src/share/vm/opto/type.cpp

Sat, 05 Mar 2011 11:02:04 -0800

author
kvn
date
Sat, 05 Mar 2011 11:02:04 -0800
changeset 2633
8e72cd29b15d
parent 2435
78e248949382
child 2636
83f08886981c
permissions
-rw-r--r--

6589823: Error: meet not symmetric
Summary: arrays pointers meet must fall to bottom if exact array klasses in upper lattice are not equal or super klass is exact.
Reviewed-by: never

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "ci/ciTypeFlow.hpp"
    27 #include "classfile/symbolTable.hpp"
    28 #include "classfile/systemDictionary.hpp"
    29 #include "compiler/compileLog.hpp"
    30 #include "libadt/dict.hpp"
    31 #include "memory/gcLocker.hpp"
    32 #include "memory/oopFactory.hpp"
    33 #include "memory/resourceArea.hpp"
    34 #include "oops/instanceKlass.hpp"
    35 #include "oops/klassKlass.hpp"
    36 #include "oops/objArrayKlass.hpp"
    37 #include "oops/typeArrayKlass.hpp"
    38 #include "opto/matcher.hpp"
    39 #include "opto/node.hpp"
    40 #include "opto/opcodes.hpp"
    41 #include "opto/type.hpp"
    43 // Portions of code courtesy of Clifford Click
    45 // Optimization - Graph Style
    47 // Dictionary of types shared among compilations.
    48 Dict* Type::_shared_type_dict = NULL;
    50 // Array which maps compiler types to Basic Types
    51 const BasicType Type::_basic_type[Type::lastype] = {
    52   T_ILLEGAL,    // Bad
    53   T_ILLEGAL,    // Control
    54   T_VOID,       // Top
    55   T_INT,        // Int
    56   T_LONG,       // Long
    57   T_VOID,       // Half
    58   T_NARROWOOP,  // NarrowOop
    60   T_ILLEGAL,    // Tuple
    61   T_ARRAY,      // Array
    63   T_ADDRESS,    // AnyPtr   // shows up in factory methods for NULL_PTR
    64   T_ADDRESS,    // RawPtr
    65   T_OBJECT,     // OopPtr
    66   T_OBJECT,     // InstPtr
    67   T_OBJECT,     // AryPtr
    68   T_OBJECT,     // KlassPtr
    70   T_OBJECT,     // Function
    71   T_ILLEGAL,    // Abio
    72   T_ADDRESS,    // Return_Address
    73   T_ILLEGAL,    // Memory
    74   T_FLOAT,      // FloatTop
    75   T_FLOAT,      // FloatCon
    76   T_FLOAT,      // FloatBot
    77   T_DOUBLE,     // DoubleTop
    78   T_DOUBLE,     // DoubleCon
    79   T_DOUBLE,     // DoubleBot
    80   T_ILLEGAL,    // Bottom
    81 };
    83 // Map ideal registers (machine types) to ideal types
    84 const Type *Type::mreg2type[_last_machine_leaf];
    86 // Map basic types to canonical Type* pointers.
    87 const Type* Type::     _const_basic_type[T_CONFLICT+1];
    89 // Map basic types to constant-zero Types.
    90 const Type* Type::            _zero_type[T_CONFLICT+1];
    92 // Map basic types to array-body alias types.
    93 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
    95 //=============================================================================
    96 // Convenience common pre-built types.
    97 const Type *Type::ABIO;         // State-of-machine only
    98 const Type *Type::BOTTOM;       // All values
    99 const Type *Type::CONTROL;      // Control only
   100 const Type *Type::DOUBLE;       // All doubles
   101 const Type *Type::FLOAT;        // All floats
   102 const Type *Type::HALF;         // Placeholder half of doublewide type
   103 const Type *Type::MEMORY;       // Abstract store only
   104 const Type *Type::RETURN_ADDRESS;
   105 const Type *Type::TOP;          // No values in set
   107 //------------------------------get_const_type---------------------------
   108 const Type* Type::get_const_type(ciType* type) {
   109   if (type == NULL) {
   110     return NULL;
   111   } else if (type->is_primitive_type()) {
   112     return get_const_basic_type(type->basic_type());
   113   } else {
   114     return TypeOopPtr::make_from_klass(type->as_klass());
   115   }
   116 }
   118 //---------------------------array_element_basic_type---------------------------------
   119 // Mapping to the array element's basic type.
   120 BasicType Type::array_element_basic_type() const {
   121   BasicType bt = basic_type();
   122   if (bt == T_INT) {
   123     if (this == TypeInt::INT)   return T_INT;
   124     if (this == TypeInt::CHAR)  return T_CHAR;
   125     if (this == TypeInt::BYTE)  return T_BYTE;
   126     if (this == TypeInt::BOOL)  return T_BOOLEAN;
   127     if (this == TypeInt::SHORT) return T_SHORT;
   128     return T_VOID;
   129   }
   130   return bt;
   131 }
   133 //---------------------------get_typeflow_type---------------------------------
   134 // Import a type produced by ciTypeFlow.
   135 const Type* Type::get_typeflow_type(ciType* type) {
   136   switch (type->basic_type()) {
   138   case ciTypeFlow::StateVector::T_BOTTOM:
   139     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
   140     return Type::BOTTOM;
   142   case ciTypeFlow::StateVector::T_TOP:
   143     assert(type == ciTypeFlow::StateVector::top_type(), "");
   144     return Type::TOP;
   146   case ciTypeFlow::StateVector::T_NULL:
   147     assert(type == ciTypeFlow::StateVector::null_type(), "");
   148     return TypePtr::NULL_PTR;
   150   case ciTypeFlow::StateVector::T_LONG2:
   151     // The ciTypeFlow pass pushes a long, then the half.
   152     // We do the same.
   153     assert(type == ciTypeFlow::StateVector::long2_type(), "");
   154     return TypeInt::TOP;
   156   case ciTypeFlow::StateVector::T_DOUBLE2:
   157     // The ciTypeFlow pass pushes double, then the half.
   158     // Our convention is the same.
   159     assert(type == ciTypeFlow::StateVector::double2_type(), "");
   160     return Type::TOP;
   162   case T_ADDRESS:
   163     assert(type->is_return_address(), "");
   164     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
   166   default:
   167     // make sure we did not mix up the cases:
   168     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
   169     assert(type != ciTypeFlow::StateVector::top_type(), "");
   170     assert(type != ciTypeFlow::StateVector::null_type(), "");
   171     assert(type != ciTypeFlow::StateVector::long2_type(), "");
   172     assert(type != ciTypeFlow::StateVector::double2_type(), "");
   173     assert(!type->is_return_address(), "");
   175     return Type::get_const_type(type);
   176   }
   177 }
   180 //------------------------------make-------------------------------------------
   181 // Create a simple Type, with default empty symbol sets.  Then hashcons it
   182 // and look for an existing copy in the type dictionary.
   183 const Type *Type::make( enum TYPES t ) {
   184   return (new Type(t))->hashcons();
   185 }
   187 //------------------------------cmp--------------------------------------------
   188 int Type::cmp( const Type *const t1, const Type *const t2 ) {
   189   if( t1->_base != t2->_base )
   190     return 1;                   // Missed badly
   191   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
   192   return !t1->eq(t2);           // Return ZERO if equal
   193 }
   195 //------------------------------hash-------------------------------------------
   196 int Type::uhash( const Type *const t ) {
   197   return t->hash();
   198 }
   200 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
   202 //--------------------------Initialize_shared----------------------------------
   203 void Type::Initialize_shared(Compile* current) {
   204   // This method does not need to be locked because the first system
   205   // compilations (stub compilations) occur serially.  If they are
   206   // changed to proceed in parallel, then this section will need
   207   // locking.
   209   Arena* save = current->type_arena();
   210   Arena* shared_type_arena = new Arena();
   212   current->set_type_arena(shared_type_arena);
   213   _shared_type_dict =
   214     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
   215                                   shared_type_arena, 128 );
   216   current->set_type_dict(_shared_type_dict);
   218   // Make shared pre-built types.
   219   CONTROL = make(Control);      // Control only
   220   TOP     = make(Top);          // No values in set
   221   MEMORY  = make(Memory);       // Abstract store only
   222   ABIO    = make(Abio);         // State-of-machine only
   223   RETURN_ADDRESS=make(Return_Address);
   224   FLOAT   = make(FloatBot);     // All floats
   225   DOUBLE  = make(DoubleBot);    // All doubles
   226   BOTTOM  = make(Bottom);       // Everything
   227   HALF    = make(Half);         // Placeholder half of doublewide type
   229   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
   230   TypeF::ONE  = TypeF::make(1.0); // Float 1
   232   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
   233   TypeD::ONE  = TypeD::make(1.0); // Double 1
   235   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
   236   TypeInt::ZERO    = TypeInt::make( 0);  //  0
   237   TypeInt::ONE     = TypeInt::make( 1);  //  1
   238   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
   239   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
   240   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
   241   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
   242   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
   243   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
   244   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
   245   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
   246   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
   247   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
   248   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
   249   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
   250   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
   251   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
   252   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
   253   // CmpL is overloaded both as the bytecode computation returning
   254   // a trinary (-1,0,+1) integer result AND as an efficient long
   255   // compare returning optimizer ideal-type flags.
   256   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
   257   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
   258   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
   259   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
   260   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
   262   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
   263   TypeLong::ZERO    = TypeLong::make( 0);        //  0
   264   TypeLong::ONE     = TypeLong::make( 1);        //  1
   265   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
   266   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
   267   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
   268   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
   270   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   271   fboth[0] = Type::CONTROL;
   272   fboth[1] = Type::CONTROL;
   273   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
   275   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   276   ffalse[0] = Type::CONTROL;
   277   ffalse[1] = Type::TOP;
   278   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
   280   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   281   fneither[0] = Type::TOP;
   282   fneither[1] = Type::TOP;
   283   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
   285   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   286   ftrue[0] = Type::TOP;
   287   ftrue[1] = Type::CONTROL;
   288   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
   290   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   291   floop[0] = Type::CONTROL;
   292   floop[1] = TypeInt::INT;
   293   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
   295   TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
   296   TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
   297   TypePtr::BOTTOM  = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
   299   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
   300   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
   302   const Type **fmembar = TypeTuple::fields(0);
   303   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
   305   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   306   fsc[0] = TypeInt::CC;
   307   fsc[1] = Type::MEMORY;
   308   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
   310   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
   311   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
   312   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
   313   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
   314                                            false, 0, oopDesc::mark_offset_in_bytes());
   315   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
   316                                            false, 0, oopDesc::klass_offset_in_bytes());
   317   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
   319   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
   320   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
   322   mreg2type[Op_Node] = Type::BOTTOM;
   323   mreg2type[Op_Set ] = 0;
   324   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
   325   mreg2type[Op_RegI] = TypeInt::INT;
   326   mreg2type[Op_RegP] = TypePtr::BOTTOM;
   327   mreg2type[Op_RegF] = Type::FLOAT;
   328   mreg2type[Op_RegD] = Type::DOUBLE;
   329   mreg2type[Op_RegL] = TypeLong::LONG;
   330   mreg2type[Op_RegFlags] = TypeInt::CC;
   332   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
   334   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
   336 #ifdef _LP64
   337   if (UseCompressedOops) {
   338     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
   339   } else
   340 #endif
   341   {
   342     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
   343     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
   344   }
   345   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
   346   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
   347   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
   348   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
   349   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
   350   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
   351   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
   353   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
   354   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
   355   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
   356   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
   357   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
   358   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
   359   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
   360   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
   361   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
   362   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
   363   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
   364   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
   366   TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
   367   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
   369   const Type **fi2c = TypeTuple::fields(2);
   370   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // methodOop
   371   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
   372   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
   374   const Type **intpair = TypeTuple::fields(2);
   375   intpair[0] = TypeInt::INT;
   376   intpair[1] = TypeInt::INT;
   377   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
   379   const Type **longpair = TypeTuple::fields(2);
   380   longpair[0] = TypeLong::LONG;
   381   longpair[1] = TypeLong::LONG;
   382   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
   384   _const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM;
   385   _const_basic_type[T_BOOLEAN] = TypeInt::BOOL;
   386   _const_basic_type[T_CHAR]    = TypeInt::CHAR;
   387   _const_basic_type[T_BYTE]    = TypeInt::BYTE;
   388   _const_basic_type[T_SHORT]   = TypeInt::SHORT;
   389   _const_basic_type[T_INT]     = TypeInt::INT;
   390   _const_basic_type[T_LONG]    = TypeLong::LONG;
   391   _const_basic_type[T_FLOAT]   = Type::FLOAT;
   392   _const_basic_type[T_DOUBLE]  = Type::DOUBLE;
   393   _const_basic_type[T_OBJECT]  = TypeInstPtr::BOTTOM;
   394   _const_basic_type[T_ARRAY]   = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
   395   _const_basic_type[T_VOID]    = TypePtr::NULL_PTR;   // reflection represents void this way
   396   _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
   397   _const_basic_type[T_CONFLICT]= Type::BOTTOM;        // why not?
   399   _zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR;
   400   _zero_type[T_BOOLEAN] = TypeInt::ZERO;     // false == 0
   401   _zero_type[T_CHAR]    = TypeInt::ZERO;     // '\0' == 0
   402   _zero_type[T_BYTE]    = TypeInt::ZERO;     // 0x00 == 0
   403   _zero_type[T_SHORT]   = TypeInt::ZERO;     // 0x0000 == 0
   404   _zero_type[T_INT]     = TypeInt::ZERO;
   405   _zero_type[T_LONG]    = TypeLong::ZERO;
   406   _zero_type[T_FLOAT]   = TypeF::ZERO;
   407   _zero_type[T_DOUBLE]  = TypeD::ZERO;
   408   _zero_type[T_OBJECT]  = TypePtr::NULL_PTR;
   409   _zero_type[T_ARRAY]   = TypePtr::NULL_PTR; // null array is null oop
   410   _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null
   411   _zero_type[T_VOID]    = Type::TOP;         // the only void value is no value at all
   413   // get_zero_type() should not happen for T_CONFLICT
   414   _zero_type[T_CONFLICT]= NULL;
   416   // Restore working type arena.
   417   current->set_type_arena(save);
   418   current->set_type_dict(NULL);
   419 }
   421 //------------------------------Initialize-------------------------------------
   422 void Type::Initialize(Compile* current) {
   423   assert(current->type_arena() != NULL, "must have created type arena");
   425   if (_shared_type_dict == NULL) {
   426     Initialize_shared(current);
   427   }
   429   Arena* type_arena = current->type_arena();
   431   // Create the hash-cons'ing dictionary with top-level storage allocation
   432   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
   433   current->set_type_dict(tdic);
   435   // Transfer the shared types.
   436   DictI i(_shared_type_dict);
   437   for( ; i.test(); ++i ) {
   438     Type* t = (Type*)i._value;
   439     tdic->Insert(t,t);  // New Type, insert into Type table
   440   }
   442 #ifdef ASSERT
   443   verify_lastype();
   444 #endif
   445 }
   447 //------------------------------hashcons---------------------------------------
   448 // Do the hash-cons trick.  If the Type already exists in the type table,
   449 // delete the current Type and return the existing Type.  Otherwise stick the
   450 // current Type in the Type table.
   451 const Type *Type::hashcons(void) {
   452   debug_only(base());           // Check the assertion in Type::base().
   453   // Look up the Type in the Type dictionary
   454   Dict *tdic = type_dict();
   455   Type* old = (Type*)(tdic->Insert(this, this, false));
   456   if( old ) {                   // Pre-existing Type?
   457     if( old != this )           // Yes, this guy is not the pre-existing?
   458       delete this;              // Yes, Nuke this guy
   459     assert( old->_dual, "" );
   460     return old;                 // Return pre-existing
   461   }
   463   // Every type has a dual (to make my lattice symmetric).
   464   // Since we just discovered a new Type, compute its dual right now.
   465   assert( !_dual, "" );         // No dual yet
   466   _dual = xdual();              // Compute the dual
   467   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
   468     _dual = this;
   469     return this;
   470   }
   471   assert( !_dual->_dual, "" );  // No reverse dual yet
   472   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
   473   // New Type, insert into Type table
   474   tdic->Insert((void*)_dual,(void*)_dual);
   475   ((Type*)_dual)->_dual = this; // Finish up being symmetric
   476 #ifdef ASSERT
   477   Type *dual_dual = (Type*)_dual->xdual();
   478   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
   479   delete dual_dual;
   480 #endif
   481   return this;                  // Return new Type
   482 }
   484 //------------------------------eq---------------------------------------------
   485 // Structural equality check for Type representations
   486 bool Type::eq( const Type * ) const {
   487   return true;                  // Nothing else can go wrong
   488 }
   490 //------------------------------hash-------------------------------------------
   491 // Type-specific hashing function.
   492 int Type::hash(void) const {
   493   return _base;
   494 }
   496 //------------------------------is_finite--------------------------------------
   497 // Has a finite value
   498 bool Type::is_finite() const {
   499   return false;
   500 }
   502 //------------------------------is_nan-----------------------------------------
   503 // Is not a number (NaN)
   504 bool Type::is_nan()    const {
   505   return false;
   506 }
   508 //----------------------interface_vs_oop---------------------------------------
   509 #ifdef ASSERT
   510 bool Type::interface_vs_oop(const Type *t) const {
   511   bool result = false;
   513   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
   514   const TypePtr*    t_ptr =    t->make_ptr();
   515   if( this_ptr == NULL || t_ptr == NULL )
   516     return result;
   518   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
   519   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
   520   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
   521     bool this_interface = this_inst->klass()->is_interface();
   522     bool    t_interface =    t_inst->klass()->is_interface();
   523     result = this_interface ^ t_interface;
   524   }
   526   return result;
   527 }
   528 #endif
   530 //------------------------------meet-------------------------------------------
   531 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
   532 // commutative and the lattice is symmetric.
