src/share/vm/opto/phaseX.cpp

Tue, 09 Oct 2012 10:11:38 +0200

author
roland
date
Tue, 09 Oct 2012 10:11:38 +0200
changeset 4159
8e47bac5643a
parent 4115
e626685e9f6c
child 4153
b9a9ed0f8eeb
permissions
-rw-r--r--

7054512: Compress class pointers after perm gen removal
Summary: support of compress class pointers in the compilers.
Reviewed-by: kvn, twisti

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.inline.hpp"
    27 #include "opto/block.hpp"
    28 #include "opto/callnode.hpp"
    29 #include "opto/cfgnode.hpp"
    30 #include "opto/connode.hpp"
    31 #include "opto/idealGraphPrinter.hpp"
    32 #include "opto/loopnode.hpp"
    33 #include "opto/machnode.hpp"
    34 #include "opto/opcodes.hpp"
    35 #include "opto/phaseX.hpp"
    36 #include "opto/regalloc.hpp"
    37 #include "opto/rootnode.hpp"
    39 //=============================================================================
    40 #define NODE_HASH_MINIMUM_SIZE    255
    41 //------------------------------NodeHash---------------------------------------
    42 NodeHash::NodeHash(uint est_max_size) :
    43   _max( round_up(est_max_size < NODE_HASH_MINIMUM_SIZE ? NODE_HASH_MINIMUM_SIZE : est_max_size) ),
    44   _a(Thread::current()->resource_area()),
    45   _table( NEW_ARENA_ARRAY( _a , Node* , _max ) ), // (Node**)_a->Amalloc(_max * sizeof(Node*)) ),
    46   _inserts(0), _insert_limit( insert_limit() ),
    47   _look_probes(0), _lookup_hits(0), _lookup_misses(0),
    48   _total_insert_probes(0), _total_inserts(0),
    49   _insert_probes(0), _grows(0) {
    50   // _sentinel must be in the current node space
    51   _sentinel = new (Compile::current()) ProjNode(NULL, TypeFunc::Control);
    52   memset(_table,0,sizeof(Node*)*_max);
    53 }
    55 //------------------------------NodeHash---------------------------------------
    56 NodeHash::NodeHash(Arena *arena, uint est_max_size) :
    57   _max( round_up(est_max_size < NODE_HASH_MINIMUM_SIZE ? NODE_HASH_MINIMUM_SIZE : est_max_size) ),
    58   _a(arena),
    59   _table( NEW_ARENA_ARRAY( _a , Node* , _max ) ),
    60   _inserts(0), _insert_limit( insert_limit() ),
    61   _look_probes(0), _lookup_hits(0), _lookup_misses(0),
    62   _delete_probes(0), _delete_hits(0), _delete_misses(0),
    63   _total_insert_probes(0), _total_inserts(0),
    64   _insert_probes(0), _grows(0) {
    65   // _sentinel must be in the current node space
    66   _sentinel = new (Compile::current()) ProjNode(NULL, TypeFunc::Control);
    67   memset(_table,0,sizeof(Node*)*_max);
    68 }
    70 //------------------------------NodeHash---------------------------------------
    71 NodeHash::NodeHash(NodeHash *nh) {
    72   debug_only(_table = (Node**)badAddress);   // interact correctly w/ operator=
    73   // just copy in all the fields
    74   *this = *nh;
    75   // nh->_sentinel must be in the current node space
    76 }
    78 //------------------------------hash_find--------------------------------------
    79 // Find in hash table
    80 Node *NodeHash::hash_find( const Node *n ) {
    81   // ((Node*)n)->set_hash( n->hash() );
    82   uint hash = n->hash();
    83   if (hash == Node::NO_HASH) {
    84     debug_only( _lookup_misses++ );
    85     return NULL;
    86   }
    87   uint key = hash & (_max-1);
    88   uint stride = key | 0x01;
    89   debug_only( _look_probes++ );
    90   Node *k = _table[key];        // Get hashed value
    91   if( !k ) {                    // ?Miss?
    92     debug_only( _lookup_misses++ );
    93     return NULL;                // Miss!
    94   }
    96   int op = n->Opcode();
    97   uint req = n->req();
    98   while( 1 ) {                  // While probing hash table
    99     if( k->req() == req &&      // Same count of inputs
   100         k->Opcode() == op ) {   // Same Opcode
   101       for( uint i=0; i<req; i++ )
   102         if( n->in(i)!=k->in(i)) // Different inputs?
   103           goto collision;       // "goto" is a speed hack...
   104       if( n->cmp(*k) ) {        // Check for any special bits
   105         debug_only( _lookup_hits++ );
   106         return k;               // Hit!
   107       }
   108     }
   109   collision:
   110     debug_only( _look_probes++ );
   111     key = (key + stride/*7*/) & (_max-1); // Stride through table with relative prime
   112     k = _table[key];            // Get hashed value
   113     if( !k ) {                  // ?Miss?
   114       debug_only( _lookup_misses++ );
   115       return NULL;              // Miss!
   116     }
   117   }
   118   ShouldNotReachHere();
   119   return NULL;
   120 }
   122 //------------------------------hash_find_insert-------------------------------
   123 // Find in hash table, insert if not already present
   124 // Used to preserve unique entries in hash table
   125 Node *NodeHash::hash_find_insert( Node *n ) {
   126   // n->set_hash( );
   127   uint hash = n->hash();
   128   if (hash == Node::NO_HASH) {
   129     debug_only( _lookup_misses++ );
   130     return NULL;
   131   }
   132   uint key = hash & (_max-1);
   133   uint stride = key | 0x01;     // stride must be relatively prime to table siz
   134   uint first_sentinel = 0;      // replace a sentinel if seen.
   135   debug_only( _look_probes++ );
   136   Node *k = _table[key];        // Get hashed value
   137   if( !k ) {                    // ?Miss?
   138     debug_only( _lookup_misses++ );
   139     _table[key] = n;            // Insert into table!
   140     debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
   141     check_grow();               // Grow table if insert hit limit
   142     return NULL;                // Miss!
   143   }
   144   else if( k == _sentinel ) {
   145     first_sentinel = key;      // Can insert here
   146   }
   148   int op = n->Opcode();
   149   uint req = n->req();
   150   while( 1 ) {                  // While probing hash table
   151     if( k->req() == req &&      // Same count of inputs
   152         k->Opcode() == op ) {   // Same Opcode
   153       for( uint i=0; i<req; i++ )
   154         if( n->in(i)!=k->in(i)) // Different inputs?
   155           goto collision;       // "goto" is a speed hack...
   156       if( n->cmp(*k) ) {        // Check for any special bits
   157         debug_only( _lookup_hits++ );
   158         return k;               // Hit!
   159       }
   160     }
   161   collision:
   162     debug_only( _look_probes++ );
   163     key = (key + stride) & (_max-1); // Stride through table w/ relative prime
   164     k = _table[key];            // Get hashed value
   165     if( !k ) {                  // ?Miss?
   166       debug_only( _lookup_misses++ );
   167       key = (first_sentinel == 0) ? key : first_sentinel; // ?saw sentinel?
   168       _table[key] = n;          // Insert into table!
   169       debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
   170       check_grow();             // Grow table if insert hit limit
   171       return NULL;              // Miss!
   172     }
   173     else if( first_sentinel == 0 && k == _sentinel ) {
   174       first_sentinel = key;    // Can insert here
   175     }
   177   }
   178   ShouldNotReachHere();
   179   return NULL;
   180 }
   182 //------------------------------hash_insert------------------------------------
   183 // Insert into hash table
   184 void NodeHash::hash_insert( Node *n ) {
   185   // // "conflict" comments -- print nodes that conflict
   186   // bool conflict = false;
   187   // n->set_hash();
   188   uint hash = n->hash();
   189   if (hash == Node::NO_HASH) {
   190     return;
   191   }
   192   check_grow();
   193   uint key = hash & (_max-1);
   194   uint stride = key | 0x01;
   196   while( 1 ) {                  // While probing hash table
   197     debug_only( _insert_probes++ );
   198     Node *k = _table[key];      // Get hashed value
   199     if( !k || (k == _sentinel) ) break;       // Found a slot
   200     assert( k != n, "already inserted" );
   201     // if( PrintCompilation && PrintOptoStatistics && Verbose ) { tty->print("  conflict: "); k->dump(); conflict = true; }
   202     key = (key + stride) & (_max-1); // Stride through table w/ relative prime
   203   }
   204   _table[key] = n;              // Insert into table!
   205   debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
   206   // if( conflict ) { n->dump(); }
   207 }
   209 //------------------------------hash_delete------------------------------------
   210 // Replace in hash table with sentinel
   211 bool NodeHash::hash_delete( const Node *n ) {
   212   Node *k;
   213   uint hash = n->hash();
   214   if (hash == Node::NO_HASH) {
   215     debug_only( _delete_misses++ );
   216     return false;
   217   }
   218   uint key = hash & (_max-1);
   219   uint stride = key | 0x01;
   220   debug_only( uint counter = 0; );
   221   for( ; /* (k != NULL) && (k != _sentinel) */; ) {
   222     debug_only( counter++ );
   223     debug_only( _delete_probes++ );
   224     k = _table[key];            // Get hashed value
   225     if( !k ) {                  // Miss?
