src/share/vm/runtime/thread.cpp

Wed, 12 Jan 2011 15:44:16 +0000

author
kevinw
date
Wed, 12 Jan 2011 15:44:16 +0000
changeset 2449
8f8dfba37802
parent 2446
db2b0f8c1cef
child 2482
ccfcb502af3f
permissions
-rw-r--r--

6994753: Implement optional hook to a Java method at VM startup.
Reviewed-by: mchung, acorn

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/javaClasses.hpp"
    28 #include "classfile/systemDictionary.hpp"
    29 #include "classfile/vmSymbols.hpp"
    30 #include "code/scopeDesc.hpp"
    31 #include "compiler/compileBroker.hpp"
    32 #include "interpreter/interpreter.hpp"
    33 #include "interpreter/linkResolver.hpp"
    34 #include "jvmtifiles/jvmtiEnv.hpp"
    35 #include "memory/oopFactory.hpp"
    36 #include "memory/universe.inline.hpp"
    37 #include "oops/instanceKlass.hpp"
    38 #include "oops/objArrayOop.hpp"
    39 #include "oops/oop.inline.hpp"
    40 #include "oops/symbolOop.hpp"
    41 #include "prims/jvm_misc.hpp"
    42 #include "prims/jvmtiExport.hpp"
    43 #include "prims/jvmtiThreadState.hpp"
    44 #include "prims/privilegedStack.hpp"
    45 #include "runtime/aprofiler.hpp"
    46 #include "runtime/arguments.hpp"
    47 #include "runtime/biasedLocking.hpp"
    48 #include "runtime/deoptimization.hpp"
    49 #include "runtime/fprofiler.hpp"
    50 #include "runtime/frame.inline.hpp"
    51 #include "runtime/init.hpp"
    52 #include "runtime/interfaceSupport.hpp"
    53 #include "runtime/java.hpp"
    54 #include "runtime/javaCalls.hpp"
    55 #include "runtime/jniPeriodicChecker.hpp"
    56 #include "runtime/memprofiler.hpp"
    57 #include "runtime/mutexLocker.hpp"
    58 #include "runtime/objectMonitor.hpp"
    59 #include "runtime/osThread.hpp"
    60 #include "runtime/safepoint.hpp"
    61 #include "runtime/sharedRuntime.hpp"
    62 #include "runtime/statSampler.hpp"
    63 #include "runtime/stubRoutines.hpp"
    64 #include "runtime/task.hpp"
    65 #include "runtime/threadCritical.hpp"
    66 #include "runtime/threadLocalStorage.hpp"
    67 #include "runtime/vframe.hpp"
    68 #include "runtime/vframeArray.hpp"
    69 #include "runtime/vframe_hp.hpp"
    70 #include "runtime/vmThread.hpp"
    71 #include "runtime/vm_operations.hpp"
    72 #include "services/attachListener.hpp"
    73 #include "services/management.hpp"
    74 #include "services/threadService.hpp"
    75 #include "utilities/defaultStream.hpp"
    76 #include "utilities/dtrace.hpp"
    77 #include "utilities/events.hpp"
    78 #include "utilities/preserveException.hpp"
    79 #ifdef TARGET_OS_FAMILY_linux
    80 # include "os_linux.inline.hpp"
    81 # include "thread_linux.inline.hpp"
    82 #endif
    83 #ifdef TARGET_OS_FAMILY_solaris
    84 # include "os_solaris.inline.hpp"
    85 # include "thread_solaris.inline.hpp"
    86 #endif
    87 #ifdef TARGET_OS_FAMILY_windows
    88 # include "os_windows.inline.hpp"
    89 # include "thread_windows.inline.hpp"
    90 #endif
    91 #ifndef SERIALGC
    92 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
    93 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    94 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
    95 #endif
    96 #ifdef COMPILER1
    97 #include "c1/c1_Compiler.hpp"
    98 #endif
    99 #ifdef COMPILER2
   100 #include "opto/c2compiler.hpp"
   101 #include "opto/idealGraphPrinter.hpp"
   102 #endif
   104 #ifdef DTRACE_ENABLED
   106 // Only bother with this argument setup if dtrace is available
   108 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
   109 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
   110 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
   111   intptr_t, intptr_t, bool);
   112 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
   113   intptr_t, intptr_t, bool);
   115 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
   116   {                                                                        \
   117     ResourceMark rm(this);                                                 \
   118     int len = 0;                                                           \
   119     const char* name = (javathread)->get_thread_name();                    \
   120     len = strlen(name);                                                    \
   121     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
   122       name, len,                                                           \
   123       java_lang_Thread::thread_id((javathread)->threadObj()),              \
   124       (javathread)->osthread()->thread_id(),                               \
   125       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
   126   }
   128 #else //  ndef DTRACE_ENABLED
   130 #define DTRACE_THREAD_PROBE(probe, javathread)
   132 #endif // ndef DTRACE_ENABLED
   134 // Class hierarchy
   135 // - Thread
   136 //   - VMThread
   137 //   - WatcherThread
   138 //   - ConcurrentMarkSweepThread
   139 //   - JavaThread
   140 //     - CompilerThread
   142 // ======= Thread ========
   144 // Support for forcing alignment of thread objects for biased locking
   145 void* Thread::operator new(size_t size) {
   146   if (UseBiasedLocking) {
   147     const int alignment = markOopDesc::biased_lock_alignment;
   148     size_t aligned_size = size + (alignment - sizeof(intptr_t));
   149     void* real_malloc_addr = CHeapObj::operator new(aligned_size);
   150     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
   151     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
   152            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
   153            "JavaThread alignment code overflowed allocated storage");
   154     if (TraceBiasedLocking) {
   155       if (aligned_addr != real_malloc_addr)
   156         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
   157                       real_malloc_addr, aligned_addr);
   158     }
   159     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
   160     return aligned_addr;
   161   } else {
   162     return CHeapObj::operator new(size);
   163   }
   164 }
   166 void Thread::operator delete(void* p) {
   167   if (UseBiasedLocking) {
   168     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
   169     CHeapObj::operator delete(real_malloc_addr);
   170   } else {
   171     CHeapObj::operator delete(p);
   172   }
   173 }
   176 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
   177 // JavaThread
   180 Thread::Thread() {
   181   // stack and get_thread
   182   set_stack_base(NULL);
   183   set_stack_size(0);
   184   set_self_raw_id(0);
   185   set_lgrp_id(-1);
   187   // allocated data structures
   188   set_osthread(NULL);
   189   set_resource_area(new ResourceArea());
   190   set_handle_area(new HandleArea(NULL));
   191   set_active_handles(NULL);
   192   set_free_handle_block(NULL);
   193   set_last_handle_mark(NULL);
   195   // This initial value ==> never claimed.
   196   _oops_do_parity = 0;
   198   // the handle mark links itself to last_handle_mark
   199   new HandleMark(this);
   201   // plain initialization
   202   debug_only(_owned_locks = NULL;)
   203   debug_only(_allow_allocation_count = 0;)
   204   NOT_PRODUCT(_allow_safepoint_count = 0;)
   205   NOT_PRODUCT(_skip_gcalot = false;)
   206   CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
   207   _jvmti_env_iteration_count = 0;
   208   set_allocated_bytes(0);
   209   _vm_operation_started_count = 0;
   210   _vm_operation_completed_count = 0;
   211   _current_pending_monitor = NULL;
   212   _current_pending_monitor_is_from_java = true;
   213   _current_waiting_monitor = NULL;
   214   _num_nested_signal = 0;
   215   omFreeList = NULL ;
   216   omFreeCount = 0 ;
   217   omFreeProvision = 32 ;
   218   omInUseList = NULL ;
   219   omInUseCount = 0 ;
   221   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
   222   _suspend_flags = 0;
   224   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
   225   _hashStateX = os::random() ;
   226   _hashStateY = 842502087 ;
   227   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
   228   _hashStateW = 273326509 ;
   230   _OnTrap   = 0 ;
   231   _schedctl = NULL ;
   232   _Stalled  = 0 ;
   233   _TypeTag  = 0x2BAD ;
   235   // Many of the following fields are effectively final - immutable
   236   // Note that nascent threads can't use the Native Monitor-Mutex
   237   // construct until the _MutexEvent is initialized ...
   238   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
   239   // we might instead use a stack of ParkEvents that we could provision on-demand.
   240   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
   241   // and ::Release()
   242   _ParkEvent   = ParkEvent::Allocate (this) ;
   243   _SleepEvent  = ParkEvent::Allocate (this) ;
   244   _MutexEvent  = ParkEvent::Allocate (this) ;
   245   _MuxEvent    = ParkEvent::Allocate (this) ;
   247 #ifdef CHECK_UNHANDLED_OOPS
   248   if (CheckUnhandledOops) {
   249     _unhandled_oops = new UnhandledOops(this);
   250   }
   251 #endif // CHECK_UNHANDLED_OOPS
   252 #ifdef ASSERT
   253   if (UseBiasedLocking) {
   254     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
   255     assert(this == _real_malloc_address ||
   256            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
   257            "bug in forced alignment of thread objects");
   258   }
   259 #endif /* ASSERT */
   260 }
   262 void Thread::initialize_thread_local_storage() {
   263   // Note: Make sure this method only calls
   264   // non-blocking operations. Otherwise, it might not work
   265   // with the thread-startup/safepoint interaction.
   267   // During Java thread startup, safepoint code should allow this
   268   // method to complete because it may need to allocate memory to
   269   // store information for the new thread.
   271   // initialize structure dependent on thread local storage
   272   ThreadLocalStorage::set_thread(this);
   274   // set up any platform-specific state.
   275   os::initialize_thread();
   277 }
   279 void Thread::record_stack_base_and_size() {
   280   set_stack_base(os::current_stack_base());
   281   set_stack_size(os::current_stack_size());
   282 }
   285 Thread::~Thread() {
   286   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
   287   ObjectSynchronizer::omFlush (this) ;
   289   // deallocate data structures
   290   delete resource_area();
   291   // since the handle marks are using the handle area, we have to deallocated the root
   292   // handle mark before deallocating the thread's handle area,
   293   assert(last_handle_mark() != NULL, "check we have an element");
   294   delete last_handle_mark();
   295   assert(last_handle_mark() == NULL, "check we have reached the end");
   297   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
   298   // We NULL out the fields for good hygiene.
   299   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
   300   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
   301   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
   302   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
   304   delete handle_area();
   306   // osthread() can be NULL, if creation of thread failed.
   307   if (osthread() != NULL) os::free_thread(osthread());
   309   delete _SR_lock;
   311   // clear thread local storage if the Thread is deleting itself
   312   if (this == Thread::current()) {
   313     ThreadLocalStorage::set_thread(NULL);
   314   } else {
   315     // In the case where we're not the current thread, invalidate all the
   316     // caches in case some code tries to get the current thread or the
   317     // thread that was destroyed, and gets stale information.
   318     ThreadLocalStorage::invalidate_all();
   319   }
   320   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
   321 }
   323 // NOTE: dummy function for assertion purpose.
   324 void Thread::run() {
   325   ShouldNotReachHere();
   326 }
   328 #ifdef ASSERT
   329 // Private method to check for dangling thread pointer
   330 void check_for_dangling_thread_pointer(Thread *thread) {
   331  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
   332          "possibility of dangling Thread pointer");
   333 }
   334 #endif
   337 #ifndef PRODUCT
   338 // Tracing method for basic thread operations
   339 void Thread::trace(const char* msg, const Thread* const thread) {
   340   if (!TraceThreadEvents) return;
   341   ResourceMark rm;
   342   ThreadCritical tc;
   343   const char *name = "non-Java thread";
   344   int prio = -1;
   345   if (thread->is_Java_thread()
   346       && !thread->is_Compiler_thread()) {
   347     // The Threads_lock must be held to get information about
   348     // this thread but may not be in some situations when
   349     // tracing  thread events.
   350     bool release_Threads_lock = false;
   351     if (!Threads_lock->owned_by_self()) {
   352       Threads_lock->lock();
   353       release_Threads_lock = true;
   354     }
   355     JavaThread* jt = (JavaThread *)thread;
   356     name = (char *)jt->get_thread_name();
   357     oop thread_oop = jt->threadObj();
   358     if (thread_oop != NULL) {
   359       prio = java_lang_Thread::priority(thread_oop);
   360     }
   361     if (release_Threads_lock) {
   362       Threads_lock->unlock();
   363     }
   364   }
   365   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
   366 }
   367 #endif
   370 ThreadPriority Thread::get_priority(const Thread* const thread) {
   371   trace("get priority", thread);
   372   ThreadPriority priority;
   373   // Can return an error!
   374   (void)os::get_priority(thread, priority);
   375   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
   376   return priority;
   377 }
   379 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
   380   trace("set priority", thread);
   381   debug_only(check_for_dangling_thread_pointer(thread);)
   382   // Can return an error!
   383   (void)os::set_priority(thread, priority);
   384 }
   387 void Thread::start(Thread* thread) {
   388   trace("start", thread);
   389   // Start is different from resume in that its safety is guaranteed by context or
   390   // being called from a Java method synchronized on the Thread object.
   391   if (!DisableStartThread) {
   392     if (thread->is_Java_thread()) {
   393       // Initialize the thread state to RUNNABLE before starting this thread.
   394       // Can not set it after the thread started because we do not know the
   395       // exact thread state at that time. It could be in MONITOR_WAIT or
   396       // in SLEEPING or some other state.
   397       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
   398                                           java_lang_Thread::RUNNABLE);
   399     }
   400     os::start_thread(thread);
   401   }
   402 }
   404 // Enqueue a VM_Operation to do the job for us - sometime later
   405 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
   406   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
   407   VMThread::execute(vm_stop);
   408 }
   411 //
   412 // Check if an external suspend request has completed (or has been
   413 // cancelled). Returns true if the thread is externally suspended and
   414 // false otherwise.
   415 //
   416 // The bits parameter returns information about the code path through
   417 // the routine. Useful for debugging:
   418 //
   419 // set in is_ext_suspend_completed():
   420 // 0x00000001 - routine was entered
   421 // 0x00000010 - routine return false at end
   422 // 0x00000100 - thread exited (return false)
   423 // 0x00000200 - suspend request cancelled (return false)
   424 // 0x00000400 - thread suspended (return true)
   425 // 0x00001000 - thread is in a suspend equivalent state (return true)
   426 // 0x00002000 - thread is native and walkable (return true)
   427 // 0x00004000 - thread is native_trans and walkable (needed retry)
   428 //
   429 // set in wait_for_ext_suspend_completion():
   430 // 0x00010000 - routine was entered
   431 // 0x00020000 - suspend request cancelled before loop (return false)
   432 // 0x00040000 - thread suspended before loop (return true)
   433 // 0x00080000 - suspend request cancelled in loop (return false)
   434 // 0x00100000 - thread suspended in loop (return true)
   435 // 0x00200000 - suspend not completed during retry loop (return false)
   436 //
   438 // Helper class for tracing suspend wait debug bits.
   439 //
   440 // 0x00000100 indicates that the target thread exited before it could
   441 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
   442 // 0x00080000 each indicate a cancelled suspend request so they don't
   443 // count as wait failures either.
   444 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
   446 class TraceSuspendDebugBits : public StackObj {
   447  private:
   448   JavaThread * jt;
   449   bool         is_wait;
   450   bool         called_by_wait;  // meaningful when !is_wait
   451   uint32_t *   bits;
   453  public:
   454   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
   455                         uint32_t *_bits) {
   456     jt             = _jt;
   457     is_wait        = _is_wait;
   458     called_by_wait = _called_by_wait;
   459     bits           = _bits;
   460   }
   462   ~TraceSuspendDebugBits() {
   463     if (!is_wait) {
   464 #if 1
   465       // By default, don't trace bits for is_ext_suspend_completed() calls.
   466       // That trace is very chatty.
   467       return;
   468 #else
   469       if (!called_by_wait) {
   470         // If tracing for is_ext_suspend_completed() is enabled, then only
   471         // trace calls to it from wait_for_ext_suspend_completion()
   472         return;
   473       }
   474 #endif
   475     }
   477     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
   478       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
   479         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
   480         ResourceMark rm;
   482         tty->print_cr(
   483             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
   484             jt->get_thread_name(), *bits);
   486         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
   487       }
   488     }
   489   }
   490 };
   491 #undef DEBUG_FALSE_BITS
   494 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
   495   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
   497   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
   498   bool do_trans_retry;           // flag to force the retry
   500   *bits |= 0x00000001;
   502   do {
   503     do_trans_retry = false;
   505     if (is_exiting()) {
   506       // Thread is in the process of exiting. This is always checked
   507       // first to reduce the risk of dereferencing a freed JavaThread.
   508       *bits |= 0x00000100;
   509       return false;
   510     }
   512     if (!is_external_suspend()) {
   513       // Suspend request is cancelled. This is always checked before
   514       // is_ext_suspended() to reduce the risk of a rogue resume
   515       // confusing the thread that made the suspend request.
   516       *bits |= 0x00000200;
   517       return false;
   518     }
   520     if (is_ext_suspended()) {
   521       // thread is suspended
   522       *bits |= 0x00000400;
   523       return true;
   524     }
   526     // Now that we no longer do hard suspends of threads running
   527     // native code, the target thread can be changing thread state
   528     // while we are in this routine:
   529     //
   530     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
   531     //
   532     // We save a copy of the thread state as observed at this moment
   533     // and make our decision about suspend completeness based on the
   534     // copy. This closes the race where the thread state is seen as
   535     // _thread_in_native_trans in the if-thread_blocked check, but is
   536     // seen as _thread_blocked in if-thread_in_native_trans check.
   537     JavaThreadState save_state = thread_state();
   539     if (save_state == _thread_blocked && is_suspend_equivalent()) {
   540       // If the thread's state is _thread_blocked and this blocking
   541       // condition is known to be equivalent to a suspend, then we can
   542       // consider the thread to be externally suspended. This means that
   543       // the code that sets _thread_blocked has been modified to do
   544       // self-suspension if the blocking condition releases. We also
   545       // used to check for CONDVAR_WAIT here, but that is now covered by
   546       // the _thread_blocked with self-suspension check.
   547       //
   548       // Return true since we wouldn't be here unless there was still an
   549       // external suspend request.
