src/share/vm/opto/library_call.cpp

Thu, 29 May 2008 16:22:09 -0700

author
rasbold
date
Thu, 29 May 2008 16:22:09 -0700
changeset 604
9148c65abefc
parent 599
c436414a719e
child 609
510f98a80563
permissions
-rw-r--r--

6695049: (coll) Create an x86 intrinsic for Arrays.equals
Summary: Intrinsify java/util/Arrays.equals(char[], char[])
Reviewed-by: kvn, never

     1 /*
     2  * Copyright 1999-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_library_call.cpp.incl"
    28 class LibraryIntrinsic : public InlineCallGenerator {
    29   // Extend the set of intrinsics known to the runtime:
    30  public:
    31  private:
    32   bool             _is_virtual;
    33   vmIntrinsics::ID _intrinsic_id;
    35  public:
    36   LibraryIntrinsic(ciMethod* m, bool is_virtual, vmIntrinsics::ID id)
    37     : InlineCallGenerator(m),
    38       _is_virtual(is_virtual),
    39       _intrinsic_id(id)
    40   {
    41   }
    42   virtual bool is_intrinsic() const { return true; }
    43   virtual bool is_virtual()   const { return _is_virtual; }
    44   virtual JVMState* generate(JVMState* jvms);
    45   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
    46 };
    49 // Local helper class for LibraryIntrinsic:
    50 class LibraryCallKit : public GraphKit {
    51  private:
    52   LibraryIntrinsic* _intrinsic;   // the library intrinsic being called
    54  public:
    55   LibraryCallKit(JVMState* caller, LibraryIntrinsic* intrinsic)
    56     : GraphKit(caller),
    57       _intrinsic(intrinsic)
    58   {
    59   }
    61   ciMethod*         caller()    const    { return jvms()->method(); }
    62   int               bci()       const    { return jvms()->bci(); }
    63   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
    64   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
    65   ciMethod*         callee()    const    { return _intrinsic->method(); }
    66   ciSignature*      signature() const    { return callee()->signature(); }
    67   int               arg_size()  const    { return callee()->arg_size(); }
    69   bool try_to_inline();
    71   // Helper functions to inline natives
    72   void push_result(RegionNode* region, PhiNode* value);
    73   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
    74   Node* generate_slow_guard(Node* test, RegionNode* region);
    75   Node* generate_fair_guard(Node* test, RegionNode* region);
    76   Node* generate_negative_guard(Node* index, RegionNode* region,
    77                                 // resulting CastII of index:
    78                                 Node* *pos_index = NULL);
    79   Node* generate_nonpositive_guard(Node* index, bool never_negative,
    80                                    // resulting CastII of index:
    81                                    Node* *pos_index = NULL);
    82   Node* generate_limit_guard(Node* offset, Node* subseq_length,
    83                              Node* array_length,
    84                              RegionNode* region);
    85   Node* generate_current_thread(Node* &tls_output);
    86   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
    87                               bool disjoint_bases, const char* &name);
    88   Node* load_mirror_from_klass(Node* klass);
    89   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
    90                                       int nargs,
    91                                       RegionNode* region, int null_path,
    92                                       int offset);
    93   Node* load_klass_from_mirror(Node* mirror, bool never_see_null, int nargs,
    94                                RegionNode* region, int null_path) {
    95     int offset = java_lang_Class::klass_offset_in_bytes();
    96     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
    97                                          region, null_path,
    98                                          offset);
    99   }
   100   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
   101                                      int nargs,
   102                                      RegionNode* region, int null_path) {
   103     int offset = java_lang_Class::array_klass_offset_in_bytes();
   104     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
   105                                          region, null_path,
   106                                          offset);
   107   }
   108   Node* generate_access_flags_guard(Node* kls,
   109                                     int modifier_mask, int modifier_bits,
   110                                     RegionNode* region);
   111   Node* generate_interface_guard(Node* kls, RegionNode* region);
   112   Node* generate_array_guard(Node* kls, RegionNode* region) {
   113     return generate_array_guard_common(kls, region, false, false);
   114   }
   115   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
   116     return generate_array_guard_common(kls, region, false, true);
   117   }
   118   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
   119     return generate_array_guard_common(kls, region, true, false);
   120   }
   121   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
   122     return generate_array_guard_common(kls, region, true, true);
   123   }
   124   Node* generate_array_guard_common(Node* kls, RegionNode* region,
   125                                     bool obj_array, bool not_array);
   126   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
   127   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
   128                                      bool is_virtual = false, bool is_static = false);
   129   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
   130     return generate_method_call(method_id, false, true);
   131   }
   132   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
   133     return generate_method_call(method_id, true, false);
   134   }
   136   bool inline_string_compareTo();
   137   bool inline_string_indexOf();
   138   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
   139   Node* pop_math_arg();
   140   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
   141   bool inline_math_native(vmIntrinsics::ID id);
   142   bool inline_trig(vmIntrinsics::ID id);
   143   bool inline_trans(vmIntrinsics::ID id);
   144   bool inline_abs(vmIntrinsics::ID id);
   145   bool inline_sqrt(vmIntrinsics::ID id);
   146   bool inline_pow(vmIntrinsics::ID id);
   147   bool inline_exp(vmIntrinsics::ID id);
   148   bool inline_min_max(vmIntrinsics::ID id);
   149   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
   150   // This returns Type::AnyPtr, RawPtr, or OopPtr.
   151   int classify_unsafe_addr(Node* &base, Node* &offset);
   152   Node* make_unsafe_address(Node* base, Node* offset);
   153   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
   154   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
   155   bool inline_unsafe_allocate();
   156   bool inline_unsafe_copyMemory();
   157   bool inline_native_currentThread();
   158   bool inline_native_time_funcs(bool isNano);
   159   bool inline_native_isInterrupted();
   160   bool inline_native_Class_query(vmIntrinsics::ID id);
   161   bool inline_native_subtype_check();
   163   bool inline_native_newArray();
   164   bool inline_native_getLength();
   165   bool inline_array_copyOf(bool is_copyOfRange);
   166   bool inline_array_equals();
   167   bool inline_native_clone(bool is_virtual);
   168   bool inline_native_Reflection_getCallerClass();
   169   bool inline_native_AtomicLong_get();
   170   bool inline_native_AtomicLong_attemptUpdate();
   171   bool is_method_invoke_or_aux_frame(JVMState* jvms);
   172   // Helper function for inlining native object hash method
   173   bool inline_native_hashcode(bool is_virtual, bool is_static);
   174   bool inline_native_getClass();
   176   // Helper functions for inlining arraycopy
   177   bool inline_arraycopy();
   178   void generate_arraycopy(const TypePtr* adr_type,
   179                           BasicType basic_elem_type,
   180                           Node* src,  Node* src_offset,
   181                           Node* dest, Node* dest_offset,
   182                           Node* copy_length,
   183                           int nargs,  // arguments on stack for debug info
   184                           bool disjoint_bases = false,
   185                           bool length_never_negative = false,
   186                           RegionNode* slow_region = NULL);
   187   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
   188                                                 RegionNode* slow_region);
   189   void generate_clear_array(const TypePtr* adr_type,
   190                             Node* dest,
   191                             BasicType basic_elem_type,
   192                             Node* slice_off,
   193                             Node* slice_len,
   194                             Node* slice_end);
   195   bool generate_block_arraycopy(const TypePtr* adr_type,
   196                                 BasicType basic_elem_type,
   197                                 AllocateNode* alloc,
   198                                 Node* src,  Node* src_offset,
   199                                 Node* dest, Node* dest_offset,
   200                                 Node* dest_size);
   201   void generate_slow_arraycopy(const TypePtr* adr_type,
   202                                Node* src,  Node* src_offset,
   203                                Node* dest, Node* dest_offset,
   204                                Node* copy_length,
   205                                int nargs);
   206   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
   207                                      Node* dest_elem_klass,
   208                                      Node* src,  Node* src_offset,
   209                                      Node* dest, Node* dest_offset,
   210                                      Node* copy_length, int nargs);
   211   Node* generate_generic_arraycopy(const TypePtr* adr_type,
   212                                    Node* src,  Node* src_offset,
   213                                    Node* dest, Node* dest_offset,
   214                                    Node* copy_length, int nargs);
   215   void generate_unchecked_arraycopy(const TypePtr* adr_type,
   216                                     BasicType basic_elem_type,
   217                                     bool disjoint_bases,
   218                                     Node* src,  Node* src_offset,
   219                                     Node* dest, Node* dest_offset,
   220                                     Node* copy_length);
   221   bool inline_unsafe_CAS(BasicType type);
   222   bool inline_unsafe_ordered_store(BasicType type);
   223   bool inline_fp_conversions(vmIntrinsics::ID id);
   224   bool inline_reverseBytes(vmIntrinsics::ID id);
   225 };
   228 //---------------------------make_vm_intrinsic----------------------------
   229 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
   230   vmIntrinsics::ID id = m->intrinsic_id();
   231   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
   233   if (DisableIntrinsic[0] != '\0'
   234       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
   235     // disabled by a user request on the command line:
   236     // example: -XX:DisableIntrinsic=_hashCode,_getClass
   237     return NULL;
   238   }
   240   if (!m->is_loaded()) {
   241     // do not attempt to inline unloaded methods
   242     return NULL;
   243   }
   245   // Only a few intrinsics implement a virtual dispatch.
   246   // They are expensive calls which are also frequently overridden.
   247   if (is_virtual) {
   248     switch (id) {
   249     case vmIntrinsics::_hashCode:
   250     case vmIntrinsics::_clone:
   251       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
   252       break;
   253     default:
   254       return NULL;
   255     }
   256   }
   258   // -XX:-InlineNatives disables nearly all intrinsics:
   259   if (!InlineNatives) {
   260     switch (id) {
   261     case vmIntrinsics::_indexOf:
   262     case vmIntrinsics::_compareTo:
   263     case vmIntrinsics::_equalsC:
   264       break;  // InlineNatives does not control String.compareTo
   265     default:
   266       return NULL;
   267     }
   268   }
   270   switch (id) {
   271   case vmIntrinsics::_compareTo:
   272     if (!SpecialStringCompareTo)  return NULL;
   273     break;
   274   case vmIntrinsics::_indexOf:
   275     if (!SpecialStringIndexOf)  return NULL;
   276     break;
   277   case vmIntrinsics::_equalsC:
   278     if (!SpecialArraysEquals)  return NULL;
   279     break;
   280   case vmIntrinsics::_arraycopy:
   281     if (!InlineArrayCopy)  return NULL;
   282     break;
   283   case vmIntrinsics::_copyMemory:
   284     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
   285     if (!InlineArrayCopy)  return NULL;
   286     break;
   287   case vmIntrinsics::_hashCode:
   288     if (!InlineObjectHash)  return NULL;
   289     break;
   290   case vmIntrinsics::_clone:
   291   case vmIntrinsics::_copyOf:
   292   case vmIntrinsics::_copyOfRange:
   293     if (!InlineObjectCopy)  return NULL;
   294     // These also use the arraycopy intrinsic mechanism:
   295     if (!InlineArrayCopy)  return NULL;
   296     break;
   297   case vmIntrinsics::_checkIndex:
   298     // We do not intrinsify this.  The optimizer does fine with it.
   299     return NULL;
   301   case vmIntrinsics::_get_AtomicLong:
   302   case vmIntrinsics::_attemptUpdate:
   303     if (!InlineAtomicLong)  return NULL;
   304     break;
   306   case vmIntrinsics::_Object_init:
   307   case vmIntrinsics::_invoke:
   308     // We do not intrinsify these; they are marked for other purposes.
   309     return NULL;
   311   case vmIntrinsics::_getCallerClass:
   312     if (!UseNewReflection)  return NULL;
   313     if (!InlineReflectionGetCallerClass)  return NULL;
   314     if (!JDK_Version::is_gte_jdk14x_version())  return NULL;
   315     break;
   317  default:
   318     break;
   319   }
   321   // -XX:-InlineClassNatives disables natives from the Class class.
   322   // The flag applies to all reflective calls, notably Array.newArray
   323   // (visible to Java programmers as Array.newInstance).
   324   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
   325       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
   326     if (!InlineClassNatives)  return NULL;
   327   }
   329   // -XX:-InlineThreadNatives disables natives from the Thread class.
   330   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
   331     if (!InlineThreadNatives)  return NULL;
   332   }
   334   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
   335   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
   336       m->holder()->name() == ciSymbol::java_lang_Float() ||
   337       m->holder()->name() == ciSymbol::java_lang_Double()) {
   338     if (!InlineMathNatives)  return NULL;
   339   }
   341   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
   342   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
   343     if (!InlineUnsafeOps)  return NULL;
   344   }
   346   return new LibraryIntrinsic(m, is_virtual, (vmIntrinsics::ID) id);
   347 }
   349 //----------------------register_library_intrinsics-----------------------
   350 // Initialize this file's data structures, for each Compile instance.
   351 void Compile::register_library_intrinsics() {
   352   // Nothing to do here.
   353 }
   355 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
   356   LibraryCallKit kit(jvms, this);
   357   Compile* C = kit.C;
   358   int nodes = C->unique();
   359 #ifndef PRODUCT
   360   if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
   361     char buf[1000];
   362     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
   363     tty->print_cr("Intrinsic %s", str);
   364   }
   365 #endif
   366   if (kit.try_to_inline()) {
   367     if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
   368       tty->print("Inlining intrinsic %s%s at bci:%d in",
   369                  vmIntrinsics::name_at(intrinsic_id()),
   370                  (is_virtual() ? " (virtual)" : ""), kit.bci());
   371       kit.caller()->print_short_name(tty);
   372       tty->print_cr(" (%d bytes)", kit.caller()->code_size());
   373     }
   374     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
   375     if (C->log()) {
   376       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
   377                      vmIntrinsics::name_at(intrinsic_id()),
   378                      (is_virtual() ? " virtual='1'" : ""),
   379                      C->unique() - nodes);
   380     }
   381     return kit.transfer_exceptions_into_jvms();
   382   }
   384   if (PrintIntrinsics) {
   385     switch (intrinsic_id()) {
   386     case vmIntrinsics::_invoke:
   387     case vmIntrinsics::_Object_init:
   388       // We do not expect to inline these, so do not produce any noise about them.
   389       break;
   390     default:
   391       tty->print("Did not inline intrinsic %s%s at bci:%d in",
   392                  vmIntrinsics::name_at(intrinsic_id()),
   393                  (is_virtual() ? " (virtual)" : ""), kit.bci());
   394       kit.caller()->print_short_name(tty);
   395       tty->print_cr(" (%d bytes)", kit.caller()->code_size());
   396     }
   397   }
   398   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
   399   return NULL;
   400 }
   402 bool LibraryCallKit::try_to_inline() {
   403   // Handle symbolic names for otherwise undistinguished boolean switches:
   404   const bool is_store       = true;
   405   const bool is_native_ptr  = true;
   406   const bool is_static      = true;
   408   switch (intrinsic_id()) {
   409   case vmIntrinsics::_hashCode:
   410     return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
   411   case vmIntrinsics::_identityHashCode:
   412     return inline_native_hashcode(/*!virtual*/ false, is_static);
   413   case vmIntrinsics::_getClass:
   414     return inline_native_getClass();
   416   case vmIntrinsics::_dsin:
   417   case vmIntrinsics::_dcos:
   418   case vmIntrinsics::_dtan:
   419   case vmIntrinsics::_dabs:
   420   case vmIntrinsics::_datan2:
   421   case vmIntrinsics::_dsqrt:
   422   case vmIntrinsics::_dexp:
   423   case vmIntrinsics::_dlog:
   424   case vmIntrinsics::_dlog10:
   425   case vmIntrinsics::_dpow:
   426     return inline_math_native(intrinsic_id());
   428   case vmIntrinsics::_min:
   429   case vmIntrinsics::_max:
   430     return inline_min_max(intrinsic_id());
   432   case vmIntrinsics::_arraycopy:
   433     return inline_arraycopy();
   435   case vmIntrinsics::_compareTo:
   436     return inline_string_compareTo();
   437   case vmIntrinsics::_indexOf:
   438     return inline_string_indexOf();
   440   case vmIntrinsics::_getObject:
   441     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, false);
   442   case vmIntrinsics::_getBoolean:
   443     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, false);
   444   case vmIntrinsics::_getByte:
   445     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, false);
   446   case vmIntrinsics::_getShort:
   447     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, false);
   448   case vmIntrinsics::_getChar:
   449     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, false);
   450   case vmIntrinsics::_getInt:
   451     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, false);
   452   case vmIntrinsics::_getLong:
   453     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, false);
   454   case vmIntrinsics::_getFloat:
   455     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, false);
   456   case vmIntrinsics::_getDouble:
   457     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, false);
   459   case vmIntrinsics::_putObject:
   460     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, false);
   461   case vmIntrinsics::_putBoolean:
   462     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, false);
   463   case vmIntrinsics::_putByte:
   464     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, false);
   465   case vmIntrinsics::_putShort:
   466     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, false);
   467   case vmIntrinsics::_putChar:
   468     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, false);
   469   case vmIntrinsics::_putInt:
   470     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, false);
   471   case vmIntrinsics::_putLong:
   472     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, false);
   473   case vmIntrinsics::_putFloat:
   474     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, false);
   475   case vmIntrinsics::_putDouble:
   476     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, false);
   478   case vmIntrinsics::_getByte_raw:
   479     return inline_unsafe_access(is_native_ptr, !is_store, T_BYTE, false);
   480   case vmIntrinsics::_getShort_raw:
   481     return inline_unsafe_access(is_native_ptr, !is_store, T_SHORT, false);
   482   case vmIntrinsics::_getChar_raw:
   483     return inline_unsafe_access(is_native_ptr, !is_store, T_CHAR, false);
   484   case vmIntrinsics::_getInt_raw:
   485     return inline_unsafe_access(is_native_ptr, !is_store, T_INT, false);
   486   case vmIntrinsics::_getLong_raw:
   487     return inline_unsafe_access(is_native_ptr, !is_store, T_LONG, false);
   488   case vmIntrinsics::_getFloat_raw:
   489     return inline_unsafe_access(is_native_ptr, !is_store, T_FLOAT, false);
   490   case vmIntrinsics::_getDouble_raw:
   491     return inline_unsafe_access(is_native_ptr, !is_store, T_DOUBLE, false);
   492   case vmIntrinsics::_getAddress_raw:
   493     return inline_unsafe_access(is_native_ptr, !is_store, T_ADDRESS, false);
   495   case vmIntrinsics::_putByte_raw:
   496     return inline_unsafe_access(is_native_ptr, is_store, T_BYTE, false);
   497   case vmIntrinsics::_putShort_raw:
   498     return inline_unsafe_access(is_native_ptr, is_store, T_SHORT, false);
   499   case vmIntrinsics::_putChar_raw:
   500     return inline_unsafe_access(is_native_ptr, is_store, T_CHAR, false);
   501   case vmIntrinsics::_putInt_raw:
   502     return inline_unsafe_access(is_native_ptr, is_store, T_INT, false);
   503   case vmIntrinsics::_putLong_raw:
   504     return inline_unsafe_access(is_native_ptr, is_store, T_LONG, false);
   505   case vmIntrinsics::_putFloat_raw:
   506     return inline_unsafe_access(is_native_ptr, is_store, T_FLOAT, false);
   507   case vmIntrinsics::_putDouble_raw:
   508     return inline_unsafe_access(is_native_ptr, is_store, T_DOUBLE, false);
   509   case vmIntrinsics::_putAddress_raw:
   510     return inline_unsafe_access(is_native_ptr, is_store, T_ADDRESS, false);
   512   case vmIntrinsics::_getObjectVolatile:
   513     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, true);
   514   case vmIntrinsics::_getBooleanVolatile:
   515     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, true);
   516   case vmIntrinsics::_getByteVolatile:
   517     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, true);
   518   case vmIntrinsics::_getShortVolatile:
   519     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, true);
   520   case vmIntrinsics::_getCharVolatile:
   521     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, true);
   522   case vmIntrinsics::_getIntVolatile:
   523     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, true);
   524   case vmIntrinsics::_getLongVolatile:
   525     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, true);
   526   case vmIntrinsics::_getFloatVolatile:
   527     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, true);
   528   case vmIntrinsics::_getDoubleVolatile:
   529     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, true);
   531   case vmIntrinsics::_putObjectVolatile:
   532     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, true);
   533   case vmIntrinsics::_putBooleanVolatile:
   534     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, true);
   535   case vmIntrinsics::_putByteVolatile:
   536     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, true);
   537   case vmIntrinsics::_putShortVolatile:
   538     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, true);
   539   case vmIntrinsics::_putCharVolatile:
   540     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, true);
   541   case vmIntrinsics::_putIntVolatile:
   542     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, true);
   543   case vmIntrinsics::_putLongVolatile:
   544     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, true);
   545   case vmIntrinsics::_putFloatVolatile:
   546     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, true);
   547   case vmIntrinsics::_putDoubleVolatile:
   548     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, true);
   550   case vmIntrinsics::_prefetchRead:
   551     return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
   552   case vmIntrinsics::_prefetchWrite:
   553     return inline_unsafe_prefetch(!is_native_ptr, is_store, !is_static);
   554   case vmIntrinsics::_prefetchReadStatic:
   555     return inline_unsafe_prefetch(!is_native_ptr, !is_store, is_static);
   556   case vmIntrinsics::_prefetchWriteStatic:
   557     return inline_unsafe_prefetch(!is_native_ptr, is_store, is_static);
   559   case vmIntrinsics::_compareAndSwapObject:
   560     return inline_unsafe_CAS(T_OBJECT);
   561   case vmIntrinsics::_compareAndSwapInt:
   562     return inline_unsafe_CAS(T_INT);
   563   case vmIntrinsics::_compareAndSwapLong:
   564     return inline_unsafe_CAS(T_LONG);
   566   case vmIntrinsics::_putOrderedObject:
   567     return inline_unsafe_ordered_store(T_OBJECT);
   568   case vmIntrinsics::_putOrderedInt:
   569     return inline_unsafe_ordered_store(T_INT);
   570   case vmIntrinsics::_putOrderedLong:
   571     return inline_unsafe_ordered_store(T_LONG);
   573   case vmIntrinsics::_currentThread:
   574     return inline_native_currentThread();
   575   case vmIntrinsics::_isInterrupted:
   576     return inline_native_isInterrupted();
   578   case vmIntrinsics::_currentTimeMillis:
   579     return inline_native_time_funcs(false);
   580   case vmIntrinsics::_nanoTime:
   581     return inline_native_time_funcs(true);
   582   case vmIntrinsics::_allocateInstance:
   583     return inline_unsafe_allocate();
   584   case vmIntrinsics::_copyMemory:
   585     return inline_unsafe_copyMemory();
   586   case vmIntrinsics::_newArray:
   587     return inline_native_newArray();
   588   case vmIntrinsics::_getLength:
   589     return inline_native_getLength();
   590   case vmIntrinsics::_copyOf:
   591     return inline_array_copyOf(false);
   592   case vmIntrinsics::_copyOfRange:
   593     return inline_array_copyOf(true);
   594   case vmIntrinsics::_equalsC:
   595     return inline_array_equals();
   596   case vmIntrinsics::_clone:
   597     return inline_native_clone(intrinsic()->is_virtual());
   599   case vmIntrinsics::_isAssignableFrom:
   600     return inline_native_subtype_check();
   602   case vmIntrinsics::_isInstance:
   603   case vmIntrinsics::_getModifiers:
   604   case vmIntrinsics::_isInterface:
   605   case vmIntrinsics::_isArray:
   606   case vmIntrinsics::_isPrimitive:
   607   case vmIntrinsics::_getSuperclass:
   608   case vmIntrinsics::_getComponentType:
   609   case vmIntrinsics::_getClassAccessFlags:
   610     return inline_native_Class_query(intrinsic_id());
   612   case vmIntrinsics::_floatToRawIntBits:
   613   case vmIntrinsics::_floatToIntBits:
   614   case vmIntrinsics::_intBitsToFloat:
   615   case vmIntrinsics::_doubleToRawLongBits:
   616   case vmIntrinsics::_doubleToLongBits:
   617   case vmIntrinsics::_longBitsToDouble:
   618     return inline_fp_conversions(intrinsic_id());
   620   case vmIntrinsics::_reverseBytes_i:
   621   case vmIntrinsics::_reverseBytes_l:
   622     return inline_reverseBytes((vmIntrinsics::ID) intrinsic_id());
   624   case vmIntrinsics::_get_AtomicLong:
   625     return inline_native_AtomicLong_get();
   626   case vmIntrinsics::_attemptUpdate:
   627     return inline_native_AtomicLong_attemptUpdate();
   629   case vmIntrinsics::_getCallerClass:
   630     return inline_native_Reflection_getCallerClass();
   632   default:
   633     // If you get here, it may be that someone has added a new intrinsic
   634     // to the list in vmSymbols.hpp without implementing it here.
