src/share/vm/gc_implementation/g1/heapRegion.hpp

Mon, 08 Dec 2014 18:57:33 +0100

author
mgerdin
date
Mon, 08 Dec 2014 18:57:33 +0100
changeset 7655
8e9ede9dd2cd
parent 7647
80ac3ee51955
child 7990
1f646daf0d67
permissions
-rw-r--r--

8067655: Clean up G1 remembered set oop iteration
Summary: Pass on the static type G1ParPushHeapRSClosure to allow oop_iterate devirtualization
Reviewed-by: jmasa, kbarrett

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
    28 #include "gc_implementation/g1/g1AllocationContext.hpp"
    29 #include "gc_implementation/g1/g1BlockOffsetTable.hpp"
    30 #include "gc_implementation/g1/g1_specialized_oop_closures.hpp"
    31 #include "gc_implementation/g1/heapRegionType.hpp"
    32 #include "gc_implementation/g1/survRateGroup.hpp"
    33 #include "gc_implementation/shared/ageTable.hpp"
    34 #include "gc_implementation/shared/spaceDecorator.hpp"
    35 #include "memory/space.inline.hpp"
    36 #include "memory/watermark.hpp"
    37 #include "utilities/macros.hpp"
    39 // A HeapRegion is the smallest piece of a G1CollectedHeap that
    40 // can be collected independently.
    42 // NOTE: Although a HeapRegion is a Space, its
    43 // Space::initDirtyCardClosure method must not be called.
    44 // The problem is that the existence of this method breaks
    45 // the independence of barrier sets from remembered sets.
    46 // The solution is to remove this method from the definition
    47 // of a Space.
    49 class HeapRegionRemSet;
    50 class HeapRegionRemSetIterator;
    51 class HeapRegion;
    52 class HeapRegionSetBase;
    53 class nmethod;
    55 #define HR_FORMAT "%u:(%s)["PTR_FORMAT","PTR_FORMAT","PTR_FORMAT"]"
    56 #define HR_FORMAT_PARAMS(_hr_) \
    57                 (_hr_)->hrm_index(), \
    58                 (_hr_)->get_short_type_str(), \
    59                 p2i((_hr_)->bottom()), p2i((_hr_)->top()), p2i((_hr_)->end())
    61 // sentinel value for hrm_index
    62 #define G1_NO_HRM_INDEX ((uint) -1)
    64 // A dirty card to oop closure for heap regions. It
    65 // knows how to get the G1 heap and how to use the bitmap
    66 // in the concurrent marker used by G1 to filter remembered
    67 // sets.
    69 class HeapRegionDCTOC : public DirtyCardToOopClosure {
    70 private:
    71   HeapRegion* _hr;
    72   G1ParPushHeapRSClosure* _rs_scan;
    73   G1CollectedHeap* _g1;
    75   // Walk the given memory region from bottom to (actual) top
    76   // looking for objects and applying the oop closure (_cl) to
    77   // them. The base implementation of this treats the area as
    78   // blocks, where a block may or may not be an object. Sub-
    79   // classes should override this to provide more accurate
    80   // or possibly more efficient walking.
    81   void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top);
    83 public:
    84   HeapRegionDCTOC(G1CollectedHeap* g1,
    85                   HeapRegion* hr,
    86                   G1ParPushHeapRSClosure* cl,
    87                   CardTableModRefBS::PrecisionStyle precision);
    88 };
    90 // The complicating factor is that BlockOffsetTable diverged
    91 // significantly, and we need functionality that is only in the G1 version.
    92 // So I copied that code, which led to an alternate G1 version of
    93 // OffsetTableContigSpace.  If the two versions of BlockOffsetTable could
    94 // be reconciled, then G1OffsetTableContigSpace could go away.
    96 // The idea behind time stamps is the following. We want to keep track of
    97 // the highest address where it's safe to scan objects for each region.
