src/share/vm/opto/escape.hpp

Fri, 24 Oct 2014 10:28:19 -0700

author
kvn
date
Fri, 24 Oct 2014 10:28:19 -0700
changeset 7299
90297adbda9d
parent 4106
7eca5de9e0b6
child 7535
7ae4e26cb1e0
permissions
-rw-r--r--

8041984: CompilerThread seems to occupy all CPU in a very rare situation
Summary: Add new timeout checks to EA.
Reviewed-by: iveresov, drchase

     1 /*
     2  * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OPTO_ESCAPE_HPP
    26 #define SHARE_VM_OPTO_ESCAPE_HPP
    28 #include "opto/addnode.hpp"
    29 #include "opto/node.hpp"
    30 #include "utilities/growableArray.hpp"
    32 //
    33 // Adaptation for C2 of the escape analysis algorithm described in:
    34 //
    35 // [Choi99] Jong-Deok Shoi, Manish Gupta, Mauricio Seffano,
    36 //          Vugranam C. Sreedhar, Sam Midkiff,
    37 //          "Escape Analysis for Java", Procedings of ACM SIGPLAN
    38 //          OOPSLA  Conference, November 1, 1999
    39 //
    40 // The flow-insensitive analysis described in the paper has been implemented.
    41 //
    42 // The analysis requires construction of a "connection graph" (CG) for
    43 // the method being analyzed.  The nodes of the connection graph are:
    44 //
    45 //     -  Java objects (JO)
    46 //     -  Local variables (LV)
    47 //     -  Fields of an object (OF),  these also include array elements
    48 //
    49 // The CG contains 3 types of edges:
    50 //
    51 //   -  PointsTo  (-P>)    {LV, OF} to JO
    52 //   -  Deferred  (-D>)    from {LV, OF} to {LV, OF}
    53 //   -  Field     (-F>)    from JO to OF
    54 //
    55 // The following  utility functions is used by the algorithm:
    56 //
    57 //   PointsTo(n) - n is any CG node, it returns the set of JO that n could
    58 //                 point to.
    59 //
    60 // The algorithm describes how to construct the connection graph
    61 // in the following 4 cases:
    62 //
    63 //          Case                  Edges Created
    64 //
    65 // (1)   p   = new T()              LV -P> JO
    66 // (2)   p   = q                    LV -D> LV
    67 // (3)   p.f = q                    JO -F> OF,  OF -D> LV
    68 // (4)   p   = q.f                  JO -F> OF,  LV -D> OF
    69 //
    70 // In all these cases, p and q are local variables.  For static field
    71 // references, we can construct a local variable containing a reference
    72 // to the static memory.
    73 //
    74 // C2 does not have local variables.  However for the purposes of constructing
    75 // the connection graph, the following IR nodes are treated as local variables:
    76 //     Phi    (pointer values)
    77 //     LoadP, LoadN
    78 //     Proj#5 (value returned from callnodes including allocations)
    79 //     CheckCastPP, CastPP
    80 //
    81 // The LoadP, Proj and CheckCastPP behave like variables assigned to only once.
    82 // Only a Phi can have multiple assignments.  Each input to a Phi is treated
    83 // as an assignment to it.
    84 //
    85 // The following node types are JavaObject:
    86 //
    87 //     phantom_object (general globally escaped object)
    88 //     Allocate
    89 //     AllocateArray
    90 //     Parm  (for incoming arguments)
    91 //     CastX2P ("unsafe" operations)
    92 //     CreateEx
    93 //     ConP
    94 //     LoadKlass
    95 //     ThreadLocal
    96 //     CallStaticJava (which returns Object)
    97 //
    98 // AddP nodes are fields.
    99 //
   100 // After building the graph, a pass is made over the nodes, deleting deferred
   101 // nodes and copying the edges from the target of the deferred edge to the
   102 // source.  This results in a graph with no deferred edges, only:
   103 //
   104 //    LV -P> JO
   105 //    OF -P> JO (the object whose oop is stored in the field)
   106 //    JO -F> OF
   107 //
   108 // Then, for each node which is GlobalEscape, anything it could point to
   109 // is marked GlobalEscape.  Finally, for any node marked ArgEscape, anything
   110 // it could point to is marked ArgEscape.
