file("/etc/sun-release", st) &&
  2126        !_print_ascii_file("/etc/redhat-release", st) &&
  2127        !_print_ascii_file("/etc/lsb-release", st) &&
  2128        !_print_ascii_file("/etc/SuSE-release", st) &&
  2129        !_print_ascii_file("/etc/turbolinux-release", st) &&
  2130        !_print_ascii_file("/etc/gentoo-release", st) &&
  2131        !_print_ascii_file("/etc/ltib-release", st) &&
  2132        !_print_ascii_file("/etc/angstrom-version", st) &&
  2133        !_print_ascii_file("/etc/system-release", st) &&
  2134        !_print_ascii_file("/etc/os-release", st)) {
  2136        if (file_exists("/etc/debian_version")) {
  2137          st->print("Debian ");
  2138          _print_ascii_file("/etc/debian_version", st);
  2139        } else {
  2140          st->print("Linux");
  2143    st->cr();
  2146 void os::Linux::print_libversion_info(outputStream* st) {
  2147   // libc, pthread
  2148   st->print("libc:");
  2149   st->print("%s ", os::Linux::glibc_version());
  2150   st->print("%s ", os::Linux::libpthread_version());
  2151   if (os::Linux::is_LinuxThreads()) {
  2152      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
  2154   st->cr();
  2157 void os::Linux::print_full_memory_info(outputStream* st) {
  2158    st->print("\n/proc/meminfo:\n");
  2159    _print_ascii_file("/proc/meminfo", st);
  2160    st->cr();
  2163 void os::print_memory_info(outputStream* st) {
  2165   st->print("Memory:");
  2166   st->print(" %dk page", os::vm_page_size()>>10);
  2168   // values in struct sysinfo are "unsigned long"
  2169   struct sysinfo si;
  2170   sysinfo(&si);
  2172   st->print(", physical " UINT64_FORMAT "k",
  2173             os::physical_memory() >> 10);
  2174   st->print("(" UINT64_FORMAT "k free)",
  2175             os::available_memory() >> 10);
  2176   st->print(", swap " UINT64_FORMAT "k",
  2177             ((jlong)si.totalswap * si.mem_unit) >> 10);
  2178   st->print("(" UINT64_FORMAT "k free)",
  2179             ((jlong)si.freeswap * si.mem_unit) >> 10);
  2180   st->cr();
  2183 void os::pd_print_cpu_info(outputStream* st) {
  2184   st->print("\n/proc/cpuinfo:\n");
  2185   if (!_print_ascii_file("/proc/cpuinfo", st)) {
  2186     st->print("  <Not Available>");
  2188   st->cr();
  2191 void os::print_siginfo(outputStream* st, void* siginfo) {
  2192   const siginfo_t* si = (const siginfo_t*)siginfo;
  2194   os::Posix::print_siginfo_brief(st, si);
  2195 #if INCLUDE_CDS
  2196   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
  2197       UseSharedSpaces) {
  2198     FileMapInfo* mapinfo = FileMapInfo::current_info();
  2199     if (mapinfo->is_in_shared_space(si->si_addr)) {
  2200       st->print("\n\nError accessing class data sharing archive."   \
  2201                 " Mapped file inaccessible during execution, "      \
  2202                 " possible disk/network problem.");
  2205 #endif
  2206   st->cr();
  2210 static void print_signal_handler(outputStream* st, int sig,
  2211                                  char* buf, size_t buflen);
  2213 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  2214   st->print_cr("Signal Handlers:");
  2215   print_signal_handler(st, SIGSEGV, buf, buflen);
  2216   print_signal_handler(st, SIGBUS , buf, buflen);
  2217   print_signal_handler(st, SIGFPE , buf, buflen);
  2218   print_signal_handler(st, SIGPIPE, buf, buflen);
  2219   print_signal_handler(st, SIGXFSZ, buf, buflen);
  2220   print_signal_handler(st, SIGILL , buf, buflen);
  2221   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
  2222   print_signal_handler(st, SR_signum, buf, buflen);
  2223   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
  2224   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
  2225   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
  2226   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
  2227 #if defined(PPC64)
  2228   print_signal_handler(st, SIGTRAP, buf, buflen);
  2229 #endif
  2232 static char saved_jvm_path[MAXPATHLEN] = {0};
  2234 // Find the full path to the current module, libjvm.so
  2235 void os::jvm_path(char *buf, jint buflen) {
  2236   // Error checking.
  2237   if (buflen < MAXPATHLEN) {
  2238     assert(false, "must use a large-enough buffer");
  2239     buf[0] = '\0';
  2240     return;
  2242   // Lazy resolve the path to current module.
  2243   if (saved_jvm_path[0] != 0) {
  2244     strcpy(buf, saved_jvm_path);
  2245     return;
  2248   char dli_fname[MAXPATHLEN];
  2249   bool ret = dll_address_to_library_name(
  2250                 CAST_FROM_FN_PTR(address, os::jvm_path),
  2251                 dli_fname, sizeof(dli_fname), NULL);
  2252   assert(ret, "cannot locate libjvm");
  2253   char *rp = NULL;
  2254   if (ret && dli_fname[0] != '\0') {
  2255     rp = realpath(dli_fname, buf);
  2257   if (rp == NULL)
  2258     return;
  2260   if (Arguments::created_by_gamma_launcher()) {
  2261     // Support for the gamma launcher.  Typical value for buf is
  2262     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
  2263     // the right place in the string, then assume we are installed in a JDK and
  2264     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
  2265     // up the path so it looks like libjvm.so is installed there (append a
  2266     // fake suffix hotspot/libjvm.so).
  2267     const char *p = buf + strlen(buf) - 1;
  2268     for (int count = 0; p > buf && count < 5; ++count) {
  2269       for (--p; p > buf && *p != '/'; --p)
  2270         /* empty */ ;
  2273     if (strncmp(p, "/jre/lib/", 9) != 0) {
  2274       // Look for JAVA_HOME in the environment.
  2275       char* java_home_var = ::getenv("JAVA_HOME");
  2276       if (java_home_var != NULL && java_home_var[0] != 0) {
  2277         char* jrelib_p;
  2278         int len;
  2280         // Check the current module name "libjvm.so".
  2281         p = strrchr(buf, '/');
  2282         assert(strstr(p, "/libjvm") == p, "invalid library name");
  2284         rp = realpath(java_home_var, buf);
  2285         if (rp == NULL)
  2286           return;
  2288         // determine if this is a legacy image or modules image
  2289         // modules image doesn't have "jre" subdirectory
  2290         len = strlen(buf);
  2291         assert(len < buflen, "Ran out of buffer room");
  2292         jrelib_p = buf + len;
  2293         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
  2294         if (0 != access(buf, F_OK)) {
  2295           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
  2298         if (0 == access(buf, F_OK)) {
  2299           // Use current module name "libjvm.so"
  2300           len = strlen(buf);
  2301           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
  2302         } else {
  2303           // Go back to path of .so
  2304           rp = realpath(dli_fname, buf);
  2305           if (rp == NULL)
  2306             return;
  2312   strncpy(saved_jvm_path, buf, MAXPATHLEN);
  2315 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  2316   // no prefix required, not even "_"
  2319 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  2320   // no suffix required
  2323 ////////////////////////////////////////////////////////////////////////////////
  2324 // sun.misc.Signal support
  2326 static volatile jint sigint_count = 0;
  2328 static void
  2329 UserHandler(int sig, void *siginfo, void *context) {
  2330   // 4511530 - sem_post is serialized and handled by the manager thread. When
  2331   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
  2332   // don't want to flood the manager thread with sem_post requests.
  2333   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
  2334       return;
  2336   // Ctrl-C is pressed during error reporting, likely because the error
  2337   // handler fails to abort. Let VM die immediately.
  2338   if (sig == SIGINT && is_error_reported()) {
  2339      os::die();
  2342   os::signal_notify(sig);
  2345 void* os::user_handler() {
  2346   return CAST_FROM_FN_PTR(void*, UserHandler);
  2349 class Semaphore : public StackObj {
  2350   public:
  2351     Semaphore();
  2352     ~Semaphore();
  2353     void signal();
  2354     void wait();
  2355     bool trywait();
  2356     bool timedwait(unsigned int sec, int nsec);
  2357   private:
  2358     sem_t _semaphore;
  2359 };
  2361 Semaphore::Semaphore() {
  2362   sem_init(&_semaphore, 0, 0);
  2365 Semaphore::~Semaphore() {
  2366   sem_destroy(&_semaphore);
  2369 void Semaphore::signal() {
  2370   sem_post(&_semaphore);
  2373 void Semaphore::wait() {
  2374   sem_wait(&_semaphore);
  2377 bool Semaphore::trywait() {
  2378   return sem_trywait(&_semaphore) == 0;
  2381 bool Semaphore::timedwait(unsigned int sec, int nsec) {
  2383   struct timespec ts;
  2384   // Semaphore's are always associated with CLOCK_REALTIME
  2385   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
  2386   // see unpackTime for discussion on overflow checking
  2387   if (sec >= MAX_SECS) {
  2388     ts.tv_sec += MAX_SECS;
  2389     ts.tv_nsec = 0;
  2390   } else {
  2391     ts.tv_sec += sec;
  2392     ts.tv_nsec += nsec;
  2393     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
  2394       ts.tv_nsec -= NANOSECS_PER_SEC;
  2395       ++ts.tv_sec; // note: this must be <= max_secs
  2399   while (1) {
  2400     int result = sem_timedwait(&_semaphore, &ts);
  2401     if (result == 0) {
  2402       return true;
  2403     } else if (errno == EINTR) {
  2404       continue;
  2405     } else if (errno == ETIMEDOUT) {
  2406       return false;
  2407     } else {
  2408       return false;
  2413 extern "C" {
  2414   typedef void (*sa_handler_t)(int);
  2415   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
  2418 void* os::signal(int signal_number, void* handler) {
  2419   struct sigaction sigAct, oldSigAct;
  2421   sigfillset(&(sigAct.sa_mask));
  2422   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
  2423   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
  2425   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
  2426     // -1 means registration failed
  2427     return (void *)-1;
  2430   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
  2433 void os::signal_raise(int signal_number) {
  2434   ::raise(signal_number);
  2437 /*
  2438  * The following code is moved from os.cpp for making this
  2439  * code platform specific, which it is by its very nature.
  2440  */
  2442 // Will be modified when max signal is changed to be dynamic
  2443 int os::sigexitnum_pd() {
  2444   return NSIG;
  2447 // a counter for each possible signal value
  2448 static volatile jint pending_signals[NSIG+1] = { 0 };
  2450 // Linux(POSIX) specific hand shaking semaphore.
  2451 static sem_t sig_sem;
  2452 static Semaphore sr_semaphore;
  2454 void os::signal_init_pd() {
  2455   // Initialize signal structures
  2456   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
  2458   // Initialize signal semaphore
  2459   ::sem_init(&sig_sem, 0, 0);
  2462 void os::signal_notify(int sig) {
  2463   Atomic::inc(&pending_signals[sig]);
  2464   ::sem_post(&sig_sem);
  2467 static int check_pending_signals(bool wait) {
  2468   Atomic::store(0, &sigint_count);
  2469   for (;;) {
  2470     for (int i = 0; i < NSIG + 1; i++) {
  2471       jint n = pending_signals[i];
  2472       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  2473         return i;
  2476     if (!wait) {
  2477       return -1;
  2479     JavaThread *thread = JavaThread::current();
  2480     ThreadBlockInVM tbivm(thread);
  2482     bool threadIsSuspended;
  2483     do {
  2484       thread->set_suspend_equivalent();
  2485       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  2486       ::sem_wait(&sig_sem);
  2488       // were we externally suspended while we were waiting?
  2489       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  2490       if (threadIsSuspended) {
  2491         //
  2492         // The semaphore has been incremented, but while we were waiting
  2493         // another thread suspended us. We don't want to continue running
  2494         // while suspended because that would surprise the thread that
  2495         // suspended us.
  2496         //
  2497         ::sem_post(&sig_sem);
  2499         thread->java_suspend_self();
  2501     } while (threadIsSuspended);
  2505 int os::signal_lookup() {
  2506   return check_pending_signals(false);
  2509 int os::signal_wait() {
  2510   return check_pending_signals(true);
  2513 ////////////////////////////////////////////////////////////////////////////////
  2514 // Virtual Memory
  2516 int os::vm_page_size() {
  2517   // Seems redundant as all get out
  2518   assert(os::Linux::page_size() != -1, "must call os::init");
  2519   return os::Linux::page_size();
  2522 // Solaris allocates memory by pages.
  2523 int os::vm_allocation_granularity() {
  2524   assert(os::Linux::page_size() != -1, "must call os::init");
  2525   return os::Linux::page_size();
  2528 // Rationale behind this function:
  2529 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
  2530 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
  2531 //  samples for JITted code. Here we create private executable mapping over the code cache
  2532 //  and then we can use standard (well, almost, as mapping can change) way to provide
  2533 //  info for the reporting script by storing timestamp and location of symbol
  2534 void linux_wrap_code(char* base, size_t size) {
  2535   static volatile jint cnt = 0;
  2537   if (!UseOprofile) {
  2538     return;
  2541   char buf[PATH_MAX+1];
  2542   int num = Atomic::add(1, &cnt);
  2544   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
  2545            os::get_temp_directory(), os::current_process_id(), num);
  2546   unlink(buf);
  2548   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
  2550   if (fd != -1) {
  2551     off_t rv = ::lseek(fd, size-2, SEEK_SET);
  2552     if (rv != (off_t)-1) {
  2553       if (::write(fd, "", 1) == 1) {
  2554         mmap(base, size,
  2555              PROT_READ|PROT_WRITE|PROT_EXEC,
  2556              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
  2559     ::close(fd);
  2560     unlink(buf);
  2564 static bool recoverable_mmap_error(int err) {
  2565   // See if the error is one we can let the caller handle. This
  2566   // list of errno values comes from JBS-6843484. I can't find a
  2567   // Linux man page that documents this specific set of errno
  2568   // values so while this list currently matches Solaris, it may
  2569   // change as we gain experience with this failure mode.
  2570   switch (err) {
  2571   case EBADF:
  2572   case EINVAL:
  2573   case ENOTSUP:
  2574     // let the caller deal with these errors
  2575     return true;
  2577   default:
  2578     // Any remaining errors on this OS can cause our reserved mapping
  2579     // to be lost. That can cause confusion where different data
  2580     // structures think they have the same memory mapped. The worst
  2581     // scenario is if both the VM and a library think they have the
  2582     // same memory mapped.
  2583     return false;
  2587 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
  2588                                     int err) {
  2589   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
  2590           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
  2591           strerror(err), err);
  2594 static void warn_fail_commit_memory(char* addr, size_t size,
  2595                                     size_t alignment_hint, bool exec,
  2596                                     int err) {
  2597   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
  2598           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
  2599           alignment_hint, exec, strerror(err), err);
  2602 // NOTE: Linux kernel does not really reserve the pages for us.
  2603 //       All it does is to check if there are enough free pages
  2604 //       left at the time of mmap(). This could be a potential
  2605 //       problem.