   533 const Type *Type::meet( const Type *t ) const {
   534   if (isa_narrowoop() && t->isa_narrowoop()) {
   535     const Type* result = make_ptr()->meet(t->make_ptr());
   536     return result->make_narrowoop();
   537   }
   539   const Type *mt = xmeet(t);
   540   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
   541 #ifdef ASSERT
   542   assert( mt == t->xmeet(this), "meet not commutative" );
   543   const Type* dual_join = mt->_dual;
   544   const Type *t2t    = dual_join->xmeet(t->_dual);
   545   const Type *t2this = dual_join->xmeet(   _dual);
   547   // Interface meet Oop is Not Symmetric:
   548   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
   549   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
   551   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != _dual) ) {
   552     tty->print_cr("=== Meet Not Symmetric ===");
   553     tty->print("t   =                   ");         t->dump(); tty->cr();
   554     tty->print("this=                   ");            dump(); tty->cr();
   555     tty->print("mt=(t meet this)=       ");        mt->dump(); tty->cr();
   557     tty->print("t_dual=                 ");  t->_dual->dump(); tty->cr();
   558     tty->print("this_dual=              ");     _dual->dump(); tty->cr();
   559     tty->print("mt_dual=                "); mt->_dual->dump(); tty->cr();
   561     tty->print("mt_dual meet t_dual=    "); t2t      ->dump(); tty->cr();
   562     tty->print("mt_dual meet this_dual= "); t2this   ->dump(); tty->cr();
   564     fatal("meet not symmetric" );
   565   }
   566 #endif
   567   return mt;
   568 }
   570 //------------------------------xmeet------------------------------------------
   571 // Compute the MEET of two types.  It returns a new Type object.
   572 const Type *Type::xmeet( const Type *t ) const {
   573   // Perform a fast test for common case; meeting the same types together.
   574   if( this == t ) return this;  // Meeting same type-rep?
   576   // Meeting TOP with anything?
   577   if( _base == Top ) return t;
   579   // Meeting BOTTOM with anything?
   580   if( _base == Bottom ) return BOTTOM;
   582   // Current "this->_base" is one of: Bad, Multi, Control, Top,
   583   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
   584   switch (t->base()) {  // Switch on original type
   586   // Cut in half the number of cases I must handle.  Only need cases for when
   587   // the given enum "t->type" is less than or equal to the local enum "type".
   588   case FloatCon:
   589   case DoubleCon:
   590   case Int:
   591   case Long:
   592     return t->xmeet(this);
   594   case OopPtr:
   595     return t->xmeet(this);
   597   case InstPtr:
   598     return t->xmeet(this);
   600   case KlassPtr:
   601     return t->xmeet(this);
   603   case AryPtr:
   604     return t->xmeet(this);
   606   case NarrowOop:
   607     return t->xmeet(this);
   609   case Bad:                     // Type check
   610   default:                      // Bogus type not in lattice
   611     typerr(t);
   612     return Type::BOTTOM;
   614   case Bottom:                  // Ye Olde Default
   615     return t;
   617   case FloatTop:
   618     if( _base == FloatTop ) return this;
   619   case FloatBot:                // Float
   620     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
   621     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
   622     typerr(t);
   623     return Type::BOTTOM;
   625   case DoubleTop:
   626     if( _base == DoubleTop ) return this;
   627   case DoubleBot:               // Double
   628     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
   629     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
   630     typerr(t);
   631     return Type::BOTTOM;
   633   // These next few cases must match exactly or it is a compile-time error.
   634   case Control:                 // Control of code
   635   case Abio:                    // State of world outside of program
   636   case Memory:
   637     if( _base == t->_base )  return this;
   638     typerr(t);
   639     return Type::BOTTOM;
   641   case Top:                     // Top of the lattice
   642     return this;
   643   }
   645   // The type is unchanged
   646   return this;
   647 }
   649 //-----------------------------filter------------------------------------------
   650 const Type *Type::filter( const Type *kills ) const {
   651   const Type* ft = join(kills);
   652   if (ft->empty())
   653     return Type::TOP;           // Canonical empty value
   654   return ft;
   655 }
   657 //------------------------------xdual------------------------------------------
   658 // Compute dual right now.
   659 const Type::TYPES Type::dual_type[Type::lastype] = {
   660   Bad,          // Bad
   661   Control,      // Control
   662   Bottom,       // Top
   663   Bad,          // Int - handled in v-call
   664   Bad,          // Long - handled in v-call
   665   Half,         // Half
   666   Bad,          // NarrowOop - handled in v-call
   668   Bad,          // Tuple - handled in v-call
   669   Bad,          // Array - handled in v-call
   671   Bad,          // AnyPtr - handled in v-call
   672   Bad,          // RawPtr - handled in v-call
   673   Bad,          // OopPtr - handled in v-call
   674   Bad,          // InstPtr - handled in v-call
   675   Bad,          // AryPtr - handled in v-call
   676   Bad,          // KlassPtr - handled in v-call
   678   Bad,          // Function - handled in v-call
   679   Abio,         // Abio
   680   Return_Address,// Return_Address
   681   Memory,       // Memory
   682   FloatBot,     // FloatTop
   683   FloatCon,     // FloatCon
   684   FloatTop,     // FloatBot
   685   DoubleBot,    // DoubleTop
   686   DoubleCon,    // DoubleCon
   687   DoubleTop,    // DoubleBot
   688   Top           // Bottom
   689 };
   691 const Type *Type::xdual() const {
   692   // Note: the base() accessor asserts the sanity of _base.
   693   assert(dual_type[base()] != Bad, "implement with v-call");
   694   return new Type(dual_type[_base]);
   695 }
   697 //------------------------------has_memory-------------------------------------
   698 bool Type::has_memory() const {
   699   Type::TYPES tx = base();
   700   if (tx == Memory) return true;
   701   if (tx == Tuple) {
   702     const TypeTuple *t = is_tuple();
   703     for (uint i=0; i < t->cnt(); i++) {
   704       tx = t->field_at(i)->base();
   705       if (tx == Memory)  return true;
   706     }
   707   }
   708   return false;
   709 }
   711 #ifndef PRODUCT
   712 //------------------------------dump2------------------------------------------
   713 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
   714   st->print(msg[_base]);
   715 }
   717 //------------------------------dump-------------------------------------------
   718 void Type::dump_on(outputStream *st) const {
   719   ResourceMark rm;
   720   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
   721   dump2(d,1, st);
   722   if (is_ptr_to_narrowoop()) {
   723     st->print(" [narrow]");
   724   }
   725 }
   727 //------------------------------data-------------------------------------------
   728 const char * const Type::msg[Type::lastype] = {
   729   "bad","control","top","int:","long:","half", "narrowoop:",
   730   "tuple:", "aryptr",
   731   "anyptr:", "rawptr:", "java:", "inst:", "ary:", "klass:",
   732   "func", "abIO", "return_address", "memory",
   733   "float_top", "ftcon:", "float",
   734   "double_top", "dblcon:", "double",
   735   "bottom"
   736 };
   737 #endif
   739 //------------------------------singleton--------------------------------------
   740 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
   741 // constants (Ldi nodes).  Singletons are integer, float or double constants.
   742 bool Type::singleton(void) const {
   743   return _base == Top || _base == Half;
   744 }
   746 //------------------------------empty------------------------------------------
   747 // TRUE if Type is a type with no values, FALSE otherwise.
   748 bool Type::empty(void) const {
   749   switch (_base) {
   750   case DoubleTop:
   751   case FloatTop:
   752   case Top:
   753     return true;
   755   case Half:
   756   case Abio:
   757   case Return_Address:
   758   case Memory:
   759   case Bottom:
   760   case FloatBot:
   761   case DoubleBot:
   762     return false;  // never a singleton, therefore never empty
   763   }
   765   ShouldNotReachHere();
   766   return false;
   767 }
   769 //------------------------------dump_stats-------------------------------------
   770 // Dump collected statistics to stderr
   771 #ifndef PRODUCT
   772 void Type::dump_stats() {
   773   tty->print("Types made: %d\n", type_dict()->Size());
   774 }
   775 #endif
   777 //------------------------------typerr-----------------------------------------
   778 void Type::typerr( const Type *t ) const {
   779 #ifndef PRODUCT
   780   tty->print("\nError mixing types: ");
   781   dump();
   782   tty->print(" and ");
   783   t->dump();
   784   tty->print("\n");
   785 #endif
   786   ShouldNotReachHere();
   787 }
   789 //------------------------------isa_oop_ptr------------------------------------
   790 // Return true if type is an oop pointer type.  False for raw pointers.
   791 static char isa_oop_ptr_tbl[Type::lastype] = {
   792   0,0,0,0,0,0,0/*narrowoop*/,0/*tuple*/, 0/*ary*/,
   793   0/*anyptr*/,0/*rawptr*/,1/*OopPtr*/,1/*InstPtr*/,1/*AryPtr*/,1/*KlassPtr*/,
   794   0/*func*/,0,0/*return_address*/,0,
   795   /*floats*/0,0,0, /*doubles*/0,0,0,
   796   0
   797 };
   798 bool Type::isa_oop_ptr() const {
   799   return isa_oop_ptr_tbl[_base] != 0;
   800 }
   802 //------------------------------dump_stats-------------------------------------
   803 // // Check that arrays match type enum
   804 #ifndef PRODUCT
   805 void Type::verify_lastype() {
   806   // Check that arrays match enumeration
   807   assert( Type::dual_type  [Type::lastype - 1] == Type::Top, "did not update array");
   808   assert( strcmp(Type::msg [Type::lastype - 1],"bottom") == 0, "did not update array");
   809   // assert( PhiNode::tbl     [Type::lastype - 1] == NULL,    "did not update array");
   810   assert( Matcher::base2reg[Type::lastype - 1] == 0,      "did not update array");
   811   assert( isa_oop_ptr_tbl  [Type::lastype - 1] == (char)0,  "did not update array");
   812 }
   813 #endif
   815 //=============================================================================
   816 // Convenience common pre-built types.
   817 const TypeF *TypeF::ZERO;       // Floating point zero
   818 const TypeF *TypeF::ONE;        // Floating point one
   820 //------------------------------make-------------------------------------------
   821 // Create a float constant
   822 const TypeF *TypeF::make(float f) {
   823   return (TypeF*)(new TypeF(f))->hashcons();
   824 }
   826 //------------------------------meet-------------------------------------------
   827 // Compute the MEET of two types.  It returns a new Type object.
   828 const Type *TypeF::xmeet( const Type *t ) const {
   829   // Perform a fast test for common case; meeting the same types together.
   830   if( this == t ) return this;  // Meeting same type-rep?
   832   // Current "this->_base" is FloatCon
   833   switch (t->base()) {          // Switch on original type
   834   case AnyPtr:                  // Mixing with oops happens when javac
   835   case RawPtr:                  // reuses local variables
   836   case OopPtr:
   837   case InstPtr:
   838   case KlassPtr:
   839   case AryPtr:
   840   case NarrowOop:
   841   case Int:
   842   case Long:
   843   case DoubleTop:
   844   case DoubleCon:
   845   case DoubleBot:
   846   case Bottom:                  // Ye Olde Default
   847     return Type::BOTTOM;
   849   case FloatBot:
   850     return t;
   852   default:                      // All else is a mistake
   853     typerr(t);
   855   case FloatCon:                // Float-constant vs Float-constant?
   856     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
   857                                 // must compare bitwise as positive zero, negative zero and NaN have
   858                                 // all the same representation in C++
   859       return FLOAT;             // Return generic float
   860                                 // Equal constants
   861   case Top:
   862   case FloatTop:
   863     break;                      // Return the float constant
   864   }
   865   return this;                  // Return the float constant
   866 }
   868 //------------------------------xdual------------------------------------------
   869 // Dual: symmetric
   870 const Type *TypeF::xdual() const {
   871   return this;
   872 }
   874 //------------------------------eq---------------------------------------------
   875 // Structural equality check for Type representations
   876 bool TypeF::eq( const Type *t ) const {
   877   if( g_isnan(_f) ||
   878       g_isnan(t->getf()) ) {
   879     // One or both are NANs.  If both are NANs return true, else false.
   880     return (g_isnan(_f) && g_isnan(t->getf()));
   881   }
   882   if (_f == t->getf()) {
   883     // (NaN is impossible at this point, since it is not equal even to itself)
   884     if (_f == 0.0) {
   885       // difference between positive and negative zero
   886       if (jint_cast(_f) != jint_cast(t->getf()))  return false;
   887     }
   888     return true;
   889   }
   890   return false;
   891 }
   893 //------------------------------hash-------------------------------------------
   894 // Type-specific hashing function.
   895 int TypeF::hash(void) const {
   896   return *(int*)(&_f);
   897 }
   899 //------------------------------is_finite--------------------------------------
   900 // Has a finite value
   901 bool TypeF::is_finite() const {
   902   return g_isfinite(getf()) != 0;
   903 }
   905 //------------------------------is_nan-----------------------------------------
   906 // Is not a number (NaN)
   907 bool TypeF::is_nan()    const {
   908   return g_isnan(getf()) != 0;
   909 }
   911 //------------------------------dump2------------------------------------------
   912 // Dump float constant Type
   913 #ifndef PRODUCT
   914 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
   915   Type::dump2(d,depth, st);
   916   st->print("%f", _f);
   917 }
   918 #endif
   920 //------------------------------singleton--------------------------------------
   921 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
   922 // constants (Ldi nodes).  Singletons are integer, float or double constants
   923 // or a single symbol.
   924 bool TypeF::singleton(void) const {
   925   return true;                  // Always a singleton
   926 }
   928 bool TypeF::empty(void) const {
   929   return false;                 // always exactly a singleton
   930 }
   932 //=============================================================================
   933 // Convenience common pre-built types.
   934 const TypeD *TypeD::ZERO;       // Floating point zero
   935 const TypeD *TypeD::ONE;        // Floating point one
   937 //------------------------------make-------------------------------------------
   938 const TypeD *TypeD::make(double d) {
   939   return (TypeD*)(new TypeD(d))->hashcons();
   940 }
   942 //------------------------------meet-------------------------------------------
   943 // Compute the MEET of two types.  It returns a new Type object.
   944 const Type *TypeD::xmeet( const Type *t ) const {
   945   // Perform a fast test for common case; meeting the same types together.
   946   if( this == t ) return this;  // Meeting same type-rep?
   948   // Current "this->_base" is DoubleCon
   949   switch (t->base()) {          // Switch on original type
   950   case AnyPtr:                  // Mixing with oops happens when javac
   951   case RawPtr:                  // reuses local variables
   952   case OopPtr:
   953   case InstPtr:
   954   case KlassPtr:
   955   case AryPtr:
   956   case NarrowOop:
   957   case Int:
   958   case Long:
   959   case FloatTop:
   960   case FloatCon:
   961   case FloatBot:
   962   case Bottom:                  // Ye Olde Default
   963     return Type::BOTTOM;
   965   case DoubleBot:
   966     return t;
   968   default:                      // All else is a mistake
   969     typerr(t);
   971   case DoubleCon:               // Double-constant vs Double-constant?
   972     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
   973       return DOUBLE;            // Return generic double
   974   case Top:
   975   case DoubleTop:
   976     break;
   977   }
   978   return this;                  // Return the double constant
   979 }
   981 //------------------------------xdual------------------------------------------
   982 // Dual: symmetric
   983 const Type *TypeD::xdual() const {
   984   return this;
   985 }
   987 //------------------------------eq---------------------------------------------
   988 // Structural equality check for Type representations
   989 bool TypeD::eq( const Type *t ) const {
   990   if( g_isnan(_d) ||
   991       g_isnan(t->getd()) ) {
   992     // One or both are NANs.  If both are NANs return true, else false.
   993     return (g_isnan(_d) && g_isnan(t->getd()));
   994   }
   995   if (_d == t->getd()) {
   996     // (NaN is impossible at this point, since it is not equal even to itself)
   997     if (_d == 0.0) {
   998       // difference between positive and negative zero
   999       if (jlong_cast(_d) != jlong_cast(t->getd()))  return false;
  1001     return true;
  1003   return false;
  1006 //------------------------------hash-------------------------------------------
  1007 // Type-specific hashing function.
  1008 int TypeD::hash(void) const {
  1009   return *(int*)(&_d);
  1012 //------------------------------is_finite--------------------------------------
  1013 // Has a finite value
  1014 bool TypeD::is_finite() const {
  1015   return g_isfinite(getd()) != 0;
  1018 //------------------------------is_nan-----------------------------------------
  1019 // Is not a number (NaN)
  1020 bool TypeD::is_nan()    const {
  1021   return g_isnan(getd()) != 0;
  1024 //------------------------------dump2------------------------------------------
  1025 // Dump double constant Type
  1026 #ifndef PRODUCT
  1027 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
  1028   Type::dump2(d,depth,st);
  1029   st->print("%f", _d);
  1031 #endif
  1033 //------------------------------singleton--------------------------------------
  1034 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1035 // constants (Ldi nodes).  Singletons are integer, float or double constants
  1036 // or a single symbol.
  1037 bool TypeD::singleton(void) const {
  1038   return true;                  // Always a singleton
  1041 bool TypeD::empty(void) const {
  1042   return false;                 // always exactly a singleton
  1045 //=============================================================================
  1046 // Convience common pre-built types.
  1047 const TypeInt *TypeInt::MINUS_1;// -1
  1048 const TypeInt *TypeInt::ZERO;   // 0
  1049 const TypeInt *TypeInt::ONE;    // 1
  1050 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
  1051 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
  1052 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
  1053 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
  1054 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
  1055 const TypeInt *TypeInt::CC_LE;  // [-1,0]
  1056 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
  1057 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
  1058 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
  1059 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
  1060 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
  1061 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
  1062 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
  1063 const TypeInt *TypeInt::INT;    // 32-bit integers
  1064 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
  1066 //------------------------------TypeInt----------------------------------------
  1067 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
  1070 //------------------------------make-------------------------------------------
  1071 const TypeInt *TypeInt::make( jint lo ) {
  1072   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
  1075 static int normalize_int_widen( jint lo, jint hi, int w ) {
  1076   // Certain normalizations keep us sane when comparing types.
  1077   // The 'SMALLINT' covers constants and also CC and its relatives.
  1078   if (lo <= hi) {
  1079     if ((juint)(hi - lo) <= SMALLINT)  w = Type::WidenMin;
  1080     if ((juint)(hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
  1081   } else {
  1082     if ((juint)(lo - hi) <= SMALLINT)  w = Type::WidenMin;
  1083     if ((juint)(lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
  1085   return w;
  1088 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
  1089   w = normalize_int_widen(lo, hi, w);
  1090   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
  1093 //------------------------------meet-------------------------------------------
  1094 // Compute the MEET of two types.  It returns a new Type representation object
  1095 // with reference count equal to the number of Types pointing at it.
  1096 // Caller should wrap a Types around it.
  1097 const Type *TypeInt::xmeet( const Type *t ) const {
  1098   // Perform a fast test for common case; meeting the same types together.
  1099   if( this == t ) return this;  // Meeting same type?
