src/share/vm/opto/library_call.cpp

Mon, 14 May 2012 09:36:00 -0700

author
kvn
date
Mon, 14 May 2012 09:36:00 -0700
changeset 3760
8f972594effc
parent 3709
0105f367a14c
child 3787
6759698e3140
permissions
-rw-r--r--

6924259: Remove String.count/String.offset
Summary: Allow a version of String class that doesn't have count and offset fields.
Reviewed-by: never, coleenp

     1 /*
     2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "compiler/compileBroker.hpp"
    29 #include "compiler/compileLog.hpp"
    30 #include "oops/objArrayKlass.hpp"
    31 #include "opto/addnode.hpp"
    32 #include "opto/callGenerator.hpp"
    33 #include "opto/cfgnode.hpp"
    34 #include "opto/idealKit.hpp"
    35 #include "opto/mulnode.hpp"
    36 #include "opto/parse.hpp"
    37 #include "opto/runtime.hpp"
    38 #include "opto/subnode.hpp"
    39 #include "prims/nativeLookup.hpp"
    40 #include "runtime/sharedRuntime.hpp"
    42 class LibraryIntrinsic : public InlineCallGenerator {
    43   // Extend the set of intrinsics known to the runtime:
    44  public:
    45  private:
    46   bool             _is_virtual;
    47   vmIntrinsics::ID _intrinsic_id;
    49  public:
    50   LibraryIntrinsic(ciMethod* m, bool is_virtual, vmIntrinsics::ID id)
    51     : InlineCallGenerator(m),
    52       _is_virtual(is_virtual),
    53       _intrinsic_id(id)
    54   {
    55   }
    56   virtual bool is_intrinsic() const { return true; }
    57   virtual bool is_virtual()   const { return _is_virtual; }
    58   virtual JVMState* generate(JVMState* jvms);
    59   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
    60 };
    63 // Local helper class for LibraryIntrinsic:
    64 class LibraryCallKit : public GraphKit {
    65  private:
    66   LibraryIntrinsic* _intrinsic;   // the library intrinsic being called
    68  public:
    69   LibraryCallKit(JVMState* caller, LibraryIntrinsic* intrinsic)
    70     : GraphKit(caller),
    71       _intrinsic(intrinsic)
    72   {
    73   }
    75   ciMethod*         caller()    const    { return jvms()->method(); }
    76   int               bci()       const    { return jvms()->bci(); }
    77   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
    78   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
    79   ciMethod*         callee()    const    { return _intrinsic->method(); }
    80   ciSignature*      signature() const    { return callee()->signature(); }
    81   int               arg_size()  const    { return callee()->arg_size(); }
    83   bool try_to_inline();
    85   // Helper functions to inline natives
    86   void push_result(RegionNode* region, PhiNode* value);
    87   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
    88   Node* generate_slow_guard(Node* test, RegionNode* region);
    89   Node* generate_fair_guard(Node* test, RegionNode* region);
    90   Node* generate_negative_guard(Node* index, RegionNode* region,
    91                                 // resulting CastII of index:
    92                                 Node* *pos_index = NULL);
    93   Node* generate_nonpositive_guard(Node* index, bool never_negative,
    94                                    // resulting CastII of index:
    95                                    Node* *pos_index = NULL);
    96   Node* generate_limit_guard(Node* offset, Node* subseq_length,
    97                              Node* array_length,
    98                              RegionNode* region);
    99   Node* generate_current_thread(Node* &tls_output);
   100   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
   101                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
   102   Node* load_mirror_from_klass(Node* klass);
   103   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
   104                                       int nargs,
   105                                       RegionNode* region, int null_path,
   106                                       int offset);
   107   Node* load_klass_from_mirror(Node* mirror, bool never_see_null, int nargs,
   108                                RegionNode* region, int null_path) {
   109     int offset = java_lang_Class::klass_offset_in_bytes();
   110     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
   111                                          region, null_path,
   112                                          offset);
   113   }
   114   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
   115                                      int nargs,
   116                                      RegionNode* region, int null_path) {
   117     int offset = java_lang_Class::array_klass_offset_in_bytes();
   118     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
   119                                          region, null_path,
   120                                          offset);
   121   }
   122   Node* generate_access_flags_guard(Node* kls,
   123                                     int modifier_mask, int modifier_bits,
   124                                     RegionNode* region);
   125   Node* generate_interface_guard(Node* kls, RegionNode* region);
   126   Node* generate_array_guard(Node* kls, RegionNode* region) {
   127     return generate_array_guard_common(kls, region, false, false);
   128   }
   129   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
   130     return generate_array_guard_common(kls, region, false, true);
   131   }
   132   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
   133     return generate_array_guard_common(kls, region, true, false);
   134   }
   135   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
   136     return generate_array_guard_common(kls, region, true, true);
   137   }
   138   Node* generate_array_guard_common(Node* kls, RegionNode* region,
   139                                     bool obj_array, bool not_array);
   140   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
   141   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
   142                                      bool is_virtual = false, bool is_static = false);
   143   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
   144     return generate_method_call(method_id, false, true);
   145   }
   146   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
   147     return generate_method_call(method_id, true, false);
   148   }
   150   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
   151   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
   152   bool inline_string_compareTo();
   153   bool inline_string_indexOf();
   154   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
   155   bool inline_string_equals();
   156   Node* pop_math_arg();
   157   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
   158   bool inline_math_native(vmIntrinsics::ID id);
   159   bool inline_trig(vmIntrinsics::ID id);
   160   bool inline_trans(vmIntrinsics::ID id);
   161   bool inline_abs(vmIntrinsics::ID id);
   162   bool inline_sqrt(vmIntrinsics::ID id);
   163   bool inline_pow(vmIntrinsics::ID id);
   164   bool inline_exp(vmIntrinsics::ID id);
   165   bool inline_min_max(vmIntrinsics::ID id);
   166   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
   167   // This returns Type::AnyPtr, RawPtr, or OopPtr.
   168   int classify_unsafe_addr(Node* &base, Node* &offset);
   169   Node* make_unsafe_address(Node* base, Node* offset);
   170   // Helper for inline_unsafe_access.
   171   // Generates the guards that check whether the result of
   172   // Unsafe.getObject should be recorded in an SATB log buffer.
   173   void insert_g1_pre_barrier(Node* base_oop, Node* offset, Node* pre_val);
   174   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
   175   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
   176   bool inline_unsafe_allocate();
   177   bool inline_unsafe_copyMemory();
   178   bool inline_native_currentThread();
   179 #ifdef TRACE_HAVE_INTRINSICS
   180   bool inline_native_classID();
   181   bool inline_native_threadID();
   182 #endif
   183   bool inline_native_time_funcs(address method, const char* funcName);
   184   bool inline_native_isInterrupted();
   185   bool inline_native_Class_query(vmIntrinsics::ID id);
   186   bool inline_native_subtype_check();
   188   bool inline_native_newArray();
   189   bool inline_native_getLength();
   190   bool inline_array_copyOf(bool is_copyOfRange);
   191   bool inline_array_equals();
   192   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
   193   bool inline_native_clone(bool is_virtual);
   194   bool inline_native_Reflection_getCallerClass();
   195   bool inline_native_AtomicLong_get();
   196   bool inline_native_AtomicLong_attemptUpdate();
   197   bool is_method_invoke_or_aux_frame(JVMState* jvms);
   198   // Helper function for inlining native object hash method
   199   bool inline_native_hashcode(bool is_virtual, bool is_static);
   200   bool inline_native_getClass();
   202   // Helper functions for inlining arraycopy
   203   bool inline_arraycopy();
   204   void generate_arraycopy(const TypePtr* adr_type,
   205                           BasicType basic_elem_type,
   206                           Node* src,  Node* src_offset,
   207                           Node* dest, Node* dest_offset,
   208                           Node* copy_length,
   209                           bool disjoint_bases = false,
   210                           bool length_never_negative = false,
   211                           RegionNode* slow_region = NULL);
   212   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
   213                                                 RegionNode* slow_region);
   214   void generate_clear_array(const TypePtr* adr_type,
   215                             Node* dest,
   216                             BasicType basic_elem_type,
   217                             Node* slice_off,
   218                             Node* slice_len,
   219                             Node* slice_end);
   220   bool generate_block_arraycopy(const TypePtr* adr_type,
   221                                 BasicType basic_elem_type,
   222                                 AllocateNode* alloc,
   223                                 Node* src,  Node* src_offset,
   224                                 Node* dest, Node* dest_offset,
   225                                 Node* dest_size, bool dest_uninitialized);
   226   void generate_slow_arraycopy(const TypePtr* adr_type,
   227                                Node* src,  Node* src_offset,
   228                                Node* dest, Node* dest_offset,
   229                                Node* copy_length, bool dest_uninitialized);
   230   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
   231                                      Node* dest_elem_klass,
   232                                      Node* src,  Node* src_offset,
   233                                      Node* dest, Node* dest_offset,
   234                                      Node* copy_length, bool dest_uninitialized);
   235   Node* generate_generic_arraycopy(const TypePtr* adr_type,
   236                                    Node* src,  Node* src_offset,
   237                                    Node* dest, Node* dest_offset,
   238                                    Node* copy_length, bool dest_uninitialized);
   239   void generate_unchecked_arraycopy(const TypePtr* adr_type,
   240                                     BasicType basic_elem_type,
   241                                     bool disjoint_bases,
   242                                     Node* src,  Node* src_offset,
   243                                     Node* dest, Node* dest_offset,
   244                                     Node* copy_length, bool dest_uninitialized);
   245   bool inline_unsafe_CAS(BasicType type);
   246   bool inline_unsafe_ordered_store(BasicType type);
   247   bool inline_fp_conversions(vmIntrinsics::ID id);
   248   bool inline_numberOfLeadingZeros(vmIntrinsics::ID id);
   249   bool inline_numberOfTrailingZeros(vmIntrinsics::ID id);
   250   bool inline_bitCount(vmIntrinsics::ID id);
   251   bool inline_reverseBytes(vmIntrinsics::ID id);
   253   bool inline_reference_get();
   254 };
   257 //---------------------------make_vm_intrinsic----------------------------
   258 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
   259   vmIntrinsics::ID id = m->intrinsic_id();
   260   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
   262   if (DisableIntrinsic[0] != '\0'
   263       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
   264     // disabled by a user request on the command line:
   265     // example: -XX:DisableIntrinsic=_hashCode,_getClass
   266     return NULL;
   267   }
   269   if (!m->is_loaded()) {
   270     // do not attempt to inline unloaded methods
   271     return NULL;
   272   }
   274   // Only a few intrinsics implement a virtual dispatch.
   275   // They are expensive calls which are also frequently overridden.
   276   if (is_virtual) {
   277     switch (id) {
   278     case vmIntrinsics::_hashCode:
   279     case vmIntrinsics::_clone:
   280       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
   281       break;
   282     default:
   283       return NULL;
   284     }
   285   }
   287   // -XX:-InlineNatives disables nearly all intrinsics:
   288   if (!InlineNatives) {
   289     switch (id) {
   290     case vmIntrinsics::_indexOf:
   291     case vmIntrinsics::_compareTo:
   292     case vmIntrinsics::_equals:
   293     case vmIntrinsics::_equalsC:
   294       break;  // InlineNatives does not control String.compareTo
   295     default:
   296       return NULL;
   297     }
   298   }
   300   switch (id) {
   301   case vmIntrinsics::_compareTo:
   302     if (!SpecialStringCompareTo)  return NULL;
   303     break;
   304   case vmIntrinsics::_indexOf:
   305     if (!SpecialStringIndexOf)  return NULL;
   306     break;
   307   case vmIntrinsics::_equals:
   308     if (!SpecialStringEquals)  return NULL;
   309     break;
   310   case vmIntrinsics::_equalsC:
   311     if (!SpecialArraysEquals)  return NULL;
   312     break;
   313   case vmIntrinsics::_arraycopy:
   314     if (!InlineArrayCopy)  return NULL;
   315     break;
   316   case vmIntrinsics::_copyMemory:
   317     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
   318     if (!InlineArrayCopy)  return NULL;
   319     break;
   320   case vmIntrinsics::_hashCode:
   321     if (!InlineObjectHash)  return NULL;
   322     break;
   323   case vmIntrinsics::_clone:
   324   case vmIntrinsics::_copyOf:
   325   case vmIntrinsics::_copyOfRange:
   326     if (!InlineObjectCopy)  return NULL;
   327     // These also use the arraycopy intrinsic mechanism:
   328     if (!InlineArrayCopy)  return NULL;
   329     break;
   330   case vmIntrinsics::_checkIndex:
   331     // We do not intrinsify this.  The optimizer does fine with it.
   332     return NULL;
   334   case vmIntrinsics::_get_AtomicLong:
   335   case vmIntrinsics::_attemptUpdate:
   336     if (!InlineAtomicLong)  return NULL;
   337     break;
   339   case vmIntrinsics::_getCallerClass:
   340     if (!UseNewReflection)  return NULL;
   341     if (!InlineReflectionGetCallerClass)  return NULL;
   342     if (!JDK_Version::is_gte_jdk14x_version())  return NULL;
   343     break;
   345   case vmIntrinsics::_bitCount_i:
   346     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
   347     break;
   349   case vmIntrinsics::_bitCount_l:
   350     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
   351     break;
   353   case vmIntrinsics::_numberOfLeadingZeros_i:
   354     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
   355     break;
   357   case vmIntrinsics::_numberOfLeadingZeros_l:
   358     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
   359     break;
   361   case vmIntrinsics::_numberOfTrailingZeros_i:
   362     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
   363     break;
   365   case vmIntrinsics::_numberOfTrailingZeros_l:
   366     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
   367     break;
   369   case vmIntrinsics::_Reference_get:
   370     // It is only when G1 is enabled that we absolutely
   371     // need to use the intrinsic version of Reference.get()
   372     // so that the value in the referent field, if necessary,
   373     // can be registered by the pre-barrier code.
   374     if (!UseG1GC) return NULL;
   375     break;
   377  default:
   378     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
   379     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
   380     break;
   381   }
   383   // -XX:-InlineClassNatives disables natives from the Class class.
   384   // The flag applies to all reflective calls, notably Array.newArray
   385   // (visible to Java programmers as Array.newInstance).
   386   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
   387       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
   388     if (!InlineClassNatives)  return NULL;
   389   }
   391   // -XX:-InlineThreadNatives disables natives from the Thread class.
   392   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
   393     if (!InlineThreadNatives)  return NULL;
   394   }
   396   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
   397   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
   398       m->holder()->name() == ciSymbol::java_lang_Float() ||
   399       m->holder()->name() == ciSymbol::java_lang_Double()) {
   400     if (!InlineMathNatives)  return NULL;
   401   }
   403   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
   404   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
   405     if (!InlineUnsafeOps)  return NULL;
   406   }
   408   return new LibraryIntrinsic(m, is_virtual, (vmIntrinsics::ID) id);
   409 }
   411 //----------------------register_library_intrinsics-----------------------
   412 // Initialize this file's data structures, for each Compile instance.
   413 void Compile::register_library_intrinsics() {
   414   // Nothing to do here.
   415 }
   417 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
   418   LibraryCallKit kit(jvms, this);
   419   Compile* C = kit.C;
   420   int nodes = C->unique();
   421 #ifndef PRODUCT
   422   if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
   423     char buf[1000];
   424     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
   425     tty->print_cr("Intrinsic %s", str);
   426   }
   427 #endif
   429   if (kit.try_to_inline()) {
   430     if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
   431       CompileTask::print_inlining(kit.callee(), jvms->depth() - 1, kit.bci(), is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
   432     }
   433     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
   434     if (C->log()) {
   435       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
   436                      vmIntrinsics::name_at(intrinsic_id()),
   437                      (is_virtual() ? " virtual='1'" : ""),
   438                      C->unique() - nodes);
   439     }
   440     return kit.transfer_exceptions_into_jvms();
   441   }
   443   // The intrinsic bailed out
   444   if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
   445     if (jvms->has_method()) {
   446       // Not a root compile.
   447       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
   448       CompileTask::print_inlining(kit.callee(), jvms->depth() - 1, kit.bci(), msg);
   449     } else {
   450       // Root compile
   451       tty->print("Did not generate intrinsic %s%s at bci:%d in",
   452                vmIntrinsics::name_at(intrinsic_id()),
   453                (is_virtual() ? " (virtual)" : ""), kit.bci());
   454     }
   455   }
   456   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
   457   return NULL;
   458 }
   460 bool LibraryCallKit::try_to_inline() {
   461   // Handle symbolic names for otherwise undistinguished boolean switches:
   462   const bool is_store       = true;
   463   const bool is_native_ptr  = true;
   464   const bool is_static      = true;
   466   if (!jvms()->has_method()) {
   467     // Root JVMState has a null method.
   468     assert(map()->memory()->Opcode() == Op_Parm, "");
   469     // Insert the memory aliasing node
   470     set_all_memory(reset_memory());
   471   }
   472   assert(merged_memory(), "");
   474   switch (intrinsic_id()) {
   475   case vmIntrinsics::_hashCode:
   476     return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
   477   case vmIntrinsics::_identityHashCode:
   478     return inline_native_hashcode(/*!virtual*/ false, is_static);
   479   case vmIntrinsics::_getClass:
   480     return inline_native_getClass();
   482   case vmIntrinsics::_dsin:
   483   case vmIntrinsics::_dcos:
   484   case vmIntrinsics::_dtan:
   485   case vmIntrinsics::_dabs:
   486   case vmIntrinsics::_datan2:
   487   case vmIntrinsics::_dsqrt:
   488   case vmIntrinsics::_dexp:
   489   case vmIntrinsics::_dlog:
   490   case vmIntrinsics::_dlog10:
   491   case vmIntrinsics::_dpow:
   492     return inline_math_native(intrinsic_id());
   494   case vmIntrinsics::_min:
   495   case vmIntrinsics::_max:
   496     return inline_min_max(intrinsic_id());
   498   case vmIntrinsics::_arraycopy:
   499     return inline_arraycopy();
   501   case vmIntrinsics::_compareTo:
   502     return inline_string_compareTo();
   503   case vmIntrinsics::_indexOf:
   504     return inline_string_indexOf();
   505   case vmIntrinsics::_equals:
   506     return inline_string_equals();
   508   case vmIntrinsics::_getObject:
   509     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, false);
   510   case vmIntrinsics::_getBoolean:
   511     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, false);
   512   case vmIntrinsics::_getByte:
   513     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, false);
   514   case vmIntrinsics::_getShort:
   515     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, false);
   516   case vmIntrinsics::_getChar:
   517     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, false);
   518   case vmIntrinsics::_getInt:
   519     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, false);
   520   case vmIntrinsics::_getLong:
   521     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, false);
   522   case vmIntrinsics::_getFloat:
   523     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, false);
   524   case vmIntrinsics::_getDouble:
   525     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, false);
   527   case vmIntrinsics::_putObject:
   528     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, false);
   529   case vmIntrinsics::_putBoolean:
   530     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, false);
   531   case vmIntrinsics::_putByte:
   532     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, false);
   533   case vmIntrinsics::_putShort:
   534     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, false);
   535   case vmIntrinsics::_putChar:
   536     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, false);
   537   case vmIntrinsics::_putInt:
   538     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, false);
   539   case vmIntrinsics::_putLong:
   540     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, false);
   541   case vmIntrinsics::_putFloat:
   542     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, false);
   543   case vmIntrinsics::_putDouble:
   544     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, false);
   546   case vmIntrinsics::_getByte_raw:
   547     return inline_unsafe_access(is_native_ptr, !is_store, T_BYTE, false);
   548   case vmIntrinsics::_getShort_raw:
   549     return inline_unsafe_access(is_native_ptr, !is_store, T_SHORT, false);
   550   case vmIntrinsics::_getChar_raw:
   551     return inline_unsafe_access(is_native_ptr, !is_store, T_CHAR, false);
   552   case vmIntrinsics::_getInt_raw:
   553     return inline_unsafe_access(is_native_ptr, !is_store, T_INT, false);
   554   case vmIntrinsics::_getLong_raw:
   555     return inline_unsafe_access(is_native_ptr, !is_store, T_LONG, false);
   556   case vmIntrinsics::_getFloat_raw:
   557     return inline_unsafe_access(is_native_ptr, !is_store, T_FLOAT, false);
   558   case vmIntrinsics::_getDouble_raw:
   559     return inline_unsafe_access(is_native_ptr, !is_store, T_DOUBLE, false);
   560   case vmIntrinsics::_getAddress_raw:
   561     return inline_unsafe_access(is_native_ptr, !is_store, T_ADDRESS, false);
   563   case vmIntrinsics::_putByte_raw:
   564     return inline_unsafe_access(is_native_ptr, is_store, T_BYTE, false);
   565   case vmIntrinsics::_putShort_raw:
   566     return inline_unsafe_access(is_native_ptr, is_store, T_SHORT, false);
   567   case vmIntrinsics::_putChar_raw:
   568     return inline_unsafe_access(is_native_ptr, is_store, T_CHAR, false);
   569   case vmIntrinsics::_putInt_raw:
   570     return inline_unsafe_access(is_native_ptr, is_store, T_INT, false);
   571   case vmIntrinsics::_putLong_raw:
   572     return inline_unsafe_access(is_native_ptr, is_store, T_LONG, false);
   573   case vmIntrinsics::_putFloat_raw:
   574     return inline_unsafe_access(is_native_ptr, is_store, T_FLOAT, false);
   575   case vmIntrinsics::_putDouble_raw:
   576     return inline_unsafe_access(is_native_ptr, is_store, T_DOUBLE, false);
   577   case vmIntrinsics::_putAddress_raw:
   578     return inline_unsafe_access(is_native_ptr, is_store, T_ADDRESS, false);
   580   case vmIntrinsics::_getObjectVolatile:
   581     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, true);
   582   case vmIntrinsics::_getBooleanVolatile:
   583     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, true);
   584   case vmIntrinsics::_getByteVolatile:
   585     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, true);
   586   case vmIntrinsics::_getShortVolatile:
   587     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, true);
   588   case vmIntrinsics::_getCharVolatile:
   589     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, true);
   590   case vmIntrinsics::_getIntVolatile:
   591     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, true);
   592   case vmIntrinsics::_getLongVolatile:
   593     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, true);
   594   case vmIntrinsics::_getFloatVolatile:
   595     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, true);
   596   case vmIntrinsics::_getDoubleVolatile:
   597     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, true);
   599   case vmIntrinsics::_putObjectVolatile:
   600     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, true);
   601   case vmIntrinsics::_putBooleanVolatile:
   602     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, true);
   603   case vmIntrinsics::_putByteVolatile:
   604     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, true);
   605   case vmIntrinsics::_putShortVolatile:
   606     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, true);
   607   case vmIntrinsics::_putCharVolatile:
   608     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, true);
   609   case vmIntrinsics::_putIntVolatile:
   610     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, true);
   611   case vmIntrinsics::_putLongVolatile:
   612     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, true);
   613   case vmIntrinsics::_putFloatVolatile:
   614     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, true);
   615   case vmIntrinsics::_putDoubleVolatile:
   616     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, true);
   618   case vmIntrinsics::_prefetchRead:
   619     return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
   620   case vmIntrinsics::_prefetchWrite:
   621     return inline_unsafe_prefetch(!is_native_ptr, is_store, !is_static);
   622   case vmIntrinsics::_prefetchReadStatic:
   623     return inline_unsafe_prefetch(!is_native_ptr, !is_store, is_static);
   624   case vmIntrinsics::_prefetchWriteStatic:
   625     return inline_unsafe_prefetch(!is_native_ptr, is_store, is_static);
   627   case vmIntrinsics::_compareAndSwapObject:
   628     return inline_unsafe_CAS(T_OBJECT);
   629   case vmIntrinsics::_compareAndSwapInt:
   630     return inline_unsafe_CAS(T_INT);
   631   case vmIntrinsics::_compareAndSwapLong:
   632     return inline_unsafe_CAS(T_LONG);
   634   case vmIntrinsics::_putOrderedObject:
   635     return inline_unsafe_ordered_store(T_OBJECT);
   636   case vmIntrinsics::_putOrderedInt:
   637     return inline_unsafe_ordered_store(T_INT);
   638   case vmIntrinsics::_putOrderedLong:
   639     return inline_unsafe_ordered_store(T_LONG);
   641   case vmIntrinsics::_currentThread:
   642     return inline_native_currentThread();
   643   case vmIntrinsics::_isInterrupted:
   644     return inline_native_isInterrupted();
   646 #ifdef TRACE_HAVE_INTRINSICS
   647   case vmIntrinsics::_classID:
   648     return inline_native_classID();
   649   case vmIntrinsics::_threadID:
   650     return inline_native_threadID();
   651   case vmIntrinsics::_counterTime:
   652     return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
   653 #endif
   654   case vmIntrinsics::_currentTimeMillis:
   655     return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
   656   case vmIntrinsics::_nanoTime:
   657     return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
   658   case vmIntrinsics::_allocateInstance:
   659     return inline_unsafe_allocate();
   660   case vmIntrinsics::_copyMemory:
   661     return inline_unsafe_copyMemory();
   662   case vmIntrinsics::_newArray:
   663     return inline_native_newArray();
   664   case vmIntrinsics::_getLength:
   665     return inline_native_getLength();
   666   case vmIntrinsics::_copyOf:
   667     return inline_array_copyOf(false);
   668   case vmIntrinsics::_copyOfRange:
   669     return inline_array_copyOf(true);
   670   case vmIntrinsics::_equalsC:
   671     return inline_array_equals();
   672   case vmIntrinsics::_clone:
   673     return inline_native_clone(intrinsic()->is_virtual());
   675   case vmIntrinsics::_isAssignableFrom:
   676     return inline_native_subtype_check();
   678   case vmIntrinsics::_isInstance:
   679   case vmIntrinsics::_getModifiers:
   680   case vmIntrinsics::_isInterface:
   681   case vmIntrinsics::_isArray:
   682   case vmIntrinsics::_isPrimitive:
   683   case vmIntrinsics::_getSuperclass:
   684   case vmIntrinsics::_getComponentType:
   685   case vmIntrinsics::_getClassAccessFlags:
   686     return inline_native_Class_query(intrinsic_id());
   688   case vmIntrinsics::_floatToRawIntBits:
   689   case vmIntrinsics::_floatToIntBits:
   690   case vmIntrinsics::_intBitsToFloat:
   691   case vmIntrinsics::_doubleToRawLongBits:
   692   case vmIntrinsics::_doubleToLongBits:
   693   case vmIntrinsics::_longBitsToDouble:
   694     return inline_fp_conversions(intrinsic_id());
   696   case vmIntrinsics::_numberOfLeadingZeros_i:
   697   case vmIntrinsics::_numberOfLeadingZeros_l:
   698     return inline_numberOfLeadingZeros(intrinsic_id());
   700   case vmIntrinsics::_numberOfTrailingZeros_i:
   701   case vmIntrinsics::_numberOfTrailingZeros_l:
   702     return inline_numberOfTrailingZeros(intrinsic_id());
   704   case vmIntrinsics::_bitCount_i:
   705   case vmIntrinsics::_bitCount_l:
   706     return inline_bitCount(intrinsic_id());
   708   case vmIntrinsics::_reverseBytes_i:
   709   case vmIntrinsics::_reverseBytes_l:
   710   case vmIntrinsics::_reverseBytes_s:
   711   case vmIntrinsics::_reverseBytes_c:
   712     return inline_reverseBytes((vmIntrinsics::ID) intrinsic_id());
   714   case vmIntrinsics::_get_AtomicLong:
   715     return inline_native_AtomicLong_get();
   716   case vmIntrinsics::_attemptUpdate:
   717     return inline_native_AtomicLong_attemptUpdate();
   719   case vmIntrinsics::_getCallerClass:
   720     return inline_native_Reflection_getCallerClass();
   722   case vmIntrinsics::_Reference_get:
   723     return inline_reference_get();
   725   default:
   726     // If you get here, it may be that someone has added a new intrinsic
   727     // to the list in vmSymbols.hpp without implementing it here.