   550       *bits |= 0x00001000;
   551       return true;
   552     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
   553       // Threads running native code will self-suspend on native==>VM/Java
   554       // transitions. If its stack is walkable (should always be the case
   555       // unless this function is called before the actual java_suspend()
   556       // call), then the wait is done.
   557       *bits |= 0x00002000;
   558       return true;
   559     } else if (!called_by_wait && !did_trans_retry &&
   560                save_state == _thread_in_native_trans &&
   561                frame_anchor()->walkable()) {
   562       // The thread is transitioning from thread_in_native to another
   563       // thread state. check_safepoint_and_suspend_for_native_trans()
   564       // will force the thread to self-suspend. If it hasn't gotten
   565       // there yet we may have caught the thread in-between the native
   566       // code check above and the self-suspend. Lucky us. If we were
   567       // called by wait_for_ext_suspend_completion(), then it
   568       // will be doing the retries so we don't have to.
   569       //
   570       // Since we use the saved thread state in the if-statement above,
   571       // there is a chance that the thread has already transitioned to
   572       // _thread_blocked by the time we get here. In that case, we will
   573       // make a single unnecessary pass through the logic below. This
   574       // doesn't hurt anything since we still do the trans retry.
   576       *bits |= 0x00004000;
   578       // Once the thread leaves thread_in_native_trans for another
   579       // thread state, we break out of this retry loop. We shouldn't
   580       // need this flag to prevent us from getting back here, but
   581       // sometimes paranoia is good.
   582       did_trans_retry = true;
   584       // We wait for the thread to transition to a more usable state.
   585       for (int i = 1; i <= SuspendRetryCount; i++) {
   586         // We used to do an "os::yield_all(i)" call here with the intention
   587         // that yielding would increase on each retry. However, the parameter
   588         // is ignored on Linux which means the yield didn't scale up. Waiting
   589         // on the SR_lock below provides a much more predictable scale up for
   590         // the delay. It also provides a simple/direct point to check for any
   591         // safepoint requests from the VMThread
   593         // temporarily drops SR_lock while doing wait with safepoint check
   594         // (if we're a JavaThread - the WatcherThread can also call this)
   595         // and increase delay with each retry
   596         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
   598         // check the actual thread state instead of what we saved above
   599         if (thread_state() != _thread_in_native_trans) {
   600           // the thread has transitioned to another thread state so
   601           // try all the checks (except this one) one more time.
   602           do_trans_retry = true;
   603           break;
   604         }
   605       } // end retry loop
   608     }
   609   } while (do_trans_retry);
   611   *bits |= 0x00000010;
   612   return false;
   613 }
   615 //
   616 // Wait for an external suspend request to complete (or be cancelled).
   617 // Returns true if the thread is externally suspended and false otherwise.
   618 //
   619 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
   620        uint32_t *bits) {
   621   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
   622                              false /* !called_by_wait */, bits);
   624   // local flag copies to minimize SR_lock hold time
   625   bool is_suspended;
   626   bool pending;
   627   uint32_t reset_bits;
   629   // set a marker so is_ext_suspend_completed() knows we are the caller
   630   *bits |= 0x00010000;
   632   // We use reset_bits to reinitialize the bits value at the top of
   633   // each retry loop. This allows the caller to make use of any
   634   // unused bits for their own marking purposes.
   635   reset_bits = *bits;
   637   {
   638     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
   639     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
   640                                             delay, bits);
   641     pending = is_external_suspend();
   642   }
   643   // must release SR_lock to allow suspension to complete
   645   if (!pending) {
   646     // A cancelled suspend request is the only false return from
   647     // is_ext_suspend_completed() that keeps us from entering the
   648     // retry loop.
   649     *bits |= 0x00020000;
   650     return false;
   651   }
   653   if (is_suspended) {
   654     *bits |= 0x00040000;
   655     return true;
   656   }
   658   for (int i = 1; i <= retries; i++) {
   659     *bits = reset_bits;  // reinit to only track last retry
   661     // We used to do an "os::yield_all(i)" call here with the intention
   662     // that yielding would increase on each retry. However, the parameter
   663     // is ignored on Linux which means the yield didn't scale up. Waiting
   664     // on the SR_lock below provides a much more predictable scale up for
   665     // the delay. It also provides a simple/direct point to check for any
   666     // safepoint requests from the VMThread
   668     {
   669       MutexLocker ml(SR_lock());
   670       // wait with safepoint check (if we're a JavaThread - the WatcherThread
   671       // can also call this)  and increase delay with each retry
   672       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
   674       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
   675                                               delay, bits);
   677       // It is possible for the external suspend request to be cancelled
   678       // (by a resume) before the actual suspend operation is completed.
   679       // Refresh our local copy to see if we still need to wait.
   680       pending = is_external_suspend();
   681     }
   683     if (!pending) {
   684       // A cancelled suspend request is the only false return from
   685       // is_ext_suspend_completed() that keeps us from staying in the
   686       // retry loop.
   687       *bits |= 0x00080000;
   688       return false;
   689     }
   691     if (is_suspended) {
   692       *bits |= 0x00100000;
   693       return true;
   694     }
   695   } // end retry loop
   697   // thread did not suspend after all our retries
   698   *bits |= 0x00200000;
   699   return false;
   700 }
   702 #ifndef PRODUCT
   703 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
   705   // This should not need to be atomic as the only way for simultaneous
   706   // updates is via interrupts. Even then this should be rare or non-existant
   707   // and we don't care that much anyway.
   709   int index = _jmp_ring_index;
   710   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
   711   _jmp_ring[index]._target = (intptr_t) target;
   712   _jmp_ring[index]._instruction = (intptr_t) instr;
   713   _jmp_ring[index]._file = file;
   714   _jmp_ring[index]._line = line;
   715 }
   716 #endif /* PRODUCT */
   718 // Called by flat profiler
   719 // Callers have already called wait_for_ext_suspend_completion
   720 // The assertion for that is currently too complex to put here:
   721 bool JavaThread::profile_last_Java_frame(frame* _fr) {
   722   bool gotframe = false;
   723   // self suspension saves needed state.
   724   if (has_last_Java_frame() && _anchor.walkable()) {
   725      *_fr = pd_last_frame();
   726      gotframe = true;
   727   }
   728   return gotframe;
   729 }
   731 void Thread::interrupt(Thread* thread) {
   732   trace("interrupt", thread);
   733   debug_only(check_for_dangling_thread_pointer(thread);)
   734   os::interrupt(thread);
   735 }
   737 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
   738   trace("is_interrupted", thread);
   739   debug_only(check_for_dangling_thread_pointer(thread);)
   740   // Note:  If clear_interrupted==false, this simply fetches and
   741   // returns the value of the field osthread()->interrupted().
   742   return os::is_interrupted(thread, clear_interrupted);
   743 }
   746 // GC Support
   747 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
   748   jint thread_parity = _oops_do_parity;
   749   if (thread_parity != strong_roots_parity) {
   750     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
   751     if (res == thread_parity) return true;
   752     else {
   753       guarantee(res == strong_roots_parity, "Or else what?");
   754       assert(SharedHeap::heap()->n_par_threads() > 0,
   755              "Should only fail when parallel.");
   756       return false;
   757     }
   758   }
   759   assert(SharedHeap::heap()->n_par_threads() > 0,
   760          "Should only fail when parallel.");
   761   return false;
   762 }
   764 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
   765   active_handles()->oops_do(f);
   766   // Do oop for ThreadShadow
   767   f->do_oop((oop*)&_pending_exception);
   768   handle_area()->oops_do(f);
   769 }
   771 void Thread::nmethods_do(CodeBlobClosure* cf) {
   772   // no nmethods in a generic thread...
   773 }
   775 void Thread::print_on(outputStream* st) const {
   776   // get_priority assumes osthread initialized
   777   if (osthread() != NULL) {
   778     st->print("prio=%d tid=" INTPTR_FORMAT " ", get_priority(this), this);
   779     osthread()->print_on(st);
   780   }
   781   debug_only(if (WizardMode) print_owned_locks_on(st);)
   782 }
   784 // Thread::print_on_error() is called by fatal error handler. Don't use
   785 // any lock or allocate memory.
   786 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
   787   if      (is_VM_thread())                  st->print("VMThread");
   788   else if (is_Compiler_thread())            st->print("CompilerThread");
   789   else if (is_Java_thread())                st->print("JavaThread");
   790   else if (is_GC_task_thread())             st->print("GCTaskThread");
   791   else if (is_Watcher_thread())             st->print("WatcherThread");
   792   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
   793   else st->print("Thread");
   795   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
   796             _stack_base - _stack_size, _stack_base);
   798   if (osthread()) {
   799     st->print(" [id=%d]", osthread()->thread_id());
   800   }
   801 }
   803 #ifdef ASSERT
   804 void Thread::print_owned_locks_on(outputStream* st) const {
   805   Monitor *cur = _owned_locks;
   806   if (cur == NULL) {
   807     st->print(" (no locks) ");
   808   } else {
   809     st->print_cr(" Locks owned:");
   810     while(cur) {
   811       cur->print_on(st);
   812       cur = cur->next();
   813     }
   814   }
   815 }
   817 static int ref_use_count  = 0;
   819 bool Thread::owns_locks_but_compiled_lock() const {
   820   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
   821     if (cur != Compile_lock) return true;
   822   }
   823   return false;
   824 }
   827 #endif
   829 #ifndef PRODUCT
   831 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
   832 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
   833 // no threads which allow_vm_block's are held
   834 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
   835     // Check if current thread is allowed to block at a safepoint
   836     if (!(_allow_safepoint_count == 0))
   837       fatal("Possible safepoint reached by thread that does not allow it");
   838     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
   839       fatal("LEAF method calling lock?");
   840     }
   842 #ifdef ASSERT
   843     if (potential_vm_operation && is_Java_thread()
   844         && !Universe::is_bootstrapping()) {
   845       // Make sure we do not hold any locks that the VM thread also uses.
   846       // This could potentially lead to deadlocks
   847       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
   848         // Threads_lock is special, since the safepoint synchronization will not start before this is
   849         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
   850         // since it is used to transfer control between JavaThreads and the VMThread
   851         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
   852         if ( (cur->allow_vm_block() &&
   853               cur != Threads_lock &&
   854               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
   855               cur != VMOperationRequest_lock &&
   856               cur != VMOperationQueue_lock) ||
   857               cur->rank() == Mutex::special) {
   858           warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
   859         }
   860       }
   861     }
   863     if (GCALotAtAllSafepoints) {
   864       // We could enter a safepoint here and thus have a gc
   865       InterfaceSupport::check_gc_alot();
   866     }
   867 #endif
   868 }
   869 #endif
   871 bool Thread::is_in_stack(address adr) const {
   872   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
   873   address end = os::current_stack_pointer();
   874   if (stack_base() >= adr && adr >= end) return true;
   876   return false;
   877 }
   880 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
   881 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
   882 // used for compilation in the future. If that change is made, the need for these methods
   883 // should be revisited, and they should be removed if possible.
   885 bool Thread::is_lock_owned(address adr) const {
   886   return on_local_stack(adr);
   887 }
   889 bool Thread::set_as_starting_thread() {
   890  // NOTE: this must be called inside the main thread.
   891   return os::create_main_thread((JavaThread*)this);
   892 }
   894 static void initialize_class(symbolHandle class_name, TRAPS) {
   895   klassOop klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
   896   instanceKlass::cast(klass)->initialize(CHECK);
   897 }
   900 // Creates the initial ThreadGroup
   901 static Handle create_initial_thread_group(TRAPS) {
   902   klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_ThreadGroup(), true, CHECK_NH);
   903   instanceKlassHandle klass (THREAD, k);
   905   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
   906   {
   907     JavaValue result(T_VOID);
   908     JavaCalls::call_special(&result,
   909                             system_instance,
   910                             klass,
   911                             vmSymbolHandles::object_initializer_name(),
   912                             vmSymbolHandles::void_method_signature(),
   913                             CHECK_NH);
   914   }
   915   Universe::set_system_thread_group(system_instance());
   917   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
   918   {
   919     JavaValue result(T_VOID);
   920     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
   921     JavaCalls::call_special(&result,
   922                             main_instance,
   923                             klass,
   924                             vmSymbolHandles::object_initializer_name(),
   925                             vmSymbolHandles::threadgroup_string_void_signature(),
   926                             system_instance,
   927                             string,
   928                             CHECK_NH);
   929   }
   930   return main_instance;
   931 }
   933 // Creates the initial Thread
   934 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
   935   klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_Thread(), true, CHECK_NULL);
   936   instanceKlassHandle klass (THREAD, k);
   937   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
   939   java_lang_Thread::set_thread(thread_oop(), thread);
   940   java_lang_Thread::set_priority(thread_oop(), NormPriority);
   941   thread->set_threadObj(thread_oop());
   943   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
   945   JavaValue result(T_VOID);
   946   JavaCalls::call_special(&result, thread_oop,
   947                                    klass,
   948                                    vmSymbolHandles::object_initializer_name(),
   949                                    vmSymbolHandles::threadgroup_string_void_signature(),
   950                                    thread_group,
   951                                    string,
   952                                    CHECK_NULL);
   953   return thread_oop();
   954 }
   956 static void call_initializeSystemClass(TRAPS) {
   957   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_System(), true, CHECK);
   958   instanceKlassHandle klass (THREAD, k);
   960   JavaValue result(T_VOID);
   961   JavaCalls::call_static(&result, klass, vmSymbolHandles::initializeSystemClass_name(),
   962                                          vmSymbolHandles::void_method_signature(), CHECK);
   963 }
   965 #ifdef KERNEL
   966 static void set_jkernel_boot_classloader_hook(TRAPS) {
   967   klassOop k = SystemDictionary::sun_jkernel_DownloadManager_klass();
   968   instanceKlassHandle klass (THREAD, k);
   970   if (k == NULL) {
   971     // sun.jkernel.DownloadManager may not present in the JDK; just return
   972     return;
   973   }
   975   JavaValue result(T_VOID);
   976   JavaCalls::call_static(&result, klass, vmSymbolHandles::setBootClassLoaderHook_name(),
   977                                          vmSymbolHandles::void_method_signature(), CHECK);
   978 }
   979 #endif // KERNEL
   981 // General purpose hook into Java code, run once when the VM is initialized.
   982 // The Java library method itself may be changed independently from the VM.
   983 static void call_postVMInitHook(TRAPS) {
   984   klassOop k = SystemDictionary::sun_misc_PostVMInitHook_klass();
   985   instanceKlassHandle klass (THREAD, k);
   986   if (klass.not_null()) {
   987     JavaValue result(T_VOID);
   988     JavaCalls::call_static(&result, klass, vmSymbolHandles::run_method_name(),
   989                                            vmSymbolHandles::void_method_signature(),
   990                                            CHECK);
   991   }
   992 }
   994 static void reset_vm_info_property(TRAPS) {
   995   // the vm info string
   996   ResourceMark rm(THREAD);
   997   const char *vm_info = VM_Version::vm_info_string();
   999   // java.lang.System class
  1000   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_System(), true, CHECK);
  1001   instanceKlassHandle klass (THREAD, k);
  1003   // setProperty arguments
  1004   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
  1005   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
  1007   // return value
  1008   JavaValue r(T_OBJECT);
  1010   // public static String setProperty(String key, String value);
  1011   JavaCalls::call_static(&r,
  1012                          klass,
  1013                          vmSymbolHandles::setProperty_name(),
  1014                          vmSymbolHandles::string_string_string_signature(),
  1015                          key_str,
  1016                          value_str,
  1017                          CHECK);
  1021 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
  1022   assert(thread_group.not_null(), "thread group should be specified");
  1023   assert(threadObj() == NULL, "should only create Java thread object once");
  1025   klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_Thread(), true, CHECK);
  1026   instanceKlassHandle klass (THREAD, k);
  1027   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
  1029   java_lang_Thread::set_thread(thread_oop(), this);
  1030   java_lang_Thread::set_priority(thread_oop(), NormPriority);
  1031   set_threadObj(thread_oop());
  1033   JavaValue result(T_VOID);
  1034   if (thread_name != NULL) {
  1035     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
  1036     // Thread gets assigned specified name and null target
  1037     JavaCalls::call_special(&result,
  1038                             thread_oop,
  1039                             klass,
  1040                             vmSymbolHandles::object_initializer_name(),
  1041                             vmSymbolHandles::threadgroup_string_void_signature(),
  1042                             thread_group, // Argument 1
  1043                             name,         // Argument 2
  1044                             THREAD);
  1045   } else {
  1046     // Thread gets assigned name "Thread-nnn" and null target
  1047     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
  1048     JavaCalls::call_special(&result,
  1049                             thread_oop,
  1050                             klass,
  1051                             vmSymbolHandles::object_initializer_name(),
  1052                             vmSymbolHandles::threadgroup_runnable_void_signature(),
  1053                             thread_group, // Argument 1
  1054                             Handle(),     // Argument 2
  1055                             THREAD);
  1059   if (daemon) {
  1060       java_lang_Thread::set_daemon(thread_oop());
  1063   if (HAS_PENDING_EXCEPTION) {
  1064     return;
  1067   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
  1068   Handle threadObj(this, this->threadObj());
  1070   JavaCalls::call_special(&result,
  1071                          thread_group,
  1072                          group,
  1073                          vmSymbolHandles::add_method_name(),
  1074                          vmSymbolHandles::thread_void_signature(),
  1075                          threadObj,          // Arg 1
  1076                          THREAD);
  1081 // NamedThread --  non-JavaThread subclasses with multiple
  1082 // uniquely named instances should derive from this.
  1083 NamedThread::NamedThread() : Thread() {
  1084   _name = NULL;
  1085   _processed_thread = NULL;
  1088 NamedThread::~NamedThread() {
  1089   if (_name != NULL) {
  1090     FREE_C_HEAP_ARRAY(char, _name);
  1091     _name = NULL;
  1095 void NamedThread::set_name(const char* format, ...) {
  1096   guarantee(_name == NULL, "Only get to set name once.");
  1097   _name = NEW_C_HEAP_ARRAY(char, max_name_len);
  1098   guarantee(_name != NULL, "alloc failure");
  1099   va_list ap;
  1100   va_start(ap, format);
  1101   jio_vsnprintf(_name, max_name_len, format, ap);
  1102   va_end(ap);
  1105 // ======= WatcherThread ========
  1107 // The watcher thread exists to simulate timer interrupts.  It should
  1108 // be replaced by an abstraction over whatever native support for
  1109 // timer interrupts exists on the platform.
