src/share/vm/opto/lcm.cpp

Tue, 09 Oct 2012 10:11:38 +0200

author
roland
date
Tue, 09 Oct 2012 10:11:38 +0200
changeset 4159
8e47bac5643a
parent 4115
e626685e9f6c
child 4315
2aff40cb4703
permissions
-rw-r--r--

7054512: Compress class pointers after perm gen removal
Summary: support of compress class pointers in the compilers.
Reviewed-by: kvn, twisti

     1 /*
     2  * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.inline.hpp"
    27 #include "opto/block.hpp"
    28 #include "opto/c2compiler.hpp"
    29 #include "opto/callnode.hpp"
    30 #include "opto/cfgnode.hpp"
    31 #include "opto/machnode.hpp"
    32 #include "opto/runtime.hpp"
    33 #ifdef TARGET_ARCH_MODEL_x86_32
    34 # include "adfiles/ad_x86_32.hpp"
    35 #endif
    36 #ifdef TARGET_ARCH_MODEL_x86_64
    37 # include "adfiles/ad_x86_64.hpp"
    38 #endif
    39 #ifdef TARGET_ARCH_MODEL_sparc
    40 # include "adfiles/ad_sparc.hpp"
    41 #endif
    42 #ifdef TARGET_ARCH_MODEL_zero
    43 # include "adfiles/ad_zero.hpp"
    44 #endif
    45 #ifdef TARGET_ARCH_MODEL_arm
    46 # include "adfiles/ad_arm.hpp"
    47 #endif
    48 #ifdef TARGET_ARCH_MODEL_ppc
    49 # include "adfiles/ad_ppc.hpp"
    50 #endif
    52 // Optimization - Graph Style
    54 //------------------------------implicit_null_check----------------------------
    55 // Detect implicit-null-check opportunities.  Basically, find NULL checks
    56 // with suitable memory ops nearby.  Use the memory op to do the NULL check.
    57 // I can generate a memory op if there is not one nearby.
    58 // The proj is the control projection for the not-null case.
    59 // The val is the pointer being checked for nullness or
    60 // decodeHeapOop_not_null node if it did not fold into address.
    61 void Block::implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowed_reasons) {
    62   // Assume if null check need for 0 offset then always needed
    63   // Intel solaris doesn't support any null checks yet and no
    64   // mechanism exists (yet) to set the switches at an os_cpu level
    65   if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
    67   // Make sure the ptr-is-null path appears to be uncommon!
    68   float f = end()->as_MachIf()->_prob;
    69   if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
    70   if( f > PROB_UNLIKELY_MAG(4) ) return;
    72   uint bidx = 0;                // Capture index of value into memop
    73   bool was_store;               // Memory op is a store op
    75   // Get the successor block for if the test ptr is non-null
    76   Block* not_null_block;  // this one goes with the proj
    77   Block* null_block;
    78   if (_nodes[_nodes.size()-1] == proj) {
    79     null_block     = _succs[0];
    80     not_null_block = _succs[1];
    81   } else {
    82     assert(_nodes[_nodes.size()-2] == proj, "proj is one or the other");
    83     not_null_block = _succs[0];
    84     null_block     = _succs[1];
    85   }
    86   while (null_block->is_Empty() == Block::empty_with_goto) {
    87     null_block     = null_block->_succs[0];
    88   }
    90   // Search the exception block for an uncommon trap.
    91   // (See Parse::do_if and Parse::do_ifnull for the reason
    92   // we need an uncommon trap.  Briefly, we need a way to
    93   // detect failure of this optimization, as in 6366351.)
    94   {
    95     bool found_trap = false;
    96     for (uint i1 = 0; i1 < null_block->_nodes.size(); i1++) {
    97       Node* nn = null_block->_nodes[i1];
    98       if (nn->is_MachCall() &&
    99           nn->as_MachCall()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
   100         const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
   101         if (trtype->isa_int() && trtype->is_int()->is_con()) {
   102           jint tr_con = trtype->is_int()->get_con();
   103           Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
   104           Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
   105           assert((int)reason < (int)BitsPerInt, "recode bit map");
   106           if (is_set_nth_bit(allowed_reasons, (int) reason)
   107               && action != Deoptimization::Action_none) {
   108             // This uncommon trap is sure to recompile, eventually.
   109             // When that happens, C->too_many_traps will prevent
   110             // this transformation from happening again.
   111             found_trap = true;
   112           }
   113         }
   114         break;
   115       }
   116     }
   117     if (!found_trap) {
   118       // We did not find an uncommon trap.
   119       return;
   120     }
   121   }
   123   // Check for decodeHeapOop_not_null node which did not fold into address
   124   bool is_decoden = ((intptr_t)val) & 1;
   125   val = (Node*)(((intptr_t)val) & ~1);
   127   assert(!is_decoden || (val->in(0) == NULL) && val->is_Mach() &&
   128          (val->as_Mach()->ideal_Opcode() == Op_DecodeN), "sanity");
   130   // Search the successor block for a load or store who's base value is also
   131   // the tested value.  There may be several.