   728 #ifndef PRODUCT
   729     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
   730       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
   731                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
   732     }
   733 #endif
   734     return false;
   735   }
   736 }
   738 //------------------------------push_result------------------------------
   739 // Helper function for finishing intrinsics.
   740 void LibraryCallKit::push_result(RegionNode* region, PhiNode* value) {
   741   record_for_igvn(region);
   742   set_control(_gvn.transform(region));
   743   BasicType value_type = value->type()->basic_type();
   744   push_node(value_type, _gvn.transform(value));
   745 }
   747 //------------------------------generate_guard---------------------------
   748 // Helper function for generating guarded fast-slow graph structures.
   749 // The given 'test', if true, guards a slow path.  If the test fails
   750 // then a fast path can be taken.  (We generally hope it fails.)
   751 // In all cases, GraphKit::control() is updated to the fast path.
   752 // The returned value represents the control for the slow path.
   753 // The return value is never 'top'; it is either a valid control
   754 // or NULL if it is obvious that the slow path can never be taken.
   755 // Also, if region and the slow control are not NULL, the slow edge
   756 // is appended to the region.
   757 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
   758   if (stopped()) {
   759     // Already short circuited.
   760     return NULL;
   761   }
   763   // Build an if node and its projections.
   764   // If test is true we take the slow path, which we assume is uncommon.
   765   if (_gvn.type(test) == TypeInt::ZERO) {
   766     // The slow branch is never taken.  No need to build this guard.
   767     return NULL;
   768   }
   770   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
   772   Node* if_slow = _gvn.transform( new (C, 1) IfTrueNode(iff) );
   773   if (if_slow == top()) {
   774     // The slow branch is never taken.  No need to build this guard.
   775     return NULL;
   776   }
   778   if (region != NULL)
   779     region->add_req(if_slow);
   781   Node* if_fast = _gvn.transform( new (C, 1) IfFalseNode(iff) );
   782   set_control(if_fast);
   784   return if_slow;
   785 }
   787 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
   788   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
   789 }
   790 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
   791   return generate_guard(test, region, PROB_FAIR);
   792 }
   794 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
   795                                                      Node* *pos_index) {
   796   if (stopped())
   797     return NULL;                // already stopped
   798   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
   799     return NULL;                // index is already adequately typed
   800   Node* cmp_lt = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
   801   Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
   802   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
   803   if (is_neg != NULL && pos_index != NULL) {
   804     // Emulate effect of Parse::adjust_map_after_if.
   805     Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS);
   806     ccast->set_req(0, control());
   807     (*pos_index) = _gvn.transform(ccast);
   808   }
   809   return is_neg;
   810 }
   812 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
   813                                                         Node* *pos_index) {
   814   if (stopped())
   815     return NULL;                // already stopped
   816   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
   817     return NULL;                // index is already adequately typed
   818   Node* cmp_le = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
   819   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
   820   Node* bol_le = _gvn.transform( new (C, 2) BoolNode(cmp_le, le_or_eq) );
   821   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
   822   if (is_notp != NULL && pos_index != NULL) {
   823     // Emulate effect of Parse::adjust_map_after_if.
   824     Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS1);
   825     ccast->set_req(0, control());
   826     (*pos_index) = _gvn.transform(ccast);
   827   }
   828   return is_notp;
   829 }
   831 // Make sure that 'position' is a valid limit index, in [0..length].
   832 // There are two equivalent plans for checking this:
   833 //   A. (offset + copyLength)  unsigned<=  arrayLength
   834 //   B. offset  <=  (arrayLength - copyLength)
   835 // We require that all of the values above, except for the sum and
   836 // difference, are already known to be non-negative.
   837 // Plan A is robust in the face of overflow, if offset and copyLength
   838 // are both hugely positive.
   839 //
   840 // Plan B is less direct and intuitive, but it does not overflow at
   841 // all, since the difference of two non-negatives is always
   842 // representable.  Whenever Java methods must perform the equivalent
   843 // check they generally use Plan B instead of Plan A.
   844 // For the moment we use Plan A.
   845 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
   846                                                   Node* subseq_length,
   847                                                   Node* array_length,
   848                                                   RegionNode* region) {
   849   if (stopped())
   850     return NULL;                // already stopped
   851   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
   852   if (zero_offset && subseq_length->eqv_uncast(array_length))
   853     return NULL;                // common case of whole-array copy
   854   Node* last = subseq_length;
   855   if (!zero_offset)             // last += offset
   856     last = _gvn.transform( new (C, 3) AddINode(last, offset));
   857   Node* cmp_lt = _gvn.transform( new (C, 3) CmpUNode(array_length, last) );
   858   Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
   859   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
   860   return is_over;
   861 }
   864 //--------------------------generate_current_thread--------------------
   865 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
   866   ciKlass*    thread_klass = env()->Thread_klass();
   867   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
   868   Node* thread = _gvn.transform(new (C, 1) ThreadLocalNode());
   869   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
   870   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
   871   tls_output = thread;
   872   return threadObj;
   873 }
   876 //------------------------------make_string_method_node------------------------
   877 // Helper method for String intrinsic functions. This version is called
   878 // with str1 and str2 pointing to String object nodes.
   879 //
   880 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
   881   Node* no_ctrl = NULL;
   883   // Get start addr of string
   884   Node* str1_value   = load_String_value(no_ctrl, str1);
   885   Node* str1_offset  = load_String_offset(no_ctrl, str1);
   886   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
   888   // Get length of string 1
   889   Node* str1_len  = load_String_length(no_ctrl, str1);
   891   Node* str2_value   = load_String_value(no_ctrl, str2);
   892   Node* str2_offset  = load_String_offset(no_ctrl, str2);
   893   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
   895   Node* str2_len = NULL;
   896   Node* result = NULL;
   898   switch (opcode) {
   899   case Op_StrIndexOf:
   900     // Get length of string 2
   901     str2_len = load_String_length(no_ctrl, str2);
   903     result = new (C, 6) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
   904                                  str1_start, str1_len, str2_start, str2_len);
   905     break;
   906   case Op_StrComp:
   907     // Get length of string 2
   908     str2_len = load_String_length(no_ctrl, str2);
   910     result = new (C, 6) StrCompNode(control(), memory(TypeAryPtr::CHARS),
   911                                  str1_start, str1_len, str2_start, str2_len);
   912     break;
   913   case Op_StrEquals:
   914     result = new (C, 5) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
   915                                str1_start, str2_start, str1_len);
   916     break;
   917   default:
   918     ShouldNotReachHere();
   919     return NULL;
   920   }
   922   // All these intrinsics have checks.
   923   C->set_has_split_ifs(true); // Has chance for split-if optimization
   925   return _gvn.transform(result);
   926 }
   928 // Helper method for String intrinsic functions. This version is called
   929 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
   930 // to Int nodes containing the lenghts of str1 and str2.
   931 //
   932 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
   934   Node* result = NULL;
   935   switch (opcode) {
   936   case Op_StrIndexOf:
   937     result = new (C, 6) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
   938                                  str1_start, cnt1, str2_start, cnt2);
   939     break;
   940   case Op_StrComp:
   941     result = new (C, 6) StrCompNode(control(), memory(TypeAryPtr::CHARS),
   942                                  str1_start, cnt1, str2_start, cnt2);
   943     break;
   944   case Op_StrEquals:
   945     result = new (C, 5) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
   946                                  str1_start, str2_start, cnt1);
   947     break;
   948   default:
   949     ShouldNotReachHere();
   950     return NULL;
   951   }
   953   // All these intrinsics have checks.
   954   C->set_has_split_ifs(true); // Has chance for split-if optimization
   956   return _gvn.transform(result);
   957 }
   959 //------------------------------inline_string_compareTo------------------------
   960 bool LibraryCallKit::inline_string_compareTo() {
   962   if (!Matcher::has_match_rule(Op_StrComp)) return false;
   964   _sp += 2;
   965   Node *argument = pop();  // pop non-receiver first:  it was pushed second
   966   Node *receiver = pop();
   968   // Null check on self without removing any arguments.  The argument
   969   // null check technically happens in the wrong place, which can lead to
   970   // invalid stack traces when string compare is inlined into a method
   971   // which handles NullPointerExceptions.
   972   _sp += 2;
   973   receiver = do_null_check(receiver, T_OBJECT);
   974   argument = do_null_check(argument, T_OBJECT);
   975   _sp -= 2;
   976   if (stopped()) {
   977     return true;
   978   }
   980   Node* compare = make_string_method_node(Op_StrComp, receiver, argument);
   981   push(compare);
   982   return true;
   983 }
   985 //------------------------------inline_string_equals------------------------
   986 bool LibraryCallKit::inline_string_equals() {
   988   if (!Matcher::has_match_rule(Op_StrEquals)) return false;
   990   int nargs = 2;
   991   _sp += nargs;
   992   Node* argument = pop();  // pop non-receiver first:  it was pushed second
   993   Node* receiver = pop();
   995   // Null check on self without removing any arguments.  The argument
   996   // null check technically happens in the wrong place, which can lead to
   997   // invalid stack traces when string compare is inlined into a method
   998   // which handles NullPointerExceptions.
   999   _sp += nargs;
  1000   receiver = do_null_check(receiver, T_OBJECT);
  1001   //should not do null check for argument for String.equals(), because spec
  1002   //allows to specify NULL as argument.
  1003   _sp -= nargs;
  1005   if (stopped()) {
  1006     return true;
  1009   // paths (plus control) merge
  1010   RegionNode* region = new (C, 5) RegionNode(5);
  1011   Node* phi = new (C, 5) PhiNode(region, TypeInt::BOOL);
  1013   // does source == target string?
  1014   Node* cmp = _gvn.transform(new (C, 3) CmpPNode(receiver, argument));
  1015   Node* bol = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::eq));
  1017   Node* if_eq = generate_slow_guard(bol, NULL);
  1018   if (if_eq != NULL) {
  1019     // receiver == argument
  1020     phi->init_req(2, intcon(1));
  1021     region->init_req(2, if_eq);
  1024   // get String klass for instanceOf
  1025   ciInstanceKlass* klass = env()->String_klass();
  1027   if (!stopped()) {
  1028     _sp += nargs;          // gen_instanceof might do an uncommon trap
  1029     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
  1030     _sp -= nargs;
  1031     Node* cmp  = _gvn.transform(new (C, 3) CmpINode(inst, intcon(1)));
  1032     Node* bol  = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::ne));
  1034     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
  1035     //instanceOf == true, fallthrough
  1037     if (inst_false != NULL) {
  1038       phi->init_req(3, intcon(0));
  1039       region->init_req(3, inst_false);
  1043   if (!stopped()) {
  1044     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
  1046     // Properly cast the argument to String
  1047     argument = _gvn.transform(new (C, 2) CheckCastPPNode(control(), argument, string_type));
  1048     // This path is taken only when argument's type is String:NotNull.
  1049     argument = cast_not_null(argument, false);
  1051     Node* no_ctrl = NULL;
  1053     // Get start addr of receiver
  1054     Node* receiver_val    = load_String_value(no_ctrl, receiver);
  1055     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
  1056     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
  1058     // Get length of receiver
  1059     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
  1061     // Get start addr of argument
  1062     Node* argument_val   = load_String_value(no_ctrl, argument);
  1063     Node* argument_offset = load_String_offset(no_ctrl, argument);
  1064     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
  1066     // Get length of argument
  1067     Node* argument_cnt  = load_String_length(no_ctrl, argument);
  1069     // Check for receiver count != argument count
  1070     Node* cmp = _gvn.transform( new(C, 3) CmpINode(receiver_cnt, argument_cnt) );
  1071     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::ne) );
  1072     Node* if_ne = generate_slow_guard(bol, NULL);
  1073     if (if_ne != NULL) {
  1074       phi->init_req(4, intcon(0));
  1075       region->init_req(4, if_ne);
  1078     // Check for count == 0 is done by assembler code for StrEquals.
  1080     if (!stopped()) {
  1081       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
  1082       phi->init_req(1, equals);
  1083       region->init_req(1, control());
  1087   // post merge
  1088   set_control(_gvn.transform(region));
  1089   record_for_igvn(region);
  1091   push(_gvn.transform(phi));
  1093   return true;
  1096 //------------------------------inline_array_equals----------------------------
  1097 bool LibraryCallKit::inline_array_equals() {
  1099   if (!Matcher::has_match_rule(Op_AryEq)) return false;
  1101   _sp += 2;
  1102   Node *argument2 = pop();
  1103   Node *argument1 = pop();
  1105   Node* equals =
  1106     _gvn.transform(new (C, 4) AryEqNode(control(), memory(TypeAryPtr::CHARS),
  1107                                         argument1, argument2) );
  1108   push(equals);
  1109   return true;
  1112 // Java version of String.indexOf(constant string)
  1113 // class StringDecl {
  1114 //   StringDecl(char[] ca) {
  1115 //     offset = 0;
  1116 //     count = ca.length;
  1117 //     value = ca;
  1118 //   }
  1119 //   int offset;
  1120 //   int count;
  1121 //   char[] value;
  1122 // }
  1123 //
  1124 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
  1125 //                             int targetOffset, int cache_i, int md2) {
  1126 //   int cache = cache_i;
  1127 //   int sourceOffset = string_object.offset;
  1128 //   int sourceCount = string_object.count;
  1129 //   int targetCount = target_object.length;
  1130 //
  1131 //   int targetCountLess1 = targetCount - 1;
  1132 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
  1133 //
  1134 //   char[] source = string_object.value;
  1135 //   char[] target = target_object;
  1136 //   int lastChar = target[targetCountLess1];
  1137 //
  1138 //  outer_loop:
  1139 //   for (int i = sourceOffset; i < sourceEnd; ) {
  1140 //     int src = source[i + targetCountLess1];
  1141 //     if (src == lastChar) {
  1142 //       // With random strings and a 4-character alphabet,
  1143 //       // reverse matching at this point sets up 0.8% fewer
  1144 //       // frames, but (paradoxically) makes 0.3% more probes.
  1145 //       // Since those probes are nearer the lastChar probe,
  1146 //       // there is may be a net D$ win with reverse matching.
  1147 //       // But, reversing loop inhibits unroll of inner loop
  1148 //       // for unknown reason.  So, does running outer loop from
  1149 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
  1150 //       for (int j = 0; j < targetCountLess1; j++) {
  1151 //         if (target[targetOffset + j] != source[i+j]) {
  1152 //           if ((cache & (1 << source[i+j])) == 0) {
  1153 //             if (md2 < j+1) {
  1154 //               i += j+1;
  1155 //               continue outer_loop;
  1156 //             }
  1157 //           }
  1158 //           i += md2;
  1159 //           continue outer_loop;
  1160 //         }
  1161 //       }
  1162 //       return i - sourceOffset;
  1163 //     }
  1164 //     if ((cache & (1 << src)) == 0) {
  1165 //       i += targetCountLess1;
  1166 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
  1167 //     i++;
  1168 //   }
  1169 //   return -1;
  1170 // }
  1172 //------------------------------string_indexOf------------------------
  1173 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
  1174                                      jint cache_i, jint md2_i) {
  1176   Node* no_ctrl  = NULL;
  1177   float likely   = PROB_LIKELY(0.9);
  1178   float unlikely = PROB_UNLIKELY(0.9);
  1180   const int nargs = 2; // number of arguments to push back for uncommon trap in predicate
  1182   Node* source        = load_String_value(no_ctrl, string_object);
  1183   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
  1184   Node* sourceCount   = load_String_length(no_ctrl, string_object);
  1186   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)) );
  1187   jint target_length = target_array->length();
  1188   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
  1189   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
  1191   IdealKit kit(this, false, true);
  1192 #define __ kit.
  1193   Node* zero             = __ ConI(0);
  1194   Node* one              = __ ConI(1);
  1195   Node* cache            = __ ConI(cache_i);
  1196   Node* md2              = __ ConI(md2_i);
  1197   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
  1198   Node* targetCount      = __ ConI(target_length);
  1199   Node* targetCountLess1 = __ ConI(target_length - 1);
  1200   Node* targetOffset     = __ ConI(targetOffset_i);
  1201   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
  1203   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
  1204   Node* outer_loop = __ make_label(2 /* goto */);
  1205   Node* return_    = __ make_label(1);
  1207   __ set(rtn,__ ConI(-1));
  1208   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
  1209        Node* i2  = __ AddI(__ value(i), targetCountLess1);
  1210        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
  1211        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
  1212        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
  1213          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
  1214               Node* tpj = __ AddI(targetOffset, __ value(j));
  1215               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
  1216               Node* ipj  = __ AddI(__ value(i), __ value(j));
  1217               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
  1218               __ if_then(targ, BoolTest::ne, src2); {
  1219                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
  1220                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
  1221                     __ increment(i, __ AddI(__ value(j), one));
  1222                     __ goto_(outer_loop);
  1223                   } __ end_if(); __ dead(j);
  1224                 }__ end_if(); __ dead(j);
  1225                 __ increment(i, md2);
  1226                 __ goto_(outer_loop);
  1227               }__ end_if();
  1228               __ increment(j, one);
  1229          }__ end_loop(); __ dead(j);
  1230          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
  1231          __ goto_(return_);
  1232        }__ end_if();
  1233        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
  1234          __ increment(i, targetCountLess1);
  1235        }__ end_if();
  1236        __ increment(i, one);
  1237        __ bind(outer_loop);
  1238   }__ end_loop(); __ dead(i);
  1239   __ bind(return_);
  1241   // Final sync IdealKit and GraphKit.
  1242   final_sync(kit);
  1243   Node* result = __ value(rtn);
  1244 #undef __
  1245   C->set_has_loops(true);
  1246   return result;
  1249 //------------------------------inline_string_indexOf------------------------
  1250 bool LibraryCallKit::inline_string_indexOf() {
  1252   _sp += 2;
  1253   Node *argument = pop();  // pop non-receiver first:  it was pushed second
  1254   Node *receiver = pop();
  1256   Node* result;
  1257   // Disable the use of pcmpestri until it can be guaranteed that
  1258   // the load doesn't cross into the uncommited space.
  1259   if (Matcher::has_match_rule(Op_StrIndexOf) &&
  1260       UseSSE42Intrinsics) {
  1261     // Generate SSE4.2 version of indexOf
  1262     // We currently only have match rules that use SSE4.2
  1264     // Null check on self without removing any arguments.  The argument
  1265     // null check technically happens in the wrong place, which can lead to
  1266     // invalid stack traces when string compare is inlined into a method
  1267     // which handles NullPointerExceptions.
  1268     _sp += 2;
  1269     receiver = do_null_check(receiver, T_OBJECT);
  1270     argument = do_null_check(argument, T_OBJECT);
  1271     _sp -= 2;
  1273     if (stopped()) {
  1274       return true;
  1277     ciInstanceKlass* str_klass = env()->String_klass();
  1278     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
  1280     // Make the merge point
  1281     RegionNode* result_rgn = new (C, 4) RegionNode(4);
  1282     Node*       result_phi = new (C, 4) PhiNode(result_rgn, TypeInt::INT);
  1283     Node* no_ctrl  = NULL;
  1285     // Get start addr of source string
  1286     Node* source = load_String_value(no_ctrl, receiver);
  1287     Node* source_offset = load_String_offset(no_ctrl, receiver);
  1288     Node* source_start = array_element_address(source, source_offset, T_CHAR);
  1290     // Get length of source string
  1291     Node* source_cnt  = load_String_length(no_ctrl, receiver);
  1293     // Get start addr of substring
  1294     Node* substr = load_String_value(no_ctrl, argument);
  1295     Node* substr_offset = load_String_offset(no_ctrl, argument);
  1296     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
  1298     // Get length of source string
  1299     Node* substr_cnt  = load_String_length(no_ctrl, argument);
  1301     // Check for substr count > string count
  1302     Node* cmp = _gvn.transform( new(C, 3) CmpINode(substr_cnt, source_cnt) );
  1303     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::gt) );
  1304     Node* if_gt = generate_slow_guard(bol, NULL);
  1305     if (if_gt != NULL) {
  1306       result_phi->init_req(2, intcon(-1));
  1307       result_rgn->init_req(2, if_gt);
  1310     if (!stopped()) {
  1311       // Check for substr count == 0
  1312       cmp = _gvn.transform( new(C, 3) CmpINode(substr_cnt, intcon(0)) );
  1313       bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
  1314       Node* if_zero = generate_slow_guard(bol, NULL);
  1315       if (if_zero != NULL) {
  1316         result_phi->init_req(3, intcon(0));
  1317         result_rgn->init_req(3, if_zero);
  1321     if (!stopped()) {
  1322       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
  1323       result_phi->init_req(1, result);
  1324       result_rgn->init_req(1, control());
  1326     set_control(_gvn.transform(result_rgn));
  1327     record_for_igvn(result_rgn);
  1328     result = _gvn.transform(result_phi);
  1330   } else { // Use LibraryCallKit::string_indexOf
  1331     // don't intrinsify if argument isn't a constant string.
  1332     if (!argument->is_Con()) {
  1333      return false;
  1335     const TypeOopPtr* str_type = _gvn.type(argument)->isa_oopptr();
  1336     if (str_type == NULL) {
  1337       return false;
  1339     ciInstanceKlass* klass = env()->String_klass();
  1340     ciObject* str_const = str_type->const_oop();
  1341     if (str_const == NULL || str_const->klass() != klass) {
  1342       return false;
  1344     ciInstance* str = str_const->as_instance();
  1345     assert(str != NULL, "must be instance");
  1347     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
  1348     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
  1350     int o;
  1351     int c;
  1352     if (java_lang_String::has_offset_field()) {
  1353       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
  1354       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
  1355     } else {
  1356       o = 0;
  1357       c = pat->length();
  1360     // constant strings have no offset and count == length which
  1361     // simplifies the resulting code somewhat so lets optimize for that.
  1362     if (o != 0 || c != pat->length()) {
  1363      return false;
  1366     // Null check on self without removing any arguments.  The argument
  1367     // null check technically happens in the wrong place, which can lead to
  1368     // invalid stack traces when string compare is inlined into a method
  1369     // which handles NullPointerExceptions.
  1370     _sp += 2;
  1371     receiver = do_null_check(receiver, T_OBJECT);
  1372     // No null check on the argument is needed since it's a constant String oop.
  1373     _sp -= 2;
  1374     if (stopped()) {
  1375       return true;
  1378     // The null string as a pattern always returns 0 (match at beginning of string)
  1379     if (c == 0) {
  1380       push(intcon(0));
  1381       return true;
  1384     // Generate default indexOf
  1385     jchar lastChar = pat->char_at(o + (c - 1));
  1386     int cache = 0;
  1387     int i;
  1388     for (i = 0; i < c - 1; i++) {
  1389       assert(i < pat->length(), "out of range");
  1390       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
  1393     int md2 = c;
  1394     for (i = 0; i < c - 1; i++) {
  1395       assert(i < pat->length(), "out of range");
  1396       if (pat->char_at(o + i) == lastChar) {
  1397         md2 = (c - 1) - i;
  1401     result = string_indexOf(receiver, pat, o, cache, md2);
  1404   push(result);
  1405   return true;
  1408 //--------------------------pop_math_arg--------------------------------
  1409 // Pop a double argument to a math function from the stack
  1410 // rounding it if necessary.
  1411 Node * LibraryCallKit::pop_math_arg() {
  1412   Node *arg = pop_pair();
  1413   if( Matcher::strict_fp_requires_explicit_rounding && UseSSE<=1 )
  1414     arg = _gvn.transform( new (C, 2) RoundDoubleNode(0, arg) );
  1415   return arg;
  1418 //------------------------------inline_trig----------------------------------
  1419 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
  1420 // argument reduction which will turn into a fast/slow diamond.
  1421 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
  1422   _sp += arg_size();            // restore stack pointer
  1423   Node* arg = pop_math_arg();
  1424   Node* trig = NULL;
  1426   switch (id) {
  1427   case vmIntrinsics::_dsin:
  1428     trig = _gvn.transform((Node*)new (C, 2) SinDNode(arg));
  1429     break;
  1430   case vmIntrinsics::_dcos:
  1431     trig = _gvn.transform((Node*)new (C, 2) CosDNode(arg));
  1432     break;
  1433   case vmIntrinsics::_dtan:
  1434     trig = _gvn.transform((Node*)new (C, 2) TanDNode(arg));
  1435     break;
  1436   default:
  1437     assert(false, "bad intrinsic was passed in");
  1438     return false;
  1441   // Rounding required?  Check for argument reduction!
