src/share/vm/runtime/os.cpp

Wed, 11 Sep 2013 20:03:34 -0400

author
bpittore
date
Wed, 11 Sep 2013 20:03:34 -0400
changeset 5688
8e94527f601e
parent 5615
c636758ea616
child 5721
179cd89fb279
permissions
-rw-r--r--

8024007: Misc. cleanup of static agent code
Summary: Minor cleanup of static agent code from 8014135
Reviewed-by: dcubed, sspitsyn

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/javaClasses.hpp"
    28 #include "classfile/systemDictionary.hpp"
    29 #include "classfile/vmSymbols.hpp"
    30 #include "code/icBuffer.hpp"
    31 #include "code/vtableStubs.hpp"
    32 #include "gc_implementation/shared/vmGCOperations.hpp"
    33 #include "interpreter/interpreter.hpp"
    34 #include "memory/allocation.inline.hpp"
    35 #include "oops/oop.inline.hpp"
    36 #include "prims/jvm.h"
    37 #include "prims/jvm_misc.hpp"
    38 #include "prims/privilegedStack.hpp"
    39 #include "runtime/arguments.hpp"
    40 #include "runtime/frame.inline.hpp"
    41 #include "runtime/interfaceSupport.hpp"
    42 #include "runtime/java.hpp"
    43 #include "runtime/javaCalls.hpp"
    44 #include "runtime/mutexLocker.hpp"
    45 #include "runtime/os.hpp"
    46 #include "runtime/stubRoutines.hpp"
    47 #include "runtime/thread.inline.hpp"
    48 #include "services/attachListener.hpp"
    49 #include "services/memTracker.hpp"
    50 #include "services/threadService.hpp"
    51 #include "utilities/defaultStream.hpp"
    52 #include "utilities/events.hpp"
    53 #ifdef TARGET_OS_FAMILY_linux
    54 # include "os_linux.inline.hpp"
    55 #endif
    56 #ifdef TARGET_OS_FAMILY_solaris
    57 # include "os_solaris.inline.hpp"
    58 #endif
    59 #ifdef TARGET_OS_FAMILY_windows
    60 # include "os_windows.inline.hpp"
    61 #endif
    62 #ifdef TARGET_OS_FAMILY_bsd
    63 # include "os_bsd.inline.hpp"
    64 #endif
    66 # include <signal.h>
    68 OSThread*         os::_starting_thread    = NULL;
    69 address           os::_polling_page       = NULL;
    70 volatile int32_t* os::_mem_serialize_page = NULL;
    71 uintptr_t         os::_serialize_page_mask = 0;
    72 long              os::_rand_seed          = 1;
    73 int               os::_processor_count    = 0;
    74 size_t            os::_page_sizes[os::page_sizes_max];
    76 #ifndef PRODUCT
    77 julong os::num_mallocs = 0;         // # of calls to malloc/realloc
    78 julong os::alloc_bytes = 0;         // # of bytes allocated
    79 julong os::num_frees = 0;           // # of calls to free
    80 julong os::free_bytes = 0;          // # of bytes freed
    81 #endif
    83 static juint cur_malloc_words = 0;  // current size for MallocMaxTestWords
    85 void os_init_globals() {
    86   // Called from init_globals().
    87   // See Threads::create_vm() in thread.cpp, and init.cpp.
    88   os::init_globals();
    89 }
    91 // Fill in buffer with current local time as an ISO-8601 string.
    92 // E.g., yyyy-mm-ddThh:mm:ss-zzzz.
    93 // Returns buffer, or NULL if it failed.
    94 // This would mostly be a call to
    95 //     strftime(...., "%Y-%m-%d" "T" "%H:%M:%S" "%z", ....)
    96 // except that on Windows the %z behaves badly, so we do it ourselves.
    97 // Also, people wanted milliseconds on there,
    98 // and strftime doesn't do milliseconds.
    99 char* os::iso8601_time(char* buffer, size_t buffer_length) {
   100   // Output will be of the form "YYYY-MM-DDThh:mm:ss.mmm+zzzz\0"
   101   //                                      1         2
   102   //                             12345678901234567890123456789
   103   static const char* iso8601_format =
   104     "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d";
   105   static const size_t needed_buffer = 29;
   107   // Sanity check the arguments
   108   if (buffer == NULL) {
   109     assert(false, "NULL buffer");
   110     return NULL;
   111   }
   112   if (buffer_length < needed_buffer) {
   113     assert(false, "buffer_length too small");
   114     return NULL;
   115   }
   116   // Get the current time
   117   jlong milliseconds_since_19700101 = javaTimeMillis();
   118   const int milliseconds_per_microsecond = 1000;
   119   const time_t seconds_since_19700101 =
   120     milliseconds_since_19700101 / milliseconds_per_microsecond;
   121   const int milliseconds_after_second =
   122     milliseconds_since_19700101 % milliseconds_per_microsecond;
   123   // Convert the time value to a tm and timezone variable
   124   struct tm time_struct;
   125   if (localtime_pd(&seconds_since_19700101, &time_struct) == NULL) {
   126     assert(false, "Failed localtime_pd");
   127     return NULL;
   128   }
   129 #if defined(_ALLBSD_SOURCE)
   130   const time_t zone = (time_t) time_struct.tm_gmtoff;
   131 #else
   132   const time_t zone = timezone;
   133 #endif
   135   // If daylight savings time is in effect,
   136   // we are 1 hour East of our time zone
   137   const time_t seconds_per_minute = 60;
   138   const time_t minutes_per_hour = 60;
   139   const time_t seconds_per_hour = seconds_per_minute * minutes_per_hour;
   140   time_t UTC_to_local = zone;
   141   if (time_struct.tm_isdst > 0) {
   142     UTC_to_local = UTC_to_local - seconds_per_hour;
   143   }
   144   // Compute the time zone offset.
   145   //    localtime_pd() sets timezone to the difference (in seconds)
   146   //    between UTC and and local time.
   147   //    ISO 8601 says we need the difference between local time and UTC,
   148   //    we change the sign of the localtime_pd() result.
   149   const time_t local_to_UTC = -(UTC_to_local);
   150   // Then we have to figure out if if we are ahead (+) or behind (-) UTC.
   151   char sign_local_to_UTC = '+';
   152   time_t abs_local_to_UTC = local_to_UTC;
   153   if (local_to_UTC < 0) {
   154     sign_local_to_UTC = '-';
   155     abs_local_to_UTC = -(abs_local_to_UTC);
   156   }
   157   // Convert time zone offset seconds to hours and minutes.
   158   const time_t zone_hours = (abs_local_to_UTC / seconds_per_hour);
   159   const time_t zone_min =
   160     ((abs_local_to_UTC % seconds_per_hour) / seconds_per_minute);
   162   // Print an ISO 8601 date and time stamp into the buffer
   163   const int year = 1900 + time_struct.tm_year;
   164   const int month = 1 + time_struct.tm_mon;
   165   const int printed = jio_snprintf(buffer, buffer_length, iso8601_format,
   166                                    year,
   167                                    month,
   168                                    time_struct.tm_mday,
   169                                    time_struct.tm_hour,
   170                                    time_struct.tm_min,
   171                                    time_struct.tm_sec,
   172                                    milliseconds_after_second,
   173                                    sign_local_to_UTC,
   174                                    zone_hours,
   175                                    zone_min);
   176   if (printed == 0) {
   177     assert(false, "Failed jio_printf");
   178     return NULL;
   179   }
   180   return buffer;
   181 }
   183 OSReturn os::set_priority(Thread* thread, ThreadPriority p) {
   184 #ifdef ASSERT
   185   if (!(!thread->is_Java_thread() ||
   186          Thread::current() == thread  ||
   187          Threads_lock->owned_by_self()
   188          || thread->is_Compiler_thread()
   189         )) {
   190     assert(false, "possibility of dangling Thread pointer");
   191   }
   192 #endif
   194   if (p >= MinPriority && p <= MaxPriority) {
   195     int priority = java_to_os_priority[p];
   196     return set_native_priority(thread, priority);
   197   } else {
   198     assert(false, "Should not happen");
   199     return OS_ERR;
   200   }
   201 }
   203 // The mapping from OS priority back to Java priority may be inexact because
   204 // Java priorities can map M:1 with native priorities. If you want the definite
   205 // Java priority then use JavaThread::java_priority()
   206 OSReturn os::get_priority(const Thread* const thread, ThreadPriority& priority) {
   207   int p;
   208   int os_prio;
   209   OSReturn ret = get_native_priority(thread, &os_prio);
   210   if (ret != OS_OK) return ret;
   212   if (java_to_os_priority[MaxPriority] > java_to_os_priority[MinPriority]) {
   213     for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] > os_prio; p--) ;
   214   } else {
   215     // niceness values are in reverse order
   216     for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] < os_prio; p--) ;
   217   }
   218   priority = (ThreadPriority)p;
   219   return OS_OK;
   220 }
   223 // --------------------- sun.misc.Signal (optional) ---------------------
   226 // SIGBREAK is sent by the keyboard to query the VM state
   227 #ifndef SIGBREAK
   228 #define SIGBREAK SIGQUIT
   229 #endif
   231 // sigexitnum_pd is a platform-specific special signal used for terminating the Signal thread.