   132   Node_List *out = new Node_List(Thread::current()->resource_area());
   133   MachNode *best = NULL;        // Best found so far
   134   for (DUIterator i = val->outs(); val->has_out(i); i++) {
   135     Node *m = val->out(i);
   136     if( !m->is_Mach() ) continue;
   137     MachNode *mach = m->as_Mach();
   138     was_store = false;
   139     int iop = mach->ideal_Opcode();
   140     switch( iop ) {
   141     case Op_LoadB:
   142     case Op_LoadUB:
   143     case Op_LoadUS:
   144     case Op_LoadD:
   145     case Op_LoadF:
   146     case Op_LoadI:
   147     case Op_LoadL:
   148     case Op_LoadP:
   149     case Op_LoadN:
   150     case Op_LoadS:
   151     case Op_LoadKlass:
   152     case Op_LoadNKlass:
   153     case Op_LoadRange:
   154     case Op_LoadD_unaligned:
   155     case Op_LoadL_unaligned:
   156       assert(mach->in(2) == val, "should be address");
   157       break;
   158     case Op_StoreB:
   159     case Op_StoreC:
   160     case Op_StoreCM:
   161     case Op_StoreD:
   162     case Op_StoreF:
   163     case Op_StoreI:
   164     case Op_StoreL:
   165     case Op_StoreP:
   166     case Op_StoreN:
   167     case Op_StoreNKlass:
   168       was_store = true;         // Memory op is a store op
   169       // Stores will have their address in slot 2 (memory in slot 1).
   170       // If the value being nul-checked is in another slot, it means we
   171       // are storing the checked value, which does NOT check the value!
   172       if( mach->in(2) != val ) continue;
   173       break;                    // Found a memory op?
   174     case Op_StrComp:
   175     case Op_StrEquals:
   176     case Op_StrIndexOf:
   177     case Op_AryEq:
   178       // Not a legit memory op for implicit null check regardless of
   179       // embedded loads
   180       continue;
   181     default:                    // Also check for embedded loads
   182       if( !mach->needs_anti_dependence_check() )
   183         continue;               // Not an memory op; skip it
   184       if( must_clone[iop] ) {
   185         // Do not move nodes which produce flags because
   186         // RA will try to clone it to place near branch and
   187         // it will cause recompilation, see clone_node().
   188         continue;
   189       }
   190       {
   191         // Check that value is used in memory address in
   192         // instructions with embedded load (CmpP val1,(val2+off)).
   193         Node* base;
   194         Node* index;
   195         const MachOper* oper = mach->memory_inputs(base, index);
   196         if (oper == NULL || oper == (MachOper*)-1) {
   197           continue;             // Not an memory op; skip it
   198         }
   199         if (val == base ||
   200             val == index && val->bottom_type()->isa_narrowoop()) {
   201           break;                // Found it
   202         } else {
   203           continue;             // Skip it
   204         }
   205       }
   206       break;
   207     }
   208     // check if the offset is not too high for implicit exception
   209     {
   210       intptr_t offset = 0;
   211       const TypePtr *adr_type = NULL;  // Do not need this return value here
   212       const Node* base = mach->get_base_and_disp(offset, adr_type);
   213       if (base == NULL || base == NodeSentinel) {
   214         // Narrow oop address doesn't have base, only index
   215         if( val->bottom_type()->isa_narrowoop() &&
   216             MacroAssembler::needs_explicit_null_check(offset) )
   217           continue;             // Give up if offset is beyond page size
   218         // cannot reason about it; is probably not implicit null exception
   219       } else {
   220         const TypePtr* tptr;
   221         if (UseCompressedOops && Universe::narrow_oop_shift() == 0) {
   222           // 32-bits narrow oop can be the base of address expressions
   223           tptr = base->bottom_type()->make_ptr();
   224         } else {
   225           // only regular oops are expected here
   226           tptr = base->bottom_type()->is_ptr();
   227         }
   228         // Give up if offset is not a compile-time constant
   229         if( offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot )
   230           continue;
   231         offset += tptr->_offset; // correct if base is offseted
   232         if( MacroAssembler::needs_explicit_null_check(offset) )
   233           continue;             // Give up is reference is beyond 4K page size
   234       }
   235     }
   237     // Check ctrl input to see if the null-check dominates the memory op
   238     Block *cb = cfg->_bbs[mach->_idx];
   239     cb = cb->_idom;             // Always hoist at least 1 block
   240     if( !was_store ) {          // Stores can be hoisted only one block
   241       while( cb->_dom_depth > (_dom_depth + 1))
   242         cb = cb->_idom;         // Hoist loads as far as we want
   243       // The non-null-block should dominate the memory op, too. Live
   244       // range spilling will insert a spill in the non-null-block if it is
   245       // needs to spill the memory op for an implicit null check.
   246       if (cb->_dom_depth == (_dom_depth + 1)) {
   247         if (cb != not_null_block) continue;
   248         cb = cb->_idom;
   249       }
   250     }
   251     if( cb != this ) continue;
   253     // Found a memory user; see if it can be hoisted to check-block
   254     uint vidx = 0;              // Capture index of value into memop
   255     uint j;
   256     for( j = mach->req()-1; j > 0; j-- ) {
   257       if( mach->in(j) == val ) {
   258         vidx = j;
   259         // Ignore DecodeN val which could be hoisted to where needed.
   260         if( is_decoden ) continue;
   261       }
   262       // Block of memory-op input
   263       Block *inb = cfg->_bbs[mach->in(j)->_idx];
   264       Block *b = this;          // Start from nul check
   265       while( b != inb && b->_dom_depth > inb->_dom_depth )
   266         b = b->_idom;           // search upwards for input
   267       // See if input dominates null check
   268       if( b != inb )
   269         break;
   270     }
   271     if( j > 0 )
   272       continue;
   273     Block *mb = cfg->_bbs[mach->_idx];
   274     // Hoisting stores requires more checks for the anti-dependence case.
   275     // Give up hoisting if we have to move the store past any load.