  1442   if( Matcher::strict_fp_requires_explicit_rounding ) {
  1444     static const double     pi_4 =  0.7853981633974483;
  1445     static const double neg_pi_4 = -0.7853981633974483;
  1446     // pi/2 in 80-bit extended precision
  1447     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
  1448     // -pi/2 in 80-bit extended precision
  1449     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
  1450     // Cutoff value for using this argument reduction technique
  1451     //static const double    pi_2_minus_epsilon =  1.564660403643354;
  1452     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
  1454     // Pseudocode for sin:
  1455     // if (x <= Math.PI / 4.0) {
  1456     //   if (x >= -Math.PI / 4.0) return  fsin(x);
  1457     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
  1458     // } else {
  1459     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
  1460     // }
  1461     // return StrictMath.sin(x);
  1463     // Pseudocode for cos:
  1464     // if (x <= Math.PI / 4.0) {
  1465     //   if (x >= -Math.PI / 4.0) return  fcos(x);
  1466     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
  1467     // } else {
  1468     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
  1469     // }
  1470     // return StrictMath.cos(x);
  1472     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
  1473     // requires a special machine instruction to load it.  Instead we'll try
  1474     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
  1475     // probably do the math inside the SIN encoding.
  1477     // Make the merge point
  1478     RegionNode *r = new (C, 3) RegionNode(3);
  1479     Node *phi = new (C, 3) PhiNode(r,Type::DOUBLE);
  1481     // Flatten arg so we need only 1 test
  1482     Node *abs = _gvn.transform(new (C, 2) AbsDNode(arg));
  1483     // Node for PI/4 constant
  1484     Node *pi4 = makecon(TypeD::make(pi_4));
  1485     // Check PI/4 : abs(arg)
  1486     Node *cmp = _gvn.transform(new (C, 3) CmpDNode(pi4,abs));
  1487     // Check: If PI/4 < abs(arg) then go slow
  1488     Node *bol = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::lt ) );
  1489     // Branch either way
  1490     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1491     set_control(opt_iff(r,iff));
  1493     // Set fast path result
  1494     phi->init_req(2,trig);
  1496     // Slow path - non-blocking leaf call
  1497     Node* call = NULL;
  1498     switch (id) {
  1499     case vmIntrinsics::_dsin:
  1500       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1501                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
  1502                                "Sin", NULL, arg, top());
  1503       break;
  1504     case vmIntrinsics::_dcos:
  1505       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1506                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
  1507                                "Cos", NULL, arg, top());
  1508       break;
  1509     case vmIntrinsics::_dtan:
  1510       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1511                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
  1512                                "Tan", NULL, arg, top());
  1513       break;
  1515     assert(control()->in(0) == call, "");
  1516     Node* slow_result = _gvn.transform(new (C, 1) ProjNode(call,TypeFunc::Parms));
  1517     r->init_req(1,control());
  1518     phi->init_req(1,slow_result);
  1520     // Post-merge
  1521     set_control(_gvn.transform(r));
  1522     record_for_igvn(r);
  1523     trig = _gvn.transform(phi);
  1525     C->set_has_split_ifs(true); // Has chance for split-if optimization
  1527   // Push result back on JVM stack
  1528   push_pair(trig);
  1529   return true;
  1532 //------------------------------inline_sqrt-------------------------------------
  1533 // Inline square root instruction, if possible.
  1534 bool LibraryCallKit::inline_sqrt(vmIntrinsics::ID id) {
  1535   assert(id == vmIntrinsics::_dsqrt, "Not square root");
  1536   _sp += arg_size();        // restore stack pointer
  1537   push_pair(_gvn.transform(new (C, 2) SqrtDNode(0, pop_math_arg())));
  1538   return true;
  1541 //------------------------------inline_abs-------------------------------------
  1542 // Inline absolute value instruction, if possible.
  1543 bool LibraryCallKit::inline_abs(vmIntrinsics::ID id) {
  1544   assert(id == vmIntrinsics::_dabs, "Not absolute value");
  1545   _sp += arg_size();        // restore stack pointer
  1546   push_pair(_gvn.transform(new (C, 2) AbsDNode(pop_math_arg())));
  1547   return true;
  1550 //------------------------------inline_exp-------------------------------------
  1551 // Inline exp instructions, if possible.  The Intel hardware only misses
  1552 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
  1553 bool LibraryCallKit::inline_exp(vmIntrinsics::ID id) {
  1554   assert(id == vmIntrinsics::_dexp, "Not exp");
  1556   // If this inlining ever returned NaN in the past, we do not intrinsify it
  1557   // every again.  NaN results requires StrictMath.exp handling.
  1558   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  1560   // Do not intrinsify on older platforms which lack cmove.
  1561   if (ConditionalMoveLimit == 0)  return false;
  1563   _sp += arg_size();        // restore stack pointer
  1564   Node *x = pop_math_arg();
  1565   Node *result = _gvn.transform(new (C, 2) ExpDNode(0,x));
  1567   //-------------------
  1568   //result=(result.isNaN())? StrictMath::exp():result;
  1569   // Check: If isNaN() by checking result!=result? then go to Strict Math
  1570   Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
  1571   // Build the boolean node
  1572   Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
  1574   { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
  1575     // End the current control-flow path
  1576     push_pair(x);
  1577     // Math.exp intrinsic returned a NaN, which requires StrictMath.exp
  1578     // to handle.  Recompile without intrinsifying Math.exp
  1579     uncommon_trap(Deoptimization::Reason_intrinsic,
  1580                   Deoptimization::Action_make_not_entrant);
  1583   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1585   push_pair(result);
  1587   return true;
  1590 //------------------------------inline_pow-------------------------------------
  1591 // Inline power instructions, if possible.
  1592 bool LibraryCallKit::inline_pow(vmIntrinsics::ID id) {
  1593   assert(id == vmIntrinsics::_dpow, "Not pow");
  1595   // If this inlining ever returned NaN in the past, we do not intrinsify it
  1596   // every again.  NaN results requires StrictMath.pow handling.
  1597   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  1599   // Do not intrinsify on older platforms which lack cmove.
  1600   if (ConditionalMoveLimit == 0)  return false;
  1602   // Pseudocode for pow
  1603   // if (x <= 0.0) {
  1604   //   if ((double)((int)y)==y) { // if y is int
  1605   //     result = ((1&(int)y)==0)?-DPow(abs(x), y):DPow(abs(x), y)
  1606   //   } else {
  1607   //     result = NaN;
  1608   //   }
  1609   // } else {
  1610   //   result = DPow(x,y);
  1611   // }
  1612   // if (result != result)?  {
  1613   //   uncommon_trap();
  1614   // }
  1615   // return result;
  1617   _sp += arg_size();        // restore stack pointer
  1618   Node* y = pop_math_arg();
  1619   Node* x = pop_math_arg();
  1621   Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, x, y) );
  1623   // Short form: if not top-level (i.e., Math.pow but inlining Math.pow
  1624   // inside of something) then skip the fancy tests and just check for
  1625   // NaN result.
  1626   Node *result = NULL;
  1627   if( jvms()->depth() >= 1 ) {
  1628     result = fast_result;
  1629   } else {
  1631     // Set the merge point for If node with condition of (x <= 0.0)
  1632     // There are four possible paths to region node and phi node
  1633     RegionNode *r = new (C, 4) RegionNode(4);
  1634     Node *phi = new (C, 4) PhiNode(r, Type::DOUBLE);
  1636     // Build the first if node: if (x <= 0.0)
  1637     // Node for 0 constant
  1638     Node *zeronode = makecon(TypeD::ZERO);
  1639     // Check x:0
  1640     Node *cmp = _gvn.transform(new (C, 3) CmpDNode(x, zeronode));
  1641     // Check: If (x<=0) then go complex path
  1642     Node *bol1 = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::le ) );
  1643     // Branch either way
  1644     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1645     Node *opt_test = _gvn.transform(if1);
  1646     //assert( opt_test->is_If(), "Expect an IfNode");
  1647     IfNode *opt_if1 = (IfNode*)opt_test;
  1648     // Fast path taken; set region slot 3
  1649     Node *fast_taken = _gvn.transform( new (C, 1) IfFalseNode(opt_if1) );
  1650     r->init_req(3,fast_taken); // Capture fast-control
  1652     // Fast path not-taken, i.e. slow path
  1653     Node *complex_path = _gvn.transform( new (C, 1) IfTrueNode(opt_if1) );
  1655     // Set fast path result
  1656     Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, y, x) );
  1657     phi->init_req(3, fast_result);
  1659     // Complex path
  1660     // Build the second if node (if y is int)
  1661     // Node for (int)y
  1662     Node *inty = _gvn.transform( new (C, 2) ConvD2INode(y));
  1663     // Node for (double)((int) y)
  1664     Node *doubleinty= _gvn.transform( new (C, 2) ConvI2DNode(inty));
  1665     // Check (double)((int) y) : y
  1666     Node *cmpinty= _gvn.transform(new (C, 3) CmpDNode(doubleinty, y));
  1667     // Check if (y isn't int) then go to slow path
  1669     Node *bol2 = _gvn.transform( new (C, 2) BoolNode( cmpinty, BoolTest::ne ) );
  1670     // Branch either way
  1671     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1672     Node *slow_path = opt_iff(r,if2); // Set region path 2
  1674     // Calculate DPow(abs(x), y)*(1 & (int)y)
  1675     // Node for constant 1
  1676     Node *conone = intcon(1);
  1677     // 1& (int)y
  1678     Node *signnode= _gvn.transform( new (C, 3) AndINode(conone, inty) );
  1679     // zero node
  1680     Node *conzero = intcon(0);
  1681     // Check (1&(int)y)==0?
  1682     Node *cmpeq1 = _gvn.transform(new (C, 3) CmpINode(signnode, conzero));
  1683     // Check if (1&(int)y)!=0?, if so the result is negative
  1684     Node *bol3 = _gvn.transform( new (C, 2) BoolNode( cmpeq1, BoolTest::ne ) );
  1685     // abs(x)
  1686     Node *absx=_gvn.transform( new (C, 2) AbsDNode(x));
  1687     // abs(x)^y
  1688     Node *absxpowy = _gvn.transform( new (C, 3) PowDNode(0, y, absx) );
  1689     // -abs(x)^y
  1690     Node *negabsxpowy = _gvn.transform(new (C, 2) NegDNode (absxpowy));
  1691     // (1&(int)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
  1692     Node *signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
  1693     // Set complex path fast result
  1694     phi->init_req(2, signresult);
  1696     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  1697     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
  1698     r->init_req(1,slow_path);
  1699     phi->init_req(1,slow_result);
  1701     // Post merge
  1702     set_control(_gvn.transform(r));
  1703     record_for_igvn(r);
  1704     result=_gvn.transform(phi);
  1707   //-------------------
  1708   //result=(result.isNaN())? uncommon_trap():result;
  1709   // Check: If isNaN() by checking result!=result? then go to Strict Math
  1710   Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
  1711   // Build the boolean node
  1712   Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
  1714   { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
  1715     // End the current control-flow path
  1716     push_pair(x);
  1717     push_pair(y);
  1718     // Math.pow intrinsic returned a NaN, which requires StrictMath.pow
  1719     // to handle.  Recompile without intrinsifying Math.pow.
  1720     uncommon_trap(Deoptimization::Reason_intrinsic,
  1721                   Deoptimization::Action_make_not_entrant);
  1724   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1726   push_pair(result);
  1728   return true;
  1731 //------------------------------inline_trans-------------------------------------
  1732 // Inline transcendental instructions, if possible.  The Intel hardware gets
  1733 // these right, no funny corner cases missed.
  1734 bool LibraryCallKit::inline_trans(vmIntrinsics::ID id) {
  1735   _sp += arg_size();        // restore stack pointer
  1736   Node* arg = pop_math_arg();
  1737   Node* trans = NULL;
  1739   switch (id) {
  1740   case vmIntrinsics::_dlog:
  1741     trans = _gvn.transform((Node*)new (C, 2) LogDNode(arg));
  1742     break;
  1743   case vmIntrinsics::_dlog10:
  1744     trans = _gvn.transform((Node*)new (C, 2) Log10DNode(arg));
  1745     break;
  1746   default:
  1747     assert(false, "bad intrinsic was passed in");
  1748     return false;
  1751   // Push result back on JVM stack
  1752   push_pair(trans);
  1753   return true;
  1756 //------------------------------runtime_math-----------------------------
  1757 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
  1758   Node* a = NULL;
  1759   Node* b = NULL;
  1761   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
  1762          "must be (DD)D or (D)D type");
  1764   // Inputs
  1765   _sp += arg_size();        // restore stack pointer
  1766   if (call_type == OptoRuntime::Math_DD_D_Type()) {
  1767     b = pop_math_arg();
  1769   a = pop_math_arg();
  1771   const TypePtr* no_memory_effects = NULL;
  1772   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
  1773                                  no_memory_effects,
  1774                                  a, top(), b, b ? top() : NULL);
  1775   Node* value = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+0));
  1776 #ifdef ASSERT
  1777   Node* value_top = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+1));
  1778   assert(value_top == top(), "second value must be top");
  1779 #endif
  1781   push_pair(value);
  1782   return true;
  1785 //------------------------------inline_math_native-----------------------------
  1786 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
  1787   switch (id) {
  1788     // These intrinsics are not properly supported on all hardware
  1789   case vmIntrinsics::_dcos: return Matcher::has_match_rule(Op_CosD) ? inline_trig(id) :
  1790     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS");
  1791   case vmIntrinsics::_dsin: return Matcher::has_match_rule(Op_SinD) ? inline_trig(id) :
  1792     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN");
  1793   case vmIntrinsics::_dtan: return Matcher::has_match_rule(Op_TanD) ? inline_trig(id) :
  1794     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
  1796   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD) ? inline_trans(id) :
  1797     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG");
  1798   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_trans(id) :
  1799     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
  1801     // These intrinsics are supported on all hardware
  1802   case vmIntrinsics::_dsqrt: return Matcher::has_match_rule(Op_SqrtD) ? inline_sqrt(id) : false;
  1803   case vmIntrinsics::_dabs:  return Matcher::has_match_rule(Op_AbsD)  ? inline_abs(id)  : false;
  1805     // These intrinsics don't work on X86.  The ad implementation doesn't
  1806     // handle NaN's properly.  Instead of returning infinity, the ad
  1807     // implementation returns a NaN on overflow. See bug: 6304089
  1808     // Once the ad implementations are fixed, change the code below
  1809     // to match the intrinsics above
  1811   case vmIntrinsics::_dexp:  return
  1812     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
  1813   case vmIntrinsics::_dpow:  return
  1814     runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
  1816    // These intrinsics are not yet correctly implemented
  1817   case vmIntrinsics::_datan2:
  1818     return false;
  1820   default:
  1821     ShouldNotReachHere();
  1822     return false;
  1826 static bool is_simple_name(Node* n) {
  1827   return (n->req() == 1         // constant
  1828           || (n->is_Type() && n->as_Type()->type()->singleton())
  1829           || n->is_Proj()       // parameter or return value
  1830           || n->is_Phi()        // local of some sort
  1831           );
  1834 //----------------------------inline_min_max-----------------------------------
  1835 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
  1836   push(generate_min_max(id, argument(0), argument(1)));
  1838   return true;
  1841 Node*
  1842 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
  1843   // These are the candidate return value:
  1844   Node* xvalue = x0;
  1845   Node* yvalue = y0;
  1847   if (xvalue == yvalue) {
  1848     return xvalue;
  1851   bool want_max = (id == vmIntrinsics::_max);
  1853   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
  1854   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
  1855   if (txvalue == NULL || tyvalue == NULL)  return top();
  1856   // This is not really necessary, but it is consistent with a
  1857   // hypothetical MaxINode::Value method:
  1858   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
  1860   // %%% This folding logic should (ideally) be in a different place.
  1861   // Some should be inside IfNode, and there to be a more reliable
  1862   // transformation of ?: style patterns into cmoves.  We also want
  1863   // more powerful optimizations around cmove and min/max.
  1865   // Try to find a dominating comparison of these guys.
  1866   // It can simplify the index computation for Arrays.copyOf
  1867   // and similar uses of System.arraycopy.
  1868   // First, compute the normalized version of CmpI(x, y).
  1869   int   cmp_op = Op_CmpI;
  1870   Node* xkey = xvalue;
  1871   Node* ykey = yvalue;
  1872   Node* ideal_cmpxy = _gvn.transform( new(C, 3) CmpINode(xkey, ykey) );
  1873   if (ideal_cmpxy->is_Cmp()) {
  1874     // E.g., if we have CmpI(length - offset, count),
  1875     // it might idealize to CmpI(length, count + offset)
  1876     cmp_op = ideal_cmpxy->Opcode();
  1877     xkey = ideal_cmpxy->in(1);
  1878     ykey = ideal_cmpxy->in(2);
  1881   // Start by locating any relevant comparisons.
  1882   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
  1883   Node* cmpxy = NULL;
  1884   Node* cmpyx = NULL;
  1885   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
  1886     Node* cmp = start_from->fast_out(k);
  1887     if (cmp->outcnt() > 0 &&            // must have prior uses
  1888         cmp->in(0) == NULL &&           // must be context-independent
  1889         cmp->Opcode() == cmp_op) {      // right kind of compare
  1890       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
  1891       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
  1895   const int NCMPS = 2;
  1896   Node* cmps[NCMPS] = { cmpxy, cmpyx };
  1897   int cmpn;
  1898   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  1899     if (cmps[cmpn] != NULL)  break;     // find a result
  1901   if (cmpn < NCMPS) {
  1902     // Look for a dominating test that tells us the min and max.
  1903     int depth = 0;                // Limit search depth for speed
  1904     Node* dom = control();
  1905     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
  1906       if (++depth >= 100)  break;
  1907       Node* ifproj = dom;
  1908       if (!ifproj->is_Proj())  continue;
  1909       Node* iff = ifproj->in(0);
  1910       if (!iff->is_If())  continue;
  1911       Node* bol = iff->in(1);
  1912       if (!bol->is_Bool())  continue;
  1913       Node* cmp = bol->in(1);
  1914       if (cmp == NULL)  continue;
  1915       for (cmpn = 0; cmpn < NCMPS; cmpn++)
  1916         if (cmps[cmpn] == cmp)  break;
  1917       if (cmpn == NCMPS)  continue;
  1918       BoolTest::mask btest = bol->as_Bool()->_test._test;
  1919       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
  1920       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
  1921       // At this point, we know that 'x btest y' is true.
  1922       switch (btest) {
  1923       case BoolTest::eq:
  1924         // They are proven equal, so we can collapse the min/max.
  1925         // Either value is the answer.  Choose the simpler.
  1926         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
  1927           return yvalue;
  1928         return xvalue;
  1929       case BoolTest::lt:          // x < y
  1930       case BoolTest::le:          // x <= y
  1931         return (want_max ? yvalue : xvalue);
  1932       case BoolTest::gt:          // x > y
  1933       case BoolTest::ge:          // x >= y
  1934         return (want_max ? xvalue : yvalue);
  1939   // We failed to find a dominating test.
  1940   // Let's pick a test that might GVN with prior tests.
  1941   Node*          best_bol   = NULL;
  1942   BoolTest::mask best_btest = BoolTest::illegal;
  1943   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  1944     Node* cmp = cmps[cmpn];
  1945     if (cmp == NULL)  continue;
  1946     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
  1947       Node* bol = cmp->fast_out(j);
  1948       if (!bol->is_Bool())  continue;
  1949       BoolTest::mask btest = bol->as_Bool()->_test._test;
  1950       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
  1951       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
  1952       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
  1953         best_bol   = bol->as_Bool();
  1954         best_btest = btest;
  1959   Node* answer_if_true  = NULL;
  1960   Node* answer_if_false = NULL;
  1961   switch (best_btest) {
  1962   default:
  1963     if (cmpxy == NULL)
  1964       cmpxy = ideal_cmpxy;
  1965     best_bol = _gvn.transform( new(C, 2) BoolNode(cmpxy, BoolTest::lt) );
  1966     // and fall through:
  1967   case BoolTest::lt:          // x < y
  1968   case BoolTest::le:          // x <= y
  1969     answer_if_true  = (want_max ? yvalue : xvalue);
  1970     answer_if_false = (want_max ? xvalue : yvalue);
  1971     break;
  1972   case BoolTest::gt:          // x > y
  1973   case BoolTest::ge:          // x >= y
  1974     answer_if_true  = (want_max ? xvalue : yvalue);
  1975     answer_if_false = (want_max ? yvalue : xvalue);
  1976     break;
  1979   jint hi, lo;
  1980   if (want_max) {
  1981     // We can sharpen the minimum.
  1982     hi = MAX2(txvalue->_hi, tyvalue->_hi);
  1983     lo = MAX2(txvalue->_lo, tyvalue->_lo);
  1984   } else {
  1985     // We can sharpen the maximum.
  1986     hi = MIN2(txvalue->_hi, tyvalue->_hi);
  1987     lo = MIN2(txvalue->_lo, tyvalue->_lo);
  1990   // Use a flow-free graph structure, to avoid creating excess control edges
  1991   // which could hinder other optimizations.
  1992   // Since Math.min/max is often used with arraycopy, we want
  1993   // tightly_coupled_allocation to be able to see beyond min/max expressions.
  1994   Node* cmov = CMoveNode::make(C, NULL, best_bol,
  1995                                answer_if_false, answer_if_true,
  1996                                TypeInt::make(lo, hi, widen));
  1998   return _gvn.transform(cmov);
  2000   /*
  2001   // This is not as desirable as it may seem, since Min and Max
  2002   // nodes do not have a full set of optimizations.
  2003   // And they would interfere, anyway, with 'if' optimizations
  2004   // and with CMoveI canonical forms.
  2005   switch (id) {
  2006   case vmIntrinsics::_min:
  2007     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
  2008   case vmIntrinsics::_max:
  2009     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
  2010   default:
  2011     ShouldNotReachHere();
  2013   */
  2016 inline int
  2017 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
  2018   const TypePtr* base_type = TypePtr::NULL_PTR;
  2019   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
  2020   if (base_type == NULL) {
  2021     // Unknown type.
  2022     return Type::AnyPtr;
  2023   } else if (base_type == TypePtr::NULL_PTR) {
  2024     // Since this is a NULL+long form, we have to switch to a rawptr.
  2025     base   = _gvn.transform( new (C, 2) CastX2PNode(offset) );
  2026     offset = MakeConX(0);
  2027     return Type::RawPtr;
  2028   } else if (base_type->base() == Type::RawPtr) {
  2029     return Type::RawPtr;
  2030   } else if (base_type->isa_oopptr()) {
  2031     // Base is never null => always a heap address.
  2032     if (base_type->ptr() == TypePtr::NotNull) {
  2033       return Type::OopPtr;
  2035     // Offset is small => always a heap address.
  2036     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
  2037     if (offset_type != NULL &&
  2038         base_type->offset() == 0 &&     // (should always be?)
  2039         offset_type->_lo >= 0 &&
  2040         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
  2041       return Type::OopPtr;
  2043     // Otherwise, it might either be oop+off or NULL+addr.