   111 //
   113 class  Compile;
   114 class  Node;
   115 class  CallNode;
   116 class  PhiNode;
   117 class  PhaseTransform;
   118 class  PointsToNode;
   119 class  Type;
   120 class  TypePtr;
   121 class  VectorSet;
   123 class JavaObjectNode;
   124 class LocalVarNode;
   125 class FieldNode;
   126 class ArraycopyNode;
   128 class ConnectionGraph;
   130 // ConnectionGraph nodes
   131 class PointsToNode : public ResourceObj {
   132   GrowableArray<PointsToNode*> _edges; // List of nodes this node points to
   133   GrowableArray<PointsToNode*> _uses;  // List of nodes which point to this node
   135   const u1           _type;  // NodeType
   136   u1                _flags;  // NodeFlags
   137   u1               _escape;  // EscapeState of object
   138   u1        _fields_escape;  // EscapeState of object's fields
   140   Node* const        _node;  // Ideal node corresponding to this PointsTo node.
   141   const int           _idx;  // Cached ideal node's _idx
   142   const uint         _pidx;  // Index of this node
   144 public:
   145   typedef enum {
   146     UnknownType = 0,
   147     JavaObject  = 1,
   148     LocalVar    = 2,
   149     Field       = 3,
   150     Arraycopy   = 4
   151   } NodeType;
   153   typedef enum {
   154     UnknownEscape = 0,
   155     NoEscape      = 1, // An object does not escape method or thread and it is
   156                        // not passed to call. It could be replaced with scalar.
   157     ArgEscape     = 2, // An object does not escape method or thread but it is
   158                        // passed as argument to call or referenced by argument
   159                        // and it does not escape during call.
   160     GlobalEscape  = 3  // An object escapes the method or thread.
   161   } EscapeState;
   163   typedef enum {
   164     ScalarReplaceable = 1,  // Not escaped object could be replaced with scalar
   165     PointsToUnknown   = 2,  // Has edge to phantom_object
   166     ArraycopySrc      = 4,  // Has edge from Arraycopy node
   167     ArraycopyDst      = 8   // Has edge to Arraycopy node
   168   } NodeFlags;
   171   inline PointsToNode(ConnectionGraph* CG, Node* n, EscapeState es, NodeType type);
   173   uint        pidx()   const { return _pidx; }
   175   Node* ideal_node()   const { return _node; }
   176   int          idx()   const { return _idx; }
   178   bool is_JavaObject() const { return _type == (u1)JavaObject; }
   179   bool is_LocalVar()   const { return _type == (u1)LocalVar; }
   180   bool is_Field()      const { return _type == (u1)Field; }
   181   bool is_Arraycopy()  const { return _type == (u1)Arraycopy; }
   183   JavaObjectNode* as_JavaObject() { assert(is_JavaObject(),""); return (JavaObjectNode*)this; }
   184   LocalVarNode*   as_LocalVar()   { assert(is_LocalVar(),"");   return (LocalVarNode*)this; }
   185   FieldNode*      as_Field()      { assert(is_Field(),"");      return (FieldNode*)this; }
   186   ArraycopyNode*  as_Arraycopy()  { assert(is_Arraycopy(),"");  return (ArraycopyNode*)this; }
   188   EscapeState escape_state() const { return (EscapeState)_escape; }
   189   void    set_escape_state(EscapeState state) { _escape = (u1)state; }
   191   EscapeState fields_escape_state() const { return (EscapeState)_fields_escape; }
   192   void    set_fields_escape_state(EscapeState state) { _fields_escape = (u1)state; }
   194   bool     has_unknown_ptr() const { return (_flags & PointsToUnknown) != 0; }
   195   void set_has_unknown_ptr()       { _flags |= PointsToUnknown; }
   197   bool     arraycopy_src() const { return (_flags & ArraycopySrc) != 0; }
   198   void set_arraycopy_src()       { _flags |= ArraycopySrc; }
   199   bool     arraycopy_dst() const { return (_flags & ArraycopyDst) != 0; }
   200   void set_arraycopy_dst()       { _flags |= ArraycopyDst; }
   202   bool     scalar_replaceable() const { return (_flags & ScalarReplaceable) != 0;}
   203   void set_scalar_replaceable(bool v) {
   204     if (v)
   205       _flags |= ScalarReplaceable;
   206     else
   207       _flags &= ~ScalarReplaceable;
   208   }
   210   int edge_count()              const { return _edges.length(); }
   211   PointsToNode* edge(int e)     const { return _edges.at(e); }
   212   bool add_edge(PointsToNode* edge)    { return _edges.append_if_missing(edge); }
   214   int use_count()             const { return _uses.length(); }
   215   PointsToNode* use(int e)    const { return _uses.at(e); }
   216   bool add_use(PointsToNode* use)    { return _uses.append_if_missing(use); }
   218   // Mark base edge use to distinguish from stored value edge.