   635 #ifndef PRODUCT
   636     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
   637       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
   638                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
   639     }
   640 #endif
   641     return false;
   642   }
   643 }
   645 //------------------------------push_result------------------------------
   646 // Helper function for finishing intrinsics.
   647 void LibraryCallKit::push_result(RegionNode* region, PhiNode* value) {
   648   record_for_igvn(region);
   649   set_control(_gvn.transform(region));
   650   BasicType value_type = value->type()->basic_type();
   651   push_node(value_type, _gvn.transform(value));
   652 }
   654 //------------------------------generate_guard---------------------------
   655 // Helper function for generating guarded fast-slow graph structures.
   656 // The given 'test', if true, guards a slow path.  If the test fails
   657 // then a fast path can be taken.  (We generally hope it fails.)
   658 // In all cases, GraphKit::control() is updated to the fast path.
   659 // The returned value represents the control for the slow path.
   660 // The return value is never 'top'; it is either a valid control
   661 // or NULL if it is obvious that the slow path can never be taken.
   662 // Also, if region and the slow control are not NULL, the slow edge
   663 // is appended to the region.
   664 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
   665   if (stopped()) {
   666     // Already short circuited.
   667     return NULL;
   668   }
   670   // Build an if node and its projections.
   671   // If test is true we take the slow path, which we assume is uncommon.
   672   if (_gvn.type(test) == TypeInt::ZERO) {
   673     // The slow branch is never taken.  No need to build this guard.
   674     return NULL;
   675   }
   677   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
   679   Node* if_slow = _gvn.transform( new (C, 1) IfTrueNode(iff) );
   680   if (if_slow == top()) {
   681     // The slow branch is never taken.  No need to build this guard.
   682     return NULL;
   683   }
   685   if (region != NULL)
   686     region->add_req(if_slow);
   688   Node* if_fast = _gvn.transform( new (C, 1) IfFalseNode(iff) );
   689   set_control(if_fast);
   691   return if_slow;
   692 }
   694 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
   695   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
   696 }
   697 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
   698   return generate_guard(test, region, PROB_FAIR);
   699 }
   701 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
   702                                                      Node* *pos_index) {
   703   if (stopped())
   704     return NULL;                // already stopped
   705   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
   706     return NULL;                // index is already adequately typed
   707   Node* cmp_lt = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
   708   Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
   709   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
   710   if (is_neg != NULL && pos_index != NULL) {
   711     // Emulate effect of Parse::adjust_map_after_if.
   712     Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS);
   713     ccast->set_req(0, control());
   714     (*pos_index) = _gvn.transform(ccast);
   715   }
   716   return is_neg;
   717 }
   719 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
   720                                                         Node* *pos_index) {
   721   if (stopped())
   722     return NULL;                // already stopped
   723   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
   724     return NULL;                // index is already adequately typed
   725   Node* cmp_le = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
   726   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
   727   Node* bol_le = _gvn.transform( new (C, 2) BoolNode(cmp_le, le_or_eq) );
   728   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
   729   if (is_notp != NULL && pos_index != NULL) {
   730     // Emulate effect of Parse::adjust_map_after_if.
   731     Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS1);
   732     ccast->set_req(0, control());
   733     (*pos_index) = _gvn.transform(ccast);
   734   }
   735   return is_notp;
   736 }
   738 // Make sure that 'position' is a valid limit index, in [0..length].
   739 // There are two equivalent plans for checking this:
   740 //   A. (offset + copyLength)  unsigned<=  arrayLength
   741 //   B. offset  <=  (arrayLength - copyLength)
   742 // We require that all of the values above, except for the sum and
   743 // difference, are already known to be non-negative.
   744 // Plan A is robust in the face of overflow, if offset and copyLength
   745 // are both hugely positive.
   746 //
   747 // Plan B is less direct and intuitive, but it does not overflow at
   748 // all, since the difference of two non-negatives is always
   749 // representable.  Whenever Java methods must perform the equivalent
   750 // check they generally use Plan B instead of Plan A.
   751 // For the moment we use Plan A.
   752 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
   753                                                   Node* subseq_length,
   754                                                   Node* array_length,
   755                                                   RegionNode* region) {
   756   if (stopped())
   757     return NULL;                // already stopped
   758   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
   759   if (zero_offset && _gvn.eqv_uncast(subseq_length, array_length))
   760     return NULL;                // common case of whole-array copy
   761   Node* last = subseq_length;
   762   if (!zero_offset)             // last += offset
   763     last = _gvn.transform( new (C, 3) AddINode(last, offset));
   764   Node* cmp_lt = _gvn.transform( new (C, 3) CmpUNode(array_length, last) );
   765   Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
   766   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
   767   return is_over;
   768 }
   771 //--------------------------generate_current_thread--------------------
   772 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
   773   ciKlass*    thread_klass = env()->Thread_klass();
   774   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
   775   Node* thread = _gvn.transform(new (C, 1) ThreadLocalNode());
   776   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
   777   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
   778   tls_output = thread;
   779   return threadObj;
   780 }
   783 //------------------------------inline_string_compareTo------------------------
   784 bool LibraryCallKit::inline_string_compareTo() {
   786   const int value_offset = java_lang_String::value_offset_in_bytes();
   787   const int count_offset = java_lang_String::count_offset_in_bytes();
   788   const int offset_offset = java_lang_String::offset_offset_in_bytes();
   790   _sp += 2;
   791   Node *argument = pop();  // pop non-receiver first:  it was pushed second
   792   Node *receiver = pop();
   794   // Null check on self without removing any arguments.  The argument
   795   // null check technically happens in the wrong place, which can lead to
   796   // invalid stack traces when string compare is inlined into a method
   797   // which handles NullPointerExceptions.
   798   _sp += 2;
   799   receiver = do_null_check(receiver, T_OBJECT);
   800   argument = do_null_check(argument, T_OBJECT);
   801   _sp -= 2;
   802   if (stopped()) {
   803     return true;
   804   }
   806   ciInstanceKlass* klass = env()->String_klass();
   807   const TypeInstPtr* string_type =
   808     TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
   810   Node* compare =
   811     _gvn.transform(new (C, 7) StrCompNode(
   812                         control(),
   813                         memory(TypeAryPtr::CHARS),
   814                         memory(string_type->add_offset(value_offset)),
   815                         memory(string_type->add_offset(count_offset)),
   816                         memory(string_type->add_offset(offset_offset)),
   817                         receiver,
   818                         argument));
   819   push(compare);
   820   return true;
   821 }
   823 //------------------------------inline_array_equals----------------------------
   824 bool LibraryCallKit::inline_array_equals() {
   826   _sp += 2;
   827   Node *argument2 = pop();
   828   Node *argument1 = pop();
   830   Node* equals =
   831     _gvn.transform(new (C, 3) AryEqNode(control(),
   832                                         argument1,
   833                                         argument2)
   834                    );
   835   push(equals);
   836   return true;
   837 }
   839 // Java version of String.indexOf(constant string)
   840 // class StringDecl {
   841 //   StringDecl(char[] ca) {
   842 //     offset = 0;
   843 //     count = ca.length;
   844 //     value = ca;
   845 //   }
   846 //   int offset;
   847 //   int count;
   848 //   char[] value;
   849 // }
   850 //
   851 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
   852 //                             int targetOffset, int cache_i, int md2) {
   853 //   int cache = cache_i;
   854 //   int sourceOffset = string_object.offset;
   855 //   int sourceCount = string_object.count;
   856 //   int targetCount = target_object.length;
   857 //
   858 //   int targetCountLess1 = targetCount - 1;
   859 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
   860 //
   861 //   char[] source = string_object.value;
   862 //   char[] target = target_object;
   863 //   int lastChar = target[targetCountLess1];
   864 //
   865 //  outer_loop:
   866 //   for (int i = sourceOffset; i < sourceEnd; ) {
   867 //     int src = source[i + targetCountLess1];
   868 //     if (src == lastChar) {
   869 //       // With random strings and a 4-character alphabet,
   870 //       // reverse matching at this point sets up 0.8% fewer
   871 //       // frames, but (paradoxically) makes 0.3% more probes.
   872 //       // Since those probes are nearer the lastChar probe,
   873 //       // there is may be a net D$ win with reverse matching.
   874 //       // But, reversing loop inhibits unroll of inner loop
   875 //       // for unknown reason.  So, does running outer loop from
   876 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
   877 //       for (int j = 0; j < targetCountLess1; j++) {
   878 //         if (target[targetOffset + j] != source[i+j]) {
   879 //           if ((cache & (1 << source[i+j])) == 0) {
   880 //             if (md2 < j+1) {
   881 //               i += j+1;
   882 //               continue outer_loop;
   883 //             }
   884 //           }
   885 //           i += md2;
   886 //           continue outer_loop;
   887 //         }
   888 //       }
   889 //       return i - sourceOffset;
   890 //     }
   891 //     if ((cache & (1 << src)) == 0) {
   892 //       i += targetCountLess1;
   893 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
   894 //     i++;
   895 //   }
   896 //   return -1;
   897 // }
   899 //------------------------------string_indexOf------------------------
   900 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
   901                                      jint cache_i, jint md2_i) {
   903   Node* no_ctrl  = NULL;
   904   float likely   = PROB_LIKELY(0.9);
   905   float unlikely = PROB_UNLIKELY(0.9);
   907   const int value_offset  = java_lang_String::value_offset_in_bytes();
   908   const int count_offset  = java_lang_String::count_offset_in_bytes();
   909   const int offset_offset = java_lang_String::offset_offset_in_bytes();
   911   ciInstanceKlass* klass = env()->String_klass();
   912   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
   913   const TypeAryPtr*  source_type = TypeAryPtr::make(TypePtr::NotNull, TypeAry::make(TypeInt::CHAR,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, 0);
   915   Node* sourceOffseta = basic_plus_adr(string_object, string_object, offset_offset);
   916   Node* sourceOffset  = make_load(no_ctrl, sourceOffseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
   917   Node* sourceCounta  = basic_plus_adr(string_object, string_object, count_offset);
   918   Node* sourceCount   = make_load(no_ctrl, sourceCounta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
   919   Node* sourcea       = basic_plus_adr(string_object, string_object, value_offset);
   920   Node* source        = make_load(no_ctrl, sourcea, source_type, T_OBJECT, string_type->add_offset(value_offset));
   922   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array)) );
   923   jint target_length = target_array->length();
   924   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
   925   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
   927   IdealKit kit(gvn(), control(), merged_memory());
   928 #define __ kit.
   929   Node* zero             = __ ConI(0);
   930   Node* one              = __ ConI(1);
   931   Node* cache            = __ ConI(cache_i);
   932   Node* md2              = __ ConI(md2_i);
   933   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
   934   Node* targetCount      = __ ConI(target_length);
   935   Node* targetCountLess1 = __ ConI(target_length - 1);
   936   Node* targetOffset     = __ ConI(targetOffset_i);
   937   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
   939   IdealVariable rtn(kit), i(kit), j(kit); __ declares_done();
   940   Node* outer_loop = __ make_label(2 /* goto */);
   941   Node* return_    = __ make_label(1);
   943   __ set(rtn,__ ConI(-1));
   944   __ loop(i, sourceOffset, BoolTest::lt, sourceEnd); {
   945        Node* i2  = __ AddI(__ value(i), targetCountLess1);
   946        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
   947        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
   948        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
   949          __ loop(j, zero, BoolTest::lt, targetCountLess1); {
   950               Node* tpj = __ AddI(targetOffset, __ value(j));
   951               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
   952               Node* ipj  = __ AddI(__ value(i), __ value(j));
   953               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
   954               __ if_then(targ, BoolTest::ne, src2); {
   955                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
   956                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
   957                     __ increment(i, __ AddI(__ value(j), one));
   958                     __ goto_(outer_loop);
   959                   } __ end_if(); __ dead(j);
   960                 }__ end_if(); __ dead(j);
   961                 __ increment(i, md2);
   962                 __ goto_(outer_loop);
   963               }__ end_if();
   964               __ increment(j, one);
   965          }__ end_loop(); __ dead(j);
   966          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
   967          __ goto_(return_);
   968        }__ end_if();
   969        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
   970          __ increment(i, targetCountLess1);
   971        }__ end_if();
   972        __ increment(i, one);
   973        __ bind(outer_loop);
   974   }__ end_loop(); __ dead(i);
   975   __ bind(return_);
   976   __ drain_delay_transform();
   978   set_control(__ ctrl());
   979   Node* result = __ value(rtn);
   980 #undef __
   981   C->set_has_loops(true);
   982   return result;
   983 }
   986 //------------------------------inline_string_indexOf------------------------
   987 bool LibraryCallKit::inline_string_indexOf() {
   989   _sp += 2;
   990   Node *argument = pop();  // pop non-receiver first:  it was pushed second
   991   Node *receiver = pop();
   993   // don't intrinsify is argument isn't a constant string.
   994   if (!argument->is_Con()) {
   995     return false;
   996   }
   997   const TypeOopPtr* str_type = _gvn.type(argument)->isa_oopptr();
   998   if (str_type == NULL) {
   999     return false;
  1001   ciInstanceKlass* klass = env()->String_klass();
  1002   ciObject* str_const = str_type->const_oop();
  1003   if (str_const == NULL || str_const->klass() != klass) {
  1004     return false;
  1006   ciInstance* str = str_const->as_instance();
  1007   assert(str != NULL, "must be instance");
  1009   const int value_offset  = java_lang_String::value_offset_in_bytes();
  1010   const int count_offset  = java_lang_String::count_offset_in_bytes();
  1011   const int offset_offset = java_lang_String::offset_offset_in_bytes();
  1013   ciObject* v = str->field_value_by_offset(value_offset).as_object();
  1014   int       o = str->field_value_by_offset(offset_offset).as_int();
  1015   int       c = str->field_value_by_offset(count_offset).as_int();
  1016   ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
  1018   // constant strings have no offset and count == length which
  1019   // simplifies the resulting code somewhat so lets optimize for that.
  1020   if (o != 0 || c != pat->length()) {
  1021     return false;
  1024   // Null check on self without removing any arguments.  The argument
  1025   // null check technically happens in the wrong place, which can lead to
  1026   // invalid stack traces when string compare is inlined into a method
  1027   // which handles NullPointerExceptions.
  1028   _sp += 2;
  1029   receiver = do_null_check(receiver, T_OBJECT);
  1030   // No null check on the argument is needed since it's a constant String oop.
  1031   _sp -= 2;
  1032   if (stopped()) {
  1033     return true;
  1036   // The null string as a pattern always returns 0 (match at beginning of string)
  1037   if (c == 0) {
  1038     push(intcon(0));
  1039     return true;
  1042   jchar lastChar = pat->char_at(o + (c - 1));
  1043   int cache = 0;
  1044   int i;
  1045   for (i = 0; i < c - 1; i++) {
  1046     assert(i < pat->length(), "out of range");
  1047     cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
  1050   int md2 = c;
  1051   for (i = 0; i < c - 1; i++) {
  1052     assert(i < pat->length(), "out of range");
  1053     if (pat->char_at(o + i) == lastChar) {
  1054       md2 = (c - 1) - i;
  1058   Node* result = string_indexOf(receiver, pat, o, cache, md2);
  1059   push(result);
  1060   return true;
  1063 //--------------------------pop_math_arg--------------------------------
  1064 // Pop a double argument to a math function from the stack
  1065 // rounding it if necessary.
  1066 Node * LibraryCallKit::pop_math_arg() {
  1067   Node *arg = pop_pair();
  1068   if( Matcher::strict_fp_requires_explicit_rounding && UseSSE<=1 )
  1069     arg = _gvn.transform( new (C, 2) RoundDoubleNode(0, arg) );
  1070   return arg;
  1073 //------------------------------inline_trig----------------------------------
  1074 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
  1075 // argument reduction which will turn into a fast/slow diamond.
  1076 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
  1077   _sp += arg_size();            // restore stack pointer
  1078   Node* arg = pop_math_arg();
  1079   Node* trig = NULL;
  1081   switch (id) {
  1082   case vmIntrinsics::_dsin:
  1083     trig = _gvn.transform((Node*)new (C, 2) SinDNode(arg));
  1084     break;
  1085   case vmIntrinsics::_dcos:
  1086     trig = _gvn.transform((Node*)new (C, 2) CosDNode(arg));
  1087     break;
  1088   case vmIntrinsics::_dtan:
  1089     trig = _gvn.transform((Node*)new (C, 2) TanDNode(arg));
  1090     break;
  1091   default:
  1092     assert(false, "bad intrinsic was passed in");
  1093     return false;
  1096   // Rounding required?  Check for argument reduction!
  1097   if( Matcher::strict_fp_requires_explicit_rounding ) {
  1099     static const double     pi_4 =  0.7853981633974483;
  1100     static const double neg_pi_4 = -0.7853981633974483;
  1101     // pi/2 in 80-bit extended precision
  1102     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
  1103     // -pi/2 in 80-bit extended precision
  1104     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
  1105     // Cutoff value for using this argument reduction technique
  1106     //static const double    pi_2_minus_epsilon =  1.564660403643354;
  1107     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
  1109     // Pseudocode for sin:
  1110     // if (x <= Math.PI / 4.0) {
  1111     //   if (x >= -Math.PI / 4.0) return  fsin(x);
  1112     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
  1113     // } else {
  1114     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
  1115     // }
  1116     // return StrictMath.sin(x);
  1118     // Pseudocode for cos:
  1119     // if (x <= Math.PI / 4.0) {
  1120     //   if (x >= -Math.PI / 4.0) return  fcos(x);
  1121     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
  1122     // } else {
  1123     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
  1124     // }
  1125     // return StrictMath.cos(x);
  1127     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
  1128     // requires a special machine instruction to load it.  Instead we'll try
  1129     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
  1130     // probably do the math inside the SIN encoding.
  1132     // Make the merge point
  1133     RegionNode *r = new (C, 3) RegionNode(3);
  1134     Node *phi = new (C, 3) PhiNode(r,Type::DOUBLE);
  1136     // Flatten arg so we need only 1 test
  1137     Node *abs = _gvn.transform(new (C, 2) AbsDNode(arg));
  1138     // Node for PI/4 constant
  1139     Node *pi4 = makecon(TypeD::make(pi_4));
  1140     // Check PI/4 : abs(arg)
  1141     Node *cmp = _gvn.transform(new (C, 3) CmpDNode(pi4,abs));
  1142     // Check: If PI/4 < abs(arg) then go slow
  1143     Node *bol = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::lt ) );
  1144     // Branch either way
  1145     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1146     set_control(opt_iff(r,iff));
  1148     // Set fast path result
  1149     phi->init_req(2,trig);
  1151     // Slow path - non-blocking leaf call
  1152     Node* call = NULL;
  1153     switch (id) {
  1154     case vmIntrinsics::_dsin:
  1155       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1156                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
  1157                                "Sin", NULL, arg, top());
  1158       break;
  1159     case vmIntrinsics::_dcos:
  1160       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1161                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
  1162                                "Cos", NULL, arg, top());
  1163       break;
  1164     case vmIntrinsics::_dtan:
  1165       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1166                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
  1167                                "Tan", NULL, arg, top());
  1168       break;
  1170     assert(control()->in(0) == call, "");
  1171     Node* slow_result = _gvn.transform(new (C, 1) ProjNode(call,TypeFunc::Parms));
  1172     r->init_req(1,control());
  1173     phi->init_req(1,slow_result);
  1175     // Post-merge
  1176     set_control(_gvn.transform(r));
  1177     record_for_igvn(r);
  1178     trig = _gvn.transform(phi);
  1180     C->set_has_split_ifs(true); // Has chance for split-if optimization
  1182   // Push result back on JVM stack
  1183   push_pair(trig);
  1184   return true;
  1187 //------------------------------inline_sqrt-------------------------------------
  1188 // Inline square root instruction, if possible.
  1189 bool LibraryCallKit::inline_sqrt(vmIntrinsics::ID id) {
  1190   assert(id == vmIntrinsics::_dsqrt, "Not square root");
  1191   _sp += arg_size();        // restore stack pointer
  1192   push_pair(_gvn.transform(new (C, 2) SqrtDNode(0, pop_math_arg())));
  1193   return true;
  1196 //------------------------------inline_abs-------------------------------------
  1197 // Inline absolute value instruction, if possible.
  1198 bool LibraryCallKit::inline_abs(vmIntrinsics::ID id) {
  1199   assert(id == vmIntrinsics::_dabs, "Not absolute value");
  1200   _sp += arg_size();        // restore stack pointer
  1201   push_pair(_gvn.transform(new (C, 2) AbsDNode(pop_math_arg())));
  1202   return true;
  1205 //------------------------------inline_exp-------------------------------------
  1206 // Inline exp instructions, if possible.  The Intel hardware only misses
  1207 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
  1208 bool LibraryCallKit::inline_exp(vmIntrinsics::ID id) {
  1209   assert(id == vmIntrinsics::_dexp, "Not exp");
  1211   // If this inlining ever returned NaN in the past, we do not intrinsify it
  1212   // every again.  NaN results requires StrictMath.exp handling.
  1213   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  1215   // Do not intrinsify on older platforms which lack cmove.
  1216   if (ConditionalMoveLimit == 0)  return false;
  1218   _sp += arg_size();        // restore stack pointer
  1219   Node *x = pop_math_arg();
  1220   Node *result = _gvn.transform(new (C, 2) ExpDNode(0,x));
  1222   //-------------------
  1223   //result=(result.isNaN())? StrictMath::exp():result;
  1224   // Check: If isNaN() by checking result!=result? then go to Strict Math
  1225   Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
  1226   // Build the boolean node
  1227   Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
  1229   { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
  1230     // End the current control-flow path
  1231     push_pair(x);
  1232     // Math.exp intrinsic returned a NaN, which requires StrictMath.exp
  1233     // to handle.  Recompile without intrinsifying Math.exp
  1234     uncommon_trap(Deoptimization::Reason_intrinsic,
  1235                   Deoptimization::Action_make_not_entrant);
  1238   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1240   push_pair(result);
  1242   return true;
  1245 //------------------------------inline_pow-------------------------------------
  1246 // Inline power instructions, if possible.
  1247 bool LibraryCallKit::inline_pow(vmIntrinsics::ID id) {
  1248   assert(id == vmIntrinsics::_dpow, "Not pow");
  1250   // If this inlining ever returned NaN in the past, we do not intrinsify it
  1251   // every again.  NaN results requires StrictMath.pow handling.
  1252   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  1254   // Do not intrinsify on older platforms which lack cmove.
  1255   if (ConditionalMoveLimit == 0)  return false;
  1257   // Pseudocode for pow
  1258   // if (x <= 0.0) {
  1259   //   if ((double)((int)y)==y) { // if y is int
  1260   //     result = ((1&(int)y)==0)?-DPow(abs(x), y):DPow(abs(x), y)
  1261   //   } else {
  1262   //     result = NaN;
  1263   //   }
  1264   // } else {
  1265   //   result = DPow(x,y);
  1266   // }
  1267   // if (result != result)?  {
  1268   //   ucommon_trap();
  1269   // }
  1270   // return result;
  1272   _sp += arg_size();        // restore stack pointer
  1273   Node* y = pop_math_arg();
  1274   Node* x = pop_math_arg();
  1276   Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, x, y) );
  1278   // Short form: if not top-level (i.e., Math.pow but inlining Math.pow
  1279   // inside of something) then skip the fancy tests and just check for
  1280   // NaN result.
