src/os_cpu/linux_x86/vm/os_linux_x86.cpp

Tue, 05 Mar 2013 13:55:56 -0800

author
iklam
date
Tue, 05 Mar 2013 13:55:56 -0800
changeset 4710
9058789475af
parent 4528
12285410684f
child 4763
9ef47379df20
permissions
-rw-r--r--

7107135: Stack guard pages are no more protected after loading a shared library with executable stack
Summary: Detect the execstack attribute of the loaded library and attempt to fix the stack guard using Safepoint op.
Reviewed-by: dholmes, zgu
Contributed-by: ioi.lam@oracle.com

     1 /*
     2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // no precompiled headers
    26 #include "asm/macroAssembler.hpp"
    27 #include "classfile/classLoader.hpp"
    28 #include "classfile/systemDictionary.hpp"
    29 #include "classfile/vmSymbols.hpp"
    30 #include "code/icBuffer.hpp"
    31 #include "code/vtableStubs.hpp"
    32 #include "interpreter/interpreter.hpp"
    33 #include "jvm_linux.h"
    34 #include "memory/allocation.inline.hpp"
    35 #include "mutex_linux.inline.hpp"
    36 #include "os_share_linux.hpp"
    37 #include "prims/jniFastGetField.hpp"
    38 #include "prims/jvm.h"
    39 #include "prims/jvm_misc.hpp"
    40 #include "runtime/arguments.hpp"
    41 #include "runtime/extendedPC.hpp"
    42 #include "runtime/frame.inline.hpp"
    43 #include "runtime/interfaceSupport.hpp"
    44 #include "runtime/java.hpp"
    45 #include "runtime/javaCalls.hpp"
    46 #include "runtime/mutexLocker.hpp"
    47 #include "runtime/osThread.hpp"
    48 #include "runtime/sharedRuntime.hpp"
    49 #include "runtime/stubRoutines.hpp"
    50 #include "runtime/thread.inline.hpp"
    51 #include "runtime/timer.hpp"
    52 #include "utilities/events.hpp"
    53 #include "utilities/vmError.hpp"
    55 // put OS-includes here
    56 # include <sys/types.h>
    57 # include <sys/mman.h>
    58 # include <pthread.h>
    59 # include <signal.h>
    60 # include <errno.h>
    61 # include <dlfcn.h>
    62 # include <stdlib.h>
    63 # include <stdio.h>
    64 # include <unistd.h>
    65 # include <sys/resource.h>
    66 # include <pthread.h>
    67 # include <sys/stat.h>
    68 # include <sys/time.h>
    69 # include <sys/utsname.h>
    70 # include <sys/socket.h>
    71 # include <sys/wait.h>
    72 # include <pwd.h>
    73 # include <poll.h>
    74 # include <ucontext.h>
    75 # include <fpu_control.h>
    77 #ifdef AMD64
    78 #define REG_SP REG_RSP
    79 #define REG_PC REG_RIP
    80 #define REG_FP REG_RBP
    81 #define SPELL_REG_SP "rsp"
    82 #define SPELL_REG_FP "rbp"
    83 #else
    84 #define REG_SP REG_UESP
    85 #define REG_PC REG_EIP
    86 #define REG_FP REG_EBP
    87 #define SPELL_REG_SP "esp"
    88 #define SPELL_REG_FP "ebp"
    89 #endif // AMD64
    91 address os::current_stack_pointer() {
    92 #ifdef SPARC_WORKS
    93   register void *esp;
    94   __asm__("mov %%"SPELL_REG_SP", %0":"=r"(esp));
    95   return (address) ((char*)esp + sizeof(long)*2);
    96 #else
    97   register void *esp __asm__ (SPELL_REG_SP);
    98   return (address) esp;
    99 #endif
   100 }
   102 char* os::non_memory_address_word() {
   103   // Must never look like an address returned by reserve_memory,
   104   // even in its subfields (as defined by the CPU immediate fields,
   105   // if the CPU splits constants across multiple instructions).
   107   return (char*) -1;
   108 }
   110 void os::initialize_thread(Thread* thr) {
   111 // Nothing to do.
   112 }
   114 address os::Linux::ucontext_get_pc(ucontext_t * uc) {
   115   return (address)uc->uc_mcontext.gregs[REG_PC];
   116 }
   118 intptr_t* os::Linux::ucontext_get_sp(ucontext_t * uc) {
   119   return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
   120 }
   122 intptr_t* os::Linux::ucontext_get_fp(ucontext_t * uc) {
   123   return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
   124 }
   126 // For Forte Analyzer AsyncGetCallTrace profiling support - thread
   127 // is currently interrupted by SIGPROF.