  1101   // Currently "this->_base" is a TypeInt
  1102   switch (t->base()) {          // Switch on original type
  1103   case AnyPtr:                  // Mixing with oops happens when javac
  1104   case RawPtr:                  // reuses local variables
  1105   case OopPtr:
  1106   case InstPtr:
  1107   case KlassPtr:
  1108   case AryPtr:
  1109   case NarrowOop:
  1110   case Long:
  1111   case FloatTop:
  1112   case FloatCon:
  1113   case FloatBot:
  1114   case DoubleTop:
  1115   case DoubleCon:
  1116   case DoubleBot:
  1117   case Bottom:                  // Ye Olde Default
  1118     return Type::BOTTOM;
  1119   default:                      // All else is a mistake
  1120     typerr(t);
  1121   case Top:                     // No change
  1122     return this;
  1123   case Int:                     // Int vs Int?
  1124     break;
  1127   // Expand covered set
  1128   const TypeInt *r = t->is_int();
  1129   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
  1132 //------------------------------xdual------------------------------------------
  1133 // Dual: reverse hi & lo; flip widen
  1134 const Type *TypeInt::xdual() const {
  1135   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
  1136   return new TypeInt(_hi,_lo,w);
  1139 //------------------------------widen------------------------------------------
  1140 // Only happens for optimistic top-down optimizations.
  1141 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
  1142   // Coming from TOP or such; no widening
  1143   if( old->base() != Int ) return this;
  1144   const TypeInt *ot = old->is_int();
  1146   // If new guy is equal to old guy, no widening
  1147   if( _lo == ot->_lo && _hi == ot->_hi )
  1148     return old;
  1150   // If new guy contains old, then we widened
  1151   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
  1152     // New contains old
  1153     // If new guy is already wider than old, no widening
  1154     if( _widen > ot->_widen ) return this;
  1155     // If old guy was a constant, do not bother
  1156     if (ot->_lo == ot->_hi)  return this;
  1157     // Now widen new guy.
  1158     // Check for widening too far
  1159     if (_widen == WidenMax) {
  1160       int max = max_jint;
  1161       int min = min_jint;
  1162       if (limit->isa_int()) {
  1163         max = limit->is_int()->_hi;
  1164         min = limit->is_int()->_lo;
  1166       if (min < _lo && _hi < max) {
  1167         // If neither endpoint is extremal yet, push out the endpoint
  1168         // which is closer to its respective limit.
  1169         if (_lo >= 0 ||                 // easy common case
  1170             (juint)(_lo - min) >= (juint)(max - _hi)) {
  1171           // Try to widen to an unsigned range type of 31 bits:
  1172           return make(_lo, max, WidenMax);
  1173         } else {
  1174           return make(min, _hi, WidenMax);
  1177       return TypeInt::INT;
  1179     // Returned widened new guy
  1180     return make(_lo,_hi,_widen+1);
  1183   // If old guy contains new, then we probably widened too far & dropped to
  1184   // bottom.  Return the wider fellow.
  1185   if ( ot->_lo <= _lo && ot->_hi >= _hi )
  1186     return old;
  1188   //fatal("Integer value range is not subset");
  1189   //return this;
  1190   return TypeInt::INT;
  1193 //------------------------------narrow---------------------------------------
  1194 // Only happens for pessimistic optimizations.
  1195 const Type *TypeInt::narrow( const Type *old ) const {
  1196   if (_lo >= _hi)  return this;   // already narrow enough
  1197   if (old == NULL)  return this;
  1198   const TypeInt* ot = old->isa_int();
  1199   if (ot == NULL)  return this;
  1200   jint olo = ot->_lo;
  1201   jint ohi = ot->_hi;
  1203   // If new guy is equal to old guy, no narrowing
  1204   if (_lo == olo && _hi == ohi)  return old;
  1206   // If old guy was maximum range, allow the narrowing
  1207   if (olo == min_jint && ohi == max_jint)  return this;
  1209   if (_lo < olo || _hi > ohi)
  1210     return this;                // doesn't narrow; pretty wierd
  1212   // The new type narrows the old type, so look for a "death march".
  1213   // See comments on PhaseTransform::saturate.
  1214   juint nrange = _hi - _lo;
  1215   juint orange = ohi - olo;
  1216   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
  1217     // Use the new type only if the range shrinks a lot.
  1218     // We do not want the optimizer computing 2^31 point by point.
  1219     return old;
  1222   return this;
  1225 //-----------------------------filter------------------------------------------
  1226 const Type *TypeInt::filter( const Type *kills ) const {
  1227   const TypeInt* ft = join(kills)->isa_int();
  1228   if (ft == NULL || ft->empty())
  1229     return Type::TOP;           // Canonical empty value
  1230   if (ft->_widen < this->_widen) {
  1231     // Do not allow the value of kill->_widen to affect the outcome.
  1232     // The widen bits must be allowed to run freely through the graph.
  1233     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
  1235   return ft;
  1238 //------------------------------eq---------------------------------------------
  1239 // Structural equality check for Type representations
  1240 bool TypeInt::eq( const Type *t ) const {
  1241   const TypeInt *r = t->is_int(); // Handy access
  1242   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
  1245 //------------------------------hash-------------------------------------------
  1246 // Type-specific hashing function.
  1247 int TypeInt::hash(void) const {
  1248   return _lo+_hi+_widen+(int)Type::Int;
  1251 //------------------------------is_finite--------------------------------------
  1252 // Has a finite value
  1253 bool TypeInt::is_finite() const {
  1254   return true;
  1257 //------------------------------dump2------------------------------------------
  1258 // Dump TypeInt
  1259 #ifndef PRODUCT
  1260 static const char* intname(char* buf, jint n) {
  1261   if (n == min_jint)
  1262     return "min";
  1263   else if (n < min_jint + 10000)
  1264     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
  1265   else if (n == max_jint)
  1266     return "max";
  1267   else if (n > max_jint - 10000)
  1268     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
  1269   else
  1270     sprintf(buf, INT32_FORMAT, n);
  1271   return buf;
  1274 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
  1275   char buf[40], buf2[40];
  1276   if (_lo == min_jint && _hi == max_jint)
  1277     st->print("int");
  1278   else if (is_con())
  1279     st->print("int:%s", intname(buf, get_con()));
  1280   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
  1281     st->print("bool");
  1282   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
  1283     st->print("byte");
  1284   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
  1285     st->print("char");
  1286   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
  1287     st->print("short");
  1288   else if (_hi == max_jint)
  1289     st->print("int:>=%s", intname(buf, _lo));
  1290   else if (_lo == min_jint)
  1291     st->print("int:<=%s", intname(buf, _hi));
  1292   else
  1293     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
  1295   if (_widen != 0 && this != TypeInt::INT)
  1296     st->print(":%.*s", _widen, "wwww");
  1298 #endif
  1300 //------------------------------singleton--------------------------------------
  1301 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1302 // constants.
  1303 bool TypeInt::singleton(void) const {
  1304   return _lo >= _hi;
  1307 bool TypeInt::empty(void) const {
  1308   return _lo > _hi;
  1311 //=============================================================================
  1312 // Convenience common pre-built types.
  1313 const TypeLong *TypeLong::MINUS_1;// -1
  1314 const TypeLong *TypeLong::ZERO; // 0
  1315 const TypeLong *TypeLong::ONE;  // 1
  1316 const TypeLong *TypeLong::POS;  // >=0
  1317 const TypeLong *TypeLong::LONG; // 64-bit integers
  1318 const TypeLong *TypeLong::INT;  // 32-bit subrange
  1319 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
  1321 //------------------------------TypeLong---------------------------------------
  1322 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
  1325 //------------------------------make-------------------------------------------
  1326 const TypeLong *TypeLong::make( jlong lo ) {
  1327   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
  1330 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
  1331   // Certain normalizations keep us sane when comparing types.
  1332   // The 'SMALLINT' covers constants.
  1333   if (lo <= hi) {
  1334     if ((julong)(hi - lo) <= SMALLINT)   w = Type::WidenMin;
  1335     if ((julong)(hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
  1336   } else {
  1337     if ((julong)(lo - hi) <= SMALLINT)   w = Type::WidenMin;
  1338     if ((julong)(lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
  1340   return w;
  1343 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
  1344   w = normalize_long_widen(lo, hi, w);
  1345   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
  1349 //------------------------------meet-------------------------------------------
  1350 // Compute the MEET of two types.  It returns a new Type representation object
  1351 // with reference count equal to the number of Types pointing at it.
  1352 // Caller should wrap a Types around it.
  1353 const Type *TypeLong::xmeet( const Type *t ) const {
  1354   // Perform a fast test for common case; meeting the same types together.
  1355   if( this == t ) return this;  // Meeting same type?
  1357   // Currently "this->_base" is a TypeLong
  1358   switch (t->base()) {          // Switch on original type
  1359   case AnyPtr:                  // Mixing with oops happens when javac
  1360   case RawPtr:                  // reuses local variables
  1361   case OopPtr:
  1362   case InstPtr:
  1363   case KlassPtr:
  1364   case AryPtr:
  1365   case NarrowOop:
  1366   case Int:
  1367   case FloatTop:
  1368   case FloatCon:
  1369   case FloatBot:
  1370   case DoubleTop:
  1371   case DoubleCon:
  1372   case DoubleBot:
  1373   case Bottom:                  // Ye Olde Default
  1374     return Type::BOTTOM;
  1375   default:                      // All else is a mistake
  1376     typerr(t);
  1377   case Top:                     // No change
  1378     return this;
  1379   case Long:                    // Long vs Long?
  1380     break;
  1383   // Expand covered set
  1384   const TypeLong *r = t->is_long(); // Turn into a TypeLong
  1385   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
  1388 //------------------------------xdual------------------------------------------
  1389 // Dual: reverse hi & lo; flip widen
  1390 const Type *TypeLong::xdual() const {
  1391   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
  1392   return new TypeLong(_hi,_lo,w);
  1395 //------------------------------widen------------------------------------------
  1396 // Only happens for optimistic top-down optimizations.
  1397 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
  1398   // Coming from TOP or such; no widening
  1399   if( old->base() != Long ) return this;
  1400   const TypeLong *ot = old->is_long();
  1402   // If new guy is equal to old guy, no widening
  1403   if( _lo == ot->_lo && _hi == ot->_hi )
  1404     return old;
  1406   // If new guy contains old, then we widened
  1407   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
  1408     // New contains old
  1409     // If new guy is already wider than old, no widening
  1410     if( _widen > ot->_widen ) return this;
  1411     // If old guy was a constant, do not bother
  1412     if (ot->_lo == ot->_hi)  return this;
  1413     // Now widen new guy.
  1414     // Check for widening too far
  1415     if (_widen == WidenMax) {
  1416       jlong max = max_jlong;
  1417       jlong min = min_jlong;
  1418       if (limit->isa_long()) {
  1419         max = limit->is_long()->_hi;
  1420         min = limit->is_long()->_lo;
  1422       if (min < _lo && _hi < max) {
  1423         // If neither endpoint is extremal yet, push out the endpoint
  1424         // which is closer to its respective limit.
  1425         if (_lo >= 0 ||                 // easy common case
  1426             (julong)(_lo - min) >= (julong)(max - _hi)) {
  1427           // Try to widen to an unsigned range type of 32/63 bits:
  1428           if (max >= max_juint && _hi < max_juint)
  1429             return make(_lo, max_juint, WidenMax);
  1430           else
  1431             return make(_lo, max, WidenMax);
  1432         } else {
  1433           return make(min, _hi, WidenMax);
  1436       return TypeLong::LONG;
  1438     // Returned widened new guy
  1439     return make(_lo,_hi,_widen+1);
  1442   // If old guy contains new, then we probably widened too far & dropped to
  1443   // bottom.  Return the wider fellow.
  1444   if ( ot->_lo <= _lo && ot->_hi >= _hi )
  1445     return old;
  1447   //  fatal("Long value range is not subset");
  1448   // return this;
  1449   return TypeLong::LONG;
  1452 //------------------------------narrow----------------------------------------
  1453 // Only happens for pessimistic optimizations.
  1454 const Type *TypeLong::narrow( const Type *old ) const {
  1455   if (_lo >= _hi)  return this;   // already narrow enough
  1456   if (old == NULL)  return this;
  1457   const TypeLong* ot = old->isa_long();
  1458   if (ot == NULL)  return this;
  1459   jlong olo = ot->_lo;
  1460   jlong ohi = ot->_hi;
  1462   // If new guy is equal to old guy, no narrowing
  1463   if (_lo == olo && _hi == ohi)  return old;
  1465   // If old guy was maximum range, allow the narrowing
  1466   if (olo == min_jlong && ohi == max_jlong)  return this;
  1468   if (_lo < olo || _hi > ohi)
  1469     return this;                // doesn't narrow; pretty wierd
  1471   // The new type narrows the old type, so look for a "death march".
  1472   // See comments on PhaseTransform::saturate.
  1473   julong nrange = _hi - _lo;
  1474   julong orange = ohi - olo;
  1475   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
  1476     // Use the new type only if the range shrinks a lot.
  1477     // We do not want the optimizer computing 2^31 point by point.
  1478     return old;
  1481   return this;
  1484 //-----------------------------filter------------------------------------------
  1485 const Type *TypeLong::filter( const Type *kills ) const {
  1486   const TypeLong* ft = join(kills)->isa_long();
  1487   if (ft == NULL || ft->empty())
  1488     return Type::TOP;           // Canonical empty value
  1489   if (ft->_widen < this->_widen) {
  1490     // Do not allow the value of kill->_widen to affect the outcome.
  1491     // The widen bits must be allowed to run freely through the graph.
  1492     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
  1494   return ft;
  1497 //------------------------------eq---------------------------------------------
  1498 // Structural equality check for Type representations
  1499 bool TypeLong::eq( const Type *t ) const {
  1500   const TypeLong *r = t->is_long(); // Handy access
  1501   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
  1504 //------------------------------hash-------------------------------------------
  1505 // Type-specific hashing function.
  1506 int TypeLong::hash(void) const {
  1507   return (int)(_lo+_hi+_widen+(int)Type::Long);
  1510 //------------------------------is_finite--------------------------------------
  1511 // Has a finite value
  1512 bool TypeLong::is_finite() const {
  1513   return true;
  1516 //------------------------------dump2------------------------------------------
  1517 // Dump TypeLong
  1518 #ifndef PRODUCT
  1519 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
  1520   if (n > x) {
  1521     if (n >= x + 10000)  return NULL;
  1522     sprintf(buf, "%s+" INT64_FORMAT, xname, n - x);
  1523   } else if (n < x) {
  1524     if (n <= x - 10000)  return NULL;
  1525     sprintf(buf, "%s-" INT64_FORMAT, xname, x - n);
  1526   } else {
  1527     return xname;
  1529   return buf;
  1532 static const char* longname(char* buf, jlong n) {
  1533   const char* str;
  1534   if (n == min_jlong)
  1535     return "min";
  1536   else if (n < min_jlong + 10000)
  1537     sprintf(buf, "min+" INT64_FORMAT, n - min_jlong);
  1538   else if (n == max_jlong)
  1539     return "max";
  1540   else if (n > max_jlong - 10000)
  1541     sprintf(buf, "max-" INT64_FORMAT, max_jlong - n);
  1542   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
  1543     return str;
  1544   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
  1545     return str;
  1546   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
  1547     return str;
  1548   else
  1549     sprintf(buf, INT64_FORMAT, n);
  1550   return buf;
  1553 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
  1554   char buf[80], buf2[80];
  1555   if (_lo == min_jlong && _hi == max_jlong)
  1556     st->print("long");
  1557   else if (is_con())
  1558     st->print("long:%s", longname(buf, get_con()));
  1559   else if (_hi == max_jlong)
  1560     st->print("long:>=%s", longname(buf, _lo));
  1561   else if (_lo == min_jlong)
  1562     st->print("long:<=%s", longname(buf, _hi));
  1563   else
  1564     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
  1566   if (_widen != 0 && this != TypeLong::LONG)
  1567     st->print(":%.*s", _widen, "wwww");
  1569 #endif
  1571 //------------------------------singleton--------------------------------------
  1572 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1573 // constants
  1574 bool TypeLong::singleton(void) const {
  1575   return _lo >= _hi;
  1578 bool TypeLong::empty(void) const {
  1579   return _lo > _hi;
  1582 //=============================================================================
  1583 // Convenience common pre-built types.
  1584 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
  1585 const TypeTuple *TypeTuple::IFFALSE;
  1586 const TypeTuple *TypeTuple::IFTRUE;
  1587 const TypeTuple *TypeTuple::IFNEITHER;
  1588 const TypeTuple *TypeTuple::LOOPBODY;
  1589 const TypeTuple *TypeTuple::MEMBAR;
  1590 const TypeTuple *TypeTuple::STORECONDITIONAL;
  1591 const TypeTuple *TypeTuple::START_I2C;
  1592 const TypeTuple *TypeTuple::INT_PAIR;
  1593 const TypeTuple *TypeTuple::LONG_PAIR;
  1596 //------------------------------make-------------------------------------------
  1597 // Make a TypeTuple from the range of a method signature
  1598 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
  1599   ciType* return_type = sig->return_type();
  1600   uint total_fields = TypeFunc::Parms + return_type->size();
  1601   const Type **field_array = fields(total_fields);
  1602   switch (return_type->basic_type()) {
  1603   case T_LONG:
  1604     field_array[TypeFunc::Parms]   = TypeLong::LONG;
  1605     field_array[TypeFunc::Parms+1] = Type::HALF;
  1606     break;
  1607   case T_DOUBLE:
  1608     field_array[TypeFunc::Parms]   = Type::DOUBLE;
  1609     field_array[TypeFunc::Parms+1] = Type::HALF;
  1610     break;
  1611   case T_OBJECT:
  1612   case T_ARRAY:
  1613   case T_BOOLEAN:
  1614   case T_CHAR:
  1615   case T_FLOAT:
  1616   case T_BYTE:
  1617   case T_SHORT:
  1618   case T_INT:
  1619     field_array[TypeFunc::Parms] = get_const_type(return_type);
  1620     break;
  1621   case T_VOID:
  1622     break;
  1623   default:
  1624     ShouldNotReachHere();
  1626   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
  1629 // Make a TypeTuple from the domain of a method signature
  1630 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
  1631   uint total_fields = TypeFunc::Parms + sig->size();
  1633   uint pos = TypeFunc::Parms;
  1634   const Type **field_array;
  1635   if (recv != NULL) {
  1636     total_fields++;
  1637     field_array = fields(total_fields);
  1638     // Use get_const_type here because it respects UseUniqueSubclasses:
  1639     field_array[pos++] = get_const_type(recv)->join(TypePtr::NOTNULL);
  1640   } else {
  1641     field_array = fields(total_fields);
  1644   int i = 0;
  1645   while (pos < total_fields) {
  1646     ciType* type = sig->type_at(i);
  1648     switch (type->basic_type()) {
  1649     case T_LONG:
  1650       field_array[pos++] = TypeLong::LONG;
  1651       field_array[pos++] = Type::HALF;
  1652       break;
  1653     case T_DOUBLE:
  1654       field_array[pos++] = Type::DOUBLE;
  1655       field_array[pos++] = Type::HALF;
  1656       break;
  1657     case T_OBJECT:
  1658     case T_ARRAY:
  1659     case T_BOOLEAN:
  1660     case T_CHAR:
  1661     case T_FLOAT:
  1662     case T_BYTE:
  1663     case T_SHORT:
  1664     case T_INT:
  1665       field_array[pos++] = get_const_type(type);
  1666       break;
  1667     default:
  1668       ShouldNotReachHere();
  1670     i++;
  1672   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
  1675 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
  1676   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
  1679 //------------------------------fields-----------------------------------------
  1680 // Subroutine call type with space allocated for argument types
  1681 const Type **TypeTuple::fields( uint arg_cnt ) {
  1682   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
  1683   flds[TypeFunc::Control  ] = Type::CONTROL;
  1684   flds[TypeFunc::I_O      ] = Type::ABIO;
  1685   flds[TypeFunc::Memory   ] = Type::MEMORY;
  1686   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
  1687   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
  1689   return flds;
  1692 //------------------------------meet-------------------------------------------
  1693 // Compute the MEET of two types.  It returns a new Type object.