  2606 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
  2607   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  2608   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
  2609                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
  2610   if (res != (uintptr_t) MAP_FAILED) {
  2611     if (UseNUMAInterleaving) {
  2612       numa_make_global(addr, size);
  2614     return 0;
  2617   int err = errno;  // save errno from mmap() call above
  2619   if (!recoverable_mmap_error(err)) {
  2620     warn_fail_commit_memory(addr, size, exec, err);
  2621     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
  2624   return err;
  2627 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
  2628   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
  2631 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
  2632                                   const char* mesg) {
  2633   assert(mesg != NULL, "mesg must be specified");
  2634   int err = os::Linux::commit_memory_impl(addr, size, exec);
  2635   if (err != 0) {
  2636     // the caller wants all commit errors to exit with the specified mesg:
  2637     warn_fail_commit_memory(addr, size, exec, err);
  2638     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
  2642 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
  2643 #ifndef MAP_HUGETLB
  2644 #define MAP_HUGETLB 0x40000
  2645 #endif
  2647 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
  2648 #ifndef MADV_HUGEPAGE
  2649 #define MADV_HUGEPAGE 14
  2650 #endif
  2652 int os::Linux::commit_memory_impl(char* addr, size_t size,
  2653                                   size_t alignment_hint, bool exec) {
  2654   int err = os::Linux::commit_memory_impl(addr, size, exec);
  2655   if (err == 0) {
  2656     realign_memory(addr, size, alignment_hint);
  2658   return err;
  2661 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
  2662                           bool exec) {
  2663   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
  2666 void os::pd_commit_memory_or_exit(char* addr, size_t size,
  2667                                   size_t alignment_hint, bool exec,
  2668                                   const char* mesg) {
  2669   assert(mesg != NULL, "mesg must be specified");
  2670   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
  2671   if (err != 0) {
  2672     // the caller wants all commit errors to exit with the specified mesg:
  2673     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
  2674     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
  2678 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2679   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
  2680     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
  2681     // be supported or the memory may already be backed by huge pages.
  2682     ::madvise(addr, bytes, MADV_HUGEPAGE);
  2686 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2687   // This method works by doing an mmap over an existing mmaping and effectively discarding
  2688   // the existing pages. However it won't work for SHM-based large pages that cannot be
  2689   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
  2690   // small pages on top of the SHM segment. This method always works for small pages, so we
  2691   // allow that in any case.
  2692   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
  2693     commit_memory(addr, bytes, alignment_hint, !ExecMem);
  2697 void os::numa_make_global(char *addr, size_t bytes) {
  2698   Linux::numa_interleave_memory(addr, bytes);
  2701 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
  2702 // bind policy to MPOL_PREFERRED for the current thread.
  2703 #define USE_MPOL_PREFERRED 0
  2705 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
  2706   // To make NUMA and large pages more robust when both enabled, we need to ease
  2707   // the requirements on where the memory should be allocated. MPOL_BIND is the
  2708   // default policy and it will force memory to be allocated on the specified
  2709   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
  2710   // the specified node, but will not force it. Using this policy will prevent
  2711   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
  2712   // free large pages.
  2713   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
  2714   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
  2717 bool os::numa_topology_changed()   { return false; }
  2719 size_t os::numa_get_groups_num() {
  2720   int max_node = Linux::numa_max_node();
  2721   return max_node > 0 ? max_node + 1 : 1;
  2724 int os::numa_get_group_id() {
  2725   int cpu_id = Linux::sched_getcpu();
  2726   if (cpu_id != -1) {
  2727     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
  2728     if (lgrp_id != -1) {
  2729       return lgrp_id;
  2732   return 0;
  2735 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  2736   for (size_t i = 0; i < size; i++) {
  2737     ids[i] = i;
  2739   return size;
  2742 bool os::get_page_info(char *start, page_info* info) {
  2743   return false;
  2746 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  2747   return end;
  2751 int os::Linux::sched_getcpu_syscall(void) {
  2752   unsigned int cpu;
  2753   int retval = -1;
  2755 #if defined(IA32)
  2756 # ifndef SYS_getcpu
  2757 # define SYS_getcpu 318
  2758 # endif
  2759   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
  2760 #elif defined(AMD64)
  2761 // Unfortunately we have to bring all these macros here from vsyscall.h
  2762 // to be able to compile on old linuxes.
  2763 # define __NR_vgetcpu 2
  2764 # define VSYSCALL_START (-10UL << 20)
  2765 # define VSYSCALL_SIZE 1024
  2766 # define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
  2767   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
  2768   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
  2769   retval = vgetcpu(&cpu, NULL, NULL);
  2770 #endif
  2772   return (retval == -1) ? retval : cpu;
  2775 // Something to do with the numa-aware allocator needs these symbols
  2776 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
  2777 extern "C" JNIEXPORT void numa_error(char *where) { }
  2778 extern "C" JNIEXPORT int fork1() { return fork(); }
  2781 // If we are running with libnuma version > 2, then we should
  2782 // be trying to use symbols with versions 1.1
  2783 // If we are running with earlier version, which did not have symbol versions,
  2784 // we should use the base version.
  2785 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
  2786   void *f = dlvsym(handle, name, "libnuma_1.1");
  2787   if (f == NULL) {
  2788     f = dlsym(handle, name);
  2790   return f;
  2793 bool os::Linux::libnuma_init() {
  2794   // sched_getcpu() should be in libc.
  2795   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
  2796                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
  2798   // If it's not, try a direct syscall.
  2799   if (sched_getcpu() == -1)
  2800     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
  2802   if (sched_getcpu() != -1) { // Does it work?
  2803     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
  2804     if (handle != NULL) {
  2805       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
  2806                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
  2807       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
  2808                                        libnuma_dlsym(handle, "numa_max_node")));
  2809       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
  2810                                         libnuma_dlsym(handle, "numa_available")));
  2811       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
  2812                                             libnuma_dlsym(handle, "numa_tonode_memory")));
  2813       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
  2814                                             libnuma_dlsym(handle, "numa_interleave_memory")));
  2815       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
  2816                                             libnuma_dlsym(handle, "numa_set_bind_policy")));
  2819       if (numa_available() != -1) {
  2820         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
  2821         // Create a cpu -> node mapping
  2822         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
  2823         rebuild_cpu_to_node_map();
  2824         return true;
  2828   return false;
  2831 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
  2832 // The table is later used in get_node_by_cpu().
  2833 void os::Linux::rebuild_cpu_to_node_map() {
  2834   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
  2835                               // in libnuma (possible values are starting from 16,
  2836                               // and continuing up with every other power of 2, but less
  2837                               // than the maximum number of CPUs supported by kernel), and
  2838                               // is a subject to change (in libnuma version 2 the requirements
  2839                               // are more reasonable) we'll just hardcode the number they use
  2840                               // in the library.
  2841   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
  2843   size_t cpu_num = os::active_processor_count();
  2844   size_t cpu_map_size = NCPUS / BitsPerCLong;
  2845   size_t cpu_map_valid_size =
  2846     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
  2848   cpu_to_node()->clear();
  2849   cpu_to_node()->at_grow(cpu_num - 1);
  2850   size_t node_num = numa_get_groups_num();
  2852   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
  2853   for (size_t i = 0; i < node_num; i++) {
  2854     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
  2855       for (size_t j = 0; j < cpu_map_valid_size; j++) {
  2856         if (cpu_map[j] != 0) {
  2857           for (size_t k = 0; k < BitsPerCLong; k++) {
  2858             if (cpu_map[j] & (1UL << k)) {
  2859               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
  2866   FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
  2869 int os::Linux::get_node_by_cpu(int cpu_id) {
  2870   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
  2871     return cpu_to_node()->at(cpu_id);
  2873   return -1;
  2876 GrowableArray<int>* os::Linux::_cpu_to_node;
  2877 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
  2878 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
  2879 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
  2880 os::Linux::numa_available_func_t os::Linux::_numa_available;
  2881 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
  2882 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
  2883 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
  2884 unsigned long* os::Linux::_numa_all_nodes;
  2886 bool os::pd_uncommit_memory(char* addr, size_t size) {
  2887   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
  2888                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
  2889   return res  != (uintptr_t) MAP_FAILED;
  2892 static
  2893 address get_stack_commited_bottom(address bottom, size_t size) {
  2894   address nbot = bottom;
  2895   address ntop = bottom + size;
  2897   size_t page_sz = os::vm_page_size();
  2898   unsigned pages = size / page_sz;
  2900   unsigned char vec[1];
  2901   unsigned imin = 1, imax = pages + 1, imid;
  2902   int mincore_return_value = 0;
  2904   assert(imin <= imax, "Unexpected page size");
  2906   while (imin < imax) {
  2907     imid = (imax + imin) / 2;
  2908     nbot = ntop - (imid * page_sz);
  2910     // Use a trick with mincore to check whether the page is mapped or not.
  2911     // mincore sets vec to 1 if page resides in memory and to 0 if page
  2912     // is swapped output but if page we are asking for is unmapped
  2913     // it returns -1,ENOMEM
  2914     mincore_return_value = mincore(nbot, page_sz, vec);
  2916     if (mincore_return_value == -1) {
  2917       // Page is not mapped go up
  2918       // to find first mapped page
  2919       if (errno != EAGAIN) {
  2920         assert(errno == ENOMEM, "Unexpected mincore errno");
  2921         imax = imid;
  2923     } else {
  2924       // Page is mapped go down
  2925       // to find first not mapped page
  2926       imin = imid + 1;
  2930   nbot = nbot + page_sz;
  2932   // Adjust stack bottom one page up if last checked page is not mapped
  2933   if (mincore_return_value == -1) {
  2934     nbot = nbot + page_sz;
  2937   return nbot;
  2941 // Linux uses a growable mapping for the stack, and if the mapping for
  2942 // the stack guard pages is not removed when we detach a thread the
  2943 // stack cannot grow beyond the pages where the stack guard was
  2944 // mapped.  If at some point later in the process the stack expands to
  2945 // that point, the Linux kernel cannot expand the stack any further
  2946 // because the guard pages are in the way, and a segfault occurs.
  2947 //
  2948 // However, it's essential not to split the stack region by unmapping
  2949 // a region (leaving a hole) that's already part of the stack mapping,
  2950 // so if the stack mapping has already grown beyond the guard pages at
  2951 // the time we create them, we have to truncate the stack mapping.
  2952 // So, we need to know the extent of the stack mapping when
  2953 // create_stack_guard_pages() is called.
  2955 // We only need this for stacks that are growable: at the time of
  2956 // writing thread stacks don't use growable mappings (i.e. those
  2957 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
  2958 // only applies to the main thread.
  2960 // If the (growable) stack mapping already extends beyond the point
  2961 // where we're going to put our guard pages, truncate the mapping at
  2962 // that point by munmap()ping it.  This ensures that when we later
  2963 // munmap() the guard pages we don't leave a hole in the stack
  2964 // mapping. This only affects the main/initial thread
  2966 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
  2968   if (os::Linux::is_initial_thread()) {
  2969     // As we manually grow stack up to bottom inside create_attached_thread(),
  2970     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
  2971     // we don't need to do anything special.
  2972     // Check it first, before calling heavy function.
  2973     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
  2974     unsigned char vec[1];
  2976     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
  2977       // Fallback to slow path on all errors, including EAGAIN
  2978       stack_extent = (uintptr_t) get_stack_commited_bottom(
  2979                                     os::Linux::initial_thread_stack_bottom(),
  2980                                     (size_t)addr - stack_extent);
  2983     if (stack_extent < (uintptr_t)addr) {
  2984       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
  2988   return os::commit_memory(addr, size, !ExecMem);
  2991 // If this is a growable mapping, remove the guard pages entirely by
  2992 // munmap()ping them.  If not, just call uncommit_memory(). This only
  2993 // affects the main/initial thread, but guard against future OS changes
  2994 // It's safe to always unmap guard pages for initial thread because we
  2995 // always place it right after end of the mapped region
  2997 bool os::remove_stack_guard_pages(char* addr, size_t size) {
  2998   uintptr_t stack_extent, stack_base;
  3000   if (os::Linux::is_initial_thread()) {
  3001     return ::munmap(addr, size) == 0;
  3004   return os::uncommit_memory(addr, size);
  3007 static address _highest_vm_reserved_address = NULL;
  3009 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
  3010 // at 'requested_addr'. If there are existing memory mappings at the same
  3011 // location, however, they will be overwritten. If 'fixed' is false,
  3012 // 'requested_addr' is only treated as a hint, the return value may or
  3013 // may not start from the requested address. Unlike Linux mmap(), this
  3014 // function returns NULL to indicate failure.
  3015 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
  3016   char * addr;
  3017   int flags;
  3019   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
  3020   if (fixed) {
  3021     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
  3022     flags |= MAP_FIXED;
  3025   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
  3026   // touch an uncommitted page. Otherwise, the read/write might
  3027   // succeed if we have enough swap space to back the physical page.
  3028   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
  3029                        flags, -1, 0);
  3031   if (addr != MAP_FAILED) {
  3032     // anon_mmap() should only get called during VM initialization,
  3033     // don't need lock (actually we can skip locking even it can be called
  3034     // from multiple threads, because _highest_vm_reserved_address is just a
  3035     // hint about the upper limit of non-stack memory regions.)
  3036     if ((address)addr + bytes > _highest_vm_reserved_address) {
  3037       _highest_vm_reserved_address = (address)addr + bytes;
  3041   return addr == MAP_FAILED ? NULL : addr;
  3044 // Don't update _highest_vm_reserved_address, because there might be memory
  3045 // regions above addr + size. If so, releasing a memory region only creates
  3046 // a hole in the address space, it doesn't help prevent heap-stack collision.
  3047 //
  3048 static int anon_munmap(char * addr, size_t size) {
  3049   return ::munmap(addr, size) == 0;
  3052 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
  3053                          size_t alignment_hint) {
  3054   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
  3057 bool os::pd_release_memory(char* addr, size_t size) {
  3058   return anon_munmap(addr, size);
  3061 static address highest_vm_reserved_address() {
  3062   return _highest_vm_reserved_address;
  3065 static bool linux_mprotect(char* addr, size_t size, int prot) {
  3066   // Linux wants the mprotect address argument to be page aligned.
  3067   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
  3069   // According to SUSv3, mprotect() should only be used with mappings
  3070   // established by mmap(), and mmap() always maps whole pages. Unaligned
  3071   // 'addr' likely indicates problem in the VM (e.g. trying to change
  3072   // protection of malloc'ed or statically allocated memory). Check the
  3073   // caller if you hit this assert.
  3074   assert(addr == bottom, "sanity check");
  3076   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
  3077   return ::mprotect(bottom, size, prot) == 0;
  3080 // Set protections specified
  3081 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  3082                         bool is_committed) {
  3083   unsigned int p = 0;
  3084   switch (prot) {
  3085   case MEM_PROT_NONE: p = PROT_NONE; break;
  3086   case MEM_PROT_READ: p = PROT_READ; break;
  3087   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
  3088   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
  3089   default:
  3090     ShouldNotReachHere();
  3092   // is_committed is unused.
  3093   return linux_mprotect(addr, bytes, p);
  3096 bool os::guard_memory(char* addr, size_t size) {
  3097   return linux_mprotect(addr, size, PROT_NONE);
  3100 bool os::unguard_memory(char* addr, size_t size) {
  3101   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
  3104 bool os::Linux::transparent_huge_pages_sanity_check(bool warn, size_t page_size) {
  3105   bool result = false;
  3106   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
  3107                  MAP_ANONYMOUS|MAP_PRIVATE,
  3108                  -1, 0);
  3109   if (p != MAP_FAILED) {
  3110     void *aligned_p = align_ptr_up(p, page_size);
  3112     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
  3114     munmap(p, page_size * 2);
  3117   if (warn && !result) {
  3118     warning("TransparentHugePages is not supported by the operating system.");
  3121   return result;
  3124 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
  3125   bool result = false;
  3126   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
  3127                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
  3128                  -1, 0);
  3130   if (p != MAP_FAILED) {
  3131     // We don't know if this really is a huge page or not.