    98 // This is only relevant for current GC alloc regions so we keep a time stamp
    99 // per region to determine if the region has been allocated during the current
   100 // GC or not. If the time stamp is current we report a scan_top value which
   101 // was saved at the end of the previous GC for retained alloc regions and which is
   102 // equal to the bottom for all other regions.
   103 // There is a race between card scanners and allocating gc workers where we must ensure
   104 // that card scanners do not read the memory allocated by the gc workers.
   105 // In order to enforce that, we must not return a value of _top which is more recent than the
   106 // time stamp. This is due to the fact that a region may become a gc alloc region at
   107 // some point after we've read the timestamp value as being < the current time stamp.
   108 // The time stamps are re-initialized to zero at cleanup and at Full GCs.
   109 // The current scheme that uses sequential unsigned ints will fail only if we have 4b
   110 // evacuation pauses between two cleanups, which is _highly_ unlikely.
   111 class G1OffsetTableContigSpace: public CompactibleSpace {
   112   friend class VMStructs;
   113   HeapWord* _top;
   114   HeapWord* volatile _scan_top;
   115  protected:
   116   G1BlockOffsetArrayContigSpace _offsets;
   117   Mutex _par_alloc_lock;
   118   volatile unsigned _gc_time_stamp;
   119   // When we need to retire an allocation region, while other threads
   120   // are also concurrently trying to allocate into it, we typically
   121   // allocate a dummy object at the end of the region to ensure that
   122   // no more allocations can take place in it. However, sometimes we
   123   // want to know where the end of the last "real" object we allocated
   124   // into the region was and this is what this keeps track.
   125   HeapWord* _pre_dummy_top;
   127  public:
   128   G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
   129                            MemRegion mr);
   131   void set_top(HeapWord* value) { _top = value; }
   132   HeapWord* top() const { return _top; }
   134  protected:
   135   // Reset the G1OffsetTableContigSpace.
   136   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
   138   HeapWord** top_addr() { return &_top; }
   139   // Allocation helpers (return NULL if full).
   140   inline HeapWord* allocate_impl(size_t word_size, HeapWord* end_value);
   141   inline HeapWord* par_allocate_impl(size_t word_size, HeapWord* end_value);
   143  public:
   144   void reset_after_compaction() { set_top(compaction_top()); }
   146   size_t used() const { return byte_size(bottom(), top()); }
   147   size_t free() const { return byte_size(top(), end()); }
   148   bool is_free_block(const HeapWord* p) const { return p >= top(); }
   150   MemRegion used_region() const { return MemRegion(bottom(), top()); }
   152   void object_iterate(ObjectClosure* blk);
   153   void safe_object_iterate(ObjectClosure* blk);
   155   void set_bottom(HeapWord* value);
   156   void set_end(HeapWord* value);
   158   HeapWord* scan_top() const;
   159   void record_timestamp();
   160   void reset_gc_time_stamp() { _gc_time_stamp = 0; }
   161   unsigned get_gc_time_stamp() { return _gc_time_stamp; }
   162   void record_retained_region();
   164   // See the comment above in the declaration of _pre_dummy_top for an
   165   // explanation of what it is.
   166   void set_pre_dummy_top(HeapWord* pre_dummy_top) {
   167     assert(is_in(pre_dummy_top) && pre_dummy_top <= top(), "pre-condition");
   168     _pre_dummy_top = pre_dummy_top;
   169   }
   170   HeapWord* pre_dummy_top() {
   171     return (_pre_dummy_top == NULL) ? top() : _pre_dummy_top;
   172   }
   173   void reset_pre_dummy_top() { _pre_dummy_top = NULL; }
   175   virtual void clear(bool mangle_space);
   177   HeapWord* block_start(const void* p);
   178   HeapWord* block_start_const(const void* p) const;
   180   void prepare_for_compaction(CompactPoint* cp);
   182   // Add offset table update.