  1694 const Type *TypeTuple::xmeet( const Type *t ) const {
  1695   // Perform a fast test for common case; meeting the same types together.
  1696   if( this == t ) return this;  // Meeting same type-rep?
  1698   // Current "this->_base" is Tuple
  1699   switch (t->base()) {          // switch on original type
  1701   case Bottom:                  // Ye Olde Default
  1702     return t;
  1704   default:                      // All else is a mistake
  1705     typerr(t);
  1707   case Tuple: {                 // Meeting 2 signatures?
  1708     const TypeTuple *x = t->is_tuple();
  1709     assert( _cnt == x->_cnt, "" );
  1710     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
  1711     for( uint i=0; i<_cnt; i++ )
  1712       fields[i] = field_at(i)->xmeet( x->field_at(i) );
  1713     return TypeTuple::make(_cnt,fields);
  1715   case Top:
  1716     break;
  1718   return this;                  // Return the double constant
  1721 //------------------------------xdual------------------------------------------
  1722 // Dual: compute field-by-field dual
  1723 const Type *TypeTuple::xdual() const {
  1724   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
  1725   for( uint i=0; i<_cnt; i++ )
  1726     fields[i] = _fields[i]->dual();
  1727   return new TypeTuple(_cnt,fields);
  1730 //------------------------------eq---------------------------------------------
  1731 // Structural equality check for Type representations
  1732 bool TypeTuple::eq( const Type *t ) const {
  1733   const TypeTuple *s = (const TypeTuple *)t;
  1734   if (_cnt != s->_cnt)  return false;  // Unequal field counts
  1735   for (uint i = 0; i < _cnt; i++)
  1736     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
  1737       return false;             // Missed
  1738   return true;
  1741 //------------------------------hash-------------------------------------------
  1742 // Type-specific hashing function.
  1743 int TypeTuple::hash(void) const {
  1744   intptr_t sum = _cnt;
  1745   for( uint i=0; i<_cnt; i++ )
  1746     sum += (intptr_t)_fields[i];     // Hash on pointers directly
  1747   return sum;
  1750 //------------------------------dump2------------------------------------------
  1751 // Dump signature Type
  1752 #ifndef PRODUCT
  1753 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
  1754   st->print("{");
  1755   if( !depth || d[this] ) {     // Check for recursive print
  1756     st->print("...}");
  1757     return;
  1759   d.Insert((void*)this, (void*)this);   // Stop recursion
  1760   if( _cnt ) {
  1761     uint i;
  1762     for( i=0; i<_cnt-1; i++ ) {
  1763       st->print("%d:", i);
  1764       _fields[i]->dump2(d, depth-1, st);
  1765       st->print(", ");
  1767     st->print("%d:", i);
  1768     _fields[i]->dump2(d, depth-1, st);
  1770   st->print("}");
  1772 #endif
  1774 //------------------------------singleton--------------------------------------
  1775 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1776 // constants (Ldi nodes).  Singletons are integer, float or double constants
  1777 // or a single symbol.
  1778 bool TypeTuple::singleton(void) const {
  1779   return false;                 // Never a singleton
  1782 bool TypeTuple::empty(void) const {
  1783   for( uint i=0; i<_cnt; i++ ) {
  1784     if (_fields[i]->empty())  return true;
  1786   return false;
  1789 //=============================================================================
  1790 // Convenience common pre-built types.
  1792 inline const TypeInt* normalize_array_size(const TypeInt* size) {
  1793   // Certain normalizations keep us sane when comparing types.
  1794   // We do not want arrayOop variables to differ only by the wideness
  1795   // of their index types.  Pick minimum wideness, since that is the
  1796   // forced wideness of small ranges anyway.
  1797   if (size->_widen != Type::WidenMin)
  1798     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
  1799   else
  1800     return size;
  1803 //------------------------------make-------------------------------------------
  1804 const TypeAry *TypeAry::make( const Type *elem, const TypeInt *size) {
  1805   if (UseCompressedOops && elem->isa_oopptr()) {
  1806     elem = elem->make_narrowoop();
  1808   size = normalize_array_size(size);
  1809   return (TypeAry*)(new TypeAry(elem,size))->hashcons();
  1812 //------------------------------meet-------------------------------------------
  1813 // Compute the MEET of two types.  It returns a new Type object.
  1814 const Type *TypeAry::xmeet( const Type *t ) const {
  1815   // Perform a fast test for common case; meeting the same types together.
  1816   if( this == t ) return this;  // Meeting same type-rep?
  1818   // Current "this->_base" is Ary
  1819   switch (t->base()) {          // switch on original type
  1821   case Bottom:                  // Ye Olde Default
  1822     return t;
  1824   default:                      // All else is a mistake
  1825     typerr(t);
  1827   case Array: {                 // Meeting 2 arrays?
  1828     const TypeAry *a = t->is_ary();
  1829     return TypeAry::make(_elem->meet(a->_elem),
  1830                          _size->xmeet(a->_size)->is_int());
  1832   case Top:
  1833     break;
  1835   return this;                  // Return the double constant
  1838 //------------------------------xdual------------------------------------------
  1839 // Dual: compute field-by-field dual
  1840 const Type *TypeAry::xdual() const {
  1841   const TypeInt* size_dual = _size->dual()->is_int();
  1842   size_dual = normalize_array_size(size_dual);
  1843   return new TypeAry( _elem->dual(), size_dual);
  1846 //------------------------------eq---------------------------------------------
  1847 // Structural equality check for Type representations
  1848 bool TypeAry::eq( const Type *t ) const {
  1849   const TypeAry *a = (const TypeAry*)t;
  1850   return _elem == a->_elem &&
  1851     _size == a->_size;
  1854 //------------------------------hash-------------------------------------------
  1855 // Type-specific hashing function.
  1856 int TypeAry::hash(void) const {
  1857   return (intptr_t)_elem + (intptr_t)_size;
  1860 //----------------------interface_vs_oop---------------------------------------
  1861 #ifdef ASSERT
  1862 bool TypeAry::interface_vs_oop(const Type *t) const {
  1863   const TypeAry* t_ary = t->is_ary();
  1864   if (t_ary) {
  1865     return _elem->interface_vs_oop(t_ary->_elem);
  1867   return false;
  1869 #endif
  1871 //------------------------------dump2------------------------------------------
  1872 #ifndef PRODUCT
  1873 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
  1874   _elem->dump2(d, depth, st);
  1875   st->print("[");
  1876   _size->dump2(d, depth, st);
  1877   st->print("]");
  1879 #endif
  1881 //------------------------------singleton--------------------------------------
  1882 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1883 // constants (Ldi nodes).  Singletons are integer, float or double constants
  1884 // or a single symbol.
  1885 bool TypeAry::singleton(void) const {
  1886   return false;                 // Never a singleton
  1889 bool TypeAry::empty(void) const {
  1890   return _elem->empty() || _size->empty();
  1893 //--------------------------ary_must_be_exact----------------------------------
  1894 bool TypeAry::ary_must_be_exact() const {
  1895   if (!UseExactTypes)       return false;
  1896   // This logic looks at the element type of an array, and returns true
  1897   // if the element type is either a primitive or a final instance class.
  1898   // In such cases, an array built on this ary must have no subclasses.
  1899   if (_elem == BOTTOM)      return false;  // general array not exact
  1900   if (_elem == TOP   )      return false;  // inverted general array not exact
  1901   const TypeOopPtr*  toop = NULL;
  1902   if (UseCompressedOops && _elem->isa_narrowoop()) {
  1903     toop = _elem->make_ptr()->isa_oopptr();
  1904   } else {
  1905     toop = _elem->isa_oopptr();
  1907   if (!toop)                return true;   // a primitive type, like int
  1908   ciKlass* tklass = toop->klass();
  1909   if (tklass == NULL)       return false;  // unloaded class
  1910   if (!tklass->is_loaded()) return false;  // unloaded class
  1911   const TypeInstPtr* tinst;
  1912   if (_elem->isa_narrowoop())
  1913     tinst = _elem->make_ptr()->isa_instptr();
  1914   else
  1915     tinst = _elem->isa_instptr();
  1916   if (tinst)
  1917     return tklass->as_instance_klass()->is_final();
  1918   const TypeAryPtr*  tap;
  1919   if (_elem->isa_narrowoop())
  1920     tap = _elem->make_ptr()->isa_aryptr();
  1921   else
  1922     tap = _elem->isa_aryptr();
  1923   if (tap)
  1924     return tap->ary()->ary_must_be_exact();
  1925   return false;
  1928 //=============================================================================
  1929 // Convenience common pre-built types.
  1930 const TypePtr *TypePtr::NULL_PTR;
  1931 const TypePtr *TypePtr::NOTNULL;
  1932 const TypePtr *TypePtr::BOTTOM;
  1934 //------------------------------meet-------------------------------------------
  1935 // Meet over the PTR enum
  1936 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
  1937   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
  1938   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
  1939   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
  1940   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
  1941   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
  1942   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
  1943   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
  1944 };
  1946 //------------------------------make-------------------------------------------
  1947 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
  1948   return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
  1951 //------------------------------cast_to_ptr_type-------------------------------
  1952 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
  1953   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
  1954   if( ptr == _ptr ) return this;
  1955   return make(_base, ptr, _offset);
  1958 //------------------------------get_con----------------------------------------
  1959 intptr_t TypePtr::get_con() const {
  1960   assert( _ptr == Null, "" );
  1961   return _offset;
  1964 //------------------------------meet-------------------------------------------
  1965 // Compute the MEET of two types.  It returns a new Type object.
  1966 const Type *TypePtr::xmeet( const Type *t ) const {
  1967   // Perform a fast test for common case; meeting the same types together.
  1968   if( this == t ) return this;  // Meeting same type-rep?
  1970   // Current "this->_base" is AnyPtr
  1971   switch (t->base()) {          // switch on original type
  1972   case Int:                     // Mixing ints & oops happens when javac
  1973   case Long:                    // reuses local variables
  1974   case FloatTop:
  1975   case FloatCon:
  1976   case FloatBot:
  1977   case DoubleTop:
  1978   case DoubleCon:
  1979   case DoubleBot:
  1980   case NarrowOop:
  1981   case Bottom:                  // Ye Olde Default
  1982     return Type::BOTTOM;
  1983   case Top:
  1984     return this;
  1986   case AnyPtr: {                // Meeting to AnyPtrs
  1987     const TypePtr *tp = t->is_ptr();
  1988     return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
  1990   case RawPtr:                  // For these, flip the call around to cut down
  1991   case OopPtr:
  1992   case InstPtr:                 // on the cases I have to handle.
  1993   case KlassPtr:
  1994   case AryPtr:
  1995     return t->xmeet(this);      // Call in reverse direction
  1996   default:                      // All else is a mistake
  1997     typerr(t);
  2000   return this;
  2003 //------------------------------meet_offset------------------------------------
  2004 int TypePtr::meet_offset( int offset ) const {
  2005   // Either is 'TOP' offset?  Return the other offset!
  2006   if( _offset == OffsetTop ) return offset;
  2007   if( offset == OffsetTop ) return _offset;
  2008   // If either is different, return 'BOTTOM' offset
  2009   if( _offset != offset ) return OffsetBot;
  2010   return _offset;
  2013 //------------------------------dual_offset------------------------------------
  2014 int TypePtr::dual_offset( ) const {
  2015   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
  2016   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
  2017   return _offset;               // Map everything else into self
  2020 //------------------------------xdual------------------------------------------
  2021 // Dual: compute field-by-field dual
  2022 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
  2023   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
  2024 };
  2025 const Type *TypePtr::xdual() const {
  2026   return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
  2029 //------------------------------xadd_offset------------------------------------
  2030 int TypePtr::xadd_offset( intptr_t offset ) const {
  2031   // Adding to 'TOP' offset?  Return 'TOP'!
  2032   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
  2033   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
  2034   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
  2035   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
  2036   offset += (intptr_t)_offset;
  2037   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
  2039   // assert( _offset >= 0 && _offset+offset >= 0, "" );
  2040   // It is possible to construct a negative offset during PhaseCCP
  2042   return (int)offset;        // Sum valid offsets
  2045 //------------------------------add_offset-------------------------------------
  2046 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
  2047   return make( AnyPtr, _ptr, xadd_offset(offset) );
  2050 //------------------------------eq---------------------------------------------
  2051 // Structural equality check for Type representations
  2052 bool TypePtr::eq( const Type *t ) const {
  2053   const TypePtr *a = (const TypePtr*)t;
  2054   return _ptr == a->ptr() && _offset == a->offset();
  2057 //------------------------------hash-------------------------------------------
  2058 // Type-specific hashing function.
  2059 int TypePtr::hash(void) const {
  2060   return _ptr + _offset;
  2063 //------------------------------dump2------------------------------------------
  2064 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
  2065   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
  2066 };
  2068 #ifndef PRODUCT
  2069 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  2070   if( _ptr == Null ) st->print("NULL");
  2071   else st->print("%s *", ptr_msg[_ptr]);
  2072   if( _offset == OffsetTop ) st->print("+top");
  2073   else if( _offset == OffsetBot ) st->print("+bot");
  2074   else if( _offset ) st->print("+%d", _offset);
  2076 #endif
  2078 //------------------------------singleton--------------------------------------
  2079 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  2080 // constants
  2081 bool TypePtr::singleton(void) const {
  2082   // TopPTR, Null, AnyNull, Constant are all singletons
  2083   return (_offset != OffsetBot) && !below_centerline(_ptr);
  2086 bool TypePtr::empty(void) const {
  2087   return (_offset == OffsetTop) || above_centerline(_ptr);
  2090 //=============================================================================
  2091 // Convenience common pre-built types.
  2092 const TypeRawPtr *TypeRawPtr::BOTTOM;
  2093 const TypeRawPtr *TypeRawPtr::NOTNULL;
  2095 //------------------------------make-------------------------------------------
  2096 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
  2097   assert( ptr != Constant, "what is the constant?" );
  2098   assert( ptr != Null, "Use TypePtr for NULL" );
  2099   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
  2102 const TypeRawPtr *TypeRawPtr::make( address bits ) {
  2103   assert( bits, "Use TypePtr for NULL" );
  2104   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
  2107 //------------------------------cast_to_ptr_type-------------------------------
  2108 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
  2109   assert( ptr != Constant, "what is the constant?" );
  2110   assert( ptr != Null, "Use TypePtr for NULL" );
  2111   assert( _bits==0, "Why cast a constant address?");
  2112   if( ptr == _ptr ) return this;
  2113   return make(ptr);
  2116 //------------------------------get_con----------------------------------------
  2117 intptr_t TypeRawPtr::get_con() const {
  2118   assert( _ptr == Null || _ptr == Constant, "" );
  2119   return (intptr_t)_bits;
  2122 //------------------------------meet-------------------------------------------
  2123 // Compute the MEET of two types.  It returns a new Type object.
  2124 const Type *TypeRawPtr::xmeet( const Type *t ) const {
  2125   // Perform a fast test for common case; meeting the same types together.
  2126   if( this == t ) return this;  // Meeting same type-rep?
  2128   // Current "this->_base" is RawPtr
  2129   switch( t->base() ) {         // switch on original type
  2130   case Bottom:                  // Ye Olde Default
  2131     return t;
  2132   case Top:
  2133     return this;
  2134   case AnyPtr:                  // Meeting to AnyPtrs
  2135     break;
  2136   case RawPtr: {                // might be top, bot, any/not or constant
  2137     enum PTR tptr = t->is_ptr()->ptr();
  2138     enum PTR ptr = meet_ptr( tptr );
  2139     if( ptr == Constant ) {     // Cannot be equal constants, so...