  1281   Node *result = NULL;
  1282   if( jvms()->depth() >= 1 ) {
  1283     result = fast_result;
  1284   } else {
  1286     // Set the merge point for If node with condition of (x <= 0.0)
  1287     // There are four possible paths to region node and phi node
  1288     RegionNode *r = new (C, 4) RegionNode(4);
  1289     Node *phi = new (C, 4) PhiNode(r, Type::DOUBLE);
  1291     // Build the first if node: if (x <= 0.0)
  1292     // Node for 0 constant
  1293     Node *zeronode = makecon(TypeD::ZERO);
  1294     // Check x:0
  1295     Node *cmp = _gvn.transform(new (C, 3) CmpDNode(x, zeronode));
  1296     // Check: If (x<=0) then go complex path
  1297     Node *bol1 = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::le ) );
  1298     // Branch either way
  1299     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1300     Node *opt_test = _gvn.transform(if1);
  1301     //assert( opt_test->is_If(), "Expect an IfNode");
  1302     IfNode *opt_if1 = (IfNode*)opt_test;
  1303     // Fast path taken; set region slot 3
  1304     Node *fast_taken = _gvn.transform( new (C, 1) IfFalseNode(opt_if1) );
  1305     r->init_req(3,fast_taken); // Capture fast-control
  1307     // Fast path not-taken, i.e. slow path
  1308     Node *complex_path = _gvn.transform( new (C, 1) IfTrueNode(opt_if1) );
  1310     // Set fast path result
  1311     Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, y, x) );
  1312     phi->init_req(3, fast_result);
  1314     // Complex path
  1315     // Build the second if node (if y is int)
  1316     // Node for (int)y
  1317     Node *inty = _gvn.transform( new (C, 2) ConvD2INode(y));
  1318     // Node for (double)((int) y)
  1319     Node *doubleinty= _gvn.transform( new (C, 2) ConvI2DNode(inty));
  1320     // Check (double)((int) y) : y
  1321     Node *cmpinty= _gvn.transform(new (C, 3) CmpDNode(doubleinty, y));
  1322     // Check if (y isn't int) then go to slow path
  1324     Node *bol2 = _gvn.transform( new (C, 2) BoolNode( cmpinty, BoolTest::ne ) );
  1325     // Branch eith way
  1326     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1327     Node *slow_path = opt_iff(r,if2); // Set region path 2
  1329     // Calculate DPow(abs(x), y)*(1 & (int)y)
  1330     // Node for constant 1
  1331     Node *conone = intcon(1);
  1332     // 1& (int)y
  1333     Node *signnode= _gvn.transform( new (C, 3) AndINode(conone, inty) );
  1334     // zero node
  1335     Node *conzero = intcon(0);
  1336     // Check (1&(int)y)==0?
  1337     Node *cmpeq1 = _gvn.transform(new (C, 3) CmpINode(signnode, conzero));
  1338     // Check if (1&(int)y)!=0?, if so the result is negative
  1339     Node *bol3 = _gvn.transform( new (C, 2) BoolNode( cmpeq1, BoolTest::ne ) );
  1340     // abs(x)
  1341     Node *absx=_gvn.transform( new (C, 2) AbsDNode(x));
  1342     // abs(x)^y
  1343     Node *absxpowy = _gvn.transform( new (C, 3) PowDNode(0, y, absx) );
  1344     // -abs(x)^y
  1345     Node *negabsxpowy = _gvn.transform(new (C, 2) NegDNode (absxpowy));
  1346     // (1&(int)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
  1347     Node *signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
  1348     // Set complex path fast result
  1349     phi->init_req(2, signresult);
  1351     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  1352     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
  1353     r->init_req(1,slow_path);
  1354     phi->init_req(1,slow_result);
  1356     // Post merge
  1357     set_control(_gvn.transform(r));
  1358     record_for_igvn(r);
  1359     result=_gvn.transform(phi);
  1362   //-------------------
  1363   //result=(result.isNaN())? uncommon_trap():result;
  1364   // Check: If isNaN() by checking result!=result? then go to Strict Math
  1365   Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
  1366   // Build the boolean node
  1367   Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
  1369   { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
  1370     // End the current control-flow path
  1371     push_pair(x);
  1372     push_pair(y);
  1373     // Math.pow intrinsic returned a NaN, which requires StrictMath.pow
  1374     // to handle.  Recompile without intrinsifying Math.pow.
  1375     uncommon_trap(Deoptimization::Reason_intrinsic,
  1376                   Deoptimization::Action_make_not_entrant);
  1379   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1381   push_pair(result);
  1383   return true;
  1386 //------------------------------inline_trans-------------------------------------
  1387 // Inline transcendental instructions, if possible.  The Intel hardware gets
  1388 // these right, no funny corner cases missed.
  1389 bool LibraryCallKit::inline_trans(vmIntrinsics::ID id) {
  1390   _sp += arg_size();        // restore stack pointer
  1391   Node* arg = pop_math_arg();
  1392   Node* trans = NULL;
  1394   switch (id) {
  1395   case vmIntrinsics::_dlog:
  1396     trans = _gvn.transform((Node*)new (C, 2) LogDNode(arg));
  1397     break;
  1398   case vmIntrinsics::_dlog10:
  1399     trans = _gvn.transform((Node*)new (C, 2) Log10DNode(arg));
  1400     break;
  1401   default:
  1402     assert(false, "bad intrinsic was passed in");
  1403     return false;
  1406   // Push result back on JVM stack
  1407   push_pair(trans);
  1408   return true;
  1411 //------------------------------runtime_math-----------------------------
  1412 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
  1413   Node* a = NULL;
  1414   Node* b = NULL;
  1416   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
  1417          "must be (DD)D or (D)D type");
  1419   // Inputs
  1420   _sp += arg_size();        // restore stack pointer
  1421   if (call_type == OptoRuntime::Math_DD_D_Type()) {
  1422     b = pop_math_arg();
  1424   a = pop_math_arg();
  1426   const TypePtr* no_memory_effects = NULL;
  1427   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
  1428                                  no_memory_effects,
  1429                                  a, top(), b, b ? top() : NULL);
  1430   Node* value = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+0));
  1431 #ifdef ASSERT
  1432   Node* value_top = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+1));
  1433   assert(value_top == top(), "second value must be top");
  1434 #endif
  1436   push_pair(value);
  1437   return true;
  1440 //------------------------------inline_math_native-----------------------------
  1441 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
  1442   switch (id) {
  1443     // These intrinsics are not properly supported on all hardware
  1444   case vmIntrinsics::_dcos: return Matcher::has_match_rule(Op_CosD) ? inline_trig(id) :
  1445     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS");
  1446   case vmIntrinsics::_dsin: return Matcher::has_match_rule(Op_SinD) ? inline_trig(id) :
  1447     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN");
  1448   case vmIntrinsics::_dtan: return Matcher::has_match_rule(Op_TanD) ? inline_trig(id) :
  1449     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
  1451   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD) ? inline_trans(id) :
  1452     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG");
  1453   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_trans(id) :
  1454     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
  1456     // These intrinsics are supported on all hardware
  1457   case vmIntrinsics::_dsqrt: return Matcher::has_match_rule(Op_SqrtD) ? inline_sqrt(id) : false;
  1458   case vmIntrinsics::_dabs:  return Matcher::has_match_rule(Op_AbsD)  ? inline_abs(id)  : false;
  1460     // These intrinsics don't work on X86.  The ad implementation doesn't
  1461     // handle NaN's properly.  Instead of returning infinity, the ad
  1462     // implementation returns a NaN on overflow. See bug: 6304089
  1463     // Once the ad implementations are fixed, change the code below
  1464     // to match the intrinsics above
  1466   case vmIntrinsics::_dexp:  return
  1467     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
  1468   case vmIntrinsics::_dpow:  return
  1469     runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
  1471    // These intrinsics are not yet correctly implemented
  1472   case vmIntrinsics::_datan2:
  1473     return false;
  1475   default:
  1476     ShouldNotReachHere();
  1477     return false;
  1481 static bool is_simple_name(Node* n) {
  1482   return (n->req() == 1         // constant
  1483           || (n->is_Type() && n->as_Type()->type()->singleton())
  1484           || n->is_Proj()       // parameter or return value
  1485           || n->is_Phi()        // local of some sort
  1486           );
  1489 //----------------------------inline_min_max-----------------------------------
  1490 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
  1491   push(generate_min_max(id, argument(0), argument(1)));
  1493   return true;
  1496 Node*
  1497 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
  1498   // These are the candidate return value:
  1499   Node* xvalue = x0;
  1500   Node* yvalue = y0;
  1502   if (xvalue == yvalue) {
  1503     return xvalue;
  1506   bool want_max = (id == vmIntrinsics::_max);
  1508   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
  1509   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
  1510   if (txvalue == NULL || tyvalue == NULL)  return top();
  1511   // This is not really necessary, but it is consistent with a
  1512   // hypothetical MaxINode::Value method:
  1513   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
  1515   // %%% This folding logic should (ideally) be in a different place.
  1516   // Some should be inside IfNode, and there to be a more reliable
  1517   // transformation of ?: style patterns into cmoves.  We also want
  1518   // more powerful optimizations around cmove and min/max.
  1520   // Try to find a dominating comparison of these guys.
  1521   // It can simplify the index computation for Arrays.copyOf
  1522   // and similar uses of System.arraycopy.
  1523   // First, compute the normalized version of CmpI(x, y).
  1524   int   cmp_op = Op_CmpI;
  1525   Node* xkey = xvalue;
  1526   Node* ykey = yvalue;
  1527   Node* ideal_cmpxy = _gvn.transform( new(C, 3) CmpINode(xkey, ykey) );
  1528   if (ideal_cmpxy->is_Cmp()) {
  1529     // E.g., if we have CmpI(length - offset, count),
  1530     // it might idealize to CmpI(length, count + offset)
  1531     cmp_op = ideal_cmpxy->Opcode();
  1532     xkey = ideal_cmpxy->in(1);
  1533     ykey = ideal_cmpxy->in(2);
  1536   // Start by locating any relevant comparisons.
  1537   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
  1538   Node* cmpxy = NULL;
  1539   Node* cmpyx = NULL;
  1540   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
  1541     Node* cmp = start_from->fast_out(k);
  1542     if (cmp->outcnt() > 0 &&            // must have prior uses
  1543         cmp->in(0) == NULL &&           // must be context-independent
  1544         cmp->Opcode() == cmp_op) {      // right kind of compare
  1545       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
  1546       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
  1550   const int NCMPS = 2;
  1551   Node* cmps[NCMPS] = { cmpxy, cmpyx };
  1552   int cmpn;
  1553   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  1554     if (cmps[cmpn] != NULL)  break;     // find a result
  1556   if (cmpn < NCMPS) {
  1557     // Look for a dominating test that tells us the min and max.
  1558     int depth = 0;                // Limit search depth for speed
  1559     Node* dom = control();
  1560     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
  1561       if (++depth >= 100)  break;
  1562       Node* ifproj = dom;
  1563       if (!ifproj->is_Proj())  continue;
  1564       Node* iff = ifproj->in(0);
  1565       if (!iff->is_If())  continue;
  1566       Node* bol = iff->in(1);
  1567       if (!bol->is_Bool())  continue;
  1568       Node* cmp = bol->in(1);
  1569       if (cmp == NULL)  continue;
  1570       for (cmpn = 0; cmpn < NCMPS; cmpn++)
  1571         if (cmps[cmpn] == cmp)  break;
  1572       if (cmpn == NCMPS)  continue;
  1573       BoolTest::mask btest = bol->as_Bool()->_test._test;
  1574       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
  1575       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
  1576       // At this point, we know that 'x btest y' is true.
  1577       switch (btest) {
  1578       case BoolTest::eq:
  1579         // They are proven equal, so we can collapse the min/max.
  1580         // Either value is the answer.  Choose the simpler.
  1581         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
  1582           return yvalue;
  1583         return xvalue;
  1584       case BoolTest::lt:          // x < y
  1585       case BoolTest::le:          // x <= y
  1586         return (want_max ? yvalue : xvalue);
  1587       case BoolTest::gt:          // x > y
  1588       case BoolTest::ge:          // x >= y
  1589         return (want_max ? xvalue : yvalue);
  1594   // We failed to find a dominating test.
  1595   // Let's pick a test that might GVN with prior tests.
  1596   Node*          best_bol   = NULL;
  1597   BoolTest::mask best_btest = BoolTest::illegal;
  1598   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  1599     Node* cmp = cmps[cmpn];
  1600     if (cmp == NULL)  continue;
  1601     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
  1602       Node* bol = cmp->fast_out(j);
  1603       if (!bol->is_Bool())  continue;
  1604       BoolTest::mask btest = bol->as_Bool()->_test._test;
  1605       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
  1606       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
  1607       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
  1608         best_bol   = bol->as_Bool();
  1609         best_btest = btest;
  1614   Node* answer_if_true  = NULL;
  1615   Node* answer_if_false = NULL;
  1616   switch (best_btest) {
  1617   default:
  1618     if (cmpxy == NULL)
  1619       cmpxy = ideal_cmpxy;
  1620     best_bol = _gvn.transform( new(C, 2) BoolNode(cmpxy, BoolTest::lt) );
  1621     // and fall through:
  1622   case BoolTest::lt:          // x < y
  1623   case BoolTest::le:          // x <= y
  1624     answer_if_true  = (want_max ? yvalue : xvalue);
  1625     answer_if_false = (want_max ? xvalue : yvalue);
  1626     break;
  1627   case BoolTest::gt:          // x > y
  1628   case BoolTest::ge:          // x >= y
  1629     answer_if_true  = (want_max ? xvalue : yvalue);
  1630     answer_if_false = (want_max ? yvalue : xvalue);
  1631     break;
  1634   jint hi, lo;
  1635   if (want_max) {
  1636     // We can sharpen the minimum.
  1637     hi = MAX2(txvalue->_hi, tyvalue->_hi);
  1638     lo = MAX2(txvalue->_lo, tyvalue->_lo);
  1639   } else {
  1640     // We can sharpen the maximum.
  1641     hi = MIN2(txvalue->_hi, tyvalue->_hi);
  1642     lo = MIN2(txvalue->_lo, tyvalue->_lo);
  1645   // Use a flow-free graph structure, to avoid creating excess control edges
  1646   // which could hinder other optimizations.
  1647   // Since Math.min/max is often used with arraycopy, we want
  1648   // tightly_coupled_allocation to be able to see beyond min/max expressions.
  1649   Node* cmov = CMoveNode::make(C, NULL, best_bol,
  1650                                answer_if_false, answer_if_true,
  1651                                TypeInt::make(lo, hi, widen));
  1653   return _gvn.transform(cmov);
  1655   /*
  1656   // This is not as desirable as it may seem, since Min and Max
  1657   // nodes do not have a full set of optimizations.
  1658   // And they would interfere, anyway, with 'if' optimizations
  1659   // and with CMoveI canonical forms.
  1660   switch (id) {
  1661   case vmIntrinsics::_min:
  1662     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
  1663   case vmIntrinsics::_max:
  1664     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
  1665   default:
  1666     ShouldNotReachHere();
  1668   */
  1671 inline int
  1672 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
  1673   const TypePtr* base_type = TypePtr::NULL_PTR;
  1674   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
  1675   if (base_type == NULL) {
  1676     // Unknown type.
  1677     return Type::AnyPtr;
  1678   } else if (base_type == TypePtr::NULL_PTR) {
  1679     // Since this is a NULL+long form, we have to switch to a rawptr.
  1680     base   = _gvn.transform( new (C, 2) CastX2PNode(offset) );
  1681     offset = MakeConX(0);
  1682     return Type::RawPtr;
  1683   } else if (base_type->base() == Type::RawPtr) {
  1684     return Type::RawPtr;
  1685   } else if (base_type->isa_oopptr()) {
  1686     // Base is never null => always a heap address.
  1687     if (base_type->ptr() == TypePtr::NotNull) {
  1688       return Type::OopPtr;
  1690     // Offset is small => always a heap address.
  1691     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
  1692     if (offset_type != NULL &&
  1693         base_type->offset() == 0 &&     // (should always be?)
  1694         offset_type->_lo >= 0 &&
  1695         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
  1696       return Type::OopPtr;
  1698     // Otherwise, it might either be oop+off or NULL+addr.
  1699     return Type::AnyPtr;
  1700   } else {
  1701     // No information:
  1702     return Type::AnyPtr;
  1706 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
  1707   int kind = classify_unsafe_addr(base, offset);
  1708   if (kind == Type::RawPtr) {
  1709     return basic_plus_adr(top(), base, offset);
  1710   } else {
  1711     return basic_plus_adr(base, offset);
  1715 //----------------------------inline_reverseBytes_int/long-------------------
  1716 // inline Int.reverseBytes(int)
  1717 // inline Long.reverseByes(long)
  1718 bool LibraryCallKit::inline_reverseBytes(vmIntrinsics::ID id) {
  1719   assert(id == vmIntrinsics::_reverseBytes_i || id == vmIntrinsics::_reverseBytes_l, "not reverse Bytes");
  1720   if (id == vmIntrinsics::_reverseBytes_i && !Matcher::has_match_rule(Op_ReverseBytesI)) return false;
  1721   if (id == vmIntrinsics::_reverseBytes_l && !Matcher::has_match_rule(Op_ReverseBytesL)) return false;
  1722   _sp += arg_size();        // restore stack pointer
  1723   switch (id) {
  1724   case vmIntrinsics::_reverseBytes_i:
  1725     push(_gvn.transform(new (C, 2) ReverseBytesINode(0, pop())));
  1726     break;
  1727   case vmIntrinsics::_reverseBytes_l:
  1728     push_pair(_gvn.transform(new (C, 2) ReverseBytesLNode(0, pop_pair())));
  1729     break;
  1730   default:
  1733   return true;
  1736 //----------------------------inline_unsafe_access----------------------------
  1738 const static BasicType T_ADDRESS_HOLDER = T_LONG;
  1740 // Interpret Unsafe.fieldOffset cookies correctly:
  1741 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
  1743 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
  1744   if (callee()->is_static())  return false;  // caller must have the capability!
  1746 #ifndef PRODUCT
  1748     ResourceMark rm;
  1749     // Check the signatures.
  1750     ciSignature* sig = signature();
  1751 #ifdef ASSERT
  1752     if (!is_store) {
  1753       // Object getObject(Object base, int/long offset), etc.
  1754       BasicType rtype = sig->return_type()->basic_type();
  1755       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
  1756           rtype = T_ADDRESS;  // it is really a C void*
  1757       assert(rtype == type, "getter must return the expected value");
  1758       if (!is_native_ptr) {
  1759         assert(sig->count() == 2, "oop getter has 2 arguments");
  1760         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
  1761         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
  1762       } else {
  1763         assert(sig->count() == 1, "native getter has 1 argument");
  1764         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
  1766     } else {
  1767       // void putObject(Object base, int/long offset, Object x), etc.
  1768       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
  1769       if (!is_native_ptr) {
  1770         assert(sig->count() == 3, "oop putter has 3 arguments");
  1771         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
  1772         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
  1773       } else {
  1774         assert(sig->count() == 2, "native putter has 2 arguments");
  1775         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
  1777       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
  1778       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
  1779         vtype = T_ADDRESS;  // it is really a C void*
  1780       assert(vtype == type, "putter must accept the expected value");
  1782 #endif // ASSERT
  1784 #endif //PRODUCT
  1786   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  1788   int type_words = type2size[ (type == T_ADDRESS) ? T_LONG : type ];
  1790   // Argument words:  "this" plus (oop/offset) or (lo/hi) args plus maybe 1 or 2 value words
  1791   int nargs = 1 + (is_native_ptr ? 2 : 3) + (is_store ? type_words : 0);
  1793   debug_only(int saved_sp = _sp);
  1794   _sp += nargs;
  1796   Node* val;
  1797   debug_only(val = (Node*)(uintptr_t)-1);
  1800   if (is_store) {
  1801     // Get the value being stored.  (Pop it first; it was pushed last.)
  1802     switch (type) {
  1803     case T_DOUBLE:
  1804     case T_LONG:
  1805     case T_ADDRESS:
  1806       val = pop_pair();
  1807       break;
  1808     default:
  1809       val = pop();
  1813   // Build address expression.  See the code in inline_unsafe_prefetch.
  1814   Node *adr;
  1815   Node *heap_base_oop = top();
  1816   if (!is_native_ptr) {
  1817     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  1818     Node* offset = pop_pair();
  1819     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  1820     Node* base   = pop();
  1821     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  1822     // to be plain byte offsets, which are also the same as those accepted
  1823     // by oopDesc::field_base.
  1824     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  1825            "fieldOffset must be byte-scaled");
  1826     // 32-bit machines ignore the high half!
  1827     offset = ConvL2X(offset);
  1828     adr = make_unsafe_address(base, offset);
  1829     heap_base_oop = base;
  1830   } else {
  1831     Node* ptr = pop_pair();
  1832     // Adjust Java long to machine word:
  1833     ptr = ConvL2X(ptr);
  1834     adr = make_unsafe_address(NULL, ptr);
  1837   // Pop receiver last:  it was pushed first.
  1838   Node *receiver = pop();
  1840   assert(saved_sp == _sp, "must have correct argument count");
  1842   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  1844   // First guess at the value type.
  1845   const Type *value_type = Type::get_const_basic_type(type);
  1847   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
  1848   // there was not enough information to nail it down.
  1849   Compile::AliasType* alias_type = C->alias_type(adr_type);
  1850   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  1852   // We will need memory barriers unless we can determine a unique
  1853   // alias category for this reference.  (Note:  If for some reason
  1854   // the barriers get omitted and the unsafe reference begins to "pollute"
  1855   // the alias analysis of the rest of the graph, either Compile::can_alias
  1856   // or Compile::must_alias will throw a diagnostic assert.)
  1857   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
  1859   if (!is_store && type == T_OBJECT) {
  1860     // Attempt to infer a sharper value type from the offset and base type.
  1861     ciKlass* sharpened_klass = NULL;
  1863     // See if it is an instance field, with an object type.
  1864     if (alias_type->field() != NULL) {
  1865       assert(!is_native_ptr, "native pointer op cannot use a java address");
  1866       if (alias_type->field()->type()->is_klass()) {
  1867         sharpened_klass = alias_type->field()->type()->as_klass();
  1871     // See if it is a narrow oop array.
  1872     if (adr_type->isa_aryptr()) {
  1873       if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes(type)) {
  1874         const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
  1875         if (elem_type != NULL) {
  1876           sharpened_klass = elem_type->klass();
  1881     if (sharpened_klass != NULL) {
  1882       const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
  1884       // Sharpen the value type.
  1885       value_type = tjp;
  1887 #ifndef PRODUCT
  1888       if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
  1889         tty->print("  from base type:  ");   adr_type->dump();
  1890         tty->print("  sharpened value: "); value_type->dump();
  1892 #endif
  1896   // Null check on self without removing any arguments.  The argument
  1897   // null check technically happens in the wrong place, which can lead to
  1898   // invalid stack traces when the primitive is inlined into a method
  1899   // which handles NullPointerExceptions.
  1900   _sp += nargs;
  1901   do_null_check(receiver, T_OBJECT);
  1902   _sp -= nargs;
  1903   if (stopped()) {
  1904     return true;
  1906   // Heap pointers get a null-check from the interpreter,
  1907   // as a courtesy.  However, this is not guaranteed by Unsafe,
  1908   // and it is not possible to fully distinguish unintended nulls
  1909   // from intended ones in this API.
  1911   if (is_volatile) {
  1912     // We need to emit leading and trailing CPU membars (see below) in
  1913     // addition to memory membars when is_volatile. This is a little
  1914     // too strong, but avoids the need to insert per-alias-type
  1915     // volatile membars (for stores; compare Parse::do_put_xxx), which
  1916     // we cannot do effctively here because we probably only have a
  1917     // rough approximation of type.