   219   bool add_base_use(FieldNode* use) { return _uses.append_if_missing((PointsToNode*)((intptr_t)use + 1)); }
   220   static bool is_base_use(PointsToNode* use) { return (((intptr_t)use) & 1); }
   221   static PointsToNode* get_use_node(PointsToNode* use) { return (PointsToNode*)(((intptr_t)use) & ~1); }
   223   // Return true if this node points to specified node or nodes it points to.
   224   bool points_to(JavaObjectNode* ptn) const;
   226   // Return true if this node points only to non-escaping allocations.
   227   bool non_escaping_allocation();
   229   // Return true if one node points to an other.
   230   bool meet(PointsToNode* ptn);
   232 #ifndef PRODUCT
   233   NodeType node_type() const { return (NodeType)_type;}
   234   void dump(bool print_state=true) const;
   235 #endif
   237 };
   239 class LocalVarNode: public PointsToNode {
   240 public:
   241   LocalVarNode(ConnectionGraph *CG, Node* n, EscapeState es):
   242     PointsToNode(CG, n, es, LocalVar) {}
   243 };
   245 class JavaObjectNode: public PointsToNode {
   246 public:
   247   JavaObjectNode(ConnectionGraph *CG, Node* n, EscapeState es):
   248     PointsToNode(CG, n, es, JavaObject) {
   249       if (es > NoEscape)
   250         set_scalar_replaceable(false);
   251     }
   252 };
   254 class FieldNode: public PointsToNode {
   255   GrowableArray<PointsToNode*> _bases; // List of JavaObject nodes which point to this node
   256   const int   _offset; // Field's offset.
   257   const bool  _is_oop; // Field points to object
   258         bool  _has_unknown_base; // Has phantom_object base
   259 public:
   260   FieldNode(ConnectionGraph *CG, Node* n, EscapeState es, int offs, bool is_oop):
   261     PointsToNode(CG, n, es, Field),
   262     _offset(offs), _is_oop(is_oop),
   263     _has_unknown_base(false) {}
   265   int      offset()              const { return _offset;}
   266   bool     is_oop()              const { return _is_oop;}
   267   bool     has_unknown_base()    const { return _has_unknown_base; }
   268   void set_has_unknown_base()          { _has_unknown_base = true; }
   270   int base_count()              const { return _bases.length(); }
   271   PointsToNode* base(int e)     const { return _bases.at(e); }
   272   bool add_base(PointsToNode* base)    { return _bases.append_if_missing(base); }
   273 #ifdef ASSERT
   274   // Return true if bases points to this java object.
   275   bool has_base(JavaObjectNode* ptn) const;
   276 #endif
   278 };
   280 class ArraycopyNode: public PointsToNode {
   281 public:
   282   ArraycopyNode(ConnectionGraph *CG, Node* n, EscapeState es):
   283     PointsToNode(CG, n, es, Arraycopy) {}
   284 };
   286 // Iterators for PointsTo node's edges:
   287 //   for (EdgeIterator i(n); i.has_next(); i.next()) {
   288 //     PointsToNode* u = i.get();
   289 class PointsToIterator: public StackObj {
   290 protected:
   291   const PointsToNode* node;
   292   const int cnt;
   293   int i;
   294 public:
   295   inline PointsToIterator(const PointsToNode* n, int cnt) : node(n), cnt(cnt), i(0) { }
   296   inline bool has_next() const { return i < cnt; }
   297   inline void next() { i++; }
   298   PointsToNode* get() const { ShouldNotCallThis(); return NULL; }
   299 };
   301 class EdgeIterator: public PointsToIterator {
   302 public:
   303   inline EdgeIterator(const PointsToNode* n) : PointsToIterator(n, n->edge_count()) { }
   304   inline PointsToNode* get() const { return node->edge(i); }
   305 };
   307 class UseIterator: public PointsToIterator {
   308 public:
   309   inline UseIterator(const PointsToNode* n) : PointsToIterator(n, n->use_count()) { }
   310   inline PointsToNode* get() const { return node->use(i); }
   311 };
   313 class BaseIterator: public PointsToIterator {
   314 public:
   315   inline BaseIterator(const FieldNode* n) : PointsToIterator(n, n->base_count()) { }
   316   inline PointsToNode* get() const { return ((PointsToNode*)node)->as_Field()->base(i); }
   317 };
   320 class ConnectionGraph: public ResourceObj {
   321   friend class PointsToNode;
   322 private:
   323   GrowableArray<PointsToNode*>  _nodes; // Map from ideal nodes to
   324                                         // ConnectionGraph nodes.