  1111 WatcherThread* WatcherThread::_watcher_thread   = NULL;
  1112 volatile bool  WatcherThread::_should_terminate = false;
  1114 WatcherThread::WatcherThread() : Thread() {
  1115   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
  1116   if (os::create_thread(this, os::watcher_thread)) {
  1117     _watcher_thread = this;
  1119     // Set the watcher thread to the highest OS priority which should not be
  1120     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
  1121     // is created. The only normal thread using this priority is the reference
  1122     // handler thread, which runs for very short intervals only.
  1123     // If the VMThread's priority is not lower than the WatcherThread profiling
  1124     // will be inaccurate.
  1125     os::set_priority(this, MaxPriority);
  1126     if (!DisableStartThread) {
  1127       os::start_thread(this);
  1132 void WatcherThread::run() {
  1133   assert(this == watcher_thread(), "just checking");
  1135   this->record_stack_base_and_size();
  1136   this->initialize_thread_local_storage();
  1137   this->set_active_handles(JNIHandleBlock::allocate_block());
  1138   while(!_should_terminate) {
  1139     assert(watcher_thread() == Thread::current(),  "thread consistency check");
  1140     assert(watcher_thread() == this,  "thread consistency check");
  1142     // Calculate how long it'll be until the next PeriodicTask work
  1143     // should be done, and sleep that amount of time.
  1144     size_t time_to_wait = PeriodicTask::time_to_wait();
  1146     // we expect this to timeout - we only ever get unparked when
  1147     // we should terminate
  1149       OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
  1151       jlong prev_time = os::javaTimeNanos();
  1152       for (;;) {
  1153         int res= _SleepEvent->park(time_to_wait);
  1154         if (res == OS_TIMEOUT || _should_terminate)
  1155           break;
  1156         // spurious wakeup of some kind
  1157         jlong now = os::javaTimeNanos();
  1158         time_to_wait -= (now - prev_time) / 1000000;
  1159         if (time_to_wait <= 0)
  1160           break;
  1161         prev_time = now;
  1165     if (is_error_reported()) {
  1166       // A fatal error has happened, the error handler(VMError::report_and_die)
  1167       // should abort JVM after creating an error log file. However in some
  1168       // rare cases, the error handler itself might deadlock. Here we try to
  1169       // kill JVM if the fatal error handler fails to abort in 2 minutes.
  1170       //
  1171       // This code is in WatcherThread because WatcherThread wakes up
  1172       // periodically so the fatal error handler doesn't need to do anything;
  1173       // also because the WatcherThread is less likely to crash than other
  1174       // threads.
  1176       for (;;) {
  1177         if (!ShowMessageBoxOnError
  1178          && (OnError == NULL || OnError[0] == '\0')
  1179          && Arguments::abort_hook() == NULL) {
  1180              os::sleep(this, 2 * 60 * 1000, false);
  1181              fdStream err(defaultStream::output_fd());
  1182              err.print_raw_cr("# [ timer expired, abort... ]");
  1183              // skip atexit/vm_exit/vm_abort hooks
  1184              os::die();
  1187         // Wake up 5 seconds later, the fatal handler may reset OnError or
  1188         // ShowMessageBoxOnError when it is ready to abort.
  1189         os::sleep(this, 5 * 1000, false);
  1193     PeriodicTask::real_time_tick(time_to_wait);
  1195     // If we have no more tasks left due to dynamic disenrollment,
  1196     // shut down the thread since we don't currently support dynamic enrollment
  1197     if (PeriodicTask::num_tasks() == 0) {
  1198       _should_terminate = true;
  1202   // Signal that it is terminated
  1204     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
  1205     _watcher_thread = NULL;
  1206     Terminator_lock->notify();
  1209   // Thread destructor usually does this..
  1210   ThreadLocalStorage::set_thread(NULL);
  1213 void WatcherThread::start() {
  1214   if (watcher_thread() == NULL) {
  1215     _should_terminate = false;
  1216     // Create the single instance of WatcherThread
  1217     new WatcherThread();
  1221 void WatcherThread::stop() {
  1222   // it is ok to take late safepoints here, if needed
  1223   MutexLocker mu(Terminator_lock);
  1224   _should_terminate = true;
  1225   OrderAccess::fence();  // ensure WatcherThread sees update in main loop
  1227   Thread* watcher = watcher_thread();
  1228   if (watcher != NULL)
  1229     watcher->_SleepEvent->unpark();
  1231   while(watcher_thread() != NULL) {
  1232     // This wait should make safepoint checks, wait without a timeout,
  1233     // and wait as a suspend-equivalent condition.
  1234     //
  1235     // Note: If the FlatProfiler is running, then this thread is waiting
  1236     // for the WatcherThread to terminate and the WatcherThread, via the
  1237     // FlatProfiler task, is waiting for the external suspend request on
  1238     // this thread to complete. wait_for_ext_suspend_completion() will
  1239     // eventually timeout, but that takes time. Making this wait a
  1240     // suspend-equivalent condition solves that timeout problem.
  1241     //
  1242     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
  1243                           Mutex::_as_suspend_equivalent_flag);
  1247 void WatcherThread::print_on(outputStream* st) const {
  1248   st->print("\"%s\" ", name());
  1249   Thread::print_on(st);
  1250   st->cr();
  1253 // ======= JavaThread ========
  1255 // A JavaThread is a normal Java thread
  1257 void JavaThread::initialize() {
  1258   // Initialize fields
  1260   // Set the claimed par_id to -1 (ie not claiming any par_ids)
  1261   set_claimed_par_id(-1);
  1263   set_saved_exception_pc(NULL);
  1264   set_threadObj(NULL);
  1265   _anchor.clear();
  1266   set_entry_point(NULL);
  1267   set_jni_functions(jni_functions());
  1268   set_callee_target(NULL);
  1269   set_vm_result(NULL);
  1270   set_vm_result_2(NULL);
  1271   set_vframe_array_head(NULL);
  1272   set_vframe_array_last(NULL);
  1273   set_deferred_locals(NULL);
  1274   set_deopt_mark(NULL);
  1275   set_deopt_nmethod(NULL);
  1276   clear_must_deopt_id();
  1277   set_monitor_chunks(NULL);
  1278   set_next(NULL);
  1279   set_thread_state(_thread_new);
  1280   _terminated = _not_terminated;
  1281   _privileged_stack_top = NULL;
  1282   _array_for_gc = NULL;
  1283   _suspend_equivalent = false;
  1284   _in_deopt_handler = 0;
  1285   _doing_unsafe_access = false;
  1286   _stack_guard_state = stack_guard_unused;
  1287   _exception_oop = NULL;
  1288   _exception_pc  = 0;
  1289   _exception_handler_pc = 0;
  1290   _exception_stack_size = 0;
  1291   _is_method_handle_return = 0;
  1292   _jvmti_thread_state= NULL;
  1293   _should_post_on_exceptions_flag = JNI_FALSE;
  1294   _jvmti_get_loaded_classes_closure = NULL;
  1295   _interp_only_mode    = 0;
  1296   _special_runtime_exit_condition = _no_async_condition;
  1297   _pending_async_exception = NULL;
  1298   _is_compiling = false;
  1299   _thread_stat = NULL;
  1300   _thread_stat = new ThreadStatistics();
  1301   _blocked_on_compilation = false;
  1302   _jni_active_critical = 0;
  1303   _do_not_unlock_if_synchronized = false;
  1304   _cached_monitor_info = NULL;
  1305   _parker = Parker::Allocate(this) ;
  1307 #ifndef PRODUCT
  1308   _jmp_ring_index = 0;
  1309   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
  1310     record_jump(NULL, NULL, NULL, 0);
  1312 #endif /* PRODUCT */
  1314   set_thread_profiler(NULL);
  1315   if (FlatProfiler::is_active()) {
  1316     // This is where we would decide to either give each thread it's own profiler
  1317     // or use one global one from FlatProfiler,
  1318     // or up to some count of the number of profiled threads, etc.
  1319     ThreadProfiler* pp = new ThreadProfiler();
  1320     pp->engage();
  1321     set_thread_profiler(pp);
  1324   // Setup safepoint state info for this thread
  1325   ThreadSafepointState::create(this);
  1327   debug_only(_java_call_counter = 0);
  1329   // JVMTI PopFrame support
  1330   _popframe_condition = popframe_inactive;
  1331   _popframe_preserved_args = NULL;
  1332   _popframe_preserved_args_size = 0;
  1334   pd_initialize();
  1337 #ifndef SERIALGC
  1338 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
  1339 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
  1340 #endif // !SERIALGC
  1342 JavaThread::JavaThread(bool is_attaching) :
  1343   Thread()
  1344 #ifndef SERIALGC
  1345   , _satb_mark_queue(&_satb_mark_queue_set),
  1346   _dirty_card_queue(&_dirty_card_queue_set)
  1347 #endif // !SERIALGC
  1349   initialize();
  1350   _is_attaching = is_attaching;
  1351   assert(_deferred_card_mark.is_empty(), "Default MemRegion ctor");
  1354 bool JavaThread::reguard_stack(address cur_sp) {
  1355   if (_stack_guard_state != stack_guard_yellow_disabled) {
  1356     return true; // Stack already guarded or guard pages not needed.
  1359   if (register_stack_overflow()) {
  1360     // For those architectures which have separate register and
  1361     // memory stacks, we must check the register stack to see if
  1362     // it has overflowed.
  1363     return false;
  1366   // Java code never executes within the yellow zone: the latter is only
  1367   // there to provoke an exception during stack banging.  If java code
  1368   // is executing there, either StackShadowPages should be larger, or
  1369   // some exception code in c1, c2 or the interpreter isn't unwinding
  1370   // when it should.
  1371   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
  1373   enable_stack_yellow_zone();
  1374   return true;
  1377 bool JavaThread::reguard_stack(void) {
  1378   return reguard_stack(os::current_stack_pointer());
  1382 void JavaThread::block_if_vm_exited() {
  1383   if (_terminated == _vm_exited) {
  1384     // _vm_exited is set at safepoint, and Threads_lock is never released
  1385     // we will block here forever
  1386     Threads_lock->lock_without_safepoint_check();
  1387     ShouldNotReachHere();
  1392 // Remove this ifdef when C1 is ported to the compiler interface.
  1393 static void compiler_thread_entry(JavaThread* thread, TRAPS);
  1395 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
  1396   Thread()
  1397 #ifndef SERIALGC
  1398   , _satb_mark_queue(&_satb_mark_queue_set),
  1399   _dirty_card_queue(&_dirty_card_queue_set)
  1400 #endif // !SERIALGC
  1402   if (TraceThreadEvents) {
  1403     tty->print_cr("creating thread %p", this);
  1405   initialize();
  1406   _is_attaching = false;
  1407   set_entry_point(entry_point);
  1408   // Create the native thread itself.
  1409   // %note runtime_23
  1410   os::ThreadType thr_type = os::java_thread;
  1411   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
  1412                                                      os::java_thread;
  1413   os::create_thread(this, thr_type, stack_sz);
  1415   // The _osthread may be NULL here because we ran out of memory (too many threads active).
  1416   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
  1417   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
  1418   // the exception consists of creating the exception object & initializing it, initialization
  1419   // will leave the VM via a JavaCall and then all locks must be unlocked).
  1420   //
  1421   // The thread is still suspended when we reach here. Thread must be explicit started
  1422   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
  1423   // by calling Threads:add. The reason why this is not done here, is because the thread
  1424   // object must be fully initialized (take a look at JVM_Start)
  1427 JavaThread::~JavaThread() {
  1428   if (TraceThreadEvents) {
  1429       tty->print_cr("terminate thread %p", this);
  1432   // JSR166 -- return the parker to the free list
  1433   Parker::Release(_parker);
  1434   _parker = NULL ;
  1436   // Free any remaining  previous UnrollBlock
  1437   vframeArray* old_array = vframe_array_last();
  1439   if (old_array != NULL) {
  1440     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
  1441     old_array->set_unroll_block(NULL);
  1442     delete old_info;
  1443     delete old_array;
  1446   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
  1447   if (deferred != NULL) {
  1448     // This can only happen if thread is destroyed before deoptimization occurs.
  1449     assert(deferred->length() != 0, "empty array!");
  1450     do {
  1451       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
  1452       deferred->remove_at(0);
  1453       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
  1454       delete dlv;
  1455     } while (deferred->length() != 0);
  1456     delete deferred;
  1459   // All Java related clean up happens in exit
  1460   ThreadSafepointState::destroy(this);
  1461   if (_thread_profiler != NULL) delete _thread_profiler;
  1462   if (_thread_stat != NULL) delete _thread_stat;
  1466 // The first routine called by a new Java thread
  1467 void JavaThread::run() {
  1468   // initialize thread-local alloc buffer related fields
  1469   this->initialize_tlab();
  1471   // used to test validitity of stack trace backs
  1472   this->record_base_of_stack_pointer();
  1474   // Record real stack base and size.
  1475   this->record_stack_base_and_size();
  1477   // Initialize thread local storage; set before calling MutexLocker
  1478   this->initialize_thread_local_storage();
  1480   this->create_stack_guard_pages();
  1482   this->cache_global_variables();
  1484   // Thread is now sufficient initialized to be handled by the safepoint code as being
  1485   // in the VM. Change thread state from _thread_new to _thread_in_vm
  1486   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
  1488   assert(JavaThread::current() == this, "sanity check");
  1489   assert(!Thread::current()->owns_locks(), "sanity check");
  1491   DTRACE_THREAD_PROBE(start, this);
  1493   // This operation might block. We call that after all safepoint checks for a new thread has
  1494   // been completed.
  1495   this->set_active_handles(JNIHandleBlock::allocate_block());
  1497   if (JvmtiExport::should_post_thread_life()) {
  1498     JvmtiExport::post_thread_start(this);
  1501   // We call another function to do the rest so we are sure that the stack addresses used
  1502   // from there will be lower than the stack base just computed
  1503   thread_main_inner();
  1505   // Note, thread is no longer valid at this point!
  1509 void JavaThread::thread_main_inner() {
  1510   assert(JavaThread::current() == this, "sanity check");
  1511   assert(this->threadObj() != NULL, "just checking");
  1513   // Execute thread entry point. If this thread is being asked to restart,
  1514   // or has been stopped before starting, do not reexecute entry point.
  1515   // Note: Due to JVM_StopThread we can have pending exceptions already!
  1516   if (!this->has_pending_exception() && !java_lang_Thread::is_stillborn(this->threadObj())) {
  1517     // enter the thread's entry point only if we have no pending exceptions
  1518     HandleMark hm(this);
  1519     this->entry_point()(this, this);
  1522   DTRACE_THREAD_PROBE(stop, this);
  1524   this->exit(false);
  1525   delete this;
  1529 static void ensure_join(JavaThread* thread) {
  1530   // We do not need to grap the Threads_lock, since we are operating on ourself.
  1531   Handle threadObj(thread, thread->threadObj());
  1532   assert(threadObj.not_null(), "java thread object must exist");
  1533   ObjectLocker lock(threadObj, thread);
  1534   // Ignore pending exception (ThreadDeath), since we are exiting anyway
  1535   thread->clear_pending_exception();
  1536   // It is of profound importance that we set the stillborn bit and reset the thread object,
  1537   // before we do the notify. Since, changing these two variable will make JVM_IsAlive return
  1538   // false. So in case another thread is doing a join on this thread , it will detect that the thread
  1539   // is dead when it gets notified.
  1540   java_lang_Thread::set_stillborn(threadObj());
  1541   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
  1542   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
  1543   java_lang_Thread::set_thread(threadObj(), NULL);
  1544   lock.notify_all(thread);
  1545   // Ignore pending exception (ThreadDeath), since we are exiting anyway
  1546   thread->clear_pending_exception();
  1550 // For any new cleanup additions, please check to see if they need to be applied to
  1551 // cleanup_failed_attach_current_thread as well.
  1552 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
  1553   assert(this == JavaThread::current(),  "thread consistency check");
  1554   if (!InitializeJavaLangSystem) return;
  1556   HandleMark hm(this);
  1557   Handle uncaught_exception(this, this->pending_exception());
  1558   this->clear_pending_exception();
  1559   Handle threadObj(this, this->threadObj());
  1560   assert(threadObj.not_null(), "Java thread object should be created");
  1562   if (get_thread_profiler() != NULL) {
  1563     get_thread_profiler()->disengage();
  1564     ResourceMark rm;
  1565     get_thread_profiler()->print(get_thread_name());
  1569   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
  1571     EXCEPTION_MARK;
  1573     CLEAR_PENDING_EXCEPTION;
  1575   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
  1576   // has to be fixed by a runtime query method
  1577   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
  1578     // JSR-166: change call from from ThreadGroup.uncaughtException to
  1579     // java.lang.Thread.dispatchUncaughtException
  1580     if (uncaught_exception.not_null()) {
  1581       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
  1582       Events::log("uncaught exception INTPTR_FORMAT " " INTPTR_FORMAT " " INTPTR_FORMAT",
  1583         (address)uncaught_exception(), (address)threadObj(), (address)group());
  1585         EXCEPTION_MARK;
  1586         // Check if the method Thread.dispatchUncaughtException() exists. If so
  1587         // call it.  Otherwise we have an older library without the JSR-166 changes,
  1588         // so call ThreadGroup.uncaughtException()
  1589         KlassHandle recvrKlass(THREAD, threadObj->klass());
  1590         CallInfo callinfo;
  1591         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
  1592         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
  1593                                            vmSymbolHandles::dispatchUncaughtException_name(),
  1594                                            vmSymbolHandles::throwable_void_signature(),
  1595                                            KlassHandle(), false, false, THREAD);
  1596         CLEAR_PENDING_EXCEPTION;
  1597         methodHandle method = callinfo.selected_method();
  1598         if (method.not_null()) {
  1599           JavaValue result(T_VOID);
  1600           JavaCalls::call_virtual(&result,
  1601                                   threadObj, thread_klass,
  1602                                   vmSymbolHandles::dispatchUncaughtException_name(),
  1603                                   vmSymbolHandles::throwable_void_signature(),
  1604                                   uncaught_exception,
  1605                                   THREAD);
  1606         } else {
  1607           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
  1608           JavaValue result(T_VOID);
  1609           JavaCalls::call_virtual(&result,
  1610                                   group, thread_group,
  1611                                   vmSymbolHandles::uncaughtException_name(),
  1612                                   vmSymbolHandles::thread_throwable_void_signature(),
  1613                                   threadObj,           // Arg 1
  1614                                   uncaught_exception,  // Arg 2
  1615                                   THREAD);
  1617         CLEAR_PENDING_EXCEPTION;
  1621     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
  1622     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
  1623     // is deprecated anyhow.