  2044     return Type::AnyPtr;
  2045   } else {
  2046     // No information:
  2047     return Type::AnyPtr;
  2051 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
  2052   int kind = classify_unsafe_addr(base, offset);
  2053   if (kind == Type::RawPtr) {
  2054     return basic_plus_adr(top(), base, offset);
  2055   } else {
  2056     return basic_plus_adr(base, offset);
  2060 //-------------------inline_numberOfLeadingZeros_int/long-----------------------
  2061 // inline int Integer.numberOfLeadingZeros(int)
  2062 // inline int Long.numberOfLeadingZeros(long)
  2063 bool LibraryCallKit::inline_numberOfLeadingZeros(vmIntrinsics::ID id) {
  2064   assert(id == vmIntrinsics::_numberOfLeadingZeros_i || id == vmIntrinsics::_numberOfLeadingZeros_l, "not numberOfLeadingZeros");
  2065   if (id == vmIntrinsics::_numberOfLeadingZeros_i && !Matcher::match_rule_supported(Op_CountLeadingZerosI)) return false;
  2066   if (id == vmIntrinsics::_numberOfLeadingZeros_l && !Matcher::match_rule_supported(Op_CountLeadingZerosL)) return false;
  2067   _sp += arg_size();  // restore stack pointer
  2068   switch (id) {
  2069   case vmIntrinsics::_numberOfLeadingZeros_i:
  2070     push(_gvn.transform(new (C, 2) CountLeadingZerosINode(pop())));
  2071     break;
  2072   case vmIntrinsics::_numberOfLeadingZeros_l:
  2073     push(_gvn.transform(new (C, 2) CountLeadingZerosLNode(pop_pair())));
  2074     break;
  2075   default:
  2076     ShouldNotReachHere();
  2078   return true;
  2081 //-------------------inline_numberOfTrailingZeros_int/long----------------------
  2082 // inline int Integer.numberOfTrailingZeros(int)
  2083 // inline int Long.numberOfTrailingZeros(long)
  2084 bool LibraryCallKit::inline_numberOfTrailingZeros(vmIntrinsics::ID id) {
  2085   assert(id == vmIntrinsics::_numberOfTrailingZeros_i || id == vmIntrinsics::_numberOfTrailingZeros_l, "not numberOfTrailingZeros");
  2086   if (id == vmIntrinsics::_numberOfTrailingZeros_i && !Matcher::match_rule_supported(Op_CountTrailingZerosI)) return false;
  2087   if (id == vmIntrinsics::_numberOfTrailingZeros_l && !Matcher::match_rule_supported(Op_CountTrailingZerosL)) return false;
  2088   _sp += arg_size();  // restore stack pointer
  2089   switch (id) {
  2090   case vmIntrinsics::_numberOfTrailingZeros_i:
  2091     push(_gvn.transform(new (C, 2) CountTrailingZerosINode(pop())));
  2092     break;
  2093   case vmIntrinsics::_numberOfTrailingZeros_l:
  2094     push(_gvn.transform(new (C, 2) CountTrailingZerosLNode(pop_pair())));
  2095     break;
  2096   default:
  2097     ShouldNotReachHere();
  2099   return true;
  2102 //----------------------------inline_bitCount_int/long-----------------------
  2103 // inline int Integer.bitCount(int)
  2104 // inline int Long.bitCount(long)
  2105 bool LibraryCallKit::inline_bitCount(vmIntrinsics::ID id) {
  2106   assert(id == vmIntrinsics::_bitCount_i || id == vmIntrinsics::_bitCount_l, "not bitCount");
  2107   if (id == vmIntrinsics::_bitCount_i && !Matcher::has_match_rule(Op_PopCountI)) return false;
  2108   if (id == vmIntrinsics::_bitCount_l && !Matcher::has_match_rule(Op_PopCountL)) return false;
  2109   _sp += arg_size();  // restore stack pointer
  2110   switch (id) {
  2111   case vmIntrinsics::_bitCount_i:
  2112     push(_gvn.transform(new (C, 2) PopCountINode(pop())));
  2113     break;
  2114   case vmIntrinsics::_bitCount_l:
  2115     push(_gvn.transform(new (C, 2) PopCountLNode(pop_pair())));
  2116     break;
  2117   default:
  2118     ShouldNotReachHere();
  2120   return true;
  2123 //----------------------------inline_reverseBytes_int/long/char/short-------------------
  2124 // inline Integer.reverseBytes(int)
  2125 // inline Long.reverseBytes(long)
  2126 // inline Character.reverseBytes(char)
  2127 // inline Short.reverseBytes(short)
  2128 bool LibraryCallKit::inline_reverseBytes(vmIntrinsics::ID id) {
  2129   assert(id == vmIntrinsics::_reverseBytes_i || id == vmIntrinsics::_reverseBytes_l ||
  2130          id == vmIntrinsics::_reverseBytes_c || id == vmIntrinsics::_reverseBytes_s,
  2131          "not reverse Bytes");
  2132   if (id == vmIntrinsics::_reverseBytes_i && !Matcher::has_match_rule(Op_ReverseBytesI))  return false;
  2133   if (id == vmIntrinsics::_reverseBytes_l && !Matcher::has_match_rule(Op_ReverseBytesL))  return false;
  2134   if (id == vmIntrinsics::_reverseBytes_c && !Matcher::has_match_rule(Op_ReverseBytesUS)) return false;
  2135   if (id == vmIntrinsics::_reverseBytes_s && !Matcher::has_match_rule(Op_ReverseBytesS))  return false;
  2136   _sp += arg_size();        // restore stack pointer
  2137   switch (id) {
  2138   case vmIntrinsics::_reverseBytes_i:
  2139     push(_gvn.transform(new (C, 2) ReverseBytesINode(0, pop())));
  2140     break;
  2141   case vmIntrinsics::_reverseBytes_l:
  2142     push_pair(_gvn.transform(new (C, 2) ReverseBytesLNode(0, pop_pair())));
  2143     break;
  2144   case vmIntrinsics::_reverseBytes_c:
  2145     push(_gvn.transform(new (C, 2) ReverseBytesUSNode(0, pop())));
  2146     break;
  2147   case vmIntrinsics::_reverseBytes_s:
  2148     push(_gvn.transform(new (C, 2) ReverseBytesSNode(0, pop())));
  2149     break;
  2150   default:
  2153   return true;
  2156 //----------------------------inline_unsafe_access----------------------------
  2158 const static BasicType T_ADDRESS_HOLDER = T_LONG;
  2160 // Helper that guards and inserts a G1 pre-barrier.
  2161 void LibraryCallKit::insert_g1_pre_barrier(Node* base_oop, Node* offset, Node* pre_val) {
  2162   assert(UseG1GC, "should not call this otherwise");
  2164   // We could be accessing the referent field of a reference object. If so, when G1
  2165   // is enabled, we need to log the value in the referent field in an SATB buffer.
  2166   // This routine performs some compile time filters and generates suitable
  2167   // runtime filters that guard the pre-barrier code.
  2169   // Some compile time checks.
  2171   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
  2172   const TypeX* otype = offset->find_intptr_t_type();
  2173   if (otype != NULL && otype->is_con() &&
  2174       otype->get_con() != java_lang_ref_Reference::referent_offset) {
  2175     // Constant offset but not the reference_offset so just return
  2176     return;
  2179   // We only need to generate the runtime guards for instances.
  2180   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
  2181   if (btype != NULL) {
  2182     if (btype->isa_aryptr()) {
  2183       // Array type so nothing to do
  2184       return;
  2187     const TypeInstPtr* itype = btype->isa_instptr();
  2188     if (itype != NULL) {
  2189       // Can the klass of base_oop be statically determined
  2190       // to be _not_ a sub-class of Reference?
  2191       ciKlass* klass = itype->klass();
  2192       if (klass->is_subtype_of(env()->Reference_klass()) &&
  2193           !env()->Reference_klass()->is_subtype_of(klass)) {
  2194         return;
  2199   // The compile time filters did not reject base_oop/offset so
  2200   // we need to generate the following runtime filters
  2201   //
  2202   // if (offset == java_lang_ref_Reference::_reference_offset) {
  2203   //   if (base != null) {
  2204   //     if (instance_of(base, java.lang.ref.Reference)) {
  2205   //       pre_barrier(_, pre_val, ...);
  2206   //     }
  2207   //   }
  2208   // }
  2210   float likely  = PROB_LIKELY(0.999);
  2211   float unlikely  = PROB_UNLIKELY(0.999);
  2213   IdealKit ideal(this);
  2214 #define __ ideal.
  2216   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
  2218   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
  2219     __ if_then(base_oop, BoolTest::ne, null(), likely); {
  2221       // Update graphKit memory and control from IdealKit.
  2222       sync_kit(ideal);
  2224       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
  2225       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
  2227       // Update IdealKit memory and control from graphKit.
  2228       __ sync_kit(this);
  2230       Node* one = __ ConI(1);
  2232       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
  2234         // Update graphKit from IdeakKit.
  2235         sync_kit(ideal);
  2237         // Use the pre-barrier to record the value in the referent field
  2238         pre_barrier(false /* do_load */,
  2239                     __ ctrl(),
  2240                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
  2241                     pre_val /* pre_val */,
  2242                     T_OBJECT);
  2244         // Update IdealKit from graphKit.
  2245         __ sync_kit(this);
  2247       } __ end_if(); // _ref_type != ref_none
  2248     } __ end_if(); // base  != NULL
  2249   } __ end_if(); // offset == referent_offset
  2251   // Final sync IdealKit and GraphKit.
  2252   final_sync(ideal);
  2253 #undef __
  2257 // Interpret Unsafe.fieldOffset cookies correctly:
  2258 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
  2260 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
  2261   if (callee()->is_static())  return false;  // caller must have the capability!
  2263 #ifndef PRODUCT
  2265     ResourceMark rm;
  2266     // Check the signatures.
  2267     ciSignature* sig = signature();
  2268 #ifdef ASSERT
  2269     if (!is_store) {
  2270       // Object getObject(Object base, int/long offset), etc.
  2271       BasicType rtype = sig->return_type()->basic_type();
  2272       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
  2273           rtype = T_ADDRESS;  // it is really a C void*
  2274       assert(rtype == type, "getter must return the expected value");
  2275       if (!is_native_ptr) {
  2276         assert(sig->count() == 2, "oop getter has 2 arguments");
  2277         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
  2278         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
  2279       } else {
  2280         assert(sig->count() == 1, "native getter has 1 argument");
  2281         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
  2283     } else {
  2284       // void putObject(Object base, int/long offset, Object x), etc.
  2285       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
  2286       if (!is_native_ptr) {
  2287         assert(sig->count() == 3, "oop putter has 3 arguments");
  2288         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
  2289         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
  2290       } else {
  2291         assert(sig->count() == 2, "native putter has 2 arguments");
  2292         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
  2294       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
  2295       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
  2296         vtype = T_ADDRESS;  // it is really a C void*
  2297       assert(vtype == type, "putter must accept the expected value");
  2299 #endif // ASSERT
  2301 #endif //PRODUCT
  2303   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2305   int type_words = type2size[ (type == T_ADDRESS) ? T_LONG : type ];
  2307   // Argument words:  "this" plus (oop/offset) or (lo/hi) args plus maybe 1 or 2 value words
  2308   int nargs = 1 + (is_native_ptr ? 2 : 3) + (is_store ? type_words : 0);
  2310   debug_only(int saved_sp = _sp);
  2311   _sp += nargs;
  2313   Node* val;
  2314   debug_only(val = (Node*)(uintptr_t)-1);
  2317   if (is_store) {
  2318     // Get the value being stored.  (Pop it first; it was pushed last.)
  2319     switch (type) {
  2320     case T_DOUBLE:
  2321     case T_LONG:
  2322     case T_ADDRESS:
  2323       val = pop_pair();
  2324       break;
  2325     default:
  2326       val = pop();
  2330   // Build address expression.  See the code in inline_unsafe_prefetch.
  2331   Node *adr;
  2332   Node *heap_base_oop = top();
  2333   Node* offset = top();
  2335   if (!is_native_ptr) {
  2336     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2337     offset = pop_pair();
  2338     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2339     Node* base   = pop();
  2340     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2341     // to be plain byte offsets, which are also the same as those accepted
  2342     // by oopDesc::field_base.
  2343     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2344            "fieldOffset must be byte-scaled");
  2345     // 32-bit machines ignore the high half!
  2346     offset = ConvL2X(offset);
  2347     adr = make_unsafe_address(base, offset);
  2348     heap_base_oop = base;
  2349   } else {
  2350     Node* ptr = pop_pair();
  2351     // Adjust Java long to machine word:
  2352     ptr = ConvL2X(ptr);
  2353     adr = make_unsafe_address(NULL, ptr);
  2356   // Pop receiver last:  it was pushed first.
  2357   Node *receiver = pop();
  2359   assert(saved_sp == _sp, "must have correct argument count");
  2361   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2363   // First guess at the value type.
  2364   const Type *value_type = Type::get_const_basic_type(type);
  2366   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
  2367   // there was not enough information to nail it down.
  2368   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2369   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2371   // We will need memory barriers unless we can determine a unique
  2372   // alias category for this reference.  (Note:  If for some reason
  2373   // the barriers get omitted and the unsafe reference begins to "pollute"
  2374   // the alias analysis of the rest of the graph, either Compile::can_alias
  2375   // or Compile::must_alias will throw a diagnostic assert.)
  2376   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
  2378   // If we are reading the value of the referent field of a Reference
  2379   // object (either by using Unsafe directly or through reflection)
  2380   // then, if G1 is enabled, we need to record the referent in an
  2381   // SATB log buffer using the pre-barrier mechanism.
  2382   bool need_read_barrier = UseG1GC && !is_native_ptr && !is_store &&
  2383                            offset != top() && heap_base_oop != top();
  2385   if (!is_store && type == T_OBJECT) {
  2386     // Attempt to infer a sharper value type from the offset and base type.
  2387     ciKlass* sharpened_klass = NULL;
  2389     // See if it is an instance field, with an object type.
  2390     if (alias_type->field() != NULL) {
  2391       assert(!is_native_ptr, "native pointer op cannot use a java address");
  2392       if (alias_type->field()->type()->is_klass()) {
  2393         sharpened_klass = alias_type->field()->type()->as_klass();
  2397     // See if it is a narrow oop array.
  2398     if (adr_type->isa_aryptr()) {
  2399       if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
  2400         const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
  2401         if (elem_type != NULL) {
  2402           sharpened_klass = elem_type->klass();
  2407     if (sharpened_klass != NULL) {
  2408       const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
  2410       // Sharpen the value type.
  2411       value_type = tjp;
  2413 #ifndef PRODUCT
  2414       if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
  2415         tty->print("  from base type:  ");   adr_type->dump();
  2416         tty->print("  sharpened value: "); value_type->dump();
  2418 #endif
  2422   // Null check on self without removing any arguments.  The argument
  2423   // null check technically happens in the wrong place, which can lead to
  2424   // invalid stack traces when the primitive is inlined into a method
  2425   // which handles NullPointerExceptions.
  2426   _sp += nargs;
  2427   do_null_check(receiver, T_OBJECT);
  2428   _sp -= nargs;
  2429   if (stopped()) {
  2430     return true;
  2432   // Heap pointers get a null-check from the interpreter,
  2433   // as a courtesy.  However, this is not guaranteed by Unsafe,
  2434   // and it is not possible to fully distinguish unintended nulls
  2435   // from intended ones in this API.
  2437   if (is_volatile) {
  2438     // We need to emit leading and trailing CPU membars (see below) in
  2439     // addition to memory membars when is_volatile. This is a little
  2440     // too strong, but avoids the need to insert per-alias-type
  2441     // volatile membars (for stores; compare Parse::do_put_xxx), which
  2442     // we cannot do effectively here because we probably only have a
  2443     // rough approximation of type.
  2444     need_mem_bar = true;
  2445     // For Stores, place a memory ordering barrier now.
  2446     if (is_store)
  2447       insert_mem_bar(Op_MemBarRelease);
  2450   // Memory barrier to prevent normal and 'unsafe' accesses from
  2451   // bypassing each other.  Happens after null checks, so the
  2452   // exception paths do not take memory state from the memory barrier,
  2453   // so there's no problems making a strong assert about mixing users
  2454   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
  2455   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
  2456   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2458   if (!is_store) {
  2459     Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
  2460     // load value and push onto stack
  2461     switch (type) {
  2462     case T_BOOLEAN:
  2463     case T_CHAR:
  2464     case T_BYTE:
  2465     case T_SHORT:
  2466     case T_INT:
  2467     case T_FLOAT:
  2468       push(p);
  2469       break;
  2470     case T_OBJECT:
  2471       if (need_read_barrier) {
  2472         insert_g1_pre_barrier(heap_base_oop, offset, p);
  2474       push(p);
  2475       break;
  2476     case T_ADDRESS:
  2477       // Cast to an int type.
  2478       p = _gvn.transform( new (C, 2) CastP2XNode(NULL,p) );
  2479       p = ConvX2L(p);
  2480       push_pair(p);
  2481       break;
  2482     case T_DOUBLE:
  2483     case T_LONG:
  2484       push_pair( p );
  2485       break;
  2486     default: ShouldNotReachHere();
  2488   } else {
  2489     // place effect of store into memory
  2490     switch (type) {
  2491     case T_DOUBLE:
  2492       val = dstore_rounding(val);
  2493       break;
  2494     case T_ADDRESS:
  2495       // Repackage the long as a pointer.
  2496       val = ConvL2X(val);
  2497       val = _gvn.transform( new (C, 2) CastX2PNode(val) );
  2498       break;
  2501     if (type != T_OBJECT ) {
  2502       (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
  2503     } else {
  2504       // Possibly an oop being stored to Java heap or native memory
  2505       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
  2506         // oop to Java heap.
  2507         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
  2508       } else {
  2509         // We can't tell at compile time if we are storing in the Java heap or outside
  2510         // of it. So we need to emit code to conditionally do the proper type of
  2511         // store.
  2513         IdealKit ideal(this);
  2514 #define __ ideal.
  2515         // QQQ who knows what probability is here??
  2516         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
  2517           // Sync IdealKit and graphKit.
  2518           sync_kit(ideal);
  2519           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
  2520           // Update IdealKit memory.
  2521           __ sync_kit(this);
  2522         } __ else_(); {
  2523           __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
  2524         } __ end_if();
  2525         // Final sync IdealKit and GraphKit.
  2526         final_sync(ideal);
  2527 #undef __
  2532   if (is_volatile) {
  2533     if (!is_store)
  2534       insert_mem_bar(Op_MemBarAcquire);
  2535     else
  2536       insert_mem_bar(Op_MemBarVolatile);
  2539   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2541   return true;
  2544 //----------------------------inline_unsafe_prefetch----------------------------
  2546 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
  2547 #ifndef PRODUCT
  2549     ResourceMark rm;
  2550     // Check the signatures.
  2551     ciSignature* sig = signature();
  2552 #ifdef ASSERT
  2553     // Object getObject(Object base, int/long offset), etc.
  2554     BasicType rtype = sig->return_type()->basic_type();
  2555     if (!is_native_ptr) {
  2556       assert(sig->count() == 2, "oop prefetch has 2 arguments");
  2557       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
  2558       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
  2559     } else {
  2560       assert(sig->count() == 1, "native prefetch has 1 argument");
  2561       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
  2563 #endif // ASSERT
  2565 #endif // !PRODUCT
  2567   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2569   // Argument words:  "this" if not static, plus (oop/offset) or (lo/hi) args
  2570   int nargs = (is_static ? 0 : 1) + (is_native_ptr ? 2 : 3);
  2572   debug_only(int saved_sp = _sp);
  2573   _sp += nargs;
  2575   // Build address expression.  See the code in inline_unsafe_access.
  2576   Node *adr;
  2577   if (!is_native_ptr) {
  2578     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2579     Node* offset = pop_pair();
  2580     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2581     Node* base   = pop();
  2582     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2583     // to be plain byte offsets, which are also the same as those accepted
  2584     // by oopDesc::field_base.
  2585     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2586            "fieldOffset must be byte-scaled");
  2587     // 32-bit machines ignore the high half!
  2588     offset = ConvL2X(offset);
  2589     adr = make_unsafe_address(base, offset);
  2590   } else {
  2591     Node* ptr = pop_pair();
  2592     // Adjust Java long to machine word:
  2593     ptr = ConvL2X(ptr);
  2594     adr = make_unsafe_address(NULL, ptr);
  2597   if (is_static) {
  2598     assert(saved_sp == _sp, "must have correct argument count");
  2599   } else {
  2600     // Pop receiver last:  it was pushed first.
  2601     Node *receiver = pop();
  2602     assert(saved_sp == _sp, "must have correct argument count");
  2604     // Null check on self without removing any arguments.  The argument
  2605     // null check technically happens in the wrong place, which can lead to
  2606     // invalid stack traces when the primitive is inlined into a method
  2607     // which handles NullPointerExceptions.
  2608     _sp += nargs;
  2609     do_null_check(receiver, T_OBJECT);
  2610     _sp -= nargs;
  2611     if (stopped()) {
  2612       return true;
  2616   // Generate the read or write prefetch
  2617   Node *prefetch;
  2618   if (is_store) {
  2619     prefetch = new (C, 3) PrefetchWriteNode(i_o(), adr);
  2620   } else {
  2621     prefetch = new (C, 3) PrefetchReadNode(i_o(), adr);
  2623   prefetch->init_req(0, control());
  2624   set_i_o(_gvn.transform(prefetch));
  2626   return true;
  2629 //----------------------------inline_unsafe_CAS----------------------------
  2631 bool LibraryCallKit::inline_unsafe_CAS(BasicType type) {
  2632   // This basic scheme here is the same as inline_unsafe_access, but
  2633   // differs in enough details that combining them would make the code
  2634   // overly confusing.  (This is a true fact! I originally combined
  2635   // them, but even I was confused by it!) As much code/comments as
  2636   // possible are retained from inline_unsafe_access though to make
  2637   // the correspondences clearer. - dl
  2639   if (callee()->is_static())  return false;  // caller must have the capability!
  2641 #ifndef PRODUCT
  2643     ResourceMark rm;
  2644     // Check the signatures.
  2645     ciSignature* sig = signature();
  2646 #ifdef ASSERT
  2647     BasicType rtype = sig->return_type()->basic_type();
  2648     assert(rtype == T_BOOLEAN, "CAS must return boolean");
  2649     assert(sig->count() == 4, "CAS has 4 arguments");
  2650     assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
  2651     assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
  2652 #endif // ASSERT
  2654 #endif //PRODUCT
  2656   // number of stack slots per value argument (1 or 2)
  2657   int type_words = type2size[type];
  2659   // Cannot inline wide CAS on machines that don't support it natively
  2660   if (type2aelembytes(type) > BytesPerInt && !VM_Version::supports_cx8())
  2661     return false;
  2663   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2665   // Argument words:  "this" plus oop plus offset plus oldvalue plus newvalue;
  2666   int nargs = 1 + 1 + 2  + type_words + type_words;
  2668   // pop arguments: newval, oldval, offset, base, and receiver
  2669   debug_only(int saved_sp = _sp);
  2670   _sp += nargs;
  2671   Node* newval   = (type_words == 1) ? pop() : pop_pair();
  2672   Node* oldval   = (type_words == 1) ? pop() : pop_pair();
  2673   Node *offset   = pop_pair();
  2674   Node *base     = pop();
  2675   Node *receiver = pop();
  2676   assert(saved_sp == _sp, "must have correct argument count");
  2678   //  Null check receiver.
  2679   _sp += nargs;
  2680   do_null_check(receiver, T_OBJECT);
  2681   _sp -= nargs;
  2682   if (stopped()) {
  2683     return true;
  2686   // Build field offset expression.
  2687   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2688   // to be plain byte offsets, which are also the same as those accepted
  2689   // by oopDesc::field_base.
  2690   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  2691   // 32-bit machines ignore the high half of long offsets
  2692   offset = ConvL2X(offset);
  2693   Node* adr = make_unsafe_address(base, offset);
  2694   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2696   // (Unlike inline_unsafe_access, there seems no point in trying
  2697   // to refine types. Just use the coarse types here.
  2698   const Type *value_type = Type::get_const_basic_type(type);
  2699   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2700   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2701   int alias_idx = C->get_alias_index(adr_type);
  2703   // Memory-model-wise, a CAS acts like a little synchronized block,
  2704   // so needs barriers on each side.  These don't translate into
  2705   // actual barriers on most machines, but we still need rest of
  2706   // compiler to respect ordering.
  2708   insert_mem_bar(Op_MemBarRelease);
  2709   insert_mem_bar(Op_MemBarCPUOrder);
  2711   // 4984716: MemBars must be inserted before this
  2712   //          memory node in order to avoid a false
  2713   //          dependency which will confuse the scheduler.
  2714   Node *mem = memory(alias_idx);
  2716   // For now, we handle only those cases that actually exist: ints,
  2717   // longs, and Object. Adding others should be straightforward.
  2718   Node* cas;
  2719   switch(type) {
  2720   case T_INT:
  2721     cas = _gvn.transform(new (C, 5) CompareAndSwapINode(control(), mem, adr, newval, oldval));
  2722     break;
  2723   case T_LONG:
  2724     cas = _gvn.transform(new (C, 5) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
  2725     break;
  2726   case T_OBJECT:
  2727     // Transformation of a value which could be NULL pointer (CastPP #NULL)
  2728     // could be delayed during Parse (for example, in adjust_map_after_if()).
  2729     // Execute transformation here to avoid barrier generation in such case.
  2730     if (_gvn.type(newval) == TypePtr::NULL_PTR)
  2731       newval = _gvn.makecon(TypePtr::NULL_PTR);
  2733     // Reference stores need a store barrier.
  2734     // (They don't if CAS fails, but it isn't worth checking.)
  2735     pre_barrier(true /* do_load*/,
  2736                 control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
  2737                 NULL /* pre_val*/,
  2738                 T_OBJECT);
  2739 #ifdef _LP64
  2740     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  2741       Node *newval_enc = _gvn.transform(new (C, 2) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
  2742       Node *oldval_enc = _gvn.transform(new (C, 2) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
  2743       cas = _gvn.transform(new (C, 5) CompareAndSwapNNode(control(), mem, adr,
  2744                                                           newval_enc, oldval_enc));
  2745     } else
  2746 #endif
  2748       cas = _gvn.transform(new (C, 5) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
  2750     post_barrier(control(), cas, base, adr, alias_idx, newval, T_OBJECT, true);
  2751     break;
  2752   default:
  2753     ShouldNotReachHere();
  2754     break;
  2757   // SCMemProjNodes represent the memory state of CAS. Their main
  2758   // role is to prevent CAS nodes from being optimized away when their
  2759   // results aren't used.
  2760   Node* proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
  2761   set_memory(proj, alias_idx);
  2763   // Add the trailing membar surrounding the access
  2764   insert_mem_bar(Op_MemBarCPUOrder);
  2765   insert_mem_bar(Op_MemBarAcquire);
  2767   push(cas);
  2768   return true;
  2771 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
  2772   // This is another variant of inline_unsafe_access, differing in
  2773   // that it always issues store-store ("release") barrier and ensures
  2774   // store-atomicity (which only matters for "long").
  2776   if (callee()->is_static())  return false;  // caller must have the capability!
  2778 #ifndef PRODUCT
  2780     ResourceMark rm;
  2781     // Check the signatures.
  2782     ciSignature* sig = signature();
  2783 #ifdef ASSERT
  2784     BasicType rtype = sig->return_type()->basic_type();
  2785     assert(rtype == T_VOID, "must return void");
  2786     assert(sig->count() == 3, "has 3 arguments");
  2787     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
  2788     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
  2789 #endif // ASSERT
  2791 #endif //PRODUCT
  2793   // number of stack slots per value argument (1 or 2)
  2794   int type_words = type2size[type];
  2796   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2798   // Argument words:  "this" plus oop plus offset plus value;
  2799   int nargs = 1 + 1 + 2 + type_words;
  2801   // pop arguments: val, offset, base, and receiver
  2802   debug_only(int saved_sp = _sp);
  2803   _sp += nargs;
  2804   Node* val      = (type_words == 1) ? pop() : pop_pair();
  2805   Node *offset   = pop_pair();
  2806   Node *base     = pop();
  2807   Node *receiver = pop();
  2808   assert(saved_sp == _sp, "must have correct argument count");
  2810   //  Null check receiver.
  2811   _sp += nargs;
  2812   do_null_check(receiver, T_OBJECT);
  2813   _sp -= nargs;
  2814   if (stopped()) {
  2815     return true;
  2818   // Build field offset expression.
  2819   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  2820   // 32-bit machines ignore the high half of long offsets
  2821   offset = ConvL2X(offset);
  2822   Node* adr = make_unsafe_address(base, offset);
  2823   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2824   const Type *value_type = Type::get_const_basic_type(type);
  2825   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2827   insert_mem_bar(Op_MemBarRelease);
  2828   insert_mem_bar(Op_MemBarCPUOrder);
  2829   // Ensure that the store is atomic for longs:
  2830   bool require_atomic_access = true;
  2831   Node* store;
  2832   if (type == T_OBJECT) // reference stores need a store barrier.