   234 static void signal_thread_entry(JavaThread* thread, TRAPS) {
   235   os::set_priority(thread, NearMaxPriority);
   236   while (true) {
   237     int sig;
   238     {
   239       // FIXME : Currently we have not decieded what should be the status
   240       //         for this java thread blocked here. Once we decide about
   241       //         that we should fix this.
   242       sig = os::signal_wait();
   243     }
   244     if (sig == os::sigexitnum_pd()) {
   245        // Terminate the signal thread
   246        return;
   247     }
   249     switch (sig) {
   250       case SIGBREAK: {
   251         // Check if the signal is a trigger to start the Attach Listener - in that
   252         // case don't print stack traces.
   253         if (!DisableAttachMechanism && AttachListener::is_init_trigger()) {
   254           continue;
   255         }
   256         // Print stack traces
   257         // Any SIGBREAK operations added here should make sure to flush
   258         // the output stream (e.g. tty->flush()) after output.  See 4803766.
   259         // Each module also prints an extra carriage return after its output.
   260         VM_PrintThreads op;
   261         VMThread::execute(&op);
   262         VM_PrintJNI jni_op;
   263         VMThread::execute(&jni_op);
   264         VM_FindDeadlocks op1(tty);
   265         VMThread::execute(&op1);
   266         Universe::print_heap_at_SIGBREAK();
   267         if (PrintClassHistogram) {
   268           VM_GC_HeapInspection op1(gclog_or_tty, true /* force full GC before heap inspection */);
   269           VMThread::execute(&op1);
   270         }
   271         if (JvmtiExport::should_post_data_dump()) {
   272           JvmtiExport::post_data_dump();
   273         }
   274         break;
   275       }
   276       default: {
   277         // Dispatch the signal to java
   278         HandleMark hm(THREAD);
   279         Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_Signal(), THREAD);
   280         KlassHandle klass (THREAD, k);
   281         if (klass.not_null()) {
   282           JavaValue result(T_VOID);
   283           JavaCallArguments args;
   284           args.push_int(sig);
   285           JavaCalls::call_static(
   286             &result,
   287             klass,
   288             vmSymbols::dispatch_name(),
   289             vmSymbols::int_void_signature(),
   290             &args,
   291             THREAD
   292           );
   293         }
   294         if (HAS_PENDING_EXCEPTION) {
   295           // tty is initialized early so we don't expect it to be null, but
   296           // if it is we can't risk doing an initialization that might
   297           // trigger additional out-of-memory conditions
   298           if (tty != NULL) {
   299             char klass_name[256];
   300             char tmp_sig_name[16];
   301             const char* sig_name = "UNKNOWN";
   302             InstanceKlass::cast(PENDING_EXCEPTION->klass())->
   303               name()->as_klass_external_name(klass_name, 256);
   304             if (os::exception_name(sig, tmp_sig_name, 16) != NULL)
   305               sig_name = tmp_sig_name;
   306             warning("Exception %s occurred dispatching signal %s to handler"
   307                     "- the VM may need to be forcibly terminated",
   308                     klass_name, sig_name );
   309           }
   310           CLEAR_PENDING_EXCEPTION;
   311         }
   312       }
   313     }
   314   }
   315 }
   318 void os::signal_init() {
   319   if (!ReduceSignalUsage) {
   320     // Setup JavaThread for processing signals
   321     EXCEPTION_MARK;
   322     Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
   323     instanceKlassHandle klass (THREAD, k);
   324     instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
   326     const char thread_name[] = "Signal Dispatcher";
   327     Handle string = java_lang_String::create_from_str(thread_name, CHECK);
   329     // Initialize thread_oop to put it into the system threadGroup
   330     Handle thread_group (THREAD, Universe::system_thread_group());
   331     JavaValue result(T_VOID);
   332     JavaCalls::call_special(&result, thread_oop,
   333                            klass,
   334                            vmSymbols::object_initializer_name(),
   335                            vmSymbols::threadgroup_string_void_signature(),
   336                            thread_group,
   337                            string,
   338                            CHECK);
   340     KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
   341     JavaCalls::call_special(&result,
   342                             thread_group,
   343                             group,
   344                             vmSymbols::add_method_name(),
   345                             vmSymbols::thread_void_signature(),
   346                             thread_oop,         // ARG 1
   347                             CHECK);
   349     os::signal_init_pd();
   351     { MutexLocker mu(Threads_lock);
   352       JavaThread* signal_thread = new JavaThread(&signal_thread_entry);
   354       // At this point it may be possible that no osthread was created for the
   355       // JavaThread due to lack of memory. We would have to throw an exception
   356       // in that case. However, since this must work and we do not allow
   357       // exceptions anyway, check and abort if this fails.
   358       if (signal_thread == NULL || signal_thread->osthread() == NULL) {
   359         vm_exit_during_initialization("java.lang.OutOfMemoryError",
   360                                       "unable to create new native thread");
   361       }
   363       java_lang_Thread::set_thread(thread_oop(), signal_thread);
   364       java_lang_Thread::set_priority(thread_oop(), NearMaxPriority);
   365       java_lang_Thread::set_daemon(thread_oop());
   367       signal_thread->set_threadObj(thread_oop());
   368       Threads::add(signal_thread);
   369       Thread::start(signal_thread);
   370     }
   371     // Handle ^BREAK
   372     os::signal(SIGBREAK, os::user_handler());
   373   }
   374 }
   377 void os::terminate_signal_thread() {
   378   if (!ReduceSignalUsage)
   379     signal_notify(sigexitnum_pd());
   380 }
   383 // --------------------- loading libraries ---------------------
   385 typedef jint (JNICALL *JNI_OnLoad_t)(JavaVM *, void *);
   386 extern struct JavaVM_ main_vm;
   388 static void* _native_java_library = NULL;
   390 void* os::native_java_library() {
   391   if (_native_java_library == NULL) {
   392     char buffer[JVM_MAXPATHLEN];
   393     char ebuf[1024];
   395     // Try to load verify dll first. In 1.3 java dll depends on it and is not
   396     // always able to find it when the loading executable is outside the JDK.
   397     // In order to keep working with 1.2 we ignore any loading errors.
   398     if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
   399                        "verify")) {
   400       dll_load(buffer, ebuf, sizeof(ebuf));
   401     }
   403     // Load java dll
   404     if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
   405                        "java")) {
   406       _native_java_library = dll_load(buffer, ebuf, sizeof(ebuf));
   407     }
   408     if (_native_java_library == NULL) {
   409       vm_exit_during_initialization("Unable to load native library", ebuf);
   410     }
   412 #if defined(__OpenBSD__)
   413     // Work-around OpenBSD's lack of $ORIGIN support by pre-loading libnet.so
   414     // ignore errors
   415     if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
   416                        "net")) {
   417       dll_load(buffer, ebuf, sizeof(ebuf));
   418     }
   419 #endif
   420   }
   421   static jboolean onLoaded = JNI_FALSE;
   422   if (onLoaded) {
   423     // We may have to wait to fire OnLoad until TLS is initialized.