  1918     need_mem_bar = true;
  1919     // For Stores, place a memory ordering barrier now.
  1920     if (is_store)
  1921       insert_mem_bar(Op_MemBarRelease);
  1924   // Memory barrier to prevent normal and 'unsafe' accesses from
  1925   // bypassing each other.  Happens after null checks, so the
  1926   // exception paths do not take memory state from the memory barrier,
  1927   // so there's no problems making a strong assert about mixing users
  1928   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
  1929   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
  1930   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  1932   if (!is_store) {
  1933     Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
  1934     // load value and push onto stack
  1935     switch (type) {
  1936     case T_BOOLEAN:
  1937     case T_CHAR:
  1938     case T_BYTE:
  1939     case T_SHORT:
  1940     case T_INT:
  1941     case T_FLOAT:
  1942     case T_OBJECT:
  1943       push( p );
  1944       break;
  1945     case T_ADDRESS:
  1946       // Cast to an int type.
  1947       p = _gvn.transform( new (C, 2) CastP2XNode(NULL,p) );
  1948       p = ConvX2L(p);
  1949       push_pair(p);
  1950       break;
  1951     case T_DOUBLE:
  1952     case T_LONG:
  1953       push_pair( p );
  1954       break;
  1955     default: ShouldNotReachHere();
  1957   } else {
  1958     // place effect of store into memory
  1959     switch (type) {
  1960     case T_DOUBLE:
  1961       val = dstore_rounding(val);
  1962       break;
  1963     case T_ADDRESS:
  1964       // Repackage the long as a pointer.
  1965       val = ConvL2X(val);
  1966       val = _gvn.transform( new (C, 2) CastX2PNode(val) );
  1967       break;
  1970     if (type != T_OBJECT ) {
  1971       (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
  1972     } else {
  1973       // Possibly an oop being stored to Java heap or native memory
  1974       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
  1975         // oop to Java heap.
  1976         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, val->bottom_type(), type);
  1977       } else {
  1979         // We can't tell at compile time if we are storing in the Java heap or outside
  1980         // of it. So we need to emit code to conditionally do the proper type of
  1981         // store.
  1983         IdealKit kit(gvn(), control(),  merged_memory());
  1984         kit.declares_done();
  1985         // QQQ who knows what probability is here??
  1986         kit.if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
  1987           (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, val->bottom_type(), type);
  1988         } kit.else_(); {
  1989           (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
  1990         } kit.end_if();
  1995   if (is_volatile) {
  1996     if (!is_store)
  1997       insert_mem_bar(Op_MemBarAcquire);
  1998     else
  1999       insert_mem_bar(Op_MemBarVolatile);
  2002   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2004   return true;
  2007 //----------------------------inline_unsafe_prefetch----------------------------
  2009 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
  2010 #ifndef PRODUCT
  2012     ResourceMark rm;
  2013     // Check the signatures.
  2014     ciSignature* sig = signature();
  2015 #ifdef ASSERT
  2016     // Object getObject(Object base, int/long offset), etc.
  2017     BasicType rtype = sig->return_type()->basic_type();
  2018     if (!is_native_ptr) {
  2019       assert(sig->count() == 2, "oop prefetch has 2 arguments");
  2020       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
  2021       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
  2022     } else {
  2023       assert(sig->count() == 1, "native prefetch has 1 argument");
  2024       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
  2026 #endif // ASSERT
  2028 #endif // !PRODUCT
  2030   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2032   // Argument words:  "this" if not static, plus (oop/offset) or (lo/hi) args
  2033   int nargs = (is_static ? 0 : 1) + (is_native_ptr ? 2 : 3);
  2035   debug_only(int saved_sp = _sp);
  2036   _sp += nargs;
  2038   // Build address expression.  See the code in inline_unsafe_access.
  2039   Node *adr;
  2040   if (!is_native_ptr) {
  2041     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2042     Node* offset = pop_pair();
  2043     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2044     Node* base   = pop();
  2045     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2046     // to be plain byte offsets, which are also the same as those accepted
  2047     // by oopDesc::field_base.
  2048     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2049            "fieldOffset must be byte-scaled");
  2050     // 32-bit machines ignore the high half!
  2051     offset = ConvL2X(offset);
  2052     adr = make_unsafe_address(base, offset);
  2053   } else {
  2054     Node* ptr = pop_pair();
  2055     // Adjust Java long to machine word:
  2056     ptr = ConvL2X(ptr);
  2057     adr = make_unsafe_address(NULL, ptr);
  2060   if (is_static) {
  2061     assert(saved_sp == _sp, "must have correct argument count");
  2062   } else {
  2063     // Pop receiver last:  it was pushed first.
  2064     Node *receiver = pop();
  2065     assert(saved_sp == _sp, "must have correct argument count");
  2067     // Null check on self without removing any arguments.  The argument
  2068     // null check technically happens in the wrong place, which can lead to
  2069     // invalid stack traces when the primitive is inlined into a method
  2070     // which handles NullPointerExceptions.
  2071     _sp += nargs;
  2072     do_null_check(receiver, T_OBJECT);
  2073     _sp -= nargs;
  2074     if (stopped()) {
  2075       return true;
  2079   // Generate the read or write prefetch
  2080   Node *prefetch;
  2081   if (is_store) {
  2082     prefetch = new (C, 3) PrefetchWriteNode(i_o(), adr);
  2083   } else {
  2084     prefetch = new (C, 3) PrefetchReadNode(i_o(), adr);
  2086   prefetch->init_req(0, control());
  2087   set_i_o(_gvn.transform(prefetch));
  2089   return true;
  2092 //----------------------------inline_unsafe_CAS----------------------------
  2094 bool LibraryCallKit::inline_unsafe_CAS(BasicType type) {
  2095   // This basic scheme here is the same as inline_unsafe_access, but
  2096   // differs in enough details that combining them would make the code
  2097   // overly confusing.  (This is a true fact! I originally combined
  2098   // them, but even I was confused by it!) As much code/comments as
  2099   // possible are retained from inline_unsafe_access though to make
  2100   // the correspondances clearer. - dl
  2102   if (callee()->is_static())  return false;  // caller must have the capability!
  2104 #ifndef PRODUCT
  2106     ResourceMark rm;
  2107     // Check the signatures.
  2108     ciSignature* sig = signature();
  2109 #ifdef ASSERT
  2110     BasicType rtype = sig->return_type()->basic_type();
  2111     assert(rtype == T_BOOLEAN, "CAS must return boolean");
  2112     assert(sig->count() == 4, "CAS has 4 arguments");
  2113     assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
  2114     assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
  2115 #endif // ASSERT
  2117 #endif //PRODUCT
  2119   // number of stack slots per value argument (1 or 2)
  2120   int type_words = type2size[type];
  2122   // Cannot inline wide CAS on machines that don't support it natively
  2123   if (type2aelembytes(type) > BytesPerInt && !VM_Version::supports_cx8())
  2124     return false;
  2126   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2128   // Argument words:  "this" plus oop plus offset plus oldvalue plus newvalue;
  2129   int nargs = 1 + 1 + 2  + type_words + type_words;
  2131   // pop arguments: newval, oldval, offset, base, and receiver
  2132   debug_only(int saved_sp = _sp);
  2133   _sp += nargs;
  2134   Node* newval   = (type_words == 1) ? pop() : pop_pair();
  2135   Node* oldval   = (type_words == 1) ? pop() : pop_pair();
  2136   Node *offset   = pop_pair();
  2137   Node *base     = pop();
  2138   Node *receiver = pop();
  2139   assert(saved_sp == _sp, "must have correct argument count");
  2141   //  Null check receiver.
  2142   _sp += nargs;
  2143   do_null_check(receiver, T_OBJECT);
  2144   _sp -= nargs;
  2145   if (stopped()) {
  2146     return true;
  2149   // Build field offset expression.
  2150   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2151   // to be plain byte offsets, which are also the same as those accepted
  2152   // by oopDesc::field_base.
  2153   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  2154   // 32-bit machines ignore the high half of long offsets
  2155   offset = ConvL2X(offset);
  2156   Node* adr = make_unsafe_address(base, offset);
  2157   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2159   // (Unlike inline_unsafe_access, there seems no point in trying
  2160   // to refine types. Just use the coarse types here.
  2161   const Type *value_type = Type::get_const_basic_type(type);
  2162   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2163   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2164   int alias_idx = C->get_alias_index(adr_type);
  2166   // Memory-model-wise, a CAS acts like a little synchronized block,
  2167   // so needs barriers on each side.  These don't't translate into
  2168   // actual barriers on most machines, but we still need rest of
  2169   // compiler to respect ordering.
  2171   insert_mem_bar(Op_MemBarRelease);
  2172   insert_mem_bar(Op_MemBarCPUOrder);
  2174   // 4984716: MemBars must be inserted before this
  2175   //          memory node in order to avoid a false
  2176   //          dependency which will confuse the scheduler.
  2177   Node *mem = memory(alias_idx);
  2179   // For now, we handle only those cases that actually exist: ints,
  2180   // longs, and Object. Adding others should be straightforward.
  2181   Node* cas;
  2182   switch(type) {
  2183   case T_INT:
  2184     cas = _gvn.transform(new (C, 5) CompareAndSwapINode(control(), mem, adr, newval, oldval));
  2185     break;
  2186   case T_LONG:
  2187     cas = _gvn.transform(new (C, 5) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
  2188     break;
  2189   case T_OBJECT:
  2190      // reference stores need a store barrier.
  2191     // (They don't if CAS fails, but it isn't worth checking.)
  2192     pre_barrier(control(), base, adr, alias_idx, newval, value_type, T_OBJECT);
  2193 #ifdef _LP64
  2194     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  2195       cas = _gvn.transform(new (C, 5) CompareAndSwapNNode(control(), mem, adr,
  2196                                                            EncodePNode::encode(&_gvn, newval),
  2197                                                            EncodePNode::encode(&_gvn, oldval)));
  2198     } else
  2199 #endif
  2201         cas = _gvn.transform(new (C, 5) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
  2203     post_barrier(control(), cas, base, adr, alias_idx, newval, T_OBJECT, true);
  2204     break;
  2205   default:
  2206     ShouldNotReachHere();
  2207     break;
  2210   // SCMemProjNodes represent the memory state of CAS. Their main
  2211   // role is to prevent CAS nodes from being optimized away when their
  2212   // results aren't used.
  2213   Node* proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
  2214   set_memory(proj, alias_idx);
  2216   // Add the trailing membar surrounding the access
  2217   insert_mem_bar(Op_MemBarCPUOrder);
  2218   insert_mem_bar(Op_MemBarAcquire);
  2220   push(cas);
  2221   return true;
  2224 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
  2225   // This is another variant of inline_unsafe_access, differing in
  2226   // that it always issues store-store ("release") barrier and ensures
  2227   // store-atomicity (which only matters for "long").
  2229   if (callee()->is_static())  return false;  // caller must have the capability!
  2231 #ifndef PRODUCT
  2233     ResourceMark rm;
  2234     // Check the signatures.
  2235     ciSignature* sig = signature();
  2236 #ifdef ASSERT
  2237     BasicType rtype = sig->return_type()->basic_type();
  2238     assert(rtype == T_VOID, "must return void");
  2239     assert(sig->count() == 3, "has 3 arguments");
  2240     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
  2241     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
  2242 #endif // ASSERT
  2244 #endif //PRODUCT
  2246   // number of stack slots per value argument (1 or 2)
  2247   int type_words = type2size[type];
  2249   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2251   // Argument words:  "this" plus oop plus offset plus value;
  2252   int nargs = 1 + 1 + 2 + type_words;
  2254   // pop arguments: val, offset, base, and receiver
  2255   debug_only(int saved_sp = _sp);
  2256   _sp += nargs;
  2257   Node* val      = (type_words == 1) ? pop() : pop_pair();
  2258   Node *offset   = pop_pair();
  2259   Node *base     = pop();
  2260   Node *receiver = pop();
  2261   assert(saved_sp == _sp, "must have correct argument count");
  2263   //  Null check receiver.
  2264   _sp += nargs;
  2265   do_null_check(receiver, T_OBJECT);
  2266   _sp -= nargs;
  2267   if (stopped()) {
  2268     return true;
  2271   // Build field offset expression.
  2272   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  2273   // 32-bit machines ignore the high half of long offsets
  2274   offset = ConvL2X(offset);
  2275   Node* adr = make_unsafe_address(base, offset);
  2276   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2277   const Type *value_type = Type::get_const_basic_type(type);
  2278   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2280   insert_mem_bar(Op_MemBarRelease);
  2281   insert_mem_bar(Op_MemBarCPUOrder);
  2282   // Ensure that the store is atomic for longs:
  2283   bool require_atomic_access = true;
  2284   Node* store;
  2285   if (type == T_OBJECT) // reference stores need a store barrier.
  2286     store = store_oop_to_unknown(control(), base, adr, adr_type, val, value_type, type);
  2287   else {
  2288     store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
  2290   insert_mem_bar(Op_MemBarCPUOrder);
  2291   return true;
  2294 bool LibraryCallKit::inline_unsafe_allocate() {
  2295   if (callee()->is_static())  return false;  // caller must have the capability!
  2296   int nargs = 1 + 1;
  2297   assert(signature()->size() == nargs-1, "alloc has 1 argument");
  2298   null_check_receiver(callee());  // check then ignore argument(0)
  2299   _sp += nargs;  // set original stack for use by uncommon_trap
  2300   Node* cls = do_null_check(argument(1), T_OBJECT);
  2301   _sp -= nargs;
  2302   if (stopped())  return true;
  2304   Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0);
  2305   _sp += nargs;  // set original stack for use by uncommon_trap
  2306   kls = do_null_check(kls, T_OBJECT);
  2307   _sp -= nargs;
  2308   if (stopped())  return true;  // argument was like int.class
  2310   // Note:  The argument might still be an illegal value like
  2311   // Serializable.class or Object[].class.   The runtime will handle it.
  2312   // But we must make an explicit check for initialization.
  2313   Node* insp = basic_plus_adr(kls, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc));
  2314   Node* inst = make_load(NULL, insp, TypeInt::INT, T_INT);
  2315   Node* bits = intcon(instanceKlass::fully_initialized);
  2316   Node* test = _gvn.transform( new (C, 3) SubINode(inst, bits) );
  2317   // The 'test' is non-zero if we need to take a slow path.
  2319   Node* obj = new_instance(kls, test);
  2320   push(obj);
  2322   return true;
  2325 //------------------------inline_native_time_funcs--------------
  2326 // inline code for System.currentTimeMillis() and System.nanoTime()
  2327 // these have the same type and signature
  2328 bool LibraryCallKit::inline_native_time_funcs(bool isNano) {
  2329   address funcAddr = isNano ? CAST_FROM_FN_PTR(address, os::javaTimeNanos) :
  2330                               CAST_FROM_FN_PTR(address, os::javaTimeMillis);
  2331   const char * funcName = isNano ? "nanoTime" : "currentTimeMillis";
  2332   const TypeFunc *tf = OptoRuntime::current_time_millis_Type();
  2333   const TypePtr* no_memory_effects = NULL;
  2334   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
  2335   Node* value = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms+0));
  2336 #ifdef ASSERT
  2337   Node* value_top = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms + 1));
  2338   assert(value_top == top(), "second value must be top");
  2339 #endif
  2340   push_pair(value);
  2341   return true;
  2344 //------------------------inline_native_currentThread------------------
  2345 bool LibraryCallKit::inline_native_currentThread() {
  2346   Node* junk = NULL;
  2347   push(generate_current_thread(junk));
  2348   return true;
  2351 //------------------------inline_native_isInterrupted------------------
  2352 bool LibraryCallKit::inline_native_isInterrupted() {
  2353   const int nargs = 1+1;  // receiver + boolean
  2354   assert(nargs == arg_size(), "sanity");
  2355   // Add a fast path to t.isInterrupted(clear_int):
  2356   //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
  2357   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
  2358   // So, in the common case that the interrupt bit is false,
  2359   // we avoid making a call into the VM.  Even if the interrupt bit
  2360   // is true, if the clear_int argument is false, we avoid the VM call.
  2361   // However, if the receiver is not currentThread, we must call the VM,
  2362   // because there must be some locking done around the operation.
  2364   // We only go to the fast case code if we pass two guards.
  2365   // Paths which do not pass are accumulated in the slow_region.
  2366   RegionNode* slow_region = new (C, 1) RegionNode(1);
  2367   record_for_igvn(slow_region);
  2368   RegionNode* result_rgn = new (C, 4) RegionNode(1+3); // fast1, fast2, slow
  2369   PhiNode*    result_val = new (C, 4) PhiNode(result_rgn, TypeInt::BOOL);
  2370   enum { no_int_result_path   = 1,
  2371          no_clear_result_path = 2,
  2372          slow_result_path     = 3
  2373   };
  2375   // (a) Receiving thread must be the current thread.
  2376   Node* rec_thr = argument(0);
  2377   Node* tls_ptr = NULL;
  2378   Node* cur_thr = generate_current_thread(tls_ptr);
  2379   Node* cmp_thr = _gvn.transform( new (C, 3) CmpPNode(cur_thr, rec_thr) );
  2380   Node* bol_thr = _gvn.transform( new (C, 2) BoolNode(cmp_thr, BoolTest::ne) );
  2382   bool known_current_thread = (_gvn.type(bol_thr) == TypeInt::ZERO);
  2383   if (!known_current_thread)
  2384     generate_slow_guard(bol_thr, slow_region);
  2386   // (b) Interrupt bit on TLS must be false.
  2387   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  2388   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
  2389   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
  2390   Node* int_bit = make_load(NULL, p, TypeInt::BOOL, T_INT);
  2391   Node* cmp_bit = _gvn.transform( new (C, 3) CmpINode(int_bit, intcon(0)) );
  2392   Node* bol_bit = _gvn.transform( new (C, 2) BoolNode(cmp_bit, BoolTest::ne) );
  2394   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
  2396   // First fast path:  if (!TLS._interrupted) return false;
  2397   Node* false_bit = _gvn.transform( new (C, 1) IfFalseNode(iff_bit) );
  2398   result_rgn->init_req(no_int_result_path, false_bit);
  2399   result_val->init_req(no_int_result_path, intcon(0));
  2401   // drop through to next case
  2402   set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_bit)) );
  2404   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
  2405   Node* clr_arg = argument(1);
  2406   Node* cmp_arg = _gvn.transform( new (C, 3) CmpINode(clr_arg, intcon(0)) );
  2407   Node* bol_arg = _gvn.transform( new (C, 2) BoolNode(cmp_arg, BoolTest::ne) );
  2408   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
  2410   // Second fast path:  ... else if (!clear_int) return true;
  2411   Node* false_arg = _gvn.transform( new (C, 1) IfFalseNode(iff_arg) );
  2412   result_rgn->init_req(no_clear_result_path, false_arg);
  2413   result_val->init_req(no_clear_result_path, intcon(1));
  2415   // drop through to next case
  2416   set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_arg)) );
  2418   // (d) Otherwise, go to the slow path.
  2419   slow_region->add_req(control());
  2420   set_control( _gvn.transform(slow_region) );
  2422   if (stopped()) {
  2423     // There is no slow path.
  2424     result_rgn->init_req(slow_result_path, top());
  2425     result_val->init_req(slow_result_path, top());
  2426   } else {
  2427     // non-virtual because it is a private non-static
  2428     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
  2430     Node* slow_val = set_results_for_java_call(slow_call);
  2431     // this->control() comes from set_results_for_java_call
  2433     // If we know that the result of the slow call will be true, tell the optimizer!
  2434     if (known_current_thread)  slow_val = intcon(1);
  2436     Node* fast_io  = slow_call->in(TypeFunc::I_O);
  2437     Node* fast_mem = slow_call->in(TypeFunc::Memory);
  2438     // These two phis are pre-filled with copies of of the fast IO and Memory
  2439     Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
  2440     Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
  2442     result_rgn->init_req(slow_result_path, control());
  2443     io_phi    ->init_req(slow_result_path, i_o());
  2444     mem_phi   ->init_req(slow_result_path, reset_memory());
  2445     result_val->init_req(slow_result_path, slow_val);
  2447     set_all_memory( _gvn.transform(mem_phi) );
  2448     set_i_o(        _gvn.transform(io_phi) );
  2451   push_result(result_rgn, result_val);
  2452   C->set_has_split_ifs(true); // Has chance for split-if optimization
  2454   return true;
  2457 //---------------------------load_mirror_from_klass----------------------------
  2458 // Given a klass oop, load its java mirror (a java.lang.Class oop).
  2459 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
  2460   Node* p = basic_plus_adr(klass, Klass::java_mirror_offset_in_bytes() + sizeof(oopDesc));
  2461   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
  2464 //-----------------------load_klass_from_mirror_common-------------------------
  2465 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
  2466 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
  2467 // and branch to the given path on the region.
  2468 // If never_see_null, take an uncommon trap on null, so we can optimistically
  2469 // compile for the non-null case.
  2470 // If the region is NULL, force never_see_null = true.
  2471 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
  2472                                                     bool never_see_null,
  2473                                                     int nargs,
  2474                                                     RegionNode* region,
  2475                                                     int null_path,
  2476                                                     int offset) {
  2477   if (region == NULL)  never_see_null = true;
  2478   Node* p = basic_plus_adr(mirror, offset);
  2479   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  2480   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type) );
  2481   _sp += nargs; // any deopt will start just before call to enclosing method
  2482   Node* null_ctl = top();
  2483   kls = null_check_oop(kls, &null_ctl, never_see_null);
  2484   if (region != NULL) {
  2485     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
  2486     region->init_req(null_path, null_ctl);
  2487   } else {
  2488     assert(null_ctl == top(), "no loose ends");
  2490   _sp -= nargs;
  2491   return kls;
  2494 //--------------------(inline_native_Class_query helpers)---------------------
  2495 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
  2496 // Fall through if (mods & mask) == bits, take the guard otherwise.
  2497 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
  2498   // Branch around if the given klass has the given modifier bit set.
  2499   // Like generate_guard, adds a new path onto the region.
  2500   Node* modp = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
  2501   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
  2502   Node* mask = intcon(modifier_mask);
  2503   Node* bits = intcon(modifier_bits);
  2504   Node* mbit = _gvn.transform( new (C, 3) AndINode(mods, mask) );
  2505   Node* cmp  = _gvn.transform( new (C, 3) CmpINode(mbit, bits) );
  2506   Node* bol  = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ne) );
  2507   return generate_fair_guard(bol, region);
  2509 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
  2510   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
  2513 //-------------------------inline_native_Class_query-------------------
  2514 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
  2515   int nargs = 1+0;  // just the Class mirror, in most cases
  2516   const Type* return_type = TypeInt::BOOL;
  2517   Node* prim_return_value = top();  // what happens if it's a primitive class?
  2518   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  2519   bool expect_prim = false;     // most of these guys expect to work on refs
  2521   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
  2523   switch (id) {
  2524   case vmIntrinsics::_isInstance:
  2525     nargs = 1+1;  // the Class mirror, plus the object getting queried about
  2526     // nothing is an instance of a primitive type
  2527     prim_return_value = intcon(0);
  2528     break;
  2529   case vmIntrinsics::_getModifiers:
  2530     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  2531     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
  2532     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
  2533     break;
  2534   case vmIntrinsics::_isInterface:
  2535     prim_return_value = intcon(0);
  2536     break;
  2537   case vmIntrinsics::_isArray:
  2538     prim_return_value = intcon(0);
  2539     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
  2540     break;
  2541   case vmIntrinsics::_isPrimitive:
  2542     prim_return_value = intcon(1);
  2543     expect_prim = true;  // obviously
  2544     break;
  2545   case vmIntrinsics::_getSuperclass:
  2546     prim_return_value = null();
  2547     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  2548     break;
  2549   case vmIntrinsics::_getComponentType:
  2550     prim_return_value = null();
  2551     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  2552     break;
  2553   case vmIntrinsics::_getClassAccessFlags:
  2554     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  2555     return_type = TypeInt::INT;  // not bool!  6297094
  2556     break;
  2557   default:
  2558     ShouldNotReachHere();
  2561   Node* mirror =                      argument(0);
  2562   Node* obj    = (nargs <= 1)? top(): argument(1);
  2564   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
  2565   if (mirror_con == NULL)  return false;  // cannot happen?