  3132     FILE *fp = fopen("/proc/self/maps", "r");
  3133     if (fp) {
  3134       while (!feof(fp)) {
  3135         char chars[257];
  3136         long x = 0;
  3137         if (fgets(chars, sizeof(chars), fp)) {
  3138           if (sscanf(chars, "%lx-%*x", &x) == 1
  3139               && x == (long)p) {
  3140             if (strstr (chars, "hugepage")) {
  3141               result = true;
  3142               break;
  3147       fclose(fp);
  3149     munmap(p, page_size);
  3152   if (warn && !result) {
  3153     warning("HugeTLBFS is not supported by the operating system.");
  3156   return result;
  3159 /*
  3160 * Set the coredump_filter bits to include largepages in core dump (bit 6)
  3162 * From the coredump_filter documentation:
  3164 * - (bit 0) anonymous private memory
  3165 * - (bit 1) anonymous shared memory
  3166 * - (bit 2) file-backed private memory
  3167 * - (bit 3) file-backed shared memory
  3168 * - (bit 4) ELF header pages in file-backed private memory areas (it is
  3169 *           effective only if the bit 2 is cleared)
  3170 * - (bit 5) hugetlb private memory
  3171 * - (bit 6) hugetlb shared memory
  3172 */
  3173 static void set_coredump_filter(void) {
  3174   FILE *f;
  3175   long cdm;
  3177   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
  3178     return;
  3181   if (fscanf(f, "%lx", &cdm) != 1) {
  3182     fclose(f);
  3183     return;
  3186   rewind(f);
  3188   if ((cdm & LARGEPAGES_BIT) == 0) {
  3189     cdm |= LARGEPAGES_BIT;
  3190     fprintf(f, "%#lx", cdm);
  3193   fclose(f);
  3196 // Large page support
  3198 static size_t _large_page_size = 0;
  3200 size_t os::Linux::find_large_page_size() {
  3201   size_t large_page_size = 0;
  3203   // large_page_size on Linux is used to round up heap size. x86 uses either
  3204   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
  3205   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
  3206   // page as large as 256M.
  3207   //
  3208   // Here we try to figure out page size by parsing /proc/meminfo and looking
  3209   // for a line with the following format:
  3210   //    Hugepagesize:     2048 kB
  3211   //
  3212   // If we can't determine the value (e.g. /proc is not mounted, or the text
  3213   // format has been changed), we'll use the largest page size supported by
  3214   // the processor.
  3216 #ifndef ZERO
  3217   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
  3218                      ARM_ONLY(2 * M) PPC_ONLY(4 * M);
  3219 #endif // ZERO
  3221   FILE *fp = fopen("/proc/meminfo", "r");
  3222   if (fp) {
  3223     while (!feof(fp)) {
  3224       int x = 0;
  3225       char buf[16];
  3226       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
  3227         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
  3228           large_page_size = x * K;
  3229           break;
  3231       } else {
  3232         // skip to next line
  3233         for (;;) {
  3234           int ch = fgetc(fp);
  3235           if (ch == EOF || ch == (int)'\n') break;
  3239     fclose(fp);
  3242   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
  3243     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
  3244         SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
  3245         proper_unit_for_byte_size(large_page_size));
  3248   return large_page_size;
  3251 size_t os::Linux::setup_large_page_size() {
  3252   _large_page_size = Linux::find_large_page_size();
  3253   const size_t default_page_size = (size_t)Linux::page_size();
  3254   if (_large_page_size > default_page_size) {
  3255     _page_sizes[0] = _large_page_size;
  3256     _page_sizes[1] = default_page_size;
  3257     _page_sizes[2] = 0;
  3260   return _large_page_size;
  3263 bool os::Linux::setup_large_page_type(size_t page_size) {
  3264   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
  3265       FLAG_IS_DEFAULT(UseSHM) &&
  3266       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
  3268     // The type of large pages has not been specified by the user.
  3270     // Try UseHugeTLBFS and then UseSHM.
  3271     UseHugeTLBFS = UseSHM = true;
  3273     // Don't try UseTransparentHugePages since there are known
  3274     // performance issues with it turned on. This might change in the future.
  3275     UseTransparentHugePages = false;
  3278   if (UseTransparentHugePages) {
  3279     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
  3280     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
  3281       UseHugeTLBFS = false;
  3282       UseSHM = false;
  3283       return true;
  3285     UseTransparentHugePages = false;
  3288   if (UseHugeTLBFS) {
  3289     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
  3290     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
  3291       UseSHM = false;
  3292       return true;
  3294     UseHugeTLBFS = false;
  3297   return UseSHM;
  3300 void os::large_page_init() {
  3301   if (!UseLargePages &&
  3302       !UseTransparentHugePages &&
  3303       !UseHugeTLBFS &&
  3304       !UseSHM) {
  3305     // Not using large pages.
  3306     return;
  3309   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
  3310     // The user explicitly turned off large pages.
  3311     // Ignore the rest of the large pages flags.
  3312     UseTransparentHugePages = false;
  3313     UseHugeTLBFS = false;
  3314     UseSHM = false;
  3315     return;
  3318   size_t large_page_size = Linux::setup_large_page_size();
  3319   UseLargePages          = Linux::setup_large_page_type(large_page_size);
  3321   set_coredump_filter();
  3324 #ifndef SHM_HUGETLB
  3325 #define SHM_HUGETLB 04000
  3326 #endif
  3328 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3329   // "exec" is passed in but not used.  Creating the shared image for
  3330   // the code cache doesn't have an SHM_X executable permission to check.
  3331   assert(UseLargePages && UseSHM, "only for SHM large pages");
  3332   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
  3334   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
  3335     return NULL; // Fallback to small pages.
  3338   key_t key = IPC_PRIVATE;
  3339   char *addr;
  3341   bool warn_on_failure = UseLargePages &&
  3342                         (!FLAG_IS_DEFAULT(UseLargePages) ||
  3343                          !FLAG_IS_DEFAULT(UseSHM) ||
  3344                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
  3345                         );
  3346   char msg[128];
  3348   // Create a large shared memory region to attach to based on size.
  3349   // Currently, size is the total size of the heap
  3350   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
  3351   if (shmid == -1) {
  3352      // Possible reasons for shmget failure:
  3353      // 1. shmmax is too small for Java heap.
  3354      //    > check shmmax value: cat /proc/sys/kernel/shmmax
  3355      //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
  3356      // 2. not enough large page memory.
  3357      //    > check available large pages: cat /proc/meminfo
  3358      //    > increase amount of large pages:
  3359      //          echo new_value > /proc/sys/vm/nr_hugepages
  3360      //      Note 1: different Linux may use different name for this property,
  3361      //            e.g. on Redhat AS-3 it is "hugetlb_pool".
  3362      //      Note 2: it's possible there's enough physical memory available but
  3363      //            they are so fragmented after a long run that they can't
  3364      //            coalesce into large pages. Try to reserve large pages when
  3365      //            the system is still "fresh".
  3366      if (warn_on_failure) {
  3367        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
  3368        warning("%s", msg);
  3370      return NULL;
  3373   // attach to the region
  3374   addr = (char*)shmat(shmid, req_addr, 0);
  3375   int err = errno;
  3377   // Remove shmid. If shmat() is successful, the actual shared memory segment
  3378   // will be deleted when it's detached by shmdt() or when the process
  3379   // terminates. If shmat() is not successful this will remove the shared
  3380   // segment immediately.
  3381   shmctl(shmid, IPC_RMID, NULL);
  3383   if ((intptr_t)addr == -1) {
  3384      if (warn_on_failure) {
  3385        jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
  3386        warning("%s", msg);
  3388      return NULL;
  3391   return addr;
  3394 static void warn_on_large_pages_failure(char* req_addr, size_t bytes, int error) {
  3395   assert(error == ENOMEM, "Only expect to fail if no memory is available");
  3397   bool warn_on_failure = UseLargePages &&
  3398       (!FLAG_IS_DEFAULT(UseLargePages) ||
  3399        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
  3400        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
  3402   if (warn_on_failure) {
  3403     char msg[128];
  3404     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
  3405         PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
  3406     warning("%s", msg);
  3410 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes, char* req_addr, bool exec) {
  3411   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
  3412   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
  3413   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
  3415   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  3416   char* addr = (char*)::mmap(req_addr, bytes, prot,
  3417                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
  3418                              -1, 0);
  3420   if (addr == MAP_FAILED) {
  3421     warn_on_large_pages_failure(req_addr, bytes, errno);
  3422     return NULL;
  3425   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
  3427   return addr;
  3430 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3431   size_t large_page_size = os::large_page_size();
  3433   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
  3435   // Allocate small pages.
  3437   char* start;
  3438   if (req_addr != NULL) {
  3439     assert(is_ptr_aligned(req_addr, alignment), "Must be");
  3440     assert(is_size_aligned(bytes, alignment), "Must be");
  3441     start = os::reserve_memory(bytes, req_addr);
  3442     assert(start == NULL || start == req_addr, "Must be");
  3443   } else {
  3444     start = os::reserve_memory_aligned(bytes, alignment);
  3447   if (start == NULL) {
  3448     return NULL;
  3451   assert(is_ptr_aligned(start, alignment), "Must be");
  3453   if (MemTracker::tracking_level() > NMT_minimal) {
  3454     // os::reserve_memory_special will record this memory area.
  3455     // Need to release it here to prevent overlapping reservations.
  3456     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
  3457     tkr.record((address)start, bytes);
  3460   char* end = start + bytes;
  3462   // Find the regions of the allocated chunk that can be promoted to large pages.
  3463   char* lp_start = (char*)align_ptr_up(start, large_page_size);
  3464   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
  3466   size_t lp_bytes = lp_end - lp_start;
  3468   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
  3470   if (lp_bytes == 0) {
  3471     // The mapped region doesn't even span the start and the end of a large page.
  3472     // Fall back to allocate a non-special area.
  3473     ::munmap(start, end - start);
  3474     return NULL;
  3477   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  3480   void* result;
  3482   if (start != lp_start) {
  3483     result = ::mmap(start, lp_start - start, prot,
  3484                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
  3485                     -1, 0);
  3486     if (result == MAP_FAILED) {
  3487       ::munmap(lp_start, end - lp_start);
  3488       return NULL;
  3492   result = ::mmap(lp_start, lp_bytes, prot,
  3493                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
  3494                   -1, 0);
  3495   if (result == MAP_FAILED) {
  3496     warn_on_large_pages_failure(req_addr, bytes, errno);
  3497     // If the mmap above fails, the large pages region will be unmapped and we
  3498     // have regions before and after with small pages. Release these regions.
  3499     //
  3500     // |  mapped  |  unmapped  |  mapped  |
  3501     // ^          ^            ^          ^
  3502     // start      lp_start     lp_end     end
  3503     //
  3504     ::munmap(start, lp_start - start);
  3505     ::munmap(lp_end, end - lp_end);
  3506     return NULL;
  3509   if (lp_end != end) {
  3510       result = ::mmap(lp_end, end - lp_end, prot,
  3511                       MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
  3512                       -1, 0);
  3513     if (result == MAP_FAILED) {
  3514       ::munmap(start, lp_end - start);
  3515       return NULL;
  3519   return start;
  3522 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3523   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
  3524   assert(is_ptr_aligned(req_addr, alignment), "Must be");
  3525   assert(is_power_of_2(alignment), "Must be");
  3526   assert(is_power_of_2(os::large_page_size()), "Must be");
  3527   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
  3529   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
  3530     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
  3531   } else {
  3532     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
  3536 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3537   assert(UseLargePages, "only for large pages");
  3539   char* addr;
  3540   if (UseSHM) {
  3541     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
  3542   } else {
  3543     assert(UseHugeTLBFS, "must be");
  3544     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
  3547   if (addr != NULL) {
  3548     if (UseNUMAInterleaving) {
  3549       numa_make_global(addr, bytes);
  3552     // The memory is committed
  3553     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
  3556   return addr;
  3559 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
  3560   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
  3561   return shmdt(base) == 0;
  3564 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
  3565   return pd_release_memory(base, bytes);
  3568 bool os::release_memory_special(char* base, size_t bytes) {
  3569   bool res;
  3570   if (MemTracker::tracking_level() > NMT_minimal) {
  3571     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
  3572     res = os::Linux::release_memory_special_impl(base, bytes);
  3573     if (res) {
  3574       tkr.record((address)base, bytes);
  3577   } else {
  3578     res = os::Linux::release_memory_special_impl(base, bytes);
  3580   return res;
  3583 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
  3584   assert(UseLargePages, "only for large pages");
  3585   bool res;
  3587   if (UseSHM) {
  3588     res = os::Linux::release_memory_special_shm(base, bytes);
  3589   } else {
  3590     assert(UseHugeTLBFS, "must be");
  3591     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
  3593   return res;
  3596 size_t os::large_page_size() {
  3597   return _large_page_size;
  3600 // With SysV SHM the entire memory region must be allocated as shared
  3601 // memory.
  3602 // HugeTLBFS allows application to commit large page memory on demand.
  3603 // However, when committing memory with HugeTLBFS fails, the region
  3604 // that was supposed to be committed will lose the old reservation
  3605 // and allow other threads to steal that memory region. Because of this
  3606 // behavior we can't commit HugeTLBFS memory.
  3607 bool os::can_commit_large_page_memory() {
  3608   return UseTransparentHugePages;
  3611 bool os::can_execute_large_page_memory() {
  3612   return UseTransparentHugePages || UseHugeTLBFS;
  3615 // Reserve memory at an arbitrary address, only if that area is
  3616 // available (and not reserved for something else).
  3618 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  3619   const int max_tries = 10;
  3620   char* base[max_tries];
  3621   size_t size[max_tries];
  3622   const size_t gap = 0x000000;
  3624   // Assert only that the size is a multiple of the page size, since
  3625   // that's all that mmap requires, and since that's all we really know
  3626   // about at this low abstraction level.  If we need higher alignment,
  3627   // we can either pass an alignment to this method or verify alignment
  3628   // in one of the methods further up the call chain.  See bug 5044738.
  3629   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
  3631   // Repeatedly allocate blocks until the block is allocated at the
  3632   // right spot. Give up after max_tries. Note that reserve_memory() will
  3633   // automatically update _highest_vm_reserved_address if the call is
  3634   // successful. The variable tracks the highest memory address every reserved
  3635   // by JVM. It is used to detect heap-stack collision if running with
  3636   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
  3637   // space than needed, it could confuse the collision detecting code. To
  3638   // solve the problem, save current _highest_vm_reserved_address and
  3639   // calculate the correct value before return.
  3640   address old_highest = _highest_vm_reserved_address;
  3642   // Linux mmap allows caller to pass an address as hint; give it a try first,
  3643   // if kernel honors the hint then we can return immediately.
  3644   char * addr = anon_mmap(requested_addr, bytes, false);
  3645   if (addr == requested_addr) {
  3646      return requested_addr;
  3649   if (addr != NULL) {
  3650      // mmap() is successful but it fails to reserve at the requested address
  3651      anon_munmap(addr, bytes);
  3654   int i;
  3655   for (i = 0; i < max_tries; ++i) {
  3656     base[i] = reserve_memory(bytes);
  3658     if (base[i] != NULL) {
  3659       // Is this the block we wanted?