   424     if (ThreadLocalStorage::is_initialized()) {
   425       // The JNI_OnLoad handling is normally done by method load in
   426       // java.lang.ClassLoader$NativeLibrary, but the VM loads the base library
   427       // explicitly so we have to check for JNI_OnLoad as well
   428       const char *onLoadSymbols[] = JNI_ONLOAD_SYMBOLS;
   429       JNI_OnLoad_t JNI_OnLoad = CAST_TO_FN_PTR(
   430           JNI_OnLoad_t, dll_lookup(_native_java_library, onLoadSymbols[0]));
   431       if (JNI_OnLoad != NULL) {
   432         JavaThread* thread = JavaThread::current();
   433         ThreadToNativeFromVM ttn(thread);
   434         HandleMark hm(thread);
   435         jint ver = (*JNI_OnLoad)(&main_vm, NULL);
   436         onLoaded = JNI_TRUE;
   437         if (!Threads::is_supported_jni_version_including_1_1(ver)) {
   438           vm_exit_during_initialization("Unsupported JNI version");
   439         }
   440       }
   441     }
   442   }
   443   return _native_java_library;
   444 }
   446 /*
   447  * Support for finding Agent_On(Un)Load/Attach<_lib_name> if it exists.
   448  * If check_lib == true then we are looking for an
   449  * Agent_OnLoad_lib_name or Agent_OnAttach_lib_name function to determine if
   450  * this library is statically linked into the image.
   451  * If check_lib == false then we will look for the appropriate symbol in the
   452  * executable if agent_lib->is_static_lib() == true or in the shared library
   453  * referenced by 'handle'.
   454  */
   455 void* os::find_agent_function(AgentLibrary *agent_lib, bool check_lib,
   456                               const char *syms[], size_t syms_len) {
   457   assert(agent_lib != NULL, "sanity check");
   458   const char *lib_name;
   459   void *handle = agent_lib->os_lib();
   460   void *entryName = NULL;
   461   char *agent_function_name;
   462   size_t i;
   464   // If checking then use the agent name otherwise test is_static_lib() to
   465   // see how to process this lookup
   466   lib_name = ((check_lib || agent_lib->is_static_lib()) ? agent_lib->name() : NULL);
   467   for (i = 0; i < syms_len; i++) {
   468     agent_function_name = build_agent_function_name(syms[i], lib_name, agent_lib->is_absolute_path());
   469     if (agent_function_name == NULL) {
   470       break;
   471     }
   472     entryName = dll_lookup(handle, agent_function_name);
   473     FREE_C_HEAP_ARRAY(char, agent_function_name, mtThread);
   474     if (entryName != NULL) {
   475       break;
   476     }
   477   }
   478   return entryName;
   479 }
   481 // See if the passed in agent is statically linked into the VM image.
   482 bool os::find_builtin_agent(AgentLibrary *agent_lib, const char *syms[],
   483                             size_t syms_len) {
   484   void *ret;
   485   void *proc_handle;
   486   void *save_handle;
   488   assert(agent_lib != NULL, "sanity check");
   489   if (agent_lib->name() == NULL) {
   490     return false;
   491   }
   492   proc_handle = get_default_process_handle();
   493   // Check for Agent_OnLoad/Attach_lib_name function
   494   save_handle = agent_lib->os_lib();
   495   // We want to look in this process' symbol table.
   496   agent_lib->set_os_lib(proc_handle);
   497   ret = find_agent_function(agent_lib, true, syms, syms_len);
   498   if (ret != NULL) {
   499     // Found an entry point like Agent_OnLoad_lib_name so we have a static agent
   500     agent_lib->set_valid();
   501     agent_lib->set_static_lib(true);
   502     return true;
   503   }
   504   agent_lib->set_os_lib(save_handle);
   505   return false;
   506 }
   508 // --------------------- heap allocation utilities ---------------------
   510 char *os::strdup(const char *str, MEMFLAGS flags) {
   511   size_t size = strlen(str);
   512   char *dup_str = (char *)malloc(size + 1, flags);
   513   if (dup_str == NULL) return NULL;
   514   strcpy(dup_str, str);
   515   return dup_str;
   516 }
   520 #ifdef ASSERT
   521 #define space_before             (MallocCushion + sizeof(double))
   522 #define space_after              MallocCushion
   523 #define size_addr_from_base(p)   (size_t*)(p + space_before - sizeof(size_t))
   524 #define size_addr_from_obj(p)    ((size_t*)p - 1)
   525 // MallocCushion: size of extra cushion allocated around objects with +UseMallocOnly
   526 // NB: cannot be debug variable, because these aren't set from the command line until
   527 // *after* the first few allocs already happened
   528 #define MallocCushion            16
   529 #else
   530 #define space_before             0
   531 #define space_after              0
   532 #define size_addr_from_base(p)   should not use w/o ASSERT
   533 #define size_addr_from_obj(p)    should not use w/o ASSERT
   534 #define MallocCushion            0
   535 #endif
   536 #define paranoid                 0  /* only set to 1 if you suspect checking code has bug */
   538 #ifdef ASSERT
   539 inline size_t get_size(void* obj) {
   540   size_t size = *size_addr_from_obj(obj);
   541   if (size < 0) {
   542     fatal(err_msg("free: size field of object #" PTR_FORMAT " was overwritten ("
   543                   SIZE_FORMAT ")", obj, size));
   544   }
   545   return size;
   546 }
   548 u_char* find_cushion_backwards(u_char* start) {
   549   u_char* p = start;
   550   while (p[ 0] != badResourceValue || p[-1] != badResourceValue ||
   551          p[-2] != badResourceValue || p[-3] != badResourceValue) p--;
   552   // ok, we have four consecutive marker bytes; find start
   553   u_char* q = p - 4;
   554   while (*q == badResourceValue) q--;
   555   return q + 1;
   556 }
   558 u_char* find_cushion_forwards(u_char* start) {
   559   u_char* p = start;
   560   while (p[0] != badResourceValue || p[1] != badResourceValue ||
   561          p[2] != badResourceValue || p[3] != badResourceValue) p++;
   562   // ok, we have four consecutive marker bytes; find end of cushion
   563   u_char* q = p + 4;
   564   while (*q == badResourceValue) q++;
   565   return q - MallocCushion;
   566 }
   568 void print_neighbor_blocks(void* ptr) {
   569   // find block allocated before ptr (not entirely crash-proof)
   570   if (MallocCushion < 4) {
   571     tty->print_cr("### cannot find previous block (MallocCushion < 4)");
   572     return;
   573   }
   574   u_char* start_of_this_block = (u_char*)ptr - space_before;
   575   u_char* end_of_prev_block_data = start_of_this_block - space_after -1;
   576   // look for cushion in front of prev. block
   577   u_char* start_of_prev_block = find_cushion_backwards(end_of_prev_block_data);
   578   ptrdiff_t size = *size_addr_from_base(start_of_prev_block);
   579   u_char* obj = start_of_prev_block + space_before;
   580   if (size <= 0 ) {
   581     // start is bad; mayhave been confused by OS data inbetween objects
   582     // search one more backwards
   583     start_of_prev_block = find_cushion_backwards(start_of_prev_block);
   584     size = *size_addr_from_base(start_of_prev_block);
   585     obj = start_of_prev_block + space_before;
   586   }
   588   if (start_of_prev_block + space_before + size + space_after == start_of_this_block) {
   589     tty->print_cr("### previous object: " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", obj, size);
   590   } else {
   591     tty->print_cr("### previous object (not sure if correct): " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", obj, size);
   592   }
   594   // now find successor block
   595   u_char* start_of_next_block = (u_char*)ptr + *size_addr_from_obj(ptr) + space_after;
   596   start_of_next_block = find_cushion_forwards(start_of_next_block);
   597   u_char* next_obj = start_of_next_block + space_before;
   598   ptrdiff_t next_size = *size_addr_from_base(start_of_next_block);
   599   if (start_of_next_block[0] == badResourceValue &&
   600       start_of_next_block[1] == badResourceValue &&
   601       start_of_next_block[2] == badResourceValue &&
   602       start_of_next_block[3] == badResourceValue) {
   603     tty->print_cr("### next object: " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", next_obj, next_size);
   604   } else {
   605     tty->print_cr("### next object (not sure if correct): " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", next_obj, next_size);
   606   }
   607 }
   610 void report_heap_error(void* memblock, void* bad, const char* where) {
   611   tty->print_cr("## nof_mallocs = " UINT64_FORMAT ", nof_frees = " UINT64_FORMAT, os::num_mallocs, os::num_frees);
   612   tty->print_cr("## memory stomp: byte at " PTR_FORMAT " %s object " PTR_FORMAT, bad, where, memblock);
   613   print_neighbor_blocks(memblock);
   614   fatal("memory stomping error");
   615 }
   617 void verify_block(void* memblock) {
   618   size_t size = get_size(memblock);
   619   if (MallocCushion) {
   620     u_char* ptr = (u_char*)memblock - space_before;
   621     for (int i = 0; i < MallocCushion; i++) {
   622       if (ptr[i] != badResourceValue) {
   623         report_heap_error(memblock, ptr+i, "in front of");
   624       }
   625     }
   626     u_char* end = (u_char*)memblock + size + space_after;
   627     for (int j = -MallocCushion; j < 0; j++) {
   628       if (end[j] != badResourceValue) {
   629         report_heap_error(memblock, end+j, "after");
   630       }
   631     }
   632   }
   633 }
   634 #endif
   636 //
   637 // This function supports testing of the malloc out of memory
   638 // condition without really running the system out of memory.
