src/share/vm/opto/memnode.cpp

Thu, 29 May 2008 16:22:09 -0700

author
rasbold
date
Thu, 29 May 2008 16:22:09 -0700
changeset 604
9148c65abefc
parent 603
7793bd37a336
child 628
44a553b2809d
permissions
-rw-r--r--

6695049: (coll) Create an x86 intrinsic for Arrays.equals
Summary: Intrinsify java/util/Arrays.equals(char[], char[])
Reviewed-by: kvn, never

     1 /*
     2  * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Portions of code courtesy of Clifford Click
    27 // Optimization - Graph Style
    29 #include "incls/_precompiled.incl"
    30 #include "incls/_memnode.cpp.incl"
    32 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
    34 //=============================================================================
    35 uint MemNode::size_of() const { return sizeof(*this); }
    37 const TypePtr *MemNode::adr_type() const {
    38   Node* adr = in(Address);
    39   const TypePtr* cross_check = NULL;
    40   DEBUG_ONLY(cross_check = _adr_type);
    41   return calculate_adr_type(adr->bottom_type(), cross_check);
    42 }
    44 #ifndef PRODUCT
    45 void MemNode::dump_spec(outputStream *st) const {
    46   if (in(Address) == NULL)  return; // node is dead
    47 #ifndef ASSERT
    48   // fake the missing field
    49   const TypePtr* _adr_type = NULL;
    50   if (in(Address) != NULL)
    51     _adr_type = in(Address)->bottom_type()->isa_ptr();
    52 #endif
    53   dump_adr_type(this, _adr_type, st);
    55   Compile* C = Compile::current();
    56   if( C->alias_type(_adr_type)->is_volatile() )
    57     st->print(" Volatile!");
    58 }
    60 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
    61   st->print(" @");
    62   if (adr_type == NULL) {
    63     st->print("NULL");
    64   } else {
    65     adr_type->dump_on(st);
    66     Compile* C = Compile::current();
    67     Compile::AliasType* atp = NULL;
    68     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
    69     if (atp == NULL)
    70       st->print(", idx=?\?;");
    71     else if (atp->index() == Compile::AliasIdxBot)
    72       st->print(", idx=Bot;");
    73     else if (atp->index() == Compile::AliasIdxTop)
    74       st->print(", idx=Top;");
    75     else if (atp->index() == Compile::AliasIdxRaw)
    76       st->print(", idx=Raw;");
    77     else {
    78       ciField* field = atp->field();
    79       if (field) {
    80         st->print(", name=");
    81         field->print_name_on(st);
    82       }
    83       st->print(", idx=%d;", atp->index());
    84     }
    85   }
    86 }
    88 extern void print_alias_types();
    90 #endif
    92 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
    93   const TypeOopPtr *tinst = t_adr->isa_oopptr();
    94   if (tinst == NULL || !tinst->is_instance_field())
    95     return mchain;  // don't try to optimize non-instance types
    96   uint instance_id = tinst->instance_id();
    97   Node *prev = NULL;
    98   Node *result = mchain;
    99   while (prev != result) {
   100     prev = result;
   101     // skip over a call which does not affect this memory slice
   102     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
   103       Node *proj_in = result->in(0);
   104       if (proj_in->is_Call()) {
   105         CallNode *call = proj_in->as_Call();
   106         if (!call->may_modify(t_adr, phase)) {
   107           result = call->in(TypeFunc::Memory);
   108         }
   109       } else if (proj_in->is_Initialize()) {
   110         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
   111         // Stop if this is the initialization for the object instance which
   112         // which contains this memory slice, otherwise skip over it.
   113         if (alloc != NULL && alloc->_idx != instance_id) {
   114           result = proj_in->in(TypeFunc::Memory);
   115         }
   116       } else if (proj_in->is_MemBar()) {
   117         result = proj_in->in(TypeFunc::Memory);
   118       }
   119     } else if (result->is_MergeMem()) {
   120       result = step_through_mergemem(phase, result->as_MergeMem(), t_adr, NULL, tty);
   121     }
   122   }
   123   return result;
   124 }
   126 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
   127   const TypeOopPtr *t_oop = t_adr->isa_oopptr();
   128   bool is_instance = (t_oop != NULL) && t_oop->is_instance_field();
   129   PhaseIterGVN *igvn = phase->is_IterGVN();
   130   Node *result = mchain;
   131   result = optimize_simple_memory_chain(result, t_adr, phase);
   132   if (is_instance && igvn != NULL  && result->is_Phi()) {
   133     PhiNode *mphi = result->as_Phi();
   134     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
   135     const TypePtr *t = mphi->adr_type();
   136     if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
   137         t->isa_oopptr() && !t->is_oopptr()->is_instance() &&
   138         t->is_oopptr()->cast_to_instance(t_oop->instance_id()) == t_oop) {
   139       // clone the Phi with our address type
   140       result = mphi->split_out_instance(t_adr, igvn);
   141     } else {
   142       assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
   143     }
   144   }
   145   return result;
   146 }
   148 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
   149   uint alias_idx = phase->C->get_alias_index(tp);
   150   Node *mem = mmem;
   151 #ifdef ASSERT
   152   {
   153     // Check that current type is consistent with the alias index used during graph construction
   154     assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
   155     bool consistent =  adr_check == NULL || adr_check->empty() ||
   156                        phase->C->must_alias(adr_check, alias_idx );
   157     // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
   158     if( !consistent && adr_check != NULL && !adr_check->empty() &&
   159                tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
   160         adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
   161         ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
   162           adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
   163           adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
   164       // don't assert if it is dead code.
   165       consistent = true;
   166     }
   167     if( !consistent ) {
   168       st->print("alias_idx==%d, adr_check==", alias_idx);
   169       if( adr_check == NULL ) {
   170         st->print("NULL");
   171       } else {
   172         adr_check->dump();
   173       }
   174       st->cr();
   175       print_alias_types();
   176       assert(consistent, "adr_check must match alias idx");
   177     }
   178   }
   179 #endif
   180   // TypeInstPtr::NOTNULL+any is an OOP with unknown offset - generally
   181   // means an array I have not precisely typed yet.  Do not do any
   182   // alias stuff with it any time soon.
   183   const TypeOopPtr *tinst = tp->isa_oopptr();
   184   if( tp->base() != Type::AnyPtr &&
   185       !(tinst &&
   186         tinst->klass()->is_java_lang_Object() &&
   187         tinst->offset() == Type::OffsetBot) ) {
   188     // compress paths and change unreachable cycles to TOP
   189     // If not, we can update the input infinitely along a MergeMem cycle
   190     // Equivalent code in PhiNode::Ideal
   191     Node* m  = phase->transform(mmem);
   192     // If tranformed to a MergeMem, get the desired slice
   193     // Otherwise the returned node represents memory for every slice
   194     mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
   195     // Update input if it is progress over what we have now
   196   }
   197   return mem;
   198 }
   200 //--------------------------Ideal_common---------------------------------------
   201 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
   202 // Unhook non-raw memories from complete (macro-expanded) initializations.
   203 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
   204   // If our control input is a dead region, kill all below the region
   205   Node *ctl = in(MemNode::Control);
   206   if (ctl && remove_dead_region(phase, can_reshape))
   207     return this;
   209   // Ignore if memory is dead, or self-loop
   210   Node *mem = in(MemNode::Memory);
   211   if( phase->type( mem ) == Type::TOP ) return NodeSentinel; // caller will return NULL
   212   assert( mem != this, "dead loop in MemNode::Ideal" );
   214   Node *address = in(MemNode::Address);
   215   const Type *t_adr = phase->type( address );
   216   if( t_adr == Type::TOP )              return NodeSentinel; // caller will return NULL
   218   // Avoid independent memory operations
   219   Node* old_mem = mem;
   221   // The code which unhooks non-raw memories from complete (macro-expanded)
   222   // initializations was removed. After macro-expansion all stores catched
   223   // by Initialize node became raw stores and there is no information
   224   // which memory slices they modify. So it is unsafe to move any memory
   225   // operation above these stores. Also in most cases hooked non-raw memories
   226   // were already unhooked by using information from detect_ptr_independence()
   227   // and find_previous_store().
   229   if (mem->is_MergeMem()) {
   230     MergeMemNode* mmem = mem->as_MergeMem();
   231     const TypePtr *tp = t_adr->is_ptr();
   233     mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
   234   }
   236   if (mem != old_mem) {
   237     set_req(MemNode::Memory, mem);
   238     return this;
   239   }
   241   // let the subclass continue analyzing...
   242   return NULL;
   243 }
   245 // Helper function for proving some simple control dominations.
   246 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
   247 // Already assumes that 'dom' is available at 'sub', and that 'sub'
   248 // is not a constant (dominated by the method's StartNode).
   249 // Used by MemNode::find_previous_store to prove that the
   250 // control input of a memory operation predates (dominates)
   251 // an allocation it wants to look past.
   252 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
   253   if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
   254     return false; // Conservative answer for dead code
   256   // Check 'dom'.
   257   dom = dom->find_exact_control(dom);
   258   if (dom == NULL || dom->is_top())
   259     return false; // Conservative answer for dead code
   261   if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
   262     return true;
   264   // 'dom' dominates 'sub' if its control edge and control edges
   265   // of all its inputs dominate or equal to sub's control edge.
   267   // Currently 'sub' is either Allocate, Initialize or Start nodes.
   268   // Or Region for the check in LoadNode::Ideal();
   269   // 'sub' should have sub->in(0) != NULL.
   270   assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
   271          sub->is_Region(), "expecting only these nodes");
   273   // Get control edge of 'sub'.
   274   sub = sub->find_exact_control(sub->in(0));
   275   if (sub == NULL || sub->is_top())
   276     return false; // Conservative answer for dead code
   278   assert(sub->is_CFG(), "expecting control");
   280   if (sub == dom)
   281     return true;
   283   if (sub->is_Start() || sub->is_Root())
   284     return false;
   286   {
   287     // Check all control edges of 'dom'.
   289     ResourceMark rm;
   290     Arena* arena = Thread::current()->resource_area();
   291     Node_List nlist(arena);
   292     Unique_Node_List dom_list(arena);
   294     dom_list.push(dom);
   295     bool only_dominating_controls = false;
   297     for (uint next = 0; next < dom_list.size(); next++) {
   298       Node* n = dom_list.at(next);
   299       if (!n->is_CFG() && n->pinned()) {
   300         // Check only own control edge for pinned non-control nodes.
   301         n = n->find_exact_control(n->in(0));
   302         if (n == NULL || n->is_top())
   303           return false; // Conservative answer for dead code
   304         assert(n->is_CFG(), "expecting control");
   305       }
   306       if (n->is_Con() || n->is_Start() || n->is_Root()) {
   307         only_dominating_controls = true;
   308       } else if (n->is_CFG()) {
   309         if (n->dominates(sub, nlist))
   310           only_dominating_controls = true;
   311         else
   312           return false;
   313       } else {
   314         // First, own control edge.
   315         Node* m = n->find_exact_control(n->in(0));
   316         if (m != NULL) {
   317           if (m->is_top())
   318             return false; // Conservative answer for dead code
   319           dom_list.push(m);
   320         }
   321         // Now, the rest of edges.
   322         uint cnt = n->req();
   323         for (uint i = 1; i < cnt; i++) {
   324           m = n->find_exact_control(n->in(i));
   325           if (m == NULL || m->is_top())
   326             continue;
   327           dom_list.push(m);
   328         }
   329       }
   330     }
   331     return only_dominating_controls;
   332   }
   333 }
   335 //---------------------detect_ptr_independence---------------------------------
   336 // Used by MemNode::find_previous_store to prove that two base
   337 // pointers are never equal.
   338 // The pointers are accompanied by their associated allocations,
   339 // if any, which have been previously discovered by the caller.
   340 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
   341                                       Node* p2, AllocateNode* a2,
   342                                       PhaseTransform* phase) {
   343   // Attempt to prove that these two pointers cannot be aliased.
   344   // They may both manifestly be allocations, and they should differ.
   345   // Or, if they are not both allocations, they can be distinct constants.
   346   // Otherwise, one is an allocation and the other a pre-existing value.
   347   if (a1 == NULL && a2 == NULL) {           // neither an allocation
   348     return (p1 != p2) && p1->is_Con() && p2->is_Con();
   349   } else if (a1 != NULL && a2 != NULL) {    // both allocations
   350     return (a1 != a2);
   351   } else if (a1 != NULL) {                  // one allocation a1
   352     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
   353     return all_controls_dominate(p2, a1);
   354   } else { //(a2 != NULL)                   // one allocation a2
   355     return all_controls_dominate(p1, a2);
   356   }
   357   return false;
   358 }
   361 // The logic for reordering loads and stores uses four steps:
   362 // (a) Walk carefully past stores and initializations which we
   363 //     can prove are independent of this load.
   364 // (b) Observe that the next memory state makes an exact match
   365 //     with self (load or store), and locate the relevant store.
   366 // (c) Ensure that, if we were to wire self directly to the store,
   367 //     the optimizer would fold it up somehow.
   368 // (d) Do the rewiring, and return, depending on some other part of
   369 //     the optimizer to fold up the load.
   370 // This routine handles steps (a) and (b).  Steps (c) and (d) are
   371 // specific to loads and stores, so they are handled by the callers.
   372 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
   373 //
   374 Node* MemNode::find_previous_store(PhaseTransform* phase) {
   375   Node*         ctrl   = in(MemNode::Control);
   376   Node*         adr    = in(MemNode::Address);
   377   intptr_t      offset = 0;
   378   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
   379   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
   381   if (offset == Type::OffsetBot)
   382     return NULL;            // cannot unalias unless there are precise offsets
   384   const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
   386   intptr_t size_in_bytes = memory_size();
   388   Node* mem = in(MemNode::Memory);   // start searching here...
   390   int cnt = 50;             // Cycle limiter
   391   for (;;) {                // While we can dance past unrelated stores...
   392     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
   394     if (mem->is_Store()) {
   395       Node* st_adr = mem->in(MemNode::Address);
   396       intptr_t st_offset = 0;
   397       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
   398       if (st_base == NULL)
   399         break;              // inscrutable pointer
   400       if (st_offset != offset && st_offset != Type::OffsetBot) {
   401         const int MAX_STORE = BytesPerLong;
   402         if (st_offset >= offset + size_in_bytes ||
   403             st_offset <= offset - MAX_STORE ||
   404             st_offset <= offset - mem->as_Store()->memory_size()) {
   405           // Success:  The offsets are provably independent.
   406           // (You may ask, why not just test st_offset != offset and be done?
   407           // The answer is that stores of different sizes can co-exist
   408           // in the same sequence of RawMem effects.  We sometimes initialize
   409           // a whole 'tile' of array elements with a single jint or jlong.)
   410           mem = mem->in(MemNode::Memory);
   411           continue;           // (a) advance through independent store memory
   412         }
   413       }
   414       if (st_base != base &&
   415           detect_ptr_independence(base, alloc,
   416                                   st_base,
   417                                   AllocateNode::Ideal_allocation(st_base, phase),
   418                                   phase)) {
   419         // Success:  The bases are provably independent.
   420         mem = mem->in(MemNode::Memory);
   421         continue;           // (a) advance through independent store memory
   422       }
   424       // (b) At this point, if the bases or offsets do not agree, we lose,
   425       // since we have not managed to prove 'this' and 'mem' independent.
   426       if (st_base == base && st_offset == offset) {
   427         return mem;         // let caller handle steps (c), (d)
   428       }
   430     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
   431       InitializeNode* st_init = mem->in(0)->as_Initialize();
   432       AllocateNode*  st_alloc = st_init->allocation();
   433       if (st_alloc == NULL)
   434         break;              // something degenerated
   435       bool known_identical = false;
   436       bool known_independent = false;
   437       if (alloc == st_alloc)
   438         known_identical = true;
   439       else if (alloc != NULL)
   440         known_independent = true;
   441       else if (all_controls_dominate(this, st_alloc))
   442         known_independent = true;
   444       if (known_independent) {
   445         // The bases are provably independent: Either they are
   446         // manifestly distinct allocations, or else the control
   447         // of this load dominates the store's allocation.
   448         int alias_idx = phase->C->get_alias_index(adr_type());
   449         if (alias_idx == Compile::AliasIdxRaw) {
   450           mem = st_alloc->in(TypeFunc::Memory);
   451         } else {
   452           mem = st_init->memory(alias_idx);
   453         }
   454         continue;           // (a) advance through independent store memory
   455       }
   457       // (b) at this point, if we are not looking at a store initializing
   458       // the same allocation we are loading from, we lose.
   459       if (known_identical) {
   460         // From caller, can_see_stored_value will consult find_captured_store.
   461         return mem;         // let caller handle steps (c), (d)
   462       }
   464     } else if (addr_t != NULL && addr_t->is_instance_field()) {
   465       // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
   466       if (mem->is_Proj() && mem->in(0)->is_Call()) {
   467         CallNode *call = mem->in(0)->as_Call();
   468         if (!call->may_modify(addr_t, phase)) {
   469           mem = call->in(TypeFunc::Memory);
   470           continue;         // (a) advance through independent call memory
   471         }
   472       } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
   473         mem = mem->in(0)->in(TypeFunc::Memory);
   474         continue;           // (a) advance through independent MemBar memory
   475       } else if (mem->is_MergeMem()) {
   476         int alias_idx = phase->C->get_alias_index(adr_type());
   477         mem = mem->as_MergeMem()->memory_at(alias_idx);
   478         continue;           // (a) advance through independent MergeMem memory
   479       }
   480     }
   482     // Unless there is an explicit 'continue', we must bail out here,
   483     // because 'mem' is an inscrutable memory state (e.g., a call).
   484     break;
   485   }
   487   return NULL;              // bail out
   488 }
   490 //----------------------calculate_adr_type-------------------------------------
   491 // Helper function.  Notices when the given type of address hits top or bottom.
   492 // Also, asserts a cross-check of the type against the expected address type.
   493 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
   494   if (t == Type::TOP)  return NULL; // does not touch memory any more?
   495   #ifdef PRODUCT
   496   cross_check = NULL;
   497   #else
   498   if (!VerifyAliases || is_error_reported() || Node::in_dump())  cross_check = NULL;
   499   #endif
   500   const TypePtr* tp = t->isa_ptr();
   501   if (tp == NULL) {
   502     assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
   503     return TypePtr::BOTTOM;           // touches lots of memory
   504   } else {
   505     #ifdef ASSERT
   506     // %%%% [phh] We don't check the alias index if cross_check is
   507     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
   508     if (cross_check != NULL &&
   509         cross_check != TypePtr::BOTTOM &&
   510         cross_check != TypeRawPtr::BOTTOM) {
   511       // Recheck the alias index, to see if it has changed (due to a bug).
   512       Compile* C = Compile::current();
   513       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
   514              "must stay in the original alias category");
   515       // The type of the address must be contained in the adr_type,
   516       // disregarding "null"-ness.