   183   virtual HeapWord* allocate(size_t word_size);
   184   HeapWord* par_allocate(size_t word_size);
   186   HeapWord* saved_mark_word() const { ShouldNotReachHere(); return NULL; }
   188   // MarkSweep support phase3
   189   virtual HeapWord* initialize_threshold();
   190   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
   192   virtual void print() const;
   194   void reset_bot() {
   195     _offsets.reset_bot();
   196   }
   198   void print_bot_on(outputStream* out) {
   199     _offsets.print_on(out);
   200   }
   201 };
   203 class HeapRegion: public G1OffsetTableContigSpace {
   204   friend class VMStructs;
   205  private:
   207   // The remembered set for this region.
   208   // (Might want to make this "inline" later, to avoid some alloc failure
   209   // issues.)
   210   HeapRegionRemSet* _rem_set;
   212   G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; }
   214  protected:
   215   // The index of this region in the heap region sequence.
   216   uint  _hrm_index;
   218   AllocationContext_t _allocation_context;
   220   HeapRegionType _type;
   222   // For a humongous region, region in which it starts.
   223   HeapRegion* _humongous_start_region;
   224   // For the start region of a humongous sequence, it's original end().
   225   HeapWord* _orig_end;
   227   // True iff the region is in current collection_set.
   228   bool _in_collection_set;
   230   // True iff an attempt to evacuate an object in the region failed.
   231   bool _evacuation_failed;
   233   // A heap region may be a member one of a number of special subsets, each
   234   // represented as linked lists through the field below.  Currently, there
   235   // is only one set:
   236   //   The collection set.
   237   HeapRegion* _next_in_special_set;
   239   // next region in the young "generation" region set
   240   HeapRegion* _next_young_region;
   242   // Next region whose cards need cleaning
   243   HeapRegion* _next_dirty_cards_region;
   245   // Fields used by the HeapRegionSetBase class and subclasses.
   246   HeapRegion* _next;
   247   HeapRegion* _prev;
   248 #ifdef ASSERT
   249   HeapRegionSetBase* _containing_set;
   250 #endif // ASSERT
   252   // For parallel heapRegion traversal.
   253   jint _claimed;
   255   // We use concurrent marking to determine the amount of live data
   256   // in each heap region.
   257   size_t _prev_marked_bytes;    // Bytes known to be live via last completed marking.
   258   size_t _next_marked_bytes;    // Bytes known to be live via in-progress marking.
   260   // The calculated GC efficiency of the region.
   261   double _gc_efficiency;
   263   int  _young_index_in_cset;
   264   SurvRateGroup* _surv_rate_group;
   265   int  _age_index;
   267   // The start of the unmarked area. The unmarked area extends from this
   268   // word until the top and/or end of the region, and is the part
   269   // of the region for which no marking was done, i.e. objects may
   270   // have been allocated in this part since the last mark phase.
   271   // "prev" is the top at the start of the last completed marking.
   272   // "next" is the top at the start of the in-progress marking (if any.)
   273   HeapWord* _prev_top_at_mark_start;
   274   HeapWord* _next_top_at_mark_start;
   275   // If a collection pause is in progress, this is the top at the start
   276   // of that pause.
   278   void init_top_at_mark_start() {
   279     assert(_prev_marked_bytes == 0 &&
   280            _next_marked_bytes == 0,
   281            "Must be called after zero_marked_bytes.");
   282     HeapWord* bot = bottom();
   283     _prev_top_at_mark_start = bot;
   284     _next_top_at_mark_start = bot;
   285   }
   287   // Cached attributes used in the collection set policy information
   289   // The RSet length that was added to the total value
   290   // for the collection set.
   291   size_t _recorded_rs_length;
   293   // The predicted elapsed time that was added to total value
   294   // for the collection set.
   295   double _predicted_elapsed_time_ms;
   297   // The predicted number of bytes to copy that was added to
   298   // the total value for the collection set.
   299   size_t _predicted_bytes_to_copy;
   301  public:
   302   HeapRegion(uint hrm_index,
   303              G1BlockOffsetSharedArray* sharedOffsetArray,
   304              MemRegion mr);
   306   // Initializing the HeapRegion not only resets the data structure, but also
   307   // resets the BOT for that heap region.