   326   GrowableArray<PointsToNode*>  _worklist; // Nodes to be processed
   327   VectorSet                  _in_worklist;
   328   uint                         _next_pidx;
   330   bool            _collecting; // Indicates whether escape information
   331                                // is still being collected. If false,
   332                                // no new nodes will be processed.
   334   bool               _verify;  // verify graph
   336   JavaObjectNode* phantom_obj; // Unknown object
   337   JavaObjectNode*    null_obj;
   338   Node*             _pcmp_neq; // ConI(#CC_GT)
   339   Node*              _pcmp_eq; // ConI(#CC_EQ)
   341   Compile*           _compile; // Compile object for current compilation
   342   PhaseIterGVN*         _igvn; // Value numbering
   344   Unique_Node_List ideal_nodes; // Used by CG construction and types splitting.
   346   // Address of an element in _nodes.  Used when the element is to be modified
   347   PointsToNode* ptnode_adr(int idx) const {
   348     // There should be no new ideal nodes during ConnectionGraph build,
   349     // growableArray::at() will throw assert otherwise.
   350     return _nodes.at(idx);
   351   }
   352   uint nodes_size() const { return _nodes.length(); }
   354   uint next_pidx() { return _next_pidx++; }
   356   // Add nodes to ConnectionGraph.
   357   void add_local_var(Node* n, PointsToNode::EscapeState es);
   358   void add_java_object(Node* n, PointsToNode::EscapeState es);
   359   void add_field(Node* n, PointsToNode::EscapeState es, int offset);
   360   void add_arraycopy(Node* n, PointsToNode::EscapeState es, PointsToNode* src, PointsToNode* dst);
   362   // Compute the escape state for arguments to a call.
   363   void process_call_arguments(CallNode *call);
   365   // Add PointsToNode node corresponding to a call
   366   void add_call_node(CallNode* call);
   368   // Map ideal node to existing PointsTo node (usually phantom_object).
   369   void map_ideal_node(Node *n, PointsToNode* ptn) {
   370     assert(ptn != NULL, "only existing PointsTo node");
   371     _nodes.at_put(n->_idx, ptn);
   372   }
   374   // Utility function for nodes that load an object
   375   void add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist);
   376   // Create PointsToNode node and add it to Connection Graph.
   377   void add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist);
   379   // Add final simple edges to graph.
   380   void add_final_edges(Node *n);
   382   // Finish Graph construction.
   383   bool complete_connection_graph(GrowableArray<PointsToNode*>&   ptnodes_worklist,
   384                                  GrowableArray<JavaObjectNode*>& non_escaped_worklist,
   385                                  GrowableArray<JavaObjectNode*>& java_objects_worklist,
   386                                  GrowableArray<FieldNode*>&      oop_fields_worklist);
   388 #ifdef ASSERT
   389   void verify_connection_graph(GrowableArray<PointsToNode*>&   ptnodes_worklist,
   390                                GrowableArray<JavaObjectNode*>& non_escaped_worklist,
   391                                GrowableArray<JavaObjectNode*>& java_objects_worklist,
   392                                GrowableArray<Node*>& addp_worklist);
   393 #endif
   395   // Add all references to this JavaObject node.
   396   int add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist);
   398   // Put node on worklist if it is (or was) not there.