   517       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
   518       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
   519       assert(cross_check->meet(tp_notnull) == cross_check,
   520              "real address must not escape from expected memory type");
   521     }
   522     #endif
   523     return tp;
   524   }
   525 }
   527 //------------------------adr_phi_is_loop_invariant----------------------------
   528 // A helper function for Ideal_DU_postCCP to check if a Phi in a counted
   529 // loop is loop invariant. Make a quick traversal of Phi and associated
   530 // CastPP nodes, looking to see if they are a closed group within the loop.
   531 bool MemNode::adr_phi_is_loop_invariant(Node* adr_phi, Node* cast) {
   532   // The idea is that the phi-nest must boil down to only CastPP nodes
   533   // with the same data. This implies that any path into the loop already
   534   // includes such a CastPP, and so the original cast, whatever its input,
   535   // must be covered by an equivalent cast, with an earlier control input.
   536   ResourceMark rm;
   538   // The loop entry input of the phi should be the unique dominating
   539   // node for every Phi/CastPP in the loop.
   540   Unique_Node_List closure;
   541   closure.push(adr_phi->in(LoopNode::EntryControl));
   543   // Add the phi node and the cast to the worklist.
   544   Unique_Node_List worklist;
   545   worklist.push(adr_phi);
   546   if( cast != NULL ){
   547     if( !cast->is_ConstraintCast() ) return false;
   548     worklist.push(cast);
   549   }
   551   // Begin recursive walk of phi nodes.
   552   while( worklist.size() ){
   553     // Take a node off the worklist
   554     Node *n = worklist.pop();
   555     if( !closure.member(n) ){
   556       // Add it to the closure.
   557       closure.push(n);
   558       // Make a sanity check to ensure we don't waste too much time here.
   559       if( closure.size() > 20) return false;
   560       // This node is OK if:
   561       //  - it is a cast of an identical value
   562       //  - or it is a phi node (then we add its inputs to the worklist)
   563       // Otherwise, the node is not OK, and we presume the cast is not invariant
   564       if( n->is_ConstraintCast() ){
   565         worklist.push(n->in(1));
   566       } else if( n->is_Phi() ) {
   567         for( uint i = 1; i < n->req(); i++ ) {
   568           worklist.push(n->in(i));
   569         }
   570       } else {
   571         return false;
   572       }
   573     }
   574   }
   576   // Quit when the worklist is empty, and we've found no offending nodes.
   577   return true;
   578 }
   580 //------------------------------Ideal_DU_postCCP-------------------------------
   581 // Find any cast-away of null-ness and keep its control.  Null cast-aways are
   582 // going away in this pass and we need to make this memory op depend on the
   583 // gating null check.
   584 Node *MemNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
   585   return Ideal_common_DU_postCCP(ccp, this, in(MemNode::Address));
   586 }
   588 // I tried to leave the CastPP's in.  This makes the graph more accurate in
   589 // some sense; we get to keep around the knowledge that an oop is not-null
   590 // after some test.  Alas, the CastPP's interfere with GVN (some values are
   591 // the regular oop, some are the CastPP of the oop, all merge at Phi's which
   592 // cannot collapse, etc).  This cost us 10% on SpecJVM, even when I removed
   593 // some of the more trivial cases in the optimizer.  Removing more useless
   594 // Phi's started allowing Loads to illegally float above null checks.  I gave
   595 // up on this approach.  CNC 10/20/2000
   596 // This static method may be called not from MemNode (EncodePNode calls it).
   597 // Only the control edge of the node 'n' might be updated.
   598 Node *MemNode::Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr ) {
   599   Node *skipped_cast = NULL;
   600   // Need a null check?  Regular static accesses do not because they are
   601   // from constant addresses.  Array ops are gated by the range check (which
   602   // always includes a NULL check).  Just check field ops.
   603   if( n->in(MemNode::Control) == NULL ) {
   604     // Scan upwards for the highest location we can place this memory op.
   605     while( true ) {
   606       switch( adr->Opcode() ) {
   608       case Op_AddP:             // No change to NULL-ness, so peek thru AddP's
   609         adr = adr->in(AddPNode::Base);
   610         continue;
   612       case Op_DecodeN:         // No change to NULL-ness, so peek thru
   613         adr = adr->in(1);
   614         continue;
   616       case Op_CastPP:
   617         // If the CastPP is useless, just peek on through it.
   618         if( ccp->type(adr) == ccp->type(adr->in(1)) ) {
   619           // Remember the cast that we've peeked though. If we peek
   620           // through more than one, then we end up remembering the highest
   621           // one, that is, if in a loop, the one closest to the top.
   622           skipped_cast = adr;
   623           adr = adr->in(1);
   624           continue;
   625         }
   626         // CastPP is going away in this pass!  We need this memory op to be
   627         // control-dependent on the test that is guarding the CastPP.
   628         ccp->hash_delete(n);
   629         n->set_req(MemNode::Control, adr->in(0));
   630         ccp->hash_insert(n);
   631         return n;
   633       case Op_Phi:
   634         // Attempt to float above a Phi to some dominating point.
   635         if (adr->in(0) != NULL && adr->in(0)->is_CountedLoop()) {
   636           // If we've already peeked through a Cast (which could have set the
   637           // control), we can't float above a Phi, because the skipped Cast
   638           // may not be loop invariant.
   639           if (adr_phi_is_loop_invariant(adr, skipped_cast)) {
   640             adr = adr->in(1);
   641             continue;
   642           }
   643         }
   645         // Intentional fallthrough!
   647         // No obvious dominating point.  The mem op is pinned below the Phi
   648         // by the Phi itself.  If the Phi goes away (no true value is merged)
   649         // then the mem op can float, but not indefinitely.  It must be pinned
   650         // behind the controls leading to the Phi.
   651       case Op_CheckCastPP:
   652         // These usually stick around to change address type, however a
   653         // useless one can be elided and we still need to pick up a control edge
   654         if (adr->in(0) == NULL) {
   655           // This CheckCastPP node has NO control and is likely useless. But we
   656           // need check further up the ancestor chain for a control input to keep
   657           // the node in place. 4959717.
   658           skipped_cast = adr;
   659           adr = adr->in(1);
   660           continue;
   661         }
   662         ccp->hash_delete(n);
   663         n->set_req(MemNode::Control, adr->in(0));
   664         ccp->hash_insert(n);
   665         return n;
   667         // List of "safe" opcodes; those that implicitly block the memory
   668         // op below any null check.
   669       case Op_CastX2P:          // no null checks on native pointers
   670       case Op_Parm:             // 'this' pointer is not null
   671       case Op_LoadP:            // Loading from within a klass
   672       case Op_LoadN:            // Loading from within a klass
   673       case Op_LoadKlass:        // Loading from within a klass
   674       case Op_LoadNKlass:       // Loading from within a klass
   675       case Op_ConP:             // Loading from a klass
   676       case Op_ConN:             // Loading from a klass
   677       case Op_CreateEx:         // Sucking up the guts of an exception oop
   678       case Op_Con:              // Reading from TLS
   679       case Op_CMoveP:           // CMoveP is pinned
   680       case Op_CMoveN:           // CMoveN is pinned
   681         break;                  // No progress
   683       case Op_Proj:             // Direct call to an allocation routine
   684       case Op_SCMemProj:        // Memory state from store conditional ops
   685 #ifdef ASSERT
   686         {
   687           assert(adr->as_Proj()->_con == TypeFunc::Parms, "must be return value");
   688           const Node* call = adr->in(0);
   689           if (call->is_CallJava()) {
   690             const CallJavaNode* call_java = call->as_CallJava();
   691             const TypeTuple *r = call_java->tf()->range();
   692             assert(r->cnt() > TypeFunc::Parms, "must return value");
   693             const Type* ret_type = r->field_at(TypeFunc::Parms);
   694             assert(ret_type && ret_type->isa_ptr(), "must return pointer");
   695             // We further presume that this is one of
   696             // new_instance_Java, new_array_Java, or
   697             // the like, but do not assert for this.
   698           } else if (call->is_Allocate()) {
   699             // similar case to new_instance_Java, etc.
   700           } else if (!call->is_CallLeaf()) {
   701             // Projections from fetch_oop (OSR) are allowed as well.
   702             ShouldNotReachHere();
   703           }
   704         }
   705 #endif
   706         break;
   707       default:
   708         ShouldNotReachHere();
   709       }
   710       break;
   711     }
   712   }
   714   return  NULL;               // No progress
   715 }
   718 //=============================================================================
   719 uint LoadNode::size_of() const { return sizeof(*this); }
   720 uint LoadNode::cmp( const Node &n ) const
   721 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
   722 const Type *LoadNode::bottom_type() const { return _type; }
   723 uint LoadNode::ideal_reg() const {
   724   return Matcher::base2reg[_type->base()];
   725 }
   727 #ifndef PRODUCT
   728 void LoadNode::dump_spec(outputStream *st) const {
   729   MemNode::dump_spec(st);
   730   if( !Verbose && !WizardMode ) {
   731     // standard dump does this in Verbose and WizardMode
   732     st->print(" #"); _type->dump_on(st);
   733   }
   734 }
   735 #endif
   738 //----------------------------LoadNode::make-----------------------------------
   739 // Polymorphic factory method:
   740 Node *LoadNode::make( PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt ) {
   741   Compile* C = gvn.C;
   743   // sanity check the alias category against the created node type
   744   assert(!(adr_type->isa_oopptr() &&
   745            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
   746          "use LoadKlassNode instead");
   747   assert(!(adr_type->isa_aryptr() &&
   748            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
   749          "use LoadRangeNode instead");
   750   switch (bt) {
   751   case T_BOOLEAN:
   752   case T_BYTE:    return new (C, 3) LoadBNode(ctl, mem, adr, adr_type, rt->is_int()    );
   753   case T_INT:     return new (C, 3) LoadINode(ctl, mem, adr, adr_type, rt->is_int()    );
   754   case T_CHAR:    return new (C, 3) LoadCNode(ctl, mem, adr, adr_type, rt->is_int()    );
   755   case T_SHORT:   return new (C, 3) LoadSNode(ctl, mem, adr, adr_type, rt->is_int()    );
   756   case T_LONG:    return new (C, 3) LoadLNode(ctl, mem, adr, adr_type, rt->is_long()   );
   757   case T_FLOAT:   return new (C, 3) LoadFNode(ctl, mem, adr, adr_type, rt              );
   758   case T_DOUBLE:  return new (C, 3) LoadDNode(ctl, mem, adr, adr_type, rt              );
   759   case T_ADDRESS: return new (C, 3) LoadPNode(ctl, mem, adr, adr_type, rt->is_ptr()    );
   760   case T_OBJECT:
   761 #ifdef _LP64
   762     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
   763       const TypeNarrowOop* narrowtype;
   764       if (rt->isa_narrowoop()) {
   765         narrowtype = rt->is_narrowoop();
   766       } else {
   767         narrowtype = rt->is_oopptr()->make_narrowoop();
   768       }
   769       Node* load  = gvn.transform(new (C, 3) LoadNNode(ctl, mem, adr, adr_type, narrowtype));
   771       return DecodeNNode::decode(&gvn, load);
   772     } else
   773 #endif
   774     {
   775       assert(!adr->bottom_type()->is_ptr_to_narrowoop(), "should have got back a narrow oop");
   776       return new (C, 3) LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr());
   777     }
   778   }
   779   ShouldNotReachHere();
   780   return (LoadNode*)NULL;
   781 }
   783 LoadLNode* LoadLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt) {
   784   bool require_atomic = true;
   785   return new (C, 3) LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), require_atomic);
   786 }
   791 //------------------------------hash-------------------------------------------
   792 uint LoadNode::hash() const {
   793   // unroll addition of interesting fields
   794   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
   795 }
   797 //---------------------------can_see_stored_value------------------------------
   798 // This routine exists to make sure this set of tests is done the same
   799 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
   800 // will change the graph shape in a way which makes memory alive twice at the
   801 // same time (uses the Oracle model of aliasing), then some
   802 // LoadXNode::Identity will fold things back to the equivalence-class model
   803 // of aliasing.
   804 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
   805   Node* ld_adr = in(MemNode::Address);
   807   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
   808   Compile::AliasType* atp = tp != NULL ? phase->C->alias_type(tp) : NULL;
   809   if (EliminateAutoBox && atp != NULL && atp->index() >= Compile::AliasIdxRaw &&
   810       atp->field() != NULL && !atp->field()->is_volatile()) {
   811     uint alias_idx = atp->index();
   812     bool final = atp->field()->is_final();
   813     Node* result = NULL;
   814     Node* current = st;
   815     // Skip through chains of MemBarNodes checking the MergeMems for
   816     // new states for the slice of this load.  Stop once any other
   817     // kind of node is encountered.  Loads from final memory can skip
   818     // through any kind of MemBar but normal loads shouldn't skip
   819     // through MemBarAcquire since the could allow them to move out of
   820     // a synchronized region.
   821     while (current->is_Proj()) {
   822       int opc = current->in(0)->Opcode();
   823       if ((final && opc == Op_MemBarAcquire) ||
   824           opc == Op_MemBarRelease || opc == Op_MemBarCPUOrder) {
   825         Node* mem = current->in(0)->in(TypeFunc::Memory);
   826         if (mem->is_MergeMem()) {
   827           MergeMemNode* merge = mem->as_MergeMem();
   828           Node* new_st = merge->memory_at(alias_idx);
   829           if (new_st == merge->base_memory()) {
   830             // Keep searching
   831             current = merge->base_memory();
   832             continue;
   833           }
   834           // Save the new memory state for the slice and fall through
   835           // to exit.
   836           result = new_st;
   837         }
   838       }
   839       break;
   840     }
   841     if (result != NULL) {
   842       st = result;
   843     }
   844   }
   847   // Loop around twice in the case Load -> Initialize -> Store.
   848   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
   849   for (int trip = 0; trip <= 1; trip++) {
   851     if (st->is_Store()) {
   852       Node* st_adr = st->in(MemNode::Address);
   853       if (!phase->eqv(st_adr, ld_adr)) {
   854         // Try harder before giving up...  Match raw and non-raw pointers.
   855         intptr_t st_off = 0;
   856         AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
   857         if (alloc == NULL)       return NULL;
   858         intptr_t ld_off = 0;
   859         AllocateNode* allo2 = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
   860         if (alloc != allo2)      return NULL;
   861         if (ld_off != st_off)    return NULL;
   862         // At this point we have proven something like this setup:
   863         //  A = Allocate(...)
   864         //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
   865         //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
   866         // (Actually, we haven't yet proven the Q's are the same.)
   867         // In other words, we are loading from a casted version of
   868         // the same pointer-and-offset that we stored to.
   869         // Thus, we are able to replace L by V.
   870       }
   871       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
   872       if (store_Opcode() != st->Opcode())
   873         return NULL;
   874       return st->in(MemNode::ValueIn);
   875     }
   877     intptr_t offset = 0;  // scratch
   879     // A load from a freshly-created object always returns zero.
   880     // (This can happen after LoadNode::Ideal resets the load's memory input
   881     // to find_captured_store, which returned InitializeNode::zero_memory.)
   882     if (st->is_Proj() && st->in(0)->is_Allocate() &&
   883         st->in(0) == AllocateNode::Ideal_allocation(ld_adr, phase, offset) &&
   884         offset >= st->in(0)->as_Allocate()->minimum_header_size()) {
   885       // return a zero value for the load's basic type
   886       // (This is one of the few places where a generic PhaseTransform
   887       // can create new nodes.  Think of it as lazily manifesting
   888       // virtually pre-existing constants.)
   889       return phase->zerocon(memory_type());
   890     }
   892     // A load from an initialization barrier can match a captured store.
   893     if (st->is_Proj() && st->in(0)->is_Initialize()) {
   894       InitializeNode* init = st->in(0)->as_Initialize();
   895       AllocateNode* alloc = init->allocation();
   896       if (alloc != NULL &&
   897           alloc == AllocateNode::Ideal_allocation(ld_adr, phase, offset)) {
   898         // examine a captured store value
   899         st = init->find_captured_store(offset, memory_size(), phase);
   900         if (st != NULL)
   901           continue;             // take one more trip around
   902       }
   903     }
   905     break;
   906   }
   908   return NULL;
   909 }
   911 //----------------------is_instance_field_load_with_local_phi------------------
   912 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
   913   if( in(MemNode::Memory)->is_Phi() && in(MemNode::Memory)->in(0) == ctrl &&
   914       in(MemNode::Address)->is_AddP() ) {
   915     const TypeOopPtr* t_oop = in(MemNode::Address)->bottom_type()->isa_oopptr();
   916     // Only instances.
   917     if( t_oop != NULL && t_oop->is_instance_field() &&
   918         t_oop->offset() != Type::OffsetBot &&
   919         t_oop->offset() != Type::OffsetTop) {
   920       return true;
   921     }
   922   }
   923   return false;
   924 }
   926 //------------------------------Identity---------------------------------------
   927 // Loads are identity if previous store is to same address
   928 Node *LoadNode::Identity( PhaseTransform *phase ) {
   929   // If the previous store-maker is the right kind of Store, and the store is
   930   // to the same address, then we are equal to the value stored.
   931   Node* mem = in(MemNode::Memory);
   932   Node* value = can_see_stored_value(mem, phase);
   933   if( value ) {
   934     // byte, short & char stores truncate naturally.
   935     // A load has to load the truncated value which requires
   936     // some sort of masking operation and that requires an
   937     // Ideal call instead of an Identity call.
   938     if (memory_size() < BytesPerInt) {
   939       // If the input to the store does not fit with the load's result type,
   940       // it must be truncated via an Ideal call.
   941       if (!phase->type(value)->higher_equal(phase->type(this)))
   942         return this;
   943     }
   944     // (This works even when value is a Con, but LoadNode::Value
   945     // usually runs first, producing the singleton type of the Con.)
   946     return value;
   947   }
   949   // Search for an existing data phi which was generated before for the same
   950   // instance's field to avoid infinite genertion of phis in a loop.
   951   Node *region = mem->in(0);
   952   if (is_instance_field_load_with_local_phi(region)) {
   953     const TypePtr *addr_t = in(MemNode::Address)->bottom_type()->isa_ptr();
   954     int this_index  = phase->C->get_alias_index(addr_t);
   955     int this_offset = addr_t->offset();
   956     int this_id    = addr_t->is_oopptr()->instance_id();
   957     const Type* this_type = bottom_type();
   958     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
   959       Node* phi = region->fast_out(i);
   960       if (phi->is_Phi() && phi != mem &&
   961           phi->as_Phi()->is_same_inst_field(this_type, this_id, this_index, this_offset)) {
   962         return phi;
   963       }
   964     }
   965   }
   967   return this;
   968 }
   971 // Returns true if the AliasType refers to the field that holds the
   972 // cached box array.  Currently only handles the IntegerCache case.