  2140       if( tptr == Constant && _ptr != Constant)  return t;
  2141       if( _ptr == Constant && tptr != Constant)  return this;
  2142       ptr = NotNull;            // Fall down in lattice
  2144     return make( ptr );
  2147   case OopPtr:
  2148   case InstPtr:
  2149   case KlassPtr:
  2150   case AryPtr:
  2151     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
  2152   default:                      // All else is a mistake
  2153     typerr(t);
  2156   // Found an AnyPtr type vs self-RawPtr type
  2157   const TypePtr *tp = t->is_ptr();
  2158   switch (tp->ptr()) {
  2159   case TypePtr::TopPTR:  return this;
  2160   case TypePtr::BotPTR:  return t;
  2161   case TypePtr::Null:
  2162     if( _ptr == TypePtr::TopPTR ) return t;
  2163     return TypeRawPtr::BOTTOM;
  2164   case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
  2165   case TypePtr::AnyNull:
  2166     if( _ptr == TypePtr::Constant) return this;
  2167     return make( meet_ptr(TypePtr::AnyNull) );
  2168   default: ShouldNotReachHere();
  2170   return this;
  2173 //------------------------------xdual------------------------------------------
  2174 // Dual: compute field-by-field dual
  2175 const Type *TypeRawPtr::xdual() const {
  2176   return new TypeRawPtr( dual_ptr(), _bits );
  2179 //------------------------------add_offset-------------------------------------
  2180 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
  2181   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
  2182   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
  2183   if( offset == 0 ) return this; // No change
  2184   switch (_ptr) {
  2185   case TypePtr::TopPTR:
  2186   case TypePtr::BotPTR:
  2187   case TypePtr::NotNull:
  2188     return this;
  2189   case TypePtr::Null:
  2190   case TypePtr::Constant: {
  2191     address bits = _bits+offset;
  2192     if ( bits == 0 ) return TypePtr::NULL_PTR;
  2193     return make( bits );
  2195   default:  ShouldNotReachHere();
  2197   return NULL;                  // Lint noise
  2200 //------------------------------eq---------------------------------------------
  2201 // Structural equality check for Type representations
  2202 bool TypeRawPtr::eq( const Type *t ) const {
  2203   const TypeRawPtr *a = (const TypeRawPtr*)t;
  2204   return _bits == a->_bits && TypePtr::eq(t);
  2207 //------------------------------hash-------------------------------------------
  2208 // Type-specific hashing function.
  2209 int TypeRawPtr::hash(void) const {
  2210   return (intptr_t)_bits + TypePtr::hash();
  2213 //------------------------------dump2------------------------------------------
  2214 #ifndef PRODUCT
  2215 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  2216   if( _ptr == Constant )
  2217     st->print(INTPTR_FORMAT, _bits);
  2218   else
  2219     st->print("rawptr:%s", ptr_msg[_ptr]);
  2221 #endif
  2223 //=============================================================================
  2224 // Convenience common pre-built type.
  2225 const TypeOopPtr *TypeOopPtr::BOTTOM;
  2227 //------------------------------TypeOopPtr-------------------------------------
  2228 TypeOopPtr::TypeOopPtr( TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id )
  2229   : TypePtr(t, ptr, offset),
  2230     _const_oop(o), _klass(k),
  2231     _klass_is_exact(xk),
  2232     _is_ptr_to_narrowoop(false),
  2233     _instance_id(instance_id) {
  2234 #ifdef _LP64
  2235   if (UseCompressedOops && _offset != 0) {
  2236     if (klass() == NULL) {
  2237       assert(this->isa_aryptr(), "only arrays without klass");
  2238       _is_ptr_to_narrowoop = true;
  2239     } else if (_offset == oopDesc::klass_offset_in_bytes()) {
  2240       _is_ptr_to_narrowoop = true;
  2241     } else if (this->isa_aryptr()) {
  2242       _is_ptr_to_narrowoop = (klass()->is_obj_array_klass() &&
  2243                              _offset != arrayOopDesc::length_offset_in_bytes());
  2244     } else if (klass() == ciEnv::current()->Class_klass() &&
  2245                (_offset == java_lang_Class::klass_offset_in_bytes() ||
  2246                 _offset == java_lang_Class::array_klass_offset_in_bytes())) {
  2247       // Special hidden fields from the Class.
  2248       assert(this->isa_instptr(), "must be an instance ptr.");
  2249       _is_ptr_to_narrowoop = true;
  2250     } else if (klass()->is_instance_klass()) {
  2251       ciInstanceKlass* ik = klass()->as_instance_klass();
  2252       ciField* field = NULL;
  2253       if (this->isa_klassptr()) {
  2254         // Perm objects don't use compressed references, except for
  2255         // static fields which are currently compressed.
  2256         field = ik->get_field_by_offset(_offset, true);
  2257         if (field != NULL) {
  2258           BasicType basic_elem_type = field->layout_type();
  2259           _is_ptr_to_narrowoop = (basic_elem_type == T_OBJECT ||
  2260                                   basic_elem_type == T_ARRAY);
  2262       } else if (_offset == OffsetBot || _offset == OffsetTop) {
  2263         // unsafe access
  2264         _is_ptr_to_narrowoop = true;
  2265       } else { // exclude unsafe ops
  2266         assert(this->isa_instptr(), "must be an instance ptr.");
  2267         // Field which contains a compressed oop references.
  2268         field = ik->get_field_by_offset(_offset, false);
  2269         if (field != NULL) {
  2270           BasicType basic_elem_type = field->layout_type();
  2271           _is_ptr_to_narrowoop = (basic_elem_type == T_OBJECT ||
  2272                                   basic_elem_type == T_ARRAY);
  2273         } else if (klass()->equals(ciEnv::current()->Object_klass())) {
  2274           // Compile::find_alias_type() cast exactness on all types to verify
  2275           // that it does not affect alias type.
  2276           _is_ptr_to_narrowoop = true;
  2277         } else {
  2278           // Type for the copy start in LibraryCallKit::inline_native_clone().
  2279           assert(!klass_is_exact(), "only non-exact klass");
  2280           _is_ptr_to_narrowoop = true;
  2285 #endif
  2288 //------------------------------make-------------------------------------------
  2289 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
  2290                                    int offset, int instance_id) {
  2291   assert(ptr != Constant, "no constant generic pointers");
  2292   ciKlass*  k = ciKlassKlass::make();
  2293   bool      xk = false;
  2294   ciObject* o = NULL;
  2295   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id))->hashcons();
  2299 //------------------------------cast_to_ptr_type-------------------------------
  2300 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
  2301   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
  2302   if( ptr == _ptr ) return this;
  2303   return make(ptr, _offset, _instance_id);
  2306 //-----------------------------cast_to_instance_id----------------------------
  2307 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
  2308   // There are no instances of a general oop.
  2309   // Return self unchanged.
  2310   return this;
  2313 //-----------------------------cast_to_exactness-------------------------------
  2314 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
  2315   // There is no such thing as an exact general oop.
  2316   // Return self unchanged.
  2317   return this;
  2321 //------------------------------as_klass_type----------------------------------
  2322 // Return the klass type corresponding to this instance or array type.
  2323 // It is the type that is loaded from an object of this type.
  2324 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
  2325   ciKlass* k = klass();
  2326   bool    xk = klass_is_exact();
  2327   if (k == NULL || !k->is_java_klass())
  2328     return TypeKlassPtr::OBJECT;
  2329   else
  2330     return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
  2334 //------------------------------meet-------------------------------------------
  2335 // Compute the MEET of two types.  It returns a new Type object.
  2336 const Type *TypeOopPtr::xmeet( const Type *t ) const {
  2337   // Perform a fast test for common case; meeting the same types together.
  2338   if( this == t ) return this;  // Meeting same type-rep?
  2340   // Current "this->_base" is OopPtr
  2341   switch (t->base()) {          // switch on original type
  2343   case Int:                     // Mixing ints & oops happens when javac
  2344   case Long:                    // reuses local variables
  2345   case FloatTop:
  2346   case FloatCon:
  2347   case FloatBot:
  2348   case DoubleTop:
  2349   case DoubleCon:
  2350   case DoubleBot:
  2351   case NarrowOop:
  2352   case Bottom:                  // Ye Olde Default
  2353     return Type::BOTTOM;
  2354   case Top:
  2355     return this;
  2357   default:                      // All else is a mistake
  2358     typerr(t);
  2360   case RawPtr:
  2361     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
  2363   case AnyPtr: {
  2364     // Found an AnyPtr type vs self-OopPtr type
  2365     const TypePtr *tp = t->is_ptr();
  2366     int offset = meet_offset(tp->offset());
  2367     PTR ptr = meet_ptr(tp->ptr());
  2368     switch (tp->ptr()) {
  2369     case Null:
  2370       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
  2371       // else fall through:
  2372     case TopPTR:
  2373     case AnyNull: {
  2374       int instance_id = meet_instance_id(InstanceTop);
  2375       return make(ptr, offset, instance_id);
  2377     case BotPTR:
  2378     case NotNull:
  2379       return TypePtr::make(AnyPtr, ptr, offset);
  2380     default: typerr(t);
  2384   case OopPtr: {                 // Meeting to other OopPtrs
  2385     const TypeOopPtr *tp = t->is_oopptr();
  2386     int instance_id = meet_instance_id(tp->instance_id());
  2387     return make( meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id );
  2390   case InstPtr:                  // For these, flip the call around to cut down
  2391   case KlassPtr:                 // on the cases I have to handle.
  2392   case AryPtr:
  2393     return t->xmeet(this);      // Call in reverse direction
  2395   } // End of switch
  2396   return this;                  // Return the double constant
  2400 //------------------------------xdual------------------------------------------
  2401 // Dual of a pure heap pointer.  No relevant klass or oop information.
  2402 const Type *TypeOopPtr::xdual() const {
  2403   assert(klass() == ciKlassKlass::make(), "no klasses here");
  2404   assert(const_oop() == NULL,             "no constants here");
  2405   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id()  );
  2408 //--------------------------make_from_klass_common-----------------------------
  2409 // Computes the element-type given a klass.
  2410 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
  2411   assert(klass->is_java_klass(), "must be java language klass");
  2412   if (klass->is_instance_klass()) {
  2413     Compile* C = Compile::current();
  2414     Dependencies* deps = C->dependencies();
  2415     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
  2416     // Element is an instance
  2417     bool klass_is_exact = false;
  2418     if (klass->is_loaded()) {
  2419       // Try to set klass_is_exact.
  2420       ciInstanceKlass* ik = klass->as_instance_klass();
  2421       klass_is_exact = ik->is_final();
  2422       if (!klass_is_exact && klass_change
  2423           && deps != NULL && UseUniqueSubclasses) {
  2424         ciInstanceKlass* sub = ik->unique_concrete_subklass();
  2425         if (sub != NULL) {
  2426           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
  2427           klass = ik = sub;
  2428           klass_is_exact = sub->is_final();
  2431       if (!klass_is_exact && try_for_exact
  2432           && deps != NULL && UseExactTypes) {
  2433         if (!ik->is_interface() && !ik->has_subklass()) {
  2434           // Add a dependence; if concrete subclass added we need to recompile
  2435           deps->assert_leaf_type(ik);
  2436           klass_is_exact = true;
  2440     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
  2441   } else if (klass->is_obj_array_klass()) {
  2442     // Element is an object array. Recursively call ourself.
  2443     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
  2444     bool xk = etype->klass_is_exact();
  2445     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
  2446     // We used to pass NotNull in here, asserting that the sub-arrays
  2447     // are all not-null.  This is not true in generally, as code can
  2448     // slam NULLs down in the subarrays.
  2449     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
  2450     return arr;
  2451   } else if (klass->is_type_array_klass()) {
  2452     // Element is an typeArray
  2453     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
  2454     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
  2455     // We used to pass NotNull in here, asserting that the array pointer
  2456     // is not-null. That was not true in general.
  2457     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
  2458     return arr;
  2459   } else {
  2460     ShouldNotReachHere();
  2461     return NULL;
  2465 //------------------------------make_from_constant-----------------------------
  2466 // Make a java pointer from an oop constant
  2467 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
  2468   if (o->is_method_data() || o->is_method() || o->is_cpcache()) {
  2469     // Treat much like a typeArray of bytes, like below, but fake the type...
  2470     const Type* etype = (Type*)get_const_basic_type(T_BYTE);
  2471     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
  2472     ciKlass *klass = ciTypeArrayKlass::make((BasicType) T_BYTE);
  2473     assert(o->can_be_constant(), "method data oops should be tenured");
  2474     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
  2475     return arr;
  2476   } else {
  2477     assert(o->is_java_object(), "must be java language object");
  2478     assert(!o->is_null_object(), "null object not yet handled here.");
  2479     ciKlass *klass = o->klass();
  2480     if (klass->is_instance_klass()) {
  2481       // Element is an instance
  2482       if (require_constant) {
  2483         if (!o->can_be_constant())  return NULL;
  2484       } else if (!o->should_be_constant()) {
  2485         return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
  2487       return TypeInstPtr::make(o);
  2488     } else if (klass->is_obj_array_klass()) {
  2489       // Element is an object array. Recursively call ourself.
  2490       const Type *etype =
  2491         TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
  2492       const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
  2493       // We used to pass NotNull in here, asserting that the sub-arrays
  2494       // are all not-null.  This is not true in generally, as code can
  2495       // slam NULLs down in the subarrays.
  2496       if (require_constant) {
  2497         if (!o->can_be_constant())  return NULL;
  2498       } else if (!o->should_be_constant()) {
  2499         return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
  2501       const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
  2502       return arr;
  2503     } else if (klass->is_type_array_klass()) {
  2504       // Element is an typeArray
  2505       const Type* etype =
  2506         (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
  2507       const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
  2508       // We used to pass NotNull in here, asserting that the array pointer
  2509       // is not-null. That was not true in general.
  2510       if (require_constant) {
  2511         if (!o->can_be_constant())  return NULL;
  2512       } else if (!o->should_be_constant()) {
  2513         return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
  2515       const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
  2516       return arr;
  2520   ShouldNotReachHere();
  2521   return NULL;
  2524 //------------------------------get_con----------------------------------------
  2525 intptr_t TypeOopPtr::get_con() const {
  2526   assert( _ptr == Null || _ptr == Constant, "" );
  2527   assert( _offset >= 0, "" );
  2529   if (_offset != 0) {
  2530     // After being ported to the compiler interface, the compiler no longer
  2531     // directly manipulates the addresses of oops.  Rather, it only has a pointer
  2532     // to a handle at compile time.  This handle is embedded in the generated
  2533     // code and dereferenced at the time the nmethod is made.  Until that time,
  2534     // it is not reasonable to do arithmetic with the addresses of oops (we don't
  2535     // have access to the addresses!).  This does not seem to currently happen,
  2536     // but this assertion here is to help prevent its occurence.
  2537     tty->print_cr("Found oop constant with non-zero offset");
  2538     ShouldNotReachHere();
  2541   return (intptr_t)const_oop()->constant_encoding();
  2545 //-----------------------------filter------------------------------------------
  2546 // Do not allow interface-vs.-noninterface joins to collapse to top.
  2547 const Type *TypeOopPtr::filter( const Type *kills ) const {
  2549   const Type* ft = join(kills);
  2550   const TypeInstPtr* ftip = ft->isa_instptr();
  2551   const TypeInstPtr* ktip = kills->isa_instptr();
  2552   const TypeKlassPtr* ftkp = ft->isa_klassptr();
  2553   const TypeKlassPtr* ktkp = kills->isa_klassptr();
  2555   if (ft->empty()) {
  2556     // Check for evil case of 'this' being a class and 'kills' expecting an
  2557     // interface.  This can happen because the bytecodes do not contain
  2558     // enough type info to distinguish a Java-level interface variable
  2559     // from a Java-level object variable.  If we meet 2 classes which
  2560     // both implement interface I, but their meet is at 'j/l/O' which
  2561     // doesn't implement I, we have no way to tell if the result should
  2562     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
  2563     // into a Phi which "knows" it's an Interface type we'll have to
  2564     // uplift the type.
  2565     if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
  2566       return kills;             // Uplift to interface
  2567     if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
  2568       return kills;             // Uplift to interface
  2570     return Type::TOP;           // Canonical empty value
  2573   // If we have an interface-typed Phi or cast and we narrow to a class type,
  2574   // the join should report back the class.  However, if we have a J/L/Object
  2575   // class-typed Phi and an interface flows in, it's possible that the meet &
  2576   // join report an interface back out.  This isn't possible but happens
  2577   // because the type system doesn't interact well with interfaces.
  2578   if (ftip != NULL && ktip != NULL &&
  2579       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
  2580       ktip->is_loaded() && !ktip->klass()->is_interface()) {
  2581     // Happens in a CTW of rt.jar, 320-341, no extra flags
  2582     assert(!ftip->klass_is_exact(), "interface could not be exact");
  2583     return ktip->cast_to_ptr_type(ftip->ptr());
  2585   // Interface klass type could be exact in opposite to interface type,
  2586   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
  2587   if (ftkp != NULL && ktkp != NULL &&
  2588       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
  2589       !ftkp->klass_is_exact() && // Keep exact interface klass
  2590       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
  2591     return ktkp->cast_to_ptr_type(ftkp->ptr());
  2594   return ft;
  2597 //------------------------------eq---------------------------------------------
  2598 // Structural equality check for Type representations
  2599 bool TypeOopPtr::eq( const Type *t ) const {
  2600   const TypeOopPtr *a = (const TypeOopPtr*)t;
  2601   if (_klass_is_exact != a->_klass_is_exact ||
  2602       _instance_id != a->_instance_id)  return false;
  2603   ciObject* one = const_oop();
  2604   ciObject* two = a->const_oop();
  2605   if (one == NULL || two == NULL) {
  2606     return (one == two) && TypePtr::eq(t);
  2607   } else {
  2608     return one->equals(two) && TypePtr::eq(t);
  2612 //------------------------------hash-------------------------------------------
  2613 // Type-specific hashing function.
  2614 int TypeOopPtr::hash(void) const {
  2615   return
  2616     (const_oop() ? const_oop()->hash() : 0) +
  2617     _klass_is_exact +
  2618     _instance_id +
  2619     TypePtr::hash();
  2622 //------------------------------dump2------------------------------------------
  2623 #ifndef PRODUCT
  2624 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  2625   st->print("oopptr:%s", ptr_msg[_ptr]);
  2626   if( _klass_is_exact ) st->print(":exact");
  2627   if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
  2628   switch( _offset ) {
  2629   case OffsetTop: st->print("+top"); break;
  2630   case OffsetBot: st->print("+any"); break;
  2631   case         0: break;
  2632   default:        st->print("+%d",_offset); break;
  2634   if (_instance_id == InstanceTop)
  2635     st->print(",iid=top");
  2636   else if (_instance_id != InstanceBot)
  2637     st->print(",iid=%d",_instance_id);
  2639 #endif
  2641 //------------------------------singleton--------------------------------------
  2642 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  2643 // constants
  2644 bool TypeOopPtr::singleton(void) const {
  2645   // detune optimizer to not generate constant oop + constant offset as a constant!
  2646   // TopPTR, Null, AnyNull, Constant are all singletons
  2647   return (_offset == 0) && !below_centerline(_ptr);
  2650 //------------------------------add_offset-------------------------------------
  2651 const TypePtr *TypeOopPtr::add_offset( intptr_t offset ) const {
  2652   return make( _ptr, xadd_offset(offset), _instance_id);
  2655 //------------------------------meet_instance_id--------------------------------
  2656 int TypeOopPtr::meet_instance_id( int instance_id ) const {
  2657   // Either is 'TOP' instance?  Return the other instance!