  2567 #ifndef PRODUCT
  2568   if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
  2569     ciType* k = mirror_con->java_mirror_type();
  2570     if (k) {
  2571       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
  2572       k->print_name();
  2573       tty->cr();
  2576 #endif
  2578   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
  2579   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  2580   record_for_igvn(region);
  2581   PhiNode* phi = new (C, PATH_LIMIT) PhiNode(region, return_type);
  2583   // The mirror will never be null of Reflection.getClassAccessFlags, however
  2584   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
  2585   // if it is. See bug 4774291.
  2587   // For Reflection.getClassAccessFlags(), the null check occurs in
  2588   // the wrong place; see inline_unsafe_access(), above, for a similar
  2589   // situation.
  2590   _sp += nargs;  // set original stack for use by uncommon_trap
  2591   mirror = do_null_check(mirror, T_OBJECT);
  2592   _sp -= nargs;
  2593   // If mirror or obj is dead, only null-path is taken.
  2594   if (stopped())  return true;
  2596   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
  2598   // Now load the mirror's klass metaobject, and null-check it.
  2599   // Side-effects region with the control path if the klass is null.
  2600   Node* kls = load_klass_from_mirror(mirror, never_see_null, nargs,
  2601                                      region, _prim_path);
  2602   // If kls is null, we have a primitive mirror.
  2603   phi->init_req(_prim_path, prim_return_value);
  2604   if (stopped()) { push_result(region, phi); return true; }
  2606   Node* p;  // handy temp
  2607   Node* null_ctl;
  2609   // Now that we have the non-null klass, we can perform the real query.
  2610   // For constant classes, the query will constant-fold in LoadNode::Value.
  2611   Node* query_value = top();
  2612   switch (id) {
  2613   case vmIntrinsics::_isInstance:
  2614     // nothing is an instance of a primitive type
  2615     query_value = gen_instanceof(obj, kls);
  2616     break;
  2618   case vmIntrinsics::_getModifiers:
  2619     p = basic_plus_adr(kls, Klass::modifier_flags_offset_in_bytes() + sizeof(oopDesc));
  2620     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
  2621     break;
  2623   case vmIntrinsics::_isInterface:
  2624     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  2625     if (generate_interface_guard(kls, region) != NULL)
  2626       // A guard was added.  If the guard is taken, it was an interface.
  2627       phi->add_req(intcon(1));
  2628     // If we fall through, it's a plain class.
  2629     query_value = intcon(0);
  2630     break;
  2632   case vmIntrinsics::_isArray:
  2633     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
  2634     if (generate_array_guard(kls, region) != NULL)
  2635       // A guard was added.  If the guard is taken, it was an array.
  2636       phi->add_req(intcon(1));
  2637     // If we fall through, it's a plain class.
  2638     query_value = intcon(0);
  2639     break;
  2641   case vmIntrinsics::_isPrimitive:
  2642     query_value = intcon(0); // "normal" path produces false
  2643     break;
  2645   case vmIntrinsics::_getSuperclass:
  2646     // The rules here are somewhat unfortunate, but we can still do better
  2647     // with random logic than with a JNI call.
  2648     // Interfaces store null or Object as _super, but must report null.
  2649     // Arrays store an intermediate super as _super, but must report Object.
  2650     // Other types can report the actual _super.
  2651     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  2652     if (generate_interface_guard(kls, region) != NULL)
  2653       // A guard was added.  If the guard is taken, it was an interface.
  2654       phi->add_req(null());
  2655     if (generate_array_guard(kls, region) != NULL)
  2656       // A guard was added.  If the guard is taken, it was an array.
  2657       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
  2658     // If we fall through, it's a plain class.  Get its _super.
  2659     p = basic_plus_adr(kls, Klass::super_offset_in_bytes() + sizeof(oopDesc));
  2660     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL) );
  2661     null_ctl = top();
  2662     kls = null_check_oop(kls, &null_ctl);
  2663     if (null_ctl != top()) {
  2664       // If the guard is taken, Object.superClass is null (both klass and mirror).
  2665       region->add_req(null_ctl);
  2666       phi   ->add_req(null());
  2668     if (!stopped()) {
  2669       query_value = load_mirror_from_klass(kls);
  2671     break;
  2673   case vmIntrinsics::_getComponentType:
  2674     if (generate_array_guard(kls, region) != NULL) {
  2675       // Be sure to pin the oop load to the guard edge just created:
  2676       Node* is_array_ctrl = region->in(region->req()-1);
  2677       Node* cma = basic_plus_adr(kls, in_bytes(arrayKlass::component_mirror_offset()) + sizeof(oopDesc));
  2678       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
  2679       phi->add_req(cmo);
  2681     query_value = null();  // non-array case is null
  2682     break;
  2684   case vmIntrinsics::_getClassAccessFlags:
  2685     p = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
  2686     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
  2687     break;
  2689   default:
  2690     ShouldNotReachHere();
  2693   // Fall-through is the normal case of a query to a real class.
  2694   phi->init_req(1, query_value);
  2695   region->init_req(1, control());
  2697   push_result(region, phi);
  2698   C->set_has_split_ifs(true); // Has chance for split-if optimization
  2700   return true;
  2703 //--------------------------inline_native_subtype_check------------------------
  2704 // This intrinsic takes the JNI calls out of the heart of
  2705 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
  2706 bool LibraryCallKit::inline_native_subtype_check() {
  2707   int nargs = 1+1;  // the Class mirror, plus the other class getting examined
  2709   // Pull both arguments off the stack.
  2710   Node* args[2];                // two java.lang.Class mirrors: superc, subc
  2711   args[0] = argument(0);
  2712   args[1] = argument(1);
  2713   Node* klasses[2];             // corresponding Klasses: superk, subk
  2714   klasses[0] = klasses[1] = top();
  2716   enum {
  2717     // A full decision tree on {superc is prim, subc is prim}:
  2718     _prim_0_path = 1,           // {P,N} => false
  2719                                 // {P,P} & superc!=subc => false
  2720     _prim_same_path,            // {P,P} & superc==subc => true
  2721     _prim_1_path,               // {N,P} => false
  2722     _ref_subtype_path,          // {N,N} & subtype check wins => true
  2723     _both_ref_path,             // {N,N} & subtype check loses => false
  2724     PATH_LIMIT
  2725   };
  2727   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  2728   Node*       phi    = new (C, PATH_LIMIT) PhiNode(region, TypeInt::BOOL);
  2729   record_for_igvn(region);
  2731   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
  2732   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  2733   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
  2735   // First null-check both mirrors and load each mirror's klass metaobject.
  2736   int which_arg;
  2737   for (which_arg = 0; which_arg <= 1; which_arg++) {
  2738     Node* arg = args[which_arg];
  2739     _sp += nargs;  // set original stack for use by uncommon_trap
  2740     arg = do_null_check(arg, T_OBJECT);
  2741     _sp -= nargs;
  2742     if (stopped())  break;
  2743     args[which_arg] = _gvn.transform(arg);
  2745     Node* p = basic_plus_adr(arg, class_klass_offset);
  2746     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
  2747     klasses[which_arg] = _gvn.transform(kls);
  2750   // Having loaded both klasses, test each for null.
  2751   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  2752   for (which_arg = 0; which_arg <= 1; which_arg++) {
  2753     Node* kls = klasses[which_arg];
  2754     Node* null_ctl = top();
  2755     _sp += nargs;  // set original stack for use by uncommon_trap
  2756     kls = null_check_oop(kls, &null_ctl, never_see_null);
  2757     _sp -= nargs;
  2758     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
  2759     region->init_req(prim_path, null_ctl);
  2760     if (stopped())  break;
  2761     klasses[which_arg] = kls;
  2764   if (!stopped()) {
  2765     // now we have two reference types, in klasses[0..1]
  2766     Node* subk   = klasses[1];  // the argument to isAssignableFrom
  2767     Node* superk = klasses[0];  // the receiver
  2768     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
  2769     // now we have a successful reference subtype check
  2770     region->set_req(_ref_subtype_path, control());
  2773   // If both operands are primitive (both klasses null), then
  2774   // we must return true when they are identical primitives.
  2775   // It is convenient to test this after the first null klass check.
  2776   set_control(region->in(_prim_0_path)); // go back to first null check
  2777   if (!stopped()) {
  2778     // Since superc is primitive, make a guard for the superc==subc case.
  2779     Node* cmp_eq = _gvn.transform( new (C, 3) CmpPNode(args[0], args[1]) );
  2780     Node* bol_eq = _gvn.transform( new (C, 2) BoolNode(cmp_eq, BoolTest::eq) );
  2781     generate_guard(bol_eq, region, PROB_FAIR);
  2782     if (region->req() == PATH_LIMIT+1) {
  2783       // A guard was added.  If the added guard is taken, superc==subc.
  2784       region->swap_edges(PATH_LIMIT, _prim_same_path);
  2785       region->del_req(PATH_LIMIT);
  2787     region->set_req(_prim_0_path, control()); // Not equal after all.
  2790   // these are the only paths that produce 'true':
  2791   phi->set_req(_prim_same_path,   intcon(1));
  2792   phi->set_req(_ref_subtype_path, intcon(1));
  2794   // pull together the cases:
  2795   assert(region->req() == PATH_LIMIT, "sane region");
  2796   for (uint i = 1; i < region->req(); i++) {
  2797     Node* ctl = region->in(i);
  2798     if (ctl == NULL || ctl == top()) {
  2799       region->set_req(i, top());
  2800       phi   ->set_req(i, top());
  2801     } else if (phi->in(i) == NULL) {
  2802       phi->set_req(i, intcon(0)); // all other paths produce 'false'
  2806   set_control(_gvn.transform(region));
  2807   push(_gvn.transform(phi));
  2809   return true;
  2812 //---------------------generate_array_guard_common------------------------
  2813 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
  2814                                                   bool obj_array, bool not_array) {
  2815   // If obj_array/non_array==false/false:
  2816   // Branch around if the given klass is in fact an array (either obj or prim).
  2817   // If obj_array/non_array==false/true:
  2818   // Branch around if the given klass is not an array klass of any kind.
  2819   // If obj_array/non_array==true/true:
  2820   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
  2821   // If obj_array/non_array==true/false:
  2822   // Branch around if the kls is an oop array (Object[] or subtype)
  2823   //
  2824   // Like generate_guard, adds a new path onto the region.
  2825   jint  layout_con = 0;
  2826   Node* layout_val = get_layout_helper(kls, layout_con);
  2827   if (layout_val == NULL) {
  2828     bool query = (obj_array
  2829                   ? Klass::layout_helper_is_objArray(layout_con)
  2830                   : Klass::layout_helper_is_javaArray(layout_con));
  2831     if (query == not_array) {
  2832       return NULL;                       // never a branch
  2833     } else {                             // always a branch
  2834       Node* always_branch = control();
  2835       if (region != NULL)
  2836         region->add_req(always_branch);
  2837       set_control(top());
  2838       return always_branch;
  2841   // Now test the correct condition.
  2842   jint  nval = (obj_array
  2843                 ? ((jint)Klass::_lh_array_tag_type_value
  2844                    <<    Klass::_lh_array_tag_shift)
  2845                 : Klass::_lh_neutral_value);
  2846   Node* cmp = _gvn.transform( new(C, 3) CmpINode(layout_val, intcon(nval)) );
  2847   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
  2848   // invert the test if we are looking for a non-array
  2849   if (not_array)  btest = BoolTest(btest).negate();
  2850   Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, btest) );
  2851   return generate_fair_guard(bol, region);
  2855 //-----------------------inline_native_newArray--------------------------
  2856 bool LibraryCallKit::inline_native_newArray() {
  2857   int nargs = 2;
  2858   Node* mirror    = argument(0);
  2859   Node* count_val = argument(1);
  2861   _sp += nargs;  // set original stack for use by uncommon_trap
  2862   mirror = do_null_check(mirror, T_OBJECT);
  2863   _sp -= nargs;
  2864   // If mirror or obj is dead, only null-path is taken.
  2865   if (stopped())  return true;
  2867   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
  2868   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  2869   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
  2870                                                       TypeInstPtr::NOTNULL);
  2871   PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
  2872   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
  2873                                                       TypePtr::BOTTOM);
  2875   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  2876   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
  2877                                                   nargs,
  2878                                                   result_reg, _slow_path);
  2879   Node* normal_ctl   = control();
  2880   Node* no_array_ctl = result_reg->in(_slow_path);
  2882   // Generate code for the slow case.  We make a call to newArray().
  2883   set_control(no_array_ctl);
  2884   if (!stopped()) {
  2885     // Either the input type is void.class, or else the
  2886     // array klass has not yet been cached.  Either the
  2887     // ensuing call will throw an exception, or else it
  2888     // will cache the array klass for next time.
  2889     PreserveJVMState pjvms(this);
  2890     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
  2891     Node* slow_result = set_results_for_java_call(slow_call);
  2892     // this->control() comes from set_results_for_java_call
  2893     result_reg->set_req(_slow_path, control());
  2894     result_val->set_req(_slow_path, slow_result);
  2895     result_io ->set_req(_slow_path, i_o());
  2896     result_mem->set_req(_slow_path, reset_memory());
  2899   set_control(normal_ctl);
  2900   if (!stopped()) {
  2901     // Normal case:  The array type has been cached in the java.lang.Class.
  2902     // The following call works fine even if the array type is polymorphic.
  2903     // It could be a dynamic mix of int[], boolean[], Object[], etc.
  2904     _sp += nargs;  // set original stack for use by uncommon_trap
  2905     Node* obj = new_array(klass_node, count_val);
  2906     _sp -= nargs;
  2907     result_reg->init_req(_normal_path, control());
  2908     result_val->init_req(_normal_path, obj);
  2909     result_io ->init_req(_normal_path, i_o());
  2910     result_mem->init_req(_normal_path, reset_memory());
  2913   // Return the combined state.
  2914   set_i_o(        _gvn.transform(result_io)  );
  2915   set_all_memory( _gvn.transform(result_mem) );
  2916   push_result(result_reg, result_val);
  2917   C->set_has_split_ifs(true); // Has chance for split-if optimization
  2919   return true;
  2922 //----------------------inline_native_getLength--------------------------
  2923 bool LibraryCallKit::inline_native_getLength() {
  2924   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  2926   int nargs = 1;
  2927   Node* array = argument(0);
  2929   _sp += nargs;  // set original stack for use by uncommon_trap
  2930   array = do_null_check(array, T_OBJECT);
  2931   _sp -= nargs;
  2933   // If array is dead, only null-path is taken.
  2934   if (stopped())  return true;
  2936   // Deoptimize if it is a non-array.
  2937   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
  2939   if (non_array != NULL) {
  2940     PreserveJVMState pjvms(this);
  2941     set_control(non_array);
  2942     _sp += nargs;  // push the arguments back on the stack
  2943     uncommon_trap(Deoptimization::Reason_intrinsic,
  2944                   Deoptimization::Action_maybe_recompile);
  2947   // If control is dead, only non-array-path is taken.
  2948   if (stopped())  return true;
  2950   // The works fine even if the array type is polymorphic.
  2951   // It could be a dynamic mix of int[], boolean[], Object[], etc.
  2952   push( load_array_length(array) );
  2954   C->set_has_split_ifs(true); // Has chance for split-if optimization
  2956   return true;
  2959 //------------------------inline_array_copyOf----------------------------
  2960 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
  2961   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  2963   // Restore the stack and pop off the arguments.
  2964   int nargs = 3 + (is_copyOfRange? 1: 0);
  2965   Node* original          = argument(0);
  2966   Node* start             = is_copyOfRange? argument(1): intcon(0);
  2967   Node* end               = is_copyOfRange? argument(2): argument(1);
  2968   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
  2970   _sp += nargs;  // set original stack for use by uncommon_trap
  2971   array_type_mirror = do_null_check(array_type_mirror, T_OBJECT);
  2972   original          = do_null_check(original, T_OBJECT);
  2973   _sp -= nargs;
  2975   // Check if a null path was taken unconditionally.
  2976   if (stopped())  return true;
  2978   Node* orig_length = load_array_length(original);
  2980   Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nargs,
  2981                                             NULL, 0);
  2982   _sp += nargs;  // set original stack for use by uncommon_trap
  2983   klass_node = do_null_check(klass_node, T_OBJECT);
  2984   _sp -= nargs;
  2986   RegionNode* bailout = new (C, 1) RegionNode(1);
  2987   record_for_igvn(bailout);
  2989   // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
  2990   // Bail out if that is so.
  2991   Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
  2992   if (not_objArray != NULL) {
  2993     // Improve the klass node's type from the new optimistic assumption:
  2994     ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
  2995     const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  2996     Node* cast = new (C, 2) CastPPNode(klass_node, akls);
  2997     cast->init_req(0, control());
  2998     klass_node = _gvn.transform(cast);
  3001   // Bail out if either start or end is negative.
  3002   generate_negative_guard(start, bailout, &start);
  3003   generate_negative_guard(end,   bailout, &end);
  3005   Node* length = end;
  3006   if (_gvn.type(start) != TypeInt::ZERO) {
  3007     length = _gvn.transform( new (C, 3) SubINode(end, start) );
  3010   // Bail out if length is negative.
  3011   // ...Not needed, since the new_array will throw the right exception.
  3012   //generate_negative_guard(length, bailout, &length);
  3014   if (bailout->req() > 1) {
  3015     PreserveJVMState pjvms(this);
  3016     set_control( _gvn.transform(bailout) );
  3017     _sp += nargs;  // push the arguments back on the stack
  3018     uncommon_trap(Deoptimization::Reason_intrinsic,
  3019                   Deoptimization::Action_maybe_recompile);
  3022   if (!stopped()) {
  3023     // How many elements will we copy from the original?
  3024     // The answer is MinI(orig_length - start, length).
  3025     Node* orig_tail = _gvn.transform( new(C, 3) SubINode(orig_length, start) );
  3026     Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
  3028     _sp += nargs;  // set original stack for use by uncommon_trap
  3029     Node* newcopy = new_array(klass_node, length);
  3030     _sp -= nargs;
  3032     // Generate a direct call to the right arraycopy function(s).
  3033     // We know the copy is disjoint but we might not know if the
  3034     // oop stores need checking.
  3035     // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
  3036     // This will fail a store-check if x contains any non-nulls.
  3037     bool disjoint_bases = true;
  3038     bool length_never_negative = true;
  3039     generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  3040                        original, start, newcopy, intcon(0), moved,
  3041                        nargs, disjoint_bases, length_never_negative);
  3043     push(newcopy);
  3046   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3048   return true;
  3052 //----------------------generate_virtual_guard---------------------------
  3053 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
  3054 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
  3055                                              RegionNode* slow_region) {
  3056   ciMethod* method = callee();
  3057   int vtable_index = method->vtable_index();
  3058   // Get the methodOop out of the appropriate vtable entry.
  3059   int entry_offset  = (instanceKlass::vtable_start_offset() +
  3060                      vtable_index*vtableEntry::size()) * wordSize +
  3061                      vtableEntry::method_offset_in_bytes();
  3062   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
  3063   Node* target_call = make_load(NULL, entry_addr, TypeInstPtr::NOTNULL, T_OBJECT);
  3065   // Compare the target method with the expected method (e.g., Object.hashCode).
  3066   const TypeInstPtr* native_call_addr = TypeInstPtr::make(method);
  3068   Node* native_call = makecon(native_call_addr);
  3069   Node* chk_native  = _gvn.transform( new(C, 3) CmpPNode(target_call, native_call) );
  3070   Node* test_native = _gvn.transform( new(C, 2) BoolNode(chk_native, BoolTest::ne) );
  3072   return generate_slow_guard(test_native, slow_region);
  3075 //-----------------------generate_method_call----------------------------
  3076 // Use generate_method_call to make a slow-call to the real
  3077 // method if the fast path fails.  An alternative would be to
  3078 // use a stub like OptoRuntime::slow_arraycopy_Java.
  3079 // This only works for expanding the current library call,
  3080 // not another intrinsic.  (E.g., don't use this for making an
  3081 // arraycopy call inside of the copyOf intrinsic.)
  3082 CallJavaNode*
  3083 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
  3084   // When compiling the intrinsic method itself, do not use this technique.
  3085   guarantee(callee() != C->method(), "cannot make slow-call to self");
  3087   ciMethod* method = callee();
  3088   // ensure the JVMS we have will be correct for this call
  3089   guarantee(method_id == method->intrinsic_id(), "must match");
  3091   const TypeFunc* tf = TypeFunc::make(method);
  3092   int tfdc = tf->domain()->cnt();
  3093   CallJavaNode* slow_call;
  3094   if (is_static) {
  3095     assert(!is_virtual, "");
  3096     slow_call = new(C, tfdc) CallStaticJavaNode(tf,
  3097                                 SharedRuntime::get_resolve_static_call_stub(),
  3098                                 method, bci());
  3099   } else if (is_virtual) {
  3100     null_check_receiver(method);
  3101     int vtable_index = methodOopDesc::invalid_vtable_index;
  3102     if (UseInlineCaches) {
  3103       // Suppress the vtable call
  3104     } else {
  3105       // hashCode and clone are not a miranda methods,
  3106       // so the vtable index is fixed.
  3107       // No need to use the linkResolver to get it.
  3108        vtable_index = method->vtable_index();
  3110     slow_call = new(C, tfdc) CallDynamicJavaNode(tf,
  3111                                 SharedRuntime::get_resolve_virtual_call_stub(),
  3112                                 method, vtable_index, bci());
  3113   } else {  // neither virtual nor static:  opt_virtual
  3114     null_check_receiver(method);
  3115     slow_call = new(C, tfdc) CallStaticJavaNode(tf,
  3116                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
  3117                                 method, bci());
  3118     slow_call->set_optimized_virtual(true);
  3120   set_arguments_for_java_call(slow_call);
  3121   set_edges_for_java_call(slow_call);
  3122   return slow_call;
  3126 //------------------------------inline_native_hashcode--------------------
  3127 // Build special case code for calls to hashCode on an object.
  3128 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
  3129   assert(is_static == callee()->is_static(), "correct intrinsic selection");
  3130   assert(!(is_virtual && is_static), "either virtual, special, or static");
  3132   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
  3134   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  3135   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
  3136                                                       TypeInt::INT);
  3137   PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
  3138   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
  3139                                                       TypePtr::BOTTOM);
  3140   Node* obj = NULL;
  3141   if (!is_static) {
  3142     // Check for hashing null object
  3143     obj = null_check_receiver(callee());
  3144     if (stopped())  return true;        // unconditionally null
  3145     result_reg->init_req(_null_path, top());
  3146     result_val->init_req(_null_path, top());
  3147   } else {
  3148     // Do a null check, and return zero if null.
  3149     // System.identityHashCode(null) == 0
  3150     obj = argument(0);
  3151     Node* null_ctl = top();
  3152     obj = null_check_oop(obj, &null_ctl);
  3153     result_reg->init_req(_null_path, null_ctl);
  3154     result_val->init_req(_null_path, _gvn.intcon(0));
  3157   // Unconditionally null?  Then return right away.
  3158   if (stopped()) {
  3159     set_control( result_reg->in(_null_path) );
  3160     if (!stopped())
  3161       push(      result_val ->in(_null_path) );
  3162     return true;
  3165   // After null check, get the object's klass.
  3166   Node* obj_klass = load_object_klass(obj);
  3168   // This call may be virtual (invokevirtual) or bound (invokespecial).
  3169   // For each case we generate slightly different code.
  3171   // We only go to the fast case code if we pass a number of guards.  The
  3172   // paths which do not pass are accumulated in the slow_region.