   973 static bool is_autobox_cache(Compile::AliasType* atp) {
   974   if (atp != NULL && atp->field() != NULL) {
   975     ciField* field = atp->field();
   976     ciSymbol* klass = field->holder()->name();
   977     if (field->name() == ciSymbol::cache_field_name() &&
   978         field->holder()->uses_default_loader() &&
   979         klass == ciSymbol::java_lang_Integer_IntegerCache()) {
   980       return true;
   981     }
   982   }
   983   return false;
   984 }
   986 // Fetch the base value in the autobox array
   987 static bool fetch_autobox_base(Compile::AliasType* atp, int& cache_offset) {
   988   if (atp != NULL && atp->field() != NULL) {
   989     ciField* field = atp->field();
   990     ciSymbol* klass = field->holder()->name();
   991     if (field->name() == ciSymbol::cache_field_name() &&
   992         field->holder()->uses_default_loader() &&
   993         klass == ciSymbol::java_lang_Integer_IntegerCache()) {
   994       assert(field->is_constant(), "what?");
   995       ciObjArray* array = field->constant_value().as_object()->as_obj_array();
   996       // Fetch the box object at the base of the array and get its value
   997       ciInstance* box = array->obj_at(0)->as_instance();
   998       ciInstanceKlass* ik = box->klass()->as_instance_klass();
   999       if (ik->nof_nonstatic_fields() == 1) {
  1000         // This should be true nonstatic_field_at requires calling
  1001         // nof_nonstatic_fields so check it anyway
  1002         ciConstant c = box->field_value(ik->nonstatic_field_at(0));
  1003         cache_offset = c.as_int();
  1005       return true;
  1008   return false;
  1011 // Returns true if the AliasType refers to the value field of an
  1012 // autobox object.  Currently only handles Integer.
  1013 static bool is_autobox_object(Compile::AliasType* atp) {
  1014   if (atp != NULL && atp->field() != NULL) {
  1015     ciField* field = atp->field();
  1016     ciSymbol* klass = field->holder()->name();
  1017     if (field->name() == ciSymbol::value_name() &&
  1018         field->holder()->uses_default_loader() &&
  1019         klass == ciSymbol::java_lang_Integer()) {
  1020       return true;
  1023   return false;
  1027 // We're loading from an object which has autobox behaviour.
  1028 // If this object is result of a valueOf call we'll have a phi
  1029 // merging a newly allocated object and a load from the cache.
  1030 // We want to replace this load with the original incoming
  1031 // argument to the valueOf call.
  1032 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
  1033   Node* base = in(Address)->in(AddPNode::Base);
  1034   if (base->is_Phi() && base->req() == 3) {
  1035     AllocateNode* allocation = NULL;
  1036     int allocation_index = -1;
  1037     int load_index = -1;
  1038     for (uint i = 1; i < base->req(); i++) {
  1039       allocation = AllocateNode::Ideal_allocation(base->in(i), phase);
  1040       if (allocation != NULL) {
  1041         allocation_index = i;
  1042         load_index = 3 - allocation_index;
  1043         break;
  1046     LoadNode* load = NULL;
  1047     if (allocation != NULL && base->in(load_index)->is_Load()) {
  1048       load = base->in(load_index)->as_Load();
  1050     if (load != NULL && in(Memory)->is_Phi() && in(Memory)->in(0) == base->in(0)) {
  1051       // Push the loads from the phi that comes from valueOf up
  1052       // through it to allow elimination of the loads and the recovery
  1053       // of the original value.
  1054       Node* mem_phi = in(Memory);
  1055       Node* offset = in(Address)->in(AddPNode::Offset);
  1057       Node* in1 = clone();
  1058       Node* in1_addr = in1->in(Address)->clone();
  1059       in1_addr->set_req(AddPNode::Base, base->in(allocation_index));
  1060       in1_addr->set_req(AddPNode::Address, base->in(allocation_index));
  1061       in1_addr->set_req(AddPNode::Offset, offset);
  1062       in1->set_req(0, base->in(allocation_index));
  1063       in1->set_req(Address, in1_addr);
  1064       in1->set_req(Memory, mem_phi->in(allocation_index));
  1066       Node* in2 = clone();
  1067       Node* in2_addr = in2->in(Address)->clone();
  1068       in2_addr->set_req(AddPNode::Base, base->in(load_index));
  1069       in2_addr->set_req(AddPNode::Address, base->in(load_index));
  1070       in2_addr->set_req(AddPNode::Offset, offset);
  1071       in2->set_req(0, base->in(load_index));
  1072       in2->set_req(Address, in2_addr);
  1073       in2->set_req(Memory, mem_phi->in(load_index));
  1075       in1_addr = phase->transform(in1_addr);
  1076       in1 =      phase->transform(in1);
  1077       in2_addr = phase->transform(in2_addr);
  1078       in2 =      phase->transform(in2);
  1080       PhiNode* result = PhiNode::make_blank(base->in(0), this);
  1081       result->set_req(allocation_index, in1);
  1082       result->set_req(load_index, in2);
  1083       return result;
  1085   } else if (base->is_Load()) {
  1086     // Eliminate the load of Integer.value for integers from the cache
  1087     // array by deriving the value from the index into the array.
  1088     // Capture the offset of the load and then reverse the computation.
  1089     Node* load_base = base->in(Address)->in(AddPNode::Base);
  1090     if (load_base != NULL) {
  1091       Compile::AliasType* atp = phase->C->alias_type(load_base->adr_type());
  1092       intptr_t cache_offset;
  1093       int shift = -1;
  1094       Node* cache = NULL;
  1095       if (is_autobox_cache(atp)) {
  1096         shift  = exact_log2(type2aelembytes(T_OBJECT));
  1097         cache = AddPNode::Ideal_base_and_offset(load_base->in(Address), phase, cache_offset);
  1099       if (cache != NULL && base->in(Address)->is_AddP()) {
  1100         Node* elements[4];
  1101         int count = base->in(Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
  1102         int cache_low;
  1103         if (count > 0 && fetch_autobox_base(atp, cache_low)) {
  1104           int offset = arrayOopDesc::base_offset_in_bytes(memory_type()) - (cache_low << shift);
  1105           // Add up all the offsets making of the address of the load
  1106           Node* result = elements[0];
  1107           for (int i = 1; i < count; i++) {
  1108             result = phase->transform(new (phase->C, 3) AddXNode(result, elements[i]));
  1110           // Remove the constant offset from the address and then
  1111           // remove the scaling of the offset to recover the original index.
  1112           result = phase->transform(new (phase->C, 3) AddXNode(result, phase->MakeConX(-offset)));
  1113           if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
  1114             // Peel the shift off directly but wrap it in a dummy node
  1115             // since Ideal can't return existing nodes
  1116             result = new (phase->C, 3) RShiftXNode(result->in(1), phase->intcon(0));
  1117           } else {
  1118             result = new (phase->C, 3) RShiftXNode(result, phase->intcon(shift));
  1120 #ifdef _LP64
  1121           result = new (phase->C, 2) ConvL2INode(phase->transform(result));
  1122 #endif
  1123           return result;
  1128   return NULL;
  1131 //------------------------------split_through_phi------------------------------
  1132 // Split instance field load through Phi.
  1133 Node *LoadNode::split_through_phi(PhaseGVN *phase) {
  1134   Node* mem     = in(MemNode::Memory);
  1135   Node* address = in(MemNode::Address);
  1136   const TypePtr *addr_t = phase->type(address)->isa_ptr();
  1137   const TypeOopPtr *t_oop = addr_t->isa_oopptr();
  1139   assert(mem->is_Phi() && (t_oop != NULL) &&
  1140          t_oop->is_instance_field(), "invalide conditions");
  1142   Node *region = mem->in(0);
  1143   if (region == NULL) {
  1144     return NULL; // Wait stable graph
  1146   uint cnt = mem->req();
  1147   for( uint i = 1; i < cnt; i++ ) {
  1148     Node *in = mem->in(i);
  1149     if( in == NULL ) {
  1150       return NULL; // Wait stable graph
  1153   // Check for loop invariant.
  1154   if (cnt == 3) {
  1155     for( uint i = 1; i < cnt; i++ ) {
  1156       Node *in = mem->in(i);
  1157       Node* m = MemNode::optimize_memory_chain(in, addr_t, phase);
  1158       if (m == mem) {
  1159         set_req(MemNode::Memory, mem->in(cnt - i)); // Skip this phi.
  1160         return this;
  1164   // Split through Phi (see original code in loopopts.cpp).
  1165   assert(phase->C->have_alias_type(addr_t), "instance should have alias type");
  1167   // Do nothing here if Identity will find a value
  1168   // (to avoid infinite chain of value phis generation).
  1169   if ( !phase->eqv(this, this->Identity(phase)) )
  1170     return NULL;
  1172   // Skip the split if the region dominates some control edge of the address.
  1173   if (cnt == 3 && !MemNode::all_controls_dominate(address, region))
  1174     return NULL;
  1176   const Type* this_type = this->bottom_type();
  1177   int this_index  = phase->C->get_alias_index(addr_t);
  1178   int this_offset = addr_t->offset();
  1179   int this_iid    = addr_t->is_oopptr()->instance_id();
  1180   int wins = 0;
  1181   PhaseIterGVN *igvn = phase->is_IterGVN();
  1182   Node *phi = new (igvn->C, region->req()) PhiNode(region, this_type, NULL, this_iid, this_index, this_offset);
  1183   for( uint i = 1; i < region->req(); i++ ) {
  1184     Node *x;
  1185     Node* the_clone = NULL;
  1186     if( region->in(i) == phase->C->top() ) {
  1187       x = phase->C->top();      // Dead path?  Use a dead data op
  1188     } else {
  1189       x = this->clone();        // Else clone up the data op
  1190       the_clone = x;            // Remember for possible deletion.
  1191       // Alter data node to use pre-phi inputs
  1192       if( this->in(0) == region ) {
  1193         x->set_req( 0, region->in(i) );
  1194       } else {
  1195         x->set_req( 0, NULL );
  1197       for( uint j = 1; j < this->req(); j++ ) {
  1198         Node *in = this->in(j);
  1199         if( in->is_Phi() && in->in(0) == region )
  1200           x->set_req( j, in->in(i) ); // Use pre-Phi input for the clone
  1203     // Check for a 'win' on some paths
  1204     const Type *t = x->Value(igvn);
  1206     bool singleton = t->singleton();
  1208     // See comments in PhaseIdealLoop::split_thru_phi().
  1209     if( singleton && t == Type::TOP ) {
  1210       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
  1213     if( singleton ) {
  1214       wins++;
  1215       x = igvn->makecon(t);
  1216     } else {
  1217       // We now call Identity to try to simplify the cloned node.
  1218       // Note that some Identity methods call phase->type(this).
  1219       // Make sure that the type array is big enough for
  1220       // our new node, even though we may throw the node away.
  1221       // (This tweaking with igvn only works because x is a new node.)
  1222       igvn->set_type(x, t);
  1223       Node *y = x->Identity(igvn);
  1224       if( y != x ) {
  1225         wins++;
  1226         x = y;
  1227       } else {
  1228         y = igvn->hash_find(x);
  1229         if( y ) {
  1230           wins++;
  1231           x = y;
  1232         } else {
  1233           // Else x is a new node we are keeping
  1234           // We do not need register_new_node_with_optimizer
  1235           // because set_type has already been called.
  1236           igvn->_worklist.push(x);
  1240     if (x != the_clone && the_clone != NULL)
  1241       igvn->remove_dead_node(the_clone);
  1242     phi->set_req(i, x);
  1244   if( wins > 0 ) {
  1245     // Record Phi
  1246     igvn->register_new_node_with_optimizer(phi);
  1247     return phi;
  1249   igvn->remove_dead_node(phi);
  1250   return NULL;
  1253 //------------------------------Ideal------------------------------------------
  1254 // If the load is from Field memory and the pointer is non-null, we can
  1255 // zero out the control input.
  1256 // If the offset is constant and the base is an object allocation,
  1257 // try to hook me up to the exact initializing store.
  1258 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1259   Node* p = MemNode::Ideal_common(phase, can_reshape);
  1260   if (p)  return (p == NodeSentinel) ? NULL : p;
  1262   Node* ctrl    = in(MemNode::Control);
  1263   Node* address = in(MemNode::Address);
  1265   // Skip up past a SafePoint control.  Cannot do this for Stores because
  1266   // pointer stores & cardmarks must stay on the same side of a SafePoint.
  1267   if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
  1268       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
  1269     ctrl = ctrl->in(0);
  1270     set_req(MemNode::Control,ctrl);
  1273   // Check for useless control edge in some common special cases
  1274   if (in(MemNode::Control) != NULL) {
  1275     intptr_t ignore = 0;
  1276     Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
  1277     if (base != NULL
  1278         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
  1279         && all_controls_dominate(base, phase->C->start())) {
  1280       // A method-invariant, non-null address (constant or 'this' argument).
  1281       set_req(MemNode::Control, NULL);
  1285   if (EliminateAutoBox && can_reshape && in(Address)->is_AddP()) {
  1286     Node* base = in(Address)->in(AddPNode::Base);
  1287     if (base != NULL) {
  1288       Compile::AliasType* atp = phase->C->alias_type(adr_type());
  1289       if (is_autobox_object(atp)) {
  1290         Node* result = eliminate_autobox(phase);
  1291         if (result != NULL) return result;
  1296   Node* mem = in(MemNode::Memory);
  1297   const TypePtr *addr_t = phase->type(address)->isa_ptr();
  1299   if (addr_t != NULL) {
  1300     // try to optimize our memory input
  1301     Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, phase);
  1302     if (opt_mem != mem) {
  1303       set_req(MemNode::Memory, opt_mem);
  1304       return this;
  1306     const TypeOopPtr *t_oop = addr_t->isa_oopptr();
  1307     if (can_reshape && opt_mem->is_Phi() &&
  1308         (t_oop != NULL) && t_oop->is_instance_field()) {
  1309       // Split instance field load through Phi.
  1310       Node* result = split_through_phi(phase);
  1311       if (result != NULL) return result;
  1315   // Check for prior store with a different base or offset; make Load
  1316   // independent.  Skip through any number of them.  Bail out if the stores
  1317   // are in an endless dead cycle and report no progress.  This is a key
  1318   // transform for Reflection.  However, if after skipping through the Stores
  1319   // we can't then fold up against a prior store do NOT do the transform as
  1320   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
  1321   // array memory alive twice: once for the hoisted Load and again after the
  1322   // bypassed Store.  This situation only works if EVERYBODY who does
  1323   // anti-dependence work knows how to bypass.  I.e. we need all
  1324   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
  1325   // the alias index stuff.  So instead, peek through Stores and IFF we can
  1326   // fold up, do so.
  1327   Node* prev_mem = find_previous_store(phase);
  1328   // Steps (a), (b):  Walk past independent stores to find an exact match.
  1329   if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
  1330     // (c) See if we can fold up on the spot, but don't fold up here.
  1331     // Fold-up might require truncation (for LoadB/LoadS/LoadC) or
  1332     // just return a prior value, which is done by Identity calls.
  1333     if (can_see_stored_value(prev_mem, phase)) {
  1334       // Make ready for step (d):
  1335       set_req(MemNode::Memory, prev_mem);
  1336       return this;
  1340   return NULL;                  // No further progress
  1343 // Helper to recognize certain Klass fields which are invariant across
  1344 // some group of array types (e.g., int[] or all T[] where T < Object).
  1345 const Type*
  1346 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
  1347                                  ciKlass* klass) const {
  1348   if (tkls->offset() == Klass::modifier_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1349     // The field is Klass::_modifier_flags.  Return its (constant) value.
  1350     // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
  1351     assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
  1352     return TypeInt::make(klass->modifier_flags());
  1354   if (tkls->offset() == Klass::access_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1355     // The field is Klass::_access_flags.  Return its (constant) value.
  1356     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
  1357     assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
  1358     return TypeInt::make(klass->access_flags());
  1360   if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1361     // The field is Klass::_layout_helper.  Return its constant value if known.
  1362     assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
  1363     return TypeInt::make(klass->layout_helper());
  1366   // No match.
  1367   return NULL;
  1370 //------------------------------Value-----------------------------------------
  1371 const Type *LoadNode::Value( PhaseTransform *phase ) const {
  1372   // Either input is TOP ==> the result is TOP
  1373   Node* mem = in(MemNode::Memory);
  1374   const Type *t1 = phase->type(mem);
  1375   if (t1 == Type::TOP)  return Type::TOP;
  1376   Node* adr = in(MemNode::Address);
  1377   const TypePtr* tp = phase->type(adr)->isa_ptr();
  1378   if (tp == NULL || tp->empty())  return Type::TOP;
  1379   int off = tp->offset();
  1380   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
  1382   // Try to guess loaded type from pointer type
  1383   if (tp->base() == Type::AryPtr) {
  1384     const Type *t = tp->is_aryptr()->elem();
  1385     // Don't do this for integer types. There is only potential profit if
  1386     // the element type t is lower than _type; that is, for int types, if _type is
  1387     // more restrictive than t.  This only happens here if one is short and the other
  1388     // char (both 16 bits), and in those cases we've made an intentional decision
  1389     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
  1390     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
  1391     //
  1392     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
  1393     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
  1394     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
  1395     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
  1396     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
  1397     // In fact, that could have been the original type of p1, and p1 could have
  1398     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
  1399     // expression (LShiftL quux 3) independently optimized to the constant 8.
  1400     if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
  1401         && Opcode() != Op_LoadKlass) {
  1402       // t might actually be lower than _type, if _type is a unique
  1403       // concrete subclass of abstract class t.
  1404       // Make sure the reference is not into the header, by comparing
  1405       // the offset against the offset of the start of the array's data.
  1406       // Different array types begin at slightly different offsets (12 vs. 16).
  1407       // We choose T_BYTE as an example base type that is least restrictive
  1408       // as to alignment, which will therefore produce the smallest
  1409       // possible base offset.
  1410       const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
  1411       if ((uint)off >= (uint)min_base_off) {  // is the offset beyond the header?
  1412         const Type* jt = t->join(_type);
  1413         // In any case, do not allow the join, per se, to empty out the type.
  1414         if (jt->empty() && !t->empty()) {
  1415           // This can happen if a interface-typed array narrows to a class type.