   399   inline void add_to_worklist(PointsToNode* pt) {
   400     PointsToNode* ptf = pt;
   401     uint pidx_bias = 0;
   402     if (PointsToNode::is_base_use(pt)) {
   403       // Create a separate entry in _in_worklist for a marked base edge
   404       // because _worklist may have an entry for a normal edge pointing
   405       // to the same node. To separate them use _next_pidx as bias.
   406       ptf = PointsToNode::get_use_node(pt)->as_Field();
   407       pidx_bias = _next_pidx;
   408     }
   409     if (!_in_worklist.test_set(ptf->pidx() + pidx_bias)) {
   410       _worklist.append(pt);
   411     }
   412   }
   414   // Put on worklist all uses of this node.
   415   inline void add_uses_to_worklist(PointsToNode* pt) {
   416     for (UseIterator i(pt); i.has_next(); i.next()) {
   417       add_to_worklist(i.get());
   418     }
   419   }
   421   // Put on worklist all field's uses and related field nodes.
   422   void add_field_uses_to_worklist(FieldNode* field);
   424   // Put on worklist all related field nodes.
   425   void add_fields_to_worklist(FieldNode* field, PointsToNode* base);
   427   // Find fields which have unknown value.
   428   int find_field_value(FieldNode* field);
   430   // Find fields initializing values for allocations.
   431   int find_init_values(JavaObjectNode* ptn, PointsToNode* init_val, PhaseTransform* phase);
   433   // Set the escape state of an object and its fields.
   434   void set_escape_state(PointsToNode* ptn, PointsToNode::EscapeState esc) {
   435     // Don't change non-escaping state of NULL pointer.
   436     if (ptn != null_obj) {
   437       if (ptn->escape_state() < esc)
   438         ptn->set_escape_state(esc);
   439       if (ptn->fields_escape_state() < esc)
   440         ptn->set_fields_escape_state(esc);
   441     }
   442   }
   443   void set_fields_escape_state(PointsToNode* ptn, PointsToNode::EscapeState esc) {
   444     // Don't change non-escaping state of NULL pointer.
   445     if (ptn != null_obj) {
   446       if (ptn->fields_escape_state() < esc)
   447         ptn->set_fields_escape_state(esc);
   448     }
   449   }
   451   // Propagate GlobalEscape and ArgEscape escape states to all nodes
   452   // and check that we still have non-escaping java objects.
   453   bool find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
   454                                 GrowableArray<JavaObjectNode*>& non_escaped_worklist);
   456   // Adjust scalar_replaceable state after Connection Graph is built.
   457   void adjust_scalar_replaceable_state(JavaObjectNode* jobj);
   459   // Optimize ideal graph.
   460   void optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
   461                             GrowableArray<Node*>& storestore_worklist);
   462   // Optimize objects compare.
   463   Node* optimize_ptr_compare(Node* n);
   465   // Returns unique corresponding java object or NULL.
   466   JavaObjectNode* unique_java_object(Node *n);
   468   // Add an edge of the specified type pointing to the specified target.
   469   bool add_edge(PointsToNode* from, PointsToNode* to) {
   470     assert(!from->is_Field() || from->as_Field()->is_oop(), "sanity");
   472     if (to == phantom_obj) {
   473       if (from->has_unknown_ptr()) {
   474         return false; // already points to phantom_obj
   475       }
   476       from->set_has_unknown_ptr();
   477     }
   479     bool is_new = from->add_edge(to);
   480     assert(to != phantom_obj || is_new, "sanity");
   481     if (is_new) { // New edge?
   482       assert(!_verify, "graph is incomplete");
   483       is_new = to->add_use(from);
   484       assert(is_new, "use should be also new");
   485     }
   486     return is_new;
   487   }
   489   // Add an edge from Field node to its base and back.
   490   bool add_base(FieldNode* from, PointsToNode* to) {
   491     assert(!to->is_Arraycopy(), "sanity");
   492     if (to == phantom_obj) {
   493       if (from->has_unknown_base()) {
   494         return false; // already has phantom_obj base
   495       }
   496       from->set_has_unknown_base();
   497     }
   498     bool is_new = from->add_base(to);
   499     assert(to != phantom_obj || is_new, "sanity");
   500     if (is_new) {      // New edge?
   501       assert(!_verify, "graph is incomplete");
   502       if (to == null_obj)
   503         return is_new; // Don't add fields to NULL pointer.