   128 // os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal
   129 // frames. Currently we don't do that on Linux, so it's the same as
   130 // os::fetch_frame_from_context().
   131 ExtendedPC os::Linux::fetch_frame_from_ucontext(Thread* thread,
   132   ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
   134   assert(thread != NULL, "just checking");
   135   assert(ret_sp != NULL, "just checking");
   136   assert(ret_fp != NULL, "just checking");
   138   return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
   139 }
   141 ExtendedPC os::fetch_frame_from_context(void* ucVoid,
   142                     intptr_t** ret_sp, intptr_t** ret_fp) {
   144   ExtendedPC  epc;
   145   ucontext_t* uc = (ucontext_t*)ucVoid;
   147   if (uc != NULL) {
   148     epc = ExtendedPC(os::Linux::ucontext_get_pc(uc));
   149     if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc);
   150     if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc);
   151   } else {
   152     // construct empty ExtendedPC for return value checking
   153     epc = ExtendedPC(NULL);
   154     if (ret_sp) *ret_sp = (intptr_t *)NULL;
   155     if (ret_fp) *ret_fp = (intptr_t *)NULL;
   156   }
   158   return epc;
   159 }
   161 frame os::fetch_frame_from_context(void* ucVoid) {
   162   intptr_t* sp;
   163   intptr_t* fp;
   164   ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
   165   return frame(sp, fp, epc.pc());
   166 }
   168 // By default, gcc always save frame pointer (%ebp/%rbp) on stack. It may get
   169 // turned off by -fomit-frame-pointer,
   170 frame os::get_sender_for_C_frame(frame* fr) {
   171   return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
   172 }
   174 intptr_t* _get_previous_fp() {
   175 #ifdef SPARC_WORKS
   176   register intptr_t **ebp;
   177   __asm__("mov %%"SPELL_REG_FP", %0":"=r"(ebp));
   178 #else
   179   register intptr_t **ebp __asm__ (SPELL_REG_FP);
   180 #endif
   181   return (intptr_t*) *ebp;   // we want what it points to.
   182 }
   185 frame os::current_frame() {
   186   intptr_t* fp = _get_previous_fp();
   187   frame myframe((intptr_t*)os::current_stack_pointer(),
   188                 (intptr_t*)fp,
   189                 CAST_FROM_FN_PTR(address, os::current_frame));
   190   if (os::is_first_C_frame(&myframe)) {
   191     // stack is not walkable
   192     return frame();
   193   } else {
   194     return os::get_sender_for_C_frame(&myframe);
   195   }
   196 }
   198 // Utility functions
   200 // From IA32 System Programming Guide
   201 enum {
   202   trap_page_fault = 0xE
   203 };
   205 extern "C" void Fetch32PFI () ;
   206 extern "C" void Fetch32Resume () ;
   207 #ifdef AMD64
   208 extern "C" void FetchNPFI () ;
   209 extern "C" void FetchNResume () ;
   210 #endif // AMD64
   212 extern "C" JNIEXPORT int
   213 JVM_handle_linux_signal(int sig,
   214                         siginfo_t* info,
   215                         void* ucVoid,
   216                         int abort_if_unrecognized) {
   217   ucontext_t* uc = (ucontext_t*) ucVoid;
   219   Thread* t = ThreadLocalStorage::get_thread_slow();
   221   SignalHandlerMark shm(t);
   223   // Note: it's not uncommon that JNI code uses signal/sigset to install
   224   // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
   225   // or have a SIGILL handler when detecting CPU type). When that happens,
   226   // JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To
   227   // avoid unnecessary crash when libjsig is not preloaded, try handle signals
   228   // that do not require siginfo/ucontext first.