  2658   if( _instance_id == InstanceTop ) return  instance_id;
  2659   if(  instance_id == InstanceTop ) return _instance_id;
  2660   // If either is different, return 'BOTTOM' instance
  2661   if( _instance_id != instance_id ) return InstanceBot;
  2662   return _instance_id;
  2665 //------------------------------dual_instance_id--------------------------------
  2666 int TypeOopPtr::dual_instance_id( ) const {
  2667   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
  2668   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
  2669   return _instance_id;              // Map everything else into self
  2673 //=============================================================================
  2674 // Convenience common pre-built types.
  2675 const TypeInstPtr *TypeInstPtr::NOTNULL;
  2676 const TypeInstPtr *TypeInstPtr::BOTTOM;
  2677 const TypeInstPtr *TypeInstPtr::MIRROR;
  2678 const TypeInstPtr *TypeInstPtr::MARK;
  2679 const TypeInstPtr *TypeInstPtr::KLASS;
  2681 //------------------------------TypeInstPtr-------------------------------------
  2682 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id)
  2683  : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id), _name(k->name()) {
  2684    assert(k != NULL &&
  2685           (k->is_loaded() || o == NULL),
  2686           "cannot have constants with non-loaded klass");
  2687 };
  2689 //------------------------------make-------------------------------------------
  2690 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
  2691                                      ciKlass* k,
  2692                                      bool xk,
  2693                                      ciObject* o,
  2694                                      int offset,
  2695                                      int instance_id) {
  2696   assert( !k->is_loaded() || k->is_instance_klass() ||
  2697           k->is_method_klass(), "Must be for instance or method");
  2698   // Either const_oop() is NULL or else ptr is Constant
  2699   assert( (!o && ptr != Constant) || (o && ptr == Constant),
  2700           "constant pointers must have a value supplied" );
  2701   // Ptr is never Null
  2702   assert( ptr != Null, "NULL pointers are not typed" );
  2704   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
  2705   if (!UseExactTypes)  xk = false;
  2706   if (ptr == Constant) {
  2707     // Note:  This case includes meta-object constants, such as methods.
  2708     xk = true;
  2709   } else if (k->is_loaded()) {
  2710     ciInstanceKlass* ik = k->as_instance_klass();
  2711     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
  2712     if (xk && ik->is_interface())  xk = false;  // no exact interface
  2715   // Now hash this baby
  2716   TypeInstPtr *result =
  2717     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id))->hashcons();
  2719   return result;
  2723 //------------------------------cast_to_ptr_type-------------------------------
  2724 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
  2725   if( ptr == _ptr ) return this;
  2726   // Reconstruct _sig info here since not a problem with later lazy
  2727   // construction, _sig will show up on demand.
  2728   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id);
  2732 //-----------------------------cast_to_exactness-------------------------------
  2733 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
  2734   if( klass_is_exact == _klass_is_exact ) return this;
  2735   if (!UseExactTypes)  return this;
  2736   if (!_klass->is_loaded())  return this;
  2737   ciInstanceKlass* ik = _klass->as_instance_klass();
  2738   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
  2739   if( ik->is_interface() )              return this;  // cannot set xk
  2740   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id);
  2743 //-----------------------------cast_to_instance_id----------------------------
  2744 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
  2745   if( instance_id == _instance_id ) return this;
  2746   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id);
  2749 //------------------------------xmeet_unloaded---------------------------------
  2750 // Compute the MEET of two InstPtrs when at least one is unloaded.
  2751 // Assume classes are different since called after check for same name/class-loader
  2752 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
  2753     int off = meet_offset(tinst->offset());
  2754     PTR ptr = meet_ptr(tinst->ptr());
  2755     int instance_id = meet_instance_id(tinst->instance_id());
  2757     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
  2758     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
  2759     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
  2760       //
  2761       // Meet unloaded class with java/lang/Object
  2762       //
  2763       // Meet
  2764       //          |                     Unloaded Class
  2765       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
  2766       //  ===================================================================
  2767       //   TOP    | ..........................Unloaded......................|
  2768       //  AnyNull |  U-AN    |................Unloaded......................|
  2769       // Constant | ... O-NN .................................. |   O-BOT   |
  2770       //  NotNull | ... O-NN .................................. |   O-BOT   |
  2771       //  BOTTOM  | ........................Object-BOTTOM ..................|
  2772       //
  2773       assert(loaded->ptr() != TypePtr::Null, "insanity check");
  2774       //
  2775       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
  2776       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make( ptr, unloaded->klass(), false, NULL, off, instance_id ); }
  2777       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
  2778       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
  2779         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
  2780         else                                      { return TypeInstPtr::NOTNULL; }
  2782       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
  2784       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
  2787     // Both are unloaded, not the same class, not Object
  2788     // Or meet unloaded with a different loaded class, not java/lang/Object
  2789     if( ptr != TypePtr::BotPTR ) {
  2790       return TypeInstPtr::NOTNULL;
  2792     return TypeInstPtr::BOTTOM;
  2796 //------------------------------meet-------------------------------------------
  2797 // Compute the MEET of two types.  It returns a new Type object.
  2798 const Type *TypeInstPtr::xmeet( const Type *t ) const {
  2799   // Perform a fast test for common case; meeting the same types together.
  2800   if( this == t ) return this;  // Meeting same type-rep?
  2802   // Current "this->_base" is Pointer
  2803   switch (t->base()) {          // switch on original type
  2805   case Int:                     // Mixing ints & oops happens when javac
  2806   case Long:                    // reuses local variables
  2807   case FloatTop:
  2808   case FloatCon:
  2809   case FloatBot:
  2810   case DoubleTop:
  2811   case DoubleCon:
  2812   case DoubleBot:
  2813   case NarrowOop:
  2814   case Bottom:                  // Ye Olde Default
  2815     return Type::BOTTOM;
  2816   case Top:
  2817     return this;
  2819   default:                      // All else is a mistake
  2820     typerr(t);
  2822   case RawPtr: return TypePtr::BOTTOM;
  2824   case AryPtr: {                // All arrays inherit from Object class
  2825     const TypeAryPtr *tp = t->is_aryptr();
  2826     int offset = meet_offset(tp->offset());
  2827     PTR ptr = meet_ptr(tp->ptr());
  2828     int instance_id = meet_instance_id(tp->instance_id());
  2829     switch (ptr) {
  2830     case TopPTR:
  2831     case AnyNull:                // Fall 'down' to dual of object klass
  2832       if (klass()->equals(ciEnv::current()->Object_klass())) {
  2833         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
  2834       } else {
  2835         // cannot subclass, so the meet has to fall badly below the centerline
  2836         ptr = NotNull;
  2837         instance_id = InstanceBot;
  2838         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id);
  2840     case Constant:
  2841     case NotNull:
  2842     case BotPTR:                // Fall down to object klass
  2843       // LCA is object_klass, but if we subclass from the top we can do better
  2844       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
  2845         // If 'this' (InstPtr) is above the centerline and it is Object class
  2846         // then we can subclass in the Java class hierarchy.
  2847         if (klass()->equals(ciEnv::current()->Object_klass())) {
  2848           // that is, tp's array type is a subtype of my klass
  2849           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
  2850                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
  2853       // The other case cannot happen, since I cannot be a subtype of an array.
  2854       // The meet falls down to Object class below centerline.
  2855       if( ptr == Constant )
  2856          ptr = NotNull;
  2857       instance_id = InstanceBot;
  2858       return make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id );
  2859     default: typerr(t);
  2863   case OopPtr: {                // Meeting to OopPtrs
  2864     // Found a OopPtr type vs self-InstPtr type
  2865     const TypeOopPtr *tp = t->is_oopptr();
  2866     int offset = meet_offset(tp->offset());
  2867     PTR ptr = meet_ptr(tp->ptr());
  2868     switch (tp->ptr()) {
  2869     case TopPTR:
  2870     case AnyNull: {
  2871       int instance_id = meet_instance_id(InstanceTop);
  2872       return make(ptr, klass(), klass_is_exact(),
  2873                   (ptr == Constant ? const_oop() : NULL), offset, instance_id);
  2875     case NotNull:
  2876     case BotPTR: {
  2877       int instance_id = meet_instance_id(tp->instance_id());
  2878       return TypeOopPtr::make(ptr, offset, instance_id);
  2880     default: typerr(t);
  2884   case AnyPtr: {                // Meeting to AnyPtrs
  2885     // Found an AnyPtr type vs self-InstPtr type
  2886     const TypePtr *tp = t->is_ptr();
  2887     int offset = meet_offset(tp->offset());
  2888     PTR ptr = meet_ptr(tp->ptr());
  2889     switch (tp->ptr()) {
  2890     case Null:
  2891       if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
  2892       // else fall through to AnyNull
  2893     case TopPTR:
  2894     case AnyNull: {
  2895       int instance_id = meet_instance_id(InstanceTop);
  2896       return make( ptr, klass(), klass_is_exact(),
  2897                    (ptr == Constant ? const_oop() : NULL), offset, instance_id);
  2899     case NotNull:
  2900     case BotPTR:
  2901       return TypePtr::make( AnyPtr, ptr, offset );
  2902     default: typerr(t);
  2906   /*
  2907                  A-top         }
  2908                /   |   \       }  Tops
  2909            B-top A-any C-top   }
  2910               | /  |  \ |      }  Any-nulls
  2911            B-any   |   C-any   }
  2912               |    |    |
  2913            B-con A-con C-con   } constants; not comparable across classes
  2914               |    |    |
  2915            B-not   |   C-not   }
  2916               | \  |  / |      }  not-nulls
  2917            B-bot A-not C-bot   }
  2918                \   |   /       }  Bottoms
  2919                  A-bot         }
  2920   */
  2922   case InstPtr: {                // Meeting 2 Oops?
  2923     // Found an InstPtr sub-type vs self-InstPtr type
  2924     const TypeInstPtr *tinst = t->is_instptr();
  2925     int off = meet_offset( tinst->offset() );
  2926     PTR ptr = meet_ptr( tinst->ptr() );
  2927     int instance_id = meet_instance_id(tinst->instance_id());
  2929     // Check for easy case; klasses are equal (and perhaps not loaded!)
  2930     // If we have constants, then we created oops so classes are loaded
  2931     // and we can handle the constants further down.  This case handles
  2932     // both-not-loaded or both-loaded classes
  2933     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
  2934       return make( ptr, klass(), klass_is_exact(), NULL, off, instance_id );
  2937     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
  2938     ciKlass* tinst_klass = tinst->klass();
  2939     ciKlass* this_klass  = this->klass();
  2940     bool tinst_xk = tinst->klass_is_exact();
  2941     bool this_xk  = this->klass_is_exact();
  2942     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
  2943       // One of these classes has not been loaded
  2944       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
  2945 #ifndef PRODUCT
  2946       if( PrintOpto && Verbose ) {
  2947         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
  2948         tty->print("  this == "); this->dump(); tty->cr();
  2949         tty->print(" tinst == "); tinst->dump(); tty->cr();
  2951 #endif
  2952       return unloaded_meet;
  2955     // Handle mixing oops and interfaces first.
  2956     if( this_klass->is_interface() && !tinst_klass->is_interface() ) {
  2957       ciKlass *tmp = tinst_klass; // Swap interface around
  2958       tinst_klass = this_klass;
  2959       this_klass = tmp;
  2960       bool tmp2 = tinst_xk;
  2961       tinst_xk = this_xk;
  2962       this_xk = tmp2;
  2964     if (tinst_klass->is_interface() &&
  2965         !(this_klass->is_interface() ||
  2966           // Treat java/lang/Object as an honorary interface,
  2967           // because we need a bottom for the interface hierarchy.
  2968           this_klass == ciEnv::current()->Object_klass())) {
  2969       // Oop meets interface!
  2971       // See if the oop subtypes (implements) interface.
  2972       ciKlass *k;
  2973       bool xk;
  2974       if( this_klass->is_subtype_of( tinst_klass ) ) {
  2975         // Oop indeed subtypes.  Now keep oop or interface depending
  2976         // on whether we are both above the centerline or either is
  2977         // below the centerline.  If we are on the centerline
  2978         // (e.g., Constant vs. AnyNull interface), use the constant.
  2979         k  = below_centerline(ptr) ? tinst_klass : this_klass;
  2980         // If we are keeping this_klass, keep its exactness too.
  2981         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
  2982       } else {                  // Does not implement, fall to Object
  2983         // Oop does not implement interface, so mixing falls to Object
  2984         // just like the verifier does (if both are above the
  2985         // centerline fall to interface)
  2986         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
  2987         xk = above_centerline(ptr) ? tinst_xk : false;
  2988         // Watch out for Constant vs. AnyNull interface.
  2989         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
  2990         instance_id = InstanceBot;
  2992       ciObject* o = NULL;  // the Constant value, if any
  2993       if (ptr == Constant) {
  2994         // Find out which constant.
  2995         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
  2997       return make( ptr, k, xk, o, off, instance_id );
  3000     // Either oop vs oop or interface vs interface or interface vs Object
  3002     // !!! Here's how the symmetry requirement breaks down into invariants:
  3003     // If we split one up & one down AND they subtype, take the down man.
  3004     // If we split one up & one down AND they do NOT subtype, "fall hard".
  3005     // If both are up and they subtype, take the subtype class.
  3006     // If both are up and they do NOT subtype, "fall hard".
  3007     // If both are down and they subtype, take the supertype class.
  3008     // If both are down and they do NOT subtype, "fall hard".
  3009     // Constants treated as down.
  3011     // Now, reorder the above list; observe that both-down+subtype is also
  3012     // "fall hard"; "fall hard" becomes the default case:
  3013     // If we split one up & one down AND they subtype, take the down man.
  3014     // If both are up and they subtype, take the subtype class.
  3016     // If both are down and they subtype, "fall hard".
  3017     // If both are down and they do NOT subtype, "fall hard".
  3018     // If both are up and they do NOT subtype, "fall hard".
  3019     // If we split one up & one down AND they do NOT subtype, "fall hard".
  3021     // If a proper subtype is exact, and we return it, we return it exactly.
  3022     // If a proper supertype is exact, there can be no subtyping relationship!
  3023     // If both types are equal to the subtype, exactness is and-ed below the
  3024     // centerline and or-ed above it.  (N.B. Constants are always exact.)
  3026     // Check for subtyping:
  3027     ciKlass *subtype = NULL;
  3028     bool subtype_exact = false;
  3029     if( tinst_klass->equals(this_klass) ) {
  3030       subtype = this_klass;
  3031       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
  3032     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
  3033       subtype = this_klass;     // Pick subtyping class
  3034       subtype_exact = this_xk;
  3035     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
  3036       subtype = tinst_klass;    // Pick subtyping class
  3037       subtype_exact = tinst_xk;
  3040     if( subtype ) {
  3041       if( above_centerline(ptr) ) { // both are up?
  3042         this_klass = tinst_klass = subtype;
  3043         this_xk = tinst_xk = subtype_exact;
  3044       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
  3045         this_klass = tinst_klass; // tinst is down; keep down man
  3046         this_xk = tinst_xk;
  3047       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
  3048         tinst_klass = this_klass; // this is down; keep down man
  3049         tinst_xk = this_xk;
  3050       } else {
  3051         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
  3055     // Check for classes now being equal
  3056     if (tinst_klass->equals(this_klass)) {
  3057       // If the klasses are equal, the constants may still differ.  Fall to
  3058       // NotNull if they do (neither constant is NULL; that is a special case
  3059       // handled elsewhere).
  3060       ciObject* o = NULL;             // Assume not constant when done
  3061       ciObject* this_oop  = const_oop();
  3062       ciObject* tinst_oop = tinst->const_oop();
  3063       if( ptr == Constant ) {
  3064         if (this_oop != NULL && tinst_oop != NULL &&
  3065             this_oop->equals(tinst_oop) )
  3066           o = this_oop;
  3067         else if (above_centerline(this ->_ptr))
  3068           o = tinst_oop;
  3069         else if (above_centerline(tinst ->_ptr))
  3070           o = this_oop;
  3071         else
  3072           ptr = NotNull;
  3074       return make( ptr, this_klass, this_xk, o, off, instance_id );
  3075     } // Else classes are not equal
  3077     // Since klasses are different, we require a LCA in the Java
  3078     // class hierarchy - which means we have to fall to at least NotNull.
  3079     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
  3080       ptr = NotNull;
  3081     instance_id = InstanceBot;
  3083     // Now we find the LCA of Java classes
  3084     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
  3085     return make( ptr, k, false, NULL, off, instance_id );
  3086   } // End of case InstPtr
  3088   case KlassPtr:
  3089     return TypeInstPtr::BOTTOM;
  3091   } // End of switch
  3092   return this;                  // Return the double constant
  3096 //------------------------java_mirror_type--------------------------------------
  3097 ciType* TypeInstPtr::java_mirror_type() const {
  3098   // must be a singleton type
  3099   if( const_oop() == NULL )  return NULL;
  3101   // must be of type java.lang.Class
  3102   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
  3104   return const_oop()->as_instance()->java_mirror_type();
  3108 //------------------------------xdual------------------------------------------
  3109 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
  3110 // inheritance mechanism.
  3111 const Type *TypeInstPtr::xdual() const {
  3112   return new TypeInstPtr( dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id()  );
  3115 //------------------------------eq---------------------------------------------
  3116 // Structural equality check for Type representations
  3117 bool TypeInstPtr::eq( const Type *t ) const {
  3118   const TypeInstPtr *p = t->is_instptr();
  3119   return
  3120     klass()->equals(p->klass()) &&
  3121     TypeOopPtr::eq(p);          // Check sub-type stuff
  3124 //------------------------------hash-------------------------------------------
  3125 // Type-specific hashing function.
  3126 int TypeInstPtr::hash(void) const {
  3127   int hash = klass()->hash() + TypeOopPtr::hash();
  3128   return hash;
  3131 //------------------------------dump2------------------------------------------
  3132 // Dump oop Type
  3133 #ifndef PRODUCT
  3134 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  3135   // Print the name of the klass.
  3136   klass()->print_name_on(st);
  3138   switch( _ptr ) {
  3139   case Constant:
  3140     // TO DO: Make CI print the hex address of the underlying oop.