  3173   RegionNode* slow_region = new (C, 1) RegionNode(1);
  3174   record_for_igvn(slow_region);
  3176   // If this is a virtual call, we generate a funny guard.  We pull out
  3177   // the vtable entry corresponding to hashCode() from the target object.
  3178   // If the target method which we are calling happens to be the native
  3179   // Object hashCode() method, we pass the guard.  We do not need this
  3180   // guard for non-virtual calls -- the caller is known to be the native
  3181   // Object hashCode().
  3182   if (is_virtual) {
  3183     generate_virtual_guard(obj_klass, slow_region);
  3186   // Get the header out of the object, use LoadMarkNode when available
  3187   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
  3188   Node* header = make_load(NULL, header_addr, TypeRawPtr::BOTTOM, T_ADDRESS);
  3189   header = _gvn.transform( new (C, 2) CastP2XNode(NULL, header) );
  3191   // Test the header to see if it is unlocked.
  3192   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
  3193   Node *lmasked_header = _gvn.transform( new (C, 3) AndXNode(header, lock_mask) );
  3194   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
  3195   Node *chk_unlocked   = _gvn.transform( new (C, 3) CmpXNode( lmasked_header, unlocked_val));
  3196   Node *test_unlocked  = _gvn.transform( new (C, 2) BoolNode( chk_unlocked, BoolTest::ne) );
  3198   generate_slow_guard(test_unlocked, slow_region);
  3200   // Get the hash value and check to see that it has been properly assigned.
  3201   // We depend on hash_mask being at most 32 bits and avoid the use of
  3202   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
  3203   // vm: see markOop.hpp.
  3204   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
  3205   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
  3206   Node *hshifted_header= _gvn.transform( new (C, 3) URShiftXNode(header, hash_shift) );
  3207   // This hack lets the hash bits live anywhere in the mark object now, as long
  3208   // as the shift drops the relevent bits into the low 32 bits.  Note that
  3209   // Java spec says that HashCode is an int so there's no point in capturing
  3210   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
  3211   hshifted_header      = ConvX2I(hshifted_header);
  3212   Node *hash_val       = _gvn.transform( new (C, 3) AndINode(hshifted_header, hash_mask) );
  3214   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
  3215   Node *chk_assigned   = _gvn.transform( new (C, 3) CmpINode( hash_val, no_hash_val));
  3216   Node *test_assigned  = _gvn.transform( new (C, 2) BoolNode( chk_assigned, BoolTest::eq) );
  3218   generate_slow_guard(test_assigned, slow_region);
  3220   Node* init_mem = reset_memory();
  3221   // fill in the rest of the null path:
  3222   result_io ->init_req(_null_path, i_o());
  3223   result_mem->init_req(_null_path, init_mem);
  3225   result_val->init_req(_fast_path, hash_val);
  3226   result_reg->init_req(_fast_path, control());
  3227   result_io ->init_req(_fast_path, i_o());
  3228   result_mem->init_req(_fast_path, init_mem);
  3230   // Generate code for the slow case.  We make a call to hashCode().
  3231   set_control(_gvn.transform(slow_region));
  3232   if (!stopped()) {
  3233     // No need for PreserveJVMState, because we're using up the present state.
  3234     set_all_memory(init_mem);
  3235     vmIntrinsics::ID hashCode_id = vmIntrinsics::_hashCode;
  3236     if (is_static)   hashCode_id = vmIntrinsics::_identityHashCode;
  3237     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
  3238     Node* slow_result = set_results_for_java_call(slow_call);
  3239     // this->control() comes from set_results_for_java_call
  3240     result_reg->init_req(_slow_path, control());
  3241     result_val->init_req(_slow_path, slow_result);
  3242     result_io  ->set_req(_slow_path, i_o());
  3243     result_mem ->set_req(_slow_path, reset_memory());
  3246   // Return the combined state.
  3247   set_i_o(        _gvn.transform(result_io)  );
  3248   set_all_memory( _gvn.transform(result_mem) );
  3249   push_result(result_reg, result_val);
  3251   return true;
  3254 //---------------------------inline_native_getClass----------------------------
  3255 // Build special case code for calls to hashCode on an object.
  3256 bool LibraryCallKit::inline_native_getClass() {
  3257   Node* obj = null_check_receiver(callee());
  3258   if (stopped())  return true;
  3259   push( load_mirror_from_klass(load_object_klass(obj)) );
  3260   return true;
  3263 //-----------------inline_native_Reflection_getCallerClass---------------------
  3264 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
  3265 //
  3266 // NOTE that this code must perform the same logic as
  3267 // vframeStream::security_get_caller_frame in that it must skip
  3268 // Method.invoke() and auxiliary frames.
  3273 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
  3274   ciMethod*       method = callee();
  3276 #ifndef PRODUCT
  3277   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3278     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
  3280 #endif
  3282   debug_only(int saved_sp = _sp);
  3284   // Argument words:  (int depth)
  3285   int nargs = 1;
  3287   _sp += nargs;
  3288   Node* caller_depth_node = pop();
  3290   assert(saved_sp == _sp, "must have correct argument count");
  3292   // The depth value must be a constant in order for the runtime call
  3293   // to be eliminated.
  3294   const TypeInt* caller_depth_type = _gvn.type(caller_depth_node)->isa_int();
  3295   if (caller_depth_type == NULL || !caller_depth_type->is_con()) {
  3296 #ifndef PRODUCT
  3297     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3298       tty->print_cr("  Bailing out because caller depth was not a constant");
  3300 #endif
  3301     return false;
  3303   // Note that the JVM state at this point does not include the
  3304   // getCallerClass() frame which we are trying to inline. The
  3305   // semantics of getCallerClass(), however, are that the "first"
  3306   // frame is the getCallerClass() frame, so we subtract one from the
  3307   // requested depth before continuing. We don't inline requests of
  3308   // getCallerClass(0).
  3309   int caller_depth = caller_depth_type->get_con() - 1;
  3310   if (caller_depth < 0) {
  3311 #ifndef PRODUCT
  3312     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3313       tty->print_cr("  Bailing out because caller depth was %d", caller_depth);
  3315 #endif
  3316     return false;
  3319   if (!jvms()->has_method()) {
  3320 #ifndef PRODUCT
  3321     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3322       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
  3324 #endif
  3325     return false;
  3327   int _depth = jvms()->depth();  // cache call chain depth
  3329   // Walk back up the JVM state to find the caller at the required
  3330   // depth. NOTE that this code must perform the same logic as
  3331   // vframeStream::security_get_caller_frame in that it must skip
  3332   // Method.invoke() and auxiliary frames. Note also that depth is
  3333   // 1-based (1 is the bottom of the inlining).
  3334   int inlining_depth = _depth;
  3335   JVMState* caller_jvms = NULL;
  3337   if (inlining_depth > 0) {
  3338     caller_jvms = jvms();
  3339     assert(caller_jvms = jvms()->of_depth(inlining_depth), "inlining_depth == our depth");
  3340     do {
  3341       // The following if-tests should be performed in this order
  3342       if (is_method_invoke_or_aux_frame(caller_jvms)) {
  3343         // Skip a Method.invoke() or auxiliary frame
  3344       } else if (caller_depth > 0) {
  3345         // Skip real frame
  3346         --caller_depth;
  3347       } else {
  3348         // We're done: reached desired caller after skipping.
  3349         break;
  3351       caller_jvms = caller_jvms->caller();
  3352       --inlining_depth;
  3353     } while (inlining_depth > 0);
  3356   if (inlining_depth == 0) {
  3357 #ifndef PRODUCT
  3358     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3359       tty->print_cr("  Bailing out because caller depth (%d) exceeded inlining depth (%d)", caller_depth_type->get_con(), _depth);
  3360       tty->print_cr("  JVM state at this point:");
  3361       for (int i = _depth; i >= 1; i--) {
  3362         tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
  3365 #endif
  3366     return false; // Reached end of inlining
  3369   // Acquire method holder as java.lang.Class
  3370   ciInstanceKlass* caller_klass  = caller_jvms->method()->holder();
  3371   ciInstance*      caller_mirror = caller_klass->java_mirror();
  3372   // Push this as a constant
  3373   push(makecon(TypeInstPtr::make(caller_mirror)));
  3374 #ifndef PRODUCT
  3375   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3376     tty->print_cr("  Succeeded: caller = %s.%s, caller depth = %d, depth = %d", caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), caller_depth_type->get_con(), _depth);
  3377     tty->print_cr("  JVM state at this point:");
  3378     for (int i = _depth; i >= 1; i--) {
  3379       tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
  3382 #endif
  3383   return true;
  3386 // Helper routine for above
  3387 bool LibraryCallKit::is_method_invoke_or_aux_frame(JVMState* jvms) {
  3388   // Is this the Method.invoke method itself?
  3389   if (jvms->method()->intrinsic_id() == vmIntrinsics::_invoke)
  3390     return true;
  3392   // Is this a helper, defined somewhere underneath MethodAccessorImpl.
  3393   ciKlass* k = jvms->method()->holder();
  3394   if (k->is_instance_klass()) {
  3395     ciInstanceKlass* ik = k->as_instance_klass();
  3396     for (; ik != NULL; ik = ik->super()) {
  3397       if (ik->name() == ciSymbol::sun_reflect_MethodAccessorImpl() &&
  3398           ik == env()->find_system_klass(ik->name())) {
  3399         return true;
  3404   return false;
  3407 static int value_field_offset = -1;  // offset of the "value" field of AtomicLongCSImpl.  This is needed by
  3408                                      // inline_native_AtomicLong_attemptUpdate() but it has no way of
  3409                                      // computing it since there is no lookup field by name function in the
  3410                                      // CI interface.  This is computed and set by inline_native_AtomicLong_get().
  3411                                      // Using a static variable here is safe even if we have multiple compilation
  3412                                      // threads because the offset is constant.  At worst the same offset will be
  3413                                      // computed and  stored multiple
  3415 bool LibraryCallKit::inline_native_AtomicLong_get() {
  3416   // Restore the stack and pop off the argument
  3417   _sp+=1;
  3418   Node *obj = pop();
  3420   // get the offset of the "value" field. Since the CI interfaces
  3421   // does not provide a way to look up a field by name, we scan the bytecodes
  3422   // to get the field index.  We expect the first 2 instructions of the method
  3423   // to be:
  3424   //    0 aload_0
  3425   //    1 getfield "value"
  3426   ciMethod* method = callee();
  3427   if (value_field_offset == -1)
  3429     ciField* value_field;
  3430     ciBytecodeStream iter(method);
  3431     Bytecodes::Code bc = iter.next();
  3433     if ((bc != Bytecodes::_aload_0) &&
  3434               ((bc != Bytecodes::_aload) || (iter.get_index() != 0)))
  3435       return false;
  3436     bc = iter.next();
  3437     if (bc != Bytecodes::_getfield)
  3438       return false;
  3439     bool ignore;
  3440     value_field = iter.get_field(ignore);
  3441     value_field_offset = value_field->offset_in_bytes();
  3444   // Null check without removing any arguments.
  3445   _sp++;
  3446   obj = do_null_check(obj, T_OBJECT);
  3447   _sp--;
  3448   // Check for locking null object
  3449   if (stopped()) return true;
  3451   Node *adr = basic_plus_adr(obj, obj, value_field_offset);
  3452   const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
  3453   int alias_idx = C->get_alias_index(adr_type);
  3455   Node *result = _gvn.transform(new (C, 3) LoadLLockedNode(control(), memory(alias_idx), adr));
  3457   push_pair(result);
  3459   return true;
  3462 bool LibraryCallKit::inline_native_AtomicLong_attemptUpdate() {
  3463   // Restore the stack and pop off the arguments
  3464   _sp+=5;
  3465   Node *newVal = pop_pair();
  3466   Node *oldVal = pop_pair();
  3467   Node *obj = pop();
  3469   // we need the offset of the "value" field which was computed when
  3470   // inlining the get() method.  Give up if we don't have it.
  3471   if (value_field_offset == -1)
  3472     return false;
  3474   // Null check without removing any arguments.
  3475   _sp+=5;
  3476   obj = do_null_check(obj, T_OBJECT);
  3477   _sp-=5;
  3478   // Check for locking null object
  3479   if (stopped()) return true;
  3481   Node *adr = basic_plus_adr(obj, obj, value_field_offset);
  3482   const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
  3483   int alias_idx = C->get_alias_index(adr_type);
  3485   Node *result = _gvn.transform(new (C, 5) StoreLConditionalNode(control(), memory(alias_idx), adr, newVal, oldVal));
  3486   Node *store_proj = _gvn.transform( new (C, 1) SCMemProjNode(result));
  3487   set_memory(store_proj, alias_idx);
  3489   push(result);
  3490   return true;
  3493 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
  3494   // restore the arguments
  3495   _sp += arg_size();
  3497   switch (id) {
  3498   case vmIntrinsics::_floatToRawIntBits:
  3499     push(_gvn.transform( new (C, 2) MoveF2INode(pop())));
  3500     break;
  3502   case vmIntrinsics::_intBitsToFloat:
  3503     push(_gvn.transform( new (C, 2) MoveI2FNode(pop())));
  3504     break;
  3506   case vmIntrinsics::_doubleToRawLongBits:
  3507     push_pair(_gvn.transform( new (C, 2) MoveD2LNode(pop_pair())));
  3508     break;
  3510   case vmIntrinsics::_longBitsToDouble:
  3511     push_pair(_gvn.transform( new (C, 2) MoveL2DNode(pop_pair())));
  3512     break;
  3514   case vmIntrinsics::_doubleToLongBits: {
  3515     Node* value = pop_pair();
  3517     // two paths (plus control) merge in a wood
  3518     RegionNode *r = new (C, 3) RegionNode(3);
  3519     Node *phi = new (C, 3) PhiNode(r, TypeLong::LONG);
  3521     Node *cmpisnan = _gvn.transform( new (C, 3) CmpDNode(value, value));
  3522     // Build the boolean node
  3523     Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
  3525     // Branch either way.
  3526     // NaN case is less traveled, which makes all the difference.
  3527     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  3528     Node *opt_isnan = _gvn.transform(ifisnan);
  3529     assert( opt_isnan->is_If(), "Expect an IfNode");
  3530     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  3531     Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
  3533     set_control(iftrue);
  3535     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  3536     Node *slow_result = longcon(nan_bits); // return NaN
  3537     phi->init_req(1, _gvn.transform( slow_result ));
  3538     r->init_req(1, iftrue);
  3540     // Else fall through
  3541     Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
  3542     set_control(iffalse);
  3544     phi->init_req(2, _gvn.transform( new (C, 2) MoveD2LNode(value)));
  3545     r->init_req(2, iffalse);
  3547     // Post merge
  3548     set_control(_gvn.transform(r));
  3549     record_for_igvn(r);
  3551     Node* result = _gvn.transform(phi);
  3552     assert(result->bottom_type()->isa_long(), "must be");
  3553     push_pair(result);
  3555     C->set_has_split_ifs(true); // Has chance for split-if optimization
  3557     break;
  3560   case vmIntrinsics::_floatToIntBits: {
  3561     Node* value = pop();
  3563     // two paths (plus control) merge in a wood
  3564     RegionNode *r = new (C, 3) RegionNode(3);
  3565     Node *phi = new (C, 3) PhiNode(r, TypeInt::INT);
  3567     Node *cmpisnan = _gvn.transform( new (C, 3) CmpFNode(value, value));
  3568     // Build the boolean node
  3569     Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
  3571     // Branch either way.
  3572     // NaN case is less traveled, which makes all the difference.
  3573     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  3574     Node *opt_isnan = _gvn.transform(ifisnan);
  3575     assert( opt_isnan->is_If(), "Expect an IfNode");
  3576     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  3577     Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
  3579     set_control(iftrue);
  3581     static const jint nan_bits = 0x7fc00000;
  3582     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
  3583     phi->init_req(1, _gvn.transform( slow_result ));
  3584     r->init_req(1, iftrue);
  3586     // Else fall through
  3587     Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
  3588     set_control(iffalse);
  3590     phi->init_req(2, _gvn.transform( new (C, 2) MoveF2INode(value)));
  3591     r->init_req(2, iffalse);
  3593     // Post merge
  3594     set_control(_gvn.transform(r));
  3595     record_for_igvn(r);
  3597     Node* result = _gvn.transform(phi);
  3598     assert(result->bottom_type()->isa_int(), "must be");
  3599     push(result);
  3601     C->set_has_split_ifs(true); // Has chance for split-if optimization
  3603     break;
  3606   default:
  3607     ShouldNotReachHere();
  3610   return true;
  3613 #ifdef _LP64
  3614 #define XTOP ,top() /*additional argument*/
  3615 #else  //_LP64
  3616 #define XTOP        /*no additional argument*/
  3617 #endif //_LP64
  3619 //----------------------inline_unsafe_copyMemory-------------------------
  3620 bool LibraryCallKit::inline_unsafe_copyMemory() {
  3621   if (callee()->is_static())  return false;  // caller must have the capability!
  3622   int nargs = 1 + 5 + 3;  // 5 args:  (src: ptr,off, dst: ptr,off, size)
  3623   assert(signature()->size() == nargs-1, "copy has 5 arguments");
  3624   null_check_receiver(callee());  // check then ignore argument(0)
  3625   if (stopped())  return true;
  3627   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  3629   Node* src_ptr = argument(1);
  3630   Node* src_off = ConvL2X(argument(2));
  3631   assert(argument(3)->is_top(), "2nd half of long");
  3632   Node* dst_ptr = argument(4);
  3633   Node* dst_off = ConvL2X(argument(5));
  3634   assert(argument(6)->is_top(), "2nd half of long");
  3635   Node* size    = ConvL2X(argument(7));
  3636   assert(argument(8)->is_top(), "2nd half of long");
  3638   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  3639          "fieldOffset must be byte-scaled");
  3641   Node* src = make_unsafe_address(src_ptr, src_off);
  3642   Node* dst = make_unsafe_address(dst_ptr, dst_off);
  3644   // Conservatively insert a memory barrier on all memory slices.
  3645   // Do not let writes of the copy source or destination float below the copy.
  3646   insert_mem_bar(Op_MemBarCPUOrder);
  3648   // Call it.  Note that the length argument is not scaled.
  3649   make_runtime_call(RC_LEAF|RC_NO_FP,
  3650                     OptoRuntime::fast_arraycopy_Type(),
  3651                     StubRoutines::unsafe_arraycopy(),
  3652                     "unsafe_arraycopy",
  3653                     TypeRawPtr::BOTTOM,
  3654                     src, dst, size XTOP);
  3656   // Do not let reads of the copy destination float above the copy.
  3657   insert_mem_bar(Op_MemBarCPUOrder);
  3659   return true;
  3663 //------------------------inline_native_clone----------------------------
  3664 // Here are the simple edge cases:
  3665 //  null receiver => normal trap
  3666 //  virtual and clone was overridden => slow path to out-of-line clone
  3667 //  not cloneable or finalizer => slow path to out-of-line Object.clone
  3668 //
  3669 // The general case has two steps, allocation and copying.
  3670 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
  3671 //
  3672 // Copying also has two cases, oop arrays and everything else.
  3673 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
  3674 // Everything else uses the tight inline loop supplied by CopyArrayNode.
  3675 //
  3676 // These steps fold up nicely if and when the cloned object's klass
  3677 // can be sharply typed as an object array, a type array, or an instance.
  3678 //
  3679 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
  3680   int nargs = 1;
  3681   Node* obj = null_check_receiver(callee());
  3682   if (stopped())  return true;
  3683   Node* obj_klass = load_object_klass(obj);
  3684   const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
  3685   const TypeOopPtr*   toop   = ((tklass != NULL)
  3686                                 ? tklass->as_instance_type()
  3687                                 : TypeInstPtr::NOTNULL);
  3689   // Conservatively insert a memory barrier on all memory slices.
  3690   // Do not let writes into the original float below the clone.
  3691   insert_mem_bar(Op_MemBarCPUOrder);
  3693   // paths into result_reg:
  3694   enum {
  3695     _slow_path = 1,     // out-of-line call to clone method (virtual or not)
  3696     _objArray_path,     // plain allocation, plus arrayof_oop_arraycopy
  3697     _fast_path,         // plain allocation, plus a CopyArray operation
  3698     PATH_LIMIT
  3699   };
  3700   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  3701   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
  3702                                                       TypeInstPtr::NOTNULL);
  3703   PhiNode*    result_i_o = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
  3704   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
  3705                                                       TypePtr::BOTTOM);
  3706   record_for_igvn(result_reg);
  3708   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  3709   int raw_adr_idx = Compile::AliasIdxRaw;
  3710   const bool raw_mem_only = true;
  3712   // paths into alloc_reg (on the fast path, just before the CopyArray):
  3713   enum { _typeArray_alloc = 1, _instance_alloc, ALLOC_LIMIT };
  3714   RegionNode* alloc_reg = new(C, ALLOC_LIMIT) RegionNode(ALLOC_LIMIT);
  3715   PhiNode*    alloc_val = new(C, ALLOC_LIMIT) PhiNode(alloc_reg, raw_adr_type);
  3716   PhiNode*    alloc_siz = new(C, ALLOC_LIMIT) PhiNode(alloc_reg, TypeX_X);
  3717   PhiNode*    alloc_i_o = new(C, ALLOC_LIMIT) PhiNode(alloc_reg, Type::ABIO);
  3718   PhiNode*    alloc_mem = new(C, ALLOC_LIMIT) PhiNode(alloc_reg, Type::MEMORY,
  3719                                                       raw_adr_type);
  3720   record_for_igvn(alloc_reg);
  3722   bool card_mark = false;  // (see below)
  3724   Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
  3725   if (array_ctl != NULL) {
  3726     // It's an array.
  3727     PreserveJVMState pjvms(this);
  3728     set_control(array_ctl);
  3729     Node* obj_length = load_array_length(obj);
  3730     Node* obj_size = NULL;
  3731     _sp += nargs;  // set original stack for use by uncommon_trap
  3732     Node* alloc_obj = new_array(obj_klass, obj_length,
  3733                                 raw_mem_only, &obj_size);
  3734     _sp -= nargs;
  3735     assert(obj_size != NULL, "");
  3736     Node* raw_obj = alloc_obj->in(1);
  3737     assert(raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
  3738     if (ReduceBulkZeroing) {
  3739       AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
  3740       if (alloc != NULL) {
  3741         // We will be completely responsible for initializing this object.
  3742         alloc->maybe_set_complete(&_gvn);
  3746     if (!use_ReduceInitialCardMarks()) {
  3747       // If it is an oop array, it requires very special treatment,
  3748       // because card marking is required on each card of the array.
  3749       Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
  3750       if (is_obja != NULL) {
  3751         PreserveJVMState pjvms2(this);
  3752         set_control(is_obja);
  3753         // Generate a direct call to the right arraycopy function(s).
  3754         bool disjoint_bases = true;
  3755         bool length_never_negative = true;
  3756         generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  3757                            obj, intcon(0), alloc_obj, intcon(0),
  3758                            obj_length, nargs,
  3759                            disjoint_bases, length_never_negative);
  3760         result_reg->init_req(_objArray_path, control());
  3761         result_val->init_req(_objArray_path, alloc_obj);
  3762         result_i_o ->set_req(_objArray_path, i_o());
  3763         result_mem ->set_req(_objArray_path, reset_memory());
  3766     // We can dispense with card marks if we know the allocation
  3767     // comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
  3768     // causes the non-eden paths to simulate a fresh allocation,
  3769     // insofar that no further card marks are required to initialize
  3770     // the object.
  3772     // Otherwise, there are no card marks to worry about.
  3773     alloc_val->init_req(_typeArray_alloc, raw_obj);
  3774     alloc_siz->init_req(_typeArray_alloc, obj_size);
  3775     alloc_reg->init_req(_typeArray_alloc, control());
  3776     alloc_i_o->init_req(_typeArray_alloc, i_o());
  3777     alloc_mem->init_req(_typeArray_alloc, memory(raw_adr_type));
  3780   // We only go to the fast case code if we pass a number of guards.