   230   if (sig == SIGPIPE || sig == SIGXFSZ) {
   231     // allow chained handler to go first
   232     if (os::Linux::chained_handler(sig, info, ucVoid)) {
   233       return true;
   234     } else {
   235       if (PrintMiscellaneous && (WizardMode || Verbose)) {
   236         char buf[64];
   237         warning("Ignoring %s - see bugs 4229104 or 646499219",
   238                 os::exception_name(sig, buf, sizeof(buf)));
   239       }
   240       return true;
   241     }
   242   }
   244   JavaThread* thread = NULL;
   245   VMThread* vmthread = NULL;
   246   if (os::Linux::signal_handlers_are_installed) {
   247     if (t != NULL ){
   248       if(t->is_Java_thread()) {
   249         thread = (JavaThread*)t;
   250       }
   251       else if(t->is_VM_thread()){
   252         vmthread = (VMThread *)t;
   253       }
   254     }
   255   }
   256 /*
   257   NOTE: does not seem to work on linux.
   258   if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
   259     // can't decode this kind of signal
   260     info = NULL;
   261   } else {
   262     assert(sig == info->si_signo, "bad siginfo");
   263   }
   264 */
   265   // decide if this trap can be handled by a stub
   266   address stub = NULL;
   268   address pc          = NULL;
   270   //%note os_trap_1
   271   if (info != NULL && uc != NULL && thread != NULL) {
   272     pc = (address) os::Linux::ucontext_get_pc(uc);
   274     if (pc == (address) Fetch32PFI) {
   275        uc->uc_mcontext.gregs[REG_PC] = intptr_t(Fetch32Resume) ;
   276        return 1 ;
   277     }
   278 #ifdef AMD64
   279     if (pc == (address) FetchNPFI) {
   280        uc->uc_mcontext.gregs[REG_PC] = intptr_t (FetchNResume) ;
   281        return 1 ;
   282     }
   283 #endif // AMD64
   285     // Handle ALL stack overflow variations here
   286     if (sig == SIGSEGV) {
   287       address addr = (address) info->si_addr;
   289       // check if fault address is within thread stack
   290       if (addr < thread->stack_base() &&
   291           addr >= thread->stack_base() - thread->stack_size()) {
   292         // stack overflow
   293         if (thread->in_stack_yellow_zone(addr)) {
   294           thread->disable_stack_yellow_zone();
   295           if (thread->thread_state() == _thread_in_Java) {
   296             // Throw a stack overflow exception.  Guard pages will be reenabled
   297             // while unwinding the stack.
   298             stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
   299           } else {
   300             // Thread was in the vm or native code.  Return and try to finish.
   301             return 1;
   302           }
   303         } else if (thread->in_stack_red_zone(addr)) {
   304           // Fatal red zone violation.  Disable the guard pages and fall through
   305           // to handle_unexpected_exception way down below.
   306           thread->disable_stack_red_zone();
   307           tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
   309           // This is a likely cause, but hard to verify. Let's just print
   310           // it as a hint.
   311           tty->print_raw_cr("Please check if any of your loaded .so files has "
   312                             "enabled executable stack (see man page execstack(8))");
   313         } else {
   314           // Accessing stack address below sp may cause SEGV if current
   315           // thread has MAP_GROWSDOWN stack. This should only happen when
   316           // current thread was created by user code with MAP_GROWSDOWN flag
   317           // and then attached to VM. See notes in os_linux.cpp.
   318           if (thread->osthread()->expanding_stack() == 0) {
   319              thread->osthread()->set_expanding_stack();
   320              if (os::Linux::manually_expand_stack(thread, addr)) {
   321                thread->osthread()->clear_expanding_stack();
   322                return 1;
   323              }
   324              thread->osthread()->clear_expanding_stack();
   325           } else {
   326              fatal("recursive segv. expanding stack.");
   327           }
   328         }
   329       }
   330     }
   332     if (thread->thread_state() == _thread_in_Java) {
   333       // Java thread running in Java code => find exception handler if any
   334       // a fault inside compiled code, the interpreter, or a stub
   336       if (sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
   337         stub = SharedRuntime::get_poll_stub(pc);
   338       } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
   339         // BugId 4454115: A read from a MappedByteBuffer can fault
   340         // here if the underlying file has been truncated.
   341         // Do not crash the VM in such a case.
   342         CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
   343         nmethod* nm = cb->is_nmethod() ? (nmethod*)cb : NULL;
   344         if (nm != NULL && nm->has_unsafe_access()) {
   345           stub = StubRoutines::handler_for_unsafe_access();
   346         }
   347       }
   348       else
   350 #ifdef AMD64
   351       if (sig == SIGFPE  &&
   352           (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) {
   353         stub =
   354           SharedRuntime::
   355           continuation_for_implicit_exception(thread,
   356                                               pc,
   357                                               SharedRuntime::
   358                                               IMPLICIT_DIVIDE_BY_ZERO);
   359 #else
   360       if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) {
   361         // HACK: si_code does not work on linux 2.2.12-20!!!