   276     if( was_store ) {
   277       Block *b = mb;            // Start searching here for a local load
   278       // mach use (faulting) trying to hoist
   279       // n might be blocker to hoisting
   280       while( b != this ) {
   281         uint k;
   282         for( k = 1; k < b->_nodes.size(); k++ ) {
   283           Node *n = b->_nodes[k];
   284           if( n->needs_anti_dependence_check() &&
   285               n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
   286             break;              // Found anti-dependent load
   287         }
   288         if( k < b->_nodes.size() )
   289           break;                // Found anti-dependent load
   290         // Make sure control does not do a merge (would have to check allpaths)
   291         if( b->num_preds() != 2 ) break;
   292         b = cfg->_bbs[b->pred(1)->_idx]; // Move up to predecessor block
   293       }
   294       if( b != this ) continue;
   295     }
   297     // Make sure this memory op is not already being used for a NullCheck
   298     Node *e = mb->end();
   299     if( e->is_MachNullCheck() && e->in(1) == mach )
   300       continue;                 // Already being used as a NULL check
   302     // Found a candidate!  Pick one with least dom depth - the highest
   303     // in the dom tree should be closest to the null check.
   304     if( !best ||
   305         cfg->_bbs[mach->_idx]->_dom_depth < cfg->_bbs[best->_idx]->_dom_depth ) {
   306       best = mach;
   307       bidx = vidx;
   309     }
   310   }
   311   // No candidate!
   312   if( !best ) return;
   314   // ---- Found an implicit null check
   315   extern int implicit_null_checks;
   316   implicit_null_checks++;
   318   if( is_decoden ) {
   319     // Check if we need to hoist decodeHeapOop_not_null first.
   320     Block *valb = cfg->_bbs[val->_idx];
   321     if( this != valb && this->_dom_depth < valb->_dom_depth ) {
   322       // Hoist it up to the end of the test block.
   323       valb->find_remove(val);
   324       this->add_inst(val);
   325       cfg->_bbs.map(val->_idx,this);
   326       // DecodeN on x86 may kill flags. Check for flag-killing projections
   327       // that also need to be hoisted.
   328       for (DUIterator_Fast jmax, j = val->fast_outs(jmax); j < jmax; j++) {
   329         Node* n = val->fast_out(j);
   330         if( n->is_MachProj() ) {
   331           cfg->_bbs[n->_idx]->find_remove(n);
   332           this->add_inst(n);
   333           cfg->_bbs.map(n->_idx,this);
   334         }
   335       }
   336     }
   337   }
   338   // Hoist the memory candidate up to the end of the test block.
   339   Block *old_block = cfg->_bbs[best->_idx];
   340   old_block->find_remove(best);
   341   add_inst(best);
   342   cfg->_bbs.map(best->_idx,this);
   344   // Move the control dependence
   345   if (best->in(0) && best->in(0) == old_block->_nodes[0])
   346     best->set_req(0, _nodes[0]);
   348   // Check for flag-killing projections that also need to be hoisted
   349   // Should be DU safe because no edge updates.
   350   for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
   351     Node* n = best->fast_out(j);
   352     if( n->is_MachProj() ) {
   353       cfg->_bbs[n->_idx]->find_remove(n);
   354       add_inst(n);
   355       cfg->_bbs.map(n->_idx,this);
   356     }
   357   }
   359   Compile *C = cfg->C;
   360   // proj==Op_True --> ne test; proj==Op_False --> eq test.
   361   // One of two graph shapes got matched:
   362   //   (IfTrue  (If (Bool NE (CmpP ptr NULL))))
   363   //   (IfFalse (If (Bool EQ (CmpP ptr NULL))))
   364   // NULL checks are always branch-if-eq.  If we see a IfTrue projection
   365   // then we are replacing a 'ne' test with a 'eq' NULL check test.
   366   // We need to flip the projections to keep the same semantics.
   367   if( proj->Opcode() == Op_IfTrue ) {
   368     // Swap order of projections in basic block to swap branch targets
   369     Node *tmp1 = _nodes[end_idx()+1];
   370     Node *tmp2 = _nodes[end_idx()+2];
   371     _nodes.map(end_idx()+1, tmp2);
   372     _nodes.map(end_idx()+2, tmp1);
   373     Node *tmp = new (C) Node(C->top()); // Use not NULL input
   374     tmp1->replace_by(tmp);
   375     tmp2->replace_by(tmp1);
   376     tmp->replace_by(tmp2);
   377     tmp->destruct();
   378   }
   380   // Remove the existing null check; use a new implicit null check instead.
   381   // Since schedule-local needs precise def-use info, we need to correct
   382   // it as well.
   383   Node *old_tst = proj->in(0);
   384   MachNode *nul_chk = new (C) MachNullCheckNode(old_tst->in(0),best,bidx);
   385   _nodes.map(end_idx(),nul_chk);
   386   cfg->_bbs.map(nul_chk->_idx,this);
   387   // Redirect users of old_test to nul_chk
   388   for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
   389     old_tst->last_out(i2)->set_req(0, nul_chk);
   390   // Clean-up any dead code
   391   for (uint i3 = 0; i3 < old_tst->req(); i3++)
   392     old_tst->set_req(i3, NULL);
   394   cfg->latency_from_uses(nul_chk);
   395   cfg->latency_from_uses(best);
   396 }
   399 //------------------------------select-----------------------------------------
   400 // Select a nice fellow from the worklist to schedule next. If there is only
   401 // one choice, then use it. Projections take top priority for correctness
   402 // reasons - if I see a projection, then it is next.  There are a number of
   403 // other special cases, for instructions that consume condition codes, et al.