   226       debug_only( _delete_misses++ );
   227 #ifdef ASSERT
   228       if( VerifyOpto ) {
   229         for( uint i=0; i < _max; i++ )
   230           assert( _table[i] != n, "changed edges with rehashing" );
   231       }
   232 #endif
   233       return false;             // Miss! Not in chain
   234     }
   235     else if( n == k ) {
   236       debug_only( _delete_hits++ );
   237       _table[key] = _sentinel;  // Hit! Label as deleted entry
   238       debug_only(((Node*)n)->exit_hash_lock()); // Unlock the node upon removal from table.
   239       return true;
   240     }
   241     else {
   242       // collision: move through table with prime offset
   243       key = (key + stride/*7*/) & (_max-1);
   244       assert( counter <= _insert_limit, "Cycle in hash-table");
   245     }
   246   }
   247   ShouldNotReachHere();
   248   return false;
   249 }
   251 //------------------------------round_up---------------------------------------
   252 // Round up to nearest power of 2
   253 uint NodeHash::round_up( uint x ) {
   254   x += (x>>2);                  // Add 25% slop
   255   if( x <16 ) return 16;        // Small stuff
   256   uint i=16;
   257   while( i < x ) i <<= 1;       // Double to fit
   258   return i;                     // Return hash table size
   259 }
   261 //------------------------------grow-------------------------------------------
   262 // Grow _table to next power of 2 and insert old entries
   263 void  NodeHash::grow() {
   264   // Record old state
   265   uint   old_max   = _max;
   266   Node **old_table = _table;
   267   // Construct new table with twice the space
   268   _grows++;
   269   _total_inserts       += _inserts;
   270   _total_insert_probes += _insert_probes;
   271   _inserts         = 0;
   272   _insert_probes   = 0;
   273   _max     = _max << 1;
   274   _table   = NEW_ARENA_ARRAY( _a , Node* , _max ); // (Node**)_a->Amalloc( _max * sizeof(Node*) );
   275   memset(_table,0,sizeof(Node*)*_max);
   276   _insert_limit = insert_limit();
   277   // Insert old entries into the new table
   278   for( uint i = 0; i < old_max; i++ ) {
   279     Node *m = *old_table++;
   280     if( !m || m == _sentinel ) continue;
   281     debug_only(m->exit_hash_lock()); // Unlock the node upon removal from old table.
   282     hash_insert(m);
   283   }
   284 }
   286 //------------------------------clear------------------------------------------
   287 // Clear all entries in _table to NULL but keep storage
   288 void  NodeHash::clear() {
   289 #ifdef ASSERT
   290   // Unlock all nodes upon removal from table.
   291   for (uint i = 0; i < _max; i++) {
   292     Node* n = _table[i];
   293     if (!n || n == _sentinel)  continue;
   294     n->exit_hash_lock();
   295   }
   296 #endif
   298   memset( _table, 0, _max * sizeof(Node*) );
   299 }
   301 //-----------------------remove_useless_nodes----------------------------------
   302 // Remove useless nodes from value table,
   303 // implementation does not depend on hash function
   304 void NodeHash::remove_useless_nodes(VectorSet &useful) {
   306   // Dead nodes in the hash table inherited from GVN should not replace
   307   // existing nodes, remove dead nodes.
   308   uint max = size();
   309   Node *sentinel_node = sentinel();
   310   for( uint i = 0; i < max; ++i ) {
   311     Node *n = at(i);
   312     if(n != NULL && n != sentinel_node && !useful.test(n->_idx)) {
   313       debug_only(n->exit_hash_lock()); // Unlock the node when removed
   314       _table[i] = sentinel_node;       // Replace with placeholder
   315     }
   316   }
   317 }
   319 #ifndef PRODUCT
   320 //------------------------------dump-------------------------------------------
   321 // Dump statistics for the hash table
   322 void NodeHash::dump() {
   323   _total_inserts       += _inserts;
   324   _total_insert_probes += _insert_probes;
   325   if (PrintCompilation && PrintOptoStatistics && Verbose && (_inserts > 0)) {
   326     if (WizardMode) {
   327       for (uint i=0; i<_max; i++) {
   328         if (_table[i])
   329           tty->print("%d/%d/%d ",i,_table[i]->hash()&(_max-1),_table[i]->_idx);
   330       }
   331     }
   332     tty->print("\nGVN Hash stats:  %d grows to %d max_size\n", _grows, _max);
   333     tty->print("  %d/%d (%8.1f%% full)\n", _inserts, _max, (double)_inserts/_max*100.0);
   334     tty->print("  %dp/(%dh+%dm) (%8.2f probes/lookup)\n", _look_probes, _lookup_hits, _lookup_misses, (double)_look_probes/(_lookup_hits+_lookup_misses));
   335     tty->print("  %dp/%di (%8.2f probes/insert)\n", _total_insert_probes, _total_inserts, (double)_total_insert_probes/_total_inserts);
   336     // sentinels increase lookup cost, but not insert cost
   337     assert((_lookup_misses+_lookup_hits)*4+100 >= _look_probes, "bad hash function");
   338     assert( _inserts+(_inserts>>3) < _max, "table too full" );
   339     assert( _inserts*3+100 >= _insert_probes, "bad hash function" );
   340   }
   341 }
   343 Node *NodeHash::find_index(uint idx) { // For debugging
   344   // Find an entry by its index value
   345   for( uint i = 0; i < _max; i++ ) {
   346     Node *m = _table[i];
   347     if( !m || m == _sentinel ) continue;
   348     if( m->_idx == (uint)idx ) return m;
   349   }
   350   return NULL;
   351 }
   352 #endif
   354 #ifdef ASSERT
   355 NodeHash::~NodeHash() {
   356   // Unlock all nodes upon destruction of table.
   357   if (_table != (Node**)badAddress)  clear();
   358 }
   360 void NodeHash::operator=(const NodeHash& nh) {
   361   // Unlock all nodes upon replacement of table.
   362   if (&nh == this)  return;
   363   if (_table != (Node**)badAddress)  clear();
   364   memcpy(this, &nh, sizeof(*this));
   365   // Do not increment hash_lock counts again.
   366   // Instead, be sure we never again use the source table.
   367   ((NodeHash*)&nh)->_table = (Node**)badAddress;
   368 }
   371 #endif
   374 //=============================================================================
   375 //------------------------------PhaseRemoveUseless-----------------------------
   376 // 1) Use a breadthfirst walk to collect useful nodes reachable from root.
   377 PhaseRemoveUseless::PhaseRemoveUseless( PhaseGVN *gvn, Unique_Node_List *worklist ) : Phase(Remove_Useless),
   378   _useful(Thread::current()->resource_area()) {
   380   // Implementation requires 'UseLoopSafepoints == true' and an edge from root
   381   // to each SafePointNode at a backward branch.  Inserted in add_safepoint().
   382   if( !UseLoopSafepoints || !OptoRemoveUseless ) return;
   384   // Identify nodes that are reachable from below, useful.
   385   C->identify_useful_nodes(_useful);
   387   // Remove all useless nodes from PhaseValues' recorded types
   388   // Must be done before disconnecting nodes to preserve hash-table-invariant
   389   gvn->remove_useless_nodes(_useful.member_set());
   391   // Remove all useless nodes from future worklist
   392   worklist->remove_useless_nodes(_useful.member_set());
   394   // Disconnect 'useless' nodes that are adjacent to useful nodes
   395   C->remove_useless_nodes(_useful);
   397   // Remove edges from "root" to each SafePoint at a backward branch.
   398   // They were inserted during parsing (see add_safepoint()) to make infinite
   399   // loops without calls or exceptions visible to root, i.e., useful.
   400   Node *root = C->root();
   401   if( root != NULL ) {
   402     for( uint i = root->req(); i < root->len(); ++i ) {
   403       Node *n = root->in(i);
   404       if( n != NULL && n->is_SafePoint() ) {
   405         root->rm_prec(i);
   406         --i;
   407       }
   408     }
   409   }
   410 }
   413 //=============================================================================
   414 //------------------------------PhaseTransform---------------------------------
   415 PhaseTransform::PhaseTransform( PhaseNumber pnum ) : Phase(pnum),
   416   _arena(Thread::current()->resource_area()),
   417   _nodes(_arena),
   418   _types(_arena)
   419 {
   420   init_con_caches();
   421 #ifndef PRODUCT
   422   clear_progress();
   423   clear_transforms();
   424   set_allow_progress(true);
   425 #endif
   426   // Force allocation for currently existing nodes
   427   _types.map(C->unique(), NULL);
   428 }
   430 //------------------------------PhaseTransform---------------------------------
   431 PhaseTransform::PhaseTransform( Arena *arena, PhaseNumber pnum ) : Phase(pnum),
   432   _arena(arena),
   433   _nodes(arena),
   434   _types(arena)
   435 {
   436   init_con_caches();
   437 #ifndef PRODUCT
   438   clear_progress();
   439   clear_transforms();
   440   set_allow_progress(true);
   441 #endif
   442   // Force allocation for currently existing nodes
   443   _types.map(C->unique(), NULL);
   444 }
   446 //------------------------------PhaseTransform---------------------------------
   447 // Initialize with previously generated type information
   448 PhaseTransform::PhaseTransform( PhaseTransform *pt, PhaseNumber pnum ) : Phase(pnum),
   449   _arena(pt->_arena),
   450   _nodes(pt->_nodes),
   451   _types(pt->_types)
   452 {
   453   init_con_caches();
   454 #ifndef PRODUCT
   455   clear_progress();
   456   clear_transforms();
   457   set_allow_progress(true);
   458 #endif
   459 }
   461 void PhaseTransform::init_con_caches() {
   462   memset(_icons,0,sizeof(_icons));
   463   memset(_lcons,0,sizeof(_lcons));
   464   memset(_zcons,0,sizeof(_zcons));
   465 }
   468 //--------------------------------find_int_type--------------------------------
   469 const TypeInt* PhaseTransform::find_int_type(Node* n) {
   470   if (n == NULL)  return NULL;
   471   // Call type_or_null(n) to determine node's type since we might be in
   472   // parse phase and call n->Value() may return wrong type.
   473   // (For example, a phi node at the beginning of loop parsing is not ready.)
   474   const Type* t = type_or_null(n);
   475   if (t == NULL)  return NULL;
   476   return t->isa_int();
   477 }
   480 //-------------------------------find_long_type--------------------------------
   481 const TypeLong* PhaseTransform::find_long_type(Node* n) {
   482   if (n == NULL)  return NULL;
   483   // (See comment above on type_or_null.)
   484   const Type* t = type_or_null(n);
   485   if (t == NULL)  return NULL;
   486   return t->isa_long();
   487 }
   490 #ifndef PRODUCT
   491 void PhaseTransform::dump_old2new_map() const {
   492   _nodes.dump();
   493 }
   495 void PhaseTransform::dump_new( uint nidx ) const {
   496   for( uint i=0; i<_nodes.Size(); i++ )
   497     if( _nodes[i] && _nodes[i]->_idx == nidx ) {
   498       _nodes[i]->dump();
   499       tty->cr();
   500       tty->print_cr("Old index= %d",i);
   501       return;
   502     }
   503   tty->print_cr("Node %d not found in the new indices", nidx);
   504 }
   506 //------------------------------dump_types-------------------------------------
   507 void PhaseTransform::dump_types( ) const {
   508   _types.dump();
   509 }
   511 //------------------------------dump_nodes_and_types---------------------------
   512 void PhaseTransform::dump_nodes_and_types(const Node *root, uint depth, bool only_ctrl) {
   513   VectorSet visited(Thread::current()->resource_area());
   514   dump_nodes_and_types_recur( root, depth, only_ctrl, visited );
   515 }
   517 //------------------------------dump_nodes_and_types_recur---------------------
   518 void PhaseTransform::dump_nodes_and_types_recur( const Node *n, uint depth, bool only_ctrl, VectorSet &visited) {
   519   if( !n ) return;
   520   if( depth == 0 ) return;
   521   if( visited.test_set(n->_idx) ) return;
   522   for( uint i=0; i<n->len(); i++ ) {
   523     if( only_ctrl && !(n->is_Region()) && i != TypeFunc::Control ) continue;
   524     dump_nodes_and_types_recur( n->in(i), depth-1, only_ctrl, visited );
   525   }
   526   n->dump();
   527   if (type_or_null(n) != NULL) {
   528     tty->print("      "); type(n)->dump(); tty->cr();
   529   }
   530 }
   532 #endif
   535 //=============================================================================
   536 //------------------------------PhaseValues------------------------------------
   537 // Set minimum table size to "255"
   538 PhaseValues::PhaseValues( Arena *arena, uint est_max_size ) : PhaseTransform(arena, GVN), _table(arena, est_max_size) {
   539   NOT_PRODUCT( clear_new_values(); )
   540 }
   542 //------------------------------PhaseValues------------------------------------
   543 // Set minimum table size to "255"
   544 PhaseValues::PhaseValues( PhaseValues *ptv ) : PhaseTransform( ptv, GVN ),
   545   _table(&ptv->_table) {
   546   NOT_PRODUCT( clear_new_values(); )
   547 }
   549 //------------------------------PhaseValues------------------------------------
   550 // Used by +VerifyOpto.  Clear out hash table but copy _types array.
   551 PhaseValues::PhaseValues( PhaseValues *ptv, const char *dummy ) : PhaseTransform( ptv, GVN ),
   552   _table(ptv->arena(),ptv->_table.size()) {
   553   NOT_PRODUCT( clear_new_values(); )
   554 }
   556 //------------------------------~PhaseValues-----------------------------------
   557 #ifndef PRODUCT
   558 PhaseValues::~PhaseValues() {
   559   _table.dump();
   561   // Statistics for value progress and efficiency
   562   if( PrintCompilation && Verbose && WizardMode ) {
   563     tty->print("\n%sValues: %d nodes ---> %d/%d (%d)",
   564       is_IterGVN() ? "Iter" : "    ", C->unique(), made_progress(), made_transforms(), made_new_values());
   565     if( made_transforms() != 0 ) {
   566       tty->print_cr("  ratio %f", made_progress()/(float)made_transforms() );
   567     } else {
   568       tty->cr();
   569     }
   570   }
   571 }
   572 #endif
   574 //------------------------------makecon----------------------------------------
   575 ConNode* PhaseTransform::makecon(const Type *t) {
   576   assert(t->singleton(), "must be a constant");
   577   assert(!t->empty() || t == Type::TOP, "must not be vacuous range");
   578   switch (t->base()) {  // fast paths
   579   case Type::Half:
   580   case Type::Top:  return (ConNode*) C->top();
   581   case Type::Int:  return intcon( t->is_int()->get_con() );
   582   case Type::Long: return longcon( t->is_long()->get_con() );
   583   }
   584   if (t->is_zero_type())
   585     return zerocon(t->basic_type());
   586   return uncached_makecon(t);
   587 }
   589 //--------------------------uncached_makecon-----------------------------------
   590 // Make an idealized constant - one of ConINode, ConPNode, etc.
   591 ConNode* PhaseValues::uncached_makecon(const Type *t) {
   592   assert(t->singleton(), "must be a constant");
   593   ConNode* x = ConNode::make(C, t);
   594   ConNode* k = (ConNode*)hash_find_insert(x); // Value numbering
   595   if (k == NULL) {
   596     set_type(x, t);             // Missed, provide type mapping
   597     GrowableArray<Node_Notes*>* nna = C->node_note_array();
   598     if (nna != NULL) {
   599       Node_Notes* loc = C->locate_node_notes(nna, x->_idx, true);
   600       loc->clear(); // do not put debug info on constants
   601     }
   602   } else {
   603     x->destruct();              // Hit, destroy duplicate constant
   604     x = k;                      // use existing constant
   605   }
   606   return x;
   607 }
   609 //------------------------------intcon-----------------------------------------
   610 // Fast integer constant.  Same as "transform(new ConINode(TypeInt::make(i)))"
   611 ConINode* PhaseTransform::intcon(int i) {
   612   // Small integer?  Check cache! Check that cached node is not dead
   613   if (i >= _icon_min && i <= _icon_max) {
   614     ConINode* icon = _icons[i-_icon_min];
   615     if (icon != NULL && icon->in(TypeFunc::Control) != NULL)
   616       return icon;
   617   }
   618   ConINode* icon = (ConINode*) uncached_makecon(TypeInt::make(i));
   619   assert(icon->is_Con(), "");
   620   if (i >= _icon_min && i <= _icon_max)
   621     _icons[i-_icon_min] = icon;   // Cache small integers
   622   return icon;
   623 }
   625 //------------------------------longcon----------------------------------------
   626 // Fast long constant.
   627 ConLNode* PhaseTransform::longcon(jlong l) {
   628   // Small integer?  Check cache! Check that cached node is not dead
   629   if (l >= _lcon_min && l <= _lcon_max) {
   630     ConLNode* lcon = _lcons[l-_lcon_min];
   631     if (lcon != NULL && lcon->in(TypeFunc::Control) != NULL)
   632       return lcon;
   633   }
   634   ConLNode* lcon = (ConLNode*) uncached_makecon(TypeLong::make(l));
   635   assert(lcon->is_Con(), "");
   636   if (l >= _lcon_min && l <= _lcon_max)
   637     _lcons[l-_lcon_min] = lcon;      // Cache small integers
   638   return lcon;
   639 }
   641 //------------------------------zerocon-----------------------------------------
   642 // Fast zero or null constant. Same as "transform(ConNode::make(Type::get_zero_type(bt)))"
   643 ConNode* PhaseTransform::zerocon(BasicType bt) {
   644   assert((uint)bt <= _zcon_max, "domain check");
   645   ConNode* zcon = _zcons[bt];
   646   if (zcon != NULL && zcon->in(TypeFunc::Control) != NULL)
   647     return zcon;
   648   zcon = (ConNode*) uncached_makecon(Type::get_zero_type(bt));
   649   _zcons[bt] = zcon;
   650   return zcon;
   651 }
   655 //=============================================================================
   656 //------------------------------transform--------------------------------------
   657 // Return a node which computes the same function as this node, but in a
   658 // faster or cheaper fashion.
   659 Node *PhaseGVN::transform( Node *n ) {
   660   return transform_no_reclaim(n);
   661 }
   663 //------------------------------transform--------------------------------------
   664 // Return a node which computes the same function as this node, but
   665 // in a faster or cheaper fashion.
   666 Node *PhaseGVN::transform_no_reclaim( Node *n ) {
   667   NOT_PRODUCT( set_transforms(); )
   669   // Apply the Ideal call in a loop until it no longer applies
   670   Node *k = n;
   671   NOT_PRODUCT( uint loop_count = 0; )
   672   while( 1 ) {
   673     Node *i = k->Ideal(this, /*can_reshape=*/false);
   674     if( !i ) break;
   675     assert( i->_idx >= k->_idx, "Idealize should return new nodes, use Identity to return old nodes" );
   676     k = i;
   677     assert(loop_count++ < K, "infinite loop in PhaseGVN::transform");
   678   }
   679   NOT_PRODUCT( if( loop_count != 0 ) { set_progress(); } )
   682   // If brand new node, make space in type array.
   683   ensure_type_or_null(k);
   685   // Since I just called 'Value' to compute the set of run-time values
   686   // for this Node, and 'Value' is non-local (and therefore expensive) I'll
   687   // cache Value.  Later requests for the local phase->type of this Node can
   688   // use the cached Value instead of suffering with 'bottom_type'.
   689   const Type *t = k->Value(this); // Get runtime Value set
   690   assert(t != NULL, "value sanity");
   691   if (type_or_null(k) != t) {
   692 #ifndef PRODUCT
   693     // Do not count initial visit to node as a transformation
   694     if (type_or_null(k) == NULL) {
   695       inc_new_values();
   696       set_progress();
   697     }
   698 #endif
   699     set_type(k, t);
   700     // If k is a TypeNode, capture any more-precise type permanently into Node
   701     k->raise_bottom_type(t);
   702   }
   704   if( t->singleton() && !k->is_Con() ) {
   705     NOT_PRODUCT( set_progress(); )
   706     return makecon(t);          // Turn into a constant
   707   }
   709   // Now check for Identities
   710   Node *i = k->Identity(this);  // Look for a nearby replacement
   711   if( i != k ) {                // Found? Return replacement!
   712     NOT_PRODUCT( set_progress(); )
   713     return i;
   714   }
   716   // Global Value Numbering
   717   i = hash_find_insert(k);      // Insert if new
   718   if( i && (i != k) ) {
   719     // Return the pre-existing node
   720     NOT_PRODUCT( set_progress(); )
   721     return i;
   722   }
   724   // Return Idealized original
   725   return k;
   726 }
   728 #ifdef ASSERT
   729 //------------------------------dead_loop_check--------------------------------
   730 // Check for a simple dead loop when a data node references itself directly
   731 // or through an other data node excluding cons and phis.
   732 void PhaseGVN::dead_loop_check( Node *n ) {
   733   // Phi may reference itself in a loop
   734   if (n != NULL && !n->is_dead_loop_safe() && !n->is_CFG()) {
   735     // Do 2 levels check and only data inputs.
   736     bool no_dead_loop = true;
   737     uint cnt = n->req();
   738     for (uint i = 1; i < cnt && no_dead_loop; i++) {
   739       Node *in = n->in(i);
   740       if (in == n) {
   741         no_dead_loop = false;
   742       } else if (in != NULL && !in->is_dead_loop_safe()) {
   743         uint icnt = in->req();
   744         for (uint j = 1; j < icnt && no_dead_loop; j++) {
   745           if (in->in(j) == n || in->in(j) == in)
   746             no_dead_loop = false;
   747         }
   748       }
   749     }
   750     if (!no_dead_loop) n->dump(3);
   751     assert(no_dead_loop, "dead loop detected");
   752   }
   753 }
   754 #endif
   756 //=============================================================================
   757 //------------------------------PhaseIterGVN-----------------------------------
   758 // Initialize hash table to fresh and clean for +VerifyOpto
   759 PhaseIterGVN::PhaseIterGVN( PhaseIterGVN *igvn, const char *dummy ) : PhaseGVN(igvn,dummy), _worklist( ),
   760                                                                       _stack(C->unique() >> 1),
   761                                                                       _delay_transform(false) {
   762 }
   764 //------------------------------PhaseIterGVN-----------------------------------
   765 // Initialize with previous PhaseIterGVN info; used by PhaseCCP
   766 PhaseIterGVN::PhaseIterGVN( PhaseIterGVN *igvn ) : PhaseGVN(igvn),
   767                                                    _worklist( igvn->_worklist ),
   768                                                    _stack( igvn->_stack ),
   769                                                    _delay_transform(igvn->_delay_transform)
   770 {
   771 }
   773 //------------------------------PhaseIterGVN-----------------------------------
   774 // Initialize with previous PhaseGVN info from Parser
   775 PhaseIterGVN::PhaseIterGVN( PhaseGVN *gvn ) : PhaseGVN(gvn),
   776                                               _worklist(*C->for_igvn()),
   777                                               _stack(C->unique() >> 1),
   778                                               _delay_transform(false)
   779 {
   780   uint max;
   782   // Dead nodes in the hash table inherited from GVN were not treated as
   783   // roots during def-use info creation; hence they represent an invisible
   784   // use.  Clear them out.
   785   max = _table.size();
   786   for( uint i = 0; i < max; ++i ) {
   787     Node *n = _table.at(i);
   788     if(n != NULL && n != _table.sentinel() && n->outcnt() == 0) {
   789       if( n->is_top() ) continue;
   790       assert( false, "Parse::remove_useless_nodes missed this node");
   791       hash_delete(n);
   792     }
   793   }
   795   // Any Phis or Regions on the worklist probably had uses that could not
   796   // make more progress because the uses were made while the Phis and Regions
   797   // were in half-built states.  Put all uses of Phis and Regions on worklist.
   798   max = _worklist.size();
   799   for( uint j = 0; j < max; j++ ) {
   800     Node *n = _worklist.at(j);
   801     uint uop = n->Opcode();
   802     if( uop == Op_Phi || uop == Op_Region ||
   803         n->is_Type() ||
   804         n->is_Mem() )
   805       add_users_to_worklist(n);
   806   }
   807 }
   810 #ifndef PRODUCT
   811 void PhaseIterGVN::verify_step(Node* n) {
   812   _verify_window[_verify_counter % _verify_window_size] = n;
   813   ++_verify_counter;
   814   ResourceMark rm;
   815   ResourceArea *area = Thread::current()->resource_area();
   816   VectorSet old_space(area), new_space(area);
   817   if (C->unique() < 1000 ||
   818       0 == _verify_counter % (C->unique() < 10000 ? 10 : 100)) {
   819     ++_verify_full_passes;
   820     Node::verify_recur(C->root(), -1, old_space, new_space);
   821   }
   822   const int verify_depth = 4;
   823   for ( int i = 0; i < _verify_window_size; i++ ) {
   824     Node* n = _verify_window[i];
   825     if ( n == NULL )  continue;
   826     if( n->in(0) == NodeSentinel ) {  // xform_idom
   827       _verify_window[i] = n->in(1);
   828       --i; continue;
   829     }
   830     // Typical fanout is 1-2, so this call visits about 6 nodes.
   831     Node::verify_recur(n, verify_depth, old_space, new_space);
   832   }
   833 }
   834 #endif
   837 //------------------------------init_worklist----------------------------------
   838 // Initialize worklist for each node.
   839 void PhaseIterGVN::init_worklist( Node *n ) {
   840   if( _worklist.member(n) ) return;
   841   _worklist.push(n);
   842   uint cnt = n->req();
   843   for( uint i =0 ; i < cnt; i++ ) {
   844     Node *m = n->in(i);
   845     if( m ) init_worklist(m);
   846   }
   847 }
   849 //------------------------------optimize---------------------------------------
   850 void PhaseIterGVN::optimize() {
   851   debug_only(uint num_processed  = 0;);
   852 #ifndef PRODUCT
   853   {
   854     _verify_counter = 0;
   855     _verify_full_passes = 0;
   856     for ( int i = 0; i < _verify_window_size; i++ ) {
   857       _verify_window[i] = NULL;
   858     }
   859   }
   860 #endif
   862 #ifdef ASSERT
   863   Node* prev = NULL;
   864   uint rep_cnt = 0;
   865 #endif
   866   uint loop_count = 0;
   868   // Pull from worklist; transform node;
   869   // If node has changed: update edge info and put uses on worklist.
   870   while( _worklist.size() ) {
   871     if (C->check_node_count(NodeLimitFudgeFactor * 2,
   872                             "out of nodes optimizing method")) {
   873       return;
   874     }
   875     Node *n  = _worklist.pop();
   876     if (++loop_count >= K * C->unique()) {
   877       debug_only(n->dump(4);)
   878       assert(false, "infinite loop in PhaseIterGVN::optimize");
   879       C->record_method_not_compilable("infinite loop in PhaseIterGVN::optimize");
   880       return;
   881     }
   882 #ifdef ASSERT
   883     if (n == prev) {
   884       if (++rep_cnt > 3) {
   885         n->dump(4);
   886         assert(false, "loop in Ideal transformation");
   887       }
   888     } else {
   889       rep_cnt = 0;
   890     }
   891     prev = n;
   892 #endif
   893     if (TraceIterativeGVN && Verbose) {
   894       tty->print("  Pop ");
   895       NOT_PRODUCT( n->dump(); )
   896       debug_only(if( (num_processed++ % 100) == 0 ) _worklist.print_set();)
   897     }
   899     if (n->outcnt() != 0) {
   901 #ifndef PRODUCT
   902       uint wlsize = _worklist.size();
   903       const Type* oldtype = type_or_null(n);
   904 #endif //PRODUCT
   906       Node *nn = transform_old(n);
   908 #ifndef PRODUCT
   909       if (TraceIterativeGVN) {
   910         const Type* newtype = type_or_null(n);
   911         if (nn != n) {
   912           // print old node
   913           tty->print("< ");
   914           if (oldtype != newtype && oldtype != NULL) {
   915             oldtype->dump();
   916           }
   917           do { tty->print("\t"); } while (tty->position() < 16);
   918           tty->print("<");
   919           n->dump();
   920         }
   921         if (oldtype != newtype || nn != n) {
   922           // print new node and/or new type
   923           if (oldtype == NULL) {
   924             tty->print("* ");
   925           } else if (nn != n) {
   926             tty->print("> ");
   927           } else {
   928             tty->print("= ");
   929           }
   930           if (newtype == NULL) {
   931             tty->print("null");
   932           } else {
   933             newtype->dump();
   934           }
   935           do { tty->print("\t"); } while (tty->position() < 16);
   936           nn->dump();
   937         }
   938         if (Verbose && wlsize < _worklist.size()) {
   939           tty->print("  Push {");
   940           while (wlsize != _worklist.size()) {
   941             Node* pushed = _worklist.at(wlsize++);
   942             tty->print(" %d", pushed->_idx);
   943           }
   944           tty->print_cr(" }");
   945         }
   946       }
   947       if( VerifyIterativeGVN && nn != n ) {
   948         verify_step((Node*) NULL);  // ignore n, it might be subsumed
   949       }
   950 #endif
   951     } else if (!n->is_top()) {
   952       remove_dead_node(n);
   953     }
   954   }
   956 #ifndef PRODUCT
   957   C->verify_graph_edges();
   958   if( VerifyOpto && allow_progress() ) {
   959     // Must turn off allow_progress to enable assert and break recursion
   960     C->root()->verify();
   961     { // Check if any progress was missed using IterGVN
   962       // Def-Use info enables transformations not attempted in wash-pass
   963       // e.g. Region/Phi cleanup, ...
   964       // Null-check elision -- may not have reached fixpoint
   965       //                       do not propagate to dominated nodes
   966       ResourceMark rm;
   967       PhaseIterGVN igvn2(this,"Verify"); // Fresh and clean!
   968       // Fill worklist completely
   969       igvn2.init_worklist(C->root());
   971       igvn2.set_allow_progress(false);
   972       igvn2.optimize();
   973       igvn2.set_allow_progress(true);
   974     }
   975   }
   976   if ( VerifyIterativeGVN && PrintOpto ) {
   977     if ( _verify_counter == _verify_full_passes )
   978       tty->print_cr("VerifyIterativeGVN: %d transforms and verify passes",
   979                     _verify_full_passes);
   980     else
   981       tty->print_cr("VerifyIterativeGVN: %d transforms, %d full verify passes",
   982                   _verify_counter, _verify_full_passes);
   983   }
   984 #endif
   985 }
   988 //------------------register_new_node_with_optimizer---------------------------
   989 // Register a new node with the optimizer.  Update the types array, the def-use
   990 // info.  Put on worklist.
   991 Node* PhaseIterGVN::register_new_node_with_optimizer(Node* n, Node* orig) {
   992   set_type_bottom(n);
   993   _worklist.push(n);
   994   if (orig != NULL)  C->copy_node_notes_to(n, orig);
   995   return n;
   996 }
   998 //------------------------------transform--------------------------------------
   999 // Non-recursive: idealize Node 'n' with respect to its inputs and its value
  1000 Node *PhaseIterGVN::transform( Node *n ) {
  1001   if (_delay_transform) {
  1002     // Register the node but don't optimize for now
  1003     register_new_node_with_optimizer(n);
  1004     return n;
  1007   // If brand new node, make space in type array, and give it a type.
  1008   ensure_type_or_null(n);
  1009   if (type_or_null(n) == NULL) {
  1010     set_type_bottom(n);
  1013   return transform_old(n);
  1016 //------------------------------transform_old----------------------------------
  1017 Node *PhaseIterGVN::transform_old( Node *n ) {
  1018 #ifndef PRODUCT
  1019   debug_only(uint loop_count = 0;);
  1020   set_transforms();
  1021 #endif
  1022   // Remove 'n' from hash table in case it gets modified
  1023   _table.hash_delete(n);
  1024   if( VerifyIterativeGVN ) {
  1025    assert( !_table.find_index(n->_idx), "found duplicate entry in table");
  1028   // Apply the Ideal call in a loop until it no longer applies
  1029   Node *k = n;
  1030   DEBUG_ONLY(dead_loop_check(k);)
  1031   DEBUG_ONLY(bool is_new = (k->outcnt() == 0);)
  1032   Node *i = k->Ideal(this, /*can_reshape=*/true);
  1033   assert(i != k || is_new || i->outcnt() > 0, "don't return dead nodes");
  1034 #ifndef PRODUCT
  1035   if( VerifyIterativeGVN )
  1036     verify_step(k);
  1037   if( i && VerifyOpto ) {
  1038     if( !allow_progress() ) {
  1039       if (i->is_Add() && i->outcnt() == 1) {
  1040         // Switched input to left side because this is the only use
  1041       } else if( i->is_If() && (i->in(0) == NULL) ) {
  1042         // This IF is dead because it is dominated by an equivalent IF When
  1043         // dominating if changed, info is not propagated sparsely to 'this'
  1044         // Propagating this info further will spuriously identify other
  1045         // progress.
  1046         return i;
  1047       } else
  1048         set_progress();
  1049     } else
  1050       set_progress();
  1052 #endif
  1054   while( i ) {
  1055 #ifndef PRODUCT
  1056     debug_only( if( loop_count >= K ) i->dump(4); )
  1057     assert(loop_count < K, "infinite loop in PhaseIterGVN::transform");
  1058     debug_only( loop_count++; )
  1059 #endif
  1060     assert((i->_idx >= k->_idx) || i->is_top(), "Idealize should return new nodes, use Identity to return old nodes");
  1061     // Made a change; put users of original Node on worklist
  1062     add_users_to_worklist( k );
  1063     // Replacing root of transform tree?
  1064     if( k != i ) {
  1065       // Make users of old Node now use new.
  1066       subsume_node( k, i );
  1067       k = i;
  1069     DEBUG_ONLY(dead_loop_check(k);)
  1070     // Try idealizing again
  1071     DEBUG_ONLY(is_new = (k->outcnt() == 0);)
  1072     i = k->Ideal(this, /*can_reshape=*/true);
  1073     assert(i != k || is_new || i->outcnt() > 0, "don't return dead nodes");
  1074 #ifndef PRODUCT
  1075     if( VerifyIterativeGVN )
  1076       verify_step(k);
  1077     if( i && VerifyOpto ) set_progress();
  1078 #endif
  1081   // If brand new node, make space in type array.
  1082   ensure_type_or_null(k);
  1084   // See what kind of values 'k' takes on at runtime
  1085   const Type *t = k->Value(this);
  1086   assert(t != NULL, "value sanity");
  1088   // Since I just called 'Value' to compute the set of run-time values
  1089   // for this Node, and 'Value' is non-local (and therefore expensive) I'll
  1090   // cache Value.  Later requests for the local phase->type of this Node can
  1091   // use the cached Value instead of suffering with 'bottom_type'.
  1092   if (t != type_or_null(k)) {
  1093     NOT_PRODUCT( set_progress(); )
  1094     NOT_PRODUCT( inc_new_values();)
  1095     set_type(k, t);
  1096     // If k is a TypeNode, capture any more-precise type permanently into Node
  1097     k->raise_bottom_type(t);
  1098     // Move users of node to worklist
  1099     add_users_to_worklist( k );
  1102   // If 'k' computes a constant, replace it with a constant
  1103   if( t->singleton() && !k->is_Con() ) {
  1104     NOT_PRODUCT( set_progress(); )
  1105     Node *con = makecon(t);     // Make a constant
  1106     add_users_to_worklist( k );
  1107     subsume_node( k, con );     // Everybody using k now uses con
  1108     return con;
  1111   // Now check for Identities
  1112   i = k->Identity(this);        // Look for a nearby replacement
  1113   if( i != k ) {                // Found? Return replacement!
  1114     NOT_PRODUCT( set_progress(); )
  1115     add_users_to_worklist( k );
  1116     subsume_node( k, i );       // Everybody using k now uses i
  1117     return i;
  1120   // Global Value Numbering
  1121   i = hash_find_insert(k);      // Check for pre-existing node
  1122   if( i && (i != k) ) {
  1123     // Return the pre-existing node if it isn't dead
  1124     NOT_PRODUCT( set_progress(); )
  1125     add_users_to_worklist( k );
  1126     subsume_node( k, i );       // Everybody using k now uses i
  1127     return i;
  1130   // Return Idealized original
  1131   return k;
  1134 //---------------------------------saturate------------------------------------
  1135 const Type* PhaseIterGVN::saturate(const Type* new_type, const Type* old_type,
  1136                                    const Type* limit_type) const {
  1137   return new_type->narrow(old_type);
  1140 //------------------------------remove_globally_dead_node----------------------
  1141 // Kill a globally dead Node.  All uses are also globally dead and are
  1142 // aggressively trimmed.
  1143 void PhaseIterGVN::remove_globally_dead_node( Node *dead ) {
  1144   enum DeleteProgress {
  1145     PROCESS_INPUTS,
  1146     PROCESS_OUTPUTS
  1147   };
  1148   assert(_stack.is_empty(), "not empty");
  1149   _stack.push(dead, PROCESS_INPUTS);
  1151   while (_stack.is_nonempty()) {
  1152     dead = _stack.node();
  1153     uint progress_state = _stack.index();
  1154     assert(dead != C->root(), "killing root, eh?");
  1155     assert(!dead->is_top(), "add check for top when pushing");
  1156     NOT_PRODUCT( set_progress(); )
  1157     if (progress_state == PROCESS_INPUTS) {
  1158       // After following inputs, continue to outputs
  1159       _stack.set_index(PROCESS_OUTPUTS);
  1160       // Remove from iterative worklist
  1161       _worklist.remove(dead);
  1162       if (!dead->is_Con()) { // Don't kill cons but uses
  1163         bool recurse = false;
  1164         // Remove from hash table
  1165         _table.hash_delete( dead );
  1166         // Smash all inputs to 'dead', isolating him completely
  1167         for( uint i = 0; i < dead->req(); i++ ) {
  1168           Node *in = dead->in(i);
  1169           if( in ) {                 // Points to something?
  1170             dead->set_req(i,NULL);  // Kill the edge
  1171             if (in->outcnt() == 0 && in != C->top()) {// Made input go dead?
  1172               _stack.push(in, PROCESS_INPUTS); // Recursively remove
  1173               recurse = true;
  1174             } else if (in->outcnt() == 1 &&
  1175                        in->has_special_unique_user()) {
  1176               _worklist.push(in->unique_out());
  1177             } else if (in->outcnt() <= 2 && dead->is_Phi()) {
  1178               if( in->Opcode() == Op_Region )
  1179                 _worklist.push(in);
  1180               else if( in->is_Store() ) {
  1181                 DUIterator_Fast imax, i = in->fast_outs(imax);
  1182                 _worklist.push(in->fast_out(i));
  1183                 i++;
  1184                 if(in->outcnt() == 2) {
  1185                   _worklist.push(in->fast_out(i));
  1186                   i++;
  1188                 assert(!(i < imax), "sanity");
  1194         if (dead->is_macro()) {
  1195           C->remove_macro_node(dead);
  1198         if (recurse) {
  1199           continue;
  1204     // Aggressively kill globally dead uses
  1205     // (Rather than pushing all the outs at once, we push one at a time,
  1206     // plus the parent to resume later, because of the indefinite number
  1207     // of edge deletions per loop trip.)
  1208     if (dead->outcnt() > 0) {
  1209       // Recursively remove
  1210       _stack.push(dead->raw_out(0), PROCESS_INPUTS);
  1211     } else {
  1212       _stack.pop();
  1217 //------------------------------subsume_node-----------------------------------
  1218 // Remove users from node 'old' and add them to node 'nn'.
  1219 void PhaseIterGVN::subsume_node( Node *old, Node *nn ) {
  1220   assert( old != hash_find(old), "should already been removed" );
  1221   assert( old != C->top(), "cannot subsume top node");
  1222   // Copy debug or profile information to the new version:
  1223   C->copy_node_notes_to(nn, old);
  1224   // Move users of node 'old' to node 'nn'
  1225   for (DUIterator_Last imin, i = old->last_outs(imin); i >= imin; ) {
  1226     Node* use = old->last_out(i);  // for each use...
  1227     // use might need re-hashing (but it won't if it's a new node)
  1228     bool is_in_table = _table.hash_delete( use );
  1229     // Update use-def info as well
  1230     // We remove all occurrences of old within use->in,
  1231     // so as to avoid rehashing any node more than once.
  1232     // The hash table probe swamps any outer loop overhead.
  1233     uint num_edges = 0;
  1234     for (uint jmax = use->len(), j = 0; j < jmax; j++) {
  1235       if (use->in(j) == old) {
  1236         use->set_req(j, nn);
  1237         ++num_edges;
  1240     // Insert into GVN hash table if unique
  1241     // If a duplicate, 'use' will be cleaned up when pulled off worklist
  1242     if( is_in_table ) {
  1243       hash_find_insert(use);
  1245     i -= num_edges;    // we deleted 1 or more copies of this edge
  1248   // Smash all inputs to 'old', isolating him completely
  1249   Node *temp = new (C) Node(1);
  1250   temp->init_req(0,nn);     // Add a use to nn to prevent him from dying
  1251   remove_dead_node( old );
  1252   temp->del_req(0);         // Yank bogus edge
  1253 #ifndef PRODUCT
  1254   if( VerifyIterativeGVN ) {
  1255     for ( int i = 0; i < _verify_window_size; i++ ) {
  1256       if ( _verify_window[i] == old )
  1257         _verify_window[i] = nn;
  1260 #endif
  1261   _worklist.remove(temp);   // this can be necessary
  1262   temp->destruct();         // reuse the _idx of this little guy
  1265 //------------------------------add_users_to_worklist--------------------------
  1266 void PhaseIterGVN::add_users_to_worklist0( Node *n ) {
  1267   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1268     _worklist.push(n->fast_out(i));  // Push on worklist
  1272 void PhaseIterGVN::add_users_to_worklist( Node *n ) {
  1273   add_users_to_worklist0(n);
  1275   // Move users of node to worklist
  1276   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1277     Node* use = n->fast_out(i); // Get use
  1279     if( use->is_Multi() ||      // Multi-definer?  Push projs on worklist
  1280         use->is_Store() )       // Enable store/load same address
  1281       add_users_to_worklist0(use);
  1283     // If we changed the receiver type to a call, we need to revisit
  1284     // the Catch following the call.  It's looking for a non-NULL
  1285     // receiver to know when to enable the regular fall-through path
  1286     // in addition to the NullPtrException path.
  1287     if (use->is_CallDynamicJava() && n == use->in(TypeFunc::Parms)) {
  1288       Node* p = use->as_CallDynamicJava()->proj_out(TypeFunc::Control);
  1289       if (p != NULL) {
  1290         add_users_to_worklist0(p);
  1294     if( use->is_Cmp() ) {       // Enable CMP/BOOL optimization
  1295       add_users_to_worklist(use); // Put Bool on worklist
  1296       // Look for the 'is_x2logic' pattern: "x ? : 0 : 1" and put the
  1297       // phi merging either 0 or 1 onto the worklist
  1298       if (use->outcnt() > 0) {
  1299         Node* bol = use->raw_out(0);
  1300         if (bol->outcnt() > 0) {
  1301           Node* iff = bol->raw_out(0);
  1302           if (iff->outcnt() == 2) {
  1303             Node* ifproj0 = iff->raw_out(0);
  1304             Node* ifproj1 = iff->raw_out(1);
  1305             if (ifproj0->outcnt() > 0 && ifproj1->outcnt() > 0) {
  1306               Node* region0 = ifproj0->raw_out(0);
  1307               Node* region1 = ifproj1->raw_out(0);
  1308               if( region0 == region1 )
  1309                 add_users_to_worklist0(region0);
  1316     uint use_op = use->Opcode();
  1317     // If changed Cast input, check Phi users for simple cycles
  1318     if( use->is_ConstraintCast() || use->is_CheckCastPP() ) {
  1319       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
  1320         Node* u = use->fast_out(i2);
  1321         if (u->is_Phi())
  1322           _worklist.push(u);
  1325     // If changed LShift inputs, check RShift users for useless sign-ext
  1326     if( use_op == Op_LShiftI ) {
  1327       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
  1328         Node* u = use->fast_out(i2);
  1329         if (u->Opcode() == Op_RShiftI)
  1330           _worklist.push(u);
  1333     // If changed AddP inputs, check Stores for loop invariant
  1334     if( use_op == Op_AddP ) {
  1335       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
  1336         Node* u = use->fast_out(i2);
  1337         if (u->is_Mem())
  1338           _worklist.push(u);
  1341     // If changed initialization activity, check dependent Stores
  1342     if (use_op == Op_Allocate || use_op == Op_AllocateArray) {
  1343       InitializeNode* init = use->as_Allocate()->initialization();
  1344       if (init != NULL) {
  1345         Node* imem = init->proj_out(TypeFunc::Memory);
  1346         if (imem != NULL)  add_users_to_worklist0(imem);
  1349     if (use_op == Op_Initialize) {
  1350       Node* imem = use->as_Initialize()->proj_out(TypeFunc::Memory);
  1351       if (imem != NULL)  add_users_to_worklist0(imem);
  1356 //=============================================================================
  1357 #ifndef PRODUCT
  1358 uint PhaseCCP::_total_invokes   = 0;
  1359 uint PhaseCCP::_total_constants = 0;
  1360 #endif
  1361 //------------------------------PhaseCCP---------------------------------------
  1362 // Conditional Constant Propagation, ala Wegman & Zadeck
  1363 PhaseCCP::PhaseCCP( PhaseIterGVN *igvn ) : PhaseIterGVN(igvn) {
  1364   NOT_PRODUCT( clear_constants(); )
  1365   assert( _worklist.size() == 0, "" );
  1366   // Clear out _nodes from IterGVN.  Must be clear to transform call.
  1367   _nodes.clear();               // Clear out from IterGVN
  1368   analyze();
  1371 #ifndef PRODUCT
  1372 //------------------------------~PhaseCCP--------------------------------------
  1373 PhaseCCP::~PhaseCCP() {
  1374   inc_invokes();
  1375   _total_constants += count_constants();
  1377 #endif
  1380 #ifdef ASSERT
  1381 static bool ccp_type_widens(const Type* t, const Type* t0) {
  1382   assert(t->meet(t0) == t, "Not monotonic");
  1383   switch (t->base() == t0->base() ? t->base() : Type::Top) {
  1384   case Type::Int:
  1385     assert(t0->isa_int()->_widen <= t->isa_int()->_widen, "widen increases");
  1386     break;
  1387   case Type::Long:
  1388     assert(t0->isa_long()->_widen <= t->isa_long()->_widen, "widen increases");
  1389     break;
  1391   return true;
  1393 #endif //ASSERT
  1395 //------------------------------analyze----------------------------------------
  1396 void PhaseCCP::analyze() {
  1397   // Initialize all types to TOP, optimistic analysis
  1398   for (int i = C->unique() - 1; i >= 0; i--)  {
  1399     _types.map(i,Type::TOP);
  1402   // Push root onto worklist
  1403   Unique_Node_List worklist;
  1404   worklist.push(C->root());
  1406   // Pull from worklist; compute new value; push changes out.
  1407   // This loop is the meat of CCP.
  1408   while( worklist.size() ) {
  1409     Node *n = worklist.pop();
  1410     const Type *t = n->Value(this);
  1411     if (t != type(n)) {
  1412       assert(ccp_type_widens(t, type(n)), "ccp type must widen");
  1413 #ifndef PRODUCT
  1414       if( TracePhaseCCP ) {
  1415         t->dump();
  1416         do { tty->print("\t"); } while (tty->position() < 16);
  1417         n->dump();
  1419 #endif
  1420       set_type(n, t);
  1421       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1422         Node* m = n->fast_out(i);   // Get user
  1423         if( m->is_Region() ) {  // New path to Region?  Must recheck Phis too
  1424           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
  1425             Node* p = m->fast_out(i2); // Propagate changes to uses
  1426             if( p->bottom_type() != type(p) ) // If not already bottomed out
  1427               worklist.push(p); // Propagate change to user
  1430         // If we changed the receiver type to a call, we need to revisit
  1431         // the Catch following the call.  It's looking for a non-NULL
  1432         // receiver to know when to enable the regular fall-through path
  1433         // in addition to the NullPtrException path
  1434         if (m->is_Call()) {
  1435           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
  1436             Node* p = m->fast_out(i2);  // Propagate changes to uses
  1437             if (p->is_Proj() && p->as_Proj()->_con == TypeFunc::Control && p->outcnt() == 1)
  1438               worklist.push(p->unique_out());
  1441         if( m->bottom_type() != type(m) ) // If not already bottomed out
  1442           worklist.push(m);     // Propagate change to user
  1448 //------------------------------do_transform-----------------------------------
  1449 // Top level driver for the recursive transformer
  1450 void PhaseCCP::do_transform() {
  1451   // Correct leaves of new-space Nodes; they point to old-space.
  1452   C->set_root( transform(C->root())->as_Root() );
  1453   assert( C->top(),  "missing TOP node" );
  1454   assert( C->root(), "missing root" );
  1457 //------------------------------transform--------------------------------------
  1458 // Given a Node in old-space, clone him into new-space.
  1459 // Convert any of his old-space children into new-space children.
  1460 Node *PhaseCCP::transform( Node *n ) {
  1461   Node *new_node = _nodes[n->_idx]; // Check for transformed node
  1462   if( new_node != NULL )
  1463     return new_node;                // Been there, done that, return old answer
  1464   new_node = transform_once(n);     // Check for constant
  1465   _nodes.map( n->_idx, new_node );  // Flag as having been cloned
  1467   // Allocate stack of size _nodes.Size()/2 to avoid frequent realloc
  1468   GrowableArray <Node *> trstack(C->unique() >> 1);
  1470   trstack.push(new_node);           // Process children of cloned node
  1471   while ( trstack.is_nonempty() ) {
  1472     Node *clone = trstack.pop();
  1473     uint cnt = clone->req();
  1474     for( uint i = 0; i < cnt; i++ ) {          // For all inputs do
  1475       Node *input = clone->in(i);
  1476       if( input != NULL ) {                    // Ignore NULLs
  1477         Node *new_input = _nodes[input->_idx]; // Check for cloned input node
  1478         if( new_input == NULL ) {
  1479           new_input = transform_once(input);   // Check for constant
  1480           _nodes.map( input->_idx, new_input );// Flag as having been cloned
  1481           trstack.push(new_input);
  1483         assert( new_input == clone->in(i), "insanity check");
  1487   return new_node;
  1491 //------------------------------transform_once---------------------------------
  1492 // For PhaseCCP, transformation is IDENTITY unless Node computed a constant.
  1493 Node *PhaseCCP::transform_once( Node *n ) {
  1494   const Type *t = type(n);
  1495   // Constant?  Use constant Node instead
  1496   if( t->singleton() ) {
  1497     Node *nn = n;               // Default is to return the original constant
  1498     if( t == Type::TOP ) {
  1499       // cache my top node on the Compile instance
  1500       if( C->cached_top_node() == NULL || C->cached_top_node()->in(0) == NULL ) {
  1501         C->set_cached_top_node( ConNode::make(C, Type::TOP) );
  1502         set_type(C->top(), Type::TOP);
  1504       nn = C->top();
  1506     if( !n->is_Con() ) {
  1507       if( t != Type::TOP ) {
  1508         nn = makecon(t);        // ConNode::make(t);
  1509         NOT_PRODUCT( inc_constants(); )
  1510       } else if( n->is_Region() ) { // Unreachable region
  1511         // Note: nn == C->top()
  1512         n->set_req(0, NULL);        // Cut selfreference
  1513         // Eagerly remove dead phis to avoid phis copies creation.
  1514         for (DUIterator i = n->outs(); n->has_out(i); i++) {
  1515           Node* m = n->out(i);
  1516           if( m->is_Phi() ) {
  1517             assert(type(m) == Type::TOP, "Unreachable region should not have live phis.");
  1518             replace_node(m, nn);
  1519             --i; // deleted this phi; rescan starting with next position
  1523       replace_node(n,nn);       // Update DefUse edges for new constant
  1525     return nn;
  1528   // If x is a TypeNode, capture any more-precise type permanently into Node
  1529   if (t != n->bottom_type()) {
  1530     hash_delete(n);             // changing bottom type may force a rehash
  1531     n->raise_bottom_type(t);
  1532     _worklist.push(n);          // n re-enters the hash table via the worklist
  1535   // Idealize graph using DU info.  Must clone() into new-space.
  1536   // DU info is generally used to show profitability, progress or safety
  1537   // (but generally not needed for correctness).
  1538   Node *nn = n->Ideal_DU_postCCP(this);
  1540   // TEMPORARY fix to ensure that 2nd GVN pass eliminates NULL checks
  1541   switch( n->Opcode() ) {
  1542   case Op_FastLock:      // Revisit FastLocks for lock coarsening
  1543   case Op_If:
  1544   case Op_CountedLoopEnd:
  1545   case Op_Region:
  1546   case Op_Loop:
  1547   case Op_CountedLoop:
  1548   case Op_Conv2B:
  1549   case Op_Opaque1:
  1550   case Op_Opaque2:
  1551     _worklist.push(n);
  1552     break;
  1553   default:
  1554     break;
  1556   if( nn ) {
  1557     _worklist.push(n);
  1558     // Put users of 'n' onto worklist for second igvn transform
  1559     add_users_to_worklist(n);
  1560     return nn;
  1563   return  n;
  1566 //---------------------------------saturate------------------------------------
  1567 const Type* PhaseCCP::saturate(const Type* new_type, const Type* old_type,
  1568                                const Type* limit_type) const {
  1569   const Type* wide_type = new_type->widen(old_type, limit_type);
  1570   if (wide_type != new_type) {          // did we widen?
  1571     // If so, we may have widened beyond the limit type.  Clip it back down.
  1572     new_type = wide_type->filter(limit_type);
  1574   return new_type;
  1577 //------------------------------print_statistics-------------------------------
  1578 #ifndef PRODUCT
  1579 void PhaseCCP::print_statistics() {
  1580   tty->print_cr("CCP: %d  constants found: %d", _total_invokes, _total_constants);
  1582 #endif
  1585 //=============================================================================
  1586 #ifndef PRODUCT
  1587 uint PhasePeephole::_total_peepholes = 0;
  1588 #endif
  1589 //------------------------------PhasePeephole----------------------------------
  1590 // Conditional Constant Propagation, ala Wegman & Zadeck
  1591 PhasePeephole::PhasePeephole( PhaseRegAlloc *regalloc, PhaseCFG &cfg )
  1592   : PhaseTransform(Peephole), _regalloc(regalloc), _cfg(cfg) {
  1593   NOT_PRODUCT( clear_peepholes(); )
  1596 #ifndef PRODUCT
  1597 //------------------------------~PhasePeephole---------------------------------
  1598 PhasePeephole::~PhasePeephole() {
  1599   _total_peepholes += count_peepholes();
  1601 #endif
  1603 //------------------------------transform--------------------------------------
  1604 Node *PhasePeephole::transform( Node *n ) {
  1605   ShouldNotCallThis();
  1606   return NULL;
  1609 //------------------------------do_transform-----------------------------------
  1610 void PhasePeephole::do_transform() {
  1611   bool method_name_not_printed = true;
  1613   // Examine each basic block
  1614   for( uint block_number = 1; block_number < _cfg._num_blocks; ++block_number ) {
  1615     Block *block = _cfg._blocks[block_number];
  1616     bool block_not_printed = true;
  1618     // and each instruction within a block
  1619     uint end_index = block->_nodes.size();
  1620     // block->end_idx() not valid after PhaseRegAlloc
  1621     for( uint instruction_index = 1; instruction_index < end_index; ++instruction_index ) {
  1622       Node     *n = block->_nodes.at(instruction_index);
  1623       if( n->is_Mach() ) {
  1624         MachNode *m = n->as_Mach();
  1625         int deleted_count = 0;
  1626         // check for peephole opportunities
  1627         MachNode *m2 = m->peephole( block, instruction_index, _regalloc, deleted_count, C );
  1628         if( m2 != NULL ) {
  1629 #ifndef PRODUCT
  1630           if( PrintOptoPeephole ) {
  1631             // Print method, first time only
  1632             if( C->method() && method_name_not_printed ) {
  1633               C->method()->print_short_name(); tty->cr();
  1634               method_name_not_printed = false;
  1636             // Print this block
  1637             if( Verbose && block_not_printed) {
  1638               tty->print_cr("in block");
  1639               block->dump();
  1640               block_not_printed = false;
  1642             // Print instructions being deleted
  1643             for( int i = (deleted_count - 1); i >= 0; --i ) {
  1644               block->_nodes.at(instruction_index-i)->as_Mach()->format(_regalloc); tty->cr();
  1646             tty->print_cr("replaced with");
  1647             // Print new instruction
  1648             m2->format(_regalloc);
  1649             tty->print("\n\n");
  1651 #endif
  1652           // Remove old nodes from basic block and update instruction_index
  1653           // (old nodes still exist and may have edges pointing to them
  1654           //  as register allocation info is stored in the allocator using
  1655           //  the node index to live range mappings.)
  1656           uint safe_instruction_index = (instruction_index - deleted_count);
  1657           for( ; (instruction_index > safe_instruction_index); --instruction_index ) {
  1658             block->_nodes.remove( instruction_index );
  1660           // install new node after safe_instruction_index
  1661           block->_nodes.insert( safe_instruction_index + 1, m2 );
  1662           end_index = block->_nodes.size() - 1; // Recompute new block size
  1663           NOT_PRODUCT( inc_peepholes(); )
  1670 //------------------------------print_statistics-------------------------------
  1671 #ifndef PRODUCT
  1672 void PhasePeephole::print_statistics() {
  1673   tty->print_cr("Peephole: peephole rules applied: %d",  _total_peepholes);
  1675 #endif
  1678 //=============================================================================
  1679 //------------------------------set_req_X--------------------------------------
  1680 void Node::set_req_X( uint i, Node *n, PhaseIterGVN *igvn ) {
  1681   assert( is_not_dead(n), "can not use dead node");
  1682   assert( igvn->hash_find(this) != this, "Need to remove from hash before changing edges" );
  1683   Node *old = in(i);
  1684   set_req(i, n);
  1686   // old goes dead?
  1687   if( old ) {
  1688     switch (old->outcnt()) {
  1689     case 0:
  1690       // Put into the worklist to kill later. We do not kill it now because the
  1691       // recursive kill will delete the current node (this) if dead-loop exists
  1692       if (!old->is_top())
  1693         igvn->_worklist.push( old );
  1694       break;
  1695     case 1:
  1696       if( old->is_Store() || old->has_special_unique_user() )
  1697         igvn->add_users_to_worklist( old );
  1698       break;
  1699     case 2:
  1700       if( old->is_Store() )
  1701         igvn->add_users_to_worklist( old );
  1702       if( old->Opcode() == Op_Region )
  1703         igvn->_worklist.push(old);
  1704       break;
  1705     case 3:
  1706       if( old->Opcode() == Op_Region ) {
  1707         igvn->_worklist.push(old);
  1708         igvn->add_users_to_worklist( old );
  1710       break;
  1711     default:
  1712       break;
  1718 //-------------------------------replace_by-----------------------------------
  1719 // Using def-use info, replace one node for another.  Follow the def-use info
  1720 // to all users of the OLD node.  Then make all uses point to the NEW node.
  1721 void Node::replace_by(Node *new_node) {
  1722   assert(!is_top(), "top node has no DU info");
  1723   for (DUIterator_Last imin, i = last_outs(imin); i >= imin; ) {
  1724     Node* use = last_out(i);
  1725     uint uses_found = 0;
  1726     for (uint j = 0; j < use->len(); j++) {
  1727       if (use->in(j) == this) {
  1728         if (j < use->req())
  1729               use->set_req(j, new_node);
  1730         else  use->set_prec(j, new_node);
  1731         uses_found++;
  1734     i -= uses_found;    // we deleted 1 or more copies of this edge
  1738 //=============================================================================
  1739 //-----------------------------------------------------------------------------
  1740 void Type_Array::grow( uint i ) {
  1741   if( !_max ) {
  1742     _max = 1;
  1743     _types = (const Type**)_a->Amalloc( _max * sizeof(Type*) );
  1744     _types[0] = NULL;
  1746   uint old = _max;
  1747   while( i >= _max ) _max <<= 1;        // Double to fit
  1748   _types = (const Type**)_a->Arealloc( _types, old*sizeof(Type*),_max*sizeof(Type*));
  1749   memset( &_types[old], 0, (_max-old)*sizeof(Type*) );
  1752 //------------------------------dump-------------------------------------------
  1753 #ifndef PRODUCT
  1754 void Type_Array::dump() const {
  1755   uint max = Size();
  1756   for( uint i = 0; i < max; i++ ) {
  1757     if( _types[i] != NULL ) {
  1758       tty->print("  %d\t== ", i); _types[i]->dump(); tty->cr();
  1762 #endif

mercurial