   362         int op = pc[0];
   363         if (op == 0xDB) {
   364           // FIST
   365           // TODO: The encoding of D2I in i486.ad can cause an exception
   366           // prior to the fist instruction if there was an invalid operation
   367           // pending. We want to dismiss that exception. From the win_32
   368           // side it also seems that if it really was the fist causing
   369           // the exception that we do the d2i by hand with different
   370           // rounding. Seems kind of weird.
   371           // NOTE: that we take the exception at the NEXT floating point instruction.
   372           assert(pc[0] == 0xDB, "not a FIST opcode");
   373           assert(pc[1] == 0x14, "not a FIST opcode");
   374           assert(pc[2] == 0x24, "not a FIST opcode");
   375           return true;
   376         } else if (op == 0xF7) {
   377           // IDIV
   378           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
   379         } else {
   380           // TODO: handle more cases if we are using other x86 instructions
   381           //   that can generate SIGFPE signal on linux.
   382           tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
   383           fatal("please update this code.");
   384         }
   385 #endif // AMD64
   386       } else if (sig == SIGSEGV &&
   387                !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
   388           // Determination of interpreter/vtable stub/compiled code null exception
   389           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
   390       }
   391     } else if (thread->thread_state() == _thread_in_vm &&
   392                sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
   393                thread->doing_unsafe_access()) {
   394         stub = StubRoutines::handler_for_unsafe_access();
   395     }
   397     // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
   398     // and the heap gets shrunk before the field access.
   399     if ((sig == SIGSEGV) || (sig == SIGBUS)) {
   400       address addr = JNI_FastGetField::find_slowcase_pc(pc);
   401       if (addr != (address)-1) {
   402         stub = addr;
   403       }
   404     }
   406     // Check to see if we caught the safepoint code in the
   407     // process of write protecting the memory serialization page.
   408     // It write enables the page immediately after protecting it
   409     // so we can just return to retry the write.
   410     if ((sig == SIGSEGV) &&
   411         os::is_memory_serialize_page(thread, (address) info->si_addr)) {
   412       // Block current thread until the memory serialize page permission restored.
   413       os::block_on_serialize_page_trap();
   414       return true;
   415     }
   416   }
   418 #ifndef AMD64
   419   // Execution protection violation
   420   //
   421   // This should be kept as the last step in the triage.  We don't
   422   // have a dedicated trap number for a no-execute fault, so be
   423   // conservative and allow other handlers the first shot.
   424   //
   425   // Note: We don't test that info->si_code == SEGV_ACCERR here.
   426   // this si_code is so generic that it is almost meaningless; and
   427   // the si_code for this condition may change in the future.
   428   // Furthermore, a false-positive should be harmless.
   429   if (UnguardOnExecutionViolation > 0 &&
   430       (sig == SIGSEGV || sig == SIGBUS) &&
   431       uc->uc_mcontext.gregs[REG_TRAPNO] == trap_page_fault) {
   432     int page_size = os::vm_page_size();
   433     address addr = (address) info->si_addr;
   434     address pc = os::Linux::ucontext_get_pc(uc);
   435     // Make sure the pc and the faulting address are sane.
   436     //
   437     // If an instruction spans a page boundary, and the page containing
   438     // the beginning of the instruction is executable but the following
   439     // page is not, the pc and the faulting address might be slightly
   440     // different - we still want to unguard the 2nd page in this case.
   441     //
   442     // 15 bytes seems to be a (very) safe value for max instruction size.
   443     bool pc_is_near_addr =
   444       (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
   445     bool instr_spans_page_boundary =
   446       (align_size_down((intptr_t) pc ^ (intptr_t) addr,
   447                        (intptr_t) page_size) > 0);
   449     if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
   450       static volatile address last_addr =
   451         (address) os::non_memory_address_word();
   453       // In conservative mode, don't unguard unless the address is in the VM
   454       if (addr != last_addr &&
   455           (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
   457         // Set memory to RWX and retry
   458         address page_start =
   459           (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
   460         bool res = os::protect_memory((char*) page_start, page_size,
   461                                       os::MEM_PROT_RWX);
   463         if (PrintMiscellaneous && Verbose) {
   464           char buf[256];
   465           jio_snprintf(buf, sizeof(buf), "Execution protection violation "
   466                        "at " INTPTR_FORMAT
   467                        ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
   468                        page_start, (res ? "success" : "failed"), errno);
   469           tty->print_raw_cr(buf);
   470         }
   471         stub = pc;
   473         // Set last_addr so if we fault again at the same address, we don't end
   474         // up in an endless loop.