  1624     { int count = 3;
  1625       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
  1626         EXCEPTION_MARK;
  1627         JavaValue result(T_VOID);
  1628         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
  1629         JavaCalls::call_virtual(&result,
  1630                               threadObj, thread_klass,
  1631                               vmSymbolHandles::exit_method_name(),
  1632                               vmSymbolHandles::void_method_signature(),
  1633                               THREAD);
  1634         CLEAR_PENDING_EXCEPTION;
  1638     // notify JVMTI
  1639     if (JvmtiExport::should_post_thread_life()) {
  1640       JvmtiExport::post_thread_end(this);
  1643     // We have notified the agents that we are exiting, before we go on,
  1644     // we must check for a pending external suspend request and honor it
  1645     // in order to not surprise the thread that made the suspend request.
  1646     while (true) {
  1648         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  1649         if (!is_external_suspend()) {
  1650           set_terminated(_thread_exiting);
  1651           ThreadService::current_thread_exiting(this);
  1652           break;
  1654         // Implied else:
  1655         // Things get a little tricky here. We have a pending external
  1656         // suspend request, but we are holding the SR_lock so we
  1657         // can't just self-suspend. So we temporarily drop the lock
  1658         // and then self-suspend.
  1661       ThreadBlockInVM tbivm(this);
  1662       java_suspend_self();
  1664       // We're done with this suspend request, but we have to loop around
  1665       // and check again. Eventually we will get SR_lock without a pending
  1666       // external suspend request and will be able to mark ourselves as
  1667       // exiting.
  1669     // no more external suspends are allowed at this point
  1670   } else {
  1671     // before_exit() has already posted JVMTI THREAD_END events
  1674   // Notify waiters on thread object. This has to be done after exit() is called
  1675   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
  1676   // group should have the destroyed bit set before waiters are notified).
  1677   ensure_join(this);
  1678   assert(!this->has_pending_exception(), "ensure_join should have cleared");
  1680   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
  1681   // held by this thread must be released.  A detach operation must only
  1682   // get here if there are no Java frames on the stack.  Therefore, any
  1683   // owned monitors at this point MUST be JNI-acquired monitors which are
  1684   // pre-inflated and in the monitor cache.
  1685   //
  1686   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
  1687   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
  1688     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
  1689     ObjectSynchronizer::release_monitors_owned_by_thread(this);
  1690     assert(!this->has_pending_exception(), "release_monitors should have cleared");
  1693   // These things needs to be done while we are still a Java Thread. Make sure that thread
  1694   // is in a consistent state, in case GC happens
  1695   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
  1697   if (active_handles() != NULL) {
  1698     JNIHandleBlock* block = active_handles();
  1699     set_active_handles(NULL);
  1700     JNIHandleBlock::release_block(block);
  1703   if (free_handle_block() != NULL) {
  1704     JNIHandleBlock* block = free_handle_block();
  1705     set_free_handle_block(NULL);
  1706     JNIHandleBlock::release_block(block);
  1709   // These have to be removed while this is still a valid thread.
  1710   remove_stack_guard_pages();
  1712   if (UseTLAB) {
  1713     tlab().make_parsable(true);  // retire TLAB
  1716   if (JvmtiEnv::environments_might_exist()) {
  1717     JvmtiExport::cleanup_thread(this);
  1720 #ifndef SERIALGC
  1721   // We must flush G1-related buffers before removing a thread from
  1722   // the list of active threads.
  1723   if (UseG1GC) {
  1724     flush_barrier_queues();
  1726 #endif
  1728   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
  1729   Threads::remove(this);
  1732 #ifndef SERIALGC
  1733 // Flush G1-related queues.
  1734 void JavaThread::flush_barrier_queues() {
  1735   satb_mark_queue().flush();
  1736   dirty_card_queue().flush();
  1739 void JavaThread::initialize_queues() {
  1740   assert(!SafepointSynchronize::is_at_safepoint(),
  1741          "we should not be at a safepoint");
  1743   ObjPtrQueue& satb_queue = satb_mark_queue();
  1744   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
  1745   // The SATB queue should have been constructed with its active
  1746   // field set to false.
  1747   assert(!satb_queue.is_active(), "SATB queue should not be active");
  1748   assert(satb_queue.is_empty(), "SATB queue should be empty");
  1749   // If we are creating the thread during a marking cycle, we should
  1750   // set the active field of the SATB queue to true.
  1751   if (satb_queue_set.is_active()) {
  1752     satb_queue.set_active(true);
  1755   DirtyCardQueue& dirty_queue = dirty_card_queue();
  1756   // The dirty card queue should have been constructed with its
  1757   // active field set to true.
  1758   assert(dirty_queue.is_active(), "dirty card queue should be active");
  1760 #endif // !SERIALGC
  1762 void JavaThread::cleanup_failed_attach_current_thread() {
  1763   if (get_thread_profiler() != NULL) {
  1764     get_thread_profiler()->disengage();
  1765     ResourceMark rm;
  1766     get_thread_profiler()->print(get_thread_name());
  1769   if (active_handles() != NULL) {
  1770     JNIHandleBlock* block = active_handles();
  1771     set_active_handles(NULL);
  1772     JNIHandleBlock::release_block(block);
  1775   if (free_handle_block() != NULL) {
  1776     JNIHandleBlock* block = free_handle_block();
  1777     set_free_handle_block(NULL);
  1778     JNIHandleBlock::release_block(block);
  1781   // These have to be removed while this is still a valid thread.
  1782   remove_stack_guard_pages();
  1784   if (UseTLAB) {
  1785     tlab().make_parsable(true);  // retire TLAB, if any
  1788 #ifndef SERIALGC
  1789   if (UseG1GC) {
  1790     flush_barrier_queues();
  1792 #endif
  1794   Threads::remove(this);
  1795   delete this;
  1801 JavaThread* JavaThread::active() {
  1802   Thread* thread = ThreadLocalStorage::thread();
  1803   assert(thread != NULL, "just checking");
  1804   if (thread->is_Java_thread()) {
  1805     return (JavaThread*) thread;
  1806   } else {
  1807     assert(thread->is_VM_thread(), "this must be a vm thread");
  1808     VM_Operation* op = ((VMThread*) thread)->vm_operation();
  1809     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
  1810     assert(ret->is_Java_thread(), "must be a Java thread");
  1811     return ret;
  1815 bool JavaThread::is_lock_owned(address adr) const {
  1816   if (Thread::is_lock_owned(adr)) return true;
  1818   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
  1819     if (chunk->contains(adr)) return true;
  1822   return false;
  1826 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
  1827   chunk->set_next(monitor_chunks());
  1828   set_monitor_chunks(chunk);
  1831 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
  1832   guarantee(monitor_chunks() != NULL, "must be non empty");
  1833   if (monitor_chunks() == chunk) {
  1834     set_monitor_chunks(chunk->next());
  1835   } else {
  1836     MonitorChunk* prev = monitor_chunks();
  1837     while (prev->next() != chunk) prev = prev->next();
  1838     prev->set_next(chunk->next());
  1842 // JVM support.
  1844 // Note: this function shouldn't block if it's called in
  1845 // _thread_in_native_trans state (such as from
  1846 // check_special_condition_for_native_trans()).
  1847 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
  1849   if (has_last_Java_frame() && has_async_condition()) {
  1850     // If we are at a polling page safepoint (not a poll return)
  1851     // then we must defer async exception because live registers
  1852     // will be clobbered by the exception path. Poll return is
  1853     // ok because the call we a returning from already collides
  1854     // with exception handling registers and so there is no issue.
  1855     // (The exception handling path kills call result registers but
  1856     //  this is ok since the exception kills the result anyway).
  1858     if (is_at_poll_safepoint()) {
  1859       // if the code we are returning to has deoptimized we must defer
  1860       // the exception otherwise live registers get clobbered on the
  1861       // exception path before deoptimization is able to retrieve them.
  1862       //
  1863       RegisterMap map(this, false);
  1864       frame caller_fr = last_frame().sender(&map);
  1865       assert(caller_fr.is_compiled_frame(), "what?");
  1866       if (caller_fr.is_deoptimized_frame()) {
  1867         if (TraceExceptions) {
  1868           ResourceMark rm;
  1869           tty->print_cr("deferred async exception at compiled safepoint");
  1871         return;
  1876   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
  1877   if (condition == _no_async_condition) {
  1878     // Conditions have changed since has_special_runtime_exit_condition()
  1879     // was called:
  1880     // - if we were here only because of an external suspend request,
  1881     //   then that was taken care of above (or cancelled) so we are done
  1882     // - if we were here because of another async request, then it has
  1883     //   been cleared between the has_special_runtime_exit_condition()
  1884     //   and now so again we are done
  1885     return;
  1888   // Check for pending async. exception
  1889   if (_pending_async_exception != NULL) {
  1890     // Only overwrite an already pending exception, if it is not a threadDeath.
  1891     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
  1893       // We cannot call Exceptions::_throw(...) here because we cannot block
  1894       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
  1896       if (TraceExceptions) {
  1897         ResourceMark rm;
  1898         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
  1899         if (has_last_Java_frame() ) {
  1900           frame f = last_frame();
  1901           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
  1903         tty->print_cr(" of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
  1905       _pending_async_exception = NULL;
  1906       clear_has_async_exception();
  1910   if (check_unsafe_error &&
  1911       condition == _async_unsafe_access_error && !has_pending_exception()) {
  1912     condition = _no_async_condition;  // done
  1913     switch (thread_state()) {
  1914     case _thread_in_vm:
  1916         JavaThread* THREAD = this;
  1917         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
  1919     case _thread_in_native:
  1921         ThreadInVMfromNative tiv(this);
  1922         JavaThread* THREAD = this;
  1923         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
  1925     case _thread_in_Java:
  1927         ThreadInVMfromJava tiv(this);
  1928         JavaThread* THREAD = this;
  1929         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
  1931     default:
  1932       ShouldNotReachHere();
  1936   assert(condition == _no_async_condition || has_pending_exception() ||
  1937          (!check_unsafe_error && condition == _async_unsafe_access_error),
  1938          "must have handled the async condition, if no exception");
  1941 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
  1942   //
  1943   // Check for pending external suspend. Internal suspend requests do
  1944   // not use handle_special_runtime_exit_condition().
  1945   // If JNIEnv proxies are allowed, don't self-suspend if the target
  1946   // thread is not the current thread. In older versions of jdbx, jdbx
  1947   // threads could call into the VM with another thread's JNIEnv so we
  1948   // can be here operating on behalf of a suspended thread (4432884).
  1949   bool do_self_suspend = is_external_suspend_with_lock();
  1950   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
  1951     //
  1952     // Because thread is external suspended the safepoint code will count
  1953     // thread as at a safepoint. This can be odd because we can be here
  1954     // as _thread_in_Java which would normally transition to _thread_blocked
  1955     // at a safepoint. We would like to mark the thread as _thread_blocked
  1956     // before calling java_suspend_self like all other callers of it but
  1957     // we must then observe proper safepoint protocol. (We can't leave
  1958     // _thread_blocked with a safepoint in progress). However we can be
  1959     // here as _thread_in_native_trans so we can't use a normal transition
  1960     // constructor/destructor pair because they assert on that type of
  1961     // transition. We could do something like:
  1962     //
  1963     // JavaThreadState state = thread_state();
  1964     // set_thread_state(_thread_in_vm);
  1965     // {
  1966     //   ThreadBlockInVM tbivm(this);
  1967     //   java_suspend_self()
  1968     // }
  1969     // set_thread_state(_thread_in_vm_trans);
  1970     // if (safepoint) block;
  1971     // set_thread_state(state);
  1972     //
  1973     // but that is pretty messy. Instead we just go with the way the
  1974     // code has worked before and note that this is the only path to
  1975     // java_suspend_self that doesn't put the thread in _thread_blocked
  1976     // mode.
  1978     frame_anchor()->make_walkable(this);
  1979     java_suspend_self();
  1981     // We might be here for reasons in addition to the self-suspend request
  1982     // so check for other async requests.
  1985   if (check_asyncs) {
  1986     check_and_handle_async_exceptions();
  1990 void JavaThread::send_thread_stop(oop java_throwable)  {
  1991   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
  1992   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
  1993   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
  1995   // Do not throw asynchronous exceptions against the compiler thread
  1996   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
  1997   if (is_Compiler_thread()) return;
  1999   // This is a change from JDK 1.1, but JDK 1.2 will also do it:
  2000   if (java_throwable->is_a(SystemDictionary::ThreadDeath_klass())) {
  2001     java_lang_Thread::set_stillborn(threadObj());
  2005     // Actually throw the Throwable against the target Thread - however
  2006     // only if there is no thread death exception installed already.
  2007     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
  2008       // If the topmost frame is a runtime stub, then we are calling into
  2009       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
  2010       // must deoptimize the caller before continuing, as the compiled  exception handler table
  2011       // may not be valid
  2012       if (has_last_Java_frame()) {
  2013         frame f = last_frame();
  2014         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
  2015           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2016           RegisterMap reg_map(this, UseBiasedLocking);
  2017           frame compiled_frame = f.sender(&reg_map);
  2018           if (compiled_frame.can_be_deoptimized()) {
  2019             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
  2024       // Set async. pending exception in thread.
  2025       set_pending_async_exception(java_throwable);
  2027       if (TraceExceptions) {
  2028        ResourceMark rm;
  2029        tty->print_cr("Pending Async. exception installed of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
  2031       // for AbortVMOnException flag
  2032       NOT_PRODUCT(Exceptions::debug_check_abort(instanceKlass::cast(_pending_async_exception->klass())->external_name()));
  2037   // Interrupt thread so it will wake up from a potential wait()
  2038   Thread::interrupt(this);
  2041 // External suspension mechanism.
  2042 //
  2043 // Tell the VM to suspend a thread when ever it knows that it does not hold on
  2044 // to any VM_locks and it is at a transition
  2045 // Self-suspension will happen on the transition out of the vm.
  2046 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
  2047 //
  2048 // Guarantees on return:
  2049 //   + Target thread will not execute any new bytecode (that's why we need to
  2050 //     force a safepoint)
  2051 //   + Target thread will not enter any new monitors
  2052 //
  2053 void JavaThread::java_suspend() {
  2054   { MutexLocker mu(Threads_lock);
  2055     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
  2056        return;
  2060   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2061     if (!is_external_suspend()) {
  2062       // a racing resume has cancelled us; bail out now
  2063       return;
  2066     // suspend is done
  2067     uint32_t debug_bits = 0;
  2068     // Warning: is_ext_suspend_completed() may temporarily drop the
  2069     // SR_lock to allow the thread to reach a stable thread state if
  2070     // it is currently in a transient thread state.
  2071     if (is_ext_suspend_completed(false /* !called_by_wait */,
  2072                                  SuspendRetryDelay, &debug_bits) ) {
  2073       return;
  2077   VM_ForceSafepoint vm_suspend;
  2078   VMThread::execute(&vm_suspend);
  2081 // Part II of external suspension.
  2082 // A JavaThread self suspends when it detects a pending external suspend
  2083 // request. This is usually on transitions. It is also done in places
  2084 // where continuing to the next transition would surprise the caller,
  2085 // e.g., monitor entry.
  2086 //
  2087 // Returns the number of times that the thread self-suspended.
  2088 //
  2089 // Note: DO NOT call java_suspend_self() when you just want to block current
  2090 //       thread. java_suspend_self() is the second stage of cooperative
  2091 //       suspension for external suspend requests and should only be used
  2092 //       to complete an external suspend request.
  2093 //
  2094 int JavaThread::java_suspend_self() {
  2095   int ret = 0;
  2097   // we are in the process of exiting so don't suspend
  2098   if (is_exiting()) {
  2099      clear_external_suspend();
  2100      return ret;
  2103   assert(_anchor.walkable() ||
  2104     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
  2105     "must have walkable stack");
  2107   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2109   assert(!this->is_ext_suspended(),
  2110     "a thread trying to self-suspend should not already be suspended");
  2112   if (this->is_suspend_equivalent()) {
  2113     // If we are self-suspending as a result of the lifting of a
  2114     // suspend equivalent condition, then the suspend_equivalent
  2115     // flag is not cleared until we set the ext_suspended flag so
  2116     // that wait_for_ext_suspend_completion() returns consistent
  2117     // results.
  2118     this->clear_suspend_equivalent();
  2121   // A racing resume may have cancelled us before we grabbed SR_lock
  2122   // above. Or another external suspend request could be waiting for us
  2123   // by the time we return from SR_lock()->wait(). The thread
  2124   // that requested the suspension may already be trying to walk our
  2125   // stack and if we return now, we can change the stack out from under
  2126   // it. This would be a "bad thing (TM)" and cause the stack walker
  2127   // to crash. We stay self-suspended until there are no more pending
  2128   // external suspend requests.
  2129   while (is_external_suspend()) {
  2130     ret++;
  2131     this->set_ext_suspended();
  2133     // _ext_suspended flag is cleared by java_resume()
  2134     while (is_ext_suspended()) {
  2135       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
  2139   return ret;
  2142 #ifdef ASSERT
  2143 // verify the JavaThread has not yet been published in the Threads::list, and
  2144 // hence doesn't need protection from concurrent access at this stage
  2145 void JavaThread::verify_not_published() {
  2146   if (!Threads_lock->owned_by_self()) {
  2147    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
  2148    assert( !Threads::includes(this),
  2149            "java thread shouldn't have been published yet!");
  2151   else {
  2152    assert( !Threads::includes(this),
  2153            "java thread shouldn't have been published yet!");
  2156 #endif
  2158 // Slow path when the native==>VM/Java barriers detect a safepoint is in
  2159 // progress or when _suspend_flags is non-zero.
  2160 // Current thread needs to self-suspend if there is a suspend request and/or
  2161 // block if a safepoint is in progress.
  2162 // Async exception ISN'T checked.