   504       if (to->is_JavaObject()) {
   505         is_new = to->add_edge(from);
   506       } else {
   507         is_new = to->add_base_use(from);
   508       }
   509       assert(is_new, "use should be also new");
   510     }
   511     return is_new;
   512   }
   514   // Add LocalVar node and edge if possible
   515   void add_local_var_and_edge(Node* n, PointsToNode::EscapeState es, Node* to,
   516                               Unique_Node_List *delayed_worklist) {
   517     PointsToNode* ptn = ptnode_adr(to->_idx);
   518     if (delayed_worklist != NULL) { // First iteration of CG construction
   519       add_local_var(n, es);
   520       if (ptn == NULL) {
   521         delayed_worklist->push(n);
   522         return; // Process it later.
   523       }
   524     } else {
   525       assert(ptn != NULL, "node should be registered");
   526     }
   527     add_edge(ptnode_adr(n->_idx), ptn);
   528  }
   529   // Helper functions
   530   bool   is_oop_field(Node* n, int offset, bool* unsafe);
   531   static Node* get_addp_base(Node *addp);
   532   static Node* find_second_addp(Node* addp, Node* n);
   533   // offset of a field reference
   534   int address_offset(Node* adr, PhaseTransform *phase);
   537   // Propagate unique types created for unescaped allocated objects
   538   // through the graph
   539   void split_unique_types(GrowableArray<Node *>  &alloc_worklist);
   541   // Helper methods for unique types split.
   542   bool split_AddP(Node *addp, Node *base);
   544   PhiNode *create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, bool &new_created);
   545   PhiNode *split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist);
   547   void  move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis);
   548   Node* find_inst_mem(Node* mem, int alias_idx,GrowableArray<PhiNode *>  &orig_phi_worklist);
   549   Node* step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop);
   552   GrowableArray<MergeMemNode*>  _mergemem_worklist; // List of all MergeMem nodes
   554   Node_Array _node_map; // used for bookeeping during type splitting
   555                         // Used for the following purposes:
   556                         // Memory Phi    - most recent unique Phi split out
   557                         //                 from this Phi
   558                         // MemNode       - new memory input for this node
   559                         // ChecCastPP    - allocation that this is a cast of
   560                         // allocation    - CheckCastPP of the allocation
   562   // manage entries in _node_map
   564   void  set_map(Node* from, Node* to)  {
   565     ideal_nodes.push(from);
   566     _node_map.map(from->_idx, to);
   567   }
   569   Node* get_map(int idx) { return _node_map[idx]; }
   571   PhiNode* get_map_phi(int idx) {
   572     Node* phi = _node_map[idx];
   573     return (phi == NULL) ? NULL : phi->as_Phi();
   574   }
   576   // Notify optimizer that a node has been modified
   577   void record_for_optimizer(Node *n) {
   578     _igvn->_worklist.push(n);
   579     _igvn->add_users_to_worklist(n);
   580   }
   582   // Compute the escape information
   583   bool compute_escape();
   585 public:
   586   ConnectionGraph(Compile *C, PhaseIterGVN *igvn);
   588   // Check for non-escaping candidates
   589   static bool has_candidates(Compile *C);
   591   // Perform escape analysis
   592   static void do_analysis(Compile *C, PhaseIterGVN *igvn);
   594   bool not_global_escape(Node *n);
   596 #ifndef PRODUCT
   597   void dump(GrowableArray<PointsToNode*>& ptnodes_worklist);
   598 #endif
   599 };
   601 inline PointsToNode::PointsToNode(ConnectionGraph *CG, Node* n, EscapeState es, NodeType type):
   602   _edges(CG->_compile->comp_arena(), 2, 0, NULL),
   603   _uses (CG->_compile->comp_arena(), 2, 0, NULL),
   604   _node(n),
   605   _idx(n->_idx),
   606   _pidx(CG->next_pidx()),
   607   _type((u1)type),
   608   _escape((u1)es),
   609   _fields_escape((u1)es),
   610   _flags(ScalarReplaceable) {
   611   assert(n != NULL && es != UnknownEscape, "sanity");
   612 }
   614 #endif // SHARE_VM_OPTO_ESCAPE_HPP

mercurial