  3660       if (base[i] == requested_addr) {
  3661         size[i] = bytes;
  3662         break;
  3665       // Does this overlap the block we wanted? Give back the overlapped
  3666       // parts and try again.
  3668       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
  3669       if (top_overlap >= 0 && top_overlap < bytes) {
  3670         unmap_memory(base[i], top_overlap);
  3671         base[i] += top_overlap;
  3672         size[i] = bytes - top_overlap;
  3673       } else {
  3674         size_t bottom_overlap = base[i] + bytes - requested_addr;
  3675         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
  3676           unmap_memory(requested_addr, bottom_overlap);
  3677           size[i] = bytes - bottom_overlap;
  3678         } else {
  3679           size[i] = bytes;
  3685   // Give back the unused reserved pieces.
  3687   for (int j = 0; j < i; ++j) {
  3688     if (base[j] != NULL) {
  3689       unmap_memory(base[j], size[j]);
  3693   if (i < max_tries) {
  3694     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
  3695     return requested_addr;
  3696   } else {
  3697     _highest_vm_reserved_address = old_highest;
  3698     return NULL;
  3702 size_t os::read(int fd, void *buf, unsigned int nBytes) {
  3703   return ::read(fd, buf, nBytes);
  3706 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
  3707 // Solaris uses poll(), linux uses park().
  3708 // Poll() is likely a better choice, assuming that Thread.interrupt()
  3709 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
  3710 // SIGSEGV, see 4355769.
  3712 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
  3713   assert(thread == Thread::current(),  "thread consistency check");
  3715   ParkEvent * const slp = thread->_SleepEvent ;
  3716   slp->reset() ;
  3717   OrderAccess::fence() ;
  3719   if (interruptible) {
  3720     jlong prevtime = javaTimeNanos();
  3722     for (;;) {
  3723       if (os::is_interrupted(thread, true)) {
  3724         return OS_INTRPT;
  3727       jlong newtime = javaTimeNanos();
  3729       if (newtime - prevtime < 0) {
  3730         // time moving backwards, should only happen if no monotonic clock
  3731         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  3732         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  3733       } else {
  3734         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
  3737       if(millis <= 0) {
  3738         return OS_OK;
  3741       prevtime = newtime;
  3744         assert(thread->is_Java_thread(), "sanity check");
  3745         JavaThread *jt = (JavaThread *) thread;
  3746         ThreadBlockInVM tbivm(jt);
  3747         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
  3749         jt->set_suspend_equivalent();
  3750         // cleared by handle_special_suspend_equivalent_condition() or
  3751         // java_suspend_self() via check_and_wait_while_suspended()
  3753         slp->park(millis);
  3755         // were we externally suspended while we were waiting?
  3756         jt->check_and_wait_while_suspended();
  3759   } else {
  3760     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  3761     jlong prevtime = javaTimeNanos();
  3763     for (;;) {
  3764       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
  3765       // the 1st iteration ...
  3766       jlong newtime = javaTimeNanos();
  3768       if (newtime - prevtime < 0) {
  3769         // time moving backwards, should only happen if no monotonic clock
  3770         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  3771         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  3772       } else {
  3773         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
  3776       if(millis <= 0) break ;
  3778       prevtime = newtime;
  3779       slp->park(millis);
  3781     return OS_OK ;
  3785 //
  3786 // Short sleep, direct OS call.
  3787 //
  3788 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
  3789 // sched_yield(2) will actually give up the CPU:
  3790 //
  3791 //   * Alone on this pariticular CPU, keeps running.
  3792 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
  3793 //     (pre 2.6.39).
  3794 //
  3795 // So calling this with 0 is an alternative.
  3796 //
  3797 void os::naked_short_sleep(jlong ms) {
  3798   struct timespec req;
  3800   assert(ms < 1000, "Un-interruptable sleep, short time use only");
  3801   req.tv_sec = 0;
  3802   if (ms > 0) {
  3803     req.tv_nsec = (ms % 1000) * 1000000;
  3805   else {
  3806     req.tv_nsec = 1;
  3809   nanosleep(&req, NULL);
  3811   return;
  3814 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  3815 void os::infinite_sleep() {
  3816   while (true) {    // sleep forever ...
  3817     ::sleep(100);   // ... 100 seconds at a time
  3821 // Used to convert frequent JVM_Yield() to nops
  3822 bool os::dont_yield() {
  3823   return DontYieldALot;
  3826 void os::yield() {
  3827   sched_yield();
  3830 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
  3832 void os::yield_all(int attempts) {
  3833   // Yields to all threads, including threads with lower priorities
  3834   // Threads on Linux are all with same priority. The Solaris style
  3835   // os::yield_all() with nanosleep(1ms) is not necessary.
  3836   sched_yield();
  3839 // Called from the tight loops to possibly influence time-sharing heuristics
  3840 void os::loop_breaker(int attempts) {
  3841   os::yield_all(attempts);
  3844 ////////////////////////////////////////////////////////////////////////////////
  3845 // thread priority support
  3847 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
  3848 // only supports dynamic priority, static priority must be zero. For real-time
  3849 // applications, Linux supports SCHED_RR which allows static priority (1-99).
  3850 // However, for large multi-threaded applications, SCHED_RR is not only slower
  3851 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
  3852 // of 5 runs - Sep 2005).
  3853 //
  3854 // The following code actually changes the niceness of kernel-thread/LWP. It
  3855 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
  3856 // not the entire user process, and user level threads are 1:1 mapped to kernel
  3857 // threads. It has always been the case, but could change in the future. For
  3858 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
  3859 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
  3861 int os::java_to_os_priority[CriticalPriority + 1] = {
  3862   19,              // 0 Entry should never be used
  3864    4,              // 1 MinPriority
  3865    3,              // 2
  3866    2,              // 3
  3868    1,              // 4
  3869    0,              // 5 NormPriority
  3870   -1,              // 6
  3872   -2,              // 7
  3873   -3,              // 8
  3874   -4,              // 9 NearMaxPriority
  3876   -5,              // 10 MaxPriority
  3878   -5               // 11 CriticalPriority
  3879 };
  3881 static int prio_init() {
  3882   if (ThreadPriorityPolicy == 1) {
  3883     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
  3884     // if effective uid is not root. Perhaps, a more elegant way of doing
  3885     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
  3886     if (geteuid() != 0) {
  3887       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
  3888         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
  3890       ThreadPriorityPolicy = 0;
  3893   if (UseCriticalJavaThreadPriority) {
  3894     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
  3896   return 0;
  3899 OSReturn os::set_native_priority(Thread* thread, int newpri) {
  3900   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
  3902   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
  3903   return (ret == 0) ? OS_OK : OS_ERR;
  3906 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
  3907   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
  3908     *priority_ptr = java_to_os_priority[NormPriority];
  3909     return OS_OK;
  3912   errno = 0;
  3913   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
  3914   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
  3917 // Hint to the underlying OS that a task switch would not be good.
  3918 // Void return because it's a hint and can fail.
  3919 void os::hint_no_preempt() {}
  3921 ////////////////////////////////////////////////////////////////////////////////
  3922 // suspend/resume support
  3924 //  the low-level signal-based suspend/resume support is a remnant from the
  3925 //  old VM-suspension that used to be for java-suspension, safepoints etc,
  3926 //  within hotspot. Now there is a single use-case for this:
  3927 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
  3928 //      that runs in the watcher thread.
  3929 //  The remaining code is greatly simplified from the more general suspension
  3930 //  code that used to be used.
  3931 //
  3932 //  The protocol is quite simple:
  3933 //  - suspend:
  3934 //      - sends a signal to the target thread
  3935 //      - polls the suspend state of the osthread using a yield loop
  3936 //      - target thread signal handler (SR_handler) sets suspend state
  3937 //        and blocks in sigsuspend until continued
  3938 //  - resume:
  3939 //      - sets target osthread state to continue
  3940 //      - sends signal to end the sigsuspend loop in the SR_handler
  3941 //
  3942 //  Note that the SR_lock plays no role in this suspend/resume protocol.
  3943 //
  3945 static void resume_clear_context(OSThread *osthread) {
  3946   osthread->set_ucontext(NULL);
  3947   osthread->set_siginfo(NULL);
  3950 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
  3951   osthread->set_ucontext(context);
  3952   osthread->set_siginfo(siginfo);
  3955 //
  3956 // Handler function invoked when a thread's execution is suspended or
  3957 // resumed. We have to be careful that only async-safe functions are
  3958 // called here (Note: most pthread functions are not async safe and
  3959 // should be avoided.)
  3960 //
  3961 // Note: sigwait() is a more natural fit than sigsuspend() from an
  3962 // interface point of view, but sigwait() prevents the signal hander
  3963 // from being run. libpthread would get very confused by not having
  3964 // its signal handlers run and prevents sigwait()'s use with the
  3965 // mutex granting granting signal.
  3966 //
  3967 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
  3968 //
  3969 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
  3970   // Save and restore errno to avoid confusing native code with EINTR
  3971   // after sigsuspend.
  3972   int old_errno = errno;
  3974   Thread* thread = Thread::current();
  3975   OSThread* osthread = thread->osthread();
  3976   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
  3978   os::SuspendResume::State current = osthread->sr.state();
  3979   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
  3980     suspend_save_context(osthread, siginfo, context);
  3982     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
  3983     os::SuspendResume::State state = osthread->sr.suspended();
  3984     if (state == os::SuspendResume::SR_SUSPENDED) {
  3985       sigset_t suspend_set;  // signals for sigsuspend()
  3987       // get current set of blocked signals and unblock resume signal
  3988       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
  3989       sigdelset(&suspend_set, SR_signum);
  3991       sr_semaphore.signal();
  3992       // wait here until we are resumed
  3993       while (1) {
  3994         sigsuspend(&suspend_set);
  3996         os::SuspendResume::State result = osthread->sr.running();
  3997         if (result == os::SuspendResume::SR_RUNNING) {
  3998           sr_semaphore.signal();
  3999           break;
  4003     } else if (state == os::SuspendResume::SR_RUNNING) {
  4004       // request was cancelled, continue
  4005     } else {
  4006       ShouldNotReachHere();
  4009     resume_clear_context(osthread);
  4010   } else if (current == os::SuspendResume::SR_RUNNING) {
  4011     // request was cancelled, continue
  4012   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
  4013     // ignore
  4014   } else {
  4015     // ignore
  4018   errno = old_errno;
  4022 static int SR_initialize() {
  4023   struct sigaction act;
  4024   char *s;
  4025   /* Get signal number to use for suspend/resume */
  4026   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
  4027     int sig = ::strtol(s, 0, 10);
  4028     if (sig > 0 || sig < _NSIG) {
  4029         SR_signum = sig;
  4033   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
  4034         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
  4036   sigemptyset(&SR_sigset);
  4037   sigaddset(&SR_sigset, SR_signum);
  4039   /* Set up signal handler for suspend/resume */
  4040   act.sa_flags = SA_RESTART|SA_SIGINFO;
  4041   act.sa_handler = (void (*)(int)) SR_handler;
  4043   // SR_signum is blocked by default.
  4044   // 4528190 - We also need to block pthread restart signal (32 on all
  4045   // supported Linux platforms). Note that LinuxThreads need to block
  4046   // this signal for all threads to work properly. So we don't have
  4047   // to use hard-coded signal number when setting up the mask.
  4048   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
  4050   if (sigaction(SR_signum, &act, 0) == -1) {
  4051     return -1;
  4054   // Save signal flag
  4055   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
  4056   return 0;
  4059 static int sr_notify(OSThread* osthread) {
  4060   int status = pthread_kill(osthread->pthread_id(), SR_signum);
  4061   assert_status(status == 0, status, "pthread_kill");
  4062   return status;
  4065 // "Randomly" selected value for how long we want to spin
  4066 // before bailing out on suspending a thread, also how often
  4067 // we send a signal to a thread we want to resume
  4068 static const int RANDOMLY_LARGE_INTEGER = 1000000;
  4069 static const int RANDOMLY_LARGE_INTEGER2 = 100;
  4071 // returns true on success and false on error - really an error is fatal
  4072 // but this seems the normal response to library errors
  4073 static bool do_suspend(OSThread* osthread) {
  4074   assert(osthread->sr.is_running(), "thread should be running");
  4075   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
  4077   // mark as suspended and send signal
  4078   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
  4079     // failed to switch, state wasn't running?
  4080     ShouldNotReachHere();
  4081     return false;
  4084   if (sr_notify(osthread) != 0) {
  4085     ShouldNotReachHere();
  4088   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
  4089   while (true) {
  4090     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
  4091       break;
  4092     } else {
  4093       // timeout
  4094       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
  4095       if (cancelled == os::SuspendResume::SR_RUNNING) {
  4096         return false;
  4097       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
  4098         // make sure that we consume the signal on the semaphore as well
  4099         sr_semaphore.wait();
  4100         break;
  4101       } else {
  4102         ShouldNotReachHere();
  4103         return false;
  4108   guarantee(osthread->sr.is_suspended(), "Must be suspended");
  4109   return true;
  4112 static void do_resume(OSThread* osthread) {
  4113   assert(osthread->sr.is_suspended(), "thread should be suspended");
  4114   assert(!sr_semaphore.trywait(), "invalid semaphore state");
  4116   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
  4117     // failed to switch to WAKEUP_REQUEST
  4118     ShouldNotReachHere();
  4119     return;
  4122   while (true) {
  4123     if (sr_notify(osthread) == 0) {
  4124       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
  4125         if (osthread->sr.is_running()) {
  4126           return;
  4129     } else {
  4130       ShouldNotReachHere();
  4134   guarantee(osthread->sr.is_running(), "Must be running!");
  4137 ////////////////////////////////////////////////////////////////////////////////
  4138 // interrupt support
  4140 void os::interrupt(Thread* thread) {
  4141   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  4142     "possibility of dangling Thread pointer");
  4144   OSThread* osthread = thread->osthread();
  4146   if (!osthread->interrupted()) {
  4147     osthread->set_interrupted(true);
  4148     // More than one thread can get here with the same value of osthread,
  4149     // resulting in multiple notifications.  We do, however, want the store
  4150     // to interrupted() to be visible to other threads before we execute unpark().
  4151     OrderAccess::fence();
  4152     ParkEvent * const slp = thread->_SleepEvent ;
  4153     if (slp != NULL) slp->unpark() ;
  4156   // For JSR166. Unpark even if interrupt status already was set
  4157   if (thread->is_Java_thread())
  4158     ((JavaThread*)thread)->parker()->unpark();
  4160   ParkEvent * ev = thread->_ParkEvent ;
  4161   if (ev != NULL) ev->unpark() ;
  4165 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  4166   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  4167     "possibility of dangling Thread pointer");
  4169   OSThread* osthread = thread->osthread();
  4171   bool interrupted = osthread->interrupted();
  4173   if (interrupted && clear_interrupted) {
  4174     osthread->set_interrupted(false);
  4175     // consider thread->_SleepEvent->reset() ... optional optimization
  4178   return interrupted;
  4181 ///////////////////////////////////////////////////////////////////////////////////
  4182 // signal handling (except suspend/resume)
  4184 // This routine may be used by user applications as a "hook" to catch signals.
  4185 // The user-defined signal handler must pass unrecognized signals to this
  4186 // routine, and if it returns true (non-zero), then the signal handler must
  4187 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
  4188 // routine will never retun false (zero), but instead will execute a VM panic
  4189 // routine kill the process.