  3141     if (WizardMode || Verbose) {
  3142       const_oop()->print_oop(st);
  3144   case BotPTR:
  3145     if (!WizardMode && !Verbose) {
  3146       if( _klass_is_exact ) st->print(":exact");
  3147       break;
  3149   case TopPTR:
  3150   case AnyNull:
  3151   case NotNull:
  3152     st->print(":%s", ptr_msg[_ptr]);
  3153     if( _klass_is_exact ) st->print(":exact");
  3154     break;
  3157   if( _offset ) {               // Dump offset, if any
  3158     if( _offset == OffsetBot )      st->print("+any");
  3159     else if( _offset == OffsetTop ) st->print("+unknown");
  3160     else st->print("+%d", _offset);
  3163   st->print(" *");
  3164   if (_instance_id == InstanceTop)
  3165     st->print(",iid=top");
  3166   else if (_instance_id != InstanceBot)
  3167     st->print(",iid=%d",_instance_id);
  3169 #endif
  3171 //------------------------------add_offset-------------------------------------
  3172 const TypePtr *TypeInstPtr::add_offset( intptr_t offset ) const {
  3173   return make( _ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id );
  3176 //=============================================================================
  3177 // Convenience common pre-built types.
  3178 const TypeAryPtr *TypeAryPtr::RANGE;
  3179 const TypeAryPtr *TypeAryPtr::OOPS;
  3180 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
  3181 const TypeAryPtr *TypeAryPtr::BYTES;
  3182 const TypeAryPtr *TypeAryPtr::SHORTS;
  3183 const TypeAryPtr *TypeAryPtr::CHARS;
  3184 const TypeAryPtr *TypeAryPtr::INTS;
  3185 const TypeAryPtr *TypeAryPtr::LONGS;
  3186 const TypeAryPtr *TypeAryPtr::FLOATS;
  3187 const TypeAryPtr *TypeAryPtr::DOUBLES;
  3189 //------------------------------make-------------------------------------------
  3190 const TypeAryPtr *TypeAryPtr::make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
  3191   assert(!(k == NULL && ary->_elem->isa_int()),
  3192          "integral arrays must be pre-equipped with a class");
  3193   if (!xk)  xk = ary->ary_must_be_exact();
  3194   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
  3195   if (!UseExactTypes)  xk = (ptr == Constant);
  3196   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id))->hashcons();
  3199 //------------------------------make-------------------------------------------
  3200 const TypeAryPtr *TypeAryPtr::make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
  3201   assert(!(k == NULL && ary->_elem->isa_int()),
  3202          "integral arrays must be pre-equipped with a class");
  3203   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
  3204   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
  3205   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
  3206   if (!UseExactTypes)  xk = (ptr == Constant);
  3207   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id))->hashcons();
  3210 //------------------------------cast_to_ptr_type-------------------------------
  3211 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
  3212   if( ptr == _ptr ) return this;
  3213   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id);
  3217 //-----------------------------cast_to_exactness-------------------------------
  3218 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
  3219   if( klass_is_exact == _klass_is_exact ) return this;
  3220   if (!UseExactTypes)  return this;
  3221   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
  3222   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id);
  3225 //-----------------------------cast_to_instance_id----------------------------
  3226 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
  3227   if( instance_id == _instance_id ) return this;
  3228   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id);
  3231 //-----------------------------narrow_size_type-------------------------------
  3232 // Local cache for arrayOopDesc::max_array_length(etype),
  3233 // which is kind of slow (and cached elsewhere by other users).
  3234 static jint max_array_length_cache[T_CONFLICT+1];
  3235 static jint max_array_length(BasicType etype) {
  3236   jint& cache = max_array_length_cache[etype];
  3237   jint res = cache;
  3238   if (res == 0) {
  3239     switch (etype) {
  3240     case T_NARROWOOP:
  3241       etype = T_OBJECT;
  3242       break;
  3243     case T_CONFLICT:
  3244     case T_ILLEGAL:
  3245     case T_VOID:
  3246       etype = T_BYTE;           // will produce conservatively high value
  3248     cache = res = arrayOopDesc::max_array_length(etype);
  3250   return res;
  3253 // Narrow the given size type to the index range for the given array base type.
  3254 // Return NULL if the resulting int type becomes empty.
  3255 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
  3256   jint hi = size->_hi;
  3257   jint lo = size->_lo;
  3258   jint min_lo = 0;
  3259   jint max_hi = max_array_length(elem()->basic_type());
  3260   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
  3261   bool chg = false;
  3262   if (lo < min_lo) { lo = min_lo; chg = true; }
  3263   if (hi > max_hi) { hi = max_hi; chg = true; }
  3264   // Negative length arrays will produce weird intermediate dead fast-path code
  3265   if (lo > hi)
  3266     return TypeInt::ZERO;
  3267   if (!chg)
  3268     return size;
  3269   return TypeInt::make(lo, hi, Type::WidenMin);
  3272 //-------------------------------cast_to_size----------------------------------
  3273 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
  3274   assert(new_size != NULL, "");
  3275   new_size = narrow_size_type(new_size);
  3276   if (new_size == size())  return this;
  3277   const TypeAry* new_ary = TypeAry::make(elem(), new_size);
  3278   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
  3282 //------------------------------eq---------------------------------------------
  3283 // Structural equality check for Type representations
  3284 bool TypeAryPtr::eq( const Type *t ) const {
  3285   const TypeAryPtr *p = t->is_aryptr();
  3286   return
  3287     _ary == p->_ary &&  // Check array
  3288     TypeOopPtr::eq(p);  // Check sub-parts
  3291 //------------------------------hash-------------------------------------------
  3292 // Type-specific hashing function.
  3293 int TypeAryPtr::hash(void) const {
  3294   return (intptr_t)_ary + TypeOopPtr::hash();
  3297 //------------------------------meet-------------------------------------------
  3298 // Compute the MEET of two types.  It returns a new Type object.
  3299 const Type *TypeAryPtr::xmeet( const Type *t ) const {
  3300   // Perform a fast test for common case; meeting the same types together.
  3301   if( this == t ) return this;  // Meeting same type-rep?
  3302   // Current "this->_base" is Pointer
  3303   switch (t->base()) {          // switch on original type
  3305   // Mixing ints & oops happens when javac reuses local variables
  3306   case Int:
  3307   case Long:
  3308   case FloatTop:
  3309   case FloatCon:
  3310   case FloatBot:
  3311   case DoubleTop:
  3312   case DoubleCon:
  3313   case DoubleBot:
  3314   case NarrowOop:
  3315   case Bottom:                  // Ye Olde Default
  3316     return Type::BOTTOM;
  3317   case Top:
  3318     return this;
  3320   default:                      // All else is a mistake
  3321     typerr(t);
  3323   case OopPtr: {                // Meeting to OopPtrs
  3324     // Found a OopPtr type vs self-AryPtr type
  3325     const TypeOopPtr *tp = t->is_oopptr();
  3326     int offset = meet_offset(tp->offset());
  3327     PTR ptr = meet_ptr(tp->ptr());
  3328     switch (tp->ptr()) {
  3329     case TopPTR:
  3330     case AnyNull: {
  3331       int instance_id = meet_instance_id(InstanceTop);
  3332       return make(ptr, (ptr == Constant ? const_oop() : NULL),
  3333                   _ary, _klass, _klass_is_exact, offset, instance_id);
  3335     case BotPTR:
  3336     case NotNull: {
  3337       int instance_id = meet_instance_id(tp->instance_id());
  3338       return TypeOopPtr::make(ptr, offset, instance_id);
  3340     default: ShouldNotReachHere();
  3344   case AnyPtr: {                // Meeting two AnyPtrs
  3345     // Found an AnyPtr type vs self-AryPtr type
  3346     const TypePtr *tp = t->is_ptr();
  3347     int offset = meet_offset(tp->offset());
  3348     PTR ptr = meet_ptr(tp->ptr());
  3349     switch (tp->ptr()) {
  3350     case TopPTR:
  3351       return this;
  3352     case BotPTR:
  3353     case NotNull:
  3354       return TypePtr::make(AnyPtr, ptr, offset);
  3355     case Null:
  3356       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
  3357       // else fall through to AnyNull
  3358     case AnyNull: {
  3359       int instance_id = meet_instance_id(InstanceTop);
  3360       return make( ptr, (ptr == Constant ? const_oop() : NULL),
  3361                   _ary, _klass, _klass_is_exact, offset, instance_id);
  3363     default: ShouldNotReachHere();
  3367   case RawPtr: return TypePtr::BOTTOM;
  3369   case AryPtr: {                // Meeting 2 references?
  3370     const TypeAryPtr *tap = t->is_aryptr();
  3371     int off = meet_offset(tap->offset());
  3372     const TypeAry *tary = _ary->meet(tap->_ary)->is_ary();
  3373     PTR ptr = meet_ptr(tap->ptr());
  3374     int instance_id = meet_instance_id(tap->instance_id());
  3375     ciKlass* lazy_klass = NULL;
  3376     if (tary->_elem->isa_int()) {
  3377       // Integral array element types have irrelevant lattice relations.
  3378       // It is the klass that determines array layout, not the element type.
  3379       if (_klass == NULL)
  3380         lazy_klass = tap->_klass;
  3381       else if (tap->_klass == NULL || tap->_klass == _klass) {
  3382         lazy_klass = _klass;
  3383       } else {
  3384         // Something like byte[int+] meets char[int+].
  3385         // This must fall to bottom, not (int[-128..65535])[int+].
  3386         instance_id = InstanceBot;
  3387         tary = TypeAry::make(Type::BOTTOM, tary->_size);
  3389     } else // Non integral arrays.
  3390     // Must fall to bottom if exact klasses in upper lattice
  3391     // are not equal or super klass is exact.
  3392     if ( above_centerline(ptr) && klass() != tap->klass() &&
  3393          // meet with top[] and bottom[] are processed further down:
  3394          tap ->_klass != NULL  && this->_klass != NULL   &&
  3395          // both are exact and not equal:
  3396         ((tap ->_klass_is_exact && this->_klass_is_exact) ||
  3397          // 'tap'  is exact and super or unrelated:
  3398          (tap ->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
  3399          // 'this' is exact and super or unrelated:
  3400          (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
  3401       tary = TypeAry::make(Type::BOTTOM, tary->_size);
  3402       return make( NotNull, NULL, tary, lazy_klass, false, off, InstanceBot );
  3405     bool xk = false;
  3406     switch (tap->ptr()) {
  3407     case AnyNull:
  3408     case TopPTR:
  3409       // Compute new klass on demand, do not use tap->_klass
  3410       xk = (tap->_klass_is_exact | this->_klass_is_exact);
  3411       return make( ptr, const_oop(), tary, lazy_klass, xk, off, instance_id );
  3412     case Constant: {
  3413       ciObject* o = const_oop();
  3414       if( _ptr == Constant ) {
  3415         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
  3416           xk = (klass() == tap->klass());
  3417           ptr = NotNull;
  3418           o = NULL;
  3419           instance_id = InstanceBot;
  3420         } else {
  3421           xk = true;
  3423       } else if( above_centerline(_ptr) ) {
  3424         o = tap->const_oop();
  3425         xk = true;
  3426       } else {
  3427         // Only precise for identical arrays
  3428         xk = this->_klass_is_exact && (klass() == tap->klass());
  3430       return TypeAryPtr::make( ptr, o, tary, lazy_klass, xk, off, instance_id );
  3432     case NotNull:
  3433     case BotPTR:
  3434       // Compute new klass on demand, do not use tap->_klass
  3435       if (above_centerline(this->_ptr))
  3436             xk = tap->_klass_is_exact;
  3437       else if (above_centerline(tap->_ptr))
  3438             xk = this->_klass_is_exact;
  3439       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
  3440               (klass() == tap->klass()); // Only precise for identical arrays
  3441       return TypeAryPtr::make( ptr, NULL, tary, lazy_klass, xk, off, instance_id );
  3442     default: ShouldNotReachHere();
  3446   // All arrays inherit from Object class
  3447   case InstPtr: {
  3448     const TypeInstPtr *tp = t->is_instptr();
  3449     int offset = meet_offset(tp->offset());
  3450     PTR ptr = meet_ptr(tp->ptr());
  3451     int instance_id = meet_instance_id(tp->instance_id());
  3452     switch (ptr) {
  3453     case TopPTR:
  3454     case AnyNull:                // Fall 'down' to dual of object klass
  3455       if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
  3456         return TypeAryPtr::make( ptr, _ary, _klass, _klass_is_exact, offset, instance_id );
  3457       } else {
  3458         // cannot subclass, so the meet has to fall badly below the centerline
  3459         ptr = NotNull;
  3460         instance_id = InstanceBot;
  3461         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
  3463     case Constant:
  3464     case NotNull:
  3465     case BotPTR:                // Fall down to object klass
  3466       // LCA is object_klass, but if we subclass from the top we can do better
  3467       if (above_centerline(tp->ptr())) {
  3468         // If 'tp'  is above the centerline and it is Object class
  3469         // then we can subclass in the Java class hierarchy.
  3470         if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
  3471           // that is, my array type is a subtype of 'tp' klass
  3472           return make( ptr, (ptr == Constant ? const_oop() : NULL),
  3473                        _ary, _klass, _klass_is_exact, offset, instance_id );
  3476       // The other case cannot happen, since t cannot be a subtype of an array.
  3477       // The meet falls down to Object class below centerline.
  3478       if( ptr == Constant )
  3479          ptr = NotNull;
  3480       instance_id = InstanceBot;
  3481       return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
  3482     default: typerr(t);
  3486   case KlassPtr:
  3487     return TypeInstPtr::BOTTOM;
  3490   return this;                  // Lint noise
  3493 //------------------------------xdual------------------------------------------
  3494 // Dual: compute field-by-field dual
  3495 const Type *TypeAryPtr::xdual() const {
  3496   return new TypeAryPtr( dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id() );
  3499 //----------------------interface_vs_oop---------------------------------------
  3500 #ifdef ASSERT
  3501 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
  3502   const TypeAryPtr* t_aryptr = t->isa_aryptr();
  3503   if (t_aryptr) {
  3504     return _ary->interface_vs_oop(t_aryptr->_ary);
  3506   return false;
  3508 #endif
  3510 //------------------------------dump2------------------------------------------
  3511 #ifndef PRODUCT
  3512 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  3513   _ary->dump2(d,depth,st);
  3514   switch( _ptr ) {
  3515   case Constant:
  3516     const_oop()->print(st);
  3517     break;
  3518   case BotPTR:
  3519     if (!WizardMode && !Verbose) {
  3520       if( _klass_is_exact ) st->print(":exact");
  3521       break;
  3523   case TopPTR:
  3524   case AnyNull:
  3525   case NotNull:
  3526     st->print(":%s", ptr_msg[_ptr]);
  3527     if( _klass_is_exact ) st->print(":exact");
  3528     break;
  3531   if( _offset != 0 ) {
  3532     int header_size = objArrayOopDesc::header_size() * wordSize;
  3533     if( _offset == OffsetTop )       st->print("+undefined");
  3534     else if( _offset == OffsetBot )  st->print("+any");
  3535     else if( _offset < header_size ) st->print("+%d", _offset);
  3536     else {
  3537       BasicType basic_elem_type = elem()->basic_type();
  3538       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  3539       int elem_size = type2aelembytes(basic_elem_type);
  3540       st->print("[%d]", (_offset - array_base)/elem_size);
  3543   st->print(" *");
  3544   if (_instance_id == InstanceTop)
  3545     st->print(",iid=top");
  3546   else if (_instance_id != InstanceBot)
  3547     st->print(",iid=%d",_instance_id);
  3549 #endif
  3551 bool TypeAryPtr::empty(void) const {
  3552   if (_ary->empty())       return true;
  3553   return TypeOopPtr::empty();
  3556 //------------------------------add_offset-------------------------------------
  3557 const TypePtr *TypeAryPtr::add_offset( intptr_t offset ) const {
  3558   return make( _ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id );
  3562 //=============================================================================
  3563 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
  3564 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
  3567 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
  3568   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
  3571 //------------------------------hash-------------------------------------------
  3572 // Type-specific hashing function.
  3573 int TypeNarrowOop::hash(void) const {
  3574   return _ptrtype->hash() + 7;
  3578 bool TypeNarrowOop::eq( const Type *t ) const {
  3579   const TypeNarrowOop* tc = t->isa_narrowoop();
  3580   if (tc != NULL) {
  3581     if (_ptrtype->base() != tc->_ptrtype->base()) {
  3582       return false;
  3584     return tc->_ptrtype->eq(_ptrtype);
  3586   return false;
  3589 bool TypeNarrowOop::singleton(void) const {    // TRUE if type is a singleton
  3590   return _ptrtype->singleton();
  3593 bool TypeNarrowOop::empty(void) const {
  3594   return _ptrtype->empty();
  3597 //------------------------------xmeet------------------------------------------
  3598 // Compute the MEET of two types.  It returns a new Type object.
  3599 const Type *TypeNarrowOop::xmeet( const Type *t ) const {
  3600   // Perform a fast test for common case; meeting the same types together.
  3601   if( this == t ) return this;  // Meeting same type-rep?
  3604   // Current "this->_base" is OopPtr
  3605   switch (t->base()) {          // switch on original type
  3607   case Int:                     // Mixing ints & oops happens when javac
  3608   case Long:                    // reuses local variables
  3609   case FloatTop:
  3610   case FloatCon:
  3611   case FloatBot:
  3612   case DoubleTop:
  3613   case DoubleCon:
  3614   case DoubleBot:
  3615   case AnyPtr:
  3616   case RawPtr:
  3617   case OopPtr:
  3618   case InstPtr:
  3619   case KlassPtr:
  3620   case AryPtr:
  3622   case Bottom:                  // Ye Olde Default
  3623     return Type::BOTTOM;
  3624   case Top:
  3625     return this;
  3627   case NarrowOop: {
  3628     const Type* result = _ptrtype->xmeet(t->make_ptr());
  3629     if (result->isa_ptr()) {
  3630       return TypeNarrowOop::make(result->is_ptr());
  3632     return result;
  3635   default:                      // All else is a mistake
  3636     typerr(t);
  3638   } // End of switch
  3640   return this;
  3643 const Type *TypeNarrowOop::xdual() const {    // Compute dual right now.