   308   // The default values for clear_space means that we will do the clearing if
   309   // there's clearing to be done ourselves. We also always mangle the space.
   310   virtual void initialize(MemRegion mr, bool clear_space = false, bool mangle_space = SpaceDecorator::Mangle);
   312   static int    LogOfHRGrainBytes;
   313   static int    LogOfHRGrainWords;
   315   static size_t GrainBytes;
   316   static size_t GrainWords;
   317   static size_t CardsPerRegion;
   319   static size_t align_up_to_region_byte_size(size_t sz) {
   320     return (sz + (size_t) GrainBytes - 1) &
   321                                       ~((1 << (size_t) LogOfHRGrainBytes) - 1);
   322   }
   324   static size_t max_region_size();
   326   // It sets up the heap region size (GrainBytes / GrainWords), as
   327   // well as other related fields that are based on the heap region
   328   // size (LogOfHRGrainBytes / LogOfHRGrainWords /
   329   // CardsPerRegion). All those fields are considered constant
   330   // throughout the JVM's execution, therefore they should only be set
   331   // up once during initialization time.
   332   static void setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size);
   334   enum ClaimValues {
   335     InitialClaimValue          = 0,
   336     FinalCountClaimValue       = 1,
   337     NoteEndClaimValue          = 2,
   338     ScrubRemSetClaimValue      = 3,
   339     ParVerifyClaimValue        = 4,
   340     RebuildRSClaimValue        = 5,
   341     ParEvacFailureClaimValue   = 6,
   342     AggregateCountClaimValue   = 7,
   343     VerifyCountClaimValue      = 8,
   344     ParMarkRootClaimValue      = 9
   345   };
   347   // All allocated blocks are occupied by objects in a HeapRegion
   348   bool block_is_obj(const HeapWord* p) const;
   350   // Returns the object size for all valid block starts
   351   // and the amount of unallocated words if called on top()
   352   size_t block_size(const HeapWord* p) const;
   354   inline HeapWord* par_allocate_no_bot_updates(size_t word_size);
   355   inline HeapWord* allocate_no_bot_updates(size_t word_size);
   357   // If this region is a member of a HeapRegionManager, the index in that
   358   // sequence, otherwise -1.
   359   uint hrm_index() const { return _hrm_index; }
   361   // The number of bytes marked live in the region in the last marking phase.
   362   size_t marked_bytes()    { return _prev_marked_bytes; }
   363   size_t live_bytes() {
   364     return (top() - prev_top_at_mark_start()) * HeapWordSize + marked_bytes();
   365   }
   367   // The number of bytes counted in the next marking.
   368   size_t next_marked_bytes() { return _next_marked_bytes; }
   369   // The number of bytes live wrt the next marking.
   370   size_t next_live_bytes() {
   371     return
   372       (top() - next_top_at_mark_start()) * HeapWordSize + next_marked_bytes();
   373   }
   375   // A lower bound on the amount of garbage bytes in the region.
   376   size_t garbage_bytes() {
   377     size_t used_at_mark_start_bytes =
   378       (prev_top_at_mark_start() - bottom()) * HeapWordSize;
   379     assert(used_at_mark_start_bytes >= marked_bytes(),
   380            "Can't mark more than we have.");
   381     return used_at_mark_start_bytes - marked_bytes();
   382   }
   384   // Return the amount of bytes we'll reclaim if we collect this
   385   // region. This includes not only the known garbage bytes in the
   386   // region but also any unallocated space in it, i.e., [top, end),
   387   // since it will also be reclaimed if we collect the region.
   388   size_t reclaimable_bytes() {
   389     size_t known_live_bytes = live_bytes();
   390     assert(known_live_bytes <= capacity(), "sanity");
   391     return capacity() - known_live_bytes;
   392   }
   394   // An upper bound on the number of live bytes in the region.