  1416           jt = _type;
  1419         if (EliminateAutoBox) {
  1420           // The pointers in the autobox arrays are always non-null
  1421           Node* base = in(Address)->in(AddPNode::Base);
  1422           if (base != NULL) {
  1423             Compile::AliasType* atp = phase->C->alias_type(base->adr_type());
  1424             if (is_autobox_cache(atp)) {
  1425               return jt->join(TypePtr::NOTNULL)->is_ptr();
  1429         return jt;
  1432   } else if (tp->base() == Type::InstPtr) {
  1433     assert( off != Type::OffsetBot ||
  1434             // arrays can be cast to Objects
  1435             tp->is_oopptr()->klass()->is_java_lang_Object() ||
  1436             // unsafe field access may not have a constant offset
  1437             phase->C->has_unsafe_access(),
  1438             "Field accesses must be precise" );
  1439     // For oop loads, we expect the _type to be precise
  1440   } else if (tp->base() == Type::KlassPtr) {
  1441     assert( off != Type::OffsetBot ||
  1442             // arrays can be cast to Objects
  1443             tp->is_klassptr()->klass()->is_java_lang_Object() ||
  1444             // also allow array-loading from the primary supertype
  1445             // array during subtype checks
  1446             Opcode() == Op_LoadKlass,
  1447             "Field accesses must be precise" );
  1448     // For klass/static loads, we expect the _type to be precise
  1451   const TypeKlassPtr *tkls = tp->isa_klassptr();
  1452   if (tkls != NULL && !StressReflectiveCode) {
  1453     ciKlass* klass = tkls->klass();
  1454     if (klass->is_loaded() && tkls->klass_is_exact()) {
  1455       // We are loading a field from a Klass metaobject whose identity
  1456       // is known at compile time (the type is "exact" or "precise").
  1457       // Check for fields we know are maintained as constants by the VM.
  1458       if (tkls->offset() == Klass::super_check_offset_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1459         // The field is Klass::_super_check_offset.  Return its (constant) value.
  1460         // (Folds up type checking code.)
  1461         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
  1462         return TypeInt::make(klass->super_check_offset());
  1464       // Compute index into primary_supers array
  1465       juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
  1466       // Check for overflowing; use unsigned compare to handle the negative case.
  1467       if( depth < ciKlass::primary_super_limit() ) {
  1468         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
  1469         // (Folds up type checking code.)
  1470         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
  1471         ciKlass *ss = klass->super_of_depth(depth);
  1472         return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
  1474       const Type* aift = load_array_final_field(tkls, klass);
  1475       if (aift != NULL)  return aift;
  1476       if (tkls->offset() == in_bytes(arrayKlass::component_mirror_offset()) + (int)sizeof(oopDesc)
  1477           && klass->is_array_klass()) {
  1478         // The field is arrayKlass::_component_mirror.  Return its (constant) value.
  1479         // (Folds up aClassConstant.getComponentType, common in Arrays.copyOf.)
  1480         assert(Opcode() == Op_LoadP, "must load an oop from _component_mirror");
  1481         return TypeInstPtr::make(klass->as_array_klass()->component_mirror());
  1483       if (tkls->offset() == Klass::java_mirror_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1484         // The field is Klass::_java_mirror.  Return its (constant) value.
  1485         // (Folds up the 2nd indirection in anObjConstant.getClass().)
  1486         assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
  1487         return TypeInstPtr::make(klass->java_mirror());
  1491     // We can still check if we are loading from the primary_supers array at a
  1492     // shallow enough depth.  Even though the klass is not exact, entries less
  1493     // than or equal to its super depth are correct.
  1494     if (klass->is_loaded() ) {
  1495       ciType *inner = klass->klass();
  1496       while( inner->is_obj_array_klass() )
  1497         inner = inner->as_obj_array_klass()->base_element_type();
  1498       if( inner->is_instance_klass() &&
  1499           !inner->as_instance_klass()->flags().is_interface() ) {
  1500         // Compute index into primary_supers array
  1501         juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
  1502         // Check for overflowing; use unsigned compare to handle the negative case.
  1503         if( depth < ciKlass::primary_super_limit() &&
  1504             depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
  1505           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
  1506           // (Folds up type checking code.)
  1507           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
  1508           ciKlass *ss = klass->super_of_depth(depth);
  1509           return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
  1514     // If the type is enough to determine that the thing is not an array,
  1515     // we can give the layout_helper a positive interval type.
  1516     // This will help short-circuit some reflective code.
  1517     if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)
  1518         && !klass->is_array_klass() // not directly typed as an array
  1519         && !klass->is_interface()  // specifically not Serializable & Cloneable
  1520         && !klass->is_java_lang_Object()   // not the supertype of all T[]
  1521         ) {
  1522       // Note:  When interfaces are reliable, we can narrow the interface
  1523       // test to (klass != Serializable && klass != Cloneable).
  1524       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
  1525       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
  1526       // The key property of this type is that it folds up tests
  1527       // for array-ness, since it proves that the layout_helper is positive.
  1528       // Thus, a generic value like the basic object layout helper works fine.
  1529       return TypeInt::make(min_size, max_jint, Type::WidenMin);
  1533   // If we are loading from a freshly-allocated object, produce a zero,
  1534   // if the load is provably beyond the header of the object.
  1535   // (Also allow a variable load from a fresh array to produce zero.)
  1536   if (ReduceFieldZeroing) {
  1537     Node* value = can_see_stored_value(mem,phase);
  1538     if (value != NULL && value->is_Con())
  1539       return value->bottom_type();
  1542   const TypeOopPtr *tinst = tp->isa_oopptr();
  1543   if (tinst != NULL && tinst->is_instance_field()) {
  1544     // If we have an instance type and our memory input is the
  1545     // programs's initial memory state, there is no matching store,
  1546     // so just return a zero of the appropriate type
  1547     Node *mem = in(MemNode::Memory);
  1548     if (mem->is_Parm() && mem->in(0)->is_Start()) {
  1549       assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
  1550       return Type::get_zero_type(_type->basic_type());
  1553   return _type;
  1556 //------------------------------match_edge-------------------------------------
  1557 // Do we Match on this edge index or not?  Match only the address.
  1558 uint LoadNode::match_edge(uint idx) const {
  1559   return idx == MemNode::Address;
  1562 //--------------------------LoadBNode::Ideal--------------------------------------
  1563 //
  1564 //  If the previous store is to the same address as this load,
  1565 //  and the value stored was larger than a byte, replace this load
  1566 //  with the value stored truncated to a byte.  If no truncation is
  1567 //  needed, the replacement is done in LoadNode::Identity().
  1568 //
  1569 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1570   Node* mem = in(MemNode::Memory);
  1571   Node* value = can_see_stored_value(mem,phase);
  1572   if( value && !phase->type(value)->higher_equal( _type ) ) {
  1573     Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(24)) );
  1574     return new (phase->C, 3) RShiftINode(result, phase->intcon(24));
  1576   // Identity call will handle the case where truncation is not needed.
  1577   return LoadNode::Ideal(phase, can_reshape);
  1580 //--------------------------LoadCNode::Ideal--------------------------------------
  1581 //
  1582 //  If the previous store is to the same address as this load,
  1583 //  and the value stored was larger than a char, replace this load
  1584 //  with the value stored truncated to a char.  If no truncation is
  1585 //  needed, the replacement is done in LoadNode::Identity().
  1586 //
  1587 Node *LoadCNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1588   Node* mem = in(MemNode::Memory);
  1589   Node* value = can_see_stored_value(mem,phase);
  1590   if( value && !phase->type(value)->higher_equal( _type ) )
  1591     return new (phase->C, 3) AndINode(value,phase->intcon(0xFFFF));
  1592   // Identity call will handle the case where truncation is not needed.
  1593   return LoadNode::Ideal(phase, can_reshape);
  1596 //--------------------------LoadSNode::Ideal--------------------------------------
  1597 //
  1598 //  If the previous store is to the same address as this load,
  1599 //  and the value stored was larger than a short, replace this load
  1600 //  with the value stored truncated to a short.  If no truncation is
  1601 //  needed, the replacement is done in LoadNode::Identity().
  1602 //
  1603 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1604   Node* mem = in(MemNode::Memory);
  1605   Node* value = can_see_stored_value(mem,phase);
  1606   if( value && !phase->type(value)->higher_equal( _type ) ) {
  1607     Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(16)) );
  1608     return new (phase->C, 3) RShiftINode(result, phase->intcon(16));
  1610   // Identity call will handle the case where truncation is not needed.
  1611   return LoadNode::Ideal(phase, can_reshape);
  1614 //=============================================================================
  1615 //----------------------------LoadKlassNode::make------------------------------
  1616 // Polymorphic factory method:
  1617 Node *LoadKlassNode::make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at, const TypeKlassPtr *tk ) {
  1618   Compile* C = gvn.C;
  1619   Node *ctl = NULL;
  1620   // sanity check the alias category against the created node type
  1621   const TypeOopPtr *adr_type = adr->bottom_type()->isa_oopptr();
  1622   assert(adr_type != NULL, "expecting TypeOopPtr");
  1623 #ifdef _LP64
  1624   if (adr_type->is_ptr_to_narrowoop()) {
  1625     const TypeNarrowOop* narrowtype = tk->is_oopptr()->make_narrowoop();
  1626     Node* load_klass = gvn.transform(new (C, 3) LoadNKlassNode(ctl, mem, adr, at, narrowtype));
  1627     return DecodeNNode::decode(&gvn, load_klass);
  1629 #endif
  1630   assert(!adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
  1631   return new (C, 3) LoadKlassNode(ctl, mem, adr, at, tk);
  1634 //------------------------------Value------------------------------------------
  1635 const Type *LoadKlassNode::Value( PhaseTransform *phase ) const {
  1636   return klass_value_common(phase);
  1639 const Type *LoadNode::klass_value_common( PhaseTransform *phase ) const {
  1640   // Either input is TOP ==> the result is TOP
  1641   const Type *t1 = phase->type( in(MemNode::Memory) );
  1642   if (t1 == Type::TOP)  return Type::TOP;
  1643   Node *adr = in(MemNode::Address);
  1644   const Type *t2 = phase->type( adr );
  1645   if (t2 == Type::TOP)  return Type::TOP;
  1646   const TypePtr *tp = t2->is_ptr();
  1647   if (TypePtr::above_centerline(tp->ptr()) ||
  1648       tp->ptr() == TypePtr::Null)  return Type::TOP;
  1650   // Return a more precise klass, if possible
  1651   const TypeInstPtr *tinst = tp->isa_instptr();
  1652   if (tinst != NULL) {
  1653     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
  1654     int offset = tinst->offset();
  1655     if (ik == phase->C->env()->Class_klass()
  1656         && (offset == java_lang_Class::klass_offset_in_bytes() ||
  1657             offset == java_lang_Class::array_klass_offset_in_bytes())) {
  1658       // We are loading a special hidden field from a Class mirror object,
  1659       // the field which points to the VM's Klass metaobject.
  1660       ciType* t = tinst->java_mirror_type();
  1661       // java_mirror_type returns non-null for compile-time Class constants.
  1662       if (t != NULL) {
  1663         // constant oop => constant klass
  1664         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
  1665           return TypeKlassPtr::make(ciArrayKlass::make(t));
  1667         if (!t->is_klass()) {
  1668           // a primitive Class (e.g., int.class) has NULL for a klass field
  1669           return TypePtr::NULL_PTR;
  1671         // (Folds up the 1st indirection in aClassConstant.getModifiers().)
  1672         return TypeKlassPtr::make(t->as_klass());
  1674       // non-constant mirror, so we can't tell what's going on
  1676     if( !ik->is_loaded() )
  1677       return _type;             // Bail out if not loaded
  1678     if (offset == oopDesc::klass_offset_in_bytes()) {
  1679       if (tinst->klass_is_exact()) {
  1680         return TypeKlassPtr::make(ik);
  1682       // See if we can become precise: no subklasses and no interface
  1683       // (Note:  We need to support verified interfaces.)
  1684       if (!ik->is_interface() && !ik->has_subklass()) {
  1685         //assert(!UseExactTypes, "this code should be useless with exact types");
  1686         // Add a dependence; if any subclass added we need to recompile
  1687         if (!ik->is_final()) {
  1688           // %%% should use stronger assert_unique_concrete_subtype instead
  1689           phase->C->dependencies()->assert_leaf_type(ik);
  1691         // Return precise klass
  1692         return TypeKlassPtr::make(ik);
  1695       // Return root of possible klass
  1696       return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
  1700   // Check for loading klass from an array
  1701   const TypeAryPtr *tary = tp->isa_aryptr();
  1702   if( tary != NULL ) {
  1703     ciKlass *tary_klass = tary->klass();
  1704     if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
  1705         && tary->offset() == oopDesc::klass_offset_in_bytes()) {
  1706       if (tary->klass_is_exact()) {
  1707         return TypeKlassPtr::make(tary_klass);
  1709       ciArrayKlass *ak = tary->klass()->as_array_klass();
  1710       // If the klass is an object array, we defer the question to the
  1711       // array component klass.
  1712       if( ak->is_obj_array_klass() ) {
  1713         assert( ak->is_loaded(), "" );
  1714         ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
  1715         if( base_k->is_loaded() && base_k->is_instance_klass() ) {
  1716           ciInstanceKlass* ik = base_k->as_instance_klass();
  1717           // See if we can become precise: no subklasses and no interface
  1718           if (!ik->is_interface() && !ik->has_subklass()) {
  1719             //assert(!UseExactTypes, "this code should be useless with exact types");
  1720             // Add a dependence; if any subclass added we need to recompile
  1721             if (!ik->is_final()) {
  1722               phase->C->dependencies()->assert_leaf_type(ik);
  1724             // Return precise array klass
  1725             return TypeKlassPtr::make(ak);
  1728         return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  1729       } else {                  // Found a type-array?
  1730         //assert(!UseExactTypes, "this code should be useless with exact types");
  1731         assert( ak->is_type_array_klass(), "" );
  1732         return TypeKlassPtr::make(ak); // These are always precise
  1737   // Check for loading klass from an array klass
  1738   const TypeKlassPtr *tkls = tp->isa_klassptr();
  1739   if (tkls != NULL && !StressReflectiveCode) {
  1740     ciKlass* klass = tkls->klass();
  1741     if( !klass->is_loaded() )
  1742       return _type;             // Bail out if not loaded
  1743     if( klass->is_obj_array_klass() &&
  1744         (uint)tkls->offset() == objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)) {
  1745       ciKlass* elem = klass->as_obj_array_klass()->element_klass();
  1746       // // Always returning precise element type is incorrect,
  1747       // // e.g., element type could be object and array may contain strings
  1748       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
  1750       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
  1751       // according to the element type's subclassing.
  1752       return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
  1754     if( klass->is_instance_klass() && tkls->klass_is_exact() &&
  1755         (uint)tkls->offset() == Klass::super_offset_in_bytes() + sizeof(oopDesc)) {
  1756       ciKlass* sup = klass->as_instance_klass()->super();
  1757       // The field is Klass::_super.  Return its (constant) value.
  1758       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
  1759       return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
  1763   // Bailout case
  1764   return LoadNode::Value(phase);
  1767 //------------------------------Identity---------------------------------------
  1768 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
  1769 // Also feed through the klass in Allocate(...klass...)._klass.
  1770 Node* LoadKlassNode::Identity( PhaseTransform *phase ) {
  1771   return klass_identity_common(phase);
  1774 Node* LoadNode::klass_identity_common(PhaseTransform *phase ) {
  1775   Node* x = LoadNode::Identity(phase);
  1776   if (x != this)  return x;
  1778   // Take apart the address into an oop and and offset.
  1779   // Return 'this' if we cannot.
  1780   Node*    adr    = in(MemNode::Address);
  1781   intptr_t offset = 0;
  1782   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
  1783   if (base == NULL)     return this;
  1784   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
  1785   if (toop == NULL)     return this;
  1787   // We can fetch the klass directly through an AllocateNode.
  1788   // This works even if the klass is not constant (clone or newArray).
  1789   if (offset == oopDesc::klass_offset_in_bytes()) {
  1790     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
  1791     if (allocated_klass != NULL) {
  1792       return allocated_klass;
  1796   // Simplify k.java_mirror.as_klass to plain k, where k is a klassOop.
  1797   // Simplify ak.component_mirror.array_klass to plain ak, ak an arrayKlass.
  1798   // See inline_native_Class_query for occurrences of these patterns.
  1799   // Java Example:  x.getClass().isAssignableFrom(y)
  1800   // Java Example:  Array.newInstance(x.getClass().getComponentType(), n)
  1801   //
  1802   // This improves reflective code, often making the Class
  1803   // mirror go completely dead.  (Current exception:  Class
  1804   // mirrors may appear in debug info, but we could clean them out by
  1805   // introducing a new debug info operator for klassOop.java_mirror).
  1806   if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
  1807       && (offset == java_lang_Class::klass_offset_in_bytes() ||
  1808           offset == java_lang_Class::array_klass_offset_in_bytes())) {
  1809     // We are loading a special hidden field from a Class mirror,
  1810     // the field which points to its Klass or arrayKlass metaobject.
  1811     if (base->is_Load()) {
  1812       Node* adr2 = base->in(MemNode::Address);
  1813       const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
  1814       if (tkls != NULL && !tkls->empty()
  1815           && (tkls->klass()->is_instance_klass() ||
  1816               tkls->klass()->is_array_klass())
  1817           && adr2->is_AddP()
  1818           ) {
  1819         int mirror_field = Klass::java_mirror_offset_in_bytes();
  1820         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
  1821           mirror_field = in_bytes(arrayKlass::component_mirror_offset());
  1823         if (tkls->offset() == mirror_field + (int)sizeof(oopDesc)) {
  1824           return adr2->in(AddPNode::Base);
  1830   return this;
  1834 //------------------------------Value------------------------------------------
  1835 const Type *LoadNKlassNode::Value( PhaseTransform *phase ) const {
  1836   const Type *t = klass_value_common(phase);
  1838   if (t == TypePtr::NULL_PTR) {
  1839     return TypeNarrowOop::NULL_PTR;
  1841   if (t != Type::TOP && !t->isa_narrowoop()) {
  1842     assert(t->is_oopptr(), "sanity");
  1843     t = t->is_oopptr()->make_narrowoop();
  1845   return t;
  1848 //------------------------------Identity---------------------------------------
  1849 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
  1850 // Also feed through the klass in Allocate(...klass...)._klass.
  1851 Node* LoadNKlassNode::Identity( PhaseTransform *phase ) {
  1852   Node *x = klass_identity_common(phase);
  1854   const Type *t = phase->type( x );
  1855   if( t == Type::TOP ) return x;
  1856   if( t->isa_narrowoop()) return x;
  1858   return EncodePNode::encode(phase, x);
  1861 //------------------------------Value-----------------------------------------
  1862 const Type *LoadRangeNode::Value( PhaseTransform *phase ) const {
  1863   // Either input is TOP ==> the result is TOP
  1864   const Type *t1 = phase->type( in(MemNode::Memory) );
  1865   if( t1 == Type::TOP ) return Type::TOP;
  1866   Node *adr = in(MemNode::Address);
  1867   const Type *t2 = phase->type( adr );
  1868   if( t2 == Type::TOP ) return Type::TOP;
  1869   const TypePtr *tp = t2->is_ptr();
  1870   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
  1871   const TypeAryPtr *tap = tp->isa_aryptr();
  1872   if( !tap ) return _type;
  1873   return tap->size();
  1876 //------------------------------Identity---------------------------------------
  1877 // Feed through the length in AllocateArray(...length...)._length.