  2833     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
  2834   else {
  2835     store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
  2837   insert_mem_bar(Op_MemBarCPUOrder);
  2838   return true;
  2841 bool LibraryCallKit::inline_unsafe_allocate() {
  2842   if (callee()->is_static())  return false;  // caller must have the capability!
  2843   int nargs = 1 + 1;
  2844   assert(signature()->size() == nargs-1, "alloc has 1 argument");
  2845   null_check_receiver(callee());  // check then ignore argument(0)
  2846   _sp += nargs;  // set original stack for use by uncommon_trap
  2847   Node* cls = do_null_check(argument(1), T_OBJECT);
  2848   _sp -= nargs;
  2849   if (stopped())  return true;
  2851   Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0);
  2852   _sp += nargs;  // set original stack for use by uncommon_trap
  2853   kls = do_null_check(kls, T_OBJECT);
  2854   _sp -= nargs;
  2855   if (stopped())  return true;  // argument was like int.class
  2857   // Note:  The argument might still be an illegal value like
  2858   // Serializable.class or Object[].class.   The runtime will handle it.
  2859   // But we must make an explicit check for initialization.
  2860   Node* insp = basic_plus_adr(kls, in_bytes(instanceKlass::init_state_offset()));
  2861   // Use T_BOOLEAN for instanceKlass::_init_state so the compiler
  2862   // can generate code to load it as unsigned byte.
  2863   Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN);
  2864   Node* bits = intcon(instanceKlass::fully_initialized);
  2865   Node* test = _gvn.transform( new (C, 3) SubINode(inst, bits) );
  2866   // The 'test' is non-zero if we need to take a slow path.
  2868   Node* obj = new_instance(kls, test);
  2869   push(obj);
  2871   return true;
  2874 #ifdef TRACE_HAVE_INTRINSICS
  2875 /*
  2876  * oop -> myklass
  2877  * myklass->trace_id |= USED
  2878  * return myklass->trace_id & ~0x3
  2879  */
  2880 bool LibraryCallKit::inline_native_classID() {
  2881   int nargs = 1 + 1;
  2882   null_check_receiver(callee());  // check then ignore argument(0)
  2883   _sp += nargs;
  2884   Node* cls = do_null_check(argument(1), T_OBJECT);
  2885   _sp -= nargs;
  2886   Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0);
  2887   _sp += nargs;
  2888   kls = do_null_check(kls, T_OBJECT);
  2889   _sp -= nargs;
  2890   ByteSize offset = TRACE_ID_OFFSET;
  2891   Node* insp = basic_plus_adr(kls, in_bytes(offset));
  2892   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG);
  2893   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
  2894   Node* andl = _gvn.transform(new (C, 3) AndLNode(tvalue, bits));
  2895   Node* clsused = longcon(0x01l); // set the class bit
  2896   Node* orl = _gvn.transform(new (C, 3) OrLNode(tvalue, clsused));
  2898   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
  2899   store_to_memory(control(), insp, orl, T_LONG, adr_type);
  2900   push_pair(andl);
  2901   return true;
  2904 bool LibraryCallKit::inline_native_threadID() {
  2905   Node* tls_ptr = NULL;
  2906   Node* cur_thr = generate_current_thread(tls_ptr);
  2907   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  2908   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
  2909   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
  2911   Node* threadid = NULL;
  2912   size_t thread_id_size = OSThread::thread_id_size();
  2913   if (thread_id_size == (size_t) BytesPerLong) {
  2914     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG));
  2915     push(threadid);
  2916   } else if (thread_id_size == (size_t) BytesPerInt) {
  2917     threadid = make_load(control(), p, TypeInt::INT, T_INT);
  2918     push(threadid);
  2919   } else {
  2920     ShouldNotReachHere();
  2922   return true;
  2924 #endif
  2926 //------------------------inline_native_time_funcs--------------
  2927 // inline code for System.currentTimeMillis() and System.nanoTime()
  2928 // these have the same type and signature
  2929 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
  2930   const TypeFunc *tf = OptoRuntime::void_long_Type();
  2931   const TypePtr* no_memory_effects = NULL;
  2932   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
  2933   Node* value = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms+0));
  2934 #ifdef ASSERT
  2935   Node* value_top = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms + 1));
  2936   assert(value_top == top(), "second value must be top");
  2937 #endif
  2938   push_pair(value);
  2939   return true;
  2942 //------------------------inline_native_currentThread------------------
  2943 bool LibraryCallKit::inline_native_currentThread() {
  2944   Node* junk = NULL;
  2945   push(generate_current_thread(junk));
  2946   return true;
  2949 //------------------------inline_native_isInterrupted------------------
  2950 bool LibraryCallKit::inline_native_isInterrupted() {
  2951   const int nargs = 1+1;  // receiver + boolean
  2952   assert(nargs == arg_size(), "sanity");
  2953   // Add a fast path to t.isInterrupted(clear_int):
  2954   //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
  2955   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
  2956   // So, in the common case that the interrupt bit is false,
  2957   // we avoid making a call into the VM.  Even if the interrupt bit
  2958   // is true, if the clear_int argument is false, we avoid the VM call.
  2959   // However, if the receiver is not currentThread, we must call the VM,
  2960   // because there must be some locking done around the operation.
  2962   // We only go to the fast case code if we pass two guards.
  2963   // Paths which do not pass are accumulated in the slow_region.
  2964   RegionNode* slow_region = new (C, 1) RegionNode(1);
  2965   record_for_igvn(slow_region);
  2966   RegionNode* result_rgn = new (C, 4) RegionNode(1+3); // fast1, fast2, slow
  2967   PhiNode*    result_val = new (C, 4) PhiNode(result_rgn, TypeInt::BOOL);
  2968   enum { no_int_result_path   = 1,
  2969          no_clear_result_path = 2,
  2970          slow_result_path     = 3
  2971   };
  2973   // (a) Receiving thread must be the current thread.
  2974   Node* rec_thr = argument(0);
  2975   Node* tls_ptr = NULL;
  2976   Node* cur_thr = generate_current_thread(tls_ptr);
  2977   Node* cmp_thr = _gvn.transform( new (C, 3) CmpPNode(cur_thr, rec_thr) );
  2978   Node* bol_thr = _gvn.transform( new (C, 2) BoolNode(cmp_thr, BoolTest::ne) );
  2980   bool known_current_thread = (_gvn.type(bol_thr) == TypeInt::ZERO);
  2981   if (!known_current_thread)
  2982     generate_slow_guard(bol_thr, slow_region);
  2984   // (b) Interrupt bit on TLS must be false.
  2985   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  2986   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
  2987   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
  2988   // Set the control input on the field _interrupted read to prevent it floating up.
  2989   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
  2990   Node* cmp_bit = _gvn.transform( new (C, 3) CmpINode(int_bit, intcon(0)) );
  2991   Node* bol_bit = _gvn.transform( new (C, 2) BoolNode(cmp_bit, BoolTest::ne) );
  2993   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
  2995   // First fast path:  if (!TLS._interrupted) return false;
  2996   Node* false_bit = _gvn.transform( new (C, 1) IfFalseNode(iff_bit) );
  2997   result_rgn->init_req(no_int_result_path, false_bit);
  2998   result_val->init_req(no_int_result_path, intcon(0));
  3000   // drop through to next case
  3001   set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_bit)) );
  3003   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
  3004   Node* clr_arg = argument(1);
  3005   Node* cmp_arg = _gvn.transform( new (C, 3) CmpINode(clr_arg, intcon(0)) );
  3006   Node* bol_arg = _gvn.transform( new (C, 2) BoolNode(cmp_arg, BoolTest::ne) );
  3007   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
  3009   // Second fast path:  ... else if (!clear_int) return true;
  3010   Node* false_arg = _gvn.transform( new (C, 1) IfFalseNode(iff_arg) );
  3011   result_rgn->init_req(no_clear_result_path, false_arg);
  3012   result_val->init_req(no_clear_result_path, intcon(1));
  3014   // drop through to next case
  3015   set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_arg)) );
  3017   // (d) Otherwise, go to the slow path.
  3018   slow_region->add_req(control());
  3019   set_control( _gvn.transform(slow_region) );
  3021   if (stopped()) {
  3022     // There is no slow path.
  3023     result_rgn->init_req(slow_result_path, top());
  3024     result_val->init_req(slow_result_path, top());
  3025   } else {
  3026     // non-virtual because it is a private non-static
  3027     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
  3029     Node* slow_val = set_results_for_java_call(slow_call);
  3030     // this->control() comes from set_results_for_java_call
  3032     // If we know that the result of the slow call will be true, tell the optimizer!
  3033     if (known_current_thread)  slow_val = intcon(1);
  3035     Node* fast_io  = slow_call->in(TypeFunc::I_O);
  3036     Node* fast_mem = slow_call->in(TypeFunc::Memory);
  3037     // These two phis are pre-filled with copies of of the fast IO and Memory
  3038     Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
  3039     Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
  3041     result_rgn->init_req(slow_result_path, control());
  3042     io_phi    ->init_req(slow_result_path, i_o());
  3043     mem_phi   ->init_req(slow_result_path, reset_memory());
  3044     result_val->init_req(slow_result_path, slow_val);
  3046     set_all_memory( _gvn.transform(mem_phi) );
  3047     set_i_o(        _gvn.transform(io_phi) );
  3050   push_result(result_rgn, result_val);
  3051   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3053   return true;
  3056 //---------------------------load_mirror_from_klass----------------------------
  3057 // Given a klass oop, load its java mirror (a java.lang.Class oop).
  3058 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
  3059   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
  3060   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
  3063 //-----------------------load_klass_from_mirror_common-------------------------
  3064 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
  3065 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
  3066 // and branch to the given path on the region.
  3067 // If never_see_null, take an uncommon trap on null, so we can optimistically
  3068 // compile for the non-null case.
  3069 // If the region is NULL, force never_see_null = true.
  3070 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
  3071                                                     bool never_see_null,
  3072                                                     int nargs,
  3073                                                     RegionNode* region,
  3074                                                     int null_path,
  3075                                                     int offset) {
  3076   if (region == NULL)  never_see_null = true;
  3077   Node* p = basic_plus_adr(mirror, offset);
  3078   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  3079   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type) );
  3080   _sp += nargs; // any deopt will start just before call to enclosing method
  3081   Node* null_ctl = top();
  3082   kls = null_check_oop(kls, &null_ctl, never_see_null);
  3083   if (region != NULL) {
  3084     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
  3085     region->init_req(null_path, null_ctl);
  3086   } else {
  3087     assert(null_ctl == top(), "no loose ends");
  3089   _sp -= nargs;
  3090   return kls;
  3093 //--------------------(inline_native_Class_query helpers)---------------------
  3094 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
  3095 // Fall through if (mods & mask) == bits, take the guard otherwise.
  3096 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
  3097   // Branch around if the given klass has the given modifier bit set.
  3098   // Like generate_guard, adds a new path onto the region.
  3099   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
  3100   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
  3101   Node* mask = intcon(modifier_mask);
  3102   Node* bits = intcon(modifier_bits);
  3103   Node* mbit = _gvn.transform( new (C, 3) AndINode(mods, mask) );
  3104   Node* cmp  = _gvn.transform( new (C, 3) CmpINode(mbit, bits) );
  3105   Node* bol  = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ne) );
  3106   return generate_fair_guard(bol, region);
  3108 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
  3109   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
  3112 //-------------------------inline_native_Class_query-------------------
  3113 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
  3114   int nargs = 1+0;  // just the Class mirror, in most cases
  3115   const Type* return_type = TypeInt::BOOL;
  3116   Node* prim_return_value = top();  // what happens if it's a primitive class?
  3117   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3118   bool expect_prim = false;     // most of these guys expect to work on refs
  3120   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
  3122   switch (id) {
  3123   case vmIntrinsics::_isInstance:
  3124     nargs = 1+1;  // the Class mirror, plus the object getting queried about
  3125     // nothing is an instance of a primitive type
  3126     prim_return_value = intcon(0);
  3127     break;
  3128   case vmIntrinsics::_getModifiers:
  3129     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  3130     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
  3131     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
  3132     break;
  3133   case vmIntrinsics::_isInterface:
  3134     prim_return_value = intcon(0);
  3135     break;
  3136   case vmIntrinsics::_isArray:
  3137     prim_return_value = intcon(0);
  3138     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
  3139     break;
  3140   case vmIntrinsics::_isPrimitive:
  3141     prim_return_value = intcon(1);
  3142     expect_prim = true;  // obviously
  3143     break;
  3144   case vmIntrinsics::_getSuperclass:
  3145     prim_return_value = null();
  3146     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  3147     break;
  3148   case vmIntrinsics::_getComponentType:
  3149     prim_return_value = null();
  3150     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  3151     break;
  3152   case vmIntrinsics::_getClassAccessFlags:
  3153     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  3154     return_type = TypeInt::INT;  // not bool!  6297094
  3155     break;
  3156   default:
  3157     ShouldNotReachHere();
  3160   Node* mirror =                      argument(0);
  3161   Node* obj    = (nargs <= 1)? top(): argument(1);
  3163   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
  3164   if (mirror_con == NULL)  return false;  // cannot happen?
  3166 #ifndef PRODUCT
  3167   if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
  3168     ciType* k = mirror_con->java_mirror_type();
  3169     if (k) {
  3170       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
  3171       k->print_name();
  3172       tty->cr();
  3175 #endif
  3177   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
  3178   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  3179   record_for_igvn(region);
  3180   PhiNode* phi = new (C, PATH_LIMIT) PhiNode(region, return_type);
  3182   // The mirror will never be null of Reflection.getClassAccessFlags, however
  3183   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
  3184   // if it is. See bug 4774291.
  3186   // For Reflection.getClassAccessFlags(), the null check occurs in
  3187   // the wrong place; see inline_unsafe_access(), above, for a similar
  3188   // situation.
  3189   _sp += nargs;  // set original stack for use by uncommon_trap
  3190   mirror = do_null_check(mirror, T_OBJECT);
  3191   _sp -= nargs;
  3192   // If mirror or obj is dead, only null-path is taken.
  3193   if (stopped())  return true;
  3195   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
  3197   // Now load the mirror's klass metaobject, and null-check it.
  3198   // Side-effects region with the control path if the klass is null.
  3199   Node* kls = load_klass_from_mirror(mirror, never_see_null, nargs,
  3200                                      region, _prim_path);
  3201   // If kls is null, we have a primitive mirror.
  3202   phi->init_req(_prim_path, prim_return_value);
  3203   if (stopped()) { push_result(region, phi); return true; }
  3205   Node* p;  // handy temp
  3206   Node* null_ctl;
  3208   // Now that we have the non-null klass, we can perform the real query.
  3209   // For constant classes, the query will constant-fold in LoadNode::Value.
  3210   Node* query_value = top();
  3211   switch (id) {
  3212   case vmIntrinsics::_isInstance:
  3213     // nothing is an instance of a primitive type
  3214     _sp += nargs;          // gen_instanceof might do an uncommon trap
  3215     query_value = gen_instanceof(obj, kls);
  3216     _sp -= nargs;
  3217     break;
  3219   case vmIntrinsics::_getModifiers:
  3220     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
  3221     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
  3222     break;
  3224   case vmIntrinsics::_isInterface:
  3225     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  3226     if (generate_interface_guard(kls, region) != NULL)
  3227       // A guard was added.  If the guard is taken, it was an interface.
  3228       phi->add_req(intcon(1));
  3229     // If we fall through, it's a plain class.
  3230     query_value = intcon(0);
  3231     break;
  3233   case vmIntrinsics::_isArray:
  3234     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
  3235     if (generate_array_guard(kls, region) != NULL)
  3236       // A guard was added.  If the guard is taken, it was an array.
  3237       phi->add_req(intcon(1));
  3238     // If we fall through, it's a plain class.
  3239     query_value = intcon(0);
  3240     break;
  3242   case vmIntrinsics::_isPrimitive:
  3243     query_value = intcon(0); // "normal" path produces false
  3244     break;
  3246   case vmIntrinsics::_getSuperclass:
  3247     // The rules here are somewhat unfortunate, but we can still do better
  3248     // with random logic than with a JNI call.
  3249     // Interfaces store null or Object as _super, but must report null.
  3250     // Arrays store an intermediate super as _super, but must report Object.
  3251     // Other types can report the actual _super.
  3252     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  3253     if (generate_interface_guard(kls, region) != NULL)
  3254       // A guard was added.  If the guard is taken, it was an interface.
  3255       phi->add_req(null());
  3256     if (generate_array_guard(kls, region) != NULL)
  3257       // A guard was added.  If the guard is taken, it was an array.
  3258       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
  3259     // If we fall through, it's a plain class.  Get its _super.
  3260     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
  3261     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL) );
  3262     null_ctl = top();
  3263     kls = null_check_oop(kls, &null_ctl);
  3264     if (null_ctl != top()) {
  3265       // If the guard is taken, Object.superClass is null (both klass and mirror).
  3266       region->add_req(null_ctl);
  3267       phi   ->add_req(null());
  3269     if (!stopped()) {
  3270       query_value = load_mirror_from_klass(kls);
  3272     break;
  3274   case vmIntrinsics::_getComponentType:
  3275     if (generate_array_guard(kls, region) != NULL) {
  3276       // Be sure to pin the oop load to the guard edge just created:
  3277       Node* is_array_ctrl = region->in(region->req()-1);
  3278       Node* cma = basic_plus_adr(kls, in_bytes(arrayKlass::component_mirror_offset()));
  3279       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
  3280       phi->add_req(cmo);
  3282     query_value = null();  // non-array case is null
  3283     break;
  3285   case vmIntrinsics::_getClassAccessFlags:
  3286     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
  3287     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
  3288     break;
  3290   default:
  3291     ShouldNotReachHere();
  3294   // Fall-through is the normal case of a query to a real class.
  3295   phi->init_req(1, query_value);
  3296   region->init_req(1, control());
  3298   push_result(region, phi);
  3299   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3301   return true;
  3304 //--------------------------inline_native_subtype_check------------------------
  3305 // This intrinsic takes the JNI calls out of the heart of
  3306 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
  3307 bool LibraryCallKit::inline_native_subtype_check() {
  3308   int nargs = 1+1;  // the Class mirror, plus the other class getting examined
  3310   // Pull both arguments off the stack.
  3311   Node* args[2];                // two java.lang.Class mirrors: superc, subc
  3312   args[0] = argument(0);
  3313   args[1] = argument(1);
  3314   Node* klasses[2];             // corresponding Klasses: superk, subk
  3315   klasses[0] = klasses[1] = top();
  3317   enum {
  3318     // A full decision tree on {superc is prim, subc is prim}:
  3319     _prim_0_path = 1,           // {P,N} => false
  3320                                 // {P,P} & superc!=subc => false
  3321     _prim_same_path,            // {P,P} & superc==subc => true
  3322     _prim_1_path,               // {N,P} => false
  3323     _ref_subtype_path,          // {N,N} & subtype check wins => true
  3324     _both_ref_path,             // {N,N} & subtype check loses => false
  3325     PATH_LIMIT
  3326   };
  3328   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  3329   Node*       phi    = new (C, PATH_LIMIT) PhiNode(region, TypeInt::BOOL);
  3330   record_for_igvn(region);
  3332   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
  3333   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  3334   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
  3336   // First null-check both mirrors and load each mirror's klass metaobject.
  3337   int which_arg;
  3338   for (which_arg = 0; which_arg <= 1; which_arg++) {
  3339     Node* arg = args[which_arg];
  3340     _sp += nargs;  // set original stack for use by uncommon_trap
  3341     arg = do_null_check(arg, T_OBJECT);
  3342     _sp -= nargs;
  3343     if (stopped())  break;
  3344     args[which_arg] = _gvn.transform(arg);
  3346     Node* p = basic_plus_adr(arg, class_klass_offset);
  3347     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
  3348     klasses[which_arg] = _gvn.transform(kls);
  3351   // Having loaded both klasses, test each for null.
  3352   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3353   for (which_arg = 0; which_arg <= 1; which_arg++) {
  3354     Node* kls = klasses[which_arg];
  3355     Node* null_ctl = top();
  3356     _sp += nargs;  // set original stack for use by uncommon_trap
  3357     kls = null_check_oop(kls, &null_ctl, never_see_null);
  3358     _sp -= nargs;
  3359     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
  3360     region->init_req(prim_path, null_ctl);
  3361     if (stopped())  break;
  3362     klasses[which_arg] = kls;
  3365   if (!stopped()) {
  3366     // now we have two reference types, in klasses[0..1]
  3367     Node* subk   = klasses[1];  // the argument to isAssignableFrom
  3368     Node* superk = klasses[0];  // the receiver
  3369     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
  3370     // now we have a successful reference subtype check
  3371     region->set_req(_ref_subtype_path, control());
  3374   // If both operands are primitive (both klasses null), then
  3375   // we must return true when they are identical primitives.
  3376   // It is convenient to test this after the first null klass check.
  3377   set_control(region->in(_prim_0_path)); // go back to first null check
  3378   if (!stopped()) {
  3379     // Since superc is primitive, make a guard for the superc==subc case.
  3380     Node* cmp_eq = _gvn.transform( new (C, 3) CmpPNode(args[0], args[1]) );
  3381     Node* bol_eq = _gvn.transform( new (C, 2) BoolNode(cmp_eq, BoolTest::eq) );
  3382     generate_guard(bol_eq, region, PROB_FAIR);
  3383     if (region->req() == PATH_LIMIT+1) {
  3384       // A guard was added.  If the added guard is taken, superc==subc.
  3385       region->swap_edges(PATH_LIMIT, _prim_same_path);
  3386       region->del_req(PATH_LIMIT);
  3388     region->set_req(_prim_0_path, control()); // Not equal after all.
  3391   // these are the only paths that produce 'true':
  3392   phi->set_req(_prim_same_path,   intcon(1));
  3393   phi->set_req(_ref_subtype_path, intcon(1));
  3395   // pull together the cases:
  3396   assert(region->req() == PATH_LIMIT, "sane region");
  3397   for (uint i = 1; i < region->req(); i++) {
  3398     Node* ctl = region->in(i);
  3399     if (ctl == NULL || ctl == top()) {
  3400       region->set_req(i, top());
  3401       phi   ->set_req(i, top());
  3402     } else if (phi->in(i) == NULL) {
  3403       phi->set_req(i, intcon(0)); // all other paths produce 'false'
  3407   set_control(_gvn.transform(region));
  3408   push(_gvn.transform(phi));
  3410   return true;
  3413 //---------------------generate_array_guard_common------------------------
  3414 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
  3415                                                   bool obj_array, bool not_array) {
  3416   // If obj_array/non_array==false/false:
  3417   // Branch around if the given klass is in fact an array (either obj or prim).
  3418   // If obj_array/non_array==false/true:
  3419   // Branch around if the given klass is not an array klass of any kind.
  3420   // If obj_array/non_array==true/true:
  3421   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
  3422   // If obj_array/non_array==true/false:
  3423   // Branch around if the kls is an oop array (Object[] or subtype)
  3424   //
  3425   // Like generate_guard, adds a new path onto the region.
  3426   jint  layout_con = 0;
  3427   Node* layout_val = get_layout_helper(kls, layout_con);
  3428   if (layout_val == NULL) {
  3429     bool query = (obj_array
  3430                   ? Klass::layout_helper_is_objArray(layout_con)
  3431                   : Klass::layout_helper_is_javaArray(layout_con));
  3432     if (query == not_array) {
  3433       return NULL;                       // never a branch
  3434     } else {                             // always a branch
  3435       Node* always_branch = control();
  3436       if (region != NULL)
  3437         region->add_req(always_branch);
  3438       set_control(top());
  3439       return always_branch;
  3442   // Now test the correct condition.
  3443   jint  nval = (obj_array
  3444                 ? ((jint)Klass::_lh_array_tag_type_value
  3445                    <<    Klass::_lh_array_tag_shift)
  3446                 : Klass::_lh_neutral_value);
  3447   Node* cmp = _gvn.transform( new(C, 3) CmpINode(layout_val, intcon(nval)) );
  3448   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
  3449   // invert the test if we are looking for a non-array
  3450   if (not_array)  btest = BoolTest(btest).negate();
  3451   Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, btest) );
  3452   return generate_fair_guard(bol, region);
  3456 //-----------------------inline_native_newArray--------------------------
  3457 bool LibraryCallKit::inline_native_newArray() {
  3458   int nargs = 2;
  3459   Node* mirror    = argument(0);
  3460   Node* count_val = argument(1);
  3462   _sp += nargs;  // set original stack for use by uncommon_trap
  3463   mirror = do_null_check(mirror, T_OBJECT);
  3464   _sp -= nargs;
  3465   // If mirror or obj is dead, only null-path is taken.
  3466   if (stopped())  return true;
  3468   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
  3469   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  3470   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
  3471                                                       TypeInstPtr::NOTNULL);
  3472   PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
  3473   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
  3474                                                       TypePtr::BOTTOM);
  3476   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3477   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
  3478                                                   nargs,
  3479                                                   result_reg, _slow_path);
  3480   Node* normal_ctl   = control();
  3481   Node* no_array_ctl = result_reg->in(_slow_path);
  3483   // Generate code for the slow case.  We make a call to newArray().
  3484   set_control(no_array_ctl);
  3485   if (!stopped()) {
  3486     // Either the input type is void.class, or else the
  3487     // array klass has not yet been cached.  Either the
  3488     // ensuing call will throw an exception, or else it
  3489     // will cache the array klass for next time.
  3490     PreserveJVMState pjvms(this);
  3491     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
  3492     Node* slow_result = set_results_for_java_call(slow_call);
  3493     // this->control() comes from set_results_for_java_call
  3494     result_reg->set_req(_slow_path, control());
  3495     result_val->set_req(_slow_path, slow_result);
  3496     result_io ->set_req(_slow_path, i_o());
  3497     result_mem->set_req(_slow_path, reset_memory());
  3500   set_control(normal_ctl);
  3501   if (!stopped()) {
  3502     // Normal case:  The array type has been cached in the java.lang.Class.
  3503     // The following call works fine even if the array type is polymorphic.