   639 //
   640 static u_char* testMalloc(size_t alloc_size) {
   641   assert(MallocMaxTestWords > 0, "sanity check");
   643   if ((cur_malloc_words + (alloc_size / BytesPerWord)) > MallocMaxTestWords) {
   644     return NULL;
   645   }
   647   u_char* ptr = (u_char*)::malloc(alloc_size);
   649   if (ptr != NULL) {
   650     Atomic::add(((jint) (alloc_size / BytesPerWord)),
   651                 (volatile jint *) &cur_malloc_words);
   652   }
   653   return ptr;
   654 }
   656 void* os::malloc(size_t size, MEMFLAGS memflags, address caller) {
   657   NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
   658   NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
   660 #ifdef ASSERT
   661   // checking for the WatcherThread and crash_protection first
   662   // since os::malloc can be called when the libjvm.{dll,so} is
   663   // first loaded and we don't have a thread yet.
   664   // try to find the thread after we see that the watcher thread
   665   // exists and has crash protection.
   666   WatcherThread *wt = WatcherThread::watcher_thread();
   667   if (wt != NULL && wt->has_crash_protection()) {
   668     Thread* thread = ThreadLocalStorage::get_thread_slow();
   669     if (thread == wt) {
   670       assert(!wt->has_crash_protection(),
   671           "Can't malloc with crash protection from WatcherThread");
   672     }
   673   }
   674 #endif
   676   if (size == 0) {
   677     // return a valid pointer if size is zero
   678     // if NULL is returned the calling functions assume out of memory.
   679     size = 1;
   680   }
   682   const size_t alloc_size = size + space_before + space_after;
   684   if (size > alloc_size) { // Check for rollover.
   685     return NULL;
   686   }
   688   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
   690   u_char* ptr;
   692   if (MallocMaxTestWords > 0) {
   693     ptr = testMalloc(alloc_size);
   694   } else {
   695     ptr = (u_char*)::malloc(alloc_size);
   696   }
   698 #ifdef ASSERT
   699   if (ptr == NULL) return NULL;
   700   if (MallocCushion) {
   701     for (u_char* p = ptr; p < ptr + MallocCushion; p++) *p = (u_char)badResourceValue;
   702     u_char* end = ptr + space_before + size;
   703     for (u_char* pq = ptr+MallocCushion; pq < end; pq++) *pq = (u_char)uninitBlockPad;
   704     for (u_char* q = end; q < end + MallocCushion; q++) *q = (u_char)badResourceValue;
   705   }
   706   // put size just before data
   707   *size_addr_from_base(ptr) = size;
   708 #endif
   709   u_char* memblock = ptr + space_before;
   710   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
   711     tty->print_cr("os::malloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, memblock);
   712     breakpoint();
   713   }
   714   debug_only(if (paranoid) verify_block(memblock));
   715   if (PrintMalloc && tty != NULL) tty->print_cr("os::malloc " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, memblock);
   717   // we do not track MallocCushion memory
   718     MemTracker::record_malloc((address)memblock, size, memflags, caller == 0 ? CALLER_PC : caller);
   720   return memblock;
   721 }
   724 void* os::realloc(void *memblock, size_t size, MEMFLAGS memflags, address caller) {
   725 #ifndef ASSERT
   726   NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
   727   NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
   728   MemTracker::Tracker tkr = MemTracker::get_realloc_tracker();
   729   void* ptr = ::realloc(memblock, size);
   730   if (ptr != NULL) {
   731     tkr.record((address)memblock, (address)ptr, size, memflags,
   732      caller == 0 ? CALLER_PC : caller);
   733   } else {
   734     tkr.discard();
   735   }
   736   return ptr;
   737 #else
   738   if (memblock == NULL) {
   739     return malloc(size, memflags, (caller == 0 ? CALLER_PC : caller));
   740   }
   741   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
   742     tty->print_cr("os::realloc caught " PTR_FORMAT, memblock);
   743     breakpoint();
   744   }
   745   verify_block(memblock);
   746   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
   747   if (size == 0) return NULL;
   748   // always move the block
   749   void* ptr = malloc(size, memflags, caller == 0 ? CALLER_PC : caller);
   750   if (PrintMalloc) tty->print_cr("os::remalloc " SIZE_FORMAT " bytes, " PTR_FORMAT " --> " PTR_FORMAT, size, memblock, ptr);
   751   // Copy to new memory if malloc didn't fail
   752   if ( ptr != NULL ) {
   753     memcpy(ptr, memblock, MIN2(size, get_size(memblock)));
   754     if (paranoid) verify_block(ptr);
   755     if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
   756       tty->print_cr("os::realloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, ptr);
   757       breakpoint();
   758     }
   759     free(memblock);
   760   }
   761   return ptr;
   762 #endif
   763 }
   766 void  os::free(void *memblock, MEMFLAGS memflags) {
   767   NOT_PRODUCT(inc_stat_counter(&num_frees, 1));
   768 #ifdef ASSERT
   769   if (memblock == NULL) return;
   770   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
   771     if (tty != NULL) tty->print_cr("os::free caught " PTR_FORMAT, memblock);
   772     breakpoint();
   773   }
   774   verify_block(memblock);
   775   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
   776   // Added by detlefs.
   777   if (MallocCushion) {
   778     u_char* ptr = (u_char*)memblock - space_before;
   779     for (u_char* p = ptr; p < ptr + MallocCushion; p++) {
   780       guarantee(*p == badResourceValue,
   781                 "Thing freed should be malloc result.");
   782       *p = (u_char)freeBlockPad;
   783     }
   784     size_t size = get_size(memblock);
   785     inc_stat_counter(&free_bytes, size);
   786     u_char* end = ptr + space_before + size;
   787     for (u_char* q = end; q < end + MallocCushion; q++) {
   788       guarantee(*q == badResourceValue,
   789                 "Thing freed should be malloc result.");
   790       *q = (u_char)freeBlockPad;
   791     }
   792     if (PrintMalloc && tty != NULL)
   793       fprintf(stderr, "os::free " SIZE_FORMAT " bytes --> " PTR_FORMAT "\n", size, (uintptr_t)memblock);
   794   } else if (PrintMalloc && tty != NULL) {
   795     // tty->print_cr("os::free %p", memblock);
   796     fprintf(stderr, "os::free " PTR_FORMAT "\n", (uintptr_t)memblock);
   797   }
   798 #endif
   799   MemTracker::record_free((address)memblock, memflags);
   801   ::free((char*)memblock - space_before);
   802 }
   804 void os::init_random(long initval) {
   805   _rand_seed = initval;
   806 }
   809 long os::random() {
   810   /* standard, well-known linear congruential random generator with
   811    * next_rand = (16807*seed) mod (2**31-1)
   812    * see
   813    * (1) "Random Number Generators: Good Ones Are Hard to Find",
   814    *      S.K. Park and K.W. Miller, Communications of the ACM 31:10 (Oct 1988),
   815    * (2) "Two Fast Implementations of the 'Minimal Standard' Random
   816    *     Number Generator", David G. Carta, Comm. ACM 33, 1 (Jan 1990), pp. 87-88.