   475         //
   476         // There are two potential complications here.  Two threads trapping at
   477         // the same address at the same time could cause one of the threads to
   478         // think it already unguarded, and abort the VM.  Likely very rare.
   479         //
   480         // The other race involves two threads alternately trapping at
   481         // different addresses and failing to unguard the page, resulting in
   482         // an endless loop.  This condition is probably even more unlikely than
   483         // the first.
   484         //
   485         // Although both cases could be avoided by using locks or thread local
   486         // last_addr, these solutions are unnecessary complication: this
   487         // handler is a best-effort safety net, not a complete solution.  It is
   488         // disabled by default and should only be used as a workaround in case
   489         // we missed any no-execute-unsafe VM code.
   491         last_addr = addr;
   492       }
   493     }
   494   }
   495 #endif // !AMD64
   497   if (stub != NULL) {
   498     // save all thread context in case we need to restore it
   499     if (thread != NULL) thread->set_saved_exception_pc(pc);
   501     uc->uc_mcontext.gregs[REG_PC] = (greg_t)stub;
   502     return true;
   503   }
   505   // signal-chaining
   506   if (os::Linux::chained_handler(sig, info, ucVoid)) {
   507      return true;
   508   }
   510   if (!abort_if_unrecognized) {
   511     // caller wants another chance, so give it to him
   512     return false;
   513   }
   515   if (pc == NULL && uc != NULL) {
   516     pc = os::Linux::ucontext_get_pc(uc);
   517   }
   519   // unmask current signal
   520   sigset_t newset;
   521   sigemptyset(&newset);
   522   sigaddset(&newset, sig);
   523   sigprocmask(SIG_UNBLOCK, &newset, NULL);
   525   VMError err(t, sig, pc, info, ucVoid);
   526   err.report_and_die();
   528   ShouldNotReachHere();
   529 }
   531 void os::Linux::init_thread_fpu_state(void) {
   532 #ifndef AMD64
   533   // set fpu to 53 bit precision
   534   set_fpu_control_word(0x27f);
   535 #endif // !AMD64
   536 }
   538 int os::Linux::get_fpu_control_word(void) {
   539 #ifdef AMD64
   540   return 0;
   541 #else
   542   int fpu_control;
   543   _FPU_GETCW(fpu_control);
   544   return fpu_control & 0xffff;
   545 #endif // AMD64
   546 }
   548 void os::Linux::set_fpu_control_word(int fpu_control) {
   549 #ifndef AMD64
   550   _FPU_SETCW(fpu_control);
   551 #endif // !AMD64
   552 }
   554 // Check that the linux kernel version is 2.4 or higher since earlier
   555 // versions do not support SSE without patches.
   556 bool os::supports_sse() {
   557 #ifdef AMD64
   558   return true;
   559 #else
   560   struct utsname uts;
   561   if( uname(&uts) != 0 ) return false; // uname fails?
   562   char *minor_string;
   563   int major = strtol(uts.release,&minor_string,10);
   564   int minor = strtol(minor_string+1,NULL,10);
   565   bool result = (major > 2 || (major==2 && minor >= 4));
   566 #ifndef PRODUCT
   567   if (PrintMiscellaneous && Verbose) {
   568     tty->print("OS version is %d.%d, which %s support SSE/SSE2\n",
   569                major,minor, result ? "DOES" : "does NOT");
   570   }
   571 #endif
   572   return result;
   573 #endif // AMD64
   574 }
   576 bool os::is_allocatable(size_t bytes) {
   577 #ifdef AMD64
   578   // unused on amd64?