  4190 //
  4191 // If this routine returns false, it is OK to call it again.  This allows
  4192 // the user-defined signal handler to perform checks either before or after
  4193 // the VM performs its own checks.  Naturally, the user code would be making
  4194 // a serious error if it tried to handle an exception (such as a null check
  4195 // or breakpoint) that the VM was generating for its own correct operation.
  4196 //
  4197 // This routine may recognize any of the following kinds of signals:
  4198 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
  4199 // It should be consulted by handlers for any of those signals.
  4200 //
  4201 // The caller of this routine must pass in the three arguments supplied
  4202 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
  4203 // field of the structure passed to sigaction().  This routine assumes that
  4204 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
  4205 //
  4206 // Note that the VM will print warnings if it detects conflicting signal
  4207 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
  4208 //
  4209 extern "C" JNIEXPORT int
  4210 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
  4211                         void* ucontext, int abort_if_unrecognized);
  4213 void signalHandler(int sig, siginfo_t* info, void* uc) {
  4214   assert(info != NULL && uc != NULL, "it must be old kernel");
  4215   int orig_errno = errno;  // Preserve errno value over signal handler.
  4216   JVM_handle_linux_signal(sig, info, uc, true);
  4217   errno = orig_errno;
  4221 // This boolean allows users to forward their own non-matching signals
  4222 // to JVM_handle_linux_signal, harmlessly.
  4223 bool os::Linux::signal_handlers_are_installed = false;
  4225 // For signal-chaining
  4226 struct sigaction os::Linux::sigact[MAXSIGNUM];
  4227 unsigned int os::Linux::sigs = 0;
  4228 bool os::Linux::libjsig_is_loaded = false;
  4229 typedef struct sigaction *(*get_signal_t)(int);
  4230 get_signal_t os::Linux::get_signal_action = NULL;
  4232 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
  4233   struct sigaction *actp = NULL;
  4235   if (libjsig_is_loaded) {
  4236     // Retrieve the old signal handler from libjsig
  4237     actp = (*get_signal_action)(sig);
  4239   if (actp == NULL) {
  4240     // Retrieve the preinstalled signal handler from jvm
  4241     actp = get_preinstalled_handler(sig);
  4244   return actp;
  4247 static bool call_chained_handler(struct sigaction *actp, int sig,
  4248                                  siginfo_t *siginfo, void *context) {
  4249   // Call the old signal handler
  4250   if (actp->sa_handler == SIG_DFL) {
  4251     // It's more reasonable to let jvm treat it as an unexpected exception
  4252     // instead of taking the default action.
  4253     return false;
  4254   } else if (actp->sa_handler != SIG_IGN) {
  4255     if ((actp->sa_flags & SA_NODEFER) == 0) {
  4256       // automaticlly block the signal
  4257       sigaddset(&(actp->sa_mask), sig);
  4260     sa_handler_t hand;
  4261     sa_sigaction_t sa;
  4262     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
  4263     // retrieve the chained handler
  4264     if (siginfo_flag_set) {
  4265       sa = actp->sa_sigaction;
  4266     } else {
  4267       hand = actp->sa_handler;
  4270     if ((actp->sa_flags & SA_RESETHAND) != 0) {
  4271       actp->sa_handler = SIG_DFL;
  4274     // try to honor the signal mask
  4275     sigset_t oset;
  4276     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
  4278     // call into the chained handler
  4279     if (siginfo_flag_set) {
  4280       (*sa)(sig, siginfo, context);
  4281     } else {
  4282       (*hand)(sig);
  4285     // restore the signal mask
  4286     pthread_sigmask(SIG_SETMASK, &oset, 0);
  4288   // Tell jvm's signal handler the signal is taken care of.
  4289   return true;
  4292 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
  4293   bool chained = false;
  4294   // signal-chaining
  4295   if (UseSignalChaining) {
  4296     struct sigaction *actp = get_chained_signal_action(sig);
  4297     if (actp != NULL) {
  4298       chained = call_chained_handler(actp, sig, siginfo, context);
  4301   return chained;
  4304 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
  4305   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
  4306     return &sigact[sig];
  4308   return NULL;
  4311 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
  4312   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4313   sigact[sig] = oldAct;
  4314   sigs |= (unsigned int)1 << sig;
  4317 // for diagnostic
  4318 int os::Linux::sigflags[MAXSIGNUM];
  4320 int os::Linux::get_our_sigflags(int sig) {
  4321   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4322   return sigflags[sig];
  4325 void os::Linux::set_our_sigflags(int sig, int flags) {
  4326   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4327   sigflags[sig] = flags;
  4330 void os::Linux::set_signal_handler(int sig, bool set_installed) {
  4331   // Check for overwrite.
  4332   struct sigaction oldAct;
  4333   sigaction(sig, (struct sigaction*)NULL, &oldAct);
  4335   void* oldhand = oldAct.sa_sigaction
  4336                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
  4337                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
  4338   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
  4339       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
  4340       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
  4341     if (AllowUserSignalHandlers || !set_installed) {
  4342       // Do not overwrite; user takes responsibility to forward to us.
  4343       return;
  4344     } else if (UseSignalChaining) {
  4345       // save the old handler in jvm
  4346       save_preinstalled_handler(sig, oldAct);
  4347       // libjsig also interposes the sigaction() call below and saves the
  4348       // old sigaction on it own.
  4349     } else {
  4350       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
  4351                     "%#lx for signal %d.", (long)oldhand, sig));
  4355   struct sigaction sigAct;
  4356   sigfillset(&(sigAct.sa_mask));
  4357   sigAct.sa_handler = SIG_DFL;
  4358   if (!set_installed) {
  4359     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  4360   } else {
  4361     sigAct.sa_sigaction = signalHandler;
  4362     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  4364   // Save flags, which are set by ours
  4365   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4366   sigflags[sig] = sigAct.sa_flags;
  4368   int ret = sigaction(sig, &sigAct, &oldAct);
  4369   assert(ret == 0, "check");
  4371   void* oldhand2  = oldAct.sa_sigaction
  4372                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
  4373                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
  4374   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
  4377 // install signal handlers for signals that HotSpot needs to
  4378 // handle in order to support Java-level exception handling.
  4380 void os::Linux::install_signal_handlers() {
  4381   if (!signal_handlers_are_installed) {
  4382     signal_handlers_are_installed = true;
  4384     // signal-chaining
  4385     typedef void (*signal_setting_t)();
  4386     signal_setting_t begin_signal_setting = NULL;
  4387     signal_setting_t end_signal_setting = NULL;
  4388     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  4389                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
  4390     if (begin_signal_setting != NULL) {
  4391       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  4392                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
  4393       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
  4394                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
  4395       libjsig_is_loaded = true;
  4396       assert(UseSignalChaining, "should enable signal-chaining");
  4398     if (libjsig_is_loaded) {
  4399       // Tell libjsig jvm is setting signal handlers
  4400       (*begin_signal_setting)();
  4403     set_signal_handler(SIGSEGV, true);
  4404     set_signal_handler(SIGPIPE, true);
  4405     set_signal_handler(SIGBUS, true);
  4406     set_signal_handler(SIGILL, true);
  4407     set_signal_handler(SIGFPE, true);
  4408 #if defined(PPC64)
  4409     set_signal_handler(SIGTRAP, true);
  4410 #endif
  4411     set_signal_handler(SIGXFSZ, true);
  4413     if (libjsig_is_loaded) {
  4414       // Tell libjsig jvm finishes setting signal handlers
  4415       (*end_signal_setting)();
  4418     // We don't activate signal checker if libjsig is in place, we trust ourselves
  4419     // and if UserSignalHandler is installed all bets are off.
  4420     // Log that signal checking is off only if -verbose:jni is specified.
  4421     if (CheckJNICalls) {
  4422       if (libjsig_is_loaded) {
  4423         if (PrintJNIResolving) {
  4424           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
  4426         check_signals = false;
  4428       if (AllowUserSignalHandlers) {
  4429         if (PrintJNIResolving) {
  4430           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
  4432         check_signals = false;
  4438 // This is the fastest way to get thread cpu time on Linux.
  4439 // Returns cpu time (user+sys) for any thread, not only for current.
  4440 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
  4441 // It might work on 2.6.10+ with a special kernel/glibc patch.
  4442 // For reference, please, see IEEE Std 1003.1-2004:
  4443 //   http://www.unix.org/single_unix_specification
  4445 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
  4446   struct timespec tp;
  4447   int rc = os::Linux::clock_gettime(clockid, &tp);
  4448   assert(rc == 0, "clock_gettime is expected to return 0 code");
  4450   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
  4453 /////
  4454 // glibc on Linux platform uses non-documented flag
  4455 // to indicate, that some special sort of signal
  4456 // trampoline is used.
  4457 // We will never set this flag, and we should
  4458 // ignore this flag in our diagnostic
  4459 #ifdef SIGNIFICANT_SIGNAL_MASK
  4460 #undef SIGNIFICANT_SIGNAL_MASK
  4461 #endif
  4462 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
  4464 static const char* get_signal_handler_name(address handler,
  4465                                            char* buf, int buflen) {
  4466   int offset;
  4467   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
  4468   if (found) {
  4469     // skip directory names
  4470     const char *p1, *p2;
  4471     p1 = buf;
  4472     size_t len = strlen(os::file_separator());
  4473     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
  4474     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
  4475   } else {
  4476     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
  4478   return buf;
  4481 static void print_signal_handler(outputStream* st, int sig,
  4482                                  char* buf, size_t buflen) {
  4483   struct sigaction sa;
  4485   sigaction(sig, NULL, &sa);
  4487   // See comment for SIGNIFICANT_SIGNAL_MASK define
  4488   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  4490   st->print("%s: ", os::exception_name(sig, buf, buflen));
  4492   address handler = (sa.sa_flags & SA_SIGINFO)
  4493     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
  4494     : CAST_FROM_FN_PTR(address, sa.sa_handler);
  4496   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
  4497     st->print("SIG_DFL");
  4498   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
  4499     st->print("SIG_IGN");
  4500   } else {
  4501     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
  4504   st->print(", sa_mask[0]=");
  4505   os::Posix::print_signal_set_short(st, &sa.sa_mask);
  4507   address rh = VMError::get_resetted_sighandler(sig);
  4508   // May be, handler was resetted by VMError?
  4509   if(rh != NULL) {
  4510     handler = rh;
  4511     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
  4514   st->print(", sa_flags=");
  4515   os::Posix::print_sa_flags(st, sa.sa_flags);
  4517   // Check: is it our handler?
  4518   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
  4519      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
  4520     // It is our signal handler
  4521     // check for flags, reset system-used one!
  4522     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
  4523       st->print(
  4524                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
  4525                 os::Linux::get_our_sigflags(sig));
  4528   st->cr();
  4532 #define DO_SIGNAL_CHECK(sig) \
  4533   if (!sigismember(&check_signal_done, sig)) \
  4534     os::Linux::check_signal_handler(sig)
  4536 // This method is a periodic task to check for misbehaving JNI applications
  4537 // under CheckJNI, we can add any periodic checks here
  4539 void os::run_periodic_checks() {
  4541   if (check_signals == false) return;
  4543   // SEGV and BUS if overridden could potentially prevent
  4544   // generation of hs*.log in the event of a crash, debugging
  4545   // such a case can be very challenging, so we absolutely
  4546   // check the following for a good measure:
  4547   DO_SIGNAL_CHECK(SIGSEGV);
  4548   DO_SIGNAL_CHECK(SIGILL);
  4549   DO_SIGNAL_CHECK(SIGFPE);
  4550   DO_SIGNAL_CHECK(SIGBUS);
  4551   DO_SIGNAL_CHECK(SIGPIPE);
  4552   DO_SIGNAL_CHECK(SIGXFSZ);
  4553 #if defined(PPC64)
  4554   DO_SIGNAL_CHECK(SIGTRAP);
  4555 #endif
  4557   // ReduceSignalUsage allows the user to override these handlers
  4558   // see comments at the very top and jvm_solaris.h
  4559   if (!ReduceSignalUsage) {
  4560     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
  4561     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
  4562     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
  4563     DO_SIGNAL_CHECK(BREAK_SIGNAL);
  4566   DO_SIGNAL_CHECK(SR_signum);
  4567   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
  4570 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
  4572 static os_sigaction_t os_sigaction = NULL;
  4574 void os::Linux::check_signal_handler(int sig) {
  4575   char buf[O_BUFLEN];
  4576   address jvmHandler = NULL;
  4579   struct sigaction act;
  4580   if (os_sigaction == NULL) {
  4581     // only trust the default sigaction, in case it has been interposed
  4582     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
  4583     if (os_sigaction == NULL) return;
  4586   os_sigaction(sig, (struct sigaction*)NULL, &act);
  4589   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  4591   address thisHandler = (act.sa_flags & SA_SIGINFO)
  4592     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
  4593     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
  4596   switch(sig) {
  4597   case SIGSEGV:
  4598   case SIGBUS:
  4599   case SIGFPE:
  4600   case SIGPIPE:
  4601   case SIGILL:
  4602   case SIGXFSZ:
  4603     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
  4604     break;
  4606   case SHUTDOWN1_SIGNAL:
  4607   case SHUTDOWN2_SIGNAL:
  4608   case SHUTDOWN3_SIGNAL:
  4609   case BREAK_SIGNAL:
  4610     jvmHandler = (address)user_handler();
  4611     break;
  4613   case INTERRUPT_SIGNAL:
  4614     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
  4615     break;
  4617   default:
  4618     if (sig == SR_signum) {
  4619       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
  4620     } else {
  4621       return;
  4623     break;
  4626   if (thisHandler != jvmHandler) {
  4627     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
  4628     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
  4629     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
  4630     // No need to check this sig any longer
  4631     sigaddset(&check_signal_done, sig);
  4632   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
  4633     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
  4634     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
  4635     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
  4636     // No need to check this sig any longer
  4637     sigaddset(&check_signal_done, sig);
  4640   // Dump all the signal
  4641   if (sigismember(&check_signal_done, sig)) {
  4642     print_signal_handlers(tty, buf, O_BUFLEN);
  4646 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
  4648 extern bool signal_name(int signo, char* buf, size_t len);
  4650 const char* os::exception_name(int exception_code, char* buf, size_t size) {
  4651   if (0 < exception_code && exception_code <= SIGRTMAX) {
  4652     // signal
  4653     if (!signal_name(exception_code, buf, size)) {
  4654       jio_snprintf(buf, size, "SIG%d", exception_code);
  4656     return buf;
  4657   } else {
  4658     return NULL;
  4662 // this is called _before_ the most of global arguments have been parsed
  4663 void os::init(void) {
  4664   char dummy;   /* used to get a guess on initial stack address */
  4665 //  first_hrtime = gethrtime();
  4667   // With LinuxThreads the JavaMain thread pid (primordial thread)
  4668   // is different than the pid of the java launcher thread.
  4669   // So, on Linux, the launcher thread pid is passed to the VM
  4670   // via the sun.java.launcher.pid property.
  4671   // Use this property instead of getpid() if it was correctly passed.
  4672   // See bug 6351349.