   817   */
   818   const long a = 16807;
   819   const unsigned long m = 2147483647;
   820   const long q = m / a;        assert(q == 127773, "weird math");
   821   const long r = m % a;        assert(r == 2836, "weird math");
   823   // compute az=2^31p+q
   824   unsigned long lo = a * (long)(_rand_seed & 0xFFFF);
   825   unsigned long hi = a * (long)((unsigned long)_rand_seed >> 16);
   826   lo += (hi & 0x7FFF) << 16;
   828   // if q overflowed, ignore the overflow and increment q
   829   if (lo > m) {
   830     lo &= m;
   831     ++lo;
   832   }
   833   lo += hi >> 15;
   835   // if (p+q) overflowed, ignore the overflow and increment (p+q)
   836   if (lo > m) {
   837     lo &= m;
   838     ++lo;
   839   }
   840   return (_rand_seed = lo);
   841 }
   843 // The INITIALIZED state is distinguished from the SUSPENDED state because the
   844 // conditions in which a thread is first started are different from those in which
   845 // a suspension is resumed.  These differences make it hard for us to apply the
   846 // tougher checks when starting threads that we want to do when resuming them.
   847 // However, when start_thread is called as a result of Thread.start, on a Java
   848 // thread, the operation is synchronized on the Java Thread object.  So there
   849 // cannot be a race to start the thread and hence for the thread to exit while
   850 // we are working on it.  Non-Java threads that start Java threads either have
   851 // to do so in a context in which races are impossible, or should do appropriate
   852 // locking.
   854 void os::start_thread(Thread* thread) {
   855   // guard suspend/resume
   856   MutexLockerEx ml(thread->SR_lock(), Mutex::_no_safepoint_check_flag);
   857   OSThread* osthread = thread->osthread();
   858   osthread->set_state(RUNNABLE);
   859   pd_start_thread(thread);
   860 }
   862 //---------------------------------------------------------------------------
   863 // Helper functions for fatal error handler
   865 void os::print_hex_dump(outputStream* st, address start, address end, int unitsize) {
   866   assert(unitsize == 1 || unitsize == 2 || unitsize == 4 || unitsize == 8, "just checking");
   868   int cols = 0;
   869   int cols_per_line = 0;
   870   switch (unitsize) {
   871     case 1: cols_per_line = 16; break;
   872     case 2: cols_per_line = 8;  break;
   873     case 4: cols_per_line = 4;  break;
   874     case 8: cols_per_line = 2;  break;
   875     default: return;
   876   }
   878   address p = start;
   879   st->print(PTR_FORMAT ":   ", start);
   880   while (p < end) {
   881     switch (unitsize) {
   882       case 1: st->print("%02x", *(u1*)p); break;
   883       case 2: st->print("%04x", *(u2*)p); break;
   884       case 4: st->print("%08x", *(u4*)p); break;
   885       case 8: st->print("%016" FORMAT64_MODIFIER "x", *(u8*)p); break;
   886     }
   887     p += unitsize;
   888     cols++;
   889     if (cols >= cols_per_line && p < end) {
   890        cols = 0;
   891        st->cr();
   892        st->print(PTR_FORMAT ":   ", p);
   893     } else {
   894        st->print(" ");
   895     }
   896   }
   897   st->cr();
   898 }
   900 void os::print_environment_variables(outputStream* st, const char** env_list,
   901                                      char* buffer, int len) {
   902   if (env_list) {
   903     st->print_cr("Environment Variables:");
   905     for (int i = 0; env_list[i] != NULL; i++) {
   906       if (getenv(env_list[i], buffer, len)) {
   907         st->print(env_list[i]);
   908         st->print("=");
   909         st->print_cr(buffer);
   910       }
   911     }
   912   }
   913 }
   915 void os::print_cpu_info(outputStream* st) {
   916   // cpu
   917   st->print("CPU:");
   918   st->print("total %d", os::processor_count());
   919   // It's not safe to query number of active processors after crash
   920   // st->print("(active %d)", os::active_processor_count());
   921   st->print(" %s", VM_Version::cpu_features());
   922   st->cr();
   923   pd_print_cpu_info(st);
   924 }
   926 void os::print_date_and_time(outputStream *st) {
   927   time_t tloc;
   928   (void)time(&tloc);
   929   st->print("time: %s", ctime(&tloc));  // ctime adds newline.
   931   double t = os::elapsedTime();
   932   // NOTE: It tends to crash after a SEGV if we want to printf("%f",...) in
   933   //       Linux. Must be a bug in glibc ? Workaround is to round "t" to int
   934   //       before printf. We lost some precision, but who cares?
   935   st->print_cr("elapsed time: %d seconds", (int)t);
   936 }
   938 // moved from debug.cpp (used to be find()) but still called from there
   939 // The verbose parameter is only set by the debug code in one case
   940 void os::print_location(outputStream* st, intptr_t x, bool verbose) {
   941   address addr = (address)x;
   942   CodeBlob* b = CodeCache::find_blob_unsafe(addr);
   943   if (b != NULL) {
   944     if (b->is_buffer_blob()) {
   945       // the interpreter is generated into a buffer blob
   946       InterpreterCodelet* i = Interpreter::codelet_containing(addr);
   947       if (i != NULL) {
   948         st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an Interpreter codelet", addr, (int)(addr - i->code_begin()));
   949         i->print_on(st);
   950         return;
   951       }
   952       if (Interpreter::contains(addr)) {
   953         st->print_cr(INTPTR_FORMAT " is pointing into interpreter code"
   954                      " (not bytecode specific)", addr);
   955         return;
   956       }
   957       //
   958       if (AdapterHandlerLibrary::contains(b)) {
   959         st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an AdapterHandler", addr, (int)(addr - b->code_begin()));
   960         AdapterHandlerLibrary::print_handler_on(st, b);
   961       }
   962       // the stubroutines are generated into a buffer blob
   963       StubCodeDesc* d = StubCodeDesc::desc_for(addr);
   964       if (d != NULL) {
   965         st->print_cr(INTPTR_FORMAT " is at begin+%d in a stub", addr, (int)(addr - d->begin()));
   966         d->print_on(st);
   967         st->cr();
   968         return;
   969       }
   970       if (StubRoutines::contains(addr)) {
   971         st->print_cr(INTPTR_FORMAT " is pointing to an (unnamed) "
   972                      "stub routine", addr);
   973         return;
   974       }
   975       // the InlineCacheBuffer is using stubs generated into a buffer blob
   976       if (InlineCacheBuffer::contains(addr)) {
   977         st->print_cr(INTPTR_FORMAT " is pointing into InlineCacheBuffer", addr);
   978         return;
   979       }
   980       VtableStub* v = VtableStubs::stub_containing(addr);
   981       if (v != NULL) {
   982         st->print_cr(INTPTR_FORMAT " is at entry_point+%d in a vtable stub", addr, (int)(addr - v->entry_point()));
   983         v->print_on(st);
   984         st->cr();
   985         return;
   986       }
   987     }
   988     nmethod* nm = b->as_nmethod_or_null();
   989     if (nm != NULL) {
   990       ResourceMark rm;
   991       st->print(INTPTR_FORMAT " is at entry_point+%d in (nmethod*)" INTPTR_FORMAT,
   992                 addr, (int)(addr - nm->entry_point()), nm);
   993       if (verbose) {
   994         st->print(" for ");
   995         nm->method()->print_value_on(st);
   996       }
   997       st->cr();
   998       nm->print_nmethod(verbose);
   999       return;
  1001     st->print_cr(INTPTR_FORMAT " is at code_begin+%d in ", addr, (int)(addr - b->code_begin()));
  1002     b->print_on(st);
  1003     return;
  1006   if (Universe::heap()->is_in(addr)) {
  1007     HeapWord* p = Universe::heap()->block_start(addr);
  1008     bool print = false;
  1009     // If we couldn't find it it just may mean that heap wasn't parseable
  1010     // See if we were just given an oop directly
  1011     if (p != NULL && Universe::heap()->block_is_obj(p)) {
  1012       print = true;
  1013     } else if (p == NULL && ((oopDesc*)addr)->is_oop()) {
  1014       p = (HeapWord*) addr;
  1015       print = true;
  1017     if (print) {
  1018       if (p == (HeapWord*) addr) {
  1019         st->print_cr(INTPTR_FORMAT " is an oop", addr);
  1020       } else {
  1021         st->print_cr(INTPTR_FORMAT " is pointing into object: " INTPTR_FORMAT, addr, p);
  1023       oop(p)->print_on(st);
  1024       return;
  1026   } else {
  1027     if (Universe::heap()->is_in_reserved(addr)) {
  1028       st->print_cr(INTPTR_FORMAT " is an unallocated location "
  1029                    "in the heap", addr);
  1030       return;
  1033   if (JNIHandles::is_global_handle((jobject) addr)) {
  1034     st->print_cr(INTPTR_FORMAT " is a global jni handle", addr);
  1035     return;
  1037   if (JNIHandles::is_weak_global_handle((jobject) addr)) {
  1038     st->print_cr(INTPTR_FORMAT " is a weak global jni handle", addr);
  1039     return;
  1041 #ifndef PRODUCT
  1042   // we don't keep the block list in product mode
  1043   if (JNIHandleBlock::any_contains((jobject) addr)) {
  1044     st->print_cr(INTPTR_FORMAT " is a local jni handle", addr);
  1045     return;
  1047 #endif
  1049   for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
  1050     // Check for privilege stack
  1051     if (thread->privileged_stack_top() != NULL &&
  1052         thread->privileged_stack_top()->contains(addr)) {
  1053       st->print_cr(INTPTR_FORMAT " is pointing into the privilege stack "
  1054                    "for thread: " INTPTR_FORMAT, addr, thread);
  1055       if (verbose) thread->print_on(st);
  1056       return;
  1058     // If the addr is a java thread print information about that.