   579   return true;
   580 #else
   582   if (bytes < 2 * G) {
   583     return true;
   584   }
   586   char* addr = reserve_memory(bytes, NULL);
   588   if (addr != NULL) {
   589     release_memory(addr, bytes);
   590   }
   592   return addr != NULL;
   593 #endif // AMD64
   594 }
   596 ////////////////////////////////////////////////////////////////////////////////
   597 // thread stack
   599 #ifdef AMD64
   600 size_t os::Linux::min_stack_allowed  = 64 * K;
   602 // amd64: pthread on amd64 is always in floating stack mode
   603 bool os::Linux::supports_variable_stack_size() {  return true; }
   604 #else
   605 size_t os::Linux::min_stack_allowed  =  (48 DEBUG_ONLY(+4))*K;
   607 #ifdef __GNUC__
   608 #define GET_GS() ({int gs; __asm__ volatile("movw %%gs, %w0":"=q"(gs)); gs&0xffff;})
   609 #endif
   611 // Test if pthread library can support variable thread stack size. LinuxThreads
   612 // in fixed stack mode allocates 2M fixed slot for each thread. LinuxThreads
   613 // in floating stack mode and NPTL support variable stack size.
   614 bool os::Linux::supports_variable_stack_size() {
   615   if (os::Linux::is_NPTL()) {
   616      // NPTL, yes
   617      return true;
   619   } else {
   620     // Note: We can't control default stack size when creating a thread.
   621     // If we use non-default stack size (pthread_attr_setstacksize), both
   622     // floating stack and non-floating stack LinuxThreads will return the
   623     // same value. This makes it impossible to implement this function by
   624     // detecting thread stack size directly.
   625     //
   626     // An alternative approach is to check %gs. Fixed-stack LinuxThreads
   627     // do not use %gs, so its value is 0. Floating-stack LinuxThreads use
   628     // %gs (either as LDT selector or GDT selector, depending on kernel)
   629     // to access thread specific data.
   630     //
   631     // Note that %gs is a reserved glibc register since early 2001, so
   632     // applications are not allowed to change its value (Ulrich Drepper from
   633     // Redhat confirmed that all known offenders have been modified to use
   634     // either %fs or TSD). In the worst case scenario, when VM is embedded in
   635     // a native application that plays with %gs, we might see non-zero %gs
   636     // even LinuxThreads is running in fixed stack mode. As the result, we'll
   637     // return true and skip _thread_safety_check(), so we may not be able to
   638     // detect stack-heap collisions. But otherwise it's harmless.
   639     //
   640 #ifdef __GNUC__
   641     return (GET_GS() != 0);
   642 #else
   643     return false;
   644 #endif
   645   }
   646 }
   647 #endif // AMD64
   649 // return default stack size for thr_type
   650 size_t os::Linux::default_stack_size(os::ThreadType thr_type) {
   651   // default stack size (compiler thread needs larger stack)
   652 #ifdef AMD64
   653   size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
   654 #else
   655   size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
   656 #endif // AMD64
   657   return s;
   658 }
   660 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
   661   // Creating guard page is very expensive. Java thread has HotSpot
   662   // guard page, only enable glibc guard page for non-Java threads.
   663   return (thr_type == java_thread ? 0 : page_size());
   664 }
   666 // Java thread:
   667 //
   668 //   Low memory addresses
   669 //    +------------------------+
   670 //    |                        |\  JavaThread created by VM does not have glibc
   671 //    |    glibc guard page    | - guard, attached Java thread usually has
   672 //    |                        |/  1 page glibc guard.
   673 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
   674 //    |                        |\
   675 //    |  HotSpot Guard Pages   | - red and yellow pages
   676 //    |                        |/
   677 //    +------------------------+ JavaThread::stack_yellow_zone_base()
   678 //    |                        |\
   679 //    |      Normal Stack      | -
   680 //    |                        |/
   681 // P2 +------------------------+ Thread::stack_base()
   682 //
   683 // Non-Java thread:
   684 //
   685 //   Low memory addresses
   686 //    +------------------------+
   687 //    |                        |\
   688 //    |  glibc guard page      | - usually 1 page
   689 //    |                        |/
   690 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
   691 //    |                        |\
   692 //    |      Normal Stack      | -
   693 //    |                        |/
   694 // P2 +------------------------+ Thread::stack_base()
   695 //
   696 // ** P1 (aka bottom) and size ( P2 = P1 - size) are the address and stack size returned from
   697 //    pthread_attr_getstack()
   699 static void current_stack_region(address * bottom, size_t * size) {
   700   if (os::Linux::is_initial_thread()) {
   701      // initial thread needs special handling because pthread_getattr_np()
   702      // may return bogus value.