  1878 Node* LoadRangeNode::Identity( PhaseTransform *phase ) {
  1879   Node* x = LoadINode::Identity(phase);
  1880   if (x != this)  return x;
  1882   // Take apart the address into an oop and and offset.
  1883   // Return 'this' if we cannot.
  1884   Node*    adr    = in(MemNode::Address);
  1885   intptr_t offset = 0;
  1886   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
  1887   if (base == NULL)     return this;
  1888   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
  1889   if (tary == NULL)     return this;
  1891   // We can fetch the length directly through an AllocateArrayNode.
  1892   // This works even if the length is not constant (clone or newArray).
  1893   if (offset == arrayOopDesc::length_offset_in_bytes()) {
  1894     Node* allocated_length = AllocateArrayNode::Ideal_length(base, phase);
  1895     if (allocated_length != NULL) {
  1896       return allocated_length;
  1900   return this;
  1903 //=============================================================================
  1904 //---------------------------StoreNode::make-----------------------------------
  1905 // Polymorphic factory method:
  1906 StoreNode* StoreNode::make( PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt ) {
  1907   Compile* C = gvn.C;
  1909   switch (bt) {
  1910   case T_BOOLEAN:
  1911   case T_BYTE:    return new (C, 4) StoreBNode(ctl, mem, adr, adr_type, val);
  1912   case T_INT:     return new (C, 4) StoreINode(ctl, mem, adr, adr_type, val);
  1913   case T_CHAR:
  1914   case T_SHORT:   return new (C, 4) StoreCNode(ctl, mem, adr, adr_type, val);
  1915   case T_LONG:    return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val);
  1916   case T_FLOAT:   return new (C, 4) StoreFNode(ctl, mem, adr, adr_type, val);
  1917   case T_DOUBLE:  return new (C, 4) StoreDNode(ctl, mem, adr, adr_type, val);
  1918   case T_ADDRESS:
  1919   case T_OBJECT:
  1920 #ifdef _LP64
  1921     if (adr->bottom_type()->is_ptr_to_narrowoop() ||
  1922         (UseCompressedOops && val->bottom_type()->isa_klassptr() &&
  1923          adr->bottom_type()->isa_rawptr())) {
  1924       const TypePtr* type = val->bottom_type()->is_ptr();
  1925       Node* cp = EncodePNode::encode(&gvn, val);
  1926       return new (C, 4) StoreNNode(ctl, mem, adr, adr_type, cp);
  1927     } else
  1928 #endif
  1930         return new (C, 4) StorePNode(ctl, mem, adr, adr_type, val);
  1933   ShouldNotReachHere();
  1934   return (StoreNode*)NULL;
  1937 StoreLNode* StoreLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val) {
  1938   bool require_atomic = true;
  1939   return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val, require_atomic);
  1943 //--------------------------bottom_type----------------------------------------
  1944 const Type *StoreNode::bottom_type() const {
  1945   return Type::MEMORY;
  1948 //------------------------------hash-------------------------------------------
  1949 uint StoreNode::hash() const {
  1950   // unroll addition of interesting fields
  1951   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
  1953   // Since they are not commoned, do not hash them:
  1954   return NO_HASH;
  1957 //------------------------------Ideal------------------------------------------
  1958 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
  1959 // When a store immediately follows a relevant allocation/initialization,
  1960 // try to capture it into the initialization, or hoist it above.
  1961 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1962   Node* p = MemNode::Ideal_common(phase, can_reshape);
  1963   if (p)  return (p == NodeSentinel) ? NULL : p;
  1965   Node* mem     = in(MemNode::Memory);
  1966   Node* address = in(MemNode::Address);
  1968   // Back-to-back stores to same address?  Fold em up.
  1969   // Generally unsafe if I have intervening uses...
  1970   if (mem->is_Store() && phase->eqv_uncast(mem->in(MemNode::Address), address)) {
  1971     // Looking at a dead closed cycle of memory?
  1972     assert(mem != mem->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
  1974     assert(Opcode() == mem->Opcode() ||
  1975            phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw,
  1976            "no mismatched stores, except on raw memory");
  1978     if (mem->outcnt() == 1 &&           // check for intervening uses
  1979         mem->as_Store()->memory_size() <= this->memory_size()) {
  1980       // If anybody other than 'this' uses 'mem', we cannot fold 'mem' away.
  1981       // For example, 'mem' might be the final state at a conditional return.
  1982       // Or, 'mem' might be used by some node which is live at the same time
  1983       // 'this' is live, which might be unschedulable.  So, require exactly
  1984       // ONE user, the 'this' store, until such time as we clone 'mem' for
  1985       // each of 'mem's uses (thus making the exactly-1-user-rule hold true).
  1986       if (can_reshape) {  // (%%% is this an anachronism?)
  1987         set_req_X(MemNode::Memory, mem->in(MemNode::Memory),
  1988                   phase->is_IterGVN());
  1989       } else {
  1990         // It's OK to do this in the parser, since DU info is always accurate,
  1991         // and the parser always refers to nodes via SafePointNode maps.
  1992         set_req(MemNode::Memory, mem->in(MemNode::Memory));
  1994       return this;
  1998   // Capture an unaliased, unconditional, simple store into an initializer.
  1999   // Or, if it is independent of the allocation, hoist it above the allocation.
  2000   if (ReduceFieldZeroing && /*can_reshape &&*/
  2001       mem->is_Proj() && mem->in(0)->is_Initialize()) {
  2002     InitializeNode* init = mem->in(0)->as_Initialize();
  2003     intptr_t offset = init->can_capture_store(this, phase);
  2004     if (offset > 0) {
  2005       Node* moved = init->capture_store(this, offset, phase);
  2006       // If the InitializeNode captured me, it made a raw copy of me,
  2007       // and I need to disappear.
  2008       if (moved != NULL) {
  2009         // %%% hack to ensure that Ideal returns a new node:
  2010         mem = MergeMemNode::make(phase->C, mem);
  2011         return mem;             // fold me away
  2016   return NULL;                  // No further progress
  2019 //------------------------------Value-----------------------------------------
  2020 const Type *StoreNode::Value( PhaseTransform *phase ) const {
  2021   // Either input is TOP ==> the result is TOP
  2022   const Type *t1 = phase->type( in(MemNode::Memory) );
  2023   if( t1 == Type::TOP ) return Type::TOP;
  2024   const Type *t2 = phase->type( in(MemNode::Address) );
  2025   if( t2 == Type::TOP ) return Type::TOP;
  2026   const Type *t3 = phase->type( in(MemNode::ValueIn) );
  2027   if( t3 == Type::TOP ) return Type::TOP;
  2028   return Type::MEMORY;
  2031 //------------------------------Identity---------------------------------------
  2032 // Remove redundant stores:
  2033 //   Store(m, p, Load(m, p)) changes to m.
  2034 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
  2035 Node *StoreNode::Identity( PhaseTransform *phase ) {
  2036   Node* mem = in(MemNode::Memory);
  2037   Node* adr = in(MemNode::Address);
  2038   Node* val = in(MemNode::ValueIn);
  2040   // Load then Store?  Then the Store is useless
  2041   if (val->is_Load() &&
  2042       phase->eqv_uncast( val->in(MemNode::Address), adr ) &&
  2043       phase->eqv_uncast( val->in(MemNode::Memory ), mem ) &&
  2044       val->as_Load()->store_Opcode() == Opcode()) {
  2045     return mem;
  2048   // Two stores in a row of the same value?
  2049   if (mem->is_Store() &&
  2050       phase->eqv_uncast( mem->in(MemNode::Address), adr ) &&
  2051       phase->eqv_uncast( mem->in(MemNode::ValueIn), val ) &&
  2052       mem->Opcode() == Opcode()) {
  2053     return mem;
  2056   // Store of zero anywhere into a freshly-allocated object?
  2057   // Then the store is useless.
  2058   // (It must already have been captured by the InitializeNode.)
  2059   if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
  2060     // a newly allocated object is already all-zeroes everywhere
  2061     if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
  2062       return mem;
  2065     // the store may also apply to zero-bits in an earlier object
  2066     Node* prev_mem = find_previous_store(phase);
  2067     // Steps (a), (b):  Walk past independent stores to find an exact match.
  2068     if (prev_mem != NULL) {
  2069       Node* prev_val = can_see_stored_value(prev_mem, phase);
  2070       if (prev_val != NULL && phase->eqv(prev_val, val)) {
  2071         // prev_val and val might differ by a cast; it would be good
  2072         // to keep the more informative of the two.
  2073         return mem;
  2078   return this;
  2081 //------------------------------match_edge-------------------------------------
  2082 // Do we Match on this edge index or not?  Match only memory & value
  2083 uint StoreNode::match_edge(uint idx) const {
  2084   return idx == MemNode::Address || idx == MemNode::ValueIn;
  2087 //------------------------------cmp--------------------------------------------
  2088 // Do not common stores up together.  They generally have to be split
  2089 // back up anyways, so do not bother.
  2090 uint StoreNode::cmp( const Node &n ) const {
  2091   return (&n == this);          // Always fail except on self
  2094 //------------------------------Ideal_masked_input-----------------------------
  2095 // Check for a useless mask before a partial-word store
  2096 // (StoreB ... (AndI valIn conIa) )
  2097 // If (conIa & mask == mask) this simplifies to
  2098 // (StoreB ... (valIn) )
  2099 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
  2100   Node *val = in(MemNode::ValueIn);
  2101   if( val->Opcode() == Op_AndI ) {
  2102     const TypeInt *t = phase->type( val->in(2) )->isa_int();
  2103     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
  2104       set_req(MemNode::ValueIn, val->in(1));
  2105       return this;
  2108   return NULL;
  2112 //------------------------------Ideal_sign_extended_input----------------------
  2113 // Check for useless sign-extension before a partial-word store
  2114 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
  2115 // If (conIL == conIR && conIR <= num_bits)  this simplifies to
  2116 // (StoreB ... (valIn) )
  2117 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
  2118   Node *val = in(MemNode::ValueIn);
  2119   if( val->Opcode() == Op_RShiftI ) {
  2120     const TypeInt *t = phase->type( val->in(2) )->isa_int();
  2121     if( t && t->is_con() && (t->get_con() <= num_bits) ) {
  2122       Node *shl = val->in(1);
  2123       if( shl->Opcode() == Op_LShiftI ) {
  2124         const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
  2125         if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
  2126           set_req(MemNode::ValueIn, shl->in(1));
  2127           return this;
  2132   return NULL;
  2135 //------------------------------value_never_loaded-----------------------------------
  2136 // Determine whether there are any possible loads of the value stored.
  2137 // For simplicity, we actually check if there are any loads from the
  2138 // address stored to, not just for loads of the value stored by this node.
  2139 //
  2140 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
  2141   Node *adr = in(Address);
  2142   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
  2143   if (adr_oop == NULL)
  2144     return false;
  2145   if (!adr_oop->is_instance_field())
  2146     return false; // if not a distinct instance, there may be aliases of the address
  2147   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
  2148     Node *use = adr->fast_out(i);
  2149     int opc = use->Opcode();
  2150     if (use->is_Load() || use->is_LoadStore()) {
  2151       return false;
  2154   return true;
  2157 //=============================================================================
  2158 //------------------------------Ideal------------------------------------------
  2159 // If the store is from an AND mask that leaves the low bits untouched, then
  2160 // we can skip the AND operation.  If the store is from a sign-extension
  2161 // (a left shift, then right shift) we can skip both.
  2162 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2163   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
  2164   if( progress != NULL ) return progress;
  2166   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
  2167   if( progress != NULL ) return progress;
  2169   // Finally check the default case
  2170   return StoreNode::Ideal(phase, can_reshape);
  2173 //=============================================================================
  2174 //------------------------------Ideal------------------------------------------
  2175 // If the store is from an AND mask that leaves the low bits untouched, then
  2176 // we can skip the AND operation
  2177 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2178   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
  2179   if( progress != NULL ) return progress;
  2181   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
  2182   if( progress != NULL ) return progress;
  2184   // Finally check the default case
  2185   return StoreNode::Ideal(phase, can_reshape);
  2188 //=============================================================================
  2189 //------------------------------Identity---------------------------------------
  2190 Node *StoreCMNode::Identity( PhaseTransform *phase ) {
  2191   // No need to card mark when storing a null ptr
  2192   Node* my_store = in(MemNode::OopStore);
  2193   if (my_store->is_Store()) {
  2194     const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
  2195     if( t1 == TypePtr::NULL_PTR ) {
  2196       return in(MemNode::Memory);
  2199   return this;
  2202 //------------------------------Value-----------------------------------------
  2203 const Type *StoreCMNode::Value( PhaseTransform *phase ) const {
  2204   // Either input is TOP ==> the result is TOP
  2205   const Type *t = phase->type( in(MemNode::Memory) );
  2206   if( t == Type::TOP ) return Type::TOP;
  2207   t = phase->type( in(MemNode::Address) );
  2208   if( t == Type::TOP ) return Type::TOP;
  2209   t = phase->type( in(MemNode::ValueIn) );
  2210   if( t == Type::TOP ) return Type::TOP;
  2211   // If extra input is TOP ==> the result is TOP
  2212   t = phase->type( in(MemNode::OopStore) );
  2213   if( t == Type::TOP ) return Type::TOP;
  2215   return StoreNode::Value( phase );
  2219 //=============================================================================
  2220 //----------------------------------SCMemProjNode------------------------------
  2221 const Type * SCMemProjNode::Value( PhaseTransform *phase ) const
  2223   return bottom_type();
  2226 //=============================================================================
  2227 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : Node(5) {
  2228   init_req(MemNode::Control, c  );
  2229   init_req(MemNode::Memory , mem);
  2230   init_req(MemNode::Address, adr);
  2231   init_req(MemNode::ValueIn, val);
  2232   init_req(         ExpectedIn, ex );
  2233   init_class_id(Class_LoadStore);
  2237 //=============================================================================
  2238 //-------------------------------adr_type--------------------------------------
  2239 // Do we Match on this edge index or not?  Do not match memory
  2240 const TypePtr* ClearArrayNode::adr_type() const {
  2241   Node *adr = in(3);
  2242   return MemNode::calculate_adr_type(adr->bottom_type());
  2245 //------------------------------match_edge-------------------------------------
  2246 // Do we Match on this edge index or not?  Do not match memory
  2247 uint ClearArrayNode::match_edge(uint idx) const {
  2248   return idx > 1;
  2251 //------------------------------Identity---------------------------------------
  2252 // Clearing a zero length array does nothing
  2253 Node *ClearArrayNode::Identity( PhaseTransform *phase ) {
  2254   return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
  2257 //------------------------------Idealize---------------------------------------
  2258 // Clearing a short array is faster with stores
  2259 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2260   const int unit = BytesPerLong;
  2261   const TypeX* t = phase->type(in(2))->isa_intptr_t();
  2262   if (!t)  return NULL;
  2263   if (!t->is_con())  return NULL;
  2264   intptr_t raw_count = t->get_con();
  2265   intptr_t size = raw_count;
  2266   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
  2267   // Clearing nothing uses the Identity call.
  2268   // Negative clears are possible on dead ClearArrays
  2269   // (see jck test stmt114.stmt11402.val).
  2270   if (size <= 0 || size % unit != 0)  return NULL;
  2271   intptr_t count = size / unit;
  2272   // Length too long; use fast hardware clear
  2273   if (size > Matcher::init_array_short_size)  return NULL;
  2274   Node *mem = in(1);
  2275   if( phase->type(mem)==Type::TOP ) return NULL;
  2276   Node *adr = in(3);
  2277   const Type* at = phase->type(adr);
  2278   if( at==Type::TOP ) return NULL;
  2279   const TypePtr* atp = at->isa_ptr();
  2280   // adjust atp to be the correct array element address type
  2281   if (atp == NULL)  atp = TypePtr::BOTTOM;
  2282   else              atp = atp->add_offset(Type::OffsetBot);
  2283   // Get base for derived pointer purposes
  2284   if( adr->Opcode() != Op_AddP ) Unimplemented();
  2285   Node *base = adr->in(1);
  2287   Node *zero = phase->makecon(TypeLong::ZERO);
  2288   Node *off  = phase->MakeConX(BytesPerLong);
  2289   mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
  2290   count--;
  2291   while( count-- ) {
  2292     mem = phase->transform(mem);
  2293     adr = phase->transform(new (phase->C, 4) AddPNode(base,adr,off));
  2294     mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
  2296   return mem;
  2299 //----------------------------clear_memory-------------------------------------
  2300 // Generate code to initialize object storage to zero.
  2301 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  2302                                    intptr_t start_offset,
  2303                                    Node* end_offset,
  2304                                    PhaseGVN* phase) {
  2305   Compile* C = phase->C;
  2306   intptr_t offset = start_offset;
  2308   int unit = BytesPerLong;
  2309   if ((offset % unit) != 0) {
  2310     Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(offset));
  2311     adr = phase->transform(adr);
  2312     const TypePtr* atp = TypeRawPtr::BOTTOM;
  2313     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
  2314     mem = phase->transform(mem);
  2315     offset += BytesPerInt;
  2317   assert((offset % unit) == 0, "");
  2319   // Initialize the remaining stuff, if any, with a ClearArray.