   404 // These are chosen immediately. Some instructions are required to immediately
   405 // precede the last instruction in the block, and these are taken last. Of the
   406 // remaining cases (most), choose the instruction with the greatest latency
   407 // (that is, the most number of pseudo-cycles required to the end of the
   408 // routine). If there is a tie, choose the instruction with the most inputs.
   409 Node *Block::select(PhaseCFG *cfg, Node_List &worklist, GrowableArray<int> &ready_cnt, VectorSet &next_call, uint sched_slot) {
   411   // If only a single entry on the stack, use it
   412   uint cnt = worklist.size();
   413   if (cnt == 1) {
   414     Node *n = worklist[0];
   415     worklist.map(0,worklist.pop());
   416     return n;
   417   }
   419   uint choice  = 0; // Bigger is most important
   420   uint latency = 0; // Bigger is scheduled first
   421   uint score   = 0; // Bigger is better
   422   int idx = -1;     // Index in worklist
   424   for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
   425     // Order in worklist is used to break ties.
   426     // See caller for how this is used to delay scheduling
   427     // of induction variable increments to after the other
   428     // uses of the phi are scheduled.
   429     Node *n = worklist[i];      // Get Node on worklist
   431     int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
   432     if( n->is_Proj() ||         // Projections always win
   433         n->Opcode()== Op_Con || // So does constant 'Top'
   434         iop == Op_CreateEx ||   // Create-exception must start block
   435         iop == Op_CheckCastPP
   436         ) {
   437       worklist.map(i,worklist.pop());
   438       return n;
   439     }
   441     // Final call in a block must be adjacent to 'catch'
   442     Node *e = end();
   443     if( e->is_Catch() && e->in(0)->in(0) == n )
   444       continue;
   446     // Memory op for an implicit null check has to be at the end of the block
   447     if( e->is_MachNullCheck() && e->in(1) == n )
   448       continue;
   450     // Schedule IV increment last.
   451     if (e->is_Mach() && e->as_Mach()->ideal_Opcode() == Op_CountedLoopEnd &&
   452         e->in(1)->in(1) == n && n->is_iteratively_computed())
   453       continue;
   455     uint n_choice  = 2;
   457     // See if this instruction is consumed by a branch. If so, then (as the
   458     // branch is the last instruction in the basic block) force it to the
   459     // end of the basic block
   460     if ( must_clone[iop] ) {
   461       // See if any use is a branch
   462       bool found_machif = false;
   464       for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
   465         Node* use = n->fast_out(j);
   467         // The use is a conditional branch, make them adjacent
   468         if (use->is_MachIf() && cfg->_bbs[use->_idx]==this ) {
   469           found_machif = true;
   470           break;
   471         }
   473         // More than this instruction pending for successor to be ready,
   474         // don't choose this if other opportunities are ready
   475         if (ready_cnt.at(use->_idx) > 1)
   476           n_choice = 1;
   477       }
   479       // loop terminated, prefer not to use this instruction
   480       if (found_machif)
   481         continue;
   482     }
   484     // See if this has a predecessor that is "must_clone", i.e. sets the
   485     // condition code. If so, choose this first
   486     for (uint j = 0; j < n->req() ; j++) {
   487       Node *inn = n->in(j);
   488       if (inn) {
   489         if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
   490           n_choice = 3;
   491           break;
   492         }
   493       }
   494     }
   496     // MachTemps should be scheduled last so they are near their uses
   497     if (n->is_MachTemp()) {
   498       n_choice = 1;
   499     }
   501     uint n_latency = cfg->_node_latency->at_grow(n->_idx);
   502     uint n_score   = n->req();   // Many inputs get high score to break ties
   504     // Keep best latency found
   505     if( choice < n_choice ||
   506         ( choice == n_choice &&
   507           ( latency < n_latency ||
   508             ( latency == n_latency &&
   509               ( score < n_score ))))) {
   510       choice  = n_choice;
   511       latency = n_latency;
   512       score   = n_score;
   513       idx     = i;               // Also keep index in worklist
   514     }
   515   } // End of for all ready nodes in worklist
   517   assert(idx >= 0, "index should be set");
   518   Node *n = worklist[(uint)idx];      // Get the winner
   520   worklist.map((uint)idx, worklist.pop());     // Compress worklist
   521   return n;
   522 }
   525 //------------------------------set_next_call----------------------------------
   526 void Block::set_next_call( Node *n, VectorSet &next_call, Block_Array &bbs ) {
   527   if( next_call.test_set(n->_idx) ) return;
   528   for( uint i=0; i<n->len(); i++ ) {
   529     Node *m = n->in(i);
   530     if( !m ) continue;  // must see all nodes in block that precede call
   531     if( bbs[m->_idx] == this )
   532       set_next_call( m, next_call, bbs );
   533   }
   534 }
   536 //------------------------------needed_for_next_call---------------------------
   537 // Set the flag 'next_call' for each Node that is needed for the next call to
   538 // be scheduled.  This flag lets me bias scheduling so Nodes needed for the
   539 // next subroutine call get priority - basically it moves things NOT needed
   540 // for the next call till after the call.  This prevents me from trying to
   541 // carry lots of stuff live across a call.
   542 void Block::needed_for_next_call(Node *this_call, VectorSet &next_call, Block_Array &bbs) {
   543   // Find the next control-defining Node in this block
   544   Node* call = NULL;
   545   for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
   546     Node* m = this_call->fast_out(i);
   547     if( bbs[m->_idx] == this && // Local-block user
   548         m != this_call &&       // Not self-start node
   549         m->is_MachCall() )
   550       call = m;
   551       break;
   552   }
   553   if (call == NULL)  return;    // No next call (e.g., block end is near)
   554   // Set next-call for all inputs to this call
   555   set_next_call(call, next_call, bbs);
   556 }
   558 //------------------------------add_call_kills-------------------------------------
   559 void Block::add_call_kills(MachProjNode *proj, RegMask& regs, const char* save_policy, bool exclude_soe) {
   560   // Fill in the kill mask for the call
   561   for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
   562     if( !regs.Member(r) ) {     // Not already defined by the call
   563       // Save-on-call register?
   564       if ((save_policy[r] == 'C') ||
   565           (save_policy[r] == 'A') ||
   566           ((save_policy[r] == 'E') && exclude_soe)) {
   567         proj->_rout.Insert(r);
   568       }
   569     }
   570   }
   571 }
   574 //------------------------------sched_call-------------------------------------
   575 uint Block::sched_call( Matcher &matcher, Block_Array &bbs, uint node_cnt, Node_List &worklist, GrowableArray<int> &ready_cnt, MachCallNode *mcall, VectorSet &next_call ) {
   576   RegMask regs;
   578   // Schedule all the users of the call right now.  All the users are
   579   // projection Nodes, so they must be scheduled next to the call.
   580   // Collect all the defined registers.
   581   for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
   582     Node* n = mcall->fast_out(i);
   583     assert( n->is_MachProj(), "" );
   584     int n_cnt = ready_cnt.at(n->_idx)-1;
   585     ready_cnt.at_put(n->_idx, n_cnt);
   586     assert( n_cnt == 0, "" );
   587     // Schedule next to call
   588     _nodes.map(node_cnt++, n);
   589     // Collect defined registers
   590     regs.OR(n->out_RegMask());
   591     // Check for scheduling the next control-definer
   592     if( n->bottom_type() == Type::CONTROL )
   593       // Warm up next pile of heuristic bits
   594       needed_for_next_call(n, next_call, bbs);
   596     // Children of projections are now all ready
   597     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
   598       Node* m = n->fast_out(j); // Get user
   599       if( bbs[m->_idx] != this ) continue;
   600       if( m->is_Phi() ) continue;
   601       int m_cnt = ready_cnt.at(m->_idx)-1;
   602       ready_cnt.at_put(m->_idx, m_cnt);
   603       if( m_cnt == 0 )
   604         worklist.push(m);
   605     }
   607   }
   609   // Act as if the call defines the Frame Pointer.
   610   // Certainly the FP is alive and well after the call.
   611   regs.Insert(matcher.c_frame_pointer());
   613   // Set all registers killed and not already defined by the call.
   614   uint r_cnt = mcall->tf()->range()->cnt();
   615   int op = mcall->ideal_Opcode();
   616   MachProjNode *proj = new (matcher.C) MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
   617   bbs.map(proj->_idx,this);
   618   _nodes.insert(node_cnt++, proj);
   620   // Select the right register save policy.
   621   const char * save_policy;
   622   switch (op) {
   623     case Op_CallRuntime:
   624     case Op_CallLeaf:
   625     case Op_CallLeafNoFP:
   626       // Calling C code so use C calling convention
   627       save_policy = matcher._c_reg_save_policy;
   628       break;
   630     case Op_CallStaticJava:
   631     case Op_CallDynamicJava:
   632       // Calling Java code so use Java calling convention
   633       save_policy = matcher._register_save_policy;
   634       break;
   636     default:
   637       ShouldNotReachHere();
   638   }
   640   // When using CallRuntime mark SOE registers as killed by the call
   641   // so values that could show up in the RegisterMap aren't live in a
   642   // callee saved register since the register wouldn't know where to
   643   // find them.  CallLeaf and CallLeafNoFP are ok because they can't
   644   // have debug info on them.  Strictly speaking this only needs to be
   645   // done for oops since idealreg2debugmask takes care of debug info
   646   // references but there no way to handle oops differently than other
   647   // pointers as far as the kill mask goes.
   648   bool exclude_soe = op == Op_CallRuntime;
   650   // If the call is a MethodHandle invoke, we need to exclude the
   651   // register which is used to save the SP value over MH invokes from
   652   // the mask.  Otherwise this register could be used for
   653   // deoptimization information.
   654   if (op == Op_CallStaticJava) {
   655     MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
   656     if (mcallstaticjava->_method_handle_invoke)
   657       proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
   658   }
   660   add_call_kills(proj, regs, save_policy, exclude_soe);
   662   return node_cnt;
   663 }
   666 //------------------------------schedule_local---------------------------------
   667 // Topological sort within a block.  Someday become a real scheduler.
   668 bool Block::schedule_local(PhaseCFG *cfg, Matcher &matcher, GrowableArray<int> &ready_cnt, VectorSet &next_call) {
   669   // Already "sorted" are the block start Node (as the first entry), and
   670   // the block-ending Node and any trailing control projections.  We leave
   671   // these alone.  PhiNodes and ParmNodes are made to follow the block start
   672   // Node.  Everything else gets topo-sorted.
   674 #ifndef PRODUCT
   675     if (cfg->trace_opto_pipelining()) {
   676       tty->print_cr("# --- schedule_local B%d, before: ---", _pre_order);
   677       for (uint i = 0;i < _nodes.size();i++) {
   678         tty->print("# ");
   679         _nodes[i]->fast_dump();
   680       }
   681       tty->print_cr("#");
   682     }
   683 #endif
   685   // RootNode is already sorted
   686   if( _nodes.size() == 1 ) return true;
   688   // Move PhiNodes and ParmNodes from 1 to cnt up to the start
   689   uint node_cnt = end_idx();
   690   uint phi_cnt = 1;
   691   uint i;
   692   for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
   693     Node *n = _nodes[i];
   694     if( n->is_Phi() ||          // Found a PhiNode or ParmNode
   695         (n->is_Proj()  && n->in(0) == head()) ) {
   696       // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
   697       _nodes.map(i,_nodes[phi_cnt]);
   698       _nodes.map(phi_cnt++,n);  // swap Phi/Parm up front
   699     } else {                    // All others
   700       // Count block-local inputs to 'n'
   701       uint cnt = n->len();      // Input count
   702       uint local = 0;
   703       for( uint j=0; j<cnt; j++ ) {
   704         Node *m = n->in(j);
   705         if( m && cfg->_bbs[m->_idx] == this && !m->is_top() )
   706           local++;              // One more block-local input
   707       }
   708       ready_cnt.at_put(n->_idx, local); // Count em up
   710 #ifdef ASSERT
   711       if( UseConcMarkSweepGC || UseG1GC ) {
   712         if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
   713           // Check the precedence edges
   714           for (uint prec = n->req(); prec < n->len(); prec++) {
   715             Node* oop_store = n->in(prec);
   716             if (oop_store != NULL) {
   717               assert(cfg->_bbs[oop_store->_idx]->_dom_depth <= this->_dom_depth, "oop_store must dominate card-mark");
   718             }
   719           }
   720         }
   721       }
   722 #endif
   724       // A few node types require changing a required edge to a precedence edge
   725       // before allocation.
   726       if( n->is_Mach() && n->req() > TypeFunc::Parms &&
   727           (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
   728            n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
   729         // MemBarAcquire could be created without Precedent edge.
   730         // del_req() replaces the specified edge with the last input edge
   731         // and then removes the last edge. If the specified edge > number of
   732         // edges the last edge will be moved outside of the input edges array
   733         // and the edge will be lost. This is why this code should be
   734         // executed only when Precedent (== TypeFunc::Parms) edge is present.
   735         Node *x = n->in(TypeFunc::Parms);
   736         n->del_req(TypeFunc::Parms);
   737         n->add_prec(x);
   738       }
   739     }
   740   }
   741   for(uint i2=i; i2<_nodes.size(); i2++ ) // Trailing guys get zapped count
   742     ready_cnt.at_put(_nodes[i2]->_idx, 0);
   744   // All the prescheduled guys do not hold back internal nodes
   745   uint i3;
   746   for(i3 = 0; i3<phi_cnt; i3++ ) {  // For all pre-scheduled
   747     Node *n = _nodes[i3];       // Get pre-scheduled
   748     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
   749       Node* m = n->fast_out(j);
   750       if( cfg->_bbs[m->_idx] ==this ) { // Local-block user
   751         int m_cnt = ready_cnt.at(m->_idx)-1;
   752         ready_cnt.at_put(m->_idx, m_cnt);   // Fix ready count
   753       }
   754     }
   755   }
   757   Node_List delay;
   758   // Make a worklist
   759   Node_List worklist;
   760   for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
   761     Node *m = _nodes[i4];
   762     if( !ready_cnt.at(m->_idx) ) {   // Zero ready count?
   763       if (m->is_iteratively_computed()) {
   764         // Push induction variable increments last to allow other uses
   765         // of the phi to be scheduled first. The select() method breaks
   766         // ties in scheduling by worklist order.
   767         delay.push(m);
   768       } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
   769         // Force the CreateEx to the top of the list so it's processed
   770         // first and ends up at the start of the block.
   771         worklist.insert(0, m);
   772       } else {
   773         worklist.push(m);         // Then on to worklist!