  3504     // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3505     Node* obj = new_array(klass_node, count_val, nargs);
  3506     result_reg->init_req(_normal_path, control());
  3507     result_val->init_req(_normal_path, obj);
  3508     result_io ->init_req(_normal_path, i_o());
  3509     result_mem->init_req(_normal_path, reset_memory());
  3512   // Return the combined state.
  3513   set_i_o(        _gvn.transform(result_io)  );
  3514   set_all_memory( _gvn.transform(result_mem) );
  3515   push_result(result_reg, result_val);
  3516   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3518   return true;
  3521 //----------------------inline_native_getLength--------------------------
  3522 bool LibraryCallKit::inline_native_getLength() {
  3523   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3525   int nargs = 1;
  3526   Node* array = argument(0);
  3528   _sp += nargs;  // set original stack for use by uncommon_trap
  3529   array = do_null_check(array, T_OBJECT);
  3530   _sp -= nargs;
  3532   // If array is dead, only null-path is taken.
  3533   if (stopped())  return true;
  3535   // Deoptimize if it is a non-array.
  3536   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
  3538   if (non_array != NULL) {
  3539     PreserveJVMState pjvms(this);
  3540     set_control(non_array);
  3541     _sp += nargs;  // push the arguments back on the stack
  3542     uncommon_trap(Deoptimization::Reason_intrinsic,
  3543                   Deoptimization::Action_maybe_recompile);
  3546   // If control is dead, only non-array-path is taken.
  3547   if (stopped())  return true;
  3549   // The works fine even if the array type is polymorphic.
  3550   // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3551   push( load_array_length(array) );
  3553   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3555   return true;
  3558 //------------------------inline_array_copyOf----------------------------
  3559 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
  3560   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3562   // Restore the stack and pop off the arguments.
  3563   int nargs = 3 + (is_copyOfRange? 1: 0);
  3564   Node* original          = argument(0);
  3565   Node* start             = is_copyOfRange? argument(1): intcon(0);
  3566   Node* end               = is_copyOfRange? argument(2): argument(1);
  3567   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
  3569   Node* newcopy;
  3571   //set the original stack and the reexecute bit for the interpreter to reexecute
  3572   //the bytecode that invokes Arrays.copyOf if deoptimization happens
  3573   { PreserveReexecuteState preexecs(this);
  3574     _sp += nargs;
  3575     jvms()->set_should_reexecute(true);
  3577     array_type_mirror = do_null_check(array_type_mirror, T_OBJECT);
  3578     original          = do_null_check(original, T_OBJECT);
  3580     // Check if a null path was taken unconditionally.
  3581     if (stopped())  return true;
  3583     Node* orig_length = load_array_length(original);
  3585     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, 0,
  3586                                               NULL, 0);
  3587     klass_node = do_null_check(klass_node, T_OBJECT);
  3589     RegionNode* bailout = new (C, 1) RegionNode(1);
  3590     record_for_igvn(bailout);
  3592     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
  3593     // Bail out if that is so.
  3594     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
  3595     if (not_objArray != NULL) {
  3596       // Improve the klass node's type from the new optimistic assumption:
  3597       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
  3598       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  3599       Node* cast = new (C, 2) CastPPNode(klass_node, akls);
  3600       cast->init_req(0, control());
  3601       klass_node = _gvn.transform(cast);
  3604     // Bail out if either start or end is negative.
  3605     generate_negative_guard(start, bailout, &start);
  3606     generate_negative_guard(end,   bailout, &end);
  3608     Node* length = end;
  3609     if (_gvn.type(start) != TypeInt::ZERO) {
  3610       length = _gvn.transform( new (C, 3) SubINode(end, start) );
  3613     // Bail out if length is negative.
  3614     // ...Not needed, since the new_array will throw the right exception.
  3615     //generate_negative_guard(length, bailout, &length);
  3617     if (bailout->req() > 1) {
  3618       PreserveJVMState pjvms(this);
  3619       set_control( _gvn.transform(bailout) );
  3620       uncommon_trap(Deoptimization::Reason_intrinsic,
  3621                     Deoptimization::Action_maybe_recompile);
  3624     if (!stopped()) {
  3626       // How many elements will we copy from the original?
  3627       // The answer is MinI(orig_length - start, length).
  3628       Node* orig_tail = _gvn.transform( new(C, 3) SubINode(orig_length, start) );
  3629       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
  3631       newcopy = new_array(klass_node, length, 0);
  3633       // Generate a direct call to the right arraycopy function(s).
  3634       // We know the copy is disjoint but we might not know if the
  3635       // oop stores need checking.
  3636       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
  3637       // This will fail a store-check if x contains any non-nulls.
  3638       bool disjoint_bases = true;
  3639       bool length_never_negative = true;
  3640       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  3641                          original, start, newcopy, intcon(0), moved,
  3642                          disjoint_bases, length_never_negative);
  3644   } //original reexecute and sp are set back here
  3646   if(!stopped()) {
  3647     push(newcopy);
  3650   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3652   return true;
  3656 //----------------------generate_virtual_guard---------------------------
  3657 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
  3658 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
  3659                                              RegionNode* slow_region) {
  3660   ciMethod* method = callee();
  3661   int vtable_index = method->vtable_index();
  3662   // Get the methodOop out of the appropriate vtable entry.
  3663   int entry_offset  = (instanceKlass::vtable_start_offset() +
  3664                      vtable_index*vtableEntry::size()) * wordSize +
  3665                      vtableEntry::method_offset_in_bytes();
  3666   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
  3667   Node* target_call = make_load(NULL, entry_addr, TypeInstPtr::NOTNULL, T_OBJECT);
  3669   // Compare the target method with the expected method (e.g., Object.hashCode).
  3670   const TypeInstPtr* native_call_addr = TypeInstPtr::make(method);
  3672   Node* native_call = makecon(native_call_addr);
  3673   Node* chk_native  = _gvn.transform( new(C, 3) CmpPNode(target_call, native_call) );
  3674   Node* test_native = _gvn.transform( new(C, 2) BoolNode(chk_native, BoolTest::ne) );
  3676   return generate_slow_guard(test_native, slow_region);
  3679 //-----------------------generate_method_call----------------------------
  3680 // Use generate_method_call to make a slow-call to the real
  3681 // method if the fast path fails.  An alternative would be to
  3682 // use a stub like OptoRuntime::slow_arraycopy_Java.
  3683 // This only works for expanding the current library call,
  3684 // not another intrinsic.  (E.g., don't use this for making an
  3685 // arraycopy call inside of the copyOf intrinsic.)
  3686 CallJavaNode*
  3687 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
  3688   // When compiling the intrinsic method itself, do not use this technique.
  3689   guarantee(callee() != C->method(), "cannot make slow-call to self");
  3691   ciMethod* method = callee();
  3692   // ensure the JVMS we have will be correct for this call
  3693   guarantee(method_id == method->intrinsic_id(), "must match");
  3695   const TypeFunc* tf = TypeFunc::make(method);
  3696   int tfdc = tf->domain()->cnt();
  3697   CallJavaNode* slow_call;
  3698   if (is_static) {
  3699     assert(!is_virtual, "");
  3700     slow_call = new(C, tfdc) CallStaticJavaNode(tf,
  3701                                 SharedRuntime::get_resolve_static_call_stub(),
  3702                                 method, bci());
  3703   } else if (is_virtual) {
  3704     null_check_receiver(method);
  3705     int vtable_index = methodOopDesc::invalid_vtable_index;
  3706     if (UseInlineCaches) {
  3707       // Suppress the vtable call
  3708     } else {
  3709       // hashCode and clone are not a miranda methods,
  3710       // so the vtable index is fixed.
  3711       // No need to use the linkResolver to get it.
  3712        vtable_index = method->vtable_index();
  3714     slow_call = new(C, tfdc) CallDynamicJavaNode(tf,
  3715                                 SharedRuntime::get_resolve_virtual_call_stub(),
  3716                                 method, vtable_index, bci());
  3717   } else {  // neither virtual nor static:  opt_virtual
  3718     null_check_receiver(method);
  3719     slow_call = new(C, tfdc) CallStaticJavaNode(tf,
  3720                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
  3721                                 method, bci());
  3722     slow_call->set_optimized_virtual(true);
  3724   set_arguments_for_java_call(slow_call);
  3725   set_edges_for_java_call(slow_call);
  3726   return slow_call;
  3730 //------------------------------inline_native_hashcode--------------------
  3731 // Build special case code for calls to hashCode on an object.
  3732 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
  3733   assert(is_static == callee()->is_static(), "correct intrinsic selection");
  3734   assert(!(is_virtual && is_static), "either virtual, special, or static");
  3736   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
  3738   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  3739   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
  3740                                                       TypeInt::INT);
  3741   PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
  3742   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
  3743                                                       TypePtr::BOTTOM);
  3744   Node* obj = NULL;
  3745   if (!is_static) {
  3746     // Check for hashing null object
  3747     obj = null_check_receiver(callee());
  3748     if (stopped())  return true;        // unconditionally null
  3749     result_reg->init_req(_null_path, top());
  3750     result_val->init_req(_null_path, top());
  3751   } else {
  3752     // Do a null check, and return zero if null.
  3753     // System.identityHashCode(null) == 0
  3754     obj = argument(0);
  3755     Node* null_ctl = top();
  3756     obj = null_check_oop(obj, &null_ctl);
  3757     result_reg->init_req(_null_path, null_ctl);
  3758     result_val->init_req(_null_path, _gvn.intcon(0));
  3761   // Unconditionally null?  Then return right away.
  3762   if (stopped()) {
  3763     set_control( result_reg->in(_null_path) );
  3764     if (!stopped())
  3765       push(      result_val ->in(_null_path) );
  3766     return true;
  3769   // After null check, get the object's klass.
  3770   Node* obj_klass = load_object_klass(obj);
  3772   // This call may be virtual (invokevirtual) or bound (invokespecial).
  3773   // For each case we generate slightly different code.
  3775   // We only go to the fast case code if we pass a number of guards.  The
  3776   // paths which do not pass are accumulated in the slow_region.
  3777   RegionNode* slow_region = new (C, 1) RegionNode(1);
  3778   record_for_igvn(slow_region);
  3780   // If this is a virtual call, we generate a funny guard.  We pull out
  3781   // the vtable entry corresponding to hashCode() from the target object.
  3782   // If the target method which we are calling happens to be the native
  3783   // Object hashCode() method, we pass the guard.  We do not need this
  3784   // guard for non-virtual calls -- the caller is known to be the native
  3785   // Object hashCode().
  3786   if (is_virtual) {
  3787     generate_virtual_guard(obj_klass, slow_region);
  3790   // Get the header out of the object, use LoadMarkNode when available
  3791   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
  3792   Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type());
  3794   // Test the header to see if it is unlocked.
  3795   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
  3796   Node *lmasked_header = _gvn.transform( new (C, 3) AndXNode(header, lock_mask) );
  3797   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
  3798   Node *chk_unlocked   = _gvn.transform( new (C, 3) CmpXNode( lmasked_header, unlocked_val));
  3799   Node *test_unlocked  = _gvn.transform( new (C, 2) BoolNode( chk_unlocked, BoolTest::ne) );
  3801   generate_slow_guard(test_unlocked, slow_region);
  3803   // Get the hash value and check to see that it has been properly assigned.
  3804   // We depend on hash_mask being at most 32 bits and avoid the use of
  3805   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
  3806   // vm: see markOop.hpp.
  3807   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
  3808   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
  3809   Node *hshifted_header= _gvn.transform( new (C, 3) URShiftXNode(header, hash_shift) );
  3810   // This hack lets the hash bits live anywhere in the mark object now, as long
  3811   // as the shift drops the relevant bits into the low 32 bits.  Note that
  3812   // Java spec says that HashCode is an int so there's no point in capturing
  3813   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
  3814   hshifted_header      = ConvX2I(hshifted_header);
  3815   Node *hash_val       = _gvn.transform( new (C, 3) AndINode(hshifted_header, hash_mask) );
  3817   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
  3818   Node *chk_assigned   = _gvn.transform( new (C, 3) CmpINode( hash_val, no_hash_val));
  3819   Node *test_assigned  = _gvn.transform( new (C, 2) BoolNode( chk_assigned, BoolTest::eq) );
  3821   generate_slow_guard(test_assigned, slow_region);
  3823   Node* init_mem = reset_memory();
  3824   // fill in the rest of the null path:
  3825   result_io ->init_req(_null_path, i_o());
  3826   result_mem->init_req(_null_path, init_mem);
  3828   result_val->init_req(_fast_path, hash_val);
  3829   result_reg->init_req(_fast_path, control());
  3830   result_io ->init_req(_fast_path, i_o());
  3831   result_mem->init_req(_fast_path, init_mem);
  3833   // Generate code for the slow case.  We make a call to hashCode().
  3834   set_control(_gvn.transform(slow_region));
  3835   if (!stopped()) {
  3836     // No need for PreserveJVMState, because we're using up the present state.
  3837     set_all_memory(init_mem);
  3838     vmIntrinsics::ID hashCode_id = vmIntrinsics::_hashCode;
  3839     if (is_static)   hashCode_id = vmIntrinsics::_identityHashCode;
  3840     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
  3841     Node* slow_result = set_results_for_java_call(slow_call);
  3842     // this->control() comes from set_results_for_java_call
  3843     result_reg->init_req(_slow_path, control());
  3844     result_val->init_req(_slow_path, slow_result);
  3845     result_io  ->set_req(_slow_path, i_o());
  3846     result_mem ->set_req(_slow_path, reset_memory());
  3849   // Return the combined state.
  3850   set_i_o(        _gvn.transform(result_io)  );
  3851   set_all_memory( _gvn.transform(result_mem) );
  3852   push_result(result_reg, result_val);
  3854   return true;
  3857 //---------------------------inline_native_getClass----------------------------
  3858 // Build special case code for calls to getClass on an object.
  3859 bool LibraryCallKit::inline_native_getClass() {
  3860   Node* obj = null_check_receiver(callee());
  3861   if (stopped())  return true;
  3862   push( load_mirror_from_klass(load_object_klass(obj)) );
  3863   return true;
  3866 //-----------------inline_native_Reflection_getCallerClass---------------------
  3867 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
  3868 //
  3869 // NOTE that this code must perform the same logic as
  3870 // vframeStream::security_get_caller_frame in that it must skip
  3871 // Method.invoke() and auxiliary frames.
  3876 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
  3877   ciMethod*       method = callee();
  3879 #ifndef PRODUCT
  3880   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3881     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
  3883 #endif
  3885   debug_only(int saved_sp = _sp);
  3887   // Argument words:  (int depth)
  3888   int nargs = 1;
  3890   _sp += nargs;
  3891   Node* caller_depth_node = pop();
  3893   assert(saved_sp == _sp, "must have correct argument count");
  3895   // The depth value must be a constant in order for the runtime call
  3896   // to be eliminated.
  3897   const TypeInt* caller_depth_type = _gvn.type(caller_depth_node)->isa_int();
  3898   if (caller_depth_type == NULL || !caller_depth_type->is_con()) {
  3899 #ifndef PRODUCT
  3900     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3901       tty->print_cr("  Bailing out because caller depth was not a constant");
  3903 #endif
  3904     return false;
  3906   // Note that the JVM state at this point does not include the
  3907   // getCallerClass() frame which we are trying to inline. The
  3908   // semantics of getCallerClass(), however, are that the "first"
  3909   // frame is the getCallerClass() frame, so we subtract one from the
  3910   // requested depth before continuing. We don't inline requests of
  3911   // getCallerClass(0).
  3912   int caller_depth = caller_depth_type->get_con() - 1;
  3913   if (caller_depth < 0) {
  3914 #ifndef PRODUCT
  3915     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3916       tty->print_cr("  Bailing out because caller depth was %d", caller_depth);
  3918 #endif
  3919     return false;
  3922   if (!jvms()->has_method()) {
  3923 #ifndef PRODUCT
  3924     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3925       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
  3927 #endif
  3928     return false;
  3930   int _depth = jvms()->depth();  // cache call chain depth
  3932   // Walk back up the JVM state to find the caller at the required
  3933   // depth. NOTE that this code must perform the same logic as
  3934   // vframeStream::security_get_caller_frame in that it must skip
  3935   // Method.invoke() and auxiliary frames. Note also that depth is
  3936   // 1-based (1 is the bottom of the inlining).
  3937   int inlining_depth = _depth;
  3938   JVMState* caller_jvms = NULL;
  3940   if (inlining_depth > 0) {
  3941     caller_jvms = jvms();
  3942     assert(caller_jvms = jvms()->of_depth(inlining_depth), "inlining_depth == our depth");
  3943     do {
  3944       // The following if-tests should be performed in this order
  3945       if (is_method_invoke_or_aux_frame(caller_jvms)) {
  3946         // Skip a Method.invoke() or auxiliary frame
  3947       } else if (caller_depth > 0) {
  3948         // Skip real frame
  3949         --caller_depth;
  3950       } else {
  3951         // We're done: reached desired caller after skipping.
  3952         break;
  3954       caller_jvms = caller_jvms->caller();
  3955       --inlining_depth;
  3956     } while (inlining_depth > 0);
  3959   if (inlining_depth == 0) {
  3960 #ifndef PRODUCT
  3961     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3962       tty->print_cr("  Bailing out because caller depth (%d) exceeded inlining depth (%d)", caller_depth_type->get_con(), _depth);
  3963       tty->print_cr("  JVM state at this point:");
  3964       for (int i = _depth; i >= 1; i--) {
  3965         tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
  3968 #endif
  3969     return false; // Reached end of inlining
  3972   // Acquire method holder as java.lang.Class
  3973   ciInstanceKlass* caller_klass  = caller_jvms->method()->holder();
  3974   ciInstance*      caller_mirror = caller_klass->java_mirror();
  3975   // Push this as a constant
  3976   push(makecon(TypeInstPtr::make(caller_mirror)));
  3977 #ifndef PRODUCT
  3978   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3979     tty->print_cr("  Succeeded: caller = %s.%s, caller depth = %d, depth = %d", caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), caller_depth_type->get_con(), _depth);
  3980     tty->print_cr("  JVM state at this point:");
  3981     for (int i = _depth; i >= 1; i--) {
  3982       tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
  3985 #endif
  3986   return true;
  3989 // Helper routine for above
  3990 bool LibraryCallKit::is_method_invoke_or_aux_frame(JVMState* jvms) {
  3991   ciMethod* method = jvms->method();
  3993   // Is this the Method.invoke method itself?
  3994   if (method->intrinsic_id() == vmIntrinsics::_invoke)
  3995     return true;
  3997   // Is this a helper, defined somewhere underneath MethodAccessorImpl.
  3998   ciKlass* k = method->holder();
  3999   if (k->is_instance_klass()) {
  4000     ciInstanceKlass* ik = k->as_instance_klass();
  4001     for (; ik != NULL; ik = ik->super()) {
  4002       if (ik->name() == ciSymbol::sun_reflect_MethodAccessorImpl() &&
  4003           ik == env()->find_system_klass(ik->name())) {
  4004         return true;
  4008   else if (method->is_method_handle_adapter()) {
  4009     // This is an internal adapter frame from the MethodHandleCompiler -- skip it
  4010     return true;
  4013   return false;
  4016 static int value_field_offset = -1;  // offset of the "value" field of AtomicLongCSImpl.  This is needed by
  4017                                      // inline_native_AtomicLong_attemptUpdate() but it has no way of
  4018                                      // computing it since there is no lookup field by name function in the
  4019                                      // CI interface.  This is computed and set by inline_native_AtomicLong_get().
  4020                                      // Using a static variable here is safe even if we have multiple compilation
  4021                                      // threads because the offset is constant.  At worst the same offset will be
  4022                                      // computed and  stored multiple
  4024 bool LibraryCallKit::inline_native_AtomicLong_get() {
  4025   // Restore the stack and pop off the argument
  4026   _sp+=1;
  4027   Node *obj = pop();
  4029   // get the offset of the "value" field. Since the CI interfaces
  4030   // does not provide a way to look up a field by name, we scan the bytecodes
  4031   // to get the field index.  We expect the first 2 instructions of the method
  4032   // to be:
  4033   //    0 aload_0
  4034   //    1 getfield "value"
  4035   ciMethod* method = callee();
  4036   if (value_field_offset == -1)
  4038     ciField* value_field;
  4039     ciBytecodeStream iter(method);
  4040     Bytecodes::Code bc = iter.next();
  4042     if ((bc != Bytecodes::_aload_0) &&
  4043               ((bc != Bytecodes::_aload) || (iter.get_index() != 0)))
  4044       return false;
  4045     bc = iter.next();
  4046     if (bc != Bytecodes::_getfield)
  4047       return false;
  4048     bool ignore;
  4049     value_field = iter.get_field(ignore);
  4050     value_field_offset = value_field->offset_in_bytes();
  4053   // Null check without removing any arguments.
  4054   _sp++;
  4055   obj = do_null_check(obj, T_OBJECT);
  4056   _sp--;
  4057   // Check for locking null object
  4058   if (stopped()) return true;
  4060   Node *adr = basic_plus_adr(obj, obj, value_field_offset);
  4061   const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
  4062   int alias_idx = C->get_alias_index(adr_type);
  4064   Node *result = _gvn.transform(new (C, 3) LoadLLockedNode(control(), memory(alias_idx), adr));
  4066   push_pair(result);
  4068   return true;
  4071 bool LibraryCallKit::inline_native_AtomicLong_attemptUpdate() {
  4072   // Restore the stack and pop off the arguments
  4073   _sp+=5;
  4074   Node *newVal = pop_pair();
  4075   Node *oldVal = pop_pair();
  4076   Node *obj = pop();
  4078   // we need the offset of the "value" field which was computed when
  4079   // inlining the get() method.  Give up if we don't have it.
  4080   if (value_field_offset == -1)
  4081     return false;
  4083   // Null check without removing any arguments.
  4084   _sp+=5;
  4085   obj = do_null_check(obj, T_OBJECT);
  4086   _sp-=5;
  4087   // Check for locking null object
  4088   if (stopped()) return true;
  4090   Node *adr = basic_plus_adr(obj, obj, value_field_offset);
  4091   const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
  4092   int alias_idx = C->get_alias_index(adr_type);
  4094   Node *cas = _gvn.transform(new (C, 5) StoreLConditionalNode(control(), memory(alias_idx), adr, newVal, oldVal));
  4095   Node *store_proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
  4096   set_memory(store_proj, alias_idx);
  4097   Node *bol = _gvn.transform( new (C, 2) BoolNode( cas, BoolTest::eq ) );
  4099   Node *result;
  4100   // CMove node is not used to be able fold a possible check code
  4101   // after attemptUpdate() call. This code could be transformed
  4102   // into CMove node by loop optimizations.
  4104     RegionNode *r = new (C, 3) RegionNode(3);
  4105     result = new (C, 3) PhiNode(r, TypeInt::BOOL);
  4107     Node *iff = create_and_xform_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN);
  4108     Node *iftrue = opt_iff(r, iff);
  4109     r->init_req(1, iftrue);
  4110     result->init_req(1, intcon(1));
  4111     result->init_req(2, intcon(0));
  4113     set_control(_gvn.transform(r));
  4114     record_for_igvn(r);
  4116     C->set_has_split_ifs(true); // Has chance for split-if optimization
  4119   push(_gvn.transform(result));
  4120   return true;
  4123 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
  4124   // restore the arguments
  4125   _sp += arg_size();
  4127   switch (id) {
  4128   case vmIntrinsics::_floatToRawIntBits:
  4129     push(_gvn.transform( new (C, 2) MoveF2INode(pop())));
  4130     break;
  4132   case vmIntrinsics::_intBitsToFloat:
  4133     push(_gvn.transform( new (C, 2) MoveI2FNode(pop())));
  4134     break;
  4136   case vmIntrinsics::_doubleToRawLongBits:
  4137     push_pair(_gvn.transform( new (C, 2) MoveD2LNode(pop_pair())));
  4138     break;
  4140   case vmIntrinsics::_longBitsToDouble:
  4141     push_pair(_gvn.transform( new (C, 2) MoveL2DNode(pop_pair())));
  4142     break;
  4144   case vmIntrinsics::_doubleToLongBits: {
  4145     Node* value = pop_pair();
  4147     // two paths (plus control) merge in a wood
  4148     RegionNode *r = new (C, 3) RegionNode(3);
  4149     Node *phi = new (C, 3) PhiNode(r, TypeLong::LONG);
  4151     Node *cmpisnan = _gvn.transform( new (C, 3) CmpDNode(value, value));
  4152     // Build the boolean node
  4153     Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
  4155     // Branch either way.
  4156     // NaN case is less traveled, which makes all the difference.
  4157     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  4158     Node *opt_isnan = _gvn.transform(ifisnan);
  4159     assert( opt_isnan->is_If(), "Expect an IfNode");
  4160     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  4161     Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
  4163     set_control(iftrue);
  4165     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  4166     Node *slow_result = longcon(nan_bits); // return NaN
  4167     phi->init_req(1, _gvn.transform( slow_result ));
  4168     r->init_req(1, iftrue);
  4170     // Else fall through
  4171     Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
  4172     set_control(iffalse);
  4174     phi->init_req(2, _gvn.transform( new (C, 2) MoveD2LNode(value)));
  4175     r->init_req(2, iffalse);
  4177     // Post merge
  4178     set_control(_gvn.transform(r));
  4179     record_for_igvn(r);
  4181     Node* result = _gvn.transform(phi);
  4182     assert(result->bottom_type()->isa_long(), "must be");
  4183     push_pair(result);
  4185     C->set_has_split_ifs(true); // Has chance for split-if optimization
  4187     break;
  4190   case vmIntrinsics::_floatToIntBits: {
  4191     Node* value = pop();
  4193     // two paths (plus control) merge in a wood
  4194     RegionNode *r = new (C, 3) RegionNode(3);
  4195     Node *phi = new (C, 3) PhiNode(r, TypeInt::INT);
  4197     Node *cmpisnan = _gvn.transform( new (C, 3) CmpFNode(value, value));
  4198     // Build the boolean node
  4199     Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
  4201     // Branch either way.
  4202     // NaN case is less traveled, which makes all the difference.