  2320   return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
  2323 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  2324                                    Node* start_offset,
  2325                                    Node* end_offset,
  2326                                    PhaseGVN* phase) {
  2327   if (start_offset == end_offset) {
  2328     // nothing to do
  2329     return mem;
  2332   Compile* C = phase->C;
  2333   int unit = BytesPerLong;
  2334   Node* zbase = start_offset;
  2335   Node* zend  = end_offset;
  2337   // Scale to the unit required by the CPU:
  2338   if (!Matcher::init_array_count_is_in_bytes) {
  2339     Node* shift = phase->intcon(exact_log2(unit));
  2340     zbase = phase->transform( new(C,3) URShiftXNode(zbase, shift) );
  2341     zend  = phase->transform( new(C,3) URShiftXNode(zend,  shift) );
  2344   Node* zsize = phase->transform( new(C,3) SubXNode(zend, zbase) );
  2345   Node* zinit = phase->zerocon((unit == BytesPerLong) ? T_LONG : T_INT);
  2347   // Bulk clear double-words
  2348   Node* adr = phase->transform( new(C,4) AddPNode(dest, dest, start_offset) );
  2349   mem = new (C, 4) ClearArrayNode(ctl, mem, zsize, adr);
  2350   return phase->transform(mem);
  2353 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  2354                                    intptr_t start_offset,
  2355                                    intptr_t end_offset,
  2356                                    PhaseGVN* phase) {
  2357   if (start_offset == end_offset) {
  2358     // nothing to do
  2359     return mem;
  2362   Compile* C = phase->C;
  2363   assert((end_offset % BytesPerInt) == 0, "odd end offset");
  2364   intptr_t done_offset = end_offset;
  2365   if ((done_offset % BytesPerLong) != 0) {
  2366     done_offset -= BytesPerInt;
  2368   if (done_offset > start_offset) {
  2369     mem = clear_memory(ctl, mem, dest,
  2370                        start_offset, phase->MakeConX(done_offset), phase);
  2372   if (done_offset < end_offset) { // emit the final 32-bit store
  2373     Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(done_offset));
  2374     adr = phase->transform(adr);
  2375     const TypePtr* atp = TypeRawPtr::BOTTOM;
  2376     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
  2377     mem = phase->transform(mem);
  2378     done_offset += BytesPerInt;
  2380   assert(done_offset == end_offset, "");
  2381   return mem;
  2384 //=============================================================================
  2385 // Do we match on this edge? No memory edges
  2386 uint StrCompNode::match_edge(uint idx) const {
  2387   return idx == 5 || idx == 6;
  2390 //------------------------------Ideal------------------------------------------
  2391 // Return a node which is more "ideal" than the current node.  Strip out
  2392 // control copies
  2393 Node *StrCompNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2394   return remove_dead_region(phase, can_reshape) ? this : NULL;
  2397 //------------------------------Ideal------------------------------------------
  2398 // Return a node which is more "ideal" than the current node.  Strip out
  2399 // control copies
  2400 Node *AryEqNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2401   return remove_dead_region(phase, can_reshape) ? this : NULL;
  2405 //=============================================================================
  2406 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
  2407   : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
  2408     _adr_type(C->get_adr_type(alias_idx))
  2410   init_class_id(Class_MemBar);
  2411   Node* top = C->top();
  2412   init_req(TypeFunc::I_O,top);
  2413   init_req(TypeFunc::FramePtr,top);
  2414   init_req(TypeFunc::ReturnAdr,top);
  2415   if (precedent != NULL)
  2416     init_req(TypeFunc::Parms, precedent);
  2419 //------------------------------cmp--------------------------------------------
  2420 uint MemBarNode::hash() const { return NO_HASH; }
  2421 uint MemBarNode::cmp( const Node &n ) const {
  2422   return (&n == this);          // Always fail except on self
  2425 //------------------------------make-------------------------------------------
  2426 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
  2427   int len = Precedent + (pn == NULL? 0: 1);
  2428   switch (opcode) {
  2429   case Op_MemBarAcquire:   return new(C, len) MemBarAcquireNode(C,  atp, pn);
  2430   case Op_MemBarRelease:   return new(C, len) MemBarReleaseNode(C,  atp, pn);
  2431   case Op_MemBarVolatile:  return new(C, len) MemBarVolatileNode(C, atp, pn);
  2432   case Op_MemBarCPUOrder:  return new(C, len) MemBarCPUOrderNode(C, atp, pn);
  2433   case Op_Initialize:      return new(C, len) InitializeNode(C,     atp, pn);
  2434   default:                 ShouldNotReachHere(); return NULL;
  2438 //------------------------------Ideal------------------------------------------
  2439 // Return a node which is more "ideal" than the current node.  Strip out
  2440 // control copies
  2441 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  2442   if (remove_dead_region(phase, can_reshape))  return this;
  2443   return NULL;
  2446 //------------------------------Value------------------------------------------
  2447 const Type *MemBarNode::Value( PhaseTransform *phase ) const {
  2448   if( !in(0) ) return Type::TOP;
  2449   if( phase->type(in(0)) == Type::TOP )
  2450     return Type::TOP;
  2451   return TypeTuple::MEMBAR;
  2454 //------------------------------match------------------------------------------
  2455 // Construct projections for memory.
  2456 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
  2457   switch (proj->_con) {
  2458   case TypeFunc::Control:
  2459   case TypeFunc::Memory:
  2460     return new (m->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
  2462   ShouldNotReachHere();
  2463   return NULL;
  2466 //===========================InitializeNode====================================
  2467 // SUMMARY:
  2468 // This node acts as a memory barrier on raw memory, after some raw stores.
  2469 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
  2470 // The Initialize can 'capture' suitably constrained stores as raw inits.
  2471 // It can coalesce related raw stores into larger units (called 'tiles').
  2472 // It can avoid zeroing new storage for memory units which have raw inits.
  2473 // At macro-expansion, it is marked 'complete', and does not optimize further.
  2474 //
  2475 // EXAMPLE:
  2476 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
  2477 //   ctl = incoming control; mem* = incoming memory
  2478 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
  2479 // First allocate uninitialized memory and fill in the header:
  2480 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
  2481 //   ctl := alloc.Control; mem* := alloc.Memory*
  2482 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
  2483 // Then initialize to zero the non-header parts of the raw memory block:
  2484 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
  2485 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
  2486 // After the initialize node executes, the object is ready for service:
  2487 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
  2488 // Suppose its body is immediately initialized as {1,2}:
  2489 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
  2490 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
  2491 //   mem.SLICE(#short[*]) := store2
  2492 //
  2493 // DETAILS:
  2494 // An InitializeNode collects and isolates object initialization after
  2495 // an AllocateNode and before the next possible safepoint.  As a
  2496 // memory barrier (MemBarNode), it keeps critical stores from drifting
  2497 // down past any safepoint or any publication of the allocation.
  2498 // Before this barrier, a newly-allocated object may have uninitialized bits.
  2499 // After this barrier, it may be treated as a real oop, and GC is allowed.
  2500 //
  2501 // The semantics of the InitializeNode include an implicit zeroing of
  2502 // the new object from object header to the end of the object.
  2503 // (The object header and end are determined by the AllocateNode.)
  2504 //
  2505 // Certain stores may be added as direct inputs to the InitializeNode.
  2506 // These stores must update raw memory, and they must be to addresses
  2507 // derived from the raw address produced by AllocateNode, and with
  2508 // a constant offset.  They must be ordered by increasing offset.
  2509 // The first one is at in(RawStores), the last at in(req()-1).
  2510 // Unlike most memory operations, they are not linked in a chain,
  2511 // but are displayed in parallel as users of the rawmem output of
  2512 // the allocation.
  2513 //
  2514 // (See comments in InitializeNode::capture_store, which continue
  2515 // the example given above.)
  2516 //
  2517 // When the associated Allocate is macro-expanded, the InitializeNode
  2518 // may be rewritten to optimize collected stores.  A ClearArrayNode
  2519 // may also be created at that point to represent any required zeroing.
  2520 // The InitializeNode is then marked 'complete', prohibiting further
  2521 // capturing of nearby memory operations.
  2522 //
  2523 // During macro-expansion, all captured initializations which store
  2524 // constant values of 32 bits or smaller are coalesced (if advantagous)
  2525 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
  2526 // initialized in fewer memory operations.  Memory words which are
  2527 // covered by neither tiles nor non-constant stores are pre-zeroed
  2528 // by explicit stores of zero.  (The code shape happens to do all
  2529 // zeroing first, then all other stores, with both sequences occurring
  2530 // in order of ascending offsets.)
  2531 //
  2532 // Alternatively, code may be inserted between an AllocateNode and its
  2533 // InitializeNode, to perform arbitrary initialization of the new object.
  2534 // E.g., the object copying intrinsics insert complex data transfers here.
  2535 // The initialization must then be marked as 'complete' disable the
  2536 // built-in zeroing semantics and the collection of initializing stores.
  2537 //
  2538 // While an InitializeNode is incomplete, reads from the memory state
  2539 // produced by it are optimizable if they match the control edge and
  2540 // new oop address associated with the allocation/initialization.
  2541 // They return a stored value (if the offset matches) or else zero.
  2542 // A write to the memory state, if it matches control and address,
  2543 // and if it is to a constant offset, may be 'captured' by the
  2544 // InitializeNode.  It is cloned as a raw memory operation and rewired
  2545 // inside the initialization, to the raw oop produced by the allocation.
  2546 // Operations on addresses which are provably distinct (e.g., to
  2547 // other AllocateNodes) are allowed to bypass the initialization.
  2548 //
  2549 // The effect of all this is to consolidate object initialization
  2550 // (both arrays and non-arrays, both piecewise and bulk) into a
  2551 // single location, where it can be optimized as a unit.
  2552 //
  2553 // Only stores with an offset less than TrackedInitializationLimit words
  2554 // will be considered for capture by an InitializeNode.  This puts a
  2555 // reasonable limit on the complexity of optimized initializations.
  2557 //---------------------------InitializeNode------------------------------------
  2558 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
  2559   : _is_complete(false),
  2560     MemBarNode(C, adr_type, rawoop)
  2562   init_class_id(Class_Initialize);
  2564   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
  2565   assert(in(RawAddress) == rawoop, "proper init");
  2566   // Note:  allocation() can be NULL, for secondary initialization barriers
  2569 // Since this node is not matched, it will be processed by the
  2570 // register allocator.  Declare that there are no constraints
  2571 // on the allocation of the RawAddress edge.
  2572 const RegMask &InitializeNode::in_RegMask(uint idx) const {
  2573   // This edge should be set to top, by the set_complete.  But be conservative.
  2574   if (idx == InitializeNode::RawAddress)
  2575     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
  2576   return RegMask::Empty;
  2579 Node* InitializeNode::memory(uint alias_idx) {
  2580   Node* mem = in(Memory);
  2581   if (mem->is_MergeMem()) {
  2582     return mem->as_MergeMem()->memory_at(alias_idx);
  2583   } else {
  2584     // incoming raw memory is not split
  2585     return mem;
  2589 bool InitializeNode::is_non_zero() {
  2590   if (is_complete())  return false;
  2591   remove_extra_zeroes();
  2592   return (req() > RawStores);
  2595 void InitializeNode::set_complete(PhaseGVN* phase) {
  2596   assert(!is_complete(), "caller responsibility");
  2597   _is_complete = true;
  2599   // After this node is complete, it contains a bunch of
  2600   // raw-memory initializations.  There is no need for
  2601   // it to have anything to do with non-raw memory effects.
  2602   // Therefore, tell all non-raw users to re-optimize themselves,
  2603   // after skipping the memory effects of this initialization.
  2604   PhaseIterGVN* igvn = phase->is_IterGVN();
  2605   if (igvn)  igvn->add_users_to_worklist(this);
  2608 // convenience function
  2609 // return false if the init contains any stores already
  2610 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
  2611   InitializeNode* init = initialization();
  2612   if (init == NULL || init->is_complete())  return false;
  2613   init->remove_extra_zeroes();
  2614   // for now, if this allocation has already collected any inits, bail:
  2615   if (init->is_non_zero())  return false;
  2616   init->set_complete(phase);
  2617   return true;
  2620 void InitializeNode::remove_extra_zeroes() {
  2621   if (req() == RawStores)  return;
  2622   Node* zmem = zero_memory();
  2623   uint fill = RawStores;
  2624   for (uint i = fill; i < req(); i++) {
  2625     Node* n = in(i);
  2626     if (n->is_top() || n == zmem)  continue;  // skip
  2627     if (fill < i)  set_req(fill, n);          // compact
  2628     ++fill;
  2630   // delete any empty spaces created:
  2631   while (fill < req()) {
  2632     del_req(fill);
  2636 // Helper for remembering which stores go with which offsets.
  2637 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
  2638   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
  2639   intptr_t offset = -1;
  2640   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
  2641                                                phase, offset);
  2642   if (base == NULL)     return -1;  // something is dead,
  2643   if (offset < 0)       return -1;  //        dead, dead
  2644   return offset;
  2647 // Helper for proving that an initialization expression is
  2648 // "simple enough" to be folded into an object initialization.
  2649 // Attempts to prove that a store's initial value 'n' can be captured
  2650 // within the initialization without creating a vicious cycle, such as:
  2651 //     { Foo p = new Foo(); p.next = p; }
  2652 // True for constants and parameters and small combinations thereof.
  2653 bool InitializeNode::detect_init_independence(Node* n,
  2654                                               bool st_is_pinned,
  2655                                               int& count) {
  2656   if (n == NULL)      return true;   // (can this really happen?)
  2657   if (n->is_Proj())   n = n->in(0);
  2658   if (n == this)      return false;  // found a cycle
  2659   if (n->is_Con())    return true;
  2660   if (n->is_Start())  return true;   // params, etc., are OK
  2661   if (n->is_Root())   return true;   // even better
  2663   Node* ctl = n->in(0);
  2664   if (ctl != NULL && !ctl->is_top()) {
  2665     if (ctl->is_Proj())  ctl = ctl->in(0);
  2666     if (ctl == this)  return false;
  2668     // If we already know that the enclosing memory op is pinned right after
  2669     // the init, then any control flow that the store has picked up
  2670     // must have preceded the init, or else be equal to the init.
  2671     // Even after loop optimizations (which might change control edges)
  2672     // a store is never pinned *before* the availability of its inputs.
  2673     if (!MemNode::all_controls_dominate(n, this))
  2674       return false;                  // failed to prove a good control
  2678   // Check data edges for possible dependencies on 'this'.
  2679   if ((count += 1) > 20)  return false;  // complexity limit
  2680   for (uint i = 1; i < n->req(); i++) {
  2681     Node* m = n->in(i);
  2682     if (m == NULL || m == n || m->is_top())  continue;
  2683     uint first_i = n->find_edge(m);
  2684     if (i != first_i)  continue;  // process duplicate edge just once
  2685     if (!detect_init_independence(m, st_is_pinned, count)) {
  2686       return false;
  2690   return true;
  2693 // Here are all the checks a Store must pass before it can be moved into
  2694 // an initialization.  Returns zero if a check fails.
  2695 // On success, returns the (constant) offset to which the store applies,
  2696 // within the initialized memory.
  2697 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase) {
  2698   const int FAIL = 0;
  2699   if (st->req() != MemNode::ValueIn + 1)
  2700     return FAIL;                // an inscrutable StoreNode (card mark?)
  2701   Node* ctl = st->in(MemNode::Control);
  2702   if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
  2703     return FAIL;                // must be unconditional after the initialization
  2704   Node* mem = st->in(MemNode::Memory);
  2705   if (!(mem->is_Proj() && mem->in(0) == this))
  2706     return FAIL;                // must not be preceded by other stores
  2707   Node* adr = st->in(MemNode::Address);
  2708   intptr_t offset;
  2709   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
  2710   if (alloc == NULL)
  2711     return FAIL;                // inscrutable address
  2712   if (alloc != allocation())
  2713     return FAIL;                // wrong allocation!  (store needs to float up)
  2714   Node* val = st->in(MemNode::ValueIn);
  2715   int complexity_count = 0;
  2716   if (!detect_init_independence(val, true, complexity_count))
  2717     return FAIL;                // stored value must be 'simple enough'
  2719   return offset;                // success
  2722 // Find the captured store in(i) which corresponds to the range
  2723 // [start..start+size) in the initialized object.
  2724 // If there is one, return its index i.  If there isn't, return the
  2725 // negative of the index where it should be inserted.
  2726 // Return 0 if the queried range overlaps an initialization boundary
  2727 // or if dead code is encountered.
  2728 // If size_in_bytes is zero, do not bother with overlap checks.
  2729 int InitializeNode::captured_store_insertion_point(intptr_t start,
  2730                                                    int size_in_bytes,
  2731                                                    PhaseTransform* phase) {
  2732   const int FAIL = 0, MAX_STORE = BytesPerLong;
  2734   if (is_complete())
  2735     return FAIL;                // arraycopy got here first; punt
  2737   assert(allocation() != NULL, "must be present");
  2739   // no negatives, no header fields:
  2740   if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
  2742   // after a certain size, we bail out on tracking all the stores:
  2743   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
  2744   if (start >= ti_limit)  return FAIL;
  2746   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
  2747     if (i >= limit)  return -(int)i; // not found; here is where to put it
  2749     Node*    st     = in(i);
  2750     intptr_t st_off = get_store_offset(st, phase);
  2751     if (st_off < 0) {
  2752       if (st != zero_memory()) {
  2753         return FAIL;            // bail out if there is dead garbage
  2755     } else if (st_off > start) {
  2756       // ...we are done, since stores are ordered
  2757       if (st_off < start + size_in_bytes) {
  2758         return FAIL;            // the next store overlaps
  2760       return -(int)i;           // not found; here is where to put it
  2761     } else if (st_off < start) {
  2762       if (size_in_bytes != 0 &&
  2763           start < st_off + MAX_STORE &&
  2764           start < st_off + st->as_Store()->memory_size()) {
  2765         return FAIL;            // the previous store overlaps
  2767     } else {
  2768       if (size_in_bytes != 0 &&
  2769           st->as_Store()->memory_size() != size_in_bytes) {
  2770         return FAIL;            // mismatched store size
  2772       return i;
  2775     ++i;
  2779 // Look for a captured store which initializes at the offset 'start'
  2780 // with the given size.  If there is no such store, and no other
  2781 // initialization interferes, then return zero_memory (the memory
  2782 // projection of the AllocateNode).
  2783 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
  2784                                           PhaseTransform* phase) {
  2785   assert(stores_are_sane(phase), "");
  2786   int i = captured_store_insertion_point(start, size_in_bytes, phase);
  2787   if (i == 0) {
  2788     return NULL;                // something is dead
  2789   } else if (i < 0) {
  2790     return zero_memory();       // just primordial zero bits here
  2791   } else {
  2792     Node* st = in(i);           // here is the store at this position
  2793     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
  2794     return st;
  2798 // Create, as a raw pointer, an address within my new object at 'offset'.
  2799 Node* InitializeNode::make_raw_address(intptr_t offset,
  2800                                        PhaseTransform* phase) {
  2801   Node* addr = in(RawAddress);
  2802   if (offset != 0) {
  2803     Compile* C = phase->C;
  2804     addr = phase->transform( new (C, 4) AddPNode(C->top(), addr,
  2805                                                  phase->MakeConX(offset)) );
  2807   return addr;
  2810 // Clone the given store, converting it into a raw store
  2811 // initializing a field or element of my new object.
  2812 // Caller is responsible for retiring the original store,
  2813 // with subsume_node or the like.
  2814 //
  2815 // From the example above InitializeNode::InitializeNode,
  2816 // here are the old stores to be captured:
  2817 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
  2818 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
  2819 //
  2820 // Here is the changed code; note the extra edges on init:
  2821 //   alloc = (Allocate ...)
  2822 //   rawoop = alloc.RawAddress
  2823 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
  2824 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
  2825 //   init = (Initialize alloc.Control alloc.Memory rawoop
  2826 //                      rawstore1 rawstore2)
  2827 //
  2828 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
  2829                                     PhaseTransform* phase) {
  2830   assert(stores_are_sane(phase), "");
  2832   if (start < 0)  return NULL;
  2833   assert(can_capture_store(st, phase) == start, "sanity");
  2835   Compile* C = phase->C;
  2836   int size_in_bytes = st->memory_size();
  2837   int i = captured_store_insertion_point(start, size_in_bytes, phase);
  2838   if (i == 0)  return NULL;     // bail out
  2839   Node* prev_mem = NULL;        // raw memory for the captured store
  2840   if (i > 0) {
  2841     prev_mem = in(i);           // there is a pre-existing store under this one
  2842     set_req(i, C->top());       // temporarily disconnect it
  2843     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
  2844   } else {
  2845     i = -i;                     // no pre-existing store
  2846     prev_mem = zero_memory();   // a slice of the newly allocated object
  2847     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
  2848       set_req(--i, C->top());   // reuse this edge; it has been folded away
  2849     else
  2850       ins_req(i, C->top());     // build a new edge
  2852   Node* new_st = st->clone();
  2853   new_st->set_req(MemNode::Control, in(Control));
  2854   new_st->set_req(MemNode::Memory,  prev_mem);
  2855   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
  2856   new_st = phase->transform(new_st);
  2858   // At this point, new_st might have swallowed a pre-existing store
  2859   // at the same offset, or perhaps new_st might have disappeared,
  2860   // if it redundantly stored the same value (or zero to fresh memory).