   395   size_t max_live_bytes() { return used() - garbage_bytes(); }
   397   void add_to_marked_bytes(size_t incr_bytes) {
   398     _next_marked_bytes = _next_marked_bytes + incr_bytes;
   399     assert(_next_marked_bytes <= used(), "invariant" );
   400   }
   402   void zero_marked_bytes()      {
   403     _prev_marked_bytes = _next_marked_bytes = 0;
   404   }
   406   const char* get_type_str() const { return _type.get_str(); }
   407   const char* get_short_type_str() const { return _type.get_short_str(); }
   409   bool is_free() const { return _type.is_free(); }
   411   bool is_young()    const { return _type.is_young();    }
   412   bool is_eden()     const { return _type.is_eden();     }
   413   bool is_survivor() const { return _type.is_survivor(); }
   415   bool isHumongous() const { return _type.is_humongous(); }
   416   bool startsHumongous() const { return _type.is_starts_humongous(); }
   417   bool continuesHumongous() const { return _type.is_continues_humongous();   }
   419   bool is_old() const { return _type.is_old(); }
   421   // For a humongous region, region in which it starts.
   422   HeapRegion* humongous_start_region() const {
   423     return _humongous_start_region;
   424   }
   426   // Return the number of distinct regions that are covered by this region:
   427   // 1 if the region is not humongous, >= 1 if the region is humongous.
   428   uint region_num() const {
   429     if (!isHumongous()) {
   430       return 1U;
   431     } else {
   432       assert(startsHumongous(), "doesn't make sense on HC regions");
   433       assert(capacity() % HeapRegion::GrainBytes == 0, "sanity");
   434       return (uint) (capacity() >> HeapRegion::LogOfHRGrainBytes);
   435     }
   436   }
   438   // Return the index + 1 of the last HC regions that's associated
   439   // with this HS region.
   440   uint last_hc_index() const {
   441     assert(startsHumongous(), "don't call this otherwise");
   442     return hrm_index() + region_num();
   443   }
   445   // Same as Space::is_in_reserved, but will use the original size of the region.
   446   // The original size is different only for start humongous regions. They get
   447   // their _end set up to be the end of the last continues region of the
   448   // corresponding humongous object.
   449   bool is_in_reserved_raw(const void* p) const {
   450     return _bottom <= p && p < _orig_end;
   451   }
   453   // Makes the current region be a "starts humongous" region, i.e.,
   454   // the first region in a series of one or more contiguous regions
   455   // that will contain a single "humongous" object. The two parameters
   456   // are as follows:
   457   //
   458   // new_top : The new value of the top field of this region which
   459   // points to the end of the humongous object that's being
   460   // allocated. If there is more than one region in the series, top
   461   // will lie beyond this region's original end field and on the last
   462   // region in the series.
   463   //
   464   // new_end : The new value of the end field of this region which
   465   // points to the end of the last region in the series. If there is
   466   // one region in the series (namely: this one) end will be the same
   467   // as the original end of this region.
   468   //
   469   // Updating top and end as described above makes this region look as
   470   // if it spans the entire space taken up by all the regions in the
   471   // series and an single allocation moved its top to new_top. This
   472   // ensures that the space (capacity / allocated) taken up by all
   473   // humongous regions can be calculated by just looking at the
   474   // "starts humongous" regions and by ignoring the "continues
   475   // humongous" regions.
   476   void set_startsHumongous(HeapWord* new_top, HeapWord* new_end);
   478   // Makes the current region be a "continues humongous'
   479   // region. first_hr is the "start humongous" region of the series
   480   // which this region will be part of.
   481   void set_continuesHumongous(HeapRegion* first_hr);
   483   // Unsets the humongous-related fields on the region.
   484   void clear_humongous();
   486   // If the region has a remembered set, return a pointer to it.
   487   HeapRegionRemSet* rem_set() const {
   488     return _rem_set;
   489   }
   491   // True iff the region is in current collection_set.