  4203     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  4204     Node *opt_isnan = _gvn.transform(ifisnan);
  4205     assert( opt_isnan->is_If(), "Expect an IfNode");
  4206     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  4207     Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
  4209     set_control(iftrue);
  4211     static const jint nan_bits = 0x7fc00000;
  4212     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
  4213     phi->init_req(1, _gvn.transform( slow_result ));
  4214     r->init_req(1, iftrue);
  4216     // Else fall through
  4217     Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
  4218     set_control(iffalse);
  4220     phi->init_req(2, _gvn.transform( new (C, 2) MoveF2INode(value)));
  4221     r->init_req(2, iffalse);
  4223     // Post merge
  4224     set_control(_gvn.transform(r));
  4225     record_for_igvn(r);
  4227     Node* result = _gvn.transform(phi);
  4228     assert(result->bottom_type()->isa_int(), "must be");
  4229     push(result);
  4231     C->set_has_split_ifs(true); // Has chance for split-if optimization
  4233     break;
  4236   default:
  4237     ShouldNotReachHere();
  4240   return true;
  4243 #ifdef _LP64
  4244 #define XTOP ,top() /*additional argument*/
  4245 #else  //_LP64
  4246 #define XTOP        /*no additional argument*/
  4247 #endif //_LP64
  4249 //----------------------inline_unsafe_copyMemory-------------------------
  4250 bool LibraryCallKit::inline_unsafe_copyMemory() {
  4251   if (callee()->is_static())  return false;  // caller must have the capability!
  4252   int nargs = 1 + 5 + 3;  // 5 args:  (src: ptr,off, dst: ptr,off, size)
  4253   assert(signature()->size() == nargs-1, "copy has 5 arguments");
  4254   null_check_receiver(callee());  // check then ignore argument(0)
  4255   if (stopped())  return true;
  4257   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  4259   Node* src_ptr = argument(1);
  4260   Node* src_off = ConvL2X(argument(2));
  4261   assert(argument(3)->is_top(), "2nd half of long");
  4262   Node* dst_ptr = argument(4);
  4263   Node* dst_off = ConvL2X(argument(5));
  4264   assert(argument(6)->is_top(), "2nd half of long");
  4265   Node* size    = ConvL2X(argument(7));
  4266   assert(argument(8)->is_top(), "2nd half of long");
  4268   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  4269          "fieldOffset must be byte-scaled");
  4271   Node* src = make_unsafe_address(src_ptr, src_off);
  4272   Node* dst = make_unsafe_address(dst_ptr, dst_off);
  4274   // Conservatively insert a memory barrier on all memory slices.
  4275   // Do not let writes of the copy source or destination float below the copy.
  4276   insert_mem_bar(Op_MemBarCPUOrder);
  4278   // Call it.  Note that the length argument is not scaled.
  4279   make_runtime_call(RC_LEAF|RC_NO_FP,
  4280                     OptoRuntime::fast_arraycopy_Type(),
  4281                     StubRoutines::unsafe_arraycopy(),
  4282                     "unsafe_arraycopy",
  4283                     TypeRawPtr::BOTTOM,
  4284                     src, dst, size XTOP);
  4286   // Do not let reads of the copy destination float above the copy.
  4287   insert_mem_bar(Op_MemBarCPUOrder);
  4289   return true;
  4292 //------------------------clone_coping-----------------------------------
  4293 // Helper function for inline_native_clone.
  4294 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
  4295   assert(obj_size != NULL, "");
  4296   Node* raw_obj = alloc_obj->in(1);
  4297   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
  4299   AllocateNode* alloc = NULL;
  4300   if (ReduceBulkZeroing) {
  4301     // We will be completely responsible for initializing this object -
  4302     // mark Initialize node as complete.
  4303     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
  4304     // The object was just allocated - there should be no any stores!
  4305     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
  4306     // Mark as complete_with_arraycopy so that on AllocateNode
  4307     // expansion, we know this AllocateNode is initialized by an array
  4308     // copy and a StoreStore barrier exists after the array copy.
  4309     alloc->initialization()->set_complete_with_arraycopy();
  4312   // Copy the fastest available way.
  4313   // TODO: generate fields copies for small objects instead.
  4314   Node* src  = obj;
  4315   Node* dest = alloc_obj;
  4316   Node* size = _gvn.transform(obj_size);
  4318   // Exclude the header but include array length to copy by 8 bytes words.
  4319   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
  4320   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
  4321                             instanceOopDesc::base_offset_in_bytes();
  4322   // base_off:
  4323   // 8  - 32-bit VM
  4324   // 12 - 64-bit VM, compressed oops
  4325   // 16 - 64-bit VM, normal oops
  4326   if (base_off % BytesPerLong != 0) {
  4327     assert(UseCompressedOops, "");
  4328     if (is_array) {
  4329       // Exclude length to copy by 8 bytes words.
  4330       base_off += sizeof(int);
  4331     } else {
  4332       // Include klass to copy by 8 bytes words.
  4333       base_off = instanceOopDesc::klass_offset_in_bytes();
  4335     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
  4337   src  = basic_plus_adr(src,  base_off);
  4338   dest = basic_plus_adr(dest, base_off);
  4340   // Compute the length also, if needed:
  4341   Node* countx = size;
  4342   countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(base_off)) );
  4343   countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong) ));
  4345   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4346   bool disjoint_bases = true;
  4347   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
  4348                                src, NULL, dest, NULL, countx,
  4349                                /*dest_uninitialized*/true);
  4351   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
  4352   if (card_mark) {
  4353     assert(!is_array, "");
  4354     // Put in store barrier for any and all oops we are sticking
  4355     // into this object.  (We could avoid this if we could prove
  4356     // that the object type contains no oop fields at all.)
  4357     Node* no_particular_value = NULL;
  4358     Node* no_particular_field = NULL;
  4359     int raw_adr_idx = Compile::AliasIdxRaw;
  4360     post_barrier(control(),
  4361                  memory(raw_adr_type),
  4362                  alloc_obj,
  4363                  no_particular_field,
  4364                  raw_adr_idx,
  4365                  no_particular_value,
  4366                  T_OBJECT,
  4367                  false);
  4370   // Do not let reads from the cloned object float above the arraycopy.
  4371   if (alloc != NULL) {
  4372     // Do not let stores that initialize this object be reordered with
  4373     // a subsequent store that would make this object accessible by
  4374     // other threads.
  4375     // Record what AllocateNode this StoreStore protects so that
  4376     // escape analysis can go from the MemBarStoreStoreNode to the
  4377     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
  4378     // based on the escape status of the AllocateNode.
  4379     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
  4380   } else {
  4381     insert_mem_bar(Op_MemBarCPUOrder);
  4385 //------------------------inline_native_clone----------------------------
  4386 // Here are the simple edge cases:
  4387 //  null receiver => normal trap
  4388 //  virtual and clone was overridden => slow path to out-of-line clone
  4389 //  not cloneable or finalizer => slow path to out-of-line Object.clone
  4390 //
  4391 // The general case has two steps, allocation and copying.
  4392 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
  4393 //
  4394 // Copying also has two cases, oop arrays and everything else.
  4395 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
  4396 // Everything else uses the tight inline loop supplied by CopyArrayNode.
  4397 //
  4398 // These steps fold up nicely if and when the cloned object's klass
  4399 // can be sharply typed as an object array, a type array, or an instance.
  4400 //
  4401 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
  4402   int nargs = 1;
  4403   PhiNode* result_val;
  4405   //set the original stack and the reexecute bit for the interpreter to reexecute
  4406   //the bytecode that invokes Object.clone if deoptimization happens
  4407   { PreserveReexecuteState preexecs(this);
  4408     jvms()->set_should_reexecute(true);
  4410     //null_check_receiver will adjust _sp (push and pop)
  4411     Node* obj = null_check_receiver(callee());
  4412     if (stopped())  return true;
  4414     _sp += nargs;
  4416     Node* obj_klass = load_object_klass(obj);
  4417     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
  4418     const TypeOopPtr*   toop   = ((tklass != NULL)
  4419                                 ? tklass->as_instance_type()
  4420                                 : TypeInstPtr::NOTNULL);
  4422     // Conservatively insert a memory barrier on all memory slices.
  4423     // Do not let writes into the original float below the clone.
  4424     insert_mem_bar(Op_MemBarCPUOrder);
  4426     // paths into result_reg:
  4427     enum {
  4428       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
  4429       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
  4430       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
  4431       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
  4432       PATH_LIMIT
  4433     };
  4434     RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  4435     result_val             = new(C, PATH_LIMIT) PhiNode(result_reg,
  4436                                                         TypeInstPtr::NOTNULL);
  4437     PhiNode*    result_i_o = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
  4438     PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
  4439                                                         TypePtr::BOTTOM);
  4440     record_for_igvn(result_reg);
  4442     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4443     int raw_adr_idx = Compile::AliasIdxRaw;
  4445     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
  4446     if (array_ctl != NULL) {
  4447       // It's an array.
  4448       PreserveJVMState pjvms(this);
  4449       set_control(array_ctl);
  4450       Node* obj_length = load_array_length(obj);
  4451       Node* obj_size  = NULL;
  4452       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);
  4454       if (!use_ReduceInitialCardMarks()) {
  4455         // If it is an oop array, it requires very special treatment,
  4456         // because card marking is required on each card of the array.
  4457         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
  4458         if (is_obja != NULL) {
  4459           PreserveJVMState pjvms2(this);
  4460           set_control(is_obja);
  4461           // Generate a direct call to the right arraycopy function(s).
  4462           bool disjoint_bases = true;
  4463           bool length_never_negative = true;
  4464           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  4465                              obj, intcon(0), alloc_obj, intcon(0),
  4466                              obj_length,
  4467                              disjoint_bases, length_never_negative);
  4468           result_reg->init_req(_objArray_path, control());
  4469           result_val->init_req(_objArray_path, alloc_obj);
  4470           result_i_o ->set_req(_objArray_path, i_o());
  4471           result_mem ->set_req(_objArray_path, reset_memory());
  4474       // Otherwise, there are no card marks to worry about.
  4475       // (We can dispense with card marks if we know the allocation
  4476       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
  4477       //  causes the non-eden paths to take compensating steps to
  4478       //  simulate a fresh allocation, so that no further
  4479       //  card marks are required in compiled code to initialize
  4480       //  the object.)
  4482       if (!stopped()) {
  4483         copy_to_clone(obj, alloc_obj, obj_size, true, false);
  4485         // Present the results of the copy.
  4486         result_reg->init_req(_array_path, control());
  4487         result_val->init_req(_array_path, alloc_obj);
  4488         result_i_o ->set_req(_array_path, i_o());
  4489         result_mem ->set_req(_array_path, reset_memory());
  4493     // We only go to the instance fast case code if we pass a number of guards.
  4494     // The paths which do not pass are accumulated in the slow_region.
  4495     RegionNode* slow_region = new (C, 1) RegionNode(1);
  4496     record_for_igvn(slow_region);
  4497     if (!stopped()) {
  4498       // It's an instance (we did array above).  Make the slow-path tests.
  4499       // If this is a virtual call, we generate a funny guard.  We grab
  4500       // the vtable entry corresponding to clone() from the target object.
  4501       // If the target method which we are calling happens to be the
  4502       // Object clone() method, we pass the guard.  We do not need this
  4503       // guard for non-virtual calls; the caller is known to be the native
  4504       // Object clone().
  4505       if (is_virtual) {
  4506         generate_virtual_guard(obj_klass, slow_region);
  4509       // The object must be cloneable and must not have a finalizer.
  4510       // Both of these conditions may be checked in a single test.
  4511       // We could optimize the cloneable test further, but we don't care.
  4512       generate_access_flags_guard(obj_klass,
  4513                                   // Test both conditions:
  4514                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
  4515                                   // Must be cloneable but not finalizer:
  4516                                   JVM_ACC_IS_CLONEABLE,
  4517                                   slow_region);
  4520     if (!stopped()) {
  4521       // It's an instance, and it passed the slow-path tests.
  4522       PreserveJVMState pjvms(this);
  4523       Node* obj_size  = NULL;
  4524       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size);
  4526       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
  4528       // Present the results of the slow call.
  4529       result_reg->init_req(_instance_path, control());
  4530       result_val->init_req(_instance_path, alloc_obj);
  4531       result_i_o ->set_req(_instance_path, i_o());
  4532       result_mem ->set_req(_instance_path, reset_memory());
  4535     // Generate code for the slow case.  We make a call to clone().
  4536     set_control(_gvn.transform(slow_region));
  4537     if (!stopped()) {
  4538       PreserveJVMState pjvms(this);
  4539       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
  4540       Node* slow_result = set_results_for_java_call(slow_call);
  4541       // this->control() comes from set_results_for_java_call
  4542       result_reg->init_req(_slow_path, control());
  4543       result_val->init_req(_slow_path, slow_result);
  4544       result_i_o ->set_req(_slow_path, i_o());
  4545       result_mem ->set_req(_slow_path, reset_memory());
  4548     // Return the combined state.
  4549     set_control(    _gvn.transform(result_reg) );
  4550     set_i_o(        _gvn.transform(result_i_o) );
  4551     set_all_memory( _gvn.transform(result_mem) );
  4552   } //original reexecute and sp are set back here
  4554   push(_gvn.transform(result_val));
  4556   return true;
  4559 //------------------------------basictype2arraycopy----------------------------
  4560 address LibraryCallKit::basictype2arraycopy(BasicType t,
  4561                                             Node* src_offset,
  4562                                             Node* dest_offset,
  4563                                             bool disjoint_bases,
  4564                                             const char* &name,
  4565                                             bool dest_uninitialized) {
  4566   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
  4567   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
  4569   bool aligned = false;
  4570   bool disjoint = disjoint_bases;
  4572   // if the offsets are the same, we can treat the memory regions as
  4573   // disjoint, because either the memory regions are in different arrays,
  4574   // or they are identical (which we can treat as disjoint.)  We can also
  4575   // treat a copy with a destination index  less that the source index
  4576   // as disjoint since a low->high copy will work correctly in this case.
  4577   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
  4578       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
  4579     // both indices are constants
  4580     int s_offs = src_offset_inttype->get_con();
  4581     int d_offs = dest_offset_inttype->get_con();
  4582     int element_size = type2aelembytes(t);
  4583     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
  4584               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
  4585     if (s_offs >= d_offs)  disjoint = true;
  4586   } else if (src_offset == dest_offset && src_offset != NULL) {
  4587     // This can occur if the offsets are identical non-constants.
  4588     disjoint = true;
  4591   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
  4595 //------------------------------inline_arraycopy-----------------------
  4596 bool LibraryCallKit::inline_arraycopy() {
  4597   // Restore the stack and pop off the arguments.
  4598   int nargs = 5;  // 2 oops, 3 ints, no size_t or long
  4599   assert(callee()->signature()->size() == nargs, "copy has 5 arguments");
  4601   Node *src         = argument(0);
  4602   Node *src_offset  = argument(1);
  4603   Node *dest        = argument(2);
  4604   Node *dest_offset = argument(3);
  4605   Node *length      = argument(4);
  4607   // Compile time checks.  If any of these checks cannot be verified at compile time,
  4608   // we do not make a fast path for this call.  Instead, we let the call remain as it
  4609   // is.  The checks we choose to mandate at compile time are:
  4610   //
  4611   // (1) src and dest are arrays.
  4612   const Type* src_type = src->Value(&_gvn);
  4613   const Type* dest_type = dest->Value(&_gvn);
  4614   const TypeAryPtr* top_src = src_type->isa_aryptr();
  4615   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  4616   if (top_src  == NULL || top_src->klass()  == NULL ||
  4617       top_dest == NULL || top_dest->klass() == NULL) {
  4618     // Conservatively insert a memory barrier on all memory slices.
  4619     // Do not let writes into the source float below the arraycopy.
  4620     insert_mem_bar(Op_MemBarCPUOrder);
  4622     // Call StubRoutines::generic_arraycopy stub.
  4623     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
  4624                        src, src_offset, dest, dest_offset, length);
  4626     // Do not let reads from the destination float above the arraycopy.
  4627     // Since we cannot type the arrays, we don't know which slices
  4628     // might be affected.  We could restrict this barrier only to those
  4629     // memory slices which pertain to array elements--but don't bother.
  4630     if (!InsertMemBarAfterArraycopy)
  4631       // (If InsertMemBarAfterArraycopy, there is already one in place.)
  4632       insert_mem_bar(Op_MemBarCPUOrder);
  4633     return true;
  4636   // (2) src and dest arrays must have elements of the same BasicType
  4637   // Figure out the size and type of the elements we will be copying.
  4638   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
  4639   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
  4640   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
  4641   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
  4643   if (src_elem != dest_elem || dest_elem == T_VOID) {
  4644     // The component types are not the same or are not recognized.  Punt.
  4645     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
  4646     generate_slow_arraycopy(TypePtr::BOTTOM,
  4647                             src, src_offset, dest, dest_offset, length,
  4648                             /*dest_uninitialized*/false);
  4649     return true;
  4652   //---------------------------------------------------------------------------
  4653   // We will make a fast path for this call to arraycopy.
  4655   // We have the following tests left to perform:
  4656   //
  4657   // (3) src and dest must not be null.
  4658   // (4) src_offset must not be negative.
  4659   // (5) dest_offset must not be negative.
  4660   // (6) length must not be negative.
  4661   // (7) src_offset + length must not exceed length of src.
  4662   // (8) dest_offset + length must not exceed length of dest.
  4663   // (9) each element of an oop array must be assignable
  4665   RegionNode* slow_region = new (C, 1) RegionNode(1);
  4666   record_for_igvn(slow_region);
  4668   // (3) operands must not be null
  4669   // We currently perform our null checks with the do_null_check routine.
  4670   // This means that the null exceptions will be reported in the caller
  4671   // rather than (correctly) reported inside of the native arraycopy call.
  4672   // This should be corrected, given time.  We do our null check with the
  4673   // stack pointer restored.
  4674   _sp += nargs;
  4675   src  = do_null_check(src,  T_ARRAY);
  4676   dest = do_null_check(dest, T_ARRAY);
  4677   _sp -= nargs;
  4679   // (4) src_offset must not be negative.
  4680   generate_negative_guard(src_offset, slow_region);
  4682   // (5) dest_offset must not be negative.
  4683   generate_negative_guard(dest_offset, slow_region);
  4685   // (6) length must not be negative (moved to generate_arraycopy()).
  4686   // generate_negative_guard(length, slow_region);
  4688   // (7) src_offset + length must not exceed length of src.
  4689   generate_limit_guard(src_offset, length,
  4690                        load_array_length(src),
  4691                        slow_region);
  4693   // (8) dest_offset + length must not exceed length of dest.
  4694   generate_limit_guard(dest_offset, length,
  4695                        load_array_length(dest),
  4696                        slow_region);
  4698   // (9) each element of an oop array must be assignable
  4699   // The generate_arraycopy subroutine checks this.
  4701   // This is where the memory effects are placed:
  4702   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
  4703   generate_arraycopy(adr_type, dest_elem,
  4704                      src, src_offset, dest, dest_offset, length,
  4705                      false, false, slow_region);
  4707   return true;
  4710 //-----------------------------generate_arraycopy----------------------
  4711 // Generate an optimized call to arraycopy.
  4712 // Caller must guard against non-arrays.
  4713 // Caller must determine a common array basic-type for both arrays.
  4714 // Caller must validate offsets against array bounds.
  4715 // The slow_region has already collected guard failure paths
  4716 // (such as out of bounds length or non-conformable array types).
  4717 // The generated code has this shape, in general:
  4718 //
  4719 //     if (length == 0)  return   // via zero_path
  4720 //     slowval = -1
  4721 //     if (types unknown) {
  4722 //       slowval = call generic copy loop
  4723 //       if (slowval == 0)  return  // via checked_path
  4724 //     } else if (indexes in bounds) {
  4725 //       if ((is object array) && !(array type check)) {
  4726 //         slowval = call checked copy loop
  4727 //         if (slowval == 0)  return  // via checked_path
  4728 //       } else {
  4729 //         call bulk copy loop
  4730 //         return  // via fast_path
  4731 //       }
  4732 //     }
  4733 //     // adjust params for remaining work:
  4734 //     if (slowval != -1) {
  4735 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
  4736 //     }
  4737 //   slow_region:
  4738 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
  4739 //     return  // via slow_call_path
  4740 //
  4741 // This routine is used from several intrinsics:  System.arraycopy,
  4742 // Object.clone (the array subcase), and Arrays.copyOf[Range].
  4743 //
  4744 void
  4745 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
  4746                                    BasicType basic_elem_type,
  4747                                    Node* src,  Node* src_offset,
  4748                                    Node* dest, Node* dest_offset,
  4749                                    Node* copy_length,
  4750                                    bool disjoint_bases,
  4751                                    bool length_never_negative,
  4752                                    RegionNode* slow_region) {
  4754   if (slow_region == NULL) {
  4755     slow_region = new(C,1) RegionNode(1);
  4756     record_for_igvn(slow_region);
  4759   Node* original_dest      = dest;
  4760   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
  4761   bool  dest_uninitialized = false;
  4763   // See if this is the initialization of a newly-allocated array.
  4764   // If so, we will take responsibility here for initializing it to zero.
  4765   // (Note:  Because tightly_coupled_allocation performs checks on the
  4766   // out-edges of the dest, we need to avoid making derived pointers
  4767   // from it until we have checked its uses.)
  4768   if (ReduceBulkZeroing
  4769       && !ZeroTLAB              // pointless if already zeroed
  4770       && basic_elem_type != T_CONFLICT // avoid corner case
  4771       && !src->eqv_uncast(dest)
  4772       && ((alloc = tightly_coupled_allocation(dest, slow_region))
  4773           != NULL)
  4774       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
  4775       && alloc->maybe_set_complete(&_gvn)) {
  4776     // "You break it, you buy it."
  4777     InitializeNode* init = alloc->initialization();
  4778     assert(init->is_complete(), "we just did this");
  4779     init->set_complete_with_arraycopy();
  4780     assert(dest->is_CheckCastPP(), "sanity");
  4781     assert(dest->in(0)->in(0) == init, "dest pinned");
  4782     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
  4783     // From this point on, every exit path is responsible for
  4784     // initializing any non-copied parts of the object to zero.
  4785     // Also, if this flag is set we make sure that arraycopy interacts properly
  4786     // with G1, eliding pre-barriers. See CR 6627983.
  4787     dest_uninitialized = true;
  4788   } else {
  4789     // No zeroing elimination here.
  4790     alloc             = NULL;
  4791     //original_dest   = dest;
  4792     //dest_uninitialized = false;
  4795   // Results are placed here:
  4796   enum { fast_path        = 1,  // normal void-returning assembly stub
  4797          checked_path     = 2,  // special assembly stub with cleanup
  4798          slow_call_path   = 3,  // something went wrong; call the VM
  4799          zero_path        = 4,  // bypass when length of copy is zero
  4800          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
  4801          PATH_LIMIT       = 6
  4802   };
  4803   RegionNode* result_region = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  4804   PhiNode*    result_i_o    = new(C, PATH_LIMIT) PhiNode(result_region, Type::ABIO);
  4805   PhiNode*    result_memory = new(C, PATH_LIMIT) PhiNode(result_region, Type::MEMORY, adr_type);
  4806   record_for_igvn(result_region);
  4807   _gvn.set_type_bottom(result_i_o);
  4808   _gvn.set_type_bottom(result_memory);
  4809   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
  4811   // The slow_control path:
  4812   Node* slow_control;
  4813   Node* slow_i_o = i_o();
  4814   Node* slow_mem = memory(adr_type);
  4815   debug_only(slow_control = (Node*) badAddress);
  4817   // Checked control path:
  4818   Node* checked_control = top();
  4819   Node* checked_mem     = NULL;
  4820   Node* checked_i_o     = NULL;
  4821   Node* checked_value   = NULL;
  4823   if (basic_elem_type == T_CONFLICT) {
  4824     assert(!dest_uninitialized, "");
  4825     Node* cv = generate_generic_arraycopy(adr_type,
  4826                                           src, src_offset, dest, dest_offset,
  4827                                           copy_length, dest_uninitialized);
  4828     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  4829     checked_control = control();
  4830     checked_i_o     = i_o();
  4831     checked_mem     = memory(adr_type);
  4832     checked_value   = cv;
  4833     set_control(top());         // no fast path
  4836   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
  4837   if (not_pos != NULL) {
  4838     PreserveJVMState pjvms(this);
  4839     set_control(not_pos);
  4841     // (6) length must not be negative.
  4842     if (!length_never_negative) {
  4843       generate_negative_guard(copy_length, slow_region);
  4846     // copy_length is 0.
  4847     if (!stopped() && dest_uninitialized) {
  4848       Node* dest_length = alloc->in(AllocateNode::ALength);
  4849       if (copy_length->eqv_uncast(dest_length)
  4850           || _gvn.find_int_con(dest_length, 1) <= 0) {
  4851         // There is no zeroing to do. No need for a secondary raw memory barrier.
  4852       } else {
  4853         // Clear the whole thing since there are no source elements to copy.
  4854         generate_clear_array(adr_type, dest, basic_elem_type,
  4855                              intcon(0), NULL,
  4856                              alloc->in(AllocateNode::AllocSize));
  4857         // Use a secondary InitializeNode as raw memory barrier.
  4858         // Currently it is needed only on this path since other
  4859         // paths have stub or runtime calls as raw memory barriers.
  4860         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
  4861                                                        Compile::AliasIdxRaw,
  4862                                                        top())->as_Initialize();
  4863         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
  4867     // Present the results of the fast call.
  4868     result_region->init_req(zero_path, control());
  4869     result_i_o   ->init_req(zero_path, i_o());
  4870     result_memory->init_req(zero_path, memory(adr_type));
  4873   if (!stopped() && dest_uninitialized) {
  4874     // We have to initialize the *uncopied* part of the array to zero.
  4875     // The copy destination is the slice dest[off..off+len].  The other slices
  4876     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
  4877     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
  4878     Node* dest_length = alloc->in(AllocateNode::ALength);
  4879     Node* dest_tail   = _gvn.transform( new(C,3) AddINode(dest_offset,
  4880                                                           copy_length) );
  4882     // If there is a head section that needs zeroing, do it now.