  4673   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
  4675   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
  4677   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
  4679   init_random(1234567);
  4681   ThreadCritical::initialize();
  4683   Linux::set_page_size(sysconf(_SC_PAGESIZE));
  4684   if (Linux::page_size() == -1) {
  4685     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
  4686                   strerror(errno)));
  4688   init_page_sizes((size_t) Linux::page_size());
  4690   Linux::initialize_system_info();
  4692   // main_thread points to the aboriginal thread
  4693   Linux::_main_thread = pthread_self();
  4695   Linux::clock_init();
  4696   initial_time_count = javaTimeNanos();
  4698   // pthread_condattr initialization for monotonic clock
  4699   int status;
  4700   pthread_condattr_t* _condattr = os::Linux::condAttr();
  4701   if ((status = pthread_condattr_init(_condattr)) != 0) {
  4702     fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
  4704   // Only set the clock if CLOCK_MONOTONIC is available
  4705   if (Linux::supports_monotonic_clock()) {
  4706     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
  4707       if (status == EINVAL) {
  4708         warning("Unable to use monotonic clock with relative timed-waits" \
  4709                 " - changes to the time-of-day clock may have adverse affects");
  4710       } else {
  4711         fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
  4715   // else it defaults to CLOCK_REALTIME
  4717   pthread_mutex_init(&dl_mutex, NULL);
  4719   // If the pagesize of the VM is greater than 8K determine the appropriate
  4720   // number of initial guard pages.  The user can change this with the
  4721   // command line arguments, if needed.
  4722   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
  4723     StackYellowPages = 1;
  4724     StackRedPages = 1;
  4725     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
  4729 // To install functions for atexit system call
  4730 extern "C" {
  4731   static void perfMemory_exit_helper() {
  4732     perfMemory_exit();
  4736 // this is called _after_ the global arguments have been parsed
  4737 jint os::init_2(void)
  4739   Linux::fast_thread_clock_init();
  4741   // Allocate a single page and mark it as readable for safepoint polling
  4742   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  4743   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
  4745   os::set_polling_page( polling_page );
  4747 #ifndef PRODUCT
  4748   if(Verbose && PrintMiscellaneous)
  4749     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  4750 #endif
  4752   if (!UseMembar) {
  4753     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  4754     guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
  4755     os::set_memory_serialize_page( mem_serialize_page );
  4757 #ifndef PRODUCT
  4758     if(Verbose && PrintMiscellaneous)
  4759       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  4760 #endif
  4763   // initialize suspend/resume support - must do this before signal_sets_init()
  4764   if (SR_initialize() != 0) {
  4765     perror("SR_initialize failed");
  4766     return JNI_ERR;
  4769   Linux::signal_sets_init();
  4770   Linux::install_signal_handlers();
  4772   // Check minimum allowable stack size for thread creation and to initialize
  4773   // the java system classes, including StackOverflowError - depends on page
  4774   // size.  Add a page for compiler2 recursion in main thread.
  4775   // Add in 2*BytesPerWord times page size to account for VM stack during
  4776   // class initialization depending on 32 or 64 bit VM.
  4777   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
  4778             (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
  4779                     (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
  4781   size_t threadStackSizeInBytes = ThreadStackSize * K;
  4782   if (threadStackSizeInBytes != 0 &&
  4783       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
  4784         tty->print_cr("\nThe stack size specified is too small, "
  4785                       "Specify at least %dk",
  4786                       os::Linux::min_stack_allowed/ K);
  4787         return JNI_ERR;
  4790   // Make the stack size a multiple of the page size so that
  4791   // the yellow/red zones can be guarded.
  4792   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
  4793         vm_page_size()));
  4795   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
  4797 #if defined(IA32)
  4798   workaround_expand_exec_shield_cs_limit();
  4799 #endif
  4801   Linux::libpthread_init();
  4802   if (PrintMiscellaneous && (Verbose || WizardMode)) {
  4803      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
  4804           Linux::glibc_version(), Linux::libpthread_version(),
  4805           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
  4808   if (UseNUMA) {
  4809     if (!Linux::libnuma_init()) {
  4810       UseNUMA = false;
  4811     } else {
  4812       if ((Linux::numa_max_node() < 1)) {
  4813         // There's only one node(they start from 0), disable NUMA.
  4814         UseNUMA = false;
  4817     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
  4818     // we can make the adaptive lgrp chunk resizing work. If the user specified
  4819     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
  4820     // disable adaptive resizing.
  4821     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
  4822       if (FLAG_IS_DEFAULT(UseNUMA)) {
  4823         UseNUMA = false;
  4824       } else {
  4825         if (FLAG_IS_DEFAULT(UseLargePages) &&
  4826             FLAG_IS_DEFAULT(UseSHM) &&
  4827             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
  4828           UseLargePages = false;
  4829         } else {
  4830           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
  4831           UseAdaptiveSizePolicy = false;
  4832           UseAdaptiveNUMAChunkSizing = false;
  4836     if (!UseNUMA && ForceNUMA) {
  4837       UseNUMA = true;
  4841   if (MaxFDLimit) {
  4842     // set the number of file descriptors to max. print out error
  4843     // if getrlimit/setrlimit fails but continue regardless.
  4844     struct rlimit nbr_files;
  4845     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
  4846     if (status != 0) {
  4847       if (PrintMiscellaneous && (Verbose || WizardMode))
  4848         perror("os::init_2 getrlimit failed");
  4849     } else {
  4850       nbr_files.rlim_cur = nbr_files.rlim_max;
  4851       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
  4852       if (status != 0) {
  4853         if (PrintMiscellaneous && (Verbose || WizardMode))
  4854           perror("os::init_2 setrlimit failed");
  4859   // Initialize lock used to serialize thread creation (see os::create_thread)
  4860   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
  4862   // at-exit methods are called in the reverse order of their registration.
  4863   // atexit functions are called on return from main or as a result of a
  4864   // call to exit(3C). There can be only 32 of these functions registered
  4865   // and atexit() does not set errno.
  4867   if (PerfAllowAtExitRegistration) {
  4868     // only register atexit functions if PerfAllowAtExitRegistration is set.
  4869     // atexit functions can be delayed until process exit time, which
  4870     // can be problematic for embedded VM situations. Embedded VMs should
  4871     // call DestroyJavaVM() to assure that VM resources are released.
  4873     // note: perfMemory_exit_helper atexit function may be removed in
  4874     // the future if the appropriate cleanup code can be added to the
  4875     // VM_Exit VMOperation's doit method.
  4876     if (atexit(perfMemory_exit_helper) != 0) {
  4877       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
  4881   // initialize thread priority policy
  4882   prio_init();
  4884   return JNI_OK;
  4887 // Mark the polling page as unreadable
  4888 void os::make_polling_page_unreadable(void) {
  4889   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
  4890     fatal("Could not disable polling page");
  4891 };
  4893 // Mark the polling page as readable
  4894 void os::make_polling_page_readable(void) {
  4895   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
  4896     fatal("Could not enable polling page");
  4898 };
  4900 int os::active_processor_count() {
  4901   // Linux doesn't yet have a (official) notion of processor sets,
  4902   // so just return the number of online processors.
  4903   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
  4904   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
  4905   return online_cpus;
  4908 void os::set_native_thread_name(const char *name) {
  4909   // Not yet implemented.
  4910   return;
  4913 bool os::distribute_processes(uint length, uint* distribution) {
  4914   // Not yet implemented.
  4915   return false;
  4918 bool os::bind_to_processor(uint processor_id) {
  4919   // Not yet implemented.
  4920   return false;
  4923 ///
  4925 void os::SuspendedThreadTask::internal_do_task() {
  4926   if (do_suspend(_thread->osthread())) {
  4927     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
  4928     do_task(context);
  4929     do_resume(_thread->osthread());
  4933 class PcFetcher : public os::SuspendedThreadTask {
  4934 public:
  4935   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
  4936   ExtendedPC result();
  4937 protected:
  4938   void do_task(const os::SuspendedThreadTaskContext& context);
  4939 private:
  4940   ExtendedPC _epc;
  4941 };
  4943 ExtendedPC PcFetcher::result() {
  4944   guarantee(is_done(), "task is not done yet.");
  4945   return _epc;
  4948 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
  4949   Thread* thread = context.thread();
  4950   OSThread* osthread = thread->osthread();
  4951   if (osthread->ucontext() != NULL) {
  4952     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
  4953   } else {
  4954     // NULL context is unexpected, double-check this is the VMThread
  4955     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
  4959 // Suspends the target using the signal mechanism and then grabs the PC before
  4960 // resuming the target. Used by the flat-profiler only
  4961 ExtendedPC os::get_thread_pc(Thread* thread) {
  4962   // Make sure that it is called by the watcher for the VMThread
  4963   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
  4964   assert(thread->is_VM_thread(), "Can only be called for VMThread");
  4966   PcFetcher fetcher(thread);
  4967   fetcher.run();
  4968   return fetcher.result();
  4971 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
  4973    if (is_NPTL()) {
  4974       return pthread_cond_timedwait(_cond, _mutex, _abstime);
  4975    } else {
  4976       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
  4977       // word back to default 64bit precision if condvar is signaled. Java
  4978       // wants 53bit precision.  Save and restore current value.
  4979       int fpu = get_fpu_control_word();
  4980       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
  4981       set_fpu_control_word(fpu);
  4982       return status;
  4986 ////////////////////////////////////////////////////////////////////////////////
  4987 // debug support
  4989 bool os::find(address addr, outputStream* st) {
  4990   Dl_info dlinfo;
  4991   memset(&dlinfo, 0, sizeof(dlinfo));
  4992   if (dladdr(addr, &dlinfo) != 0) {
  4993     st->print(PTR_FORMAT ": ", addr);
  4994     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
  4995       st->print("%s+%#x", dlinfo.dli_sname,
  4996                  addr - (intptr_t)dlinfo.dli_saddr);
  4997     } else if (dlinfo.dli_fbase != NULL) {
  4998       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
  4999     } else {
  5000       st->print("<absolute address>");
  5002     if (dlinfo.dli_fname != NULL) {
  5003       st->print(" in %s", dlinfo.dli_fname);
  5005     if (dlinfo.dli_fbase != NULL) {
  5006       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
  5008     st->cr();
  5010     if (Verbose) {
  5011       // decode some bytes around the PC
  5012       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
  5013       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
  5014       address       lowest = (address) dlinfo.dli_sname;
  5015       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
  5016       if (begin < lowest)  begin = lowest;
  5017       Dl_info dlinfo2;
  5018       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
  5019           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
  5020         end = (address) dlinfo2.dli_saddr;
  5021       Disassembler::decode(begin, end, st);
  5023     return true;
  5025   return false;
  5028 ////////////////////////////////////////////////////////////////////////////////
  5029 // misc
  5031 // This does not do anything on Linux. This is basically a hook for being
  5032 // able to use structured exception handling (thread-local exception filters)
  5033 // on, e.g., Win32.
  5034 void
  5035 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
  5036                          JavaCallArguments* args, Thread* thread) {
  5037   f(value, method, args, thread);
  5040 void os::print_statistics() {
  5043 int os::message_box(const char* title, const char* message) {
  5044   int i;
  5045   fdStream err(defaultStream::error_fd());
  5046   for (i = 0; i < 78; i++) err.print_raw("=");
  5047   err.cr();
  5048   err.print_raw_cr(title);
  5049   for (i = 0; i < 78; i++) err.print_raw("-");
  5050   err.cr();
  5051   err.print_raw_cr(message);
  5052   for (i = 0; i < 78; i++) err.print_raw("=");
  5053   err.cr();
  5055   char buf[16];
  5056   // Prevent process from exiting upon "read error" without consuming all CPU
  5057   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
  5059   return buf[0] == 'y' || buf[0] == 'Y';
  5062 int os::stat(const char *path, struct stat *sbuf) {
  5063   char pathbuf[MAX_PATH];
  5064   if (strlen(path) > MAX_PATH - 1) {
  5065     errno = ENAMETOOLONG;
  5066     return -1;
  5068   os::native_path(strcpy(pathbuf, path));
  5069   return ::stat(pathbuf, sbuf);
  5072 bool os::check_heap(bool force) {
  5073   return true;
  5076 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
  5077   return ::vsnprintf(buf, count, format, args);
  5080 // Is a (classpath) directory empty?
  5081 bool os::dir_is_empty(const char* path) {
  5082   DIR *dir = NULL;
  5083   struct dirent *ptr;
  5085   dir = opendir(path);
  5086   if (dir == NULL) return true;
  5088   /* Scan the directory */
  5089   bool result = true;
  5090   char buf[sizeof(struct dirent) + MAX_PATH];
  5091   while (result && (ptr = ::readdir(dir)) != NULL) {
  5092     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
  5093       result = false;
  5096   closedir(dir);
  5097   return result;
  5100 // This code originates from JDK's sysOpen and open64_w
  5101 // from src/solaris/hpi/src/system_md.c
  5103 #ifndef O_DELETE
  5104 #define O_DELETE 0x10000
  5105 #endif
  5107 // Open a file. Unlink the file immediately after open returns
  5108 // if the specified oflag has the O_DELETE flag set.
  5109 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
  5111 int os::open(const char *path, int oflag, int mode) {
  5113   if (strlen(path) > MAX_PATH - 1) {
  5114     errno = ENAMETOOLONG;
  5115     return -1;
  5117   int fd;
  5118   int o_delete = (oflag & O_DELETE);
  5119   oflag = oflag & ~O_DELETE;
  5121   fd = ::open64(path, oflag, mode);
  5122   if (fd == -1) return -1;
  5124   //If the open succeeded, the file might still be a directory
  5126     struct stat64 buf64;
  5127     int ret = ::fstat64(fd, &buf64);
  5128     int st_mode = buf64.st_mode;
  5130     if (ret != -1) {
  5131       if ((st_mode & S_IFMT) == S_IFDIR) {
  5132         errno = EISDIR;
  5133         ::close(fd);
  5134         return -1;
  5136     } else {
  5137       ::close(fd);
  5138       return -1;
  5142     /*
  5143      * All file descriptors that are opened in the JVM and not
  5144      * specifically destined for a subprocess should have the
  5145      * close-on-exec flag set.  If we don't set it, then careless 3rd
  5146      * party native code might fork and exec without closing all
  5147      * appropriate file descriptors (e.g. as we do in closeDescriptors in
  5148      * UNIXProcess.c), and this in turn might:
  5150      * - cause end-of-file to fail to be detected on some file
  5151      *   descriptors, resulting in mysterious hangs, or
  5153      * - might cause an fopen in the subprocess to fail on a system
  5154      *   suffering from bug 1085341.
  5156      * (Yes, the default setting of the close-on-exec flag is a Unix
  5157      * design flaw)
  5159      * See:
  5160      * 1085341: 32-bit stdio routines should support file descriptors >255
  5161      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
  5162      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
  5163      */
  5164 #ifdef FD_CLOEXEC
  5166         int flags = ::fcntl(fd, F_GETFD);
  5167         if (flags != -1)
  5168             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
  5170 #endif
  5172   if (o_delete != 0) {
  5173     ::unlink(path);
  5175   return fd;
  5179 // create binary file, rewriting existing file if required
  5180 int os::create_binary_file(const char* path, bool rewrite_existing) {
  5181   int oflags = O_WRONLY | O_CREAT;
  5182   if (!rewrite_existing) {
  5183     oflags |= O_EXCL;
  5185   return ::open64(path, oflags, S_IREAD | S_IWRITE);
  5188 // return current position of file pointer
  5189 jlong os::current_file_offset(int fd) {
  5190   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
  5193 // move file pointer to the specified offset
  5194 jlong os::seek_to_file_offset(int fd, jlong offset) {
  5195   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
  5198 // This code originates from JDK's sysAvailable
  5199 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
  5201 int os::available(int fd, jlong *bytes) {
  5202   jlong cur, end;
  5203   int mode;
  5204   struct stat64 buf64;
  5206   if (::fstat64(fd, &buf64) >= 0) {
  5207     mode = buf64.st_mode;
  5208     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
  5209       /*
  5210       * XXX: is the following call interruptible? If so, this might
  5211       * need to go through the INTERRUPT_IO() wrapper as for other
  5212       * blocking, interruptible calls in this file.
