src/share/vm/opto/chaitin.cpp

Tue, 09 Oct 2012 10:11:38 +0200

author
roland
date
Tue, 09 Oct 2012 10:11:38 +0200
changeset 4159
8e47bac5643a
parent 4115
e626685e9f6c
child 4315
2aff40cb4703
permissions
-rw-r--r--

7054512: Compress class pointers after perm gen removal
Summary: support of compress class pointers in the compilers.
Reviewed-by: kvn, twisti

     1 /*
     2  * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "compiler/compileLog.hpp"
    27 #include "compiler/oopMap.hpp"
    28 #include "memory/allocation.inline.hpp"
    29 #include "opto/addnode.hpp"
    30 #include "opto/block.hpp"
    31 #include "opto/callnode.hpp"
    32 #include "opto/cfgnode.hpp"
    33 #include "opto/chaitin.hpp"
    34 #include "opto/coalesce.hpp"
    35 #include "opto/connode.hpp"
    36 #include "opto/idealGraphPrinter.hpp"
    37 #include "opto/indexSet.hpp"
    38 #include "opto/machnode.hpp"
    39 #include "opto/memnode.hpp"
    40 #include "opto/opcodes.hpp"
    41 #include "opto/rootnode.hpp"
    43 //=============================================================================
    45 #ifndef PRODUCT
    46 void LRG::dump( ) const {
    47   ttyLocker ttyl;
    48   tty->print("%d ",num_regs());
    49   _mask.dump();
    50   if( _msize_valid ) {
    51     if( mask_size() == compute_mask_size() ) tty->print(", #%d ",_mask_size);
    52     else tty->print(", #!!!_%d_vs_%d ",_mask_size,_mask.Size());
    53   } else {
    54     tty->print(", #?(%d) ",_mask.Size());
    55   }
    57   tty->print("EffDeg: ");
    58   if( _degree_valid ) tty->print( "%d ", _eff_degree );
    59   else tty->print("? ");
    61   if( is_multidef() ) {
    62     tty->print("MultiDef ");
    63     if (_defs != NULL) {
    64       tty->print("(");
    65       for (int i = 0; i < _defs->length(); i++) {
    66         tty->print("N%d ", _defs->at(i)->_idx);
    67       }
    68       tty->print(") ");
    69     }
    70   }
    71   else if( _def == 0 ) tty->print("Dead ");
    72   else tty->print("Def: N%d ",_def->_idx);
    74   tty->print("Cost:%4.2g Area:%4.2g Score:%4.2g ",_cost,_area, score());
    75   // Flags
    76   if( _is_oop ) tty->print("Oop ");
    77   if( _is_float ) tty->print("Float ");
    78   if( _is_vector ) tty->print("Vector ");
    79   if( _was_spilled1 ) tty->print("Spilled ");
    80   if( _was_spilled2 ) tty->print("Spilled2 ");
    81   if( _direct_conflict ) tty->print("Direct_conflict ");
    82   if( _fat_proj ) tty->print("Fat ");
    83   if( _was_lo ) tty->print("Lo ");
    84   if( _has_copy ) tty->print("Copy ");
    85   if( _at_risk ) tty->print("Risk ");
    87   if( _must_spill ) tty->print("Must_spill ");
    88   if( _is_bound ) tty->print("Bound ");
    89   if( _msize_valid ) {
    90     if( _degree_valid && lo_degree() ) tty->print("Trivial ");
    91   }
    93   tty->cr();
    94 }
    95 #endif
    97 //------------------------------score------------------------------------------
    98 // Compute score from cost and area.  Low score is best to spill.
    99 static double raw_score( double cost, double area ) {
   100   return cost - (area*RegisterCostAreaRatio) * 1.52588e-5;
   101 }
   103 double LRG::score() const {
   104   // Scale _area by RegisterCostAreaRatio/64K then subtract from cