src/share/vm/utilities/globalDefinitions.hpp

Tue, 09 Oct 2012 10:11:38 +0200

author
roland
date
Tue, 09 Oct 2012 10:11:38 +0200
changeset 4159
8e47bac5643a
parent 4037
da91efe96a93
child 4277
e4f764ddb06a
permissions
-rw-r--r--

7054512: Compress class pointers after perm gen removal
Summary: support of compress class pointers in the compilers.
Reviewed-by: kvn, twisti

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
    26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
    28 #ifndef __STDC_FORMAT_MACROS
    29 #define __STDC_FORMAT_MACROS
    30 #endif
    32 #ifdef TARGET_COMPILER_gcc
    33 # include "utilities/globalDefinitions_gcc.hpp"
    34 #endif
    35 #ifdef TARGET_COMPILER_visCPP
    36 # include "utilities/globalDefinitions_visCPP.hpp"
    37 #endif
    38 #ifdef TARGET_COMPILER_sparcWorks
    39 # include "utilities/globalDefinitions_sparcWorks.hpp"
    40 #endif
    42 #include "utilities/macros.hpp"
    44 // This file holds all globally used constants & types, class (forward)
    45 // declarations and a few frequently used utility functions.
    47 //----------------------------------------------------------------------------------------------------
    48 // Constants
    50 const int LogBytesPerShort   = 1;
    51 const int LogBytesPerInt     = 2;
    52 #ifdef _LP64
    53 const int LogBytesPerWord    = 3;
    54 #else
    55 const int LogBytesPerWord    = 2;
    56 #endif
    57 const int LogBytesPerLong    = 3;
    59 const int BytesPerShort      = 1 << LogBytesPerShort;
    60 const int BytesPerInt        = 1 << LogBytesPerInt;
    61 const int BytesPerWord       = 1 << LogBytesPerWord;
    62 const int BytesPerLong       = 1 << LogBytesPerLong;
    64 const int LogBitsPerByte     = 3;
    65 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
    66 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
    67 const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
    68 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
    70 const int BitsPerByte        = 1 << LogBitsPerByte;
    71 const int BitsPerShort       = 1 << LogBitsPerShort;
    72 const int BitsPerInt         = 1 << LogBitsPerInt;
    73 const int BitsPerWord        = 1 << LogBitsPerWord;
    74 const int BitsPerLong        = 1 << LogBitsPerLong;
    76 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
    77 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
    79 const int WordsPerLong       = 2;       // Number of stack entries for longs
    81 const int oopSize            = sizeof(char*); // Full-width oop
    82 extern int heapOopSize;                       // Oop within a java object
    83 const int wordSize           = sizeof(char*);
    84 const int longSize           = sizeof(jlong);
    85 const int jintSize           = sizeof(jint);
    86 const int size_tSize         = sizeof(size_t);
    88 const int BytesPerOop        = BytesPerWord;  // Full-width oop
    90 extern int LogBytesPerHeapOop;                // Oop within a java object
    91 extern int LogBitsPerHeapOop;
    92 extern int BytesPerHeapOop;
    93 extern int BitsPerHeapOop;
    95 // Oop encoding heap max
    96 extern uint64_t OopEncodingHeapMax;
    98 const int BitsPerJavaInteger = 32;
    99 const int BitsPerJavaLong    = 64;
   100 const int BitsPerSize_t      = size_tSize * BitsPerByte;
   102 // Size of a char[] needed to represent a jint as a string in decimal.
   103 const int jintAsStringSize = 12;
   105 // In fact this should be
   106 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
   107 // see os::set_memory_serialize_page()
   108 #ifdef _LP64
   109 const int SerializePageShiftCount = 4;
   110 #else
   111 const int SerializePageShiftCount = 3;
   112 #endif
   114 // An opaque struct of heap-word width, so that HeapWord* can be a generic
   115 // pointer into the heap.  We require that object sizes be measured in
   116 // units of heap words, so that that
   117 //   HeapWord* hw;
   118 //   hw += oop(hw)->foo();
   119 // works, where foo is a method (like size or scavenge) that returns the
   120 // object size.
   121 class HeapWord {
   122   friend class VMStructs;
   123  private:
   124   char* i;
   125 #ifndef PRODUCT
   126  public:
   127   char* value() { return i; }
   128 #endif
   129 };
   131 // Analogous opaque struct for metadata allocated from
   132 // metaspaces.
   133 class MetaWord {
   134   friend class VMStructs;
   135  private:
   136   char* i;
   137 };
   139 // HeapWordSize must be 2^LogHeapWordSize.
   140 const int HeapWordSize        = sizeof(HeapWord);
   141 #ifdef _LP64
   142 const int LogHeapWordSize     = 3;
   143 #else
   144 const int LogHeapWordSize     = 2;
   145 #endif
   146 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
   147 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
   149 // The larger HeapWordSize for 64bit requires larger heaps
   150 // for the same application running in 64bit.  See bug 4967770.
   151 // The minimum alignment to a heap word size is done.  Other
   152 // parts of the memory system may required additional alignment
   153 // and are responsible for those alignments.
   154 #ifdef _LP64
   155 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
   156 #else
   157 #define ScaleForWordSize(x) (x)
   158 #endif
   160 // The minimum number of native machine words necessary to contain "byte_size"
   161 // bytes.
   162 inline size_t heap_word_size(size_t byte_size) {
   163   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
   164 }
   167 const size_t K                  = 1024;
   168 const size_t M                  = K*K;
   169 const size_t G                  = M*K;
   170 const size_t HWperKB            = K / sizeof(HeapWord);
   172 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
   173 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
   175 // Constants for converting from a base unit to milli-base units.  For
   176 // example from seconds to milliseconds and microseconds
   178 const int MILLIUNITS    = 1000;         // milli units per base unit
   179 const int MICROUNITS    = 1000000;      // micro units per base unit
   180 const int NANOUNITS     = 1000000000;   // nano units per base unit
   182 const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
   183 const jint  NANOSECS_PER_MILLISEC = 1000000;
   185 inline const char* proper_unit_for_byte_size(size_t s) {
   186 #ifdef _LP64
   187   if (s >= 10*G) {
   188     return "G";
   189   }
   190 #endif
   191   if (s >= 10*M) {
   192     return "M";
   193   } else if (s >= 10*K) {
   194     return "K";
   195   } else {
   196     return "B";
   197   }
   198 }
   200 template <class T>
   201 inline T byte_size_in_proper_unit(T s) {
   202 #ifdef _LP64
   203   if (s >= 10*G) {
   204     return (T)(s/G);
   205   }
   206 #endif
   207   if (s >= 10*M) {
   208     return (T)(s/M);
   209   } else if (s >= 10*K) {
   210     return (T)(s/K);
   211   } else {
   212     return s;
   213   }
   214 }
   216 //----------------------------------------------------------------------------------------------------
   217 // VM type definitions
   219 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
   220 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
   222 typedef intptr_t  intx;
   223 typedef uintptr_t uintx;
   225 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
   226 const intx  max_intx  = (uintx)min_intx - 1;
   227 const uintx max_uintx = (uintx)-1;
   229 // Table of values:
   230 //      sizeof intx         4               8
   231 // min_intx             0x80000000      0x8000000000000000
   232 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
   233 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
   235 typedef unsigned int uint;   NEEDS_CLEANUP
   238 //----------------------------------------------------------------------------------------------------
   239 // Java type definitions
   241 // All kinds of 'plain' byte addresses
   242 typedef   signed char s_char;
   243 typedef unsigned char u_char;
   244 typedef u_char*       address;
   245 typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
   246                                     // except for some implementations of a C++
   247                                     // linkage pointer to function. Should never
   248                                     // need one of those to be placed in this
   249                                     // type anyway.
   251 //  Utility functions to "portably" (?) bit twiddle pointers
   252 //  Where portable means keep ANSI C++ compilers quiet
   254 inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
   255 inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
   257 //  Utility functions to "portably" make cast to/from function pointers.
   259 inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
   260 inline address_word  castable_address(address x)              { return address_word(x) ; }
   261 inline address_word  castable_address(void* x)                { return address_word(x) ; }
   263 // Pointer subtraction.
   264 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
   265 // the range we might need to find differences from one end of the heap
   266 // to the other.
   267 // A typical use might be:
   268 //     if (pointer_delta(end(), top()) >= size) {
   269 //       // enough room for an object of size
   270 //       ...
   271 // and then additions like
   272 //       ... top() + size ...
   273 // are safe because we know that top() is at least size below end().
   274 inline size_t pointer_delta(const void* left,
   275                             const void* right,
   276                             size_t element_size) {
   277   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
   278 }
   279 // A version specialized for HeapWord*'s.
   280 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
   281   return pointer_delta(left, right, sizeof(HeapWord));
   282 }
   283 // A version specialized for MetaWord*'s.
   284 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
   285   return pointer_delta(left, right, sizeof(MetaWord));
   286 }
   288 //
   289 // ANSI C++ does not allow casting from one pointer type to a function pointer
   290 // directly without at best a warning. This macro accomplishes it silently
   291 // In every case that is present at this point the value be cast is a pointer
   292 // to a C linkage function. In somecase the type used for the cast reflects
   293 // that linkage and a picky compiler would not complain. In other cases because
   294 // there is no convenient place to place a typedef with extern C linkage (i.e
   295 // a platform dependent header file) it doesn't. At this point no compiler seems
   296 // picky enough to catch these instances (which are few). It is possible that
   297 // using templates could fix these for all cases. This use of templates is likely
   298 // so far from the middle of the road that it is likely to be problematic in
   299 // many C++ compilers.
   300 //
   301 #define CAST_TO_FN_PTR(func_type, value) ((func_type)(castable_address(value)))
   302 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
   304 // Unsigned byte types for os and stream.hpp
   306 // Unsigned one, two, four and eigth byte quantities used for describing
   307 // the .class file format. See JVM book chapter 4.
   309 typedef jubyte  u1;
   310 typedef jushort u2;
   311 typedef juint   u4;
   312 typedef julong  u8;
   314 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
   315 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
   316 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
   317 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
   319 typedef jbyte  s1;
   320 typedef jshort s2;
   321 typedef jint   s4;
   322 typedef jlong  s8;
   324 //----------------------------------------------------------------------------------------------------
   325 // JVM spec restrictions
   327 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
   330 //----------------------------------------------------------------------------------------------------
   331 // HotSwap - for JVMTI   aka Class File Replacement and PopFrame
   332 //
   333 // Determines whether on-the-fly class replacement and frame popping are enabled.
   335 #define HOTSWAP
   337 //----------------------------------------------------------------------------------------------------
   338 // Object alignment, in units of HeapWords.
   339 //
   340 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
   341 // reference fields can be naturally aligned.
   343 extern int MinObjAlignment;
   344 extern int MinObjAlignmentInBytes;
   345 extern int MinObjAlignmentInBytesMask;
   347 extern int LogMinObjAlignment;
   348 extern int LogMinObjAlignmentInBytes;
   350 const int LogKlassAlignmentInBytes = 3;
   351 const int LogKlassAlignment        = LogKlassAlignmentInBytes - LogHeapWordSize;
   352 const int KlassAlignmentInBytes    = 1 << LogKlassAlignmentInBytes;
   353 const int KlassAlignment           = KlassAlignmentInBytes / HeapWordSize;
   355 // Klass encoding metaspace max size
   356 const uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
   358 // Machine dependent stuff
   360 #ifdef TARGET_ARCH_x86
   361 # include "globalDefinitions_x86.hpp"
   362 #endif
   363 #ifdef TARGET_ARCH_sparc
   364 # include "globalDefinitions_sparc.hpp"
   365 #endif
   366 #ifdef TARGET_ARCH_zero
   367 # include "globalDefinitions_zero.hpp"
   368 #endif
   369 #ifdef TARGET_ARCH_arm
   370 # include "globalDefinitions_arm.hpp"
   371 #endif
   372 #ifdef TARGET_ARCH_ppc
   373 # include "globalDefinitions_ppc.hpp"
   374 #endif
   377 // The byte alignment to be used by Arena::Amalloc.  See bugid 4169348.
   378 // Note: this value must be a power of 2
   380 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
   382 // Signed variants of alignment helpers.  There are two versions of each, a macro
   383 // for use in places like enum definitions that require compile-time constant
   384 // expressions and a function for all other places so as to get type checking.
   386 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
   388 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
   389   return align_size_up_(size, alignment);
   390 }
   392 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
   394 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
   395   return align_size_down_(size, alignment);
   396 }
   398 // Align objects by rounding up their size, in HeapWord units.
   400 #define align_object_size_(size) align_size_up_(size, MinObjAlignment)
   402 inline intptr_t align_object_size(intptr_t size) {
   403   return align_size_up(size, MinObjAlignment);
   404 }
   406 inline bool is_object_aligned(intptr_t addr) {
   407   return addr == align_object_size(addr);
   408 }
   410 // Pad out certain offsets to jlong alignment, in HeapWord units.
   412 inline intptr_t align_object_offset(intptr_t offset) {
   413   return align_size_up(offset, HeapWordsPerLong);
   414 }
   416 // The expected size in bytes of a cache line, used to pad data structures.
   417 #define DEFAULT_CACHE_LINE_SIZE 64
   419 // Bytes needed to pad type to avoid cache-line sharing; alignment should be the
   420 // expected cache line size (a power of two).  The first addend avoids sharing
   421 // when the start address is not a multiple of alignment; the second maintains
   422 // alignment of starting addresses that happen to be a multiple.
   423 #define PADDING_SIZE(type, alignment)                           \
   424   ((alignment) + align_size_up_(sizeof(type), alignment))
   426 // Templates to create a subclass padded to avoid cache line sharing.  These are
   427 // effective only when applied to derived-most (leaf) classes.
   429 // When no args are passed to the base ctor.
   430 template <class T, size_t alignment = DEFAULT_CACHE_LINE_SIZE>
   431 class Padded: public T {
   432 private:
   433   char _pad_buf_[PADDING_SIZE(T, alignment)];
   434 };
   436 // When either 0 or 1 args may be passed to the base ctor.
   437 template <class T, typename Arg1T, size_t alignment = DEFAULT_CACHE_LINE_SIZE>
   438 class Padded01: public T {
   439 public:
   440   Padded01(): T() { }
   441   Padded01(Arg1T arg1): T(arg1) { }
   442 private:
   443   char _pad_buf_[PADDING_SIZE(T, alignment)];
   444 };
   446 //----------------------------------------------------------------------------------------------------
   447 // Utility macros for compilers
   448 // used to silence compiler warnings
   450 #define Unused_Variable(var) var
   453 //----------------------------------------------------------------------------------------------------
   454 // Miscellaneous
   456 // 6302670 Eliminate Hotspot __fabsf dependency
   457 // All fabs() callers should call this function instead, which will implicitly
   458 // convert the operand to double, avoiding a dependency on __fabsf which
   459 // doesn't exist in early versions of Solaris 8.
   460 inline double fabsd(double value) {
   461   return fabs(value);
   462 }
   464 inline jint low (jlong value)                    { return jint(value); }
   465 inline jint high(jlong value)                    { return jint(value >> 32); }
   467 // the fancy casts are a hopefully portable way
   468 // to do unsigned 32 to 64 bit type conversion
   469 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
   470                                                    *value |= (jlong)(julong)(juint)low; }
   472 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
   473                                                    *value |= (jlong)high       << 32; }
   475 inline jlong jlong_from(jint h, jint l) {
   476   jlong result = 0; // initialization to avoid warning
   477   set_high(&result, h);
   478   set_low(&result,  l);
   479   return result;
   480 }
   482 union jlong_accessor {
   483   jint  words[2];
   484   jlong long_value;
   485 };
   487 void basic_types_init(); // cannot define here; uses assert
   490 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
   491 enum BasicType {
   492   T_BOOLEAN     =  4,
   493   T_CHAR        =  5,
   494   T_FLOAT       =  6,
   495   T_DOUBLE      =  7,
   496   T_BYTE        =  8,
   497   T_SHORT       =  9,
   498   T_INT         = 10,
   499   T_LONG        = 11,
   500   T_OBJECT      = 12,
   501   T_ARRAY       = 13,
   502   T_VOID        = 14,
   503   T_ADDRESS     = 15,
   504   T_NARROWOOP   = 16,
   505   T_METADATA    = 17,
   506   T_NARROWKLASS = 18,
   507   T_CONFLICT    = 19, // for stack value type with conflicting contents
   508   T_ILLEGAL     = 99
   509 };
   511 inline bool is_java_primitive(BasicType t) {
   512   return T_BOOLEAN <= t && t <= T_LONG;
   513 }
   515 inline bool is_subword_type(BasicType t) {
   516   // these guys are processed exactly like T_INT in calling sequences:
   517   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
   518 }
   520 inline bool is_signed_subword_type(BasicType t) {
   521   return (t == T_BYTE || t == T_SHORT);
   522 }
   524 // Convert a char from a classfile signature to a BasicType
   525 inline BasicType char2type(char c) {
   526   switch( c ) {
   527   case 'B': return T_BYTE;
   528   case 'C': return T_CHAR;
   529   case 'D': return T_DOUBLE;
   530   case 'F': return T_FLOAT;
   531   case 'I': return T_INT;
   532   case 'J': return T_LONG;
   533   case 'S': return T_SHORT;
   534   case 'Z': return T_BOOLEAN;
   535   case 'V': return T_VOID;
   536   case 'L': return T_OBJECT;
   537   case '[': return T_ARRAY;
   538   }
   539   return T_ILLEGAL;
   540 }
   542 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
   543 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
   544 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
   545 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
   546 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
   547 extern BasicType name2type(const char* name);
   549 // Auxilary math routines
   550 // least common multiple
   551 extern size_t lcm(size_t a, size_t b);
   554 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
   555 enum BasicTypeSize {
   556   T_BOOLEAN_size     = 1,
   557   T_CHAR_size        = 1,
   558   T_FLOAT_size       = 1,
   559   T_DOUBLE_size      = 2,
   560   T_BYTE_size        = 1,
   561   T_SHORT_size       = 1,
   562   T_INT_size         = 1,
   563   T_LONG_size        = 2,
   564   T_OBJECT_size      = 1,
   565   T_ARRAY_size       = 1,
   566   T_NARROWOOP_size   = 1,
   567   T_NARROWKLASS_size = 1,
   568   T_VOID_size        = 0
   569 };
   572 // maps a BasicType to its instance field storage type:
   573 // all sub-word integral types are widened to T_INT
   574 extern BasicType type2field[T_CONFLICT+1];
   575 extern BasicType type2wfield[T_CONFLICT+1];
   578 // size in bytes
   579 enum ArrayElementSize {
   580   T_BOOLEAN_aelem_bytes     = 1,
   581   T_CHAR_aelem_bytes        = 2,
   582   T_FLOAT_aelem_bytes       = 4,
   583   T_DOUBLE_aelem_bytes      = 8,
   584   T_BYTE_aelem_bytes        = 1,
   585   T_SHORT_aelem_bytes       = 2,
   586   T_INT_aelem_bytes         = 4,
   587   T_LONG_aelem_bytes        = 8,
   588 #ifdef _LP64
   589   T_OBJECT_aelem_bytes      = 8,
   590   T_ARRAY_aelem_bytes       = 8,
   591 #else
   592   T_OBJECT_aelem_bytes      = 4,
   593   T_ARRAY_aelem_bytes       = 4,
   594 #endif
   595   T_NARROWOOP_aelem_bytes   = 4,
   596   T_NARROWKLASS_aelem_bytes = 4,
   597   T_VOID_aelem_bytes        = 0
   598 };
   600 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
   601 #ifdef ASSERT
   602 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
   603 #else
   604 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
   605 #endif
   608 // JavaValue serves as a container for arbitrary Java values.
   610 class JavaValue {
   612  public:
   613   typedef union JavaCallValue {
   614     jfloat   f;
   615     jdouble  d;
   616     jint     i;
   617     jlong    l;
   618     jobject  h;
   619   } JavaCallValue;
   621  private:
   622   BasicType _type;
   623   JavaCallValue _value;
   625  public:
   626   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
   628   JavaValue(jfloat value) {
   629     _type    = T_FLOAT;
   630     _value.f = value;
   631   }
   633   JavaValue(jdouble value) {
   634     _type    = T_DOUBLE;
   635     _value.d = value;
   636   }
   638  jfloat get_jfloat() const { return _value.f; }
   639  jdouble get_jdouble() const { return _value.d; }
   640  jint get_jint() const { return _value.i; }
   641  jlong get_jlong() const { return _value.l; }
   642  jobject get_jobject() const { return _value.h; }
   643  JavaCallValue* get_value_addr() { return &_value; }
   644  BasicType get_type() const { return _type; }
   646  void set_jfloat(jfloat f) { _value.f = f;}
   647  void set_jdouble(jdouble d) { _value.d = d;}
   648  void set_jint(jint i) { _value.i = i;}
   649  void set_jlong(jlong l) { _value.l = l;}
   650  void set_jobject(jobject h) { _value.h = h;}
   651  void set_type(BasicType t) { _type = t; }
   653  jboolean get_jboolean() const { return (jboolean) (_value.i);}
   654  jbyte get_jbyte() const { return (jbyte) (_value.i);}
   655  jchar get_jchar() const { return (jchar) (_value.i);}
   656  jshort get_jshort() const { return (jshort) (_value.i);}
   658 };
   661 #define STACK_BIAS      0
   662 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
   663 // in order to extend the reach of the stack pointer.
   664 #if defined(SPARC) && defined(_LP64)
   665 #undef STACK_BIAS
   666 #define STACK_BIAS      0x7ff
   667 #endif
   670 // TosState describes the top-of-stack state before and after the execution of
   671 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
   672 // registers. The TosState corresponds to the 'machine represention' of this cached
   673 // value. There's 4 states corresponding to the JAVA types int, long, float & double
   674 // as well as a 5th state in case the top-of-stack value is actually on the top
   675 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
   676 // state when it comes to machine representation but is used separately for (oop)
   677 // type specific operations (e.g. verification code).
   679 enum TosState {         // describes the tos cache contents
   680   btos = 0,             // byte, bool tos cached
   681   ctos = 1,             // char tos cached
   682   stos = 2,             // short tos cached
   683   itos = 3,             // int tos cached
   684   ltos = 4,             // long tos cached
   685   ftos = 5,             // float tos cached
   686   dtos = 6,             // double tos cached
   687   atos = 7,             // object cached
   688   vtos = 8,             // tos not cached
   689   number_of_states,
   690   ilgl                  // illegal state: should not occur
   691 };
   694 inline TosState as_TosState(BasicType type) {
   695   switch (type) {
   696     case T_BYTE   : return btos;
   697     case T_BOOLEAN: return btos; // FIXME: Add ztos
   698     case T_CHAR   : return ctos;
   699     case T_SHORT  : return stos;
   700     case T_INT    : return itos;
   701     case T_LONG   : return ltos;
   702     case T_FLOAT  : return ftos;
   703     case T_DOUBLE : return dtos;
   704     case T_VOID   : return vtos;
   705     case T_ARRAY  : // fall through
   706     case T_OBJECT : return atos;
   707   }
   708   return ilgl;
   709 }
   711 inline BasicType as_BasicType(TosState state) {
   712   switch (state) {
   713     //case ztos: return T_BOOLEAN;//FIXME
   714     case btos : return T_BYTE;
   715     case ctos : return T_CHAR;
   716     case stos : return T_SHORT;
   717     case itos : return T_INT;
   718     case ltos : return T_LONG;
   719     case ftos : return T_FLOAT;
   720     case dtos : return T_DOUBLE;
   721     case atos : return T_OBJECT;
   722     case vtos : return T_VOID;
   723   }
   724   return T_ILLEGAL;
   725 }
   728 // Helper function to convert BasicType info into TosState
   729 // Note: Cannot define here as it uses global constant at the time being.
   730 TosState as_TosState(BasicType type);
   733 // ReferenceType is used to distinguish between java/lang/ref/Reference subclasses
   735 enum ReferenceType {
   736  REF_NONE,      // Regular class
   737  REF_OTHER,     // Subclass of java/lang/ref/Reference, but not subclass of one of the classes below
   738  REF_SOFT,      // Subclass of java/lang/ref/SoftReference
   739  REF_WEAK,      // Subclass of java/lang/ref/WeakReference
   740  REF_FINAL,     // Subclass of java/lang/ref/FinalReference
   741  REF_PHANTOM    // Subclass of java/lang/ref/PhantomReference
   742 };
   745 // JavaThreadState keeps track of which part of the code a thread is executing in. This
   746 // information is needed by the safepoint code.
   747 //
   748 // There are 4 essential states:
   749 //
   750 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
   751 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
   752 //  _thread_in_vm       : Executing in the vm
   753 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
   754 //
   755 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
   756 // a transition from one state to another. These extra states makes it possible for the safepoint code to
   757 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
   758 //
   759 // Given a state, the xxx_trans state can always be found by adding 1.
   760 //
   761 enum JavaThreadState {
   762   _thread_uninitialized     =  0, // should never happen (missing initialization)
   763   _thread_new               =  2, // just starting up, i.e., in process of being initialized
   764   _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
   765   _thread_in_native         =  4, // running in native code
   766   _thread_in_native_trans   =  5, // corresponding transition state
   767   _thread_in_vm             =  6, // running in VM
   768   _thread_in_vm_trans       =  7, // corresponding transition state
   769   _thread_in_Java           =  8, // running in Java or in stub code
   770   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
   771   _thread_blocked           = 10, // blocked in vm
   772   _thread_blocked_trans     = 11, // corresponding transition state
   773   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
   774 };
   777 // Handy constants for deciding which compiler mode to use.
   778 enum MethodCompilation {
   779   InvocationEntryBci = -1,     // i.e., not a on-stack replacement compilation
   780   InvalidOSREntryBci = -2
   781 };
   783 // Enumeration to distinguish tiers of compilation
   784 enum CompLevel {
   785   CompLevel_any               = -1,
   786   CompLevel_all               = -1,
   787   CompLevel_none              = 0,         // Interpreter
   788   CompLevel_simple            = 1,         // C1
   789   CompLevel_limited_profile   = 2,         // C1, invocation & backedge counters
   790   CompLevel_full_profile      = 3,         // C1, invocation & backedge counters + mdo
   791   CompLevel_full_optimization = 4,         // C2 or Shark
   793 #if defined(COMPILER2) || defined(SHARK)
   794   CompLevel_highest_tier      = CompLevel_full_optimization,  // pure C2 and tiered
   795 #elif defined(COMPILER1)
   796   CompLevel_highest_tier      = CompLevel_simple,             // pure C1
   797 #else
   798   CompLevel_highest_tier      = CompLevel_none,
   799 #endif
   801 #if defined(TIERED)
   802   CompLevel_initial_compile   = CompLevel_full_profile        // tiered
   803 #elif defined(COMPILER1)
   804   CompLevel_initial_compile   = CompLevel_simple              // pure C1
   805 #elif defined(COMPILER2) || defined(SHARK)
   806   CompLevel_initial_compile   = CompLevel_full_optimization   // pure C2
   807 #else
   808   CompLevel_initial_compile   = CompLevel_none
   809 #endif
   810 };
   812 inline bool is_c1_compile(int comp_level) {
   813   return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization;
   814 }
   816 inline bool is_c2_compile(int comp_level) {
   817   return comp_level == CompLevel_full_optimization;
   818 }
   820 inline bool is_highest_tier_compile(int comp_level) {
   821   return comp_level == CompLevel_highest_tier;
   822 }
   824 //----------------------------------------------------------------------------------------------------
   825 // 'Forward' declarations of frequently used classes
   826 // (in order to reduce interface dependencies & reduce
   827 // number of unnecessary compilations after changes)
   829 class symbolTable;
   830 class ClassFileStream;
   832 class Event;
   834 class Thread;
   835 class  VMThread;
   836 class  JavaThread;
   837 class Threads;
   839 class VM_Operation;
   840 class VMOperationQueue;
   842 class CodeBlob;
   843 class  nmethod;
   844 class  OSRAdapter;
   845 class  I2CAdapter;
   846 class  C2IAdapter;
   847 class CompiledIC;
   848 class relocInfo;
   849 class ScopeDesc;
   850 class PcDesc;
   852 class Recompiler;
   853 class Recompilee;
   854 class RecompilationPolicy;
   855 class RFrame;
   856 class  CompiledRFrame;
   857 class  InterpretedRFrame;
   859 class frame;
   861 class vframe;
   862 class   javaVFrame;
   863 class     interpretedVFrame;
   864 class     compiledVFrame;
   865 class     deoptimizedVFrame;
   866 class   externalVFrame;
   867 class     entryVFrame;
   869 class RegisterMap;
   871 class Mutex;
   872 class Monitor;
   873 class BasicLock;
   874 class BasicObjectLock;
   876 class PeriodicTask;
   878 class JavaCallWrapper;
   880 class   oopDesc;
   881 class   metaDataOopDesc;
   883 class NativeCall;
   885 class zone;
   887 class StubQueue;
   889 class outputStream;
   891 class ResourceArea;
   893 class DebugInformationRecorder;
   894 class ScopeValue;
   895 class CompressedStream;
   896 class   DebugInfoReadStream;
   897 class   DebugInfoWriteStream;
   898 class LocationValue;
   899 class ConstantValue;
   900 class IllegalValue;
   902 class PrivilegedElement;
   903 class MonitorArray;
   905 class MonitorInfo;
   907 class OffsetClosure;
   908 class OopMapCache;
   909 class InterpreterOopMap;
   910 class OopMapCacheEntry;
   911 class OSThread;
   913 typedef int (*OSThreadStartFunc)(void*);
   915 class Space;
   917 class JavaValue;
   918 class methodHandle;
   919 class JavaCallArguments;
   921 // Basic support for errors (general debug facilities not defined at this point fo the include phase)
   923 extern void basic_fatal(const char* msg);
   926 //----------------------------------------------------------------------------------------------------
   927 // Special constants for debugging
   929 const jint     badInt           = -3;                       // generic "bad int" value
   930 const long     badAddressVal    = -2;                       // generic "bad address" value
   931 const long     badOopVal        = -1;                       // generic "bad oop" value
   932 const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
   933 const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
   934 const int      badResourceValue = 0xAB;                     // value used to zap resource area
   935 const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
   936 const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
   937 const intptr_t badJNIHandleVal  = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
   938 const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
   939 const juint    badMetaWordVal   = 0xBAADFADE;               // value used to zap metadata heap after GC
   940 const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
   941 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
   944 // (These must be implemented as #defines because C++ compilers are
   945 // not obligated to inline non-integral constants!)
   946 #define       badAddress        ((address)::badAddressVal)
   947 #define       badOop            ((oop)::badOopVal)
   948 #define       badHeapWord       (::badHeapWordVal)
   949 #define       badJNIHandle      ((oop)::badJNIHandleVal)
   951 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
   952 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
   954 //----------------------------------------------------------------------------------------------------
   955 // Utility functions for bitfield manipulations
   957 const intptr_t AllBits    = ~0; // all bits set in a word
   958 const intptr_t NoBits     =  0; // no bits set in a word
   959 const jlong    NoLongBits =  0; // no bits set in a long
   960 const intptr_t OneBit     =  1; // only right_most bit set in a word
   962 // get a word with the n.th or the right-most or left-most n bits set
   963 // (note: #define used only so that they can be used in enum constant definitions)
   964 #define nth_bit(n)        (n >= BitsPerWord ? 0 : OneBit << (n))
   965 #define right_n_bits(n)   (nth_bit(n) - 1)
   966 #define left_n_bits(n)    (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
   968 // bit-operations using a mask m
   969 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
   970 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
   971 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
   972 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
   973 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
   975 // bit-operations using the n.th bit
   976 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
   977 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
   978 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
   980 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
   981 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
   982   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
   983 }
   986 //----------------------------------------------------------------------------------------------------
   987 // Utility functions for integers
   989 // Avoid use of global min/max macros which may cause unwanted double
   990 // evaluation of arguments.
   991 #ifdef max
   992 #undef max
   993 #endif
   995 #ifdef min
   996 #undef min
   997 #endif
   999 #define max(a,b) Do_not_use_max_use_MAX2_instead
  1000 #define min(a,b) Do_not_use_min_use_MIN2_instead
  1002 // It is necessary to use templates here. Having normal overloaded
  1003 // functions does not work because it is necessary to provide both 32-
  1004 // and 64-bit overloaded functions, which does not work, and having
  1005 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
  1006 // will be even more error-prone than macros.
  1007 template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
  1008 template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
  1009 template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
  1010 template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
  1011 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
  1012 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
  1014 template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
  1016 // true if x is a power of 2, false otherwise
  1017 inline bool is_power_of_2(intptr_t x) {
  1018   return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
  1021 // long version of is_power_of_2
  1022 inline bool is_power_of_2_long(jlong x) {
  1023   return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
  1026 //* largest i such that 2^i <= x
  1027 //  A negative value of 'x' will return '31'
  1028 inline int log2_intptr(intptr_t x) {
  1029   int i = -1;
  1030   uintptr_t p =  1;
  1031   while (p != 0 && p <= (uintptr_t)x) {
  1032     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
  1033     i++; p *= 2;
  1035   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
  1036   // (if p = 0 then overflow occurred and i = 31)
  1037   return i;
  1040 //* largest i such that 2^i <= x
  1041 //  A negative value of 'x' will return '63'
  1042 inline int log2_long(jlong x) {
  1043   int i = -1;
  1044   julong p =  1;
  1045   while (p != 0 && p <= (julong)x) {
  1046     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
  1047     i++; p *= 2;
  1049   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
  1050   // (if p = 0 then overflow occurred and i = 63)
  1051   return i;
  1054 //* the argument must be exactly a power of 2
  1055 inline int exact_log2(intptr_t x) {
  1056   #ifdef ASSERT
  1057     if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
  1058   #endif
  1059   return log2_intptr(x);
  1062 //* the argument must be exactly a power of 2
  1063 inline int exact_log2_long(jlong x) {
  1064   #ifdef ASSERT
  1065     if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
  1066   #endif
  1067   return log2_long(x);
  1071 // returns integer round-up to the nearest multiple of s (s must be a power of two)
  1072 inline intptr_t round_to(intptr_t x, uintx s) {
  1073   #ifdef ASSERT
  1074     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
  1075   #endif
  1076   const uintx m = s - 1;
  1077   return mask_bits(x + m, ~m);
  1080 // returns integer round-down to the nearest multiple of s (s must be a power of two)
  1081 inline intptr_t round_down(intptr_t x, uintx s) {
  1082   #ifdef ASSERT
  1083     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
  1084   #endif
  1085   const uintx m = s - 1;
  1086   return mask_bits(x, ~m);
  1090 inline bool is_odd (intx x) { return x & 1;      }
  1091 inline bool is_even(intx x) { return !is_odd(x); }
  1093 // "to" should be greater than "from."
  1094 inline intx byte_size(void* from, void* to) {
  1095   return (address)to - (address)from;
  1098 //----------------------------------------------------------------------------------------------------
  1099 // Avoid non-portable casts with these routines (DEPRECATED)
  1101 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
  1102 //       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
  1104 // Given sequence of four bytes, build into a 32-bit word
  1105 // following the conventions used in class files.
  1106 // On the 386, this could be realized with a simple address cast.
  1107 //
  1109 // This routine takes eight bytes:
  1110 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
  1111   return  (( u8(c1) << 56 )  &  ( u8(0xff) << 56 ))
  1112        |  (( u8(c2) << 48 )  &  ( u8(0xff) << 48 ))
  1113        |  (( u8(c3) << 40 )  &  ( u8(0xff) << 40 ))
  1114        |  (( u8(c4) << 32 )  &  ( u8(0xff) << 32 ))
  1115        |  (( u8(c5) << 24 )  &  ( u8(0xff) << 24 ))
  1116        |  (( u8(c6) << 16 )  &  ( u8(0xff) << 16 ))
  1117        |  (( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 ))
  1118        |  (( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 ));
  1121 // This routine takes four bytes:
  1122 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
  1123   return  (( u4(c1) << 24 )  &  0xff000000)
  1124        |  (( u4(c2) << 16 )  &  0x00ff0000)
  1125        |  (( u4(c3) <<  8 )  &  0x0000ff00)
  1126        |  (( u4(c4) <<  0 )  &  0x000000ff);
  1129 // And this one works if the four bytes are contiguous in memory:
  1130 inline u4 build_u4_from( u1* p ) {
  1131   return  build_u4_from( p[0], p[1], p[2], p[3] );
  1134 // Ditto for two-byte ints:
  1135 inline u2 build_u2_from( u1 c1, u1 c2 ) {
  1136   return  u2((( u2(c1) <<  8 )  &  0xff00)
  1137           |  (( u2(c2) <<  0 )  &  0x00ff));
  1140 // And this one works if the two bytes are contiguous in memory:
  1141 inline u2 build_u2_from( u1* p ) {
  1142   return  build_u2_from( p[0], p[1] );
  1145 // Ditto for floats:
  1146 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
  1147   u4 u = build_u4_from( c1, c2, c3, c4 );
  1148   return  *(jfloat*)&u;
  1151 inline jfloat build_float_from( u1* p ) {
  1152   u4 u = build_u4_from( p );
  1153   return  *(jfloat*)&u;
  1157 // now (64-bit) longs
  1159 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
  1160   return  (( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 ))
  1161        |  (( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 ))
  1162        |  (( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 ))
  1163        |  (( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 ))
  1164        |  (( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 ))
  1165        |  (( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 ))
  1166        |  (( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 ))
  1167        |  (( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 ));
  1170 inline jlong build_long_from( u1* p ) {
  1171   return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
  1175 // Doubles, too!
  1176 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
  1177   jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
  1178   return  *(jdouble*)&u;
  1181 inline jdouble build_double_from( u1* p ) {
  1182   jlong u = build_long_from( p );
  1183   return  *(jdouble*)&u;
  1187 // Portable routines to go the other way:
  1189 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
  1190   c1 = u1(x >> 8);
  1191   c2 = u1(x);
  1194 inline void explode_short_to( u2 x, u1* p ) {
  1195   explode_short_to( x, p[0], p[1]);
  1198 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
  1199   c1 = u1(x >> 24);
  1200   c2 = u1(x >> 16);
  1201   c3 = u1(x >>  8);
  1202   c4 = u1(x);
  1205 inline void explode_int_to( u4 x, u1* p ) {
  1206   explode_int_to( x, p[0], p[1], p[2], p[3]);
  1210 // Pack and extract shorts to/from ints:
  1212 inline int extract_low_short_from_int(jint x) {
  1213   return x & 0xffff;
  1216 inline int extract_high_short_from_int(jint x) {
  1217   return (x >> 16) & 0xffff;
  1220 inline int build_int_from_shorts( jushort low, jushort high ) {
  1221   return ((int)((unsigned int)high << 16) | (unsigned int)low);
  1224 // Printf-style formatters for fixed- and variable-width types as pointers and
  1225 // integers.  These are derived from the definitions in inttypes.h.  If the platform
  1226 // doesn't provide appropriate definitions, they should be provided in
  1227 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
  1229 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
  1231 // Format 32-bit quantities.
  1232 #define INT32_FORMAT           "%" PRId32
  1233 #define UINT32_FORMAT          "%" PRIu32
  1234 #define INT32_FORMAT_W(width)  "%" #width PRId32
  1235 #define UINT32_FORMAT_W(width) "%" #width PRIu32
  1237 #define PTR32_FORMAT           "0x%08" PRIx32
  1239 // Format 64-bit quantities.
  1240 #define INT64_FORMAT           "%" PRId64
  1241 #define UINT64_FORMAT          "%" PRIu64
  1242 #define INT64_FORMAT_W(width)  "%" #width PRId64
  1243 #define UINT64_FORMAT_W(width) "%" #width PRIu64
  1245 #define PTR64_FORMAT           "0x%016" PRIx64
  1247 // Format pointers which change size between 32- and 64-bit.
  1248 #ifdef  _LP64
  1249 #define INTPTR_FORMAT "0x%016" PRIxPTR
  1250 #define PTR_FORMAT    "0x%016" PRIxPTR
  1251 #else   // !_LP64
  1252 #define INTPTR_FORMAT "0x%08"  PRIxPTR
  1253 #define PTR_FORMAT    "0x%08"  PRIxPTR
  1254 #endif  // _LP64
  1256 #define SSIZE_FORMAT          "%" PRIdPTR
  1257 #define SIZE_FORMAT           "%" PRIuPTR
  1258 #define SSIZE_FORMAT_W(width) "%" #width PRIdPTR
  1259 #define SIZE_FORMAT_W(width)  "%" #width PRIuPTR
  1261 #define INTX_FORMAT           "%" PRIdPTR
  1262 #define UINTX_FORMAT          "%" PRIuPTR
  1263 #define INTX_FORMAT_W(width)  "%" #width PRIdPTR
  1264 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
  1267 // Enable zap-a-lot if in debug version.
  1269 # ifdef ASSERT
  1270 # ifdef COMPILER2
  1271 #   define ENABLE_ZAP_DEAD_LOCALS
  1272 #endif /* COMPILER2 */
  1273 # endif /* ASSERT */
  1275 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
  1277 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP

mercurial