  5213       */
  5214       int n;
  5215       if (::ioctl(fd, FIONREAD, &n) >= 0) {
  5216         *bytes = n;
  5217         return 1;
  5221   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
  5222     return 0;
  5223   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
  5224     return 0;
  5225   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
  5226     return 0;
  5228   *bytes = end - cur;
  5229   return 1;
  5232 int os::socket_available(int fd, jint *pbytes) {
  5233   // Linux doc says EINTR not returned, unlike Solaris
  5234   int ret = ::ioctl(fd, FIONREAD, pbytes);
  5236   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
  5237   // is expected to return 0 on failure and 1 on success to the jdk.
  5238   return (ret < 0) ? 0 : 1;
  5241 // Map a block of memory.
  5242 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
  5243                      char *addr, size_t bytes, bool read_only,
  5244                      bool allow_exec) {
  5245   int prot;
  5246   int flags = MAP_PRIVATE;
  5248   if (read_only) {
  5249     prot = PROT_READ;
  5250   } else {
  5251     prot = PROT_READ | PROT_WRITE;
  5254   if (allow_exec) {
  5255     prot |= PROT_EXEC;
  5258   if (addr != NULL) {
  5259     flags |= MAP_FIXED;
  5262   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
  5263                                      fd, file_offset);
  5264   if (mapped_address == MAP_FAILED) {
  5265     return NULL;
  5267   return mapped_address;
  5271 // Remap a block of memory.
  5272 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
  5273                        char *addr, size_t bytes, bool read_only,
  5274                        bool allow_exec) {
  5275   // same as map_memory() on this OS
  5276   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
  5277                         allow_exec);
  5281 // Unmap a block of memory.
  5282 bool os::pd_unmap_memory(char* addr, size_t bytes) {
  5283   return munmap(addr, bytes) == 0;
  5286 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
  5288 static clockid_t thread_cpu_clockid(Thread* thread) {
  5289   pthread_t tid = thread->osthread()->pthread_id();
  5290   clockid_t clockid;
  5292   // Get thread clockid
  5293   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
  5294   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
  5295   return clockid;
  5298 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  5299 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  5300 // of a thread.
  5301 //
  5302 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
  5303 // the fast estimate available on the platform.
  5305 jlong os::current_thread_cpu_time() {
  5306   if (os::Linux::supports_fast_thread_cpu_time()) {
  5307     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  5308   } else {
  5309     // return user + sys since the cost is the same
  5310     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
  5314 jlong os::thread_cpu_time(Thread* thread) {
  5315   // consistent with what current_thread_cpu_time() returns
  5316   if (os::Linux::supports_fast_thread_cpu_time()) {
  5317     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  5318   } else {
  5319     return slow_thread_cpu_time(thread, true /* user + sys */);
  5323 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  5324   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  5325     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  5326   } else {
  5327     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
  5331 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  5332   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  5333     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  5334   } else {
  5335     return slow_thread_cpu_time(thread, user_sys_cpu_time);
  5339 //
  5340 //  -1 on error.
  5341 //
  5343 PRAGMA_DIAG_PUSH
  5344 PRAGMA_FORMAT_NONLITERAL_IGNORED
  5345 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  5346   static bool proc_task_unchecked = true;
  5347   static const char *proc_stat_path = "/proc/%d/stat";
  5348   pid_t  tid = thread->osthread()->thread_id();
  5349   char *s;
  5350   char stat[2048];
  5351   int statlen;
  5352   char proc_name[64];
  5353   int count;
  5354   long sys_time, user_time;
  5355   char cdummy;
  5356   int idummy;
  5357   long ldummy;
  5358   FILE *fp;
  5360   // The /proc/<tid>/stat aggregates per-process usage on
  5361   // new Linux kernels 2.6+ where NPTL is supported.
  5362   // The /proc/self/task/<tid>/stat still has the per-thread usage.
  5363   // See bug 6328462.
  5364   // There possibly can be cases where there is no directory
  5365   // /proc/self/task, so we check its availability.
  5366   if (proc_task_unchecked && os::Linux::is_NPTL()) {
  5367     // This is executed only once
  5368     proc_task_unchecked = false;
  5369     fp = fopen("/proc/self/task", "r");
  5370     if (fp != NULL) {
  5371       proc_stat_path = "/proc/self/task/%d/stat";
  5372       fclose(fp);
  5376   sprintf(proc_name, proc_stat_path, tid);
  5377   fp = fopen(proc_name, "r");
  5378   if ( fp == NULL ) return -1;
  5379   statlen = fread(stat, 1, 2047, fp);
  5380   stat[statlen] = '\0';
  5381   fclose(fp);
  5383   // Skip pid and the command string. Note that we could be dealing with
  5384   // weird command names, e.g. user could decide to rename java launcher
  5385   // to "java 1.4.2 :)", then the stat file would look like
  5386   //                1234 (java 1.4.2 :)) R ... ...
  5387   // We don't really need to know the command string, just find the last
  5388   // occurrence of ")" and then start parsing from there. See bug 4726580.
  5389   s = strrchr(stat, ')');
  5390   if (s == NULL ) return -1;
  5392   // Skip blank chars
  5393   do s++; while (isspace(*s));
  5395   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
  5396                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
  5397                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
  5398                  &user_time, &sys_time);
  5399   if ( count != 13 ) return -1;
  5400   if (user_sys_cpu_time) {
  5401     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
  5402   } else {
  5403     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
  5406 PRAGMA_DIAG_POP
  5408 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  5409   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  5410   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  5411   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  5412   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  5415 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  5416   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  5417   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  5418   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  5419   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  5422 bool os::is_thread_cpu_time_supported() {
  5423   return true;
  5426 // System loadavg support.  Returns -1 if load average cannot be obtained.
  5427 // Linux doesn't yet have a (official) notion of processor sets,
  5428 // so just return the system wide load average.
  5429 int os::loadavg(double loadavg[], int nelem) {
  5430   return ::getloadavg(loadavg, nelem);
  5433 void os::pause() {
  5434   char filename[MAX_PATH];
  5435   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  5436     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  5437   } else {
  5438     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  5441   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  5442   if (fd != -1) {
  5443     struct stat buf;
  5444     ::close(fd);
  5445     while (::stat(filename, &buf) == 0) {
  5446       (void)::poll(NULL, 0, 100);
  5448   } else {
  5449     jio_fprintf(stderr,
  5450       "Could not open pause file '%s', continuing immediately.\n", filename);
  5455 // Refer to the comments in os_solaris.cpp park-unpark.
  5456 //
  5457 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
  5458 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
  5459 // For specifics regarding the bug see GLIBC BUGID 261237 :
  5460 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
  5461 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
  5462 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
  5463 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
  5464 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
  5465 // and monitorenter when we're using 1-0 locking.  All those operations may result in
  5466 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
  5467 // of libpthread avoids the problem, but isn't practical.
  5468 //
  5469 // Possible remedies:
  5470 //
  5471 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
  5472 //      This is palliative and probabilistic, however.  If the thread is preempted
  5473 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
  5474 //      than the minimum period may have passed, and the abstime may be stale (in the
  5475 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
  5476 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
  5477 //
  5478 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
  5479 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
  5480 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
  5481 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
  5482 //      thread.
  5483 //
  5484 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
  5485 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
  5486 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
  5487 //      This also works well.  In fact it avoids kernel-level scalability impediments
  5488 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
  5489 //      timers in a graceful fashion.
  5490 //
  5491 // 4.   When the abstime value is in the past it appears that control returns
  5492 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
  5493 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
  5494 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
  5495 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
  5496 //      It may be possible to avoid reinitialization by checking the return
  5497 //      value from pthread_cond_timedwait().  In addition to reinitializing the
  5498 //      condvar we must establish the invariant that cond_signal() is only called
  5499 //      within critical sections protected by the adjunct mutex.  This prevents
  5500 //      cond_signal() from "seeing" a condvar that's in the midst of being
  5501 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
  5502 //      desirable signal-after-unlock optimization that avoids futile context switching.
  5503 //
  5504 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
  5505 //      structure when a condvar is used or initialized.  cond_destroy()  would
  5506 //      release the helper structure.  Our reinitialize-after-timedwait fix
  5507 //      put excessive stress on malloc/free and locks protecting the c-heap.
  5508 //
  5509 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
  5510 // It may be possible to refine (4) by checking the kernel and NTPL verisons
  5511 // and only enabling the work-around for vulnerable environments.
  5513 // utility to compute the abstime argument to timedwait:
  5514 // millis is the relative timeout time
  5515 // abstime will be the absolute timeout time
  5516 // TODO: replace compute_abstime() with unpackTime()
  5518 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
  5519   if (millis < 0)  millis = 0;
  5521   jlong seconds = millis / 1000;
  5522   millis %= 1000;
  5523   if (seconds > 50000000) { // see man cond_timedwait(3T)
  5524     seconds = 50000000;
  5527   if (os::Linux::supports_monotonic_clock()) {
  5528     struct timespec now;
  5529     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
  5530     assert_status(status == 0, status, "clock_gettime");
  5531     abstime->tv_sec = now.tv_sec  + seconds;
  5532     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
  5533     if (nanos >= NANOSECS_PER_SEC) {
  5534       abstime->tv_sec += 1;
  5535       nanos -= NANOSECS_PER_SEC;
  5537     abstime->tv_nsec = nanos;
  5538   } else {
  5539     struct timeval now;
  5540     int status = gettimeofday(&now, NULL);
  5541     assert(status == 0, "gettimeofday");
  5542     abstime->tv_sec = now.tv_sec  + seconds;
  5543     long usec = now.tv_usec + millis * 1000;
  5544     if (usec >= 1000000) {
  5545       abstime->tv_sec += 1;
  5546       usec -= 1000000;
  5548     abstime->tv_nsec = usec * 1000;
  5550   return abstime;
  5554 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
  5555 // Conceptually TryPark() should be equivalent to park(0).
  5557 int os::PlatformEvent::TryPark() {
  5558   for (;;) {
  5559     const int v = _Event ;
  5560     guarantee ((v == 0) || (v == 1), "invariant") ;
  5561     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
  5565 void os::PlatformEvent::park() {       // AKA "down()"
  5566   // Invariant: Only the thread associated with the Event/PlatformEvent
  5567   // may call park().
  5568   // TODO: assert that _Assoc != NULL or _Assoc == Self
  5569   int v ;
  5570   for (;;) {
  5571       v = _Event ;
  5572       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  5574   guarantee (v >= 0, "invariant") ;
  5575   if (v == 0) {
  5576      // Do this the hard way by blocking ...
  5577      int status = pthread_mutex_lock(_mutex);
  5578      assert_status(status == 0, status, "mutex_lock");
  5579      guarantee (_nParked == 0, "invariant") ;
  5580      ++ _nParked ;
  5581      while (_Event < 0) {
  5582         status = pthread_cond_wait(_cond, _mutex);
  5583         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
  5584         // Treat this the same as if the wait was interrupted
  5585         if (status == ETIME) { status = EINTR; }
  5586         assert_status(status == 0 || status == EINTR, status, "cond_wait");
  5588      -- _nParked ;
  5590     _Event = 0 ;
  5591      status = pthread_mutex_unlock(_mutex);
  5592      assert_status(status == 0, status, "mutex_unlock");
  5593     // Paranoia to ensure our locked and lock-free paths interact
  5594     // correctly with each other.
  5595     OrderAccess::fence();
  5597   guarantee (_Event >= 0, "invariant") ;
  5600 int os::PlatformEvent::park(jlong millis) {
  5601   guarantee (_nParked == 0, "invariant") ;
  5603   int v ;
  5604   for (;;) {
  5605       v = _Event ;
  5606       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  5608   guarantee (v >= 0, "invariant") ;
  5609   if (v != 0) return OS_OK ;
  5611   // We do this the hard way, by blocking the thread.
  5612   // Consider enforcing a minimum timeout value.
  5613   struct timespec abst;
  5614   compute_abstime(&abst, millis);
  5616   int ret = OS_TIMEOUT;
  5617   int status = pthread_mutex_lock(_mutex);
  5618   assert_status(status == 0, status, "mutex_lock");
  5619   guarantee (_nParked == 0, "invariant") ;
  5620   ++_nParked ;
  5622   // Object.wait(timo) will return because of
  5623   // (a) notification
  5624   // (b) timeout
  5625   // (c) thread.interrupt
  5626   //
  5627   // Thread.interrupt and object.notify{All} both call Event::set.
  5628   // That is, we treat thread.interrupt as a special case of notification.
  5629   // The underlying Solaris implementation, cond_timedwait, admits
  5630   // spurious/premature wakeups, but the JLS/JVM spec prevents the
  5631   // JVM from making those visible to Java code.  As such, we must
  5632   // filter out spurious wakeups.  We assume all ETIME returns are valid.
  5633   //
  5634   // TODO: properly differentiate simultaneous notify+interrupt.
  5635   // In that case, we should propagate the notify to another waiter.
  5637   while (_Event < 0) {
  5638     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
  5639     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  5640       pthread_cond_destroy (_cond);
  5641       pthread_cond_init (_cond, os::Linux::condAttr()) ;
  5643     assert_status(status == 0 || status == EINTR ||
  5644                   status == ETIME || status == ETIMEDOUT,
  5645                   status, "cond_timedwait");
  5646     if (!FilterSpuriousWakeups) break ;                 // previous semantics
  5647     if (status == ETIME || status == ETIMEDOUT) break ;
  5648     // We consume and ignore EINTR and spurious wakeups.
  5650   --_nParked ;
  5651   if (_Event >= 0) {
  5652      ret = OS_OK;
  5654   _Event = 0 ;
  5655   status = pthread_mutex_unlock(_mutex);
  5656   assert_status(status == 0, status, "mutex_unlock");
  5657   assert (_nParked == 0, "invariant") ;
  5658   // Paranoia to ensure our locked and lock-free paths interact
  5659   // correctly with each other.
  5660   OrderAccess::fence();
  5661   return ret;
  5664 void os::PlatformEvent::unpark() {
  5665   // Transitions for _Event:
  5666   //    0 :=> 1
  5667   //    1 :=> 1
  5668   //   -1 :=> either 0 or 1; must signal target thread
  5669   //          That is, we can safely transition _Event from -1 to either
  5670   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
  5671   //          unpark() calls.
  5672   // See also: "Semaphores in Plan 9" by Mullender & Cox
  5673   //
  5674   // Note: Forcing a transition from "-1" to "1" on an unpark() means
  5675   // that it will take two back-to-back park() calls for the owning
  5676   // thread to block. This has the benefit of forcing a spurious return
  5677   // from the first park() call after an unpark() call which will help
  5678   // shake out uses of park() and unpark() without condition variables.
  5680   if (Atomic::xchg(1, &_Event) >= 0) return;
  5682   // Wait for the thread associated with the event to vacate
  5683   int status = pthread_mutex_lock(_mutex);
  5684   assert_status(status == 0, status, "mutex_lock");
  5685   int AnyWaiters = _nParked;
  5686   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
  5687   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
  5688     AnyWaiters = 0;
  5689     pthread_cond_signal(_cond);
  5691   status = pthread_mutex_unlock(_mutex);
  5692   assert_status(status == 0, status, "mutex_unlock");
  5693   if (AnyWaiters != 0) {
  5694     status = pthread_cond_signal(_cond);
  5695     assert_status(status == 0, status, "cond_signal");
  5698   // Note that we signal() _after dropping the lock for "immortal" Events.