  1059     if (addr == (address)thread) {
  1060       if (verbose) {
  1061         thread->print_on(st);
  1062       } else {
  1063         st->print_cr(INTPTR_FORMAT " is a thread", addr);
  1065       return;
  1067     // If the addr is in the stack region for this thread then report that
  1068     // and print thread info
  1069     if (thread->stack_base() >= addr &&
  1070         addr > (thread->stack_base() - thread->stack_size())) {
  1071       st->print_cr(INTPTR_FORMAT " is pointing into the stack for thread: "
  1072                    INTPTR_FORMAT, addr, thread);
  1073       if (verbose) thread->print_on(st);
  1074       return;
  1079 #ifndef PRODUCT
  1080   // Check if in metaspace.
  1081   if (ClassLoaderDataGraph::contains((address)addr)) {
  1082     // Use addr->print() from the debugger instead (not here)
  1083     st->print_cr(INTPTR_FORMAT
  1084                  " is pointing into metadata", addr);
  1085     return;
  1087 #endif
  1089   // Try an OS specific find
  1090   if (os::find(addr, st)) {
  1091     return;
  1094   st->print_cr(INTPTR_FORMAT " is an unknown value", addr);
  1097 // Looks like all platforms except IA64 can use the same function to check
  1098 // if C stack is walkable beyond current frame. The check for fp() is not
  1099 // necessary on Sparc, but it's harmless.
  1100 bool os::is_first_C_frame(frame* fr) {
  1101 #if defined(IA64) && !defined(_WIN32)
  1102   // On IA64 we have to check if the callers bsp is still valid
  1103   // (i.e. within the register stack bounds).
  1104   // Notice: this only works for threads created by the VM and only if
  1105   // we walk the current stack!!! If we want to be able to walk
  1106   // arbitrary other threads, we'll have to somehow store the thread
  1107   // object in the frame.
  1108   Thread *thread = Thread::current();
  1109   if ((address)fr->fp() <=
  1110       thread->register_stack_base() HPUX_ONLY(+ 0x0) LINUX_ONLY(+ 0x50)) {
  1111     // This check is a little hacky, because on Linux the first C
  1112     // frame's ('start_thread') register stack frame starts at
  1113     // "register_stack_base + 0x48" while on HPUX, the first C frame's
  1114     // ('__pthread_bound_body') register stack frame seems to really
  1115     // start at "register_stack_base".
  1116     return true;
  1117   } else {
  1118     return false;
  1120 #elif defined(IA64) && defined(_WIN32)
  1121   return true;
  1122 #else
  1123   // Load up sp, fp, sender sp and sender fp, check for reasonable values.
  1124   // Check usp first, because if that's bad the other accessors may fault
  1125   // on some architectures.  Ditto ufp second, etc.
  1126   uintptr_t fp_align_mask = (uintptr_t)(sizeof(address)-1);
  1127   // sp on amd can be 32 bit aligned.
  1128   uintptr_t sp_align_mask = (uintptr_t)(sizeof(int)-1);
  1130   uintptr_t usp    = (uintptr_t)fr->sp();
  1131   if ((usp & sp_align_mask) != 0) return true;
  1133   uintptr_t ufp    = (uintptr_t)fr->fp();
  1134   if ((ufp & fp_align_mask) != 0) return true;
  1136   uintptr_t old_sp = (uintptr_t)fr->sender_sp();
  1137   if ((old_sp & sp_align_mask) != 0) return true;
  1138   if (old_sp == 0 || old_sp == (uintptr_t)-1) return true;
  1140   uintptr_t old_fp = (uintptr_t)fr->link();
  1141   if ((old_fp & fp_align_mask) != 0) return true;
  1142   if (old_fp == 0 || old_fp == (uintptr_t)-1 || old_fp == ufp) return true;
  1144   // stack grows downwards; if old_fp is below current fp or if the stack
  1145   // frame is too large, either the stack is corrupted or fp is not saved
  1146   // on stack (i.e. on x86, ebp may be used as general register). The stack
  1147   // is not walkable beyond current frame.
  1148   if (old_fp < ufp) return true;
  1149   if (old_fp - ufp > 64 * K) return true;
  1151   return false;
  1152 #endif
  1155 #ifdef ASSERT
  1156 extern "C" void test_random() {
  1157   const double m = 2147483647;
  1158   double mean = 0.0, variance = 0.0, t;
  1159   long reps = 10000;
  1160   unsigned long seed = 1;
  1162   tty->print_cr("seed %ld for %ld repeats...", seed, reps);
  1163   os::init_random(seed);
  1164   long num;
  1165   for (int k = 0; k < reps; k++) {
  1166     num = os::random();
  1167     double u = (double)num / m;
  1168     assert(u >= 0.0 && u <= 1.0, "bad random number!");
  1170     // calculate mean and variance of the random sequence
  1171     mean += u;
  1172     variance += (u*u);
  1174   mean /= reps;
  1175   variance /= (reps - 1);
  1177   assert(num == 1043618065, "bad seed");
  1178   tty->print_cr("mean of the 1st 10000 numbers: %f", mean);
  1179   tty->print_cr("variance of the 1st 10000 numbers: %f", variance);
  1180   const double eps = 0.0001;
  1181   t = fabsd(mean - 0.5018);
  1182   assert(t < eps, "bad mean");
  1183   t = (variance - 0.3355) < 0.0 ? -(variance - 0.3355) : variance - 0.3355;
  1184   assert(t < eps, "bad variance");
  1186 #endif
  1189 // Set up the boot classpath.
  1191 char* os::format_boot_path(const char* format_string,
  1192                            const char* home,
  1193                            int home_len,
  1194                            char fileSep,
  1195                            char pathSep) {
  1196     assert((fileSep == '/' && pathSep == ':') ||
  1197            (fileSep == '\\' && pathSep == ';'), "unexpected seperator chars");
  1199     // Scan the format string to determine the length of the actual
  1200     // boot classpath, and handle platform dependencies as well.