  2862   // In any case, wire it in:
  2863   set_req(i, new_st);
  2865   // The caller may now kill the old guy.
  2866   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
  2867   assert(check_st == new_st || check_st == NULL, "must be findable");
  2868   assert(!is_complete(), "");
  2869   return new_st;
  2872 static bool store_constant(jlong* tiles, int num_tiles,
  2873                            intptr_t st_off, int st_size,
  2874                            jlong con) {
  2875   if ((st_off & (st_size-1)) != 0)
  2876     return false;               // strange store offset (assume size==2**N)
  2877   address addr = (address)tiles + st_off;
  2878   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
  2879   switch (st_size) {
  2880   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
  2881   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
  2882   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
  2883   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
  2884   default: return false;        // strange store size (detect size!=2**N here)
  2886   return true;                  // return success to caller
  2889 // Coalesce subword constants into int constants and possibly
  2890 // into long constants.  The goal, if the CPU permits,
  2891 // is to initialize the object with a small number of 64-bit tiles.
  2892 // Also, convert floating-point constants to bit patterns.
  2893 // Non-constants are not relevant to this pass.
  2894 //
  2895 // In terms of the running example on InitializeNode::InitializeNode
  2896 // and InitializeNode::capture_store, here is the transformation
  2897 // of rawstore1 and rawstore2 into rawstore12:
  2898 //   alloc = (Allocate ...)
  2899 //   rawoop = alloc.RawAddress
  2900 //   tile12 = 0x00010002
  2901 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
  2902 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
  2903 //
  2904 void
  2905 InitializeNode::coalesce_subword_stores(intptr_t header_size,
  2906                                         Node* size_in_bytes,
  2907                                         PhaseGVN* phase) {
  2908   Compile* C = phase->C;
  2910   assert(stores_are_sane(phase), "");
  2911   // Note:  After this pass, they are not completely sane,
  2912   // since there may be some overlaps.
  2914   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
  2916   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
  2917   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
  2918   size_limit = MIN2(size_limit, ti_limit);
  2919   size_limit = align_size_up(size_limit, BytesPerLong);
  2920   int num_tiles = size_limit / BytesPerLong;
  2922   // allocate space for the tile map:
  2923   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
  2924   jlong  tiles_buf[small_len];
  2925   Node*  nodes_buf[small_len];
  2926   jlong  inits_buf[small_len];
  2927   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
  2928                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
  2929   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
  2930                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
  2931   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
  2932                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
  2933   // tiles: exact bitwise model of all primitive constants
  2934   // nodes: last constant-storing node subsumed into the tiles model
  2935   // inits: which bytes (in each tile) are touched by any initializations
  2937   //// Pass A: Fill in the tile model with any relevant stores.
  2939   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
  2940   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
  2941   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
  2942   Node* zmem = zero_memory(); // initially zero memory state
  2943   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
  2944     Node* st = in(i);
  2945     intptr_t st_off = get_store_offset(st, phase);
  2947     // Figure out the store's offset and constant value:
  2948     if (st_off < header_size)             continue; //skip (ignore header)
  2949     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
  2950     int st_size = st->as_Store()->memory_size();
  2951     if (st_off + st_size > size_limit)    break;
  2953     // Record which bytes are touched, whether by constant or not.
  2954     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
  2955       continue;                 // skip (strange store size)
  2957     const Type* val = phase->type(st->in(MemNode::ValueIn));
  2958     if (!val->singleton())                continue; //skip (non-con store)
  2959     BasicType type = val->basic_type();
  2961     jlong con = 0;
  2962     switch (type) {
  2963     case T_INT:    con = val->is_int()->get_con();  break;
  2964     case T_LONG:   con = val->is_long()->get_con(); break;
  2965     case T_FLOAT:  con = jint_cast(val->getf());    break;
  2966     case T_DOUBLE: con = jlong_cast(val->getd());   break;
  2967     default:                              continue; //skip (odd store type)
  2970     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
  2971         st->Opcode() == Op_StoreL) {
  2972       continue;                 // This StoreL is already optimal.
  2975     // Store down the constant.
  2976     store_constant(tiles, num_tiles, st_off, st_size, con);
  2978     intptr_t j = st_off >> LogBytesPerLong;
  2980     if (type == T_INT && st_size == BytesPerInt
  2981         && (st_off & BytesPerInt) == BytesPerInt) {
  2982       jlong lcon = tiles[j];
  2983       if (!Matcher::isSimpleConstant64(lcon) &&
  2984           st->Opcode() == Op_StoreI) {
  2985         // This StoreI is already optimal by itself.
  2986         jint* intcon = (jint*) &tiles[j];
  2987         intcon[1] = 0;  // undo the store_constant()
  2989         // If the previous store is also optimal by itself, back up and
  2990         // undo the action of the previous loop iteration... if we can.
  2991         // But if we can't, just let the previous half take care of itself.
  2992         st = nodes[j];
  2993         st_off -= BytesPerInt;
  2994         con = intcon[0];
  2995         if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
  2996           assert(st_off >= header_size, "still ignoring header");
  2997           assert(get_store_offset(st, phase) == st_off, "must be");
  2998           assert(in(i-1) == zmem, "must be");
  2999           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
  3000           assert(con == tcon->is_int()->get_con(), "must be");
  3001           // Undo the effects of the previous loop trip, which swallowed st:
  3002           intcon[0] = 0;        // undo store_constant()
  3003           set_req(i-1, st);     // undo set_req(i, zmem)
  3004           nodes[j] = NULL;      // undo nodes[j] = st
  3005           --old_subword;        // undo ++old_subword
  3007         continue;               // This StoreI is already optimal.
  3011     // This store is not needed.
  3012     set_req(i, zmem);
  3013     nodes[j] = st;              // record for the moment
  3014     if (st_size < BytesPerLong) // something has changed
  3015           ++old_subword;        // includes int/float, but who's counting...
  3016     else  ++old_long;
  3019   if ((old_subword + old_long) == 0)
  3020     return;                     // nothing more to do
  3022   //// Pass B: Convert any non-zero tiles into optimal constant stores.
  3023   // Be sure to insert them before overlapping non-constant stores.
  3024   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
  3025   for (int j = 0; j < num_tiles; j++) {
  3026     jlong con  = tiles[j];
  3027     jlong init = inits[j];
  3028     if (con == 0)  continue;
  3029     jint con0,  con1;           // split the constant, address-wise
  3030     jint init0, init1;          // split the init map, address-wise
  3031     { union { jlong con; jint intcon[2]; } u;
  3032       u.con = con;
  3033       con0  = u.intcon[0];
  3034       con1  = u.intcon[1];
  3035       u.con = init;
  3036       init0 = u.intcon[0];
  3037       init1 = u.intcon[1];
  3040     Node* old = nodes[j];
  3041     assert(old != NULL, "need the prior store");
  3042     intptr_t offset = (j * BytesPerLong);
  3044     bool split = !Matcher::isSimpleConstant64(con);
  3046     if (offset < header_size) {
  3047       assert(offset + BytesPerInt >= header_size, "second int counts");
  3048       assert(*(jint*)&tiles[j] == 0, "junk in header");
  3049       split = true;             // only the second word counts
  3050       // Example:  int a[] = { 42 ... }
  3051     } else if (con0 == 0 && init0 == -1) {
  3052       split = true;             // first word is covered by full inits
  3053       // Example:  int a[] = { ... foo(), 42 ... }
  3054     } else if (con1 == 0 && init1 == -1) {
  3055       split = true;             // second word is covered by full inits
  3056       // Example:  int a[] = { ... 42, foo() ... }
  3059     // Here's a case where init0 is neither 0 nor -1:
  3060     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
  3061     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
  3062     // In this case the tile is not split; it is (jlong)42.
  3063     // The big tile is stored down, and then the foo() value is inserted.
  3064     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
  3066     Node* ctl = old->in(MemNode::Control);
  3067     Node* adr = make_raw_address(offset, phase);
  3068     const TypePtr* atp = TypeRawPtr::BOTTOM;
  3070     // One or two coalesced stores to plop down.
  3071     Node*    st[2];
  3072     intptr_t off[2];
  3073     int  nst = 0;
  3074     if (!split) {
  3075       ++new_long;
  3076       off[nst] = offset;
  3077       st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
  3078                                   phase->longcon(con), T_LONG);
  3079     } else {
  3080       // Omit either if it is a zero.
  3081       if (con0 != 0) {
  3082         ++new_int;
  3083         off[nst]  = offset;
  3084         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
  3085                                     phase->intcon(con0), T_INT);
  3087       if (con1 != 0) {
  3088         ++new_int;
  3089         offset += BytesPerInt;
  3090         adr = make_raw_address(offset, phase);
  3091         off[nst]  = offset;
  3092         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
  3093                                     phase->intcon(con1), T_INT);
  3097     // Insert second store first, then the first before the second.
  3098     // Insert each one just before any overlapping non-constant stores.
  3099     while (nst > 0) {
  3100       Node* st1 = st[--nst];
  3101       C->copy_node_notes_to(st1, old);
  3102       st1 = phase->transform(st1);
  3103       offset = off[nst];
  3104       assert(offset >= header_size, "do not smash header");
  3105       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
  3106       guarantee(ins_idx != 0, "must re-insert constant store");
  3107       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
  3108       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
  3109         set_req(--ins_idx, st1);
  3110       else
  3111         ins_req(ins_idx, st1);
  3115   if (PrintCompilation && WizardMode)
  3116     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
  3117                   old_subword, old_long, new_int, new_long);
  3118   if (C->log() != NULL)
  3119     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
  3120                    old_subword, old_long, new_int, new_long);
  3122   // Clean up any remaining occurrences of zmem:
  3123   remove_extra_zeroes();
  3126 // Explore forward from in(start) to find the first fully initialized
  3127 // word, and return its offset.  Skip groups of subword stores which
  3128 // together initialize full words.  If in(start) is itself part of a
  3129 // fully initialized word, return the offset of in(start).  If there
  3130 // are no following full-word stores, or if something is fishy, return
  3131 // a negative value.
  3132 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
  3133   int       int_map = 0;
  3134   intptr_t  int_map_off = 0;
  3135   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
  3137   for (uint i = start, limit = req(); i < limit; i++) {
  3138     Node* st = in(i);
  3140     intptr_t st_off = get_store_offset(st, phase);
  3141     if (st_off < 0)  break;  // return conservative answer
  3143     int st_size = st->as_Store()->memory_size();
  3144     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
  3145       return st_off;            // we found a complete word init
  3148     // update the map:
  3150     intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
  3151     if (this_int_off != int_map_off) {
  3152       // reset the map:
  3153       int_map = 0;
  3154       int_map_off = this_int_off;
  3157     int subword_off = st_off - this_int_off;
  3158     int_map |= right_n_bits(st_size) << subword_off;
  3159     if ((int_map & FULL_MAP) == FULL_MAP) {
  3160       return this_int_off;      // we found a complete word init
  3163     // Did this store hit or cross the word boundary?
  3164     intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
  3165     if (next_int_off == this_int_off + BytesPerInt) {
  3166       // We passed the current int, without fully initializing it.
  3167       int_map_off = next_int_off;
  3168       int_map >>= BytesPerInt;
  3169     } else if (next_int_off > this_int_off + BytesPerInt) {
  3170       // We passed the current and next int.
  3171       return this_int_off + BytesPerInt;
  3175   return -1;
  3179 // Called when the associated AllocateNode is expanded into CFG.
  3180 // At this point, we may perform additional optimizations.
  3181 // Linearize the stores by ascending offset, to make memory
  3182 // activity as coherent as possible.
  3183 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
  3184                                       intptr_t header_size,
  3185                                       Node* size_in_bytes,
  3186                                       PhaseGVN* phase) {
  3187   assert(!is_complete(), "not already complete");
  3188   assert(stores_are_sane(phase), "");
  3189   assert(allocation() != NULL, "must be present");
  3191   remove_extra_zeroes();
  3193   if (ReduceFieldZeroing || ReduceBulkZeroing)
  3194     // reduce instruction count for common initialization patterns
  3195     coalesce_subword_stores(header_size, size_in_bytes, phase);
  3197   Node* zmem = zero_memory();   // initially zero memory state
  3198   Node* inits = zmem;           // accumulating a linearized chain of inits
  3199   #ifdef ASSERT
  3200   intptr_t first_offset = allocation()->minimum_header_size();
  3201   intptr_t last_init_off = first_offset;  // previous init offset
  3202   intptr_t last_init_end = first_offset;  // previous init offset+size
  3203   intptr_t last_tile_end = first_offset;  // previous tile offset+size
  3204   #endif
  3205   intptr_t zeroes_done = header_size;
  3207   bool do_zeroing = true;       // we might give up if inits are very sparse
  3208   int  big_init_gaps = 0;       // how many large gaps have we seen?
  3210   if (ZeroTLAB)  do_zeroing = false;
  3211   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
  3213   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
  3214     Node* st = in(i);
  3215     intptr_t st_off = get_store_offset(st, phase);
  3216     if (st_off < 0)
  3217       break;                    // unknown junk in the inits
  3218     if (st->in(MemNode::Memory) != zmem)
  3219       break;                    // complicated store chains somehow in list
  3221     int st_size = st->as_Store()->memory_size();
  3222     intptr_t next_init_off = st_off + st_size;
  3224     if (do_zeroing && zeroes_done < next_init_off) {
  3225       // See if this store needs a zero before it or under it.
  3226       intptr_t zeroes_needed = st_off;
  3228       if (st_size < BytesPerInt) {
  3229         // Look for subword stores which only partially initialize words.
  3230         // If we find some, we must lay down some word-level zeroes first,
  3231         // underneath the subword stores.
  3232         //
  3233         // Examples:
  3234         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
  3235         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
  3236         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
  3237         //
  3238         // Note:  coalesce_subword_stores may have already done this,
  3239         // if it was prompted by constant non-zero subword initializers.
  3240         // But this case can still arise with non-constant stores.
  3242         intptr_t next_full_store = find_next_fullword_store(i, phase);
  3244         // In the examples above:
  3245         //   in(i)          p   q   r   s     x   y     z
  3246         //   st_off        12  13  14  15    12  13    14
  3247         //   st_size        1   1   1   1     1   1     1
  3248         //   next_full_s.  12  16  16  16    16  16    16
  3249         //   z's_done      12  16  16  16    12  16    12
  3250         //   z's_needed    12  16  16  16    16  16    16
  3251         //   zsize          0   0   0   0     4   0     4
  3252         if (next_full_store < 0) {
  3253           // Conservative tack:  Zero to end of current word.
  3254           zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
  3255         } else {
  3256           // Zero to beginning of next fully initialized word.
  3257           // Or, don't zero at all, if we are already in that word.
  3258           assert(next_full_store >= zeroes_needed, "must go forward");
  3259           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
  3260           zeroes_needed = next_full_store;
  3264       if (zeroes_needed > zeroes_done) {
  3265         intptr_t zsize = zeroes_needed - zeroes_done;
  3266         // Do some incremental zeroing on rawmem, in parallel with inits.
  3267         zeroes_done = align_size_down(zeroes_done, BytesPerInt);
  3268         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
  3269                                               zeroes_done, zeroes_needed,
  3270                                               phase);
  3271         zeroes_done = zeroes_needed;
  3272         if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
  3273           do_zeroing = false;   // leave the hole, next time
  3277     // Collect the store and move on:
  3278     st->set_req(MemNode::Memory, inits);
  3279     inits = st;                 // put it on the linearized chain
  3280     set_req(i, zmem);           // unhook from previous position
  3282     if (zeroes_done == st_off)
  3283       zeroes_done = next_init_off;
  3285     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
  3287     #ifdef ASSERT
  3288     // Various order invariants.  Weaker than stores_are_sane because
  3289     // a large constant tile can be filled in by smaller non-constant stores.
  3290     assert(st_off >= last_init_off, "inits do not reverse");
  3291     last_init_off = st_off;
  3292     const Type* val = NULL;
  3293     if (st_size >= BytesPerInt &&
  3294         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
  3295         (int)val->basic_type() < (int)T_OBJECT) {
  3296       assert(st_off >= last_tile_end, "tiles do not overlap");
  3297       assert(st_off >= last_init_end, "tiles do not overwrite inits");
  3298       last_tile_end = MAX2(last_tile_end, next_init_off);
  3299     } else {
  3300       intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
  3301       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
  3302       assert(st_off      >= last_init_end, "inits do not overlap");
  3303       last_init_end = next_init_off;  // it's a non-tile
  3305     #endif //ASSERT
  3308   remove_extra_zeroes();        // clear out all the zmems left over
  3309   add_req(inits);
  3311   if (!ZeroTLAB) {
  3312     // If anything remains to be zeroed, zero it all now.
  3313     zeroes_done = align_size_down(zeroes_done, BytesPerInt);
  3314     // if it is the last unused 4 bytes of an instance, forget about it
  3315     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
  3316     if (zeroes_done + BytesPerLong >= size_limit) {
  3317       assert(allocation() != NULL, "");
  3318       Node* klass_node = allocation()->in(AllocateNode::KlassNode);
  3319       ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
  3320       if (zeroes_done == k->layout_helper())
  3321         zeroes_done = size_limit;
  3323     if (zeroes_done < size_limit) {
  3324       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
  3325                                             zeroes_done, size_in_bytes, phase);
  3329   set_complete(phase);
  3330   return rawmem;
  3334 #ifdef ASSERT
  3335 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
  3336   if (is_complete())
  3337     return true;                // stores could be anything at this point
  3338   assert(allocation() != NULL, "must be present");
  3339   intptr_t last_off = allocation()->minimum_header_size();
  3340   for (uint i = InitializeNode::RawStores; i < req(); i++) {
  3341     Node* st = in(i);
  3342     intptr_t st_off = get_store_offset(st, phase);
  3343     if (st_off < 0)  continue;  // ignore dead garbage
  3344     if (last_off > st_off) {
  3345       tty->print_cr("*** bad store offset at %d: %d > %d", i, last_off, st_off);
  3346       this->dump(2);
  3347       assert(false, "ascending store offsets");
  3348       return false;
  3350     last_off = st_off + st->as_Store()->memory_size();
  3352   return true;
  3354 #endif //ASSERT
  3359 //============================MergeMemNode=====================================
  3360 //
  3361 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
  3362 // contributing store or call operations.  Each contributor provides the memory
  3363 // state for a particular "alias type" (see Compile::alias_type).  For example,
  3364 // if a MergeMem has an input X for alias category #6, then any memory reference
  3365 // to alias category #6 may use X as its memory state input, as an exact equivalent
  3366 // to using the MergeMem as a whole.