   492   bool in_collection_set() const {
   493     return _in_collection_set;
   494   }
   495   void set_in_collection_set(bool b) {
   496     _in_collection_set = b;
   497   }
   498   HeapRegion* next_in_collection_set() {
   499     assert(in_collection_set(), "should only invoke on member of CS.");
   500     assert(_next_in_special_set == NULL ||
   501            _next_in_special_set->in_collection_set(),
   502            "Malformed CS.");
   503     return _next_in_special_set;
   504   }
   505   void set_next_in_collection_set(HeapRegion* r) {
   506     assert(in_collection_set(), "should only invoke on member of CS.");
   507     assert(r == NULL || r->in_collection_set(), "Malformed CS.");
   508     _next_in_special_set = r;
   509   }
   511   void set_allocation_context(AllocationContext_t context) {
   512     _allocation_context = context;
   513   }
   515   AllocationContext_t  allocation_context() const {
   516     return _allocation_context;
   517   }
   519   // Methods used by the HeapRegionSetBase class and subclasses.
   521   // Getter and setter for the next and prev fields used to link regions into
   522   // linked lists.
   523   HeapRegion* next()              { return _next; }
   524   HeapRegion* prev()              { return _prev; }
   526   void set_next(HeapRegion* next) { _next = next; }
   527   void set_prev(HeapRegion* prev) { _prev = prev; }
   529   // Every region added to a set is tagged with a reference to that
   530   // set. This is used for doing consistency checking to make sure that
   531   // the contents of a set are as they should be and it's only
   532   // available in non-product builds.
   533 #ifdef ASSERT
   534   void set_containing_set(HeapRegionSetBase* containing_set) {
   535     assert((containing_set == NULL && _containing_set != NULL) ||
   536            (containing_set != NULL && _containing_set == NULL),
   537            err_msg("containing_set: "PTR_FORMAT" "
   538                    "_containing_set: "PTR_FORMAT,
   539                    p2i(containing_set), p2i(_containing_set)));
   541     _containing_set = containing_set;
   542   }
   544   HeapRegionSetBase* containing_set() { return _containing_set; }
   545 #else // ASSERT
   546   void set_containing_set(HeapRegionSetBase* containing_set) { }
   548   // containing_set() is only used in asserts so there's no reason
   549   // to provide a dummy version of it.
   550 #endif // ASSERT
   552   HeapRegion* get_next_young_region() { return _next_young_region; }
   553   void set_next_young_region(HeapRegion* hr) {
   554     _next_young_region = hr;
   555   }
   557   HeapRegion* get_next_dirty_cards_region() const { return _next_dirty_cards_region; }
   558   HeapRegion** next_dirty_cards_region_addr() { return &_next_dirty_cards_region; }
   559   void set_next_dirty_cards_region(HeapRegion* hr) { _next_dirty_cards_region = hr; }
   560   bool is_on_dirty_cards_region_list() const { return get_next_dirty_cards_region() != NULL; }
   562   HeapWord* orig_end() const { return _orig_end; }
   564   // Reset HR stuff to default values.
   565   void hr_clear(bool par, bool clear_space, bool locked = false);
   566   void par_clear();
   568   // Get the start of the unmarked area in this region.
   569   HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
   570   HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
   572   // Note the start or end of marking. This tells the heap region
   573   // that the collector is about to start or has finished (concurrently)
   574   // marking the heap.
   576   // Notify the region that concurrent marking is starting. Initialize
   577   // all fields related to the next marking info.
   578   inline void note_start_of_marking();
   580   // Notify the region that concurrent marking has finished. Copy the
   581   // (now finalized) next marking info fields into the prev marking
   582   // info fields.
   583   inline void note_end_of_marking();
   585   // Notify the region that it will be used as to-space during a GC
   586   // and we are about to start copying objects into it.
   587   inline void note_start_of_copying(bool during_initial_mark);
   589   // Notify the region that it ceases being to-space during a GC and
   590   // we will not copy objects into it any more.
   591   inline void note_end_of_copying(bool during_initial_mark);
   593   // Notify the region that we are about to start processing
   594   // self-forwarded objects during evac failure handling.