  3644   const TypePtr* odual = _ptrtype->dual()->is_ptr();
  3645   return new TypeNarrowOop(odual);
  3648 const Type *TypeNarrowOop::filter( const Type *kills ) const {
  3649   if (kills->isa_narrowoop()) {
  3650     const Type* ft =_ptrtype->filter(kills->is_narrowoop()->_ptrtype);
  3651     if (ft->empty())
  3652       return Type::TOP;           // Canonical empty value
  3653     if (ft->isa_ptr()) {
  3654       return make(ft->isa_ptr());
  3656     return ft;
  3657   } else if (kills->isa_ptr()) {
  3658     const Type* ft = _ptrtype->join(kills);
  3659     if (ft->empty())
  3660       return Type::TOP;           // Canonical empty value
  3661     return ft;
  3662   } else {
  3663     return Type::TOP;
  3668 intptr_t TypeNarrowOop::get_con() const {
  3669   return _ptrtype->get_con();
  3672 #ifndef PRODUCT
  3673 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
  3674   st->print("narrowoop: ");
  3675   _ptrtype->dump2(d, depth, st);
  3677 #endif
  3680 //=============================================================================
  3681 // Convenience common pre-built types.
  3683 // Not-null object klass or below
  3684 const TypeKlassPtr *TypeKlassPtr::OBJECT;
  3685 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
  3687 //------------------------------TypeKlasPtr------------------------------------
  3688 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
  3689   : TypeOopPtr(KlassPtr, ptr, klass, (ptr==Constant), (ptr==Constant ? klass : NULL), offset, 0) {
  3692 //------------------------------make-------------------------------------------
  3693 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
  3694 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
  3695   assert( k != NULL, "Expect a non-NULL klass");
  3696   assert(k->is_instance_klass() || k->is_array_klass() ||
  3697          k->is_method_klass(), "Incorrect type of klass oop");
  3698   TypeKlassPtr *r =
  3699     (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
  3701   return r;
  3704 //------------------------------eq---------------------------------------------
  3705 // Structural equality check for Type representations
  3706 bool TypeKlassPtr::eq( const Type *t ) const {
  3707   const TypeKlassPtr *p = t->is_klassptr();
  3708   return
  3709     klass()->equals(p->klass()) &&
  3710     TypeOopPtr::eq(p);
  3713 //------------------------------hash-------------------------------------------
  3714 // Type-specific hashing function.
  3715 int TypeKlassPtr::hash(void) const {
  3716   return klass()->hash() + TypeOopPtr::hash();
  3720 //----------------------compute_klass------------------------------------------
  3721 // Compute the defining klass for this class
  3722 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
  3723   // Compute _klass based on element type.
  3724   ciKlass* k_ary = NULL;
  3725   const TypeInstPtr *tinst;
  3726   const TypeAryPtr *tary;
  3727   const Type* el = elem();
  3728   if (el->isa_narrowoop()) {
  3729     el = el->make_ptr();
  3732   // Get element klass
  3733   if ((tinst = el->isa_instptr()) != NULL) {
  3734     // Compute array klass from element klass
  3735     k_ary = ciObjArrayKlass::make(tinst->klass());
  3736   } else if ((tary = el->isa_aryptr()) != NULL) {
  3737     // Compute array klass from element klass
  3738     ciKlass* k_elem = tary->klass();
  3739     // If element type is something like bottom[], k_elem will be null.
  3740     if (k_elem != NULL)
  3741       k_ary = ciObjArrayKlass::make(k_elem);
  3742   } else if ((el->base() == Type::Top) ||
  3743              (el->base() == Type::Bottom)) {
  3744     // element type of Bottom occurs from meet of basic type
  3745     // and object; Top occurs when doing join on Bottom.
  3746     // Leave k_ary at NULL.
  3747   } else {
  3748     // Cannot compute array klass directly from basic type,
  3749     // since subtypes of TypeInt all have basic type T_INT.
  3750 #ifdef ASSERT
  3751     if (verify && el->isa_int()) {
  3752       // Check simple cases when verifying klass.
  3753       BasicType bt = T_ILLEGAL;
  3754       if (el == TypeInt::BYTE) {
  3755         bt = T_BYTE;
  3756       } else if (el == TypeInt::SHORT) {
  3757         bt = T_SHORT;
  3758       } else if (el == TypeInt::CHAR) {
  3759         bt = T_CHAR;
  3760       } else if (el == TypeInt::INT) {
  3761         bt = T_INT;
  3762       } else {
  3763         return _klass; // just return specified klass
  3765       return ciTypeArrayKlass::make(bt);
  3767 #endif
  3768     assert(!el->isa_int(),
  3769            "integral arrays must be pre-equipped with a class");
  3770     // Compute array klass directly from basic type
  3771     k_ary = ciTypeArrayKlass::make(el->basic_type());
  3773   return k_ary;
  3776 //------------------------------klass------------------------------------------
  3777 // Return the defining klass for this class
  3778 ciKlass* TypeAryPtr::klass() const {
  3779   if( _klass ) return _klass;   // Return cached value, if possible
  3781   // Oops, need to compute _klass and cache it
  3782   ciKlass* k_ary = compute_klass();
  3784   if( this != TypeAryPtr::OOPS ) {
  3785     // The _klass field acts as a cache of the underlying
  3786     // ciKlass for this array type.  In order to set the field,
  3787     // we need to cast away const-ness.
  3788     //
  3789     // IMPORTANT NOTE: we *never* set the _klass field for the
  3790     // type TypeAryPtr::OOPS.  This Type is shared between all
  3791     // active compilations.  However, the ciKlass which represents
  3792     // this Type is *not* shared between compilations, so caching
  3793     // this value would result in fetching a dangling pointer.
  3794     //
  3795     // Recomputing the underlying ciKlass for each request is
  3796     // a bit less efficient than caching, but calls to
  3797     // TypeAryPtr::OOPS->klass() are not common enough to matter.
  3798     ((TypeAryPtr*)this)->_klass = k_ary;
  3799     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
  3800         _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
  3801       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
  3804   return k_ary;
  3808 //------------------------------add_offset-------------------------------------
  3809 // Access internals of klass object
  3810 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
  3811   return make( _ptr, klass(), xadd_offset(offset) );
  3814 //------------------------------cast_to_ptr_type-------------------------------
  3815 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
  3816   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
  3817   if( ptr == _ptr ) return this;
  3818   return make(ptr, _klass, _offset);
  3822 //-----------------------------cast_to_exactness-------------------------------
  3823 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
  3824   if( klass_is_exact == _klass_is_exact ) return this;
  3825   if (!UseExactTypes)  return this;
  3826   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
  3830 //-----------------------------as_instance_type--------------------------------
  3831 // Corresponding type for an instance of the given class.
  3832 // It will be NotNull, and exact if and only if the klass type is exact.
  3833 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
  3834   ciKlass* k = klass();
  3835   bool    xk = klass_is_exact();
  3836   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
  3837   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
  3838   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
  3839   return toop->cast_to_exactness(xk)->is_oopptr();
  3843 //------------------------------xmeet------------------------------------------
  3844 // Compute the MEET of two types, return a new Type object.
  3845 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
  3846   // Perform a fast test for common case; meeting the same types together.
  3847   if( this == t ) return this;  // Meeting same type-rep?
  3849   // Current "this->_base" is Pointer
  3850   switch (t->base()) {          // switch on original type
  3852   case Int:                     // Mixing ints & oops happens when javac
  3853   case Long:                    // reuses local variables
  3854   case FloatTop:
  3855   case FloatCon:
  3856   case FloatBot:
  3857   case DoubleTop:
  3858   case DoubleCon:
  3859   case DoubleBot:
  3860   case NarrowOop:
  3861   case Bottom:                  // Ye Olde Default
  3862     return Type::BOTTOM;
  3863   case Top:
  3864     return this;
  3866   default:                      // All else is a mistake
  3867     typerr(t);
  3869   case RawPtr: return TypePtr::BOTTOM;
  3871   case OopPtr: {                // Meeting to OopPtrs
  3872     // Found a OopPtr type vs self-KlassPtr type
  3873     const TypePtr *tp = t->is_oopptr();
  3874     int offset = meet_offset(tp->offset());
  3875     PTR ptr = meet_ptr(tp->ptr());
  3876     switch (tp->ptr()) {
  3877     case TopPTR:
  3878     case AnyNull:
  3879       return make(ptr, klass(), offset);
  3880     case BotPTR:
  3881     case NotNull:
  3882       return TypePtr::make(AnyPtr, ptr, offset);
  3883     default: typerr(t);
  3887   case AnyPtr: {                // Meeting to AnyPtrs
  3888     // Found an AnyPtr type vs self-KlassPtr type
  3889     const TypePtr *tp = t->is_ptr();
  3890     int offset = meet_offset(tp->offset());
  3891     PTR ptr = meet_ptr(tp->ptr());
  3892     switch (tp->ptr()) {
  3893     case TopPTR:
  3894       return this;
  3895     case Null:
  3896       if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
  3897     case AnyNull:
  3898       return make( ptr, klass(), offset );
  3899     case BotPTR:
  3900     case NotNull:
  3901       return TypePtr::make(AnyPtr, ptr, offset);
  3902     default: typerr(t);
  3906   case AryPtr:                  // Meet with AryPtr
  3907   case InstPtr:                 // Meet with InstPtr
  3908     return TypeInstPtr::BOTTOM;
  3910   //
  3911   //             A-top         }
  3912   //           /   |   \       }  Tops
  3913   //       B-top A-any C-top   }
  3914   //          | /  |  \ |      }  Any-nulls
  3915   //       B-any   |   C-any   }
  3916   //          |    |    |
  3917   //       B-con A-con C-con   } constants; not comparable across classes
  3918   //          |    |    |
  3919   //       B-not   |   C-not   }
  3920   //          | \  |  / |      }  not-nulls
  3921   //       B-bot A-not C-bot   }
  3922   //           \   |   /       }  Bottoms
  3923   //             A-bot         }
  3924   //
  3926   case KlassPtr: {  // Meet two KlassPtr types
  3927     const TypeKlassPtr *tkls = t->is_klassptr();
  3928     int  off     = meet_offset(tkls->offset());
  3929     PTR  ptr     = meet_ptr(tkls->ptr());
  3931     // Check for easy case; klasses are equal (and perhaps not loaded!)
  3932     // If we have constants, then we created oops so classes are loaded
  3933     // and we can handle the constants further down.  This case handles
  3934     // not-loaded classes
  3935     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
  3936       return make( ptr, klass(), off );
  3939     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
  3940     ciKlass* tkls_klass = tkls->klass();
  3941     ciKlass* this_klass = this->klass();
  3942     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
  3943     assert( this_klass->is_loaded(), "This class should have been loaded.");
  3945     // If 'this' type is above the centerline and is a superclass of the
  3946     // other, we can treat 'this' as having the same type as the other.
  3947     if ((above_centerline(this->ptr())) &&
  3948         tkls_klass->is_subtype_of(this_klass)) {
  3949       this_klass = tkls_klass;
  3951     // If 'tinst' type is above the centerline and is a superclass of the
  3952     // other, we can treat 'tinst' as having the same type as the other.
  3953     if ((above_centerline(tkls->ptr())) &&
  3954         this_klass->is_subtype_of(tkls_klass)) {
  3955       tkls_klass = this_klass;
  3958     // Check for classes now being equal
  3959     if (tkls_klass->equals(this_klass)) {
  3960       // If the klasses are equal, the constants may still differ.  Fall to
  3961       // NotNull if they do (neither constant is NULL; that is a special case
  3962       // handled elsewhere).
  3963       ciObject* o = NULL;             // Assume not constant when done
  3964       ciObject* this_oop = const_oop();
  3965       ciObject* tkls_oop = tkls->const_oop();
  3966       if( ptr == Constant ) {
  3967         if (this_oop != NULL && tkls_oop != NULL &&
  3968             this_oop->equals(tkls_oop) )
  3969           o = this_oop;
  3970         else if (above_centerline(this->ptr()))
  3971           o = tkls_oop;
  3972         else if (above_centerline(tkls->ptr()))
  3973           o = this_oop;
  3974         else
  3975           ptr = NotNull;
  3977       return make( ptr, this_klass, off );
  3978     } // Else classes are not equal
  3980     // Since klasses are different, we require the LCA in the Java
  3981     // class hierarchy - which means we have to fall to at least NotNull.
  3982     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
  3983       ptr = NotNull;
  3984     // Now we find the LCA of Java classes
  3985     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
  3986     return   make( ptr, k, off );
  3987   } // End of case KlassPtr
  3989   } // End of switch
  3990   return this;                  // Return the double constant
  3993 //------------------------------xdual------------------------------------------
  3994 // Dual: compute field-by-field dual
  3995 const Type    *TypeKlassPtr::xdual() const {
  3996   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
  3999 //------------------------------dump2------------------------------------------
  4000 // Dump Klass Type
  4001 #ifndef PRODUCT
  4002 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
  4003   switch( _ptr ) {
  4004   case Constant:
  4005     st->print("precise ");
  4006   case NotNull:
  4008       const char *name = klass()->name()->as_utf8();
  4009       if( name ) {
  4010         st->print("klass %s: " INTPTR_FORMAT, name, klass());
  4011       } else {
  4012         ShouldNotReachHere();
  4015   case BotPTR:
  4016     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
  4017   case TopPTR:
  4018   case AnyNull:
  4019     st->print(":%s", ptr_msg[_ptr]);
  4020     if( _klass_is_exact ) st->print(":exact");
  4021     break;
  4024   if( _offset ) {               // Dump offset, if any
  4025     if( _offset == OffsetBot )      { st->print("+any"); }
  4026     else if( _offset == OffsetTop ) { st->print("+unknown"); }
  4027     else                            { st->print("+%d", _offset); }
  4030   st->print(" *");
  4032 #endif
  4036 //=============================================================================
  4037 // Convenience common pre-built types.
  4039 //------------------------------make-------------------------------------------
  4040 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
  4041   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
  4044 //------------------------------make-------------------------------------------
  4045 const TypeFunc *TypeFunc::make(ciMethod* method) {
  4046   Compile* C = Compile::current();
  4047   const TypeFunc* tf = C->last_tf(method); // check cache
  4048   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
  4049   const TypeTuple *domain;
  4050   if (method->is_static()) {
  4051     domain = TypeTuple::make_domain(NULL, method->signature());
  4052   } else {
  4053     domain = TypeTuple::make_domain(method->holder(), method->signature());
  4055   const TypeTuple *range  = TypeTuple::make_range(method->signature());
  4056   tf = TypeFunc::make(domain, range);
  4057   C->set_last_tf(method, tf);  // fill cache
  4058   return tf;
  4061 //------------------------------meet-------------------------------------------
  4062 // Compute the MEET of two types.  It returns a new Type object.
  4063 const Type *TypeFunc::xmeet( const Type *t ) const {
  4064   // Perform a fast test for common case; meeting the same types together.
  4065   if( this == t ) return this;  // Meeting same type-rep?
  4067   // Current "this->_base" is Func
  4068   switch (t->base()) {          // switch on original type
  4070   case Bottom:                  // Ye Olde Default
  4071     return t;
  4073   default:                      // All else is a mistake
  4074     typerr(t);
  4076   case Top:
  4077     break;
  4079   return this;                  // Return the double constant
  4082 //------------------------------xdual------------------------------------------
  4083 // Dual: compute field-by-field dual
  4084 const Type *TypeFunc::xdual() const {
  4085   return this;
  4088 //------------------------------eq---------------------------------------------
  4089 // Structural equality check for Type representations
  4090 bool TypeFunc::eq( const Type *t ) const {
  4091   const TypeFunc *a = (const TypeFunc*)t;
  4092   return _domain == a->_domain &&
  4093     _range == a->_range;
  4096 //------------------------------hash-------------------------------------------
  4097 // Type-specific hashing function.
  4098 int TypeFunc::hash(void) const {
  4099   return (intptr_t)_domain + (intptr_t)_range;
  4102 //------------------------------dump2------------------------------------------
  4103 // Dump Function Type
  4104 #ifndef PRODUCT
  4105 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
  4106   if( _range->_cnt <= Parms )
  4107     st->print("void");
  4108   else {
  4109     uint i;
  4110     for (i = Parms; i < _range->_cnt-1; i++) {
  4111       _range->field_at(i)->dump2(d,depth,st);
  4112       st->print("/");
  4114     _range->field_at(i)->dump2(d,depth,st);
  4116   st->print(" ");
  4117   st->print("( ");
  4118   if( !depth || d[this] ) {     // Check for recursive dump
  4119     st->print("...)");
  4120     return;
  4122   d.Insert((void*)this,(void*)this);    // Stop recursion
  4123   if (Parms < _domain->_cnt)
  4124     _domain->field_at(Parms)->dump2(d,depth-1,st);
  4125   for (uint i = Parms+1; i < _domain->_cnt; i++) {
  4126     st->print(", ");
  4127     _domain->field_at(i)->dump2(d,depth-1,st);
  4129   st->print(" )");
  4132 //------------------------------print_flattened--------------------------------
  4133 // Print a 'flattened' signature
  4134 static const char * const flat_type_msg[Type::lastype] = {
  4135   "bad","control","top","int","long","_", "narrowoop",
  4136   "tuple:", "array:",
  4137   "ptr", "rawptr", "ptr", "ptr", "ptr", "ptr",
  4138   "func", "abIO", "return_address", "mem",
  4139   "float_top", "ftcon:", "flt",
  4140   "double_top", "dblcon:", "dbl",
  4141   "bottom"
  4142 };
  4144 void TypeFunc::print_flattened() const {
  4145   if( _range->_cnt <= Parms )
  4146     tty->print("void");
  4147   else {
  4148     uint i;
  4149     for (i = Parms; i < _range->_cnt-1; i++)
  4150       tty->print("%s/",flat_type_msg[_range->field_at(i)->base()]);
  4151     tty->print("%s",flat_type_msg[_range->field_at(i)->base()]);
  4153   tty->print(" ( ");
  4154   if (Parms < _domain->_cnt)
  4155     tty->print("%s",flat_type_msg[_domain->field_at(Parms)->base()]);
  4156   for (uint i = Parms+1; i < _domain->_cnt; i++)
  4157     tty->print(", %s",flat_type_msg[_domain->field_at(i)->base()]);
  4158   tty->print(" )");
  4160 #endif
  4162 //------------------------------singleton--------------------------------------
  4163 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  4164 // constants (Ldi nodes).  Singletons are integer, float or double constants
  4165 // or a single symbol.
  4166 bool TypeFunc::singleton(void) const {
  4167   return false;                 // Never a singleton
  4170 bool TypeFunc::empty(void) const {
  4171   return false;                 // Never empty
  4175 BasicType TypeFunc::return_type() const{
  4176   if (range()->cnt() == TypeFunc::Parms) {
  4177     return T_VOID;
  4179   return range()->field_at(TypeFunc::Parms)->basic_type();

mercurial