  3367 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
  3368 //
  3369 // (Here, the <N> notation gives the index of the relevant adr_type.)
  3370 //
  3371 // In one special case (and more cases in the future), alias categories overlap.
  3372 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
  3373 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
  3374 // it is exactly equivalent to that state W:
  3375 //   MergeMem(<Bot>: W) <==> W
  3376 //
  3377 // Usually, the merge has more than one input.  In that case, where inputs
  3378 // overlap (i.e., one is Bot), the narrower alias type determines the memory
  3379 // state for that type, and the wider alias type (Bot) fills in everywhere else:
  3380 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
  3381 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
  3382 //
  3383 // A merge can take a "wide" memory state as one of its narrow inputs.
  3384 // This simply means that the merge observes out only the relevant parts of
  3385 // the wide input.  That is, wide memory states arriving at narrow merge inputs
  3386 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
  3387 //
  3388 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
  3389 // and that memory slices "leak through":
  3390 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
  3391 //
  3392 // But, in such a cascade, repeated memory slices can "block the leak":
  3393 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
  3394 //
  3395 // In the last example, Y is not part of the combined memory state of the
  3396 // outermost MergeMem.  The system must, of course, prevent unschedulable
  3397 // memory states from arising, so you can be sure that the state Y is somehow
  3398 // a precursor to state Y'.
  3399 //
  3400 //
  3401 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
  3402 // of each MergeMemNode array are exactly the numerical alias indexes, including
  3403 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
  3404 // Compile::alias_type (and kin) produce and manage these indexes.
  3405 //
  3406 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
  3407 // (Note that this provides quick access to the top node inside MergeMem methods,
  3408 // without the need to reach out via TLS to Compile::current.)
  3409 //
  3410 // As a consequence of what was just described, a MergeMem that represents a full
  3411 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
  3412 // containing all alias categories.
  3413 //
  3414 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
  3415 //
  3416 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
  3417 // a memory state for the alias type <N>, or else the top node, meaning that
  3418 // there is no particular input for that alias type.  Note that the length of
  3419 // a MergeMem is variable, and may be extended at any time to accommodate new
  3420 // memory states at larger alias indexes.  When merges grow, they are of course
  3421 // filled with "top" in the unused in() positions.
  3422 //
  3423 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
  3424 // (Top was chosen because it works smoothly with passes like GCM.)
  3425 //
  3426 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
  3427 // the type of random VM bits like TLS references.)  Since it is always the
  3428 // first non-Bot memory slice, some low-level loops use it to initialize an
  3429 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
  3430 //
  3431 //
  3432 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
  3433 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
  3434 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
  3435 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
  3436 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
  3437 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
  3438 //
  3439 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
  3440 // really that different from the other memory inputs.  An abbreviation called
  3441 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
  3442 //
  3443 //
  3444 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
  3445 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
  3446 // that "emerges though" the base memory will be marked as excluding the alias types
  3447 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
  3448 //
  3449 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
  3450 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
  3451 //
  3452 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
  3453 // (It is currently unimplemented.)  As you can see, the resulting merge is
  3454 // actually a disjoint union of memory states, rather than an overlay.
  3455 //
  3457 //------------------------------MergeMemNode-----------------------------------
  3458 Node* MergeMemNode::make_empty_memory() {
  3459   Node* empty_memory = (Node*) Compile::current()->top();
  3460   assert(empty_memory->is_top(), "correct sentinel identity");
  3461   return empty_memory;
  3464 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
  3465   init_class_id(Class_MergeMem);
  3466   // all inputs are nullified in Node::Node(int)
  3467   // set_input(0, NULL);  // no control input
  3469   // Initialize the edges uniformly to top, for starters.
  3470   Node* empty_mem = make_empty_memory();
  3471   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
  3472     init_req(i,empty_mem);
  3474   assert(empty_memory() == empty_mem, "");
  3476   if( new_base != NULL && new_base->is_MergeMem() ) {
  3477     MergeMemNode* mdef = new_base->as_MergeMem();
  3478     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
  3479     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
  3480       mms.set_memory(mms.memory2());
  3482     assert(base_memory() == mdef->base_memory(), "");
  3483   } else {
  3484     set_base_memory(new_base);
  3488 // Make a new, untransformed MergeMem with the same base as 'mem'.
  3489 // If mem is itself a MergeMem, populate the result with the same edges.
  3490 MergeMemNode* MergeMemNode::make(Compile* C, Node* mem) {
  3491   return new(C, 1+Compile::AliasIdxRaw) MergeMemNode(mem);
  3494 //------------------------------cmp--------------------------------------------
  3495 uint MergeMemNode::hash() const { return NO_HASH; }
  3496 uint MergeMemNode::cmp( const Node &n ) const {
  3497   return (&n == this);          // Always fail except on self
  3500 //------------------------------Identity---------------------------------------
  3501 Node* MergeMemNode::Identity(PhaseTransform *phase) {
  3502   // Identity if this merge point does not record any interesting memory
  3503   // disambiguations.
  3504   Node* base_mem = base_memory();
  3505   Node* empty_mem = empty_memory();
  3506   if (base_mem != empty_mem) {  // Memory path is not dead?
  3507     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3508       Node* mem = in(i);
  3509       if (mem != empty_mem && mem != base_mem) {
  3510         return this;            // Many memory splits; no change
  3514   return base_mem;              // No memory splits; ID on the one true input
  3517 //------------------------------Ideal------------------------------------------
  3518 // This method is invoked recursively on chains of MergeMem nodes
  3519 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  3520   // Remove chain'd MergeMems
  3521   //
  3522   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
  3523   // relative to the "in(Bot)".  Since we are patching both at the same time,
  3524   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
  3525   // but rewrite each "in(i)" relative to the new "in(Bot)".
  3526   Node *progress = NULL;
  3529   Node* old_base = base_memory();
  3530   Node* empty_mem = empty_memory();
  3531   if (old_base == empty_mem)
  3532     return NULL; // Dead memory path.
  3534   MergeMemNode* old_mbase;
  3535   if (old_base != NULL && old_base->is_MergeMem())
  3536     old_mbase = old_base->as_MergeMem();
  3537   else
  3538     old_mbase = NULL;
  3539   Node* new_base = old_base;
  3541   // simplify stacked MergeMems in base memory
  3542   if (old_mbase)  new_base = old_mbase->base_memory();
  3544   // the base memory might contribute new slices beyond my req()
  3545   if (old_mbase)  grow_to_match(old_mbase);
  3547   // Look carefully at the base node if it is a phi.
  3548   PhiNode* phi_base;
  3549   if (new_base != NULL && new_base->is_Phi())
  3550     phi_base = new_base->as_Phi();
  3551   else
  3552     phi_base = NULL;
  3554   Node*    phi_reg = NULL;
  3555   uint     phi_len = (uint)-1;
  3556   if (phi_base != NULL && !phi_base->is_copy()) {
  3557     // do not examine phi if degraded to a copy
  3558     phi_reg = phi_base->region();
  3559     phi_len = phi_base->req();
  3560     // see if the phi is unfinished
  3561     for (uint i = 1; i < phi_len; i++) {
  3562       if (phi_base->in(i) == NULL) {
  3563         // incomplete phi; do not look at it yet!
  3564         phi_reg = NULL;
  3565         phi_len = (uint)-1;
  3566         break;
  3571   // Note:  We do not call verify_sparse on entry, because inputs
  3572   // can normalize to the base_memory via subsume_node or similar
  3573   // mechanisms.  This method repairs that damage.
  3575   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
  3577   // Look at each slice.
  3578   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3579     Node* old_in = in(i);
  3580     // calculate the old memory value
  3581     Node* old_mem = old_in;
  3582     if (old_mem == empty_mem)  old_mem = old_base;
  3583     assert(old_mem == memory_at(i), "");
  3585     // maybe update (reslice) the old memory value
  3587     // simplify stacked MergeMems
  3588     Node* new_mem = old_mem;
  3589     MergeMemNode* old_mmem;
  3590     if (old_mem != NULL && old_mem->is_MergeMem())
  3591       old_mmem = old_mem->as_MergeMem();
  3592     else
  3593       old_mmem = NULL;
  3594     if (old_mmem == this) {
  3595       // This can happen if loops break up and safepoints disappear.
  3596       // A merge of BotPtr (default) with a RawPtr memory derived from a
  3597       // safepoint can be rewritten to a merge of the same BotPtr with
  3598       // the BotPtr phi coming into the loop.  If that phi disappears
  3599       // also, we can end up with a self-loop of the mergemem.
  3600       // In general, if loops degenerate and memory effects disappear,
  3601       // a mergemem can be left looking at itself.  This simply means
  3602       // that the mergemem's default should be used, since there is
  3603       // no longer any apparent effect on this slice.
  3604       // Note: If a memory slice is a MergeMem cycle, it is unreachable
  3605       //       from start.  Update the input to TOP.
  3606       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
  3608     else if (old_mmem != NULL) {
  3609       new_mem = old_mmem->memory_at(i);
  3611     // else preceeding memory was not a MergeMem
  3613     // replace equivalent phis (unfortunately, they do not GVN together)
  3614     if (new_mem != NULL && new_mem != new_base &&
  3615         new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
  3616       if (new_mem->is_Phi()) {
  3617         PhiNode* phi_mem = new_mem->as_Phi();
  3618         for (uint i = 1; i < phi_len; i++) {
  3619           if (phi_base->in(i) != phi_mem->in(i)) {
  3620             phi_mem = NULL;
  3621             break;
  3624         if (phi_mem != NULL) {
  3625           // equivalent phi nodes; revert to the def
  3626           new_mem = new_base;
  3631     // maybe store down a new value
  3632     Node* new_in = new_mem;
  3633     if (new_in == new_base)  new_in = empty_mem;
  3635     if (new_in != old_in) {
  3636       // Warning:  Do not combine this "if" with the previous "if"
  3637       // A memory slice might have be be rewritten even if it is semantically
  3638       // unchanged, if the base_memory value has changed.
  3639       set_req(i, new_in);
  3640       progress = this;          // Report progress
  3644   if (new_base != old_base) {
  3645     set_req(Compile::AliasIdxBot, new_base);
  3646     // Don't use set_base_memory(new_base), because we need to update du.
  3647     assert(base_memory() == new_base, "");
  3648     progress = this;
  3651   if( base_memory() == this ) {
  3652     // a self cycle indicates this memory path is dead
  3653     set_req(Compile::AliasIdxBot, empty_mem);
  3656   // Resolve external cycles by calling Ideal on a MergeMem base_memory
  3657   // Recursion must occur after the self cycle check above
  3658   if( base_memory()->is_MergeMem() ) {
  3659     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
  3660     Node *m = phase->transform(new_mbase);  // Rollup any cycles
  3661     if( m != NULL && (m->is_top() ||
  3662         m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
  3663       // propagate rollup of dead cycle to self
  3664       set_req(Compile::AliasIdxBot, empty_mem);
  3668   if( base_memory() == empty_mem ) {
  3669     progress = this;
  3670     // Cut inputs during Parse phase only.
  3671     // During Optimize phase a dead MergeMem node will be subsumed by Top.
  3672     if( !can_reshape ) {
  3673       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3674         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
  3679   if( !progress && base_memory()->is_Phi() && can_reshape ) {
  3680     // Check if PhiNode::Ideal's "Split phis through memory merges"
  3681     // transform should be attempted. Look for this->phi->this cycle.
  3682     uint merge_width = req();
  3683     if (merge_width > Compile::AliasIdxRaw) {
  3684       PhiNode* phi = base_memory()->as_Phi();
  3685       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
  3686         if (phi->in(i) == this) {
  3687           phase->is_IterGVN()->_worklist.push(phi);
  3688           break;
  3694   assert(progress || verify_sparse(), "please, no dups of base");
  3695   return progress;
  3698 //-------------------------set_base_memory-------------------------------------
  3699 void MergeMemNode::set_base_memory(Node *new_base) {
  3700   Node* empty_mem = empty_memory();
  3701   set_req(Compile::AliasIdxBot, new_base);
  3702   assert(memory_at(req()) == new_base, "must set default memory");
  3703   // Clear out other occurrences of new_base:
  3704   if (new_base != empty_mem) {
  3705     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3706       if (in(i) == new_base)  set_req(i, empty_mem);
  3711 //------------------------------out_RegMask------------------------------------
  3712 const RegMask &MergeMemNode::out_RegMask() const {
  3713   return RegMask::Empty;
  3716 //------------------------------dump_spec--------------------------------------
  3717 #ifndef PRODUCT
  3718 void MergeMemNode::dump_spec(outputStream *st) const {
  3719   st->print(" {");
  3720   Node* base_mem = base_memory();
  3721   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
  3722     Node* mem = memory_at(i);
  3723     if (mem == base_mem) { st->print(" -"); continue; }
  3724     st->print( " N%d:", mem->_idx );
  3725     Compile::current()->get_adr_type(i)->dump_on(st);
  3727   st->print(" }");
  3729 #endif // !PRODUCT
  3732 #ifdef ASSERT
  3733 static bool might_be_same(Node* a, Node* b) {
  3734   if (a == b)  return true;
  3735   if (!(a->is_Phi() || b->is_Phi()))  return false;
  3736   // phis shift around during optimization
  3737   return true;  // pretty stupid...
  3740 // verify a narrow slice (either incoming or outgoing)
  3741 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
  3742   if (!VerifyAliases)       return;  // don't bother to verify unless requested
  3743   if (is_error_reported())  return;  // muzzle asserts when debugging an error
  3744   if (Node::in_dump())      return;  // muzzle asserts when printing
  3745   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
  3746   assert(n != NULL, "");
  3747   // Elide intervening MergeMem's
  3748   while (n->is_MergeMem()) {
  3749     n = n->as_MergeMem()->memory_at(alias_idx);
  3751   Compile* C = Compile::current();
  3752   const TypePtr* n_adr_type = n->adr_type();
  3753   if (n == m->empty_memory()) {
  3754     // Implicit copy of base_memory()
  3755   } else if (n_adr_type != TypePtr::BOTTOM) {
  3756     assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
  3757     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
  3758   } else {
  3759     // A few places like make_runtime_call "know" that VM calls are narrow,
  3760     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
  3761     bool expected_wide_mem = false;
  3762     if (n == m->base_memory()) {
  3763       expected_wide_mem = true;
  3764     } else if (alias_idx == Compile::AliasIdxRaw ||
  3765                n == m->memory_at(Compile::AliasIdxRaw)) {
  3766       expected_wide_mem = true;
  3767     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
  3768       // memory can "leak through" calls on channels that
  3769       // are write-once.  Allow this also.
  3770       expected_wide_mem = true;
  3772     assert(expected_wide_mem, "expected narrow slice replacement");
  3775 #else // !ASSERT
  3776 #define verify_memory_slice(m,i,n) (0)  // PRODUCT version is no-op
  3777 #endif
  3780 //-----------------------------memory_at---------------------------------------
  3781 Node* MergeMemNode::memory_at(uint alias_idx) const {
  3782   assert(alias_idx >= Compile::AliasIdxRaw ||
  3783          alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
  3784          "must avoid base_memory and AliasIdxTop");
  3786   // Otherwise, it is a narrow slice.
  3787   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
  3788   Compile *C = Compile::current();
  3789   if (is_empty_memory(n)) {
  3790     // the array is sparse; empty slots are the "top" node
  3791     n = base_memory();
  3792     assert(Node::in_dump()
  3793            || n == NULL || n->bottom_type() == Type::TOP
  3794            || n->adr_type() == TypePtr::BOTTOM
  3795            || n->adr_type() == TypeRawPtr::BOTTOM
  3796            || Compile::current()->AliasLevel() == 0,
  3797            "must be a wide memory");
  3798     // AliasLevel == 0 if we are organizing the memory states manually.
  3799     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
  3800   } else {
  3801     // make sure the stored slice is sane
  3802     #ifdef ASSERT
  3803     if (is_error_reported() || Node::in_dump()) {
  3804     } else if (might_be_same(n, base_memory())) {
  3805       // Give it a pass:  It is a mostly harmless repetition of the base.
  3806       // This can arise normally from node subsumption during optimization.
  3807     } else {
  3808       verify_memory_slice(this, alias_idx, n);
  3810     #endif
  3812   return n;
  3815 //---------------------------set_memory_at-------------------------------------
  3816 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
  3817   verify_memory_slice(this, alias_idx, n);
  3818   Node* empty_mem = empty_memory();
  3819   if (n == base_memory())  n = empty_mem;  // collapse default
  3820   uint need_req = alias_idx+1;
  3821   if (req() < need_req) {
  3822     if (n == empty_mem)  return;  // already the default, so do not grow me
  3823     // grow the sparse array
  3824     do {
  3825       add_req(empty_mem);
  3826     } while (req() < need_req);
  3828   set_req( alias_idx, n );
  3833 //--------------------------iteration_setup------------------------------------
  3834 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
  3835   if (other != NULL) {
  3836     grow_to_match(other);
  3837     // invariant:  the finite support of mm2 is within mm->req()
  3838     #ifdef ASSERT
  3839     for (uint i = req(); i < other->req(); i++) {
  3840       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
  3842     #endif
  3844   // Replace spurious copies of base_memory by top.
  3845   Node* base_mem = base_memory();
  3846   if (base_mem != NULL && !base_mem->is_top()) {
  3847     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
  3848       if (in(i) == base_mem)
  3849         set_req(i, empty_memory());
  3854 //---------------------------grow_to_match-------------------------------------
  3855 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
  3856   Node* empty_mem = empty_memory();
  3857   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
  3858   // look for the finite support of the other memory
  3859   for (uint i = other->req(); --i >= req(); ) {
  3860     if (other->in(i) != empty_mem) {
  3861       uint new_len = i+1;
  3862       while (req() < new_len)  add_req(empty_mem);
  3863       break;
  3868 //---------------------------verify_sparse-------------------------------------
  3869 #ifndef PRODUCT
  3870 bool MergeMemNode::verify_sparse() const {
  3871   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
  3872   Node* base_mem = base_memory();
  3873   // The following can happen in degenerate cases, since empty==top.
  3874   if (is_empty_memory(base_mem))  return true;
  3875   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3876     assert(in(i) != NULL, "sane slice");
  3877     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
  3879   return true;
  3882 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
  3883   Node* n;
  3884   n = mm->in(idx);
  3885   if (mem == n)  return true;  // might be empty_memory()
  3886   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
  3887   if (mem == n)  return true;
  3888   while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
  3889     if (mem == n)  return true;
  3890     if (n == NULL)  break;
  3892   return false;
  3894 #endif // !PRODUCT

mercurial