   703      *bottom = os::Linux::initial_thread_stack_bottom();
   704      *size   = os::Linux::initial_thread_stack_size();
   705   } else {
   706      pthread_attr_t attr;
   708      int rslt = pthread_getattr_np(pthread_self(), &attr);
   710      // JVM needs to know exact stack location, abort if it fails
   711      if (rslt != 0) {
   712        if (rslt == ENOMEM) {
   713          vm_exit_out_of_memory(0, "pthread_getattr_np");
   714        } else {
   715          fatal(err_msg("pthread_getattr_np failed with errno = %d", rslt));
   716        }
   717      }
   719      if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
   720          fatal("Can not locate current stack attributes!");
   721      }
   723      pthread_attr_destroy(&attr);
   725   }
   726   assert(os::current_stack_pointer() >= *bottom &&
   727          os::current_stack_pointer() < *bottom + *size, "just checking");
   728 }
   730 address os::current_stack_base() {
   731   address bottom;
   732   size_t size;
   733   current_stack_region(&bottom, &size);
   734   return (bottom + size);
   735 }
   737 size_t os::current_stack_size() {
   738   // stack size includes normal stack and HotSpot guard pages
   739   address bottom;
   740   size_t size;
   741   current_stack_region(&bottom, &size);
   742   return size;
   743 }
   745 /////////////////////////////////////////////////////////////////////////////
   746 // helper functions for fatal error handler
   748 void os::print_context(outputStream *st, void *context) {
   749   if (context == NULL) return;
   751   ucontext_t *uc = (ucontext_t*)context;
   752   st->print_cr("Registers:");
   753 #ifdef AMD64
   754   st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
   755   st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
   756   st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
   757   st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
   758   st->cr();
   759   st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
   760   st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
   761   st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
   762   st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
   763   st->cr();
   764   st->print(  "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
   765   st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
   766   st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
   767   st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
   768   st->cr();
   769   st->print(  "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
   770   st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
   771   st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
   772   st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
   773   st->cr();
   774   st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
   775   st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
   776   st->print(", CSGSFS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_CSGSFS]);
   777   st->print(", ERR=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ERR]);
   778   st->cr();
   779   st->print("  TRAPNO=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_TRAPNO]);
   780 #else
   781   st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EAX]);
   782   st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBX]);
   783   st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ECX]);
   784   st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDX]);
   785   st->cr();
   786   st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_UESP]);
   787   st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBP]);
   788   st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ESI]);
   789   st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDI]);
   790   st->cr();
   791   st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EIP]);
   792   st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
   793   st->print(", CR2=" INTPTR_FORMAT, uc->uc_mcontext.cr2);
   794 #endif // AMD64
   795   st->cr();
   796   st->cr();
   798   intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
   799   st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
   800   print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
   801   st->cr();
   803   // Note: it may be unsafe to inspect memory near pc. For example, pc may
   804   // point to garbage if entry point in an nmethod is corrupted. Leave
   805   // this at the end, and hope for the best.
   806   address pc = os::Linux::ucontext_get_pc(uc);
   807   st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
   808   print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
   809 }
   811 void os::print_register_info(outputStream *st, void *context) {
   812   if (context == NULL) return;
   814   ucontext_t *uc = (ucontext_t*)context;
   816   st->print_cr("Register to memory mapping:");
   817   st->cr();
   819   // this is horrendously verbose but the layout of the registers in the
   820   // context does not match how we defined our abstract Register set, so
   821   // we can't just iterate through the gregs area
   823   // this is only for the "general purpose" registers
   825 #ifdef AMD64
   826   st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
   827   st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
   828   st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
   829   st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
   830   st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
   831   st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
   832   st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
   833   st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
   834   st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
   835   st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
   836   st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
   837   st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
   838   st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
   839   st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
   840   st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
   841   st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
   842 #else
   843   st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[REG_EAX]);
   844   st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[REG_EBX]);
   845   st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[REG_ECX]);
   846   st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[REG_EDX]);
   847   st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[REG_ESP]);
   848   st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[REG_EBP]);
   849   st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[REG_ESI]);
   850   st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[REG_EDI]);
   851 #endif // AMD64
   853   st->cr();
   854 }
   856 void os::setup_fpu() {
   857 #ifndef AMD64
   858   address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
   859   __asm__ volatile (  "fldcw (%0)" :
   860                       : "r" (fpu_cntrl) : "memory");
   861 #endif // !AMD64
   862 }
   864 #ifndef PRODUCT
   865 void os::verify_stack_alignment() {
   866 #ifdef AMD64
   867   assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
   868 #endif
   869 }
   870 #endif

mercurial