   774       }
   775     }
   776   }
   777   while (delay.size()) {
   778     Node* d = delay.pop();
   779     worklist.push(d);
   780   }
   782   // Warm up the 'next_call' heuristic bits
   783   needed_for_next_call(_nodes[0], next_call, cfg->_bbs);
   785 #ifndef PRODUCT
   786     if (cfg->trace_opto_pipelining()) {
   787       for (uint j=0; j<_nodes.size(); j++) {
   788         Node     *n = _nodes[j];
   789         int     idx = n->_idx;
   790         tty->print("#   ready cnt:%3d  ", ready_cnt.at(idx));
   791         tty->print("latency:%3d  ", cfg->_node_latency->at_grow(idx));
   792         tty->print("%4d: %s\n", idx, n->Name());
   793       }
   794     }
   795 #endif
   797   uint max_idx = (uint)ready_cnt.length();
   798   // Pull from worklist and schedule
   799   while( worklist.size() ) {    // Worklist is not ready
   801 #ifndef PRODUCT
   802     if (cfg->trace_opto_pipelining()) {
   803       tty->print("#   ready list:");
   804       for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
   805         Node *n = worklist[i];      // Get Node on worklist
   806         tty->print(" %d", n->_idx);
   807       }
   808       tty->cr();
   809     }
   810 #endif
   812     // Select and pop a ready guy from worklist
   813     Node* n = select(cfg, worklist, ready_cnt, next_call, phi_cnt);
   814     _nodes.map(phi_cnt++,n);    // Schedule him next
   816 #ifndef PRODUCT
   817     if (cfg->trace_opto_pipelining()) {
   818       tty->print("#    select %d: %s", n->_idx, n->Name());
   819       tty->print(", latency:%d", cfg->_node_latency->at_grow(n->_idx));
   820       n->dump();
   821       if (Verbose) {
   822         tty->print("#   ready list:");
   823         for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
   824           Node *n = worklist[i];      // Get Node on worklist
   825           tty->print(" %d", n->_idx);
   826         }
   827         tty->cr();
   828       }
   829     }
   831 #endif
   832     if( n->is_MachCall() ) {
   833       MachCallNode *mcall = n->as_MachCall();
   834       phi_cnt = sched_call(matcher, cfg->_bbs, phi_cnt, worklist, ready_cnt, mcall, next_call);
   835       continue;
   836     }
   838     if (n->is_Mach() && n->as_Mach()->has_call()) {
   839       RegMask regs;
   840       regs.Insert(matcher.c_frame_pointer());
   841       regs.OR(n->out_RegMask());
   843       MachProjNode *proj = new (matcher.C) MachProjNode( n, 1, RegMask::Empty, MachProjNode::fat_proj );
   844       cfg->_bbs.map(proj->_idx,this);
   845       _nodes.insert(phi_cnt++, proj);
   847       add_call_kills(proj, regs, matcher._c_reg_save_policy, false);
   848     }
   850     // Children are now all ready
   851     for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
   852       Node* m = n->fast_out(i5); // Get user
   853       if( cfg->_bbs[m->_idx] != this ) continue;
   854       if( m->is_Phi() ) continue;
   855       if (m->_idx >= max_idx) { // new node, skip it
   856         assert(m->is_MachProj() && n->is_Mach() && n->as_Mach()->has_call(), "unexpected node types");
   857         continue;
   858       }
   859       int m_cnt = ready_cnt.at(m->_idx)-1;
   860       ready_cnt.at_put(m->_idx, m_cnt);
   861       if( m_cnt == 0 )
   862         worklist.push(m);
   863     }
   864   }
   866   if( phi_cnt != end_idx() ) {
   867     // did not schedule all.  Retry, Bailout, or Die
   868     Compile* C = matcher.C;
   869     if (C->subsume_loads() == true && !C->failing()) {
   870       // Retry with subsume_loads == false
   871       // If this is the first failure, the sentinel string will "stick"
   872       // to the Compile object, and the C2Compiler will see it and retry.
   873       C->record_failure(C2Compiler::retry_no_subsuming_loads());
   874     }
   875     // assert( phi_cnt == end_idx(), "did not schedule all" );
   876     return false;
   877   }
   879 #ifndef PRODUCT
   880   if (cfg->trace_opto_pipelining()) {
   881     tty->print_cr("#");
   882     tty->print_cr("# after schedule_local");
   883     for (uint i = 0;i < _nodes.size();i++) {
   884       tty->print("# ");
   885       _nodes[i]->fast_dump();
   886     }
   887     tty->cr();
   888   }
   889 #endif
   892   return true;
   893 }
   895 //--------------------------catch_cleanup_fix_all_inputs-----------------------
   896 static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
   897   for (uint l = 0; l < use->len(); l++) {
   898     if (use->in(l) == old_def) {
   899       if (l < use->req()) {
   900         use->set_req(l, new_def);
   901       } else {
   902         use->rm_prec(l);
   903         use->add_prec(new_def);
   904         l--;
   905       }
   906     }
   907   }
   908 }
   910 //------------------------------catch_cleanup_find_cloned_def------------------
   911 static Node *catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
   912   assert( use_blk != def_blk, "Inter-block cleanup only");
   914   // The use is some block below the Catch.  Find and return the clone of the def
   915   // that dominates the use. If there is no clone in a dominating block, then
   916   // create a phi for the def in a dominating block.
   918   // Find which successor block dominates this use.  The successor
   919   // blocks must all be single-entry (from the Catch only; I will have
   920   // split blocks to make this so), hence they all dominate.
   921   while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
   922     use_blk = use_blk->_idom;
   924   // Find the successor
   925   Node *fixup = NULL;
   927   uint j;
   928   for( j = 0; j < def_blk->_num_succs; j++ )
   929     if( use_blk == def_blk->_succs[j] )
   930       break;
   932   if( j == def_blk->_num_succs ) {
   933     // Block at same level in dom-tree is not a successor.  It needs a
   934     // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
   935     Node_Array inputs = new Node_List(Thread::current()->resource_area());
   936     for(uint k = 1; k < use_blk->num_preds(); k++) {
   937       inputs.map(k, catch_cleanup_find_cloned_def(bbs[use_blk->pred(k)->_idx], def, def_blk, bbs, n_clone_idx));
   938     }
   940     // Check to see if the use_blk already has an identical phi inserted.
   941     // If it exists, it will be at the first position since all uses of a
   942     // def are processed together.
   943     Node *phi = use_blk->_nodes[1];
   944     if( phi->is_Phi() ) {
   945       fixup = phi;
   946       for (uint k = 1; k < use_blk->num_preds(); k++) {
   947         if (phi->in(k) != inputs[k]) {
   948           // Not a match
   949           fixup = NULL;
   950           break;
   951         }
   952       }
   953     }
   955     // If an existing PhiNode was not found, make a new one.