  5699   // This is safe and avoids a common class of  futile wakeups.  In rare
  5700   // circumstances this can cause a thread to return prematurely from
  5701   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
  5702   // simply re-test the condition and re-park itself.
  5706 // JSR166
  5707 // -------------------------------------------------------
  5709 /*
  5710  * The solaris and linux implementations of park/unpark are fairly
  5711  * conservative for now, but can be improved. They currently use a
  5712  * mutex/condvar pair, plus a a count.
  5713  * Park decrements count if > 0, else does a condvar wait.  Unpark
  5714  * sets count to 1 and signals condvar.  Only one thread ever waits
  5715  * on the condvar. Contention seen when trying to park implies that someone
  5716  * is unparking you, so don't wait. And spurious returns are fine, so there
  5717  * is no need to track notifications.
  5718  */
  5720 /*
  5721  * This code is common to linux and solaris and will be moved to a
  5722  * common place in dolphin.
  5724  * The passed in time value is either a relative time in nanoseconds
  5725  * or an absolute time in milliseconds. Either way it has to be unpacked
  5726  * into suitable seconds and nanoseconds components and stored in the
  5727  * given timespec structure.
  5728  * Given time is a 64-bit value and the time_t used in the timespec is only
  5729  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
  5730  * overflow if times way in the future are given. Further on Solaris versions
  5731  * prior to 10 there is a restriction (see cond_timedwait) that the specified
  5732  * number of seconds, in abstime, is less than current_time  + 100,000,000.
  5733  * As it will be 28 years before "now + 100000000" will overflow we can
  5734  * ignore overflow and just impose a hard-limit on seconds using the value
  5735  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
  5736  * years from "now".
  5737  */
  5739 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
  5740   assert (time > 0, "convertTime");
  5741   time_t max_secs = 0;
  5743   if (!os::Linux::supports_monotonic_clock() || isAbsolute) {
  5744     struct timeval now;
  5745     int status = gettimeofday(&now, NULL);
  5746     assert(status == 0, "gettimeofday");
  5748     max_secs = now.tv_sec + MAX_SECS;
  5750     if (isAbsolute) {
  5751       jlong secs = time / 1000;
  5752       if (secs > max_secs) {
  5753         absTime->tv_sec = max_secs;
  5754       } else {
  5755         absTime->tv_sec = secs;
  5757       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
  5758     } else {
  5759       jlong secs = time / NANOSECS_PER_SEC;
  5760       if (secs >= MAX_SECS) {
  5761         absTime->tv_sec = max_secs;
  5762         absTime->tv_nsec = 0;
  5763       } else {
  5764         absTime->tv_sec = now.tv_sec + secs;
  5765         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
  5766         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  5767           absTime->tv_nsec -= NANOSECS_PER_SEC;
  5768           ++absTime->tv_sec; // note: this must be <= max_secs
  5772   } else {
  5773     // must be relative using monotonic clock
  5774     struct timespec now;
  5775     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
  5776     assert_status(status == 0, status, "clock_gettime");
  5777     max_secs = now.tv_sec + MAX_SECS;
  5778     jlong secs = time / NANOSECS_PER_SEC;
  5779     if (secs >= MAX_SECS) {
  5780       absTime->tv_sec = max_secs;
  5781       absTime->tv_nsec = 0;
  5782     } else {
  5783       absTime->tv_sec = now.tv_sec + secs;
  5784       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
  5785       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  5786         absTime->tv_nsec -= NANOSECS_PER_SEC;
  5787         ++absTime->tv_sec; // note: this must be <= max_secs
  5791   assert(absTime->tv_sec >= 0, "tv_sec < 0");
  5792   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
  5793   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
  5794   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
  5797 void Parker::park(bool isAbsolute, jlong time) {
  5798   // Ideally we'd do something useful while spinning, such
  5799   // as calling unpackTime().
  5801   // Optional fast-path check:
  5802   // Return immediately if a permit is available.
  5803   // We depend on Atomic::xchg() having full barrier semantics
  5804   // since we are doing a lock-free update to _counter.
  5805   if (Atomic::xchg(0, &_counter) > 0) return;
  5807   Thread* thread = Thread::current();
  5808   assert(thread->is_Java_thread(), "Must be JavaThread");
  5809   JavaThread *jt = (JavaThread *)thread;
  5811   // Optional optimization -- avoid state transitions if there's an interrupt pending.
  5812   // Check interrupt before trying to wait
  5813   if (Thread::is_interrupted(thread, false)) {
  5814     return;
  5817   // Next, demultiplex/decode time arguments
  5818   timespec absTime;
  5819   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
  5820     return;
  5822   if (time > 0) {
  5823     unpackTime(&absTime, isAbsolute, time);
  5827   // Enter safepoint region
  5828   // Beware of deadlocks such as 6317397.
  5829   // The per-thread Parker:: mutex is a classic leaf-lock.
  5830   // In particular a thread must never block on the Threads_lock while
  5831   // holding the Parker:: mutex.  If safepoints are pending both the
  5832   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
  5833   ThreadBlockInVM tbivm(jt);
  5835   // Don't wait if cannot get lock since interference arises from
  5836   // unblocking.  Also. check interrupt before trying wait
  5837   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
  5838     return;
  5841   int status ;
  5842   if (_counter > 0)  { // no wait needed
  5843     _counter = 0;
  5844     status = pthread_mutex_unlock(_mutex);
  5845     assert (status == 0, "invariant") ;
  5846     // Paranoia to ensure our locked and lock-free paths interact
  5847     // correctly with each other and Java-level accesses.
  5848     OrderAccess::fence();
  5849     return;
  5852 #ifdef ASSERT
  5853   // Don't catch signals while blocked; let the running threads have the signals.
  5854   // (This allows a debugger to break into the running thread.)
  5855   sigset_t oldsigs;
  5856   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
  5857   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
  5858 #endif
  5860   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  5861   jt->set_suspend_equivalent();
  5862   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  5864   assert(_cur_index == -1, "invariant");
  5865   if (time == 0) {
  5866     _cur_index = REL_INDEX; // arbitrary choice when not timed
  5867     status = pthread_cond_wait (&_cond[_cur_index], _mutex) ;
  5868   } else {
  5869     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
  5870     status = os::Linux::safe_cond_timedwait (&_cond[_cur_index], _mutex, &absTime) ;
  5871     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  5872       pthread_cond_destroy (&_cond[_cur_index]) ;
  5873       pthread_cond_init    (&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
  5876   _cur_index = -1;
  5877   assert_status(status == 0 || status == EINTR ||
  5878                 status == ETIME || status == ETIMEDOUT,
  5879                 status, "cond_timedwait");
  5881 #ifdef ASSERT
  5882   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
  5883 #endif
  5885   _counter = 0 ;
  5886   status = pthread_mutex_unlock(_mutex) ;
  5887   assert_status(status == 0, status, "invariant") ;
  5888   // Paranoia to ensure our locked and lock-free paths interact
  5889   // correctly with each other and Java-level accesses.
  5890   OrderAccess::fence();
  5892   // If externally suspended while waiting, re-suspend
  5893   if (jt->handle_special_suspend_equivalent_condition()) {
  5894     jt->java_suspend_self();
  5898 void Parker::unpark() {
  5899   int s, status ;
  5900   status = pthread_mutex_lock(_mutex);
  5901   assert (status == 0, "invariant") ;
  5902   s = _counter;
  5903   _counter = 1;
  5904   if (s < 1) {
  5905     // thread might be parked
  5906     if (_cur_index != -1) {
  5907       // thread is definitely parked
  5908       if (WorkAroundNPTLTimedWaitHang) {
  5909         status = pthread_cond_signal (&_cond[_cur_index]);
  5910         assert (status == 0, "invariant");
  5911         status = pthread_mutex_unlock(_mutex);
  5912         assert (status == 0, "invariant");
  5913       } else {
  5914         status = pthread_mutex_unlock(_mutex);
  5915         assert (status == 0, "invariant");
  5916         status = pthread_cond_signal (&_cond[_cur_index]);
  5917         assert (status == 0, "invariant");
  5919     } else {
  5920       pthread_mutex_unlock(_mutex);
  5921       assert (status == 0, "invariant") ;
  5923   } else {
  5924     pthread_mutex_unlock(_mutex);
  5925     assert (status == 0, "invariant") ;
  5930 extern char** environ;
  5932 // Run the specified command in a separate process. Return its exit value,
  5933 // or -1 on failure (e.g. can't fork a new process).
  5934 // Unlike system(), this function can be called from signal handler. It
  5935 // doesn't block SIGINT et al.
  5936 int os::fork_and_exec(char* cmd) {
  5937   const char * argv[4] = {"sh", "-c", cmd, NULL};
  5939   pid_t pid = fork();
  5941   if (pid < 0) {
  5942     // fork failed
  5943     return -1;
  5945   } else if (pid == 0) {
  5946     // child process
  5948     execve("/bin/sh", (char* const*)argv, environ);
  5950     // execve failed
  5951     _exit(-1);
  5953   } else  {
  5954     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
  5955     // care about the actual exit code, for now.
  5957     int status;
  5959     // Wait for the child process to exit.  This returns immediately if
  5960     // the child has already exited. */
  5961     while (waitpid(pid, &status, 0) < 0) {
  5962         switch (errno) {
  5963         case ECHILD: return 0;
  5964         case EINTR: break;
  5965         default: return -1;
  5969     if (WIFEXITED(status)) {
  5970        // The child exited normally; get its exit code.
  5971        return WEXITSTATUS(status);
  5972     } else if (WIFSIGNALED(status)) {
  5973        // The child exited because of a signal
  5974        // The best value to return is 0x80 + signal number,
  5975        // because that is what all Unix shells do, and because
  5976        // it allows callers to distinguish between process exit and
  5977        // process death by signal.
  5978        return 0x80 + WTERMSIG(status);
  5979     } else {
  5980        // Unknown exit code; pass it through
  5981        return status;
  5986 // is_headless_jre()
  5987 //
  5988 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
  5989 // in order to report if we are running in a headless jre
  5990 //
  5991 // Since JDK8 xawt/libmawt.so was moved into the same directory
  5992 // as libawt.so, and renamed libawt_xawt.so
  5993 //
  5994 bool os::is_headless_jre() {
  5995     struct stat statbuf;
  5996     char buf[MAXPATHLEN];
  5997     char libmawtpath[MAXPATHLEN];
  5998     const char *xawtstr  = "/xawt/libmawt.so";
  5999     const char *new_xawtstr = "/libawt_xawt.so";
  6000     char *p;
  6002     // Get path to libjvm.so
  6003     os::jvm_path(buf, sizeof(buf));
  6005     // Get rid of libjvm.so
  6006     p = strrchr(buf, '/');
  6007     if (p == NULL) return false;
  6008     else *p = '\0';
  6010     // Get rid of client or server
  6011     p = strrchr(buf, '/');
  6012     if (p == NULL) return false;
  6013     else *p = '\0';
  6015     // check xawt/libmawt.so
  6016     strcpy(libmawtpath, buf);
  6017     strcat(libmawtpath, xawtstr);
  6018     if (::stat(libmawtpath, &statbuf) == 0) return false;
  6020     // check libawt_xawt.so
  6021     strcpy(libmawtpath, buf);
  6022     strcat(libmawtpath, new_xawtstr);
  6023     if (::stat(libmawtpath, &statbuf) == 0) return false;
  6025     return true;
  6028 // Get the default path to the core file
  6029 // Returns the length of the string
  6030 int os::get_core_path(char* buffer, size_t bufferSize) {
  6031   const char* p = get_current_directory(buffer, bufferSize);
  6033   if (p == NULL) {
  6034     assert(p != NULL, "failed to get current directory");
  6035     return 0;
  6038   return strlen(buffer);
  6041 /////////////// Unit tests ///////////////
  6043 #ifndef PRODUCT
  6045 #define test_log(...) \
  6046   do {\
  6047     if (VerboseInternalVMTests) { \
  6048       tty->print_cr(__VA_ARGS__); \
  6049       tty->flush(); \
  6050     }\
  6051   } while (false)
  6053 class TestReserveMemorySpecial : AllStatic {
  6054  public:
  6055   static void small_page_write(void* addr, size_t size) {
  6056     size_t page_size = os::vm_page_size();
  6058     char* end = (char*)addr + size;
  6059     for (char* p = (char*)addr; p < end; p += page_size) {
  6060       *p = 1;
  6064   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
  6065     if (!UseHugeTLBFS) {
  6066       return;
  6069     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
  6071     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
  6073     if (addr != NULL) {
  6074       small_page_write(addr, size);
  6076       os::Linux::release_memory_special_huge_tlbfs(addr, size);
  6080   static void test_reserve_memory_special_huge_tlbfs_only() {
  6081     if (!UseHugeTLBFS) {
  6082       return;
  6085     size_t lp = os::large_page_size();
  6087     for (size_t size = lp; size <= lp * 10; size += lp) {
  6088       test_reserve_memory_special_huge_tlbfs_only(size);
  6092   static void test_reserve_memory_special_huge_tlbfs_mixed(size_t size, size_t alignment) {
  6093     if (!UseHugeTLBFS) {
  6094         return;
  6097     test_log("test_reserve_memory_special_huge_tlbfs_mixed(" SIZE_FORMAT ", " SIZE_FORMAT ")",
  6098         size, alignment);
  6100     assert(size >= os::large_page_size(), "Incorrect input to test");
  6102     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
  6104     if (addr != NULL) {
  6105       small_page_write(addr, size);
  6107       os::Linux::release_memory_special_huge_tlbfs(addr, size);
  6111   static void test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(size_t size) {
  6112     size_t lp = os::large_page_size();
  6113     size_t ag = os::vm_allocation_granularity();
  6115     for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
  6116       test_reserve_memory_special_huge_tlbfs_mixed(size, alignment);
  6120   static void test_reserve_memory_special_huge_tlbfs_mixed() {
  6121     size_t lp = os::large_page_size();
  6122     size_t ag = os::vm_allocation_granularity();
  6124     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp);
  6125     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + ag);
  6126     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + lp / 2);
  6127     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2);
  6128     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + ag);
  6129     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 - ag);
  6130     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + lp / 2);
  6131     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10);
  6132     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10 + lp / 2);
  6135   static void test_reserve_memory_special_huge_tlbfs() {
  6136     if (!UseHugeTLBFS) {
  6137       return;
  6140     test_reserve_memory_special_huge_tlbfs_only();
  6141     test_reserve_memory_special_huge_tlbfs_mixed();
  6144   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
  6145     if (!UseSHM) {
  6146       return;
  6149     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
  6151     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
  6153     if (addr != NULL) {
  6154       assert(is_ptr_aligned(addr, alignment), "Check");
  6155       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
  6157       small_page_write(addr, size);
  6159       os::Linux::release_memory_special_shm(addr, size);
  6163   static void test_reserve_memory_special_shm() {
  6164     size_t lp = os::large_page_size();
  6165     size_t ag = os::vm_allocation_granularity();
  6167     for (size_t size = ag; size < lp * 3; size += ag) {
  6168       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
  6169         test_reserve_memory_special_shm(size, alignment);
  6174   static void test() {
  6175     test_reserve_memory_special_huge_tlbfs();
  6176     test_reserve_memory_special_shm();
  6178 };
  6180 void TestReserveMemorySpecial_test() {
  6181   TestReserveMemorySpecial::test();
  6184 #endif

mercurial