   595   void note_self_forwarding_removal_start(bool during_initial_mark,
   596                                           bool during_conc_mark);
   598   // Notify the region that we have finished processing self-forwarded
   599   // objects during evac failure handling.
   600   void note_self_forwarding_removal_end(bool during_initial_mark,
   601                                         bool during_conc_mark,
   602                                         size_t marked_bytes);
   604   // Returns "false" iff no object in the region was allocated when the
   605   // last mark phase ended.
   606   bool is_marked() { return _prev_top_at_mark_start != bottom(); }
   608   void reset_during_compaction() {
   609     assert(isHumongous() && startsHumongous(),
   610            "should only be called for starts humongous regions");
   612     zero_marked_bytes();
   613     init_top_at_mark_start();
   614   }
   616   void calc_gc_efficiency(void);
   617   double gc_efficiency() { return _gc_efficiency;}
   619   int  young_index_in_cset() const { return _young_index_in_cset; }
   620   void set_young_index_in_cset(int index) {
   621     assert( (index == -1) || is_young(), "pre-condition" );
   622     _young_index_in_cset = index;
   623   }
   625   int age_in_surv_rate_group() {
   626     assert( _surv_rate_group != NULL, "pre-condition" );
   627     assert( _age_index > -1, "pre-condition" );
   628     return _surv_rate_group->age_in_group(_age_index);
   629   }
   631   void record_surv_words_in_group(size_t words_survived) {
   632     assert( _surv_rate_group != NULL, "pre-condition" );
   633     assert( _age_index > -1, "pre-condition" );
   634     int age_in_group = age_in_surv_rate_group();
   635     _surv_rate_group->record_surviving_words(age_in_group, words_survived);
   636   }
   638   int age_in_surv_rate_group_cond() {
   639     if (_surv_rate_group != NULL)
   640       return age_in_surv_rate_group();
   641     else
   642       return -1;
   643   }
   645   SurvRateGroup* surv_rate_group() {
   646     return _surv_rate_group;
   647   }
   649   void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
   650     assert( surv_rate_group != NULL, "pre-condition" );
   651     assert( _surv_rate_group == NULL, "pre-condition" );
   652     assert( is_young(), "pre-condition" );
   654     _surv_rate_group = surv_rate_group;
   655     _age_index = surv_rate_group->next_age_index();
   656   }
   658   void uninstall_surv_rate_group() {
   659     if (_surv_rate_group != NULL) {
   660       assert( _age_index > -1, "pre-condition" );
   661       assert( is_young(), "pre-condition" );
   663       _surv_rate_group = NULL;
   664       _age_index = -1;
   665     } else {
   666       assert( _age_index == -1, "pre-condition" );
   667     }
   668   }
   670   void set_free() { _type.set_free(); }
   672   void set_eden()        { _type.set_eden();        }
   673   void set_eden_pre_gc() { _type.set_eden_pre_gc(); }
   674   void set_survivor()    { _type.set_survivor();    }
   676   void set_old() { _type.set_old(); }
   678   // Determine if an object has been allocated since the last
   679   // mark performed by the collector. This returns true iff the object
   680   // is within the unmarked area of the region.
   681   bool obj_allocated_since_prev_marking(oop obj) const {
   682     return (HeapWord *) obj >= prev_top_at_mark_start();
   683   }
   684   bool obj_allocated_since_next_marking(oop obj) const {
   685     return (HeapWord *) obj >= next_top_at_mark_start();
   686   }
   688   // For parallel heapRegion traversal.
   689   bool claimHeapRegion(int claimValue);
   690   jint claim_value() { return _claimed; }
   691   // Use this carefully: only when you're sure no one is claiming...
   692   void set_claim_value(int claimValue) { _claimed = claimValue; }
   694   // Returns the "evacuation_failed" property of the region.
   695   bool evacuation_failed() { return _evacuation_failed; }
   697   // Sets the "evacuation_failed" property of the region.
   698   void set_evacuation_failed(bool b) {
   699     _evacuation_failed = b;
   701     if (b) {
   702       _next_marked_bytes = 0;
   703     }
   704   }
   706   // Requires that "mr" be entirely within the region.