   956     if (fixup == NULL) {
   957       Node *new_phi = PhiNode::make(use_blk->head(), def);
   958       use_blk->_nodes.insert(1, new_phi);
   959       bbs.map(new_phi->_idx, use_blk);
   960       for (uint k = 1; k < use_blk->num_preds(); k++) {
   961         new_phi->set_req(k, inputs[k]);
   962       }
   963       fixup = new_phi;
   964     }
   966   } else {
   967     // Found the use just below the Catch.  Make it use the clone.
   968     fixup = use_blk->_nodes[n_clone_idx];
   969   }
   971   return fixup;
   972 }
   974 //--------------------------catch_cleanup_intra_block--------------------------
   975 // Fix all input edges in use that reference "def".  The use is in the same
   976 // block as the def and both have been cloned in each successor block.
   977 static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
   979   // Both the use and def have been cloned. For each successor block,
   980   // get the clone of the use, and make its input the clone of the def
   981   // found in that block.
   983   uint use_idx = blk->find_node(use);
   984   uint offset_idx = use_idx - beg;
   985   for( uint k = 0; k < blk->_num_succs; k++ ) {
   986     // Get clone in each successor block
   987     Block *sb = blk->_succs[k];
   988     Node *clone = sb->_nodes[offset_idx+1];
   989     assert( clone->Opcode() == use->Opcode(), "" );
   991     // Make use-clone reference the def-clone
   992     catch_cleanup_fix_all_inputs(clone, def, sb->_nodes[n_clone_idx]);
   993   }
   994 }
   996 //------------------------------catch_cleanup_inter_block---------------------
   997 // Fix all input edges in use that reference "def".  The use is in a different
   998 // block than the def.
   999 static void catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
  1000   if( !use_blk ) return;        // Can happen if the use is a precedence edge
  1002   Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, bbs, n_clone_idx);
  1003   catch_cleanup_fix_all_inputs(use, def, new_def);
  1006 //------------------------------call_catch_cleanup-----------------------------
  1007 // If we inserted any instructions between a Call and his CatchNode,
  1008 // clone the instructions on all paths below the Catch.
  1009 void Block::call_catch_cleanup(Block_Array &bbs) {
  1011   // End of region to clone
  1012   uint end = end_idx();
  1013   if( !_nodes[end]->is_Catch() ) return;
  1014   // Start of region to clone
  1015   uint beg = end;
  1016   while(!_nodes[beg-1]->is_MachProj() ||
  1017         !_nodes[beg-1]->in(0)->is_MachCall() ) {
  1018     beg--;
  1019     assert(beg > 0,"Catch cleanup walking beyond block boundary");
  1021   // Range of inserted instructions is [beg, end)
  1022   if( beg == end ) return;
  1024   // Clone along all Catch output paths.  Clone area between the 'beg' and
  1025   // 'end' indices.
  1026   for( uint i = 0; i < _num_succs; i++ ) {
  1027     Block *sb = _succs[i];
  1028     // Clone the entire area; ignoring the edge fixup for now.
  1029     for( uint j = end; j > beg; j-- ) {
  1030       // It is safe here to clone a node with anti_dependence
  1031       // since clones dominate on each path.
  1032       Node *clone = _nodes[j-1]->clone();
  1033       sb->_nodes.insert( 1, clone );
  1034       bbs.map(clone->_idx,sb);
  1039   // Fixup edges.  Check the def-use info per cloned Node
  1040   for(uint i2 = beg; i2 < end; i2++ ) {
  1041     uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
  1042     Node *n = _nodes[i2];        // Node that got cloned
  1043     // Need DU safe iterator because of edge manipulation in calls.
  1044     Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area());
  1045     for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
  1046       out->push(n->fast_out(j1));
  1048     uint max = out->size();
  1049     for (uint j = 0; j < max; j++) {// For all users
  1050       Node *use = out->pop();
  1051       Block *buse = bbs[use->_idx];
  1052       if( use->is_Phi() ) {
  1053         for( uint k = 1; k < use->req(); k++ )
  1054           if( use->in(k) == n ) {
  1055             Node *fixup = catch_cleanup_find_cloned_def(bbs[buse->pred(k)->_idx], n, this, bbs, n_clone_idx);
  1056             use->set_req(k, fixup);
  1058       } else {
  1059         if (this == buse) {
  1060           catch_cleanup_intra_block(use, n, this, beg, n_clone_idx);
  1061         } else {
  1062           catch_cleanup_inter_block(use, buse, n, this, bbs, n_clone_idx);
  1065     } // End for all users
  1067   } // End of for all Nodes in cloned area
  1069   // Remove the now-dead cloned ops
  1070   for(uint i3 = beg; i3 < end; i3++ ) {
  1071     _nodes[beg]->disconnect_inputs(NULL);
  1072     _nodes.remove(beg);
  1075   // If the successor blocks have a CreateEx node, move it back to the top
  1076   for(uint i4 = 0; i4 < _num_succs; i4++ ) {
  1077     Block *sb = _succs[i4];
  1078     uint new_cnt = end - beg;
  1079     // Remove any newly created, but dead, nodes.
  1080     for( uint j = new_cnt; j > 0; j-- ) {
  1081       Node *n = sb->_nodes[j];
  1082       if (n->outcnt() == 0 &&
  1083           (!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){
  1084         n->disconnect_inputs(NULL);
  1085         sb->_nodes.remove(j);
  1086         new_cnt--;
  1089     // If any newly created nodes remain, move the CreateEx node to the top
  1090     if (new_cnt > 0) {
  1091       Node *cex = sb->_nodes[1+new_cnt];
  1092       if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
  1093         sb->_nodes.remove(1+new_cnt);
  1094         sb->_nodes.insert(1,cex);

mercurial