  2163 // Note only the ThreadInVMfromNative transition can call this function
  2164 // directly and when thread state is _thread_in_native_trans
  2165 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
  2166   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
  2168   JavaThread *curJT = JavaThread::current();
  2169   bool do_self_suspend = thread->is_external_suspend();
  2171   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
  2173   // If JNIEnv proxies are allowed, don't self-suspend if the target
  2174   // thread is not the current thread. In older versions of jdbx, jdbx
  2175   // threads could call into the VM with another thread's JNIEnv so we
  2176   // can be here operating on behalf of a suspended thread (4432884).
  2177   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
  2178     JavaThreadState state = thread->thread_state();
  2180     // We mark this thread_blocked state as a suspend-equivalent so
  2181     // that a caller to is_ext_suspend_completed() won't be confused.
  2182     // The suspend-equivalent state is cleared by java_suspend_self().
  2183     thread->set_suspend_equivalent();
  2185     // If the safepoint code sees the _thread_in_native_trans state, it will
  2186     // wait until the thread changes to other thread state. There is no
  2187     // guarantee on how soon we can obtain the SR_lock and complete the
  2188     // self-suspend request. It would be a bad idea to let safepoint wait for
  2189     // too long. Temporarily change the state to _thread_blocked to
  2190     // let the VM thread know that this thread is ready for GC. The problem
  2191     // of changing thread state is that safepoint could happen just after
  2192     // java_suspend_self() returns after being resumed, and VM thread will
  2193     // see the _thread_blocked state. We must check for safepoint
  2194     // after restoring the state and make sure we won't leave while a safepoint
  2195     // is in progress.
  2196     thread->set_thread_state(_thread_blocked);
  2197     thread->java_suspend_self();
  2198     thread->set_thread_state(state);
  2199     // Make sure new state is seen by VM thread
  2200     if (os::is_MP()) {
  2201       if (UseMembar) {
  2202         // Force a fence between the write above and read below
  2203         OrderAccess::fence();
  2204       } else {
  2205         // Must use this rather than serialization page in particular on Windows
  2206         InterfaceSupport::serialize_memory(thread);
  2211   if (SafepointSynchronize::do_call_back()) {
  2212     // If we are safepointing, then block the caller which may not be
  2213     // the same as the target thread (see above).
  2214     SafepointSynchronize::block(curJT);
  2217   if (thread->is_deopt_suspend()) {
  2218     thread->clear_deopt_suspend();
  2219     RegisterMap map(thread, false);
  2220     frame f = thread->last_frame();
  2221     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
  2222       f = f.sender(&map);
  2224     if (f.id() == thread->must_deopt_id()) {
  2225       thread->clear_must_deopt_id();
  2226       f.deoptimize(thread);
  2227     } else {
  2228       fatal("missed deoptimization!");
  2233 // Slow path when the native==>VM/Java barriers detect a safepoint is in
  2234 // progress or when _suspend_flags is non-zero.
  2235 // Current thread needs to self-suspend if there is a suspend request and/or
  2236 // block if a safepoint is in progress.
  2237 // Also check for pending async exception (not including unsafe access error).
  2238 // Note only the native==>VM/Java barriers can call this function and when
  2239 // thread state is _thread_in_native_trans.
  2240 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
  2241   check_safepoint_and_suspend_for_native_trans(thread);
  2243   if (thread->has_async_exception()) {
  2244     // We are in _thread_in_native_trans state, don't handle unsafe
  2245     // access error since that may block.
  2246     thread->check_and_handle_async_exceptions(false);
  2250 // We need to guarantee the Threads_lock here, since resumes are not
  2251 // allowed during safepoint synchronization
  2252 // Can only resume from an external suspension
  2253 void JavaThread::java_resume() {
  2254   assert_locked_or_safepoint(Threads_lock);
  2256   // Sanity check: thread is gone, has started exiting or the thread
  2257   // was not externally suspended.
  2258   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
  2259     return;
  2262   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2264   clear_external_suspend();
  2266   if (is_ext_suspended()) {
  2267     clear_ext_suspended();
  2268     SR_lock()->notify_all();
  2272 void JavaThread::create_stack_guard_pages() {
  2273   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
  2274   address low_addr = stack_base() - stack_size();
  2275   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
  2277   int allocate = os::allocate_stack_guard_pages();
  2278   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
  2280   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
  2281     warning("Attempt to allocate stack guard pages failed.");
  2282     return;
  2285   if (os::guard_memory((char *) low_addr, len)) {
  2286     _stack_guard_state = stack_guard_enabled;
  2287   } else {
  2288     warning("Attempt to protect stack guard pages failed.");
  2289     if (os::uncommit_memory((char *) low_addr, len)) {
  2290       warning("Attempt to deallocate stack guard pages failed.");
  2295 void JavaThread::remove_stack_guard_pages() {
  2296   if (_stack_guard_state == stack_guard_unused) return;
  2297   address low_addr = stack_base() - stack_size();
  2298   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
  2300   if (os::allocate_stack_guard_pages()) {
  2301     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
  2302       _stack_guard_state = stack_guard_unused;
  2303     } else {
  2304       warning("Attempt to deallocate stack guard pages failed.");
  2306   } else {
  2307     if (_stack_guard_state == stack_guard_unused) return;
  2308     if (os::unguard_memory((char *) low_addr, len)) {
  2309       _stack_guard_state = stack_guard_unused;
  2310     } else {
  2311         warning("Attempt to unprotect stack guard pages failed.");
  2316 void JavaThread::enable_stack_yellow_zone() {
  2317   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2318   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
  2320   // The base notation is from the stacks point of view, growing downward.
  2321   // We need to adjust it to work correctly with guard_memory()
  2322   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
  2324   guarantee(base < stack_base(),"Error calculating stack yellow zone");
  2325   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
  2327   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
  2328     _stack_guard_state = stack_guard_enabled;
  2329   } else {
  2330     warning("Attempt to guard stack yellow zone failed.");
  2332   enable_register_stack_guard();
  2335 void JavaThread::disable_stack_yellow_zone() {
  2336   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2337   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
  2339   // Simply return if called for a thread that does not use guard pages.
  2340   if (_stack_guard_state == stack_guard_unused) return;
  2342   // The base notation is from the stacks point of view, growing downward.
  2343   // We need to adjust it to work correctly with guard_memory()
  2344   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
  2346   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
  2347     _stack_guard_state = stack_guard_yellow_disabled;
  2348   } else {
  2349     warning("Attempt to unguard stack yellow zone failed.");
  2351   disable_register_stack_guard();
  2354 void JavaThread::enable_stack_red_zone() {
  2355   // The base notation is from the stacks point of view, growing downward.
  2356   // We need to adjust it to work correctly with guard_memory()
  2357   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2358   address base = stack_red_zone_base() - stack_red_zone_size();
  2360   guarantee(base < stack_base(),"Error calculating stack red zone");
  2361   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
  2363   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
  2364     warning("Attempt to guard stack red zone failed.");
  2368 void JavaThread::disable_stack_red_zone() {
  2369   // The base notation is from the stacks point of view, growing downward.
  2370   // We need to adjust it to work correctly with guard_memory()
  2371   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2372   address base = stack_red_zone_base() - stack_red_zone_size();
  2373   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
  2374     warning("Attempt to unguard stack red zone failed.");
  2378 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
  2379   // ignore is there is no stack
  2380   if (!has_last_Java_frame()) return;
  2381   // traverse the stack frames. Starts from top frame.
  2382   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2383     frame* fr = fst.current();
  2384     f(fr, fst.register_map());
  2389 #ifndef PRODUCT
  2390 // Deoptimization
  2391 // Function for testing deoptimization
  2392 void JavaThread::deoptimize() {
  2393   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2394   StackFrameStream fst(this, UseBiasedLocking);
  2395   bool deopt = false;           // Dump stack only if a deopt actually happens.
  2396   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
  2397   // Iterate over all frames in the thread and deoptimize
  2398   for(; !fst.is_done(); fst.next()) {
  2399     if(fst.current()->can_be_deoptimized()) {
  2401       if (only_at) {
  2402         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
  2403         // consists of comma or carriage return separated numbers so
  2404         // search for the current bci in that string.
  2405         address pc = fst.current()->pc();
  2406         nmethod* nm =  (nmethod*) fst.current()->cb();
  2407         ScopeDesc* sd = nm->scope_desc_at( pc);
  2408         char buffer[8];
  2409         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
  2410         size_t len = strlen(buffer);
  2411         const char * found = strstr(DeoptimizeOnlyAt, buffer);
  2412         while (found != NULL) {
  2413           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
  2414               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
  2415             // Check that the bci found is bracketed by terminators.
  2416             break;
  2418           found = strstr(found + 1, buffer);
  2420         if (!found) {
  2421           continue;
  2425       if (DebugDeoptimization && !deopt) {
  2426         deopt = true; // One-time only print before deopt
  2427         tty->print_cr("[BEFORE Deoptimization]");
  2428         trace_frames();
  2429         trace_stack();
  2431       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
  2435   if (DebugDeoptimization && deopt) {
  2436     tty->print_cr("[AFTER Deoptimization]");
  2437     trace_frames();
  2442 // Make zombies
  2443 void JavaThread::make_zombies() {
  2444   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2445     if (fst.current()->can_be_deoptimized()) {
  2446       // it is a Java nmethod
  2447       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
  2448       nm->make_not_entrant();
  2452 #endif // PRODUCT
  2455 void JavaThread::deoptimized_wrt_marked_nmethods() {
  2456   if (!has_last_Java_frame()) return;
  2457   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2458   StackFrameStream fst(this, UseBiasedLocking);
  2459   for(; !fst.is_done(); fst.next()) {
  2460     if (fst.current()->should_be_deoptimized()) {
  2461       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
  2467 // GC support
  2468 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
  2470 void JavaThread::gc_epilogue() {
  2471   frames_do(frame_gc_epilogue);
  2475 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
  2477 void JavaThread::gc_prologue() {
  2478   frames_do(frame_gc_prologue);
  2481 // If the caller is a NamedThread, then remember, in the current scope,
  2482 // the given JavaThread in its _processed_thread field.
  2483 class RememberProcessedThread: public StackObj {
  2484   NamedThread* _cur_thr;
  2485 public:
  2486   RememberProcessedThread(JavaThread* jthr) {
  2487     Thread* thread = Thread::current();
  2488     if (thread->is_Named_thread()) {
  2489       _cur_thr = (NamedThread *)thread;
  2490       _cur_thr->set_processed_thread(jthr);
  2491     } else {
  2492       _cur_thr = NULL;
  2496   ~RememberProcessedThread() {
  2497     if (_cur_thr) {
  2498       _cur_thr->set_processed_thread(NULL);
  2501 };
  2503 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
  2504   // Verify that the deferred card marks have been flushed.
  2505   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
  2507   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
  2508   // since there may be more than one thread using each ThreadProfiler.
  2510   // Traverse the GCHandles
  2511   Thread::oops_do(f, cf);
  2513   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
  2514           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
  2516   if (has_last_Java_frame()) {
  2517     // Record JavaThread to GC thread
  2518     RememberProcessedThread rpt(this);
  2520     // Traverse the privileged stack
  2521     if (_privileged_stack_top != NULL) {
  2522       _privileged_stack_top->oops_do(f);
  2525     // traverse the registered growable array
  2526     if (_array_for_gc != NULL) {
  2527       for (int index = 0; index < _array_for_gc->length(); index++) {
  2528         f->do_oop(_array_for_gc->adr_at(index));
  2532     // Traverse the monitor chunks
  2533     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
  2534       chunk->oops_do(f);
  2537     // Traverse the execution stack
  2538     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2539       fst.current()->oops_do(f, cf, fst.register_map());
  2543   // callee_target is never live across a gc point so NULL it here should
  2544   // it still contain a methdOop.
  2546   set_callee_target(NULL);
  2548   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
  2549   // If we have deferred set_locals there might be oops waiting to be
  2550   // written
  2551   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
  2552   if (list != NULL) {
  2553     for (int i = 0; i < list->length(); i++) {
  2554       list->at(i)->oops_do(f);
  2558   // Traverse instance variables at the end since the GC may be moving things
  2559   // around using this function
  2560   f->do_oop((oop*) &_threadObj);
  2561   f->do_oop((oop*) &_vm_result);
  2562   f->do_oop((oop*) &_vm_result_2);
  2563   f->do_oop((oop*) &_exception_oop);
  2564   f->do_oop((oop*) &_pending_async_exception);
  2566   if (jvmti_thread_state() != NULL) {
  2567     jvmti_thread_state()->oops_do(f);
  2571 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
  2572   Thread::nmethods_do(cf);  // (super method is a no-op)
  2574   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
  2575           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
  2577   if (has_last_Java_frame()) {
  2578     // Traverse the execution stack
  2579     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2580       fst.current()->nmethods_do(cf);
  2585 // Printing
  2586 const char* _get_thread_state_name(JavaThreadState _thread_state) {
  2587   switch (_thread_state) {
  2588   case _thread_uninitialized:     return "_thread_uninitialized";
  2589   case _thread_new:               return "_thread_new";
  2590   case _thread_new_trans:         return "_thread_new_trans";
  2591   case _thread_in_native:         return "_thread_in_native";
  2592   case _thread_in_native_trans:   return "_thread_in_native_trans";
  2593   case _thread_in_vm:             return "_thread_in_vm";
  2594   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
  2595   case _thread_in_Java:           return "_thread_in_Java";
  2596   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
  2597   case _thread_blocked:           return "_thread_blocked";
  2598   case _thread_blocked_trans:     return "_thread_blocked_trans";
  2599   default:                        return "unknown thread state";
  2603 #ifndef PRODUCT
  2604 void JavaThread::print_thread_state_on(outputStream *st) const {
  2605   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
  2606 };
  2607 void JavaThread::print_thread_state() const {
  2608   print_thread_state_on(tty);
  2609 };
  2610 #endif // PRODUCT
  2612 // Called by Threads::print() for VM_PrintThreads operation
  2613 void JavaThread::print_on(outputStream *st) const {
  2614   st->print("\"%s\" ", get_thread_name());
  2615   oop thread_oop = threadObj();
  2616   if (thread_oop != NULL && java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
  2617   Thread::print_on(st);
  2618   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
  2619   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
  2620   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
  2621     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
  2623 #ifndef PRODUCT
  2624   print_thread_state_on(st);
  2625   _safepoint_state->print_on(st);
  2626 #endif // PRODUCT
  2629 // Called by fatal error handler. The difference between this and
  2630 // JavaThread::print() is that we can't grab lock or allocate memory.
  2631 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
  2632   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
  2633   oop thread_obj = threadObj();
  2634   if (thread_obj != NULL) {
  2635      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
  2637   st->print(" [");
  2638   st->print("%s", _get_thread_state_name(_thread_state));
  2639   if (osthread()) {
  2640     st->print(", id=%d", osthread()->thread_id());
  2642   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
  2643             _stack_base - _stack_size, _stack_base);
  2644   st->print("]");
  2645   return;
  2648 // Verification
  2650 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
  2652 void JavaThread::verify() {
  2653   // Verify oops in the thread.
  2654   oops_do(&VerifyOopClosure::verify_oop, NULL);
  2656   // Verify the stack frames.
  2657   frames_do(frame_verify);
  2660 // CR 6300358 (sub-CR 2137150)
  2661 // Most callers of this method assume that it can't return NULL but a
  2662 // thread may not have a name whilst it is in the process of attaching to
  2663 // the VM - see CR 6412693, and there are places where a JavaThread can be
  2664 // seen prior to having it's threadObj set (eg JNI attaching threads and
  2665 // if vm exit occurs during initialization). These cases can all be accounted
  2666 // for such that this method never returns NULL.
  2667 const char* JavaThread::get_thread_name() const {
  2668 #ifdef ASSERT
  2669   // early safepoints can hit while current thread does not yet have TLS
  2670   if (!SafepointSynchronize::is_at_safepoint()) {
  2671     Thread *cur = Thread::current();
  2672     if (!(cur->is_Java_thread() && cur == this)) {
  2673       // Current JavaThreads are allowed to get their own name without
  2674       // the Threads_lock.
  2675       assert_locked_or_safepoint(Threads_lock);
  2678 #endif // ASSERT
  2679     return get_thread_name_string();
  2682 // Returns a non-NULL representation of this thread's name, or a suitable
  2683 // descriptive string if there is no set name
  2684 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
  2685   const char* name_str;
  2686   oop thread_obj = threadObj();
  2687   if (thread_obj != NULL) {
  2688     typeArrayOop name = java_lang_Thread::name(thread_obj);
  2689     if (name != NULL) {
  2690       if (buf == NULL) {
  2691         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2693       else {
  2694         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
  2697     else if (is_attaching()) { // workaround for 6412693 - see 6404306
  2698       name_str = "<no-name - thread is attaching>";
  2700     else {
  2701       name_str = Thread::name();
  2704   else {
  2705     name_str = Thread::name();
  2707   assert(name_str != NULL, "unexpected NULL thread name");
  2708   return name_str;
  2712 const char* JavaThread::get_threadgroup_name() const {
  2713   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
  2714   oop thread_obj = threadObj();
  2715   if (thread_obj != NULL) {
  2716     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
  2717     if (thread_group != NULL) {
  2718       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
  2719       // ThreadGroup.name can be null
  2720       if (name != NULL) {
  2721         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2722         return str;
  2726   return NULL;
  2729 const char* JavaThread::get_parent_name() const {
  2730   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
  2731   oop thread_obj = threadObj();
  2732   if (thread_obj != NULL) {
  2733     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
  2734     if (thread_group != NULL) {
  2735       oop parent = java_lang_ThreadGroup::parent(thread_group);
  2736       if (parent != NULL) {
  2737         typeArrayOop name = java_lang_ThreadGroup::name(parent);
  2738         // ThreadGroup.name can be null
  2739         if (name != NULL) {
  2740           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2741           return str;
  2746   return NULL;
  2749 ThreadPriority JavaThread::java_priority() const {
  2750   oop thr_oop = threadObj();
  2751   if (thr_oop == NULL) return NormPriority; // Bootstrapping
  2752   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
  2753   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
  2754   return priority;
  2757 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
  2759   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
  2760   // Link Java Thread object <-> C++ Thread
  2762   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
  2763   // and put it into a new Handle.  The Handle "thread_oop" can then
  2764   // be used to pass the C++ thread object to other methods.