  1201     int formatted_path_len = 0;
  1202     const char* p;
  1203     for (p = format_string; *p != 0; ++p) {
  1204         if (*p == '%') formatted_path_len += home_len - 1;
  1205         ++formatted_path_len;
  1208     char* formatted_path = NEW_C_HEAP_ARRAY(char, formatted_path_len + 1, mtInternal);
  1209     if (formatted_path == NULL) {
  1210         return NULL;
  1213     // Create boot classpath from format, substituting separator chars and
  1214     // java home directory.
  1215     char* q = formatted_path;
  1216     for (p = format_string; *p != 0; ++p) {
  1217         switch (*p) {
  1218         case '%':
  1219             strcpy(q, home);
  1220             q += home_len;
  1221             break;
  1222         case '/':
  1223             *q++ = fileSep;
  1224             break;
  1225         case ':':
  1226             *q++ = pathSep;
  1227             break;
  1228         default:
  1229             *q++ = *p;
  1232     *q = '\0';
  1234     assert((q - formatted_path) == formatted_path_len, "formatted_path size botched");
  1235     return formatted_path;
  1239 bool os::set_boot_path(char fileSep, char pathSep) {
  1240     const char* home = Arguments::get_java_home();
  1241     int home_len = (int)strlen(home);
  1243     static const char* meta_index_dir_format = "%/lib/";
  1244     static const char* meta_index_format = "%/lib/meta-index";
  1245     char* meta_index = format_boot_path(meta_index_format, home, home_len, fileSep, pathSep);
  1246     if (meta_index == NULL) return false;
  1247     char* meta_index_dir = format_boot_path(meta_index_dir_format, home, home_len, fileSep, pathSep);
  1248     if (meta_index_dir == NULL) return false;
  1249     Arguments::set_meta_index_path(meta_index, meta_index_dir);
  1251     // Any modification to the JAR-file list, for the boot classpath must be
  1252     // aligned with install/install/make/common/Pack.gmk. Note: boot class
  1253     // path class JARs, are stripped for StackMapTable to reduce download size.
  1254     static const char classpath_format[] =
  1255         "%/lib/resources.jar:"
  1256         "%/lib/rt.jar:"
  1257         "%/lib/sunrsasign.jar:"
  1258         "%/lib/jsse.jar:"
  1259         "%/lib/jce.jar:"
  1260         "%/lib/charsets.jar:"
  1261         "%/lib/jfr.jar:"
  1262 #ifdef __APPLE__
  1263         "%/lib/JObjC.jar:"
  1264 #endif
  1265         "%/classes";
  1266     char* sysclasspath = format_boot_path(classpath_format, home, home_len, fileSep, pathSep);
  1267     if (sysclasspath == NULL) return false;
  1268     Arguments::set_sysclasspath(sysclasspath);
  1270     return true;
  1273 /*
  1274  * Splits a path, based on its separator, the number of
  1275  * elements is returned back in n.
  1276  * It is the callers responsibility to:
  1277  *   a> check the value of n, and n may be 0.
  1278  *   b> ignore any empty path elements
  1279  *   c> free up the data.
  1280  */
  1281 char** os::split_path(const char* path, int* n) {
  1282   *n = 0;
  1283   if (path == NULL || strlen(path) == 0) {
  1284     return NULL;
  1286   const char psepchar = *os::path_separator();
  1287   char* inpath = (char*)NEW_C_HEAP_ARRAY(char, strlen(path) + 1, mtInternal);
  1288   if (inpath == NULL) {
  1289     return NULL;
  1291   strcpy(inpath, path);
  1292   int count = 1;
  1293   char* p = strchr(inpath, psepchar);
  1294   // Get a count of elements to allocate memory
  1295   while (p != NULL) {
  1296     count++;
  1297     p++;
  1298     p = strchr(p, psepchar);
  1300   char** opath = (char**) NEW_C_HEAP_ARRAY(char*, count, mtInternal);
  1301   if (opath == NULL) {
  1302     return NULL;
  1305   // do the actual splitting
  1306   p = inpath;
  1307   for (int i = 0 ; i < count ; i++) {
  1308     size_t len = strcspn(p, os::path_separator());
  1309     if (len > JVM_MAXPATHLEN) {
  1310       return NULL;
  1312     // allocate the string and add terminator storage
  1313     char* s  = (char*)NEW_C_HEAP_ARRAY(char, len + 1, mtInternal);
  1314     if (s == NULL) {
  1315       return NULL;
  1317     strncpy(s, p, len);
  1318     s[len] = '\0';
  1319     opath[i] = s;
  1320     p += len + 1;
  1322   FREE_C_HEAP_ARRAY(char, inpath, mtInternal);
  1323   *n = count;
  1324   return opath;
  1327 void os::set_memory_serialize_page(address page) {
  1328   int count = log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
  1329   _mem_serialize_page = (volatile int32_t *)page;
  1330   // We initialize the serialization page shift count here
  1331   // We assume a cache line size of 64 bytes
  1332   assert(SerializePageShiftCount == count,
  1333          "thread size changed, fix SerializePageShiftCount constant");
  1334   set_serialize_page_mask((uintptr_t)(vm_page_size() - sizeof(int32_t)));
  1337 static volatile intptr_t SerializePageLock = 0;
  1339 // This method is called from signal handler when SIGSEGV occurs while the current
  1340 // thread tries to store to the "read-only" memory serialize page during state
  1341 // transition.
  1342 void os::block_on_serialize_page_trap() {
  1343   if (TraceSafepoint) {
  1344     tty->print_cr("Block until the serialize page permission restored");
  1346   // When VMThread is holding the SerializePageLock during modifying the
  1347   // access permission of the memory serialize page, the following call
  1348   // will block until the permission of that page is restored to rw.
  1349   // Generally, it is unsafe to manipulate locks in signal handlers, but in
  1350   // this case, it's OK as the signal is synchronous and we know precisely when
  1351   // it can occur.
  1352   Thread::muxAcquire(&SerializePageLock, "set_memory_serialize_page");
  1353   Thread::muxRelease(&SerializePageLock);
  1356 // Serialize all thread state variables
  1357 void os::serialize_thread_states() {
  1358   // On some platforms such as Solaris & Linux, the time duration of the page
  1359   // permission restoration is observed to be much longer than expected  due to
  1360   // scheduler starvation problem etc. To avoid the long synchronization
  1361   // time and expensive page trap spinning, 'SerializePageLock' is used to block
  1362   // the mutator thread if such case is encountered. See bug 6546278 for details.
  1363   Thread::muxAcquire(&SerializePageLock, "serialize_thread_states");
  1364   os::protect_memory((char *)os::get_memory_serialize_page(),
  1365                      os::vm_page_size(), MEM_PROT_READ);
  1366   os::protect_memory((char *)os::get_memory_serialize_page(),
  1367                      os::vm_page_size(), MEM_PROT_RW);
  1368   Thread::muxRelease(&SerializePageLock);
  1371 // Returns true if the current stack pointer is above the stack shadow
  1372 // pages, false otherwise.
  1374 bool os::stack_shadow_pages_available(Thread *thread, methodHandle method) {
  1375   assert(StackRedPages > 0 && StackYellowPages > 0,"Sanity check");
  1376   address sp = current_stack_pointer();
  1377   // Check if we have StackShadowPages above the yellow zone.  This parameter
  1378   // is dependent on the depth of the maximum VM call stack possible from
  1379   // the handler for stack overflow.  'instanceof' in the stack overflow
  1380   // handler or a println uses at least 8k stack of VM and native code
  1381   // respectively.
  1382   const int framesize_in_bytes =
  1383     Interpreter::size_top_interpreter_activation(method()) * wordSize;
  1384   int reserved_area = ((StackShadowPages + StackRedPages + StackYellowPages)
  1385                       * vm_page_size()) + framesize_in_bytes;
  1386   // The very lower end of the stack
  1387   address stack_limit = thread->stack_base() - thread->stack_size();
  1388   return (sp > (stack_limit + reserved_area));
  1391 size_t os::page_size_for_region(size_t region_min_size, size_t region_max_size,
  1392                                 uint min_pages)
  1394   assert(min_pages > 0, "sanity");
  1395   if (UseLargePages) {
  1396     const size_t max_page_size = region_max_size / min_pages;
  1398     for (unsigned int i = 0; _page_sizes[i] != 0; ++i) {
  1399       const size_t sz = _page_sizes[i];
  1400       const size_t mask = sz - 1;
  1401       if ((region_min_size & mask) == 0 && (region_max_size & mask) == 0) {
  1402         // The largest page size with no fragmentation.