  3781   // The paths which do not pass are accumulated in the slow_region.
  3782   RegionNode* slow_region = new (C, 1) RegionNode(1);
  3783   record_for_igvn(slow_region);
  3784   if (!stopped()) {
  3785     // It's an instance.  Make the slow-path tests.
  3786     // If this is a virtual call, we generate a funny guard.  We grab
  3787     // the vtable entry corresponding to clone() from the target object.
  3788     // If the target method which we are calling happens to be the
  3789     // Object clone() method, we pass the guard.  We do not need this
  3790     // guard for non-virtual calls; the caller is known to be the native
  3791     // Object clone().
  3792     if (is_virtual) {
  3793       generate_virtual_guard(obj_klass, slow_region);
  3796     // The object must be cloneable and must not have a finalizer.
  3797     // Both of these conditions may be checked in a single test.
  3798     // We could optimize the cloneable test further, but we don't care.
  3799     generate_access_flags_guard(obj_klass,
  3800                                 // Test both conditions:
  3801                                 JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
  3802                                 // Must be cloneable but not finalizer:
  3803                                 JVM_ACC_IS_CLONEABLE,
  3804                                 slow_region);
  3807   if (!stopped()) {
  3808     // It's an instance, and it passed the slow-path tests.
  3809     PreserveJVMState pjvms(this);
  3810     Node* obj_size = NULL;
  3811     Node* alloc_obj = new_instance(obj_klass, NULL, raw_mem_only, &obj_size);
  3812     assert(obj_size != NULL, "");
  3813     Node* raw_obj = alloc_obj->in(1);
  3814     assert(raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
  3815     if (ReduceBulkZeroing) {
  3816       AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
  3817       if (alloc != NULL && !alloc->maybe_set_complete(&_gvn))
  3818         alloc = NULL;
  3820     if (!use_ReduceInitialCardMarks()) {
  3821       // Put in store barrier for any and all oops we are sticking
  3822       // into this object.  (We could avoid this if we could prove
  3823       // that the object type contains no oop fields at all.)
  3824       card_mark = true;
  3826     alloc_val->init_req(_instance_alloc, raw_obj);
  3827     alloc_siz->init_req(_instance_alloc, obj_size);
  3828     alloc_reg->init_req(_instance_alloc, control());
  3829     alloc_i_o->init_req(_instance_alloc, i_o());
  3830     alloc_mem->init_req(_instance_alloc, memory(raw_adr_type));
  3833   // Generate code for the slow case.  We make a call to clone().
  3834   set_control(_gvn.transform(slow_region));
  3835   if (!stopped()) {
  3836     PreserveJVMState pjvms(this);
  3837     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
  3838     Node* slow_result = set_results_for_java_call(slow_call);
  3839     // this->control() comes from set_results_for_java_call
  3840     result_reg->init_req(_slow_path, control());
  3841     result_val->init_req(_slow_path, slow_result);
  3842     result_i_o ->set_req(_slow_path, i_o());
  3843     result_mem ->set_req(_slow_path, reset_memory());
  3846   // The object is allocated, as an array and/or an instance.  Now copy it.
  3847   set_control( _gvn.transform(alloc_reg) );
  3848   set_i_o(     _gvn.transform(alloc_i_o) );
  3849   set_memory(  _gvn.transform(alloc_mem), raw_adr_type );
  3850   Node* raw_obj  = _gvn.transform(alloc_val);
  3852   if (!stopped()) {
  3853     // Copy the fastest available way.
  3854     // (No need for PreserveJVMState, since we're using it all up now.)
  3855     // TODO: generate fields/elements copies for small objects instead.
  3856     Node* src  = obj;
  3857     Node* dest = raw_obj;
  3858     Node* size = _gvn.transform(alloc_siz);
  3860     // Exclude the header.
  3861     int base_off = instanceOopDesc::base_offset_in_bytes();
  3862     if (UseCompressedOops) {
  3863       assert(base_off % BytesPerLong != 0, "base with compressed oops");
  3864       // With compressed oops base_offset_in_bytes is 12 which creates
  3865       // the gap since countx is rounded by 8 bytes below.
  3866       // Copy klass and the gap.
  3867       base_off = instanceOopDesc::klass_offset_in_bytes();
  3869     src  = basic_plus_adr(src,  base_off);
  3870     dest = basic_plus_adr(dest, base_off);
  3872     // Compute the length also, if needed:
  3873     Node* countx = size;
  3874     countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(base_off)) );
  3875     countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong) ));
  3877     // Select an appropriate instruction to initialize the range.
  3878     // The CopyArray instruction (if supported) can be optimized
  3879     // into a discrete set of scalar loads and stores.
  3880     bool disjoint_bases = true;
  3881     generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
  3882                                  src, NULL, dest, NULL, countx);
  3884     // Now that the object is properly initialized, type it as an oop.
  3885     // Use a secondary InitializeNode memory barrier.
  3886     InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, raw_adr_idx,
  3887                                                    raw_obj)->as_Initialize();
  3888     init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
  3889     Node* new_obj = new(C, 2) CheckCastPPNode(control(), raw_obj,
  3890                                               TypeInstPtr::NOTNULL);
  3891     new_obj = _gvn.transform(new_obj);
  3893     // If necessary, emit some card marks afterwards.  (Non-arrays only.)
  3894     if (card_mark) {
  3895       Node* no_particular_value = NULL;
  3896       Node* no_particular_field = NULL;
  3897       post_barrier(control(),
  3898                    memory(raw_adr_type),
  3899                    new_obj,
  3900                    no_particular_field,
  3901                    raw_adr_idx,
  3902                    no_particular_value,
  3903                    T_OBJECT,
  3904                    false);
  3906     // Present the results of the slow call.
  3907     result_reg->init_req(_fast_path, control());
  3908     result_val->init_req(_fast_path, new_obj);
  3909     result_i_o ->set_req(_fast_path, i_o());
  3910     result_mem ->set_req(_fast_path, reset_memory());
  3913   // Return the combined state.
  3914   set_control(    _gvn.transform(result_reg) );
  3915   set_i_o(        _gvn.transform(result_i_o) );
  3916   set_all_memory( _gvn.transform(result_mem) );
  3918   // Cast the result to a sharper type, since we know what clone does.
  3919   Node* new_obj = _gvn.transform(result_val);
  3920   Node* cast    = new (C, 2) CheckCastPPNode(control(), new_obj, toop);
  3921   push(_gvn.transform(cast));
  3923   return true;
  3927 // constants for computing the copy function
  3928 enum {
  3929   COPYFUNC_UNALIGNED = 0,
  3930   COPYFUNC_ALIGNED = 1,                 // src, dest aligned to HeapWordSize
  3931   COPYFUNC_CONJOINT = 0,
  3932   COPYFUNC_DISJOINT = 2                 // src != dest, or transfer can descend
  3933 };
  3935 // Note:  The condition "disjoint" applies also for overlapping copies
  3936 // where an descending copy is permitted (i.e., dest_offset <= src_offset).
  3937 static address
  3938 select_arraycopy_function(BasicType t, bool aligned, bool disjoint, const char* &name) {
  3939   int selector =
  3940     (aligned  ? COPYFUNC_ALIGNED  : COPYFUNC_UNALIGNED) +
  3941     (disjoint ? COPYFUNC_DISJOINT : COPYFUNC_CONJOINT);
  3943 #define RETURN_STUB(xxx_arraycopy) { \
  3944   name = #xxx_arraycopy; \
  3945   return StubRoutines::xxx_arraycopy(); }
  3947   switch (t) {
  3948   case T_BYTE:
  3949   case T_BOOLEAN:
  3950     switch (selector) {
  3951     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jbyte_arraycopy);
  3952     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jbyte_arraycopy);
  3953     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jbyte_disjoint_arraycopy);
  3954     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jbyte_disjoint_arraycopy);
  3956   case T_CHAR:
  3957   case T_SHORT:
  3958     switch (selector) {
  3959     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jshort_arraycopy);
  3960     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jshort_arraycopy);
  3961     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jshort_disjoint_arraycopy);
  3962     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jshort_disjoint_arraycopy);
  3964   case T_INT:
  3965   case T_FLOAT:
  3966     switch (selector) {
  3967     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jint_arraycopy);
  3968     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jint_arraycopy);
  3969     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jint_disjoint_arraycopy);
  3970     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jint_disjoint_arraycopy);
  3972   case T_DOUBLE:
  3973   case T_LONG:
  3974     switch (selector) {
  3975     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jlong_arraycopy);
  3976     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jlong_arraycopy);
  3977     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jlong_disjoint_arraycopy);
  3978     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jlong_disjoint_arraycopy);
  3980   case T_ARRAY:
  3981   case T_OBJECT:
  3982     switch (selector) {
  3983     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(oop_arraycopy);
  3984     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_oop_arraycopy);
  3985     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(oop_disjoint_arraycopy);
  3986     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_oop_disjoint_arraycopy);
  3988   default:
  3989     ShouldNotReachHere();
  3990     return NULL;
  3993 #undef RETURN_STUB
  3996 //------------------------------basictype2arraycopy----------------------------
  3997 address LibraryCallKit::basictype2arraycopy(BasicType t,
  3998                                             Node* src_offset,
  3999                                             Node* dest_offset,
  4000                                             bool disjoint_bases,
  4001                                             const char* &name) {
  4002   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
  4003   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
  4005   bool aligned = false;
  4006   bool disjoint = disjoint_bases;
  4008   // if the offsets are the same, we can treat the memory regions as
  4009   // disjoint, because either the memory regions are in different arrays,
  4010   // or they are identical (which we can treat as disjoint.)  We can also
  4011   // treat a copy with a destination index  less that the source index
  4012   // as disjoint since a low->high copy will work correctly in this case.
  4013   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
  4014       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
  4015     // both indices are constants
  4016     int s_offs = src_offset_inttype->get_con();
  4017     int d_offs = dest_offset_inttype->get_con();
  4018     int element_size = type2aelembytes(t);
  4019     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
  4020               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
  4021     if (s_offs >= d_offs)  disjoint = true;
  4022   } else if (src_offset == dest_offset && src_offset != NULL) {
  4023     // This can occur if the offsets are identical non-constants.
  4024     disjoint = true;
  4027   return select_arraycopy_function(t, aligned, disjoint, name);
  4031 //------------------------------inline_arraycopy-----------------------
  4032 bool LibraryCallKit::inline_arraycopy() {
  4033   // Restore the stack and pop off the arguments.
  4034   int nargs = 5;  // 2 oops, 3 ints, no size_t or long
  4035   assert(callee()->signature()->size() == nargs, "copy has 5 arguments");
  4037   Node *src         = argument(0);
  4038   Node *src_offset  = argument(1);
  4039   Node *dest        = argument(2);
  4040   Node *dest_offset = argument(3);
  4041   Node *length      = argument(4);
  4043   // Compile time checks.  If any of these checks cannot be verified at compile time,
  4044   // we do not make a fast path for this call.  Instead, we let the call remain as it
  4045   // is.  The checks we choose to mandate at compile time are:
  4046   //
  4047   // (1) src and dest are arrays.
  4048   const Type* src_type = src->Value(&_gvn);
  4049   const Type* dest_type = dest->Value(&_gvn);
  4050   const TypeAryPtr* top_src = src_type->isa_aryptr();
  4051   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  4052   if (top_src  == NULL || top_src->klass()  == NULL ||
  4053       top_dest == NULL || top_dest->klass() == NULL) {
  4054     // Conservatively insert a memory barrier on all memory slices.
  4055     // Do not let writes into the source float below the arraycopy.
  4056     insert_mem_bar(Op_MemBarCPUOrder);
  4058     // Call StubRoutines::generic_arraycopy stub.
  4059     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
  4060                        src, src_offset, dest, dest_offset, length,
  4061                        nargs);
  4063     // Do not let reads from the destination float above the arraycopy.
  4064     // Since we cannot type the arrays, we don't know which slices
  4065     // might be affected.  We could restrict this barrier only to those
  4066     // memory slices which pertain to array elements--but don't bother.
  4067     if (!InsertMemBarAfterArraycopy)
  4068       // (If InsertMemBarAfterArraycopy, there is already one in place.)
  4069       insert_mem_bar(Op_MemBarCPUOrder);
  4070     return true;
  4073   // (2) src and dest arrays must have elements of the same BasicType
  4074   // Figure out the size and type of the elements we will be copying.
  4075   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
  4076   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
  4077   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
  4078   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
  4080   if (src_elem != dest_elem || dest_elem == T_VOID) {
  4081     // The component types are not the same or are not recognized.  Punt.
  4082     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
  4083     generate_slow_arraycopy(TypePtr::BOTTOM,
  4084                             src, src_offset, dest, dest_offset, length,
  4085                             nargs);
  4086     return true;
  4089   //---------------------------------------------------------------------------
  4090   // We will make a fast path for this call to arraycopy.
  4092   // We have the following tests left to perform:
  4093   //
  4094   // (3) src and dest must not be null.
  4095   // (4) src_offset must not be negative.
  4096   // (5) dest_offset must not be negative.
  4097   // (6) length must not be negative.
  4098   // (7) src_offset + length must not exceed length of src.
  4099   // (8) dest_offset + length must not exceed length of dest.
  4100   // (9) each element of an oop array must be assignable
  4102   RegionNode* slow_region = new (C, 1) RegionNode(1);
  4103   record_for_igvn(slow_region);
  4105   // (3) operands must not be null
  4106   // We currently perform our null checks with the do_null_check routine.
  4107   // This means that the null exceptions will be reported in the caller
  4108   // rather than (correctly) reported inside of the native arraycopy call.
  4109   // This should be corrected, given time.  We do our null check with the
  4110   // stack pointer restored.
  4111   _sp += nargs;
  4112   src  = do_null_check(src,  T_ARRAY);
  4113   dest = do_null_check(dest, T_ARRAY);
  4114   _sp -= nargs;
  4116   // (4) src_offset must not be negative.
  4117   generate_negative_guard(src_offset, slow_region);
  4119   // (5) dest_offset must not be negative.
  4120   generate_negative_guard(dest_offset, slow_region);
  4122   // (6) length must not be negative (moved to generate_arraycopy()).
  4123   // generate_negative_guard(length, slow_region);
  4125   // (7) src_offset + length must not exceed length of src.
  4126   generate_limit_guard(src_offset, length,
  4127                        load_array_length(src),
  4128                        slow_region);
  4130   // (8) dest_offset + length must not exceed length of dest.
  4131   generate_limit_guard(dest_offset, length,
  4132                        load_array_length(dest),
  4133                        slow_region);
  4135   // (9) each element of an oop array must be assignable
  4136   // The generate_arraycopy subroutine checks this.
  4138   // This is where the memory effects are placed:
  4139   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
  4140   generate_arraycopy(adr_type, dest_elem,
  4141                      src, src_offset, dest, dest_offset, length,
  4142                      nargs, false, false, slow_region);
  4144   return true;
  4147 //-----------------------------generate_arraycopy----------------------
  4148 // Generate an optimized call to arraycopy.
  4149 // Caller must guard against non-arrays.
  4150 // Caller must determine a common array basic-type for both arrays.
  4151 // Caller must validate offsets against array bounds.
  4152 // The slow_region has already collected guard failure paths
  4153 // (such as out of bounds length or non-conformable array types).
  4154 // The generated code has this shape, in general:
  4155 //
  4156 //     if (length == 0)  return   // via zero_path
  4157 //     slowval = -1
  4158 //     if (types unknown) {
  4159 //       slowval = call generic copy loop
  4160 //       if (slowval == 0)  return  // via checked_path
  4161 //     } else if (indexes in bounds) {
  4162 //       if ((is object array) && !(array type check)) {
  4163 //         slowval = call checked copy loop
  4164 //         if (slowval == 0)  return  // via checked_path
  4165 //       } else {
  4166 //         call bulk copy loop
  4167 //         return  // via fast_path
  4168 //       }
  4169 //     }
  4170 //     // adjust params for remaining work:
  4171 //     if (slowval != -1) {
  4172 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
  4173 //     }
  4174 //   slow_region:
  4175 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
  4176 //     return  // via slow_call_path
  4177 //
  4178 // This routine is used from several intrinsics:  System.arraycopy,
  4179 // Object.clone (the array subcase), and Arrays.copyOf[Range].
  4180 //
  4181 void
  4182 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
  4183                                    BasicType basic_elem_type,
  4184                                    Node* src,  Node* src_offset,
  4185                                    Node* dest, Node* dest_offset,
  4186                                    Node* copy_length,
  4187                                    int nargs,
  4188                                    bool disjoint_bases,
  4189                                    bool length_never_negative,
  4190                                    RegionNode* slow_region) {
  4192   if (slow_region == NULL) {
  4193     slow_region = new(C,1) RegionNode(1);
  4194     record_for_igvn(slow_region);
  4197   Node* original_dest      = dest;
  4198   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
  4199   Node* raw_dest           = NULL;  // used before zeroing, if needed
  4200   bool  must_clear_dest    = false;
  4202   // See if this is the initialization of a newly-allocated array.
  4203   // If so, we will take responsibility here for initializing it to zero.
  4204   // (Note:  Because tightly_coupled_allocation performs checks on the
  4205   // out-edges of the dest, we need to avoid making derived pointers
  4206   // from it until we have checked its uses.)
  4207   if (ReduceBulkZeroing
  4208       && !ZeroTLAB              // pointless if already zeroed
  4209       && basic_elem_type != T_CONFLICT // avoid corner case
  4210       && !_gvn.eqv_uncast(src, dest)
  4211       && ((alloc = tightly_coupled_allocation(dest, slow_region))
  4212           != NULL)
  4213       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
  4214       && alloc->maybe_set_complete(&_gvn)) {
  4215     // "You break it, you buy it."
  4216     InitializeNode* init = alloc->initialization();
  4217     assert(init->is_complete(), "we just did this");
  4218     assert(dest->Opcode() == Op_CheckCastPP, "sanity");
  4219     assert(dest->in(0)->in(0) == init, "dest pinned");
  4220     raw_dest = dest->in(1);  // grab the raw pointer!
  4221     original_dest = dest;
  4222     dest = raw_dest;
  4223     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
  4224     // Decouple the original InitializeNode, turning it into a simple membar.
  4225     // We will build a new one at the end of this routine.
  4226     init->set_req(InitializeNode::RawAddress, top());
  4227     // From this point on, every exit path is responsible for
  4228     // initializing any non-copied parts of the object to zero.
  4229     must_clear_dest = true;
  4230   } else {
  4231     // No zeroing elimination here.
  4232     alloc             = NULL;
  4233     //original_dest   = dest;
  4234     //must_clear_dest = false;
  4237   // Results are placed here:
  4238   enum { fast_path        = 1,  // normal void-returning assembly stub
  4239          checked_path     = 2,  // special assembly stub with cleanup
  4240          slow_call_path   = 3,  // something went wrong; call the VM
  4241          zero_path        = 4,  // bypass when length of copy is zero
  4242          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
  4243          PATH_LIMIT       = 6
  4244   };
  4245   RegionNode* result_region = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  4246   PhiNode*    result_i_o    = new(C, PATH_LIMIT) PhiNode(result_region, Type::ABIO);
  4247   PhiNode*    result_memory = new(C, PATH_LIMIT) PhiNode(result_region, Type::MEMORY, adr_type);
  4248   record_for_igvn(result_region);
  4249   _gvn.set_type_bottom(result_i_o);
  4250   _gvn.set_type_bottom(result_memory);
  4251   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
  4253   // The slow_control path:
  4254   Node* slow_control;
  4255   Node* slow_i_o = i_o();
  4256   Node* slow_mem = memory(adr_type);
  4257   debug_only(slow_control = (Node*) badAddress);
  4259   // Checked control path:
  4260   Node* checked_control = top();
  4261   Node* checked_mem     = NULL;
  4262   Node* checked_i_o     = NULL;
  4263   Node* checked_value   = NULL;
  4265   if (basic_elem_type == T_CONFLICT) {
  4266     assert(!must_clear_dest, "");
  4267     Node* cv = generate_generic_arraycopy(adr_type,
  4268                                           src, src_offset, dest, dest_offset,
  4269                                           copy_length, nargs);
  4270     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  4271     checked_control = control();
  4272     checked_i_o     = i_o();
  4273     checked_mem     = memory(adr_type);
  4274     checked_value   = cv;
  4275     set_control(top());         // no fast path
  4278   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
  4279   if (not_pos != NULL) {
  4280     PreserveJVMState pjvms(this);
  4281     set_control(not_pos);
  4283     // (6) length must not be negative.
  4284     if (!length_never_negative) {
  4285       generate_negative_guard(copy_length, slow_region);
  4288     if (!stopped() && must_clear_dest) {
  4289       Node* dest_length = alloc->in(AllocateNode::ALength);
  4290       if (_gvn.eqv_uncast(copy_length, dest_length)
  4291           || _gvn.find_int_con(dest_length, 1) <= 0) {
  4292         // There is no zeroing to do.
  4293       } else {
  4294         // Clear the whole thing since there are no source elements to copy.
  4295         generate_clear_array(adr_type, dest, basic_elem_type,
  4296                              intcon(0), NULL,
  4297                              alloc->in(AllocateNode::AllocSize));
  4301     // Present the results of the fast call.
  4302     result_region->init_req(zero_path, control());
  4303     result_i_o   ->init_req(zero_path, i_o());
  4304     result_memory->init_req(zero_path, memory(adr_type));
  4307   if (!stopped() && must_clear_dest) {
  4308     // We have to initialize the *uncopied* part of the array to zero.
  4309     // The copy destination is the slice dest[off..off+len].  The other slices
  4310     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
  4311     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
  4312     Node* dest_length = alloc->in(AllocateNode::ALength);
  4313     Node* dest_tail   = _gvn.transform( new(C,3) AddINode(dest_offset,
  4314                                                           copy_length) );
  4316     // If there is a head section that needs zeroing, do it now.
  4317     if (find_int_con(dest_offset, -1) != 0) {
  4318       generate_clear_array(adr_type, dest, basic_elem_type,
  4319                            intcon(0), dest_offset,
  4320                            NULL);
  4323     // Next, perform a dynamic check on the tail length.
  4324     // It is often zero, and we can win big if we prove this.
  4325     // There are two wins:  Avoid generating the ClearArray
  4326     // with its attendant messy index arithmetic, and upgrade
  4327     // the copy to a more hardware-friendly word size of 64 bits.
  4328     Node* tail_ctl = NULL;
  4329     if (!stopped() && !_gvn.eqv_uncast(dest_tail, dest_length)) {
  4330       Node* cmp_lt   = _gvn.transform( new(C,3) CmpINode(dest_tail, dest_length) );
  4331       Node* bol_lt   = _gvn.transform( new(C,2) BoolNode(cmp_lt, BoolTest::lt) );
  4332       tail_ctl = generate_slow_guard(bol_lt, NULL);
  4333       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
  4336     // At this point, let's assume there is no tail.
  4337     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
  4338       // There is no tail.  Try an upgrade to a 64-bit copy.
  4339       bool didit = false;
  4340       { PreserveJVMState pjvms(this);
  4341         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
  4342                                          src, src_offset, dest, dest_offset,
  4343                                          dest_size);
  4344         if (didit) {
  4345           // Present the results of the block-copying fast call.
  4346           result_region->init_req(bcopy_path, control());
  4347           result_i_o   ->init_req(bcopy_path, i_o());
  4348           result_memory->init_req(bcopy_path, memory(adr_type));
  4351       if (didit)
  4352         set_control(top());     // no regular fast path
  4355     // Clear the tail, if any.
  4356     if (tail_ctl != NULL) {
  4357       Node* notail_ctl = stopped() ? NULL : control();
  4358       set_control(tail_ctl);
  4359       if (notail_ctl == NULL) {
  4360         generate_clear_array(adr_type, dest, basic_elem_type,
  4361                              dest_tail, NULL,
  4362                              dest_size);
  4363       } else {
  4364         // Make a local merge.