  2766   // Set the Java level thread object (jthread) field of the
  2767   // new thread (a JavaThread *) to C++ thread object using the
  2768   // "thread_oop" handle.
  2770   // Set the thread field (a JavaThread *) of the
  2771   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
  2773   Handle thread_oop(Thread::current(),
  2774                     JNIHandles::resolve_non_null(jni_thread));
  2775   assert(instanceKlass::cast(thread_oop->klass())->is_linked(),
  2776     "must be initialized");
  2777   set_threadObj(thread_oop());
  2778   java_lang_Thread::set_thread(thread_oop(), this);
  2780   if (prio == NoPriority) {
  2781     prio = java_lang_Thread::priority(thread_oop());
  2782     assert(prio != NoPriority, "A valid priority should be present");
  2785   // Push the Java priority down to the native thread; needs Threads_lock
  2786   Thread::set_priority(this, prio);
  2788   // Add the new thread to the Threads list and set it in motion.
  2789   // We must have threads lock in order to call Threads::add.
  2790   // It is crucial that we do not block before the thread is
  2791   // added to the Threads list for if a GC happens, then the java_thread oop
  2792   // will not be visited by GC.
  2793   Threads::add(this);
  2796 oop JavaThread::current_park_blocker() {
  2797   // Support for JSR-166 locks
  2798   oop thread_oop = threadObj();
  2799   if (thread_oop != NULL &&
  2800       JDK_Version::current().supports_thread_park_blocker()) {
  2801     return java_lang_Thread::park_blocker(thread_oop);
  2803   return NULL;
  2807 void JavaThread::print_stack_on(outputStream* st) {
  2808   if (!has_last_Java_frame()) return;
  2809   ResourceMark rm;
  2810   HandleMark   hm;
  2812   RegisterMap reg_map(this);
  2813   vframe* start_vf = last_java_vframe(&reg_map);
  2814   int count = 0;
  2815   for (vframe* f = start_vf; f; f = f->sender() ) {
  2816     if (f->is_java_frame()) {
  2817       javaVFrame* jvf = javaVFrame::cast(f);
  2818       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
  2820       // Print out lock information
  2821       if (JavaMonitorsInStackTrace) {
  2822         jvf->print_lock_info_on(st, count);
  2824     } else {
  2825       // Ignore non-Java frames
  2828     // Bail-out case for too deep stacks
  2829     count++;
  2830     if (MaxJavaStackTraceDepth == count) return;
  2835 // JVMTI PopFrame support
  2836 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
  2837   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
  2838   if (in_bytes(size_in_bytes) != 0) {
  2839     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes));
  2840     _popframe_preserved_args_size = in_bytes(size_in_bytes);
  2841     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
  2845 void* JavaThread::popframe_preserved_args() {
  2846   return _popframe_preserved_args;
  2849 ByteSize JavaThread::popframe_preserved_args_size() {
  2850   return in_ByteSize(_popframe_preserved_args_size);
  2853 WordSize JavaThread::popframe_preserved_args_size_in_words() {
  2854   int sz = in_bytes(popframe_preserved_args_size());
  2855   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
  2856   return in_WordSize(sz / wordSize);
  2859 void JavaThread::popframe_free_preserved_args() {
  2860   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
  2861   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
  2862   _popframe_preserved_args = NULL;
  2863   _popframe_preserved_args_size = 0;
  2866 #ifndef PRODUCT
  2868 void JavaThread::trace_frames() {
  2869   tty->print_cr("[Describe stack]");
  2870   int frame_no = 1;
  2871   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2872     tty->print("  %d. ", frame_no++);
  2873     fst.current()->print_value_on(tty,this);
  2874     tty->cr();
  2879 void JavaThread::trace_stack_from(vframe* start_vf) {
  2880   ResourceMark rm;
  2881   int vframe_no = 1;
  2882   for (vframe* f = start_vf; f; f = f->sender() ) {
  2883     if (f->is_java_frame()) {
  2884       javaVFrame::cast(f)->print_activation(vframe_no++);
  2885     } else {
  2886       f->print();
  2888     if (vframe_no > StackPrintLimit) {
  2889       tty->print_cr("...<more frames>...");
  2890       return;
  2896 void JavaThread::trace_stack() {
  2897   if (!has_last_Java_frame()) return;
  2898   ResourceMark rm;
  2899   HandleMark   hm;
  2900   RegisterMap reg_map(this);
  2901   trace_stack_from(last_java_vframe(&reg_map));
  2905 #endif // PRODUCT
  2908 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
  2909   assert(reg_map != NULL, "a map must be given");
  2910   frame f = last_frame();
  2911   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
  2912     if (vf->is_java_frame()) return javaVFrame::cast(vf);
  2914   return NULL;
  2918 klassOop JavaThread::security_get_caller_class(int depth) {
  2919   vframeStream vfst(this);
  2920   vfst.security_get_caller_frame(depth);
  2921   if (!vfst.at_end()) {
  2922     return vfst.method()->method_holder();
  2924   return NULL;
  2927 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
  2928   assert(thread->is_Compiler_thread(), "must be compiler thread");
  2929   CompileBroker::compiler_thread_loop();
  2932 // Create a CompilerThread
  2933 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
  2934 : JavaThread(&compiler_thread_entry) {
  2935   _env   = NULL;
  2936   _log   = NULL;
  2937   _task  = NULL;
  2938   _queue = queue;
  2939   _counters = counters;
  2940   _buffer_blob = NULL;
  2942 #ifndef PRODUCT
  2943   _ideal_graph_printer = NULL;
  2944 #endif
  2948 // ======= Threads ========
  2950 // The Threads class links together all active threads, and provides
  2951 // operations over all threads.  It is protected by its own Mutex
  2952 // lock, which is also used in other contexts to protect thread
  2953 // operations from having the thread being operated on from exiting
  2954 // and going away unexpectedly (e.g., safepoint synchronization)
  2956 JavaThread* Threads::_thread_list = NULL;
  2957 int         Threads::_number_of_threads = 0;
  2958 int         Threads::_number_of_non_daemon_threads = 0;
  2959 int         Threads::_return_code = 0;
  2960 size_t      JavaThread::_stack_size_at_create = 0;
  2962 // All JavaThreads
  2963 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
  2965 void os_stream();
  2967 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
  2968 void Threads::threads_do(ThreadClosure* tc) {
  2969   assert_locked_or_safepoint(Threads_lock);
  2970   // ALL_JAVA_THREADS iterates through all JavaThreads
  2971   ALL_JAVA_THREADS(p) {
  2972     tc->do_thread(p);
  2974   // Someday we could have a table or list of all non-JavaThreads.
  2975   // For now, just manually iterate through them.
  2976   tc->do_thread(VMThread::vm_thread());
  2977   Universe::heap()->gc_threads_do(tc);
  2978   WatcherThread *wt = WatcherThread::watcher_thread();
  2979   // Strictly speaking, the following NULL check isn't sufficient to make sure
  2980   // the data for WatcherThread is still valid upon being examined. However,
  2981   // considering that WatchThread terminates when the VM is on the way to
  2982   // exit at safepoint, the chance of the above is extremely small. The right
  2983   // way to prevent termination of WatcherThread would be to acquire
  2984   // Terminator_lock, but we can't do that without violating the lock rank
  2985   // checking in some cases.
  2986   if (wt != NULL)
  2987     tc->do_thread(wt);
  2989   // If CompilerThreads ever become non-JavaThreads, add them here
  2992 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
  2994   extern void JDK_Version_init();
  2996   // Check version
  2997   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
  2999   // Initialize the output stream module
  3000   ostream_init();
  3002   // Process java launcher properties.
  3003   Arguments::process_sun_java_launcher_properties(args);
  3005   // Initialize the os module before using TLS
  3006   os::init();
  3008   // Initialize system properties.
  3009   Arguments::init_system_properties();
  3011   // So that JDK version can be used as a discrimintor when parsing arguments
  3012   JDK_Version_init();
  3014   // Update/Initialize System properties after JDK version number is known
  3015   Arguments::init_version_specific_system_properties();
  3017   // Parse arguments
  3018   jint parse_result = Arguments::parse(args);
  3019   if (parse_result != JNI_OK) return parse_result;
  3021   if (PauseAtStartup) {
  3022     os::pause();
  3025   HS_DTRACE_PROBE(hotspot, vm__init__begin);
  3027   // Record VM creation timing statistics
  3028   TraceVmCreationTime create_vm_timer;
  3029   create_vm_timer.start();
  3031   // Timing (must come after argument parsing)
  3032   TraceTime timer("Create VM", TraceStartupTime);
  3034   // Initialize the os module after parsing the args
  3035   jint os_init_2_result = os::init_2();
  3036   if (os_init_2_result != JNI_OK) return os_init_2_result;
  3038   // Initialize output stream logging
  3039   ostream_init_log();
  3041   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
  3042   // Must be before create_vm_init_agents()
  3043   if (Arguments::init_libraries_at_startup()) {
  3044     convert_vm_init_libraries_to_agents();
  3047   // Launch -agentlib/-agentpath and converted -Xrun agents
  3048   if (Arguments::init_agents_at_startup()) {
  3049     create_vm_init_agents();
  3052   // Initialize Threads state
  3053   _thread_list = NULL;
  3054   _number_of_threads = 0;
  3055   _number_of_non_daemon_threads = 0;
  3057   // Initialize TLS
  3058   ThreadLocalStorage::init();
  3060   // Initialize global data structures and create system classes in heap
  3061   vm_init_globals();
  3063   // Attach the main thread to this os thread
  3064   JavaThread* main_thread = new JavaThread();
  3065   main_thread->set_thread_state(_thread_in_vm);
  3066   // must do this before set_active_handles and initialize_thread_local_storage
  3067   // Note: on solaris initialize_thread_local_storage() will (indirectly)
  3068   // change the stack size recorded here to one based on the java thread
  3069   // stacksize. This adjusted size is what is used to figure the placement
  3070   // of the guard pages.
  3071   main_thread->record_stack_base_and_size();
  3072   main_thread->initialize_thread_local_storage();
  3074   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
  3076   if (!main_thread->set_as_starting_thread()) {
  3077     vm_shutdown_during_initialization(
  3078       "Failed necessary internal allocation. Out of swap space");
  3079     delete main_thread;
  3080     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
  3081     return JNI_ENOMEM;
  3084   // Enable guard page *after* os::create_main_thread(), otherwise it would
  3085   // crash Linux VM, see notes in os_linux.cpp.
  3086   main_thread->create_stack_guard_pages();
  3088   // Initialize Java-Level synchronization subsystem
  3089   ObjectMonitor::Initialize() ;
  3091   // Initialize global modules
  3092   jint status = init_globals();
  3093   if (status != JNI_OK) {
  3094     delete main_thread;
  3095     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
  3096     return status;
  3099   // Should be done after the heap is fully created
  3100   main_thread->cache_global_variables();
  3102   HandleMark hm;
  3104   { MutexLocker mu(Threads_lock);
  3105     Threads::add(main_thread);
  3108   // Any JVMTI raw monitors entered in onload will transition into
  3109   // real raw monitor. VM is setup enough here for raw monitor enter.
  3110   JvmtiExport::transition_pending_onload_raw_monitors();
  3112   if (VerifyBeforeGC &&
  3113       Universe::heap()->total_collections() >= VerifyGCStartAt) {
  3114     Universe::heap()->prepare_for_verify();
  3115     Universe::verify();   // make sure we're starting with a clean slate
  3118   // Create the VMThread
  3119   { TraceTime timer("Start VMThread", TraceStartupTime);
  3120     VMThread::create();
  3121     Thread* vmthread = VMThread::vm_thread();
  3123     if (!os::create_thread(vmthread, os::vm_thread))
  3124       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
  3126     // Wait for the VM thread to become ready, and VMThread::run to initialize
  3127     // Monitors can have spurious returns, must always check another state flag
  3129       MutexLocker ml(Notify_lock);
  3130       os::start_thread(vmthread);
  3131       while (vmthread->active_handles() == NULL) {
  3132         Notify_lock->wait();
  3137   assert (Universe::is_fully_initialized(), "not initialized");
  3138   EXCEPTION_MARK;
  3140   // At this point, the Universe is initialized, but we have not executed
  3141   // any byte code.  Now is a good time (the only time) to dump out the
  3142   // internal state of the JVM for sharing.
  3144   if (DumpSharedSpaces) {
  3145     Universe::heap()->preload_and_dump(CHECK_0);
  3146     ShouldNotReachHere();
  3149   // Always call even when there are not JVMTI environments yet, since environments
  3150   // may be attached late and JVMTI must track phases of VM execution
  3151   JvmtiExport::enter_start_phase();
  3153   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
  3154   JvmtiExport::post_vm_start();
  3157     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
  3159     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
  3160       create_vm_init_libraries();
  3163     if (InitializeJavaLangString) {
  3164       initialize_class(vmSymbolHandles::java_lang_String(), CHECK_0);
  3165     } else {
  3166       warning("java.lang.String not initialized");
  3169     if (AggressiveOpts) {
  3171         // Forcibly initialize java/util/HashMap and mutate the private
  3172         // static final "frontCacheEnabled" field before we start creating instances
  3173 #ifdef ASSERT
  3174         klassOop tmp_k = SystemDictionary::find(vmSymbolHandles::java_util_HashMap(), Handle(), Handle(), CHECK_0);
  3175         assert(tmp_k == NULL, "java/util/HashMap should not be loaded yet");
  3176 #endif
  3177         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbolHandles::java_util_HashMap(), Handle(), Handle(), CHECK_0);
  3178         KlassHandle k = KlassHandle(THREAD, k_o);
  3179         guarantee(k.not_null(), "Must find java/util/HashMap");
  3180         instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
  3181         ik->initialize(CHECK_0);
  3182         fieldDescriptor fd;
  3183         // Possible we might not find this field; if so, don't break
  3184         if (ik->find_local_field(vmSymbols::frontCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
  3185           k()->bool_field_put(fd.offset(), true);
  3189       if (UseStringCache) {
  3190         // Forcibly initialize java/lang/StringValue and mutate the private
  3191         // static final "stringCacheEnabled" field before we start creating instances
  3192         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbolHandles::java_lang_StringValue(), Handle(), Handle(), CHECK_0);
  3193         // Possible that StringValue isn't present: if so, silently don't break
  3194         if (k_o != NULL) {
  3195           KlassHandle k = KlassHandle(THREAD, k_o);
  3196           instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
  3197           ik->initialize(CHECK_0);
  3198           fieldDescriptor fd;
  3199           // Possible we might not find this field: if so, silently don't break
  3200           if (ik->find_local_field(vmSymbols::stringCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
  3201             k()->bool_field_put(fd.offset(), true);
  3207     // Initialize java_lang.System (needed before creating the thread)
  3208     if (InitializeJavaLangSystem) {
  3209       initialize_class(vmSymbolHandles::java_lang_System(), CHECK_0);
  3210       initialize_class(vmSymbolHandles::java_lang_ThreadGroup(), CHECK_0);
  3211       Handle thread_group = create_initial_thread_group(CHECK_0);
  3212       Universe::set_main_thread_group(thread_group());
  3213       initialize_class(vmSymbolHandles::java_lang_Thread(), CHECK_0);
  3214       oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
  3215       main_thread->set_threadObj(thread_object);
  3216       // Set thread status to running since main thread has
  3217       // been started and running.
  3218       java_lang_Thread::set_thread_status(thread_object,
  3219                                           java_lang_Thread::RUNNABLE);
  3221       // The VM preresolve methods to these classes. Make sure that get initialized
  3222       initialize_class(vmSymbolHandles::java_lang_reflect_Method(), CHECK_0);
  3223       initialize_class(vmSymbolHandles::java_lang_ref_Finalizer(),  CHECK_0);
  3224       // The VM creates & returns objects of this class. Make sure it's initialized.
  3225       initialize_class(vmSymbolHandles::java_lang_Class(), CHECK_0);
  3226       call_initializeSystemClass(CHECK_0);
  3227     } else {
  3228       warning("java.lang.System not initialized");
  3231     // an instance of OutOfMemory exception has been allocated earlier
  3232     if (InitializeJavaLangExceptionsErrors) {
  3233       initialize_class(vmSymbolHandles::java_lang_OutOfMemoryError(), CHECK_0);
  3234       initialize_class(vmSymbolHandles::java_lang_NullPointerException(), CHECK_0);
  3235       initialize_class(vmSymbolHandles::java_lang_ClassCastException(), CHECK_0);
  3236       initialize_class(vmSymbolHandles::java_lang_ArrayStoreException(), CHECK_0);
  3237       initialize_class(vmSymbolHandles::java_lang_ArithmeticException(), CHECK_0);
  3238       initialize_class(vmSymbolHandles::java_lang_StackOverflowError(), CHECK_0);
  3239       initialize_class(vmSymbolHandles::java_lang_IllegalMonitorStateException(), CHECK_0);
  3240     } else {
  3241       warning("java.lang.OutOfMemoryError has not been initialized");
  3242       warning("java.lang.NullPointerException has not been initialized");
  3243       warning("java.lang.ClassCastException has not been initialized");
  3244       warning("java.lang.ArrayStoreException has not been initialized");
  3245       warning("java.lang.ArithmeticException has not been initialized");
  3246       warning("java.lang.StackOverflowError has not been initialized");
  3250   // See        : bugid 4211085.
  3251   // Background : the static initializer of java.lang.Compiler tries to read
  3252   //              property"java.compiler" and read & write property "java.vm.info".
  3253   //              When a security manager is installed through the command line
  3254   //              option "-Djava.security.manager", the above properties are not
  3255   //              readable and the static initializer for java.lang.Compiler fails
  3256   //              resulting in a NoClassDefFoundError.  This can happen in any
  3257   //              user code which calls methods in java.lang.Compiler.
  3258   // Hack :       the hack is to pre-load and initialize this class, so that only
  3259   //              system domains are on the stack when the properties are read.
  3260   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
  3261   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
  3262   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
  3263   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
  3264   //              Once that is done, we should remove this hack.
  3265   initialize_class(vmSymbolHandles::java_lang_Compiler(), CHECK_0);
  3267   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
  3268   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
  3269   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
  3270   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
  3271   // This should also be taken out as soon as 4211383 gets fixed.