   707   // Apply "cl->do_object" to all objects that intersect with "mr".
   708   // If the iteration encounters an unparseable portion of the region,
   709   // or if "cl->abort()" is true after a closure application,
   710   // terminate the iteration and return the address of the start of the
   711   // subregion that isn't done.  (The two can be distinguished by querying
   712   // "cl->abort()".)  Return of "NULL" indicates that the iteration
   713   // completed.
   714   HeapWord*
   715   object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl);
   717   // filter_young: if true and the region is a young region then we
   718   // skip the iteration.
   719   // card_ptr: if not NULL, and we decide that the card is not young
   720   // and we iterate over it, we'll clean the card before we start the
   721   // iteration.
   722   HeapWord*
   723   oops_on_card_seq_iterate_careful(MemRegion mr,
   724                                    FilterOutOfRegionClosure* cl,
   725                                    bool filter_young,
   726                                    jbyte* card_ptr);
   728   size_t recorded_rs_length() const        { return _recorded_rs_length; }
   729   double predicted_elapsed_time_ms() const { return _predicted_elapsed_time_ms; }
   730   size_t predicted_bytes_to_copy() const   { return _predicted_bytes_to_copy; }
   732   void set_recorded_rs_length(size_t rs_length) {
   733     _recorded_rs_length = rs_length;
   734   }
   736   void set_predicted_elapsed_time_ms(double ms) {
   737     _predicted_elapsed_time_ms = ms;
   738   }
   740   void set_predicted_bytes_to_copy(size_t bytes) {
   741     _predicted_bytes_to_copy = bytes;
   742   }
   744   virtual CompactibleSpace* next_compaction_space() const;
   746   virtual void reset_after_compaction();
   748   // Routines for managing a list of code roots (attached to the
   749   // this region's RSet) that point into this heap region.
   750   void add_strong_code_root(nmethod* nm);
   751   void add_strong_code_root_locked(nmethod* nm);
   752   void remove_strong_code_root(nmethod* nm);
   754   // Applies blk->do_code_blob() to each of the entries in
   755   // the strong code roots list for this region
   756   void strong_code_roots_do(CodeBlobClosure* blk) const;
   758   // Verify that the entries on the strong code root list for this
   759   // region are live and include at least one pointer into this region.
   760   void verify_strong_code_roots(VerifyOption vo, bool* failures) const;
   762   void print() const;
   763   void print_on(outputStream* st) const;
   765   // vo == UsePrevMarking  -> use "prev" marking information,
   766   // vo == UseNextMarking -> use "next" marking information
   767   // vo == UseMarkWord    -> use the mark word in the object header
   768   //
   769   // NOTE: Only the "prev" marking information is guaranteed to be
   770   // consistent most of the time, so most calls to this should use
   771   // vo == UsePrevMarking.
   772   // Currently, there is only one case where this is called with
   773   // vo == UseNextMarking, which is to verify the "next" marking
   774   // information at the end of remark.
   775   // Currently there is only one place where this is called with
   776   // vo == UseMarkWord, which is to verify the marking during a
   777   // full GC.
   778   void verify(VerifyOption vo, bool *failures) const;
   780   // Override; it uses the "prev" marking information
   781   virtual void verify() const;
   782 };
   784 // HeapRegionClosure is used for iterating over regions.
   785 // Terminates the iteration when the "doHeapRegion" method returns "true".
   786 class HeapRegionClosure : public StackObj {
   787   friend class HeapRegionManager;
   788   friend class G1CollectedHeap;
   790   bool _complete;
   791   void incomplete() { _complete = false; }
   793  public:
   794   HeapRegionClosure(): _complete(true) {}
   796   // Typically called on each region until it returns true.
   797   virtual bool doHeapRegion(HeapRegion* r) = 0;
   799   // True after iteration if the closure was applied to all heap regions
   800   // and returned "false" in all cases.
   801   bool complete() { return _complete; }
   802 };
   804 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP

mercurial