  4883     if (find_int_con(dest_offset, -1) != 0) {
  4884       generate_clear_array(adr_type, dest, basic_elem_type,
  4885                            intcon(0), dest_offset,
  4886                            NULL);
  4889     // Next, perform a dynamic check on the tail length.
  4890     // It is often zero, and we can win big if we prove this.
  4891     // There are two wins:  Avoid generating the ClearArray
  4892     // with its attendant messy index arithmetic, and upgrade
  4893     // the copy to a more hardware-friendly word size of 64 bits.
  4894     Node* tail_ctl = NULL;
  4895     if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
  4896       Node* cmp_lt   = _gvn.transform( new(C,3) CmpINode(dest_tail, dest_length) );
  4897       Node* bol_lt   = _gvn.transform( new(C,2) BoolNode(cmp_lt, BoolTest::lt) );
  4898       tail_ctl = generate_slow_guard(bol_lt, NULL);
  4899       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
  4902     // At this point, let's assume there is no tail.
  4903     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
  4904       // There is no tail.  Try an upgrade to a 64-bit copy.
  4905       bool didit = false;
  4906       { PreserveJVMState pjvms(this);
  4907         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
  4908                                          src, src_offset, dest, dest_offset,
  4909                                          dest_size, dest_uninitialized);
  4910         if (didit) {
  4911           // Present the results of the block-copying fast call.
  4912           result_region->init_req(bcopy_path, control());
  4913           result_i_o   ->init_req(bcopy_path, i_o());
  4914           result_memory->init_req(bcopy_path, memory(adr_type));
  4917       if (didit)
  4918         set_control(top());     // no regular fast path
  4921     // Clear the tail, if any.
  4922     if (tail_ctl != NULL) {
  4923       Node* notail_ctl = stopped() ? NULL : control();
  4924       set_control(tail_ctl);
  4925       if (notail_ctl == NULL) {
  4926         generate_clear_array(adr_type, dest, basic_elem_type,
  4927                              dest_tail, NULL,
  4928                              dest_size);
  4929       } else {
  4930         // Make a local merge.
  4931         Node* done_ctl = new(C,3) RegionNode(3);
  4932         Node* done_mem = new(C,3) PhiNode(done_ctl, Type::MEMORY, adr_type);
  4933         done_ctl->init_req(1, notail_ctl);
  4934         done_mem->init_req(1, memory(adr_type));
  4935         generate_clear_array(adr_type, dest, basic_elem_type,
  4936                              dest_tail, NULL,
  4937                              dest_size);
  4938         done_ctl->init_req(2, control());
  4939         done_mem->init_req(2, memory(adr_type));
  4940         set_control( _gvn.transform(done_ctl) );
  4941         set_memory(  _gvn.transform(done_mem), adr_type );
  4946   BasicType copy_type = basic_elem_type;
  4947   assert(basic_elem_type != T_ARRAY, "caller must fix this");
  4948   if (!stopped() && copy_type == T_OBJECT) {
  4949     // If src and dest have compatible element types, we can copy bits.
  4950     // Types S[] and D[] are compatible if D is a supertype of S.
  4951     //
  4952     // If they are not, we will use checked_oop_disjoint_arraycopy,
  4953     // which performs a fast optimistic per-oop check, and backs off
  4954     // further to JVM_ArrayCopy on the first per-oop check that fails.
  4955     // (Actually, we don't move raw bits only; the GC requires card marks.)
  4957     // Get the klassOop for both src and dest
  4958     Node* src_klass  = load_object_klass(src);
  4959     Node* dest_klass = load_object_klass(dest);
  4961     // Generate the subtype check.
  4962     // This might fold up statically, or then again it might not.
  4963     //
  4964     // Non-static example:  Copying List<String>.elements to a new String[].
  4965     // The backing store for a List<String> is always an Object[],
  4966     // but its elements are always type String, if the generic types
  4967     // are correct at the source level.
  4968     //
  4969     // Test S[] against D[], not S against D, because (probably)
  4970     // the secondary supertype cache is less busy for S[] than S.
  4971     // This usually only matters when D is an interface.
  4972     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
  4973     // Plug failing path into checked_oop_disjoint_arraycopy
  4974     if (not_subtype_ctrl != top()) {
  4975       PreserveJVMState pjvms(this);
  4976       set_control(not_subtype_ctrl);
  4977       // (At this point we can assume disjoint_bases, since types differ.)
  4978       int ek_offset = in_bytes(objArrayKlass::element_klass_offset());
  4979       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
  4980       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
  4981       Node* dest_elem_klass = _gvn.transform(n1);
  4982       Node* cv = generate_checkcast_arraycopy(adr_type,
  4983                                               dest_elem_klass,
  4984                                               src, src_offset, dest, dest_offset,
  4985                                               ConvI2X(copy_length), dest_uninitialized);
  4986       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  4987       checked_control = control();
  4988       checked_i_o     = i_o();
  4989       checked_mem     = memory(adr_type);
  4990       checked_value   = cv;
  4992     // At this point we know we do not need type checks on oop stores.
  4994     // Let's see if we need card marks:
  4995     if (alloc != NULL && use_ReduceInitialCardMarks()) {
  4996       // If we do not need card marks, copy using the jint or jlong stub.
  4997       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
  4998       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
  4999              "sizes agree");
  5003   if (!stopped()) {
  5004     // Generate the fast path, if possible.
  5005     PreserveJVMState pjvms(this);
  5006     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
  5007                                  src, src_offset, dest, dest_offset,
  5008                                  ConvI2X(copy_length), dest_uninitialized);
  5010     // Present the results of the fast call.
  5011     result_region->init_req(fast_path, control());
  5012     result_i_o   ->init_req(fast_path, i_o());
  5013     result_memory->init_req(fast_path, memory(adr_type));
  5016   // Here are all the slow paths up to this point, in one bundle:
  5017   slow_control = top();
  5018   if (slow_region != NULL)
  5019     slow_control = _gvn.transform(slow_region);
  5020   debug_only(slow_region = (RegionNode*)badAddress);
  5022   set_control(checked_control);
  5023   if (!stopped()) {
  5024     // Clean up after the checked call.
  5025     // The returned value is either 0 or -1^K,
  5026     // where K = number of partially transferred array elements.
  5027     Node* cmp = _gvn.transform( new(C, 3) CmpINode(checked_value, intcon(0)) );
  5028     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
  5029     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
  5031     // If it is 0, we are done, so transfer to the end.
  5032     Node* checks_done = _gvn.transform( new(C, 1) IfTrueNode(iff) );
  5033     result_region->init_req(checked_path, checks_done);
  5034     result_i_o   ->init_req(checked_path, checked_i_o);
  5035     result_memory->init_req(checked_path, checked_mem);
  5037     // If it is not zero, merge into the slow call.
  5038     set_control( _gvn.transform( new(C, 1) IfFalseNode(iff) ));
  5039     RegionNode* slow_reg2 = new(C, 3) RegionNode(3);
  5040     PhiNode*    slow_i_o2 = new(C, 3) PhiNode(slow_reg2, Type::ABIO);
  5041     PhiNode*    slow_mem2 = new(C, 3) PhiNode(slow_reg2, Type::MEMORY, adr_type);
  5042     record_for_igvn(slow_reg2);
  5043     slow_reg2  ->init_req(1, slow_control);
  5044     slow_i_o2  ->init_req(1, slow_i_o);
  5045     slow_mem2  ->init_req(1, slow_mem);
  5046     slow_reg2  ->init_req(2, control());
  5047     slow_i_o2  ->init_req(2, checked_i_o);
  5048     slow_mem2  ->init_req(2, checked_mem);
  5050     slow_control = _gvn.transform(slow_reg2);
  5051     slow_i_o     = _gvn.transform(slow_i_o2);
  5052     slow_mem     = _gvn.transform(slow_mem2);
  5054     if (alloc != NULL) {
  5055       // We'll restart from the very beginning, after zeroing the whole thing.
  5056       // This can cause double writes, but that's OK since dest is brand new.
  5057       // So we ignore the low 31 bits of the value returned from the stub.
  5058     } else {
  5059       // We must continue the copy exactly where it failed, or else
  5060       // another thread might see the wrong number of writes to dest.
  5061       Node* checked_offset = _gvn.transform( new(C, 3) XorINode(checked_value, intcon(-1)) );
  5062       Node* slow_offset    = new(C, 3) PhiNode(slow_reg2, TypeInt::INT);
  5063       slow_offset->init_req(1, intcon(0));
  5064       slow_offset->init_req(2, checked_offset);
  5065       slow_offset  = _gvn.transform(slow_offset);
  5067       // Adjust the arguments by the conditionally incoming offset.
  5068       Node* src_off_plus  = _gvn.transform( new(C, 3) AddINode(src_offset,  slow_offset) );
  5069       Node* dest_off_plus = _gvn.transform( new(C, 3) AddINode(dest_offset, slow_offset) );
  5070       Node* length_minus  = _gvn.transform( new(C, 3) SubINode(copy_length, slow_offset) );
  5072       // Tweak the node variables to adjust the code produced below:
  5073       src_offset  = src_off_plus;
  5074       dest_offset = dest_off_plus;
  5075       copy_length = length_minus;
  5079   set_control(slow_control);
  5080   if (!stopped()) {
  5081     // Generate the slow path, if needed.
  5082     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
  5084     set_memory(slow_mem, adr_type);
  5085     set_i_o(slow_i_o);
  5087     if (dest_uninitialized) {
  5088       generate_clear_array(adr_type, dest, basic_elem_type,
  5089                            intcon(0), NULL,
  5090                            alloc->in(AllocateNode::AllocSize));
  5093     generate_slow_arraycopy(adr_type,
  5094                             src, src_offset, dest, dest_offset,
  5095                             copy_length, /*dest_uninitialized*/false);
  5097     result_region->init_req(slow_call_path, control());
  5098     result_i_o   ->init_req(slow_call_path, i_o());
  5099     result_memory->init_req(slow_call_path, memory(adr_type));
  5102   // Remove unused edges.
  5103   for (uint i = 1; i < result_region->req(); i++) {
  5104     if (result_region->in(i) == NULL)
  5105       result_region->init_req(i, top());
  5108   // Finished; return the combined state.
  5109   set_control( _gvn.transform(result_region) );
  5110   set_i_o(     _gvn.transform(result_i_o)    );
  5111   set_memory(  _gvn.transform(result_memory), adr_type );
  5113   // The memory edges above are precise in order to model effects around
  5114   // array copies accurately to allow value numbering of field loads around
  5115   // arraycopy.  Such field loads, both before and after, are common in Java
  5116   // collections and similar classes involving header/array data structures.
  5117   //
  5118   // But with low number of register or when some registers are used or killed
  5119   // by arraycopy calls it causes registers spilling on stack. See 6544710.
  5120   // The next memory barrier is added to avoid it. If the arraycopy can be
  5121   // optimized away (which it can, sometimes) then we can manually remove
  5122   // the membar also.
  5123   //
  5124   // Do not let reads from the cloned object float above the arraycopy.
  5125   if (alloc != NULL) {
  5126     // Do not let stores that initialize this object be reordered with
  5127     // a subsequent store that would make this object accessible by
  5128     // other threads.
  5129     // Record what AllocateNode this StoreStore protects so that
  5130     // escape analysis can go from the MemBarStoreStoreNode to the
  5131     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
  5132     // based on the escape status of the AllocateNode.
  5133     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
  5134   } else if (InsertMemBarAfterArraycopy)
  5135     insert_mem_bar(Op_MemBarCPUOrder);
  5139 // Helper function which determines if an arraycopy immediately follows
  5140 // an allocation, with no intervening tests or other escapes for the object.
  5141 AllocateArrayNode*
  5142 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
  5143                                            RegionNode* slow_region) {
  5144   if (stopped())             return NULL;  // no fast path
  5145   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
  5147   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
  5148   if (alloc == NULL)  return NULL;
  5150   Node* rawmem = memory(Compile::AliasIdxRaw);
  5151   // Is the allocation's memory state untouched?
  5152   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
  5153     // Bail out if there have been raw-memory effects since the allocation.
  5154     // (Example:  There might have been a call or safepoint.)
  5155     return NULL;
  5157   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
  5158   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
  5159     return NULL;
  5162   // There must be no unexpected observers of this allocation.
  5163   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
  5164     Node* obs = ptr->fast_out(i);
  5165     if (obs != this->map()) {
  5166       return NULL;
  5170   // This arraycopy must unconditionally follow the allocation of the ptr.
  5171   Node* alloc_ctl = ptr->in(0);
  5172   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
  5174   Node* ctl = control();
  5175   while (ctl != alloc_ctl) {
  5176     // There may be guards which feed into the slow_region.
  5177     // Any other control flow means that we might not get a chance
  5178     // to finish initializing the allocated object.
  5179     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
  5180       IfNode* iff = ctl->in(0)->as_If();
  5181       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
  5182       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
  5183       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
  5184         ctl = iff->in(0);       // This test feeds the known slow_region.
  5185         continue;
  5187       // One more try:  Various low-level checks bottom out in
  5188       // uncommon traps.  If the debug-info of the trap omits
  5189       // any reference to the allocation, as we've already
  5190       // observed, then there can be no objection to the trap.
  5191       bool found_trap = false;
  5192       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
  5193         Node* obs = not_ctl->fast_out(j);
  5194         if (obs->in(0) == not_ctl && obs->is_Call() &&
  5195             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
  5196           found_trap = true; break;
  5199       if (found_trap) {
  5200         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
  5201         continue;
  5204     return NULL;
  5207   // If we get this far, we have an allocation which immediately
  5208   // precedes the arraycopy, and we can take over zeroing the new object.
  5209   // The arraycopy will finish the initialization, and provide
  5210   // a new control state to which we will anchor the destination pointer.
  5212   return alloc;
  5215 // Helper for initialization of arrays, creating a ClearArray.
  5216 // It writes zero bits in [start..end), within the body of an array object.
  5217 // The memory effects are all chained onto the 'adr_type' alias category.
  5218 //
  5219 // Since the object is otherwise uninitialized, we are free
  5220 // to put a little "slop" around the edges of the cleared area,
  5221 // as long as it does not go back into the array's header,
  5222 // or beyond the array end within the heap.
  5223 //
  5224 // The lower edge can be rounded down to the nearest jint and the
  5225 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
  5226 //
  5227 // Arguments:
  5228 //   adr_type           memory slice where writes are generated
  5229 //   dest               oop of the destination array
  5230 //   basic_elem_type    element type of the destination
  5231 //   slice_idx          array index of first element to store
  5232 //   slice_len          number of elements to store (or NULL)
  5233 //   dest_size          total size in bytes of the array object
  5234 //
  5235 // Exactly one of slice_len or dest_size must be non-NULL.
  5236 // If dest_size is non-NULL, zeroing extends to the end of the object.
  5237 // If slice_len is non-NULL, the slice_idx value must be a constant.
  5238 void
  5239 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
  5240                                      Node* dest,
  5241                                      BasicType basic_elem_type,
  5242                                      Node* slice_idx,
  5243                                      Node* slice_len,
  5244                                      Node* dest_size) {
  5245   // one or the other but not both of slice_len and dest_size:
  5246   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
  5247   if (slice_len == NULL)  slice_len = top();
  5248   if (dest_size == NULL)  dest_size = top();
  5250   // operate on this memory slice:
  5251   Node* mem = memory(adr_type); // memory slice to operate on
  5253   // scaling and rounding of indexes:
  5254   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5255   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5256   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
  5257   int bump_bit  = (-1 << scale) & BytesPerInt;
  5259   // determine constant starts and ends
  5260   const intptr_t BIG_NEG = -128;
  5261   assert(BIG_NEG + 2*abase < 0, "neg enough");
  5262   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
  5263   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
  5264   if (slice_len_con == 0) {
  5265     return;                     // nothing to do here
  5267   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
  5268   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
  5269   if (slice_idx_con >= 0 && slice_len_con >= 0) {
  5270     assert(end_con < 0, "not two cons");
  5271     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
  5272                        BytesPerLong);
  5275   if (start_con >= 0 && end_con >= 0) {
  5276     // Constant start and end.  Simple.
  5277     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5278                                        start_con, end_con, &_gvn);
  5279   } else if (start_con >= 0 && dest_size != top()) {
  5280     // Constant start, pre-rounded end after the tail of the array.
  5281     Node* end = dest_size;
  5282     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5283                                        start_con, end, &_gvn);
  5284   } else if (start_con >= 0 && slice_len != top()) {
  5285     // Constant start, non-constant end.  End needs rounding up.
  5286     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
  5287     intptr_t end_base  = abase + (slice_idx_con << scale);
  5288     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
  5289     Node*    end       = ConvI2X(slice_len);
  5290     if (scale != 0)
  5291       end = _gvn.transform( new(C,3) LShiftXNode(end, intcon(scale) ));
  5292     end_base += end_round;
  5293     end = _gvn.transform( new(C,3) AddXNode(end, MakeConX(end_base)) );
  5294     end = _gvn.transform( new(C,3) AndXNode(end, MakeConX(~end_round)) );
  5295     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5296                                        start_con, end, &_gvn);
  5297   } else if (start_con < 0 && dest_size != top()) {
  5298     // Non-constant start, pre-rounded end after the tail of the array.
  5299     // This is almost certainly a "round-to-end" operation.
  5300     Node* start = slice_idx;
  5301     start = ConvI2X(start);
  5302     if (scale != 0)
  5303       start = _gvn.transform( new(C,3) LShiftXNode( start, intcon(scale) ));
  5304     start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(abase)) );
  5305     if ((bump_bit | clear_low) != 0) {
  5306       int to_clear = (bump_bit | clear_low);
  5307       // Align up mod 8, then store a jint zero unconditionally
  5308       // just before the mod-8 boundary.
  5309       if (((abase + bump_bit) & ~to_clear) - bump_bit
  5310           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
  5311         bump_bit = 0;
  5312         assert((abase & to_clear) == 0, "array base must be long-aligned");
  5313       } else {
  5314         // Bump 'start' up to (or past) the next jint boundary:
  5315         start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(bump_bit)) );
  5316         assert((abase & clear_low) == 0, "array base must be int-aligned");
  5318       // Round bumped 'start' down to jlong boundary in body of array.
  5319       start = _gvn.transform( new(C,3) AndXNode(start, MakeConX(~to_clear)) );
  5320       if (bump_bit != 0) {
  5321         // Store a zero to the immediately preceding jint:
  5322         Node* x1 = _gvn.transform( new(C,3) AddXNode(start, MakeConX(-bump_bit)) );
  5323         Node* p1 = basic_plus_adr(dest, x1);
  5324         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
  5325         mem = _gvn.transform(mem);
  5328     Node* end = dest_size; // pre-rounded
  5329     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5330                                        start, end, &_gvn);
  5331   } else {
  5332     // Non-constant start, unrounded non-constant end.
  5333     // (Nobody zeroes a random midsection of an array using this routine.)
  5334     ShouldNotReachHere();       // fix caller
  5337   // Done.
  5338   set_memory(mem, adr_type);
  5342 bool
  5343 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
  5344                                          BasicType basic_elem_type,
  5345                                          AllocateNode* alloc,
  5346                                          Node* src,  Node* src_offset,
  5347                                          Node* dest, Node* dest_offset,
  5348                                          Node* dest_size, bool dest_uninitialized) {
  5349   // See if there is an advantage from block transfer.
  5350   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5351   if (scale >= LogBytesPerLong)
  5352     return false;               // it is already a block transfer
  5354   // Look at the alignment of the starting offsets.
  5355   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5357   intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
  5358   intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
  5359   if (src_off_con < 0 || dest_off_con < 0)
  5360     // At present, we can only understand constants.
  5361     return false;
  5363   intptr_t src_off  = abase + (src_off_con  << scale);
  5364   intptr_t dest_off = abase + (dest_off_con << scale);
  5366   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
  5367     // Non-aligned; too bad.
  5368     // One more chance:  Pick off an initial 32-bit word.
  5369     // This is a common case, since abase can be odd mod 8.
  5370     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
  5371         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
  5372       Node* sptr = basic_plus_adr(src,  src_off);
  5373       Node* dptr = basic_plus_adr(dest, dest_off);
  5374       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
  5375       store_to_memory(control(), dptr, sval, T_INT, adr_type);
  5376       src_off += BytesPerInt;
  5377       dest_off += BytesPerInt;
  5378     } else {
  5379       return false;
  5382   assert(src_off % BytesPerLong == 0, "");
  5383   assert(dest_off % BytesPerLong == 0, "");
  5385   // Do this copy by giant steps.
  5386   Node* sptr  = basic_plus_adr(src,  src_off);
  5387   Node* dptr  = basic_plus_adr(dest, dest_off);
  5388   Node* countx = dest_size;
  5389   countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(dest_off)) );
  5390   countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong)) );
  5392   bool disjoint_bases = true;   // since alloc != NULL
  5393   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
  5394                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
  5396   return true;
  5400 // Helper function; generates code for the slow case.
  5401 // We make a call to a runtime method which emulates the native method,
  5402 // but without the native wrapper overhead.
  5403 void
  5404 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
  5405                                         Node* src,  Node* src_offset,
  5406                                         Node* dest, Node* dest_offset,
  5407                                         Node* copy_length, bool dest_uninitialized) {
  5408   assert(!dest_uninitialized, "Invariant");
  5409   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
  5410                                  OptoRuntime::slow_arraycopy_Type(),
  5411                                  OptoRuntime::slow_arraycopy_Java(),
  5412                                  "slow_arraycopy", adr_type,
  5413                                  src, src_offset, dest, dest_offset,
  5414                                  copy_length);
  5416   // Handle exceptions thrown by this fellow:
  5417   make_slow_call_ex(call, env()->Throwable_klass(), false);
  5420 // Helper function; generates code for cases requiring runtime checks.
  5421 Node*
  5422 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
  5423                                              Node* dest_elem_klass,
  5424                                              Node* src,  Node* src_offset,
  5425                                              Node* dest, Node* dest_offset,
  5426                                              Node* copy_length, bool dest_uninitialized) {
  5427   if (stopped())  return NULL;
  5429   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
  5430   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5431     return NULL;
  5434   // Pick out the parameters required to perform a store-check
  5435   // for the target array.  This is an optimistic check.  It will
  5436   // look in each non-null element's class, at the desired klass's
  5437   // super_check_offset, for the desired klass.
  5438   int sco_offset = in_bytes(Klass::super_check_offset_offset());
  5439   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
  5440   Node* n3 = new(C, 3) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr());
  5441   Node* check_offset = ConvI2X(_gvn.transform(n3));
  5442   Node* check_value  = dest_elem_klass;
  5444   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
  5445   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
  5447   // (We know the arrays are never conjoint, because their types differ.)
  5448   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5449                                  OptoRuntime::checkcast_arraycopy_Type(),
  5450                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
  5451                                  // five arguments, of which two are
  5452                                  // intptr_t (jlong in LP64)
  5453                                  src_start, dest_start,
  5454                                  copy_length XTOP,
  5455                                  check_offset XTOP,
  5456                                  check_value);
  5458   return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
  5462 // Helper function; generates code for cases requiring runtime checks.
  5463 Node*
  5464 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
  5465                                            Node* src,  Node* src_offset,
  5466                                            Node* dest, Node* dest_offset,
  5467                                            Node* copy_length, bool dest_uninitialized) {
  5468   assert(!dest_uninitialized, "Invariant");
  5469   if (stopped())  return NULL;
  5470   address copyfunc_addr = StubRoutines::generic_arraycopy();
  5471   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5472     return NULL;
  5475   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5476                     OptoRuntime::generic_arraycopy_Type(),
  5477                     copyfunc_addr, "generic_arraycopy", adr_type,
  5478                     src, src_offset, dest, dest_offset, copy_length);
  5480   return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
  5483 // Helper function; generates the fast out-of-line call to an arraycopy stub.
  5484 void
  5485 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
  5486                                              BasicType basic_elem_type,
  5487                                              bool disjoint_bases,
  5488                                              Node* src,  Node* src_offset,
  5489                                              Node* dest, Node* dest_offset,
  5490                                              Node* copy_length, bool dest_uninitialized) {
  5491   if (stopped())  return;               // nothing to do
  5493   Node* src_start  = src;
  5494   Node* dest_start = dest;
  5495   if (src_offset != NULL || dest_offset != NULL) {
  5496     assert(src_offset != NULL && dest_offset != NULL, "");
  5497     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
  5498     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
  5501   // Figure out which arraycopy runtime method to call.
  5502   const char* copyfunc_name = "arraycopy";
  5503   address     copyfunc_addr =
  5504       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
  5505                           disjoint_bases, copyfunc_name, dest_uninitialized);
  5507   // Call it.  Note that the count_ix value is not scaled to a byte-size.
  5508   make_runtime_call(RC_LEAF|RC_NO_FP,
  5509                     OptoRuntime::fast_arraycopy_Type(),
  5510                     copyfunc_addr, copyfunc_name, adr_type,
  5511                     src_start, dest_start, copy_length XTOP);
  5514 //----------------------------inline_reference_get----------------------------
  5516 bool LibraryCallKit::inline_reference_get() {
  5517   const int nargs = 1; // self
  5519   guarantee(java_lang_ref_Reference::referent_offset > 0,
  5520             "should have already been set");
  5522   int referent_offset = java_lang_ref_Reference::referent_offset;
  5524   // Restore the stack and pop off the argument
  5525   _sp += nargs;
  5526   Node *reference_obj = pop();
  5528   // Null check on self without removing any arguments.
  5529   _sp += nargs;
  5530   reference_obj = do_null_check(reference_obj, T_OBJECT);
  5531   _sp -= nargs;;
  5533   if (stopped()) return true;
  5535   Node *adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
  5537   ciInstanceKlass* klass = env()->Object_klass();
  5538   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
  5540   Node* no_ctrl = NULL;
  5541   Node *result = make_load(no_ctrl, adr, object_type, T_OBJECT);
  5543   // Use the pre-barrier to record the value in the referent field
  5544   pre_barrier(false /* do_load */,
  5545               control(),
  5546               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
  5547               result /* pre_val */,
  5548               T_OBJECT);
  5550   push(result);
  5551   return true;

mercurial