  3272   reset_vm_info_property(CHECK_0);
  3274   quicken_jni_functions();
  3276   // Set flag that basic initialization has completed. Used by exceptions and various
  3277   // debug stuff, that does not work until all basic classes have been initialized.
  3278   set_init_completed();
  3280   HS_DTRACE_PROBE(hotspot, vm__init__end);
  3282   // record VM initialization completion time
  3283   Management::record_vm_init_completed();
  3285   // Compute system loader. Note that this has to occur after set_init_completed, since
  3286   // valid exceptions may be thrown in the process.
  3287   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
  3288   // set_init_completed has just been called, causing exceptions not to be shortcut
  3289   // anymore. We call vm_exit_during_initialization directly instead.
  3290   SystemDictionary::compute_java_system_loader(THREAD);
  3291   if (HAS_PENDING_EXCEPTION) {
  3292     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3295 #ifdef KERNEL
  3296   if (JDK_Version::is_gte_jdk17x_version()) {
  3297     set_jkernel_boot_classloader_hook(THREAD);
  3299 #endif // KERNEL
  3301 #ifndef SERIALGC
  3302   // Support for ConcurrentMarkSweep. This should be cleaned up
  3303   // and better encapsulated. The ugly nested if test would go away
  3304   // once things are properly refactored. XXX YSR
  3305   if (UseConcMarkSweepGC || UseG1GC) {
  3306     if (UseConcMarkSweepGC) {
  3307       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
  3308     } else {
  3309       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
  3311     if (HAS_PENDING_EXCEPTION) {
  3312       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3315 #endif // SERIALGC
  3317   // Always call even when there are not JVMTI environments yet, since environments
  3318   // may be attached late and JVMTI must track phases of VM execution
  3319   JvmtiExport::enter_live_phase();
  3321   // Signal Dispatcher needs to be started before VMInit event is posted
  3322   os::signal_init();
  3324   // Start Attach Listener if +StartAttachListener or it can't be started lazily
  3325   if (!DisableAttachMechanism) {
  3326     if (StartAttachListener || AttachListener::init_at_startup()) {
  3327       AttachListener::init();
  3331   // Launch -Xrun agents
  3332   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
  3333   // back-end can launch with -Xdebug -Xrunjdwp.
  3334   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
  3335     create_vm_init_libraries();
  3338   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
  3339   JvmtiExport::post_vm_initialized();
  3341   Chunk::start_chunk_pool_cleaner_task();
  3343   // initialize compiler(s)
  3344   CompileBroker::compilation_init();
  3346   Management::initialize(THREAD);
  3347   if (HAS_PENDING_EXCEPTION) {
  3348     // management agent fails to start possibly due to
  3349     // configuration problem and is responsible for printing
  3350     // stack trace if appropriate. Simply exit VM.
  3351     vm_exit(1);
  3354   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
  3355   if (Arguments::has_alloc_profile()) AllocationProfiler::engage();
  3356   if (MemProfiling)                   MemProfiler::engage();
  3357   StatSampler::engage();
  3358   if (CheckJNICalls)                  JniPeriodicChecker::engage();
  3360   BiasedLocking::init();
  3362   if (JDK_Version::current().post_vm_init_hook_enabled()) {
  3363     call_postVMInitHook(THREAD);
  3364     // The Java side of PostVMInitHook.run must deal with all
  3365     // exceptions and provide means of diagnosis.
  3366     if (HAS_PENDING_EXCEPTION) {
  3367       CLEAR_PENDING_EXCEPTION;
  3371   // Start up the WatcherThread if there are any periodic tasks
  3372   // NOTE:  All PeriodicTasks should be registered by now. If they
  3373   //   aren't, late joiners might appear to start slowly (we might
  3374   //   take a while to process their first tick).
  3375   if (PeriodicTask::num_tasks() > 0) {
  3376     WatcherThread::start();
  3379   // Give os specific code one last chance to start
  3380   os::init_3();
  3382   create_vm_timer.end();
  3383   return JNI_OK;
  3386 // type for the Agent_OnLoad and JVM_OnLoad entry points
  3387 extern "C" {
  3388   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
  3390 // Find a command line agent library and return its entry point for
  3391 //         -agentlib:  -agentpath:   -Xrun
  3392 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
  3393 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
  3394   OnLoadEntry_t on_load_entry = NULL;
  3395   void *library = agent->os_lib();  // check if we have looked it up before
  3397   if (library == NULL) {
  3398     char buffer[JVM_MAXPATHLEN];
  3399     char ebuf[1024];
  3400     const char *name = agent->name();
  3401     const char *msg = "Could not find agent library ";
  3403     if (agent->is_absolute_path()) {
  3404       library = os::dll_load(name, ebuf, sizeof ebuf);
  3405       if (library == NULL) {
  3406         const char *sub_msg = " in absolute path, with error: ";
  3407         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
  3408         char *buf = NEW_C_HEAP_ARRAY(char, len);
  3409         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
  3410         // If we can't find the agent, exit.
  3411         vm_exit_during_initialization(buf, NULL);
  3412         FREE_C_HEAP_ARRAY(char, buf);
  3414     } else {
  3415       // Try to load the agent from the standard dll directory
  3416       os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), name);
  3417       library = os::dll_load(buffer, ebuf, sizeof ebuf);
  3418 #ifdef KERNEL
  3419       // Download instrument dll
  3420       if (library == NULL && strcmp(name, "instrument") == 0) {
  3421         char *props = Arguments::get_kernel_properties();
  3422         char *home  = Arguments::get_java_home();
  3423         const char *fmt   = "%s/bin/java %s -Dkernel.background.download=false"
  3424                       " sun.jkernel.DownloadManager -download client_jvm";
  3425         size_t length = strlen(props) + strlen(home) + strlen(fmt) + 1;
  3426         char *cmd = NEW_C_HEAP_ARRAY(char, length);
  3427         jio_snprintf(cmd, length, fmt, home, props);
  3428         int status = os::fork_and_exec(cmd);
  3429         FreeHeap(props);
  3430         if (status == -1) {
  3431           warning(cmd);
  3432           vm_exit_during_initialization("fork_and_exec failed: %s",
  3433                                          strerror(errno));
  3435         FREE_C_HEAP_ARRAY(char, cmd);
  3436         // when this comes back the instrument.dll should be where it belongs.
  3437         library = os::dll_load(buffer, ebuf, sizeof ebuf);
  3439 #endif // KERNEL
  3440       if (library == NULL) { // Try the local directory
  3441         char ns[1] = {0};
  3442         os::dll_build_name(buffer, sizeof(buffer), ns, name);
  3443         library = os::dll_load(buffer, ebuf, sizeof ebuf);
  3444         if (library == NULL) {
  3445           const char *sub_msg = " on the library path, with error: ";
  3446           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
  3447           char *buf = NEW_C_HEAP_ARRAY(char, len);
  3448           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
  3449           // If we can't find the agent, exit.
  3450           vm_exit_during_initialization(buf, NULL);
  3451           FREE_C_HEAP_ARRAY(char, buf);
  3455     agent->set_os_lib(library);
  3458   // Find the OnLoad function.
  3459   for (size_t symbol_index = 0; symbol_index < num_symbol_entries; symbol_index++) {
  3460     on_load_entry = CAST_TO_FN_PTR(OnLoadEntry_t, os::dll_lookup(library, on_load_symbols[symbol_index]));
  3461     if (on_load_entry != NULL) break;
  3463   return on_load_entry;
  3466 // Find the JVM_OnLoad entry point
  3467 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
  3468   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
  3469   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
  3472 // Find the Agent_OnLoad entry point
  3473 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
  3474   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
  3475   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
  3478 // For backwards compatibility with -Xrun
  3479 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
  3480 // treated like -agentpath:
  3481 // Must be called before agent libraries are created
  3482 void Threads::convert_vm_init_libraries_to_agents() {
  3483   AgentLibrary* agent;
  3484   AgentLibrary* next;
  3486   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
  3487     next = agent->next();  // cache the next agent now as this agent may get moved off this list
  3488     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
  3490     // If there is an JVM_OnLoad function it will get called later,
  3491     // otherwise see if there is an Agent_OnLoad
  3492     if (on_load_entry == NULL) {
  3493       on_load_entry = lookup_agent_on_load(agent);
  3494       if (on_load_entry != NULL) {
  3495         // switch it to the agent list -- so that Agent_OnLoad will be called,
  3496         // JVM_OnLoad won't be attempted and Agent_OnUnload will
  3497         Arguments::convert_library_to_agent(agent);
  3498       } else {
  3499         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
  3505 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
  3506 // Invokes Agent_OnLoad
  3507 // Called very early -- before JavaThreads exist
  3508 void Threads::create_vm_init_agents() {
  3509   extern struct JavaVM_ main_vm;
  3510   AgentLibrary* agent;
  3512   JvmtiExport::enter_onload_phase();
  3513   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
  3514     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
  3516     if (on_load_entry != NULL) {
  3517       // Invoke the Agent_OnLoad function
  3518       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
  3519       if (err != JNI_OK) {
  3520         vm_exit_during_initialization("agent library failed to init", agent->name());
  3522     } else {
  3523       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
  3526   JvmtiExport::enter_primordial_phase();
  3529 extern "C" {
  3530   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
  3533 void Threads::shutdown_vm_agents() {
  3534   // Send any Agent_OnUnload notifications
  3535   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
  3536   extern struct JavaVM_ main_vm;
  3537   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
  3539     // Find the Agent_OnUnload function.
  3540     for (uint symbol_index = 0; symbol_index < ARRAY_SIZE(on_unload_symbols); symbol_index++) {
  3541       Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
  3542                os::dll_lookup(agent->os_lib(), on_unload_symbols[symbol_index]));
  3544       // Invoke the Agent_OnUnload function
  3545       if (unload_entry != NULL) {
  3546         JavaThread* thread = JavaThread::current();
  3547         ThreadToNativeFromVM ttn(thread);
  3548         HandleMark hm(thread);
  3549         (*unload_entry)(&main_vm);
  3550         break;
  3556 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
  3557 // Invokes JVM_OnLoad
  3558 void Threads::create_vm_init_libraries() {
  3559   extern struct JavaVM_ main_vm;
  3560   AgentLibrary* agent;
  3562   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
  3563     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
  3565     if (on_load_entry != NULL) {
  3566       // Invoke the JVM_OnLoad function
  3567       JavaThread* thread = JavaThread::current();
  3568       ThreadToNativeFromVM ttn(thread);
  3569       HandleMark hm(thread);
  3570       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
  3571       if (err != JNI_OK) {
  3572         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
  3574     } else {
  3575       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
  3580 // Last thread running calls java.lang.Shutdown.shutdown()
  3581 void JavaThread::invoke_shutdown_hooks() {
  3582   HandleMark hm(this);
  3584   // We could get here with a pending exception, if so clear it now.
  3585   if (this->has_pending_exception()) {
  3586     this->clear_pending_exception();
  3589   EXCEPTION_MARK;
  3590   klassOop k =
  3591     SystemDictionary::resolve_or_null(vmSymbolHandles::java_lang_Shutdown(),
  3592                                       THREAD);
  3593   if (k != NULL) {
  3594     // SystemDictionary::resolve_or_null will return null if there was
  3595     // an exception.  If we cannot load the Shutdown class, just don't
  3596     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
  3597     // and finalizers (if runFinalizersOnExit is set) won't be run.
  3598     // Note that if a shutdown hook was registered or runFinalizersOnExit
  3599     // was called, the Shutdown class would have already been loaded
  3600     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
  3601     instanceKlassHandle shutdown_klass (THREAD, k);
  3602     JavaValue result(T_VOID);
  3603     JavaCalls::call_static(&result,
  3604                            shutdown_klass,
  3605                            vmSymbolHandles::shutdown_method_name(),
  3606                            vmSymbolHandles::void_method_signature(),
  3607                            THREAD);
  3609   CLEAR_PENDING_EXCEPTION;
  3612 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
  3613 // the program falls off the end of main(). Another VM exit path is through
  3614 // vm_exit() when the program calls System.exit() to return a value or when
  3615 // there is a serious error in VM. The two shutdown paths are not exactly
  3616 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
  3617 // and VM_Exit op at VM level.
  3618 //
  3619 // Shutdown sequence:
  3620 //   + Wait until we are the last non-daemon thread to execute
  3621 //     <-- every thing is still working at this moment -->
  3622 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
  3623 //        shutdown hooks, run finalizers if finalization-on-exit
  3624 //   + Call before_exit(), prepare for VM exit
  3625 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
  3626 //        currently the only user of this mechanism is File.deleteOnExit())
  3627 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
  3628 //        post thread end and vm death events to JVMTI,
  3629 //        stop signal thread
  3630 //   + Call JavaThread::exit(), it will:
  3631 //      > release JNI handle blocks, remove stack guard pages
  3632 //      > remove this thread from Threads list
  3633 //     <-- no more Java code from this thread after this point -->
  3634 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
  3635 //     the compiler threads at safepoint
  3636 //     <-- do not use anything that could get blocked by Safepoint -->
  3637 //   + Disable tracing at JNI/JVM barriers
  3638 //   + Set _vm_exited flag for threads that are still running native code
  3639 //   + Delete this thread
  3640 //   + Call exit_globals()
  3641 //      > deletes tty
  3642 //      > deletes PerfMemory resources
  3643 //   + Return to caller
  3645 bool Threads::destroy_vm() {
  3646   JavaThread* thread = JavaThread::current();
  3648   // Wait until we are the last non-daemon thread to execute
  3649   { MutexLocker nu(Threads_lock);
  3650     while (Threads::number_of_non_daemon_threads() > 1 )
  3651       // This wait should make safepoint checks, wait without a timeout,
  3652       // and wait as a suspend-equivalent condition.
  3653       //
  3654       // Note: If the FlatProfiler is running and this thread is waiting
  3655       // for another non-daemon thread to finish, then the FlatProfiler
  3656       // is waiting for the external suspend request on this thread to
  3657       // complete. wait_for_ext_suspend_completion() will eventually
  3658       // timeout, but that takes time. Making this wait a suspend-
  3659       // equivalent condition solves that timeout problem.
  3660       //
  3661       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
  3662                          Mutex::_as_suspend_equivalent_flag);
  3665   // Hang forever on exit if we are reporting an error.
  3666   if (ShowMessageBoxOnError && is_error_reported()) {
  3667     os::infinite_sleep();
  3670   if (JDK_Version::is_jdk12x_version()) {
  3671     // We are the last thread running, so check if finalizers should be run.
  3672     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
  3673     HandleMark rm(thread);
  3674     Universe::run_finalizers_on_exit();
  3675   } else {
  3676     // run Java level shutdown hooks
  3677     thread->invoke_shutdown_hooks();
  3680   before_exit(thread);
  3682   thread->exit(true);
  3684   // Stop VM thread.
  3686     // 4945125 The vm thread comes to a safepoint during exit.
  3687     // GC vm_operations can get caught at the safepoint, and the
  3688     // heap is unparseable if they are caught. Grab the Heap_lock
  3689     // to prevent this. The GC vm_operations will not be able to
  3690     // queue until after the vm thread is dead.
  3691     MutexLocker ml(Heap_lock);
  3693     VMThread::wait_for_vm_thread_exit();
  3694     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
  3695     VMThread::destroy();
  3698   // clean up ideal graph printers
  3699 #if defined(COMPILER2) && !defined(PRODUCT)
  3700   IdealGraphPrinter::clean_up();
  3701 #endif
  3703   // Now, all Java threads are gone except daemon threads. Daemon threads
  3704   // running Java code or in VM are stopped by the Safepoint. However,
  3705   // daemon threads executing native code are still running.  But they
  3706   // will be stopped at native=>Java/VM barriers. Note that we can't
  3707   // simply kill or suspend them, as it is inherently deadlock-prone.
  3709 #ifndef PRODUCT
  3710   // disable function tracing at JNI/JVM barriers
  3711   TraceJNICalls = false;
  3712   TraceJVMCalls = false;
  3713   TraceRuntimeCalls = false;
  3714 #endif
  3716   VM_Exit::set_vm_exited();
  3718   notify_vm_shutdown();
  3720   delete thread;
  3722   // exit_globals() will delete tty
  3723   exit_globals();
  3725   return true;
  3729 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
  3730   if (version == JNI_VERSION_1_1) return JNI_TRUE;
  3731   return is_supported_jni_version(version);
  3735 jboolean Threads::is_supported_jni_version(jint version) {
  3736   if (version == JNI_VERSION_1_2) return JNI_TRUE;
  3737   if (version == JNI_VERSION_1_4) return JNI_TRUE;
  3738   if (version == JNI_VERSION_1_6) return JNI_TRUE;
  3739   return JNI_FALSE;
  3743 void Threads::add(JavaThread* p, bool force_daemon) {
  3744   // The threads lock must be owned at this point
  3745   assert_locked_or_safepoint(Threads_lock);
  3747   // See the comment for this method in thread.hpp for its purpose and
  3748   // why it is called here.
  3749   p->initialize_queues();
  3750   p->set_next(_thread_list);
  3751   _thread_list = p;
  3752   _number_of_threads++;
  3753   oop threadObj = p->threadObj();
  3754   bool daemon = true;
  3755   // Bootstrapping problem: threadObj can be null for initial
  3756   // JavaThread (or for threads attached via JNI)
  3757   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
  3758     _number_of_non_daemon_threads++;
  3759     daemon = false;
  3762   ThreadService::add_thread(p, daemon);
  3764   // Possible GC point.
  3765   Events::log("Thread added: " INTPTR_FORMAT, p);
  3768 void Threads::remove(JavaThread* p) {
  3769   // Extra scope needed for Thread_lock, so we can check
  3770   // that we do not remove thread without safepoint code notice
  3771   { MutexLocker ml(Threads_lock);
  3773     assert(includes(p), "p must be present");
  3775     JavaThread* current = _thread_list;
  3776     JavaThread* prev    = NULL;
  3778     while (current != p) {
  3779       prev    = current;
  3780       current = current->next();
  3783     if (prev) {
  3784       prev->set_next(current->next());
  3785     } else {
  3786       _thread_list = p->next();
  3788     _number_of_threads--;
  3789     oop threadObj = p->threadObj();
  3790     bool daemon = true;
  3791     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
  3792       _number_of_non_daemon_threads--;
  3793       daemon = false;
  3795       // Only one thread left, do a notify on the Threads_lock so a thread waiting
  3796       // on destroy_vm will wake up.