  4365         Node* done_ctl = new(C,3) RegionNode(3);
  4366         Node* done_mem = new(C,3) PhiNode(done_ctl, Type::MEMORY, adr_type);
  4367         done_ctl->init_req(1, notail_ctl);
  4368         done_mem->init_req(1, memory(adr_type));
  4369         generate_clear_array(adr_type, dest, basic_elem_type,
  4370                              dest_tail, NULL,
  4371                              dest_size);
  4372         done_ctl->init_req(2, control());
  4373         done_mem->init_req(2, memory(adr_type));
  4374         set_control( _gvn.transform(done_ctl) );
  4375         set_memory(  _gvn.transform(done_mem), adr_type );
  4380   BasicType copy_type = basic_elem_type;
  4381   assert(basic_elem_type != T_ARRAY, "caller must fix this");
  4382   if (!stopped() && copy_type == T_OBJECT) {
  4383     // If src and dest have compatible element types, we can copy bits.
  4384     // Types S[] and D[] are compatible if D is a supertype of S.
  4385     //
  4386     // If they are not, we will use checked_oop_disjoint_arraycopy,
  4387     // which performs a fast optimistic per-oop check, and backs off
  4388     // further to JVM_ArrayCopy on the first per-oop check that fails.
  4389     // (Actually, we don't move raw bits only; the GC requires card marks.)
  4391     // Get the klassOop for both src and dest
  4392     Node* src_klass  = load_object_klass(src);
  4393     Node* dest_klass = load_object_klass(dest);
  4395     // Generate the subtype check.
  4396     // This might fold up statically, or then again it might not.
  4397     //
  4398     // Non-static example:  Copying List<String>.elements to a new String[].
  4399     // The backing store for a List<String> is always an Object[],
  4400     // but its elements are always type String, if the generic types
  4401     // are correct at the source level.
  4402     //
  4403     // Test S[] against D[], not S against D, because (probably)
  4404     // the secondary supertype cache is less busy for S[] than S.
  4405     // This usually only matters when D is an interface.
  4406     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
  4407     // Plug failing path into checked_oop_disjoint_arraycopy
  4408     if (not_subtype_ctrl != top()) {
  4409       PreserveJVMState pjvms(this);
  4410       set_control(not_subtype_ctrl);
  4411       // (At this point we can assume disjoint_bases, since types differ.)
  4412       int ek_offset = objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc);
  4413       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
  4414       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
  4415       Node* dest_elem_klass = _gvn.transform(n1);
  4416       Node* cv = generate_checkcast_arraycopy(adr_type,
  4417                                               dest_elem_klass,
  4418                                               src, src_offset, dest, dest_offset,
  4419                                               copy_length,
  4420                                               nargs);
  4421       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  4422       checked_control = control();
  4423       checked_i_o     = i_o();
  4424       checked_mem     = memory(adr_type);
  4425       checked_value   = cv;
  4427     // At this point we know we do not need type checks on oop stores.
  4429     // Let's see if we need card marks:
  4430     if (alloc != NULL && use_ReduceInitialCardMarks()) {
  4431       // If we do not need card marks, copy using the jint or jlong stub.
  4432       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
  4433       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
  4434              "sizes agree");
  4438   if (!stopped()) {
  4439     // Generate the fast path, if possible.
  4440     PreserveJVMState pjvms(this);
  4441     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
  4442                                  src, src_offset, dest, dest_offset,
  4443                                  ConvI2X(copy_length));
  4445     // Present the results of the fast call.
  4446     result_region->init_req(fast_path, control());
  4447     result_i_o   ->init_req(fast_path, i_o());
  4448     result_memory->init_req(fast_path, memory(adr_type));
  4451   // Here are all the slow paths up to this point, in one bundle:
  4452   slow_control = top();
  4453   if (slow_region != NULL)
  4454     slow_control = _gvn.transform(slow_region);
  4455   debug_only(slow_region = (RegionNode*)badAddress);
  4457   set_control(checked_control);
  4458   if (!stopped()) {
  4459     // Clean up after the checked call.
  4460     // The returned value is either 0 or -1^K,
  4461     // where K = number of partially transferred array elements.
  4462     Node* cmp = _gvn.transform( new(C, 3) CmpINode(checked_value, intcon(0)) );
  4463     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
  4464     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
  4466     // If it is 0, we are done, so transfer to the end.
  4467     Node* checks_done = _gvn.transform( new(C, 1) IfTrueNode(iff) );
  4468     result_region->init_req(checked_path, checks_done);
  4469     result_i_o   ->init_req(checked_path, checked_i_o);
  4470     result_memory->init_req(checked_path, checked_mem);
  4472     // If it is not zero, merge into the slow call.
  4473     set_control( _gvn.transform( new(C, 1) IfFalseNode(iff) ));
  4474     RegionNode* slow_reg2 = new(C, 3) RegionNode(3);
  4475     PhiNode*    slow_i_o2 = new(C, 3) PhiNode(slow_reg2, Type::ABIO);
  4476     PhiNode*    slow_mem2 = new(C, 3) PhiNode(slow_reg2, Type::MEMORY, adr_type);
  4477     record_for_igvn(slow_reg2);
  4478     slow_reg2  ->init_req(1, slow_control);
  4479     slow_i_o2  ->init_req(1, slow_i_o);
  4480     slow_mem2  ->init_req(1, slow_mem);
  4481     slow_reg2  ->init_req(2, control());
  4482     slow_i_o2  ->init_req(2, i_o());
  4483     slow_mem2  ->init_req(2, memory(adr_type));
  4485     slow_control = _gvn.transform(slow_reg2);
  4486     slow_i_o     = _gvn.transform(slow_i_o2);
  4487     slow_mem     = _gvn.transform(slow_mem2);
  4489     if (alloc != NULL) {
  4490       // We'll restart from the very beginning, after zeroing the whole thing.
  4491       // This can cause double writes, but that's OK since dest is brand new.
  4492       // So we ignore the low 31 bits of the value returned from the stub.
  4493     } else {
  4494       // We must continue the copy exactly where it failed, or else
  4495       // another thread might see the wrong number of writes to dest.
  4496       Node* checked_offset = _gvn.transform( new(C, 3) XorINode(checked_value, intcon(-1)) );
  4497       Node* slow_offset    = new(C, 3) PhiNode(slow_reg2, TypeInt::INT);
  4498       slow_offset->init_req(1, intcon(0));
  4499       slow_offset->init_req(2, checked_offset);
  4500       slow_offset  = _gvn.transform(slow_offset);
  4502       // Adjust the arguments by the conditionally incoming offset.
  4503       Node* src_off_plus  = _gvn.transform( new(C, 3) AddINode(src_offset,  slow_offset) );
  4504       Node* dest_off_plus = _gvn.transform( new(C, 3) AddINode(dest_offset, slow_offset) );
  4505       Node* length_minus  = _gvn.transform( new(C, 3) SubINode(copy_length, slow_offset) );
  4507       // Tweak the node variables to adjust the code produced below:
  4508       src_offset  = src_off_plus;
  4509       dest_offset = dest_off_plus;
  4510       copy_length = length_minus;
  4514   set_control(slow_control);
  4515   if (!stopped()) {
  4516     // Generate the slow path, if needed.
  4517     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
  4519     set_memory(slow_mem, adr_type);
  4520     set_i_o(slow_i_o);
  4522     if (must_clear_dest) {
  4523       generate_clear_array(adr_type, dest, basic_elem_type,
  4524                            intcon(0), NULL,
  4525                            alloc->in(AllocateNode::AllocSize));
  4528     if (dest != original_dest) {
  4529       // Promote from rawptr to oop, so it looks right in the call's GC map.
  4530       dest = _gvn.transform( new(C,2) CheckCastPPNode(control(), dest,
  4531                                                       TypeInstPtr::NOTNULL) );
  4533       // Edit the call's debug-info to avoid referring to original_dest.
  4534       // (The problem with original_dest is that it isn't ready until
  4535       // after the InitializeNode completes, but this stuff is before.)
  4536       // Substitute in the locally valid dest_oop.
  4537       replace_in_map(original_dest, dest);
  4540     generate_slow_arraycopy(adr_type,
  4541                             src, src_offset, dest, dest_offset,
  4542                             copy_length, nargs);
  4544     result_region->init_req(slow_call_path, control());
  4545     result_i_o   ->init_req(slow_call_path, i_o());
  4546     result_memory->init_req(slow_call_path, memory(adr_type));
  4549   // Remove unused edges.
  4550   for (uint i = 1; i < result_region->req(); i++) {
  4551     if (result_region->in(i) == NULL)
  4552       result_region->init_req(i, top());
  4555   // Finished; return the combined state.
  4556   set_control( _gvn.transform(result_region) );
  4557   set_i_o(     _gvn.transform(result_i_o)    );
  4558   set_memory(  _gvn.transform(result_memory), adr_type );
  4560   if (dest != original_dest) {
  4561     // Pin the "finished" array node after the arraycopy/zeroing operations.
  4562     // Use a secondary InitializeNode memory barrier.
  4563     InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
  4564                                                    Compile::AliasIdxRaw,
  4565                                                    raw_dest)->as_Initialize();
  4566     init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
  4567     _gvn.hash_delete(original_dest);
  4568     original_dest->set_req(0, control());
  4569     _gvn.hash_find_insert(original_dest);  // put back into GVN table
  4572   // The memory edges above are precise in order to model effects around
  4573   // array copyies accurately to allow value numbering of field loads around
  4574   // arraycopy.  Such field loads, both before and after, are common in Java
  4575   // collections and similar classes involving header/array data structures.
  4576   //
  4577   // But with low number of register or when some registers are used or killed
  4578   // by arraycopy calls it causes registers spilling on stack. See 6544710.
  4579   // The next memory barrier is added to avoid it. If the arraycopy can be
  4580   // optimized away (which it can, sometimes) then we can manually remove
  4581   // the membar also.
  4582   if (InsertMemBarAfterArraycopy)
  4583     insert_mem_bar(Op_MemBarCPUOrder);
  4587 // Helper function which determines if an arraycopy immediately follows
  4588 // an allocation, with no intervening tests or other escapes for the object.
  4589 AllocateArrayNode*
  4590 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
  4591                                            RegionNode* slow_region) {
  4592   if (stopped())             return NULL;  // no fast path
  4593   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
  4595   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
  4596   if (alloc == NULL)  return NULL;
  4598   Node* rawmem = memory(Compile::AliasIdxRaw);
  4599   // Is the allocation's memory state untouched?
  4600   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
  4601     // Bail out if there have been raw-memory effects since the allocation.
  4602     // (Example:  There might have been a call or safepoint.)
  4603     return NULL;
  4605   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
  4606   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
  4607     return NULL;
  4610   // There must be no unexpected observers of this allocation.
  4611   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
  4612     Node* obs = ptr->fast_out(i);
  4613     if (obs != this->map()) {
  4614       return NULL;
  4618   // This arraycopy must unconditionally follow the allocation of the ptr.
  4619   Node* alloc_ctl = ptr->in(0);
  4620   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
  4622   Node* ctl = control();
  4623   while (ctl != alloc_ctl) {
  4624     // There may be guards which feed into the slow_region.
  4625     // Any other control flow means that we might not get a chance
  4626     // to finish initializing the allocated object.
  4627     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
  4628       IfNode* iff = ctl->in(0)->as_If();
  4629       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
  4630       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
  4631       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
  4632         ctl = iff->in(0);       // This test feeds the known slow_region.
  4633         continue;
  4635       // One more try:  Various low-level checks bottom out in
  4636       // uncommon traps.  If the debug-info of the trap omits
  4637       // any reference to the allocation, as we've already
  4638       // observed, then there can be no objection to the trap.
  4639       bool found_trap = false;
  4640       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
  4641         Node* obs = not_ctl->fast_out(j);
  4642         if (obs->in(0) == not_ctl && obs->is_Call() &&
  4643             (obs->as_Call()->entry_point() ==
  4644              SharedRuntime::uncommon_trap_blob()->instructions_begin())) {
  4645           found_trap = true; break;
  4648       if (found_trap) {
  4649         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
  4650         continue;
  4653     return NULL;
  4656   // If we get this far, we have an allocation which immediately
  4657   // precedes the arraycopy, and we can take over zeroing the new object.
  4658   // The arraycopy will finish the initialization, and provide
  4659   // a new control state to which we will anchor the destination pointer.
  4661   return alloc;
  4664 // Helper for initialization of arrays, creating a ClearArray.
  4665 // It writes zero bits in [start..end), within the body of an array object.
  4666 // The memory effects are all chained onto the 'adr_type' alias category.
  4667 //
  4668 // Since the object is otherwise uninitialized, we are free
  4669 // to put a little "slop" around the edges of the cleared area,
  4670 // as long as it does not go back into the array's header,
  4671 // or beyond the array end within the heap.
  4672 //
  4673 // The lower edge can be rounded down to the nearest jint and the
  4674 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
  4675 //
  4676 // Arguments:
  4677 //   adr_type           memory slice where writes are generated
  4678 //   dest               oop of the destination array
  4679 //   basic_elem_type    element type of the destination
  4680 //   slice_idx          array index of first element to store
  4681 //   slice_len          number of elements to store (or NULL)
  4682 //   dest_size          total size in bytes of the array object
  4683 //
  4684 // Exactly one of slice_len or dest_size must be non-NULL.
  4685 // If dest_size is non-NULL, zeroing extends to the end of the object.
  4686 // If slice_len is non-NULL, the slice_idx value must be a constant.
  4687 void
  4688 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
  4689                                      Node* dest,
  4690                                      BasicType basic_elem_type,
  4691                                      Node* slice_idx,
  4692                                      Node* slice_len,
  4693                                      Node* dest_size) {
  4694   // one or the other but not both of slice_len and dest_size:
  4695   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
  4696   if (slice_len == NULL)  slice_len = top();
  4697   if (dest_size == NULL)  dest_size = top();
  4699   // operate on this memory slice:
  4700   Node* mem = memory(adr_type); // memory slice to operate on
  4702   // scaling and rounding of indexes:
  4703   int scale = exact_log2(type2aelembytes(basic_elem_type));
  4704   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  4705   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
  4706   int bump_bit  = (-1 << scale) & BytesPerInt;
  4708   // determine constant starts and ends
  4709   const intptr_t BIG_NEG = -128;
  4710   assert(BIG_NEG + 2*abase < 0, "neg enough");
  4711   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
  4712   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
  4713   if (slice_len_con == 0) {
  4714     return;                     // nothing to do here
  4716   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
  4717   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
  4718   if (slice_idx_con >= 0 && slice_len_con >= 0) {
  4719     assert(end_con < 0, "not two cons");
  4720     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
  4721                        BytesPerLong);
  4724   if (start_con >= 0 && end_con >= 0) {
  4725     // Constant start and end.  Simple.
  4726     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  4727                                        start_con, end_con, &_gvn);
  4728   } else if (start_con >= 0 && dest_size != top()) {
  4729     // Constant start, pre-rounded end after the tail of the array.
  4730     Node* end = dest_size;
  4731     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  4732                                        start_con, end, &_gvn);
  4733   } else if (start_con >= 0 && slice_len != top()) {
  4734     // Constant start, non-constant end.  End needs rounding up.
  4735     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
  4736     intptr_t end_base  = abase + (slice_idx_con << scale);
  4737     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
  4738     Node*    end       = ConvI2X(slice_len);
  4739     if (scale != 0)
  4740       end = _gvn.transform( new(C,3) LShiftXNode(end, intcon(scale) ));
  4741     end_base += end_round;
  4742     end = _gvn.transform( new(C,3) AddXNode(end, MakeConX(end_base)) );
  4743     end = _gvn.transform( new(C,3) AndXNode(end, MakeConX(~end_round)) );
  4744     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  4745                                        start_con, end, &_gvn);
  4746   } else if (start_con < 0 && dest_size != top()) {
  4747     // Non-constant start, pre-rounded end after the tail of the array.
  4748     // This is almost certainly a "round-to-end" operation.
  4749     Node* start = slice_idx;
  4750     start = ConvI2X(start);
  4751     if (scale != 0)
  4752       start = _gvn.transform( new(C,3) LShiftXNode( start, intcon(scale) ));
  4753     start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(abase)) );
  4754     if ((bump_bit | clear_low) != 0) {
  4755       int to_clear = (bump_bit | clear_low);
  4756       // Align up mod 8, then store a jint zero unconditionally
  4757       // just before the mod-8 boundary.
  4758       if (((abase + bump_bit) & ~to_clear) - bump_bit
  4759           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
  4760         bump_bit = 0;
  4761         assert((abase & to_clear) == 0, "array base must be long-aligned");
  4762       } else {
  4763         // Bump 'start' up to (or past) the next jint boundary:
  4764         start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(bump_bit)) );
  4765         assert((abase & clear_low) == 0, "array base must be int-aligned");
  4767       // Round bumped 'start' down to jlong boundary in body of array.
  4768       start = _gvn.transform( new(C,3) AndXNode(start, MakeConX(~to_clear)) );
  4769       if (bump_bit != 0) {
  4770         // Store a zero to the immediately preceding jint:
  4771         Node* x1 = _gvn.transform( new(C,3) AddXNode(start, MakeConX(-bump_bit)) );
  4772         Node* p1 = basic_plus_adr(dest, x1);
  4773         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
  4774         mem = _gvn.transform(mem);
  4777     Node* end = dest_size; // pre-rounded
  4778     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  4779                                        start, end, &_gvn);
  4780   } else {
  4781     // Non-constant start, unrounded non-constant end.
  4782     // (Nobody zeroes a random midsection of an array using this routine.)
  4783     ShouldNotReachHere();       // fix caller
  4786   // Done.
  4787   set_memory(mem, adr_type);
  4791 bool
  4792 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
  4793                                          BasicType basic_elem_type,
  4794                                          AllocateNode* alloc,
  4795                                          Node* src,  Node* src_offset,
  4796                                          Node* dest, Node* dest_offset,
  4797                                          Node* dest_size) {
  4798   // See if there is an advantage from block transfer.
  4799   int scale = exact_log2(type2aelembytes(basic_elem_type));
  4800   if (scale >= LogBytesPerLong)
  4801     return false;               // it is already a block transfer
  4803   // Look at the alignment of the starting offsets.
  4804   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  4805   const intptr_t BIG_NEG = -128;
  4806   assert(BIG_NEG + 2*abase < 0, "neg enough");
  4808   intptr_t src_off  = abase + ((intptr_t) find_int_con(src_offset, -1)  << scale);
  4809   intptr_t dest_off = abase + ((intptr_t) find_int_con(dest_offset, -1) << scale);
  4810   if (src_off < 0 || dest_off < 0)
  4811     // At present, we can only understand constants.
  4812     return false;
  4814   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
  4815     // Non-aligned; too bad.
  4816     // One more chance:  Pick off an initial 32-bit word.
  4817     // This is a common case, since abase can be odd mod 8.
  4818     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
  4819         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
  4820       Node* sptr = basic_plus_adr(src,  src_off);
  4821       Node* dptr = basic_plus_adr(dest, dest_off);
  4822       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
  4823       store_to_memory(control(), dptr, sval, T_INT, adr_type);
  4824       src_off += BytesPerInt;
  4825       dest_off += BytesPerInt;
  4826     } else {
  4827       return false;
  4830   assert(src_off % BytesPerLong == 0, "");
  4831   assert(dest_off % BytesPerLong == 0, "");
  4833   // Do this copy by giant steps.
  4834   Node* sptr  = basic_plus_adr(src,  src_off);
  4835   Node* dptr  = basic_plus_adr(dest, dest_off);
  4836   Node* countx = dest_size;
  4837   countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(dest_off)) );
  4838   countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong)) );
  4840   bool disjoint_bases = true;   // since alloc != NULL
  4841   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
  4842                                sptr, NULL, dptr, NULL, countx);
  4844   return true;
  4848 // Helper function; generates code for the slow case.
  4849 // We make a call to a runtime method which emulates the native method,
  4850 // but without the native wrapper overhead.
  4851 void
  4852 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
  4853                                         Node* src,  Node* src_offset,
  4854                                         Node* dest, Node* dest_offset,
  4855                                         Node* copy_length,
  4856                                         int nargs) {
  4857   _sp += nargs; // any deopt will start just before call to enclosing method
  4858   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
  4859                                  OptoRuntime::slow_arraycopy_Type(),
  4860                                  OptoRuntime::slow_arraycopy_Java(),
  4861                                  "slow_arraycopy", adr_type,
  4862                                  src, src_offset, dest, dest_offset,
  4863                                  copy_length);
  4864   _sp -= nargs;
  4866   // Handle exceptions thrown by this fellow:
  4867   make_slow_call_ex(call, env()->Throwable_klass(), false);
  4870 // Helper function; generates code for cases requiring runtime checks.
  4871 Node*
  4872 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
  4873                                              Node* dest_elem_klass,
  4874                                              Node* src,  Node* src_offset,
  4875                                              Node* dest, Node* dest_offset,
  4876                                              Node* copy_length,
  4877                                              int nargs) {
  4878   if (stopped())  return NULL;
  4880   address copyfunc_addr = StubRoutines::checkcast_arraycopy();
  4881   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  4882     return NULL;
  4885   // Pick out the parameters required to perform a store-check
  4886   // for the target array.  This is an optimistic check.  It will
  4887   // look in each non-null element's class, at the desired klass's
  4888   // super_check_offset, for the desired klass.
  4889   int sco_offset = Klass::super_check_offset_offset_in_bytes() + sizeof(oopDesc);
  4890   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
  4891   Node* n3 = new(C, 3) LoadINode(NULL, immutable_memory(), p3, TypeRawPtr::BOTTOM);
  4892   Node* check_offset = _gvn.transform(n3);
  4893   Node* check_value  = dest_elem_klass;
  4895   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
  4896   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
  4898   // (We know the arrays are never conjoint, because their types differ.)
  4899   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  4900                                  OptoRuntime::checkcast_arraycopy_Type(),
  4901                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
  4902                                  // five arguments, of which two are
  4903                                  // intptr_t (jlong in LP64)
  4904                                  src_start, dest_start,
  4905                                  copy_length XTOP,
  4906                                  check_offset XTOP,
  4907                                  check_value);
  4909   return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
  4913 // Helper function; generates code for cases requiring runtime checks.
  4914 Node*
  4915 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
  4916                                            Node* src,  Node* src_offset,
  4917                                            Node* dest, Node* dest_offset,
  4918                                            Node* copy_length,
  4919                                            int nargs) {
  4920   if (stopped())  return NULL;
  4922   address copyfunc_addr = StubRoutines::generic_arraycopy();
  4923   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  4924     return NULL;
  4927   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  4928                     OptoRuntime::generic_arraycopy_Type(),
  4929                     copyfunc_addr, "generic_arraycopy", adr_type,
  4930                     src, src_offset, dest, dest_offset, copy_length);
  4932   return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
  4935 // Helper function; generates the fast out-of-line call to an arraycopy stub.
  4936 void
  4937 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
  4938                                              BasicType basic_elem_type,
  4939                                              bool disjoint_bases,
  4940                                              Node* src,  Node* src_offset,
  4941                                              Node* dest, Node* dest_offset,
  4942                                              Node* copy_length) {
  4943   if (stopped())  return;               // nothing to do
  4945   Node* src_start  = src;
  4946   Node* dest_start = dest;
  4947   if (src_offset != NULL || dest_offset != NULL) {
  4948     assert(src_offset != NULL && dest_offset != NULL, "");
  4949     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
  4950     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
  4953   // Figure out which arraycopy runtime method to call.
  4954   const char* copyfunc_name = "arraycopy";
  4955   address     copyfunc_addr =
  4956       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
  4957                           disjoint_bases, copyfunc_name);
  4959   // Call it.  Note that the count_ix value is not scaled to a byte-size.
  4960   make_runtime_call(RC_LEAF|RC_NO_FP,
  4961                     OptoRuntime::fast_arraycopy_Type(),
  4962                     copyfunc_addr, copyfunc_name, adr_type,
  4963                     src_start, dest_start, copy_length XTOP);

mercurial