  1403         return sz;
  1406       if (sz <= max_page_size) {
  1407         // The largest page size that satisfies the min_pages requirement.
  1408         return sz;
  1413   return vm_page_size();
  1416 #ifndef PRODUCT
  1417 void os::trace_page_sizes(const char* str, const size_t* page_sizes, int count)
  1419   if (TracePageSizes) {
  1420     tty->print("%s: ", str);
  1421     for (int i = 0; i < count; ++i) {
  1422       tty->print(" " SIZE_FORMAT, page_sizes[i]);
  1424     tty->cr();
  1428 void os::trace_page_sizes(const char* str, const size_t region_min_size,
  1429                           const size_t region_max_size, const size_t page_size,
  1430                           const char* base, const size_t size)
  1432   if (TracePageSizes) {
  1433     tty->print_cr("%s:  min=" SIZE_FORMAT " max=" SIZE_FORMAT
  1434                   " pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT
  1435                   " size=" SIZE_FORMAT,
  1436                   str, region_min_size, region_max_size,
  1437                   page_size, base, size);
  1440 #endif  // #ifndef PRODUCT
  1442 // This is the working definition of a server class machine:
  1443 // >= 2 physical CPU's and >=2GB of memory, with some fuzz
  1444 // because the graphics memory (?) sometimes masks physical memory.
  1445 // If you want to change the definition of a server class machine
  1446 // on some OS or platform, e.g., >=4GB on Windohs platforms,
  1447 // then you'll have to parameterize this method based on that state,
  1448 // as was done for logical processors here, or replicate and
  1449 // specialize this method for each platform.  (Or fix os to have
  1450 // some inheritance structure and use subclassing.  Sigh.)
  1451 // If you want some platform to always or never behave as a server
  1452 // class machine, change the setting of AlwaysActAsServerClassMachine
  1453 // and NeverActAsServerClassMachine in globals*.hpp.
  1454 bool os::is_server_class_machine() {
  1455   // First check for the early returns
  1456   if (NeverActAsServerClassMachine) {
  1457     return false;
  1459   if (AlwaysActAsServerClassMachine) {
  1460     return true;
  1462   // Then actually look at the machine
  1463   bool         result            = false;
  1464   const unsigned int    server_processors = 2;
  1465   const julong server_memory     = 2UL * G;
  1466   // We seem not to get our full complement of memory.
  1467   //     We allow some part (1/8?) of the memory to be "missing",
  1468   //     based on the sizes of DIMMs, and maybe graphics cards.
  1469   const julong missing_memory   = 256UL * M;
  1471   /* Is this a server class machine? */
  1472   if ((os::active_processor_count() >= (int)server_processors) &&
  1473       (os::physical_memory() >= (server_memory - missing_memory))) {
  1474     const unsigned int logical_processors =
  1475       VM_Version::logical_processors_per_package();
  1476     if (logical_processors > 1) {
  1477       const unsigned int physical_packages =
  1478         os::active_processor_count() / logical_processors;
  1479       if (physical_packages > server_processors) {
  1480         result = true;
  1482     } else {
  1483       result = true;
  1486   return result;
  1489 void os::SuspendedThreadTask::run() {
  1490   assert(Threads_lock->owned_by_self() || (_thread == VMThread::vm_thread()), "must have threads lock to call this");
  1491   internal_do_task();
  1492   _done = true;
  1495 bool os::create_stack_guard_pages(char* addr, size_t bytes) {
  1496   return os::pd_create_stack_guard_pages(addr, bytes);
  1499 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
  1500   char* result = pd_reserve_memory(bytes, addr, alignment_hint);
  1501   if (result != NULL) {
  1502     MemTracker::record_virtual_memory_reserve((address)result, bytes, mtNone, CALLER_PC);
  1505   return result;
  1508 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint,
  1509    MEMFLAGS flags) {
  1510   char* result = pd_reserve_memory(bytes, addr, alignment_hint);
  1511   if (result != NULL) {
  1512     MemTracker::record_virtual_memory_reserve((address)result, bytes, mtNone, CALLER_PC);
  1513     MemTracker::record_virtual_memory_type((address)result, flags);
  1516   return result;
  1519 char* os::attempt_reserve_memory_at(size_t bytes, char* addr) {
  1520   char* result = pd_attempt_reserve_memory_at(bytes, addr);
  1521   if (result != NULL) {
  1522     MemTracker::record_virtual_memory_reserve((address)result, bytes, mtNone, CALLER_PC);
  1524   return result;
  1527 void os::split_reserved_memory(char *base, size_t size,
  1528                                  size_t split, bool realloc) {
  1529   pd_split_reserved_memory(base, size, split, realloc);
  1532 bool os::commit_memory(char* addr, size_t bytes, bool executable) {
  1533   bool res = pd_commit_memory(addr, bytes, executable);
  1534   if (res) {
  1535     MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
  1537   return res;
  1540 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
  1541                               bool executable) {
  1542   bool res = os::pd_commit_memory(addr, size, alignment_hint, executable);
  1543   if (res) {
  1544     MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
  1546   return res;
  1549 void os::commit_memory_or_exit(char* addr, size_t bytes, bool executable,
  1550                                const char* mesg) {
  1551   pd_commit_memory_or_exit(addr, bytes, executable, mesg);
  1552   MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
  1555 void os::commit_memory_or_exit(char* addr, size_t size, size_t alignment_hint,
  1556                                bool executable, const char* mesg) {
  1557   os::pd_commit_memory_or_exit(addr, size, alignment_hint, executable, mesg);
  1558   MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
  1561 bool os::uncommit_memory(char* addr, size_t bytes) {
  1562   MemTracker::Tracker tkr = MemTracker::get_virtual_memory_uncommit_tracker();
  1563   bool res = pd_uncommit_memory(addr, bytes);
  1564   if (res) {
  1565     tkr.record((address)addr, bytes);
  1566   } else {
  1567     tkr.discard();
  1569   return res;
  1572 bool os::release_memory(char* addr, size_t bytes) {
  1573   MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
  1574   bool res = pd_release_memory(addr, bytes);
  1575   if (res) {
  1576     tkr.record((address)addr, bytes);
  1577   } else {
  1578     tkr.discard();
  1580   return res;
  1584 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
  1585                            char *addr, size_t bytes, bool read_only,
  1586                            bool allow_exec) {
  1587   char* result = pd_map_memory(fd, file_name, file_offset, addr, bytes, read_only, allow_exec);
  1588   if (result != NULL) {
  1589     MemTracker::record_virtual_memory_reserve_and_commit((address)result, bytes, mtNone, CALLER_PC);
  1591   return result;
  1594 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
  1595                              char *addr, size_t bytes, bool read_only,
  1596                              bool allow_exec) {
  1597   return pd_remap_memory(fd, file_name, file_offset, addr, bytes,
  1598                     read_only, allow_exec);
  1601 bool os::unmap_memory(char *addr, size_t bytes) {
  1602   MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
  1603   bool result = pd_unmap_memory(addr, bytes);
  1604   if (result) {
  1605     tkr.record((address)addr, bytes);
  1606   } else {
  1607     tkr.discard();
  1609   return result;
  1612 void os::free_memory(char *addr, size_t bytes, size_t alignment_hint) {
  1613   pd_free_memory(addr, bytes, alignment_hint);
  1616 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
  1617   pd_realign_memory(addr, bytes, alignment_hint);
  1620 #ifndef TARGET_OS_FAMILY_windows
  1621 /* try to switch state from state "from" to state "to"
  1622  * returns the state set after the method is complete
  1623  */
  1624 os::SuspendResume::State os::SuspendResume::switch_state(os::SuspendResume::State from,
  1625                                                          os::SuspendResume::State to)
  1627   os::SuspendResume::State result =
  1628     (os::SuspendResume::State) Atomic::cmpxchg((jint) to, (jint *) &_state, (jint) from);
  1629   if (result == from) {
  1630     // success
  1631     return to;
  1633   return result;
  1635 #endif

mercurial