  3797       if (number_of_non_daemon_threads() == 1)
  3798         Threads_lock->notify_all();
  3800     ThreadService::remove_thread(p, daemon);
  3802     // Make sure that safepoint code disregard this thread. This is needed since
  3803     // the thread might mess around with locks after this point. This can cause it
  3804     // to do callbacks into the safepoint code. However, the safepoint code is not aware
  3805     // of this thread since it is removed from the queue.
  3806     p->set_terminated_value();
  3807   } // unlock Threads_lock
  3809   // Since Events::log uses a lock, we grab it outside the Threads_lock
  3810   Events::log("Thread exited: " INTPTR_FORMAT, p);
  3813 // Threads_lock must be held when this is called (or must be called during a safepoint)
  3814 bool Threads::includes(JavaThread* p) {
  3815   assert(Threads_lock->is_locked(), "sanity check");
  3816   ALL_JAVA_THREADS(q) {
  3817     if (q == p ) {
  3818       return true;
  3821   return false;
  3824 // Operations on the Threads list for GC.  These are not explicitly locked,
  3825 // but the garbage collector must provide a safe context for them to run.
  3826 // In particular, these things should never be called when the Threads_lock
  3827 // is held by some other thread. (Note: the Safepoint abstraction also
  3828 // uses the Threads_lock to gurantee this property. It also makes sure that
  3829 // all threads gets blocked when exiting or starting).
  3831 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
  3832   ALL_JAVA_THREADS(p) {
  3833     p->oops_do(f, cf);
  3835   VMThread::vm_thread()->oops_do(f, cf);
  3838 void Threads::possibly_parallel_oops_do(OopClosure* f, CodeBlobClosure* cf) {
  3839   // Introduce a mechanism allowing parallel threads to claim threads as
  3840   // root groups.  Overhead should be small enough to use all the time,
  3841   // even in sequential code.
  3842   SharedHeap* sh = SharedHeap::heap();
  3843   bool is_par = (sh->n_par_threads() > 0);
  3844   int cp = SharedHeap::heap()->strong_roots_parity();
  3845   ALL_JAVA_THREADS(p) {
  3846     if (p->claim_oops_do(is_par, cp)) {
  3847       p->oops_do(f, cf);
  3850   VMThread* vmt = VMThread::vm_thread();
  3851   if (vmt->claim_oops_do(is_par, cp))
  3852     vmt->oops_do(f, cf);
  3855 #ifndef SERIALGC
  3856 // Used by ParallelScavenge
  3857 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
  3858   ALL_JAVA_THREADS(p) {
  3859     q->enqueue(new ThreadRootsTask(p));
  3861   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
  3864 // Used by Parallel Old
  3865 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
  3866   ALL_JAVA_THREADS(p) {
  3867     q->enqueue(new ThreadRootsMarkingTask(p));
  3869   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
  3871 #endif // SERIALGC
  3873 void Threads::nmethods_do(CodeBlobClosure* cf) {
  3874   ALL_JAVA_THREADS(p) {
  3875     p->nmethods_do(cf);
  3877   VMThread::vm_thread()->nmethods_do(cf);
  3880 void Threads::gc_epilogue() {
  3881   ALL_JAVA_THREADS(p) {
  3882     p->gc_epilogue();
  3886 void Threads::gc_prologue() {
  3887   ALL_JAVA_THREADS(p) {
  3888     p->gc_prologue();
  3892 void Threads::deoptimized_wrt_marked_nmethods() {
  3893   ALL_JAVA_THREADS(p) {
  3894     p->deoptimized_wrt_marked_nmethods();
  3899 // Get count Java threads that are waiting to enter the specified monitor.
  3900 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
  3901   address monitor, bool doLock) {
  3902   assert(doLock || SafepointSynchronize::is_at_safepoint(),
  3903     "must grab Threads_lock or be at safepoint");
  3904   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
  3906   int i = 0;
  3908     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  3909     ALL_JAVA_THREADS(p) {
  3910       if (p->is_Compiler_thread()) continue;
  3912       address pending = (address)p->current_pending_monitor();
  3913       if (pending == monitor) {             // found a match
  3914         if (i < count) result->append(p);   // save the first count matches
  3915         i++;
  3919   return result;
  3923 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
  3924   assert(doLock ||
  3925          Threads_lock->owned_by_self() ||
  3926          SafepointSynchronize::is_at_safepoint(),
  3927          "must grab Threads_lock or be at safepoint");
  3929   // NULL owner means not locked so we can skip the search
  3930   if (owner == NULL) return NULL;
  3933     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  3934     ALL_JAVA_THREADS(p) {
  3935       // first, see if owner is the address of a Java thread
  3936       if (owner == (address)p) return p;
  3939   assert(UseHeavyMonitors == false, "Did not find owning Java thread with UseHeavyMonitors enabled");
  3940   if (UseHeavyMonitors) return NULL;
  3942   //
  3943   // If we didn't find a matching Java thread and we didn't force use of
  3944   // heavyweight monitors, then the owner is the stack address of the
  3945   // Lock Word in the owning Java thread's stack.
  3946   //
  3947   JavaThread* the_owner = NULL;
  3949     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  3950     ALL_JAVA_THREADS(q) {
  3951       if (q->is_lock_owned(owner)) {
  3952         the_owner = q;
  3953         break;
  3957   assert(the_owner != NULL, "Did not find owning Java thread for lock word address");
  3958   return the_owner;
  3961 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
  3962 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
  3963   char buf[32];
  3964   st->print_cr(os::local_time_string(buf, sizeof(buf)));
  3966   st->print_cr("Full thread dump %s (%s %s):",
  3967                 Abstract_VM_Version::vm_name(),
  3968                 Abstract_VM_Version::vm_release(),
  3969                 Abstract_VM_Version::vm_info_string()
  3970                );
  3971   st->cr();
  3973 #ifndef SERIALGC
  3974   // Dump concurrent locks
  3975   ConcurrentLocksDump concurrent_locks;
  3976   if (print_concurrent_locks) {
  3977     concurrent_locks.dump_at_safepoint();
  3979 #endif // SERIALGC
  3981   ALL_JAVA_THREADS(p) {
  3982     ResourceMark rm;
  3983     p->print_on(st);
  3984     if (print_stacks) {
  3985       if (internal_format) {
  3986         p->trace_stack();
  3987       } else {
  3988         p->print_stack_on(st);
  3991     st->cr();
  3992 #ifndef SERIALGC
  3993     if (print_concurrent_locks) {
  3994       concurrent_locks.print_locks_on(p, st);
  3996 #endif // SERIALGC
  3999   VMThread::vm_thread()->print_on(st);
  4000   st->cr();
  4001   Universe::heap()->print_gc_threads_on(st);
  4002   WatcherThread* wt = WatcherThread::watcher_thread();
  4003   if (wt != NULL) wt->print_on(st);
  4004   st->cr();
  4005   CompileBroker::print_compiler_threads_on(st);
  4006   st->flush();
  4009 // Threads::print_on_error() is called by fatal error handler. It's possible
  4010 // that VM is not at safepoint and/or current thread is inside signal handler.
  4011 // Don't print stack trace, as the stack may not be walkable. Don't allocate
  4012 // memory (even in resource area), it might deadlock the error handler.
  4013 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
  4014   bool found_current = false;
  4015   st->print_cr("Java Threads: ( => current thread )");
  4016   ALL_JAVA_THREADS(thread) {
  4017     bool is_current = (current == thread);
  4018     found_current = found_current || is_current;
  4020     st->print("%s", is_current ? "=>" : "  ");
  4022     st->print(PTR_FORMAT, thread);
  4023     st->print(" ");
  4024     thread->print_on_error(st, buf, buflen);
  4025     st->cr();
  4027   st->cr();
  4029   st->print_cr("Other Threads:");
  4030   if (VMThread::vm_thread()) {
  4031     bool is_current = (current == VMThread::vm_thread());
  4032     found_current = found_current || is_current;
  4033     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
  4035     st->print(PTR_FORMAT, VMThread::vm_thread());
  4036     st->print(" ");
  4037     VMThread::vm_thread()->print_on_error(st, buf, buflen);
  4038     st->cr();
  4040   WatcherThread* wt = WatcherThread::watcher_thread();
  4041   if (wt != NULL) {
  4042     bool is_current = (current == wt);
  4043     found_current = found_current || is_current;
  4044     st->print("%s", is_current ? "=>" : "  ");
  4046     st->print(PTR_FORMAT, wt);
  4047     st->print(" ");
  4048     wt->print_on_error(st, buf, buflen);
  4049     st->cr();
  4051   if (!found_current) {
  4052     st->cr();
  4053     st->print("=>" PTR_FORMAT " (exited) ", current);
  4054     current->print_on_error(st, buf, buflen);
  4055     st->cr();
  4059 // Internal SpinLock and Mutex
  4060 // Based on ParkEvent
  4062 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
  4063 //
  4064 // We employ SpinLocks _only for low-contention, fixed-length
  4065 // short-duration critical sections where we're concerned
  4066 // about native mutex_t or HotSpot Mutex:: latency.
  4067 // The mux construct provides a spin-then-block mutual exclusion
  4068 // mechanism.
  4069 //
  4070 // Testing has shown that contention on the ListLock guarding gFreeList
  4071 // is common.  If we implement ListLock as a simple SpinLock it's common
  4072 // for the JVM to devolve to yielding with little progress.  This is true
  4073 // despite the fact that the critical sections protected by ListLock are
  4074 // extremely short.
  4075 //
  4076 // TODO-FIXME: ListLock should be of type SpinLock.
  4077 // We should make this a 1st-class type, integrated into the lock
  4078 // hierarchy as leaf-locks.  Critically, the SpinLock structure
  4079 // should have sufficient padding to avoid false-sharing and excessive
  4080 // cache-coherency traffic.
  4083 typedef volatile int SpinLockT ;
  4085 void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
  4086   if (Atomic::cmpxchg (1, adr, 0) == 0) {
  4087      return ;   // normal fast-path return
  4090   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
  4091   TEVENT (SpinAcquire - ctx) ;
  4092   int ctr = 0 ;
  4093   int Yields = 0 ;
  4094   for (;;) {
  4095      while (*adr != 0) {
  4096         ++ctr ;
  4097         if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
  4098            if (Yields > 5) {
  4099              // Consider using a simple NakedSleep() instead.
  4100              // Then SpinAcquire could be called by non-JVM threads
  4101              Thread::current()->_ParkEvent->park(1) ;
  4102            } else {
  4103              os::NakedYield() ;
  4104              ++Yields ;
  4106         } else {
  4107            SpinPause() ;
  4110      if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
  4114 void Thread::SpinRelease (volatile int * adr) {
  4115   assert (*adr != 0, "invariant") ;
  4116   OrderAccess::fence() ;      // guarantee at least release consistency.
  4117   // Roach-motel semantics.
  4118   // It's safe if subsequent LDs and STs float "up" into the critical section,
  4119   // but prior LDs and STs within the critical section can't be allowed
  4120   // to reorder or float past the ST that releases the lock.
  4121   *adr = 0 ;
  4124 // muxAcquire and muxRelease:
  4125 //
  4126 // *  muxAcquire and muxRelease support a single-word lock-word construct.
  4127 //    The LSB of the word is set IFF the lock is held.
  4128 //    The remainder of the word points to the head of a singly-linked list
  4129 //    of threads blocked on the lock.
  4130 //
  4131 // *  The current implementation of muxAcquire-muxRelease uses its own
  4132 //    dedicated Thread._MuxEvent instance.  If we're interested in
  4133 //    minimizing the peak number of extant ParkEvent instances then
  4134 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
  4135 //    as certain invariants were satisfied.  Specifically, care would need
  4136 //    to be taken with regards to consuming unpark() "permits".
  4137 //    A safe rule of thumb is that a thread would never call muxAcquire()
  4138 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
  4139 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
  4140 //    consume an unpark() permit intended for monitorenter, for instance.
  4141 //    One way around this would be to widen the restricted-range semaphore
  4142 //    implemented in park().  Another alternative would be to provide
  4143 //    multiple instances of the PlatformEvent() for each thread.  One
  4144 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
  4145 //
  4146 // *  Usage:
  4147 //    -- Only as leaf locks
  4148 //    -- for short-term locking only as muxAcquire does not perform
  4149 //       thread state transitions.
  4150 //
  4151 // Alternatives:
  4152 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
  4153 //    but with parking or spin-then-park instead of pure spinning.
  4154 // *  Use Taura-Oyama-Yonenzawa locks.
  4155 // *  It's possible to construct a 1-0 lock if we encode the lockword as
  4156 //    (List,LockByte).  Acquire will CAS the full lockword while Release
  4157 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
  4158 //    acquiring threads use timers (ParkTimed) to detect and recover from
  4159 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
  4160 //    boundaries by using placement-new.
  4161 // *  Augment MCS with advisory back-link fields maintained with CAS().
  4162 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
  4163 //    The validity of the backlinks must be ratified before we trust the value.
  4164 //    If the backlinks are invalid the exiting thread must back-track through the
  4165 //    the forward links, which are always trustworthy.
  4166 // *  Add a successor indication.  The LockWord is currently encoded as
  4167 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
  4168 //    to provide the usual futile-wakeup optimization.
  4169 //    See RTStt for details.
  4170 // *  Consider schedctl.sc_nopreempt to cover the critical section.
  4171 //
  4174 typedef volatile intptr_t MutexT ;      // Mux Lock-word
  4175 enum MuxBits { LOCKBIT = 1 } ;
  4177 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
  4178   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
  4179   if (w == 0) return ;
  4180   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4181      return ;
  4184   TEVENT (muxAcquire - Contention) ;
  4185   ParkEvent * const Self = Thread::current()->_MuxEvent ;
  4186   assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
  4187   for (;;) {
  4188      int its = (os::is_MP() ? 100 : 0) + 1 ;
  4190      // Optional spin phase: spin-then-park strategy
  4191      while (--its >= 0) {
  4192        w = *Lock ;
  4193        if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4194           return ;
  4198      Self->reset() ;
  4199      Self->OnList = intptr_t(Lock) ;
  4200      // The following fence() isn't _strictly necessary as the subsequent
  4201      // CAS() both serializes execution and ratifies the fetched *Lock value.
  4202      OrderAccess::fence();
  4203      for (;;) {
  4204         w = *Lock ;
  4205         if ((w & LOCKBIT) == 0) {
  4206             if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4207                 Self->OnList = 0 ;   // hygiene - allows stronger asserts
  4208                 return ;
  4210             continue ;      // Interference -- *Lock changed -- Just retry
  4212         assert (w & LOCKBIT, "invariant") ;
  4213         Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
  4214         if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
  4217      while (Self->OnList != 0) {
  4218         Self->park() ;
  4223 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
  4224   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
  4225   if (w == 0) return ;
  4226   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4227     return ;
  4230   TEVENT (muxAcquire - Contention) ;
  4231   ParkEvent * ReleaseAfter = NULL ;
  4232   if (ev == NULL) {
  4233     ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
  4235   assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
  4236   for (;;) {
  4237     guarantee (ev->OnList == 0, "invariant") ;
  4238     int its = (os::is_MP() ? 100 : 0) + 1 ;
  4240     // Optional spin phase: spin-then-park strategy
  4241     while (--its >= 0) {
  4242       w = *Lock ;
  4243       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4244         if (ReleaseAfter != NULL) {
  4245           ParkEvent::Release (ReleaseAfter) ;
  4247         return ;
  4251     ev->reset() ;
  4252     ev->OnList = intptr_t(Lock) ;
  4253     // The following fence() isn't _strictly necessary as the subsequent
  4254     // CAS() both serializes execution and ratifies the fetched *Lock value.
  4255     OrderAccess::fence();
  4256     for (;;) {
  4257       w = *Lock ;
  4258       if ((w & LOCKBIT) == 0) {
  4259         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4260           ev->OnList = 0 ;
  4261           // We call ::Release while holding the outer lock, thus
  4262           // artificially lengthening the critical section.
  4263           // Consider deferring the ::Release() until the subsequent unlock(),
  4264           // after we've dropped the outer lock.
  4265           if (ReleaseAfter != NULL) {
  4266             ParkEvent::Release (ReleaseAfter) ;
  4268           return ;
  4270         continue ;      // Interference -- *Lock changed -- Just retry
  4272       assert (w & LOCKBIT, "invariant") ;
  4273       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
  4274       if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
  4277     while (ev->OnList != 0) {
  4278       ev->park() ;
  4283 // Release() must extract a successor from the list and then wake that thread.
  4284 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
  4285 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
  4286 // Release() would :
  4287 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
  4288 // (B) Extract a successor from the private list "in-hand"
  4289 // (C) attempt to CAS() the residual back into *Lock over null.
  4290 //     If there were any newly arrived threads and the CAS() would fail.
  4291 //     In that case Release() would detach the RATs, re-merge the list in-hand
  4292 //     with the RATs and repeat as needed.  Alternately, Release() might
  4293 //     detach and extract a successor, but then pass the residual list to the wakee.
  4294 //     The wakee would be responsible for reattaching and remerging before it
  4295 //     competed for the lock.
  4296 //
  4297 // Both "pop" and DMR are immune from ABA corruption -- there can be
  4298 // multiple concurrent pushers, but only one popper or detacher.
  4299 // This implementation pops from the head of the list.  This is unfair,
  4300 // but tends to provide excellent throughput as hot threads remain hot.
  4301 // (We wake recently run threads first).
  4303 void Thread::muxRelease (volatile intptr_t * Lock)  {
  4304   for (;;) {
  4305     const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
  4306     assert (w & LOCKBIT, "invariant") ;
  4307     if (w == LOCKBIT) return ;
  4308     ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
  4309     assert (List != NULL, "invariant") ;
  4310     assert (List->OnList == intptr_t(Lock), "invariant") ;
  4311     ParkEvent * nxt = List->ListNext ;
  4313     // The following CAS() releases the lock and pops the head element.
  4314     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
  4315       continue ;
  4317     List->OnList = 0 ;
  4318     OrderAccess::fence() ;
  4319     List->unpark () ;
  4320     return ;
  4325 void Threads::verify() {
  4326   ALL_JAVA_THREADS(p) {
  4327     p->verify();
  4329   VMThread* thread = VMThread::vm_thread();
  4330   if (thread != NULL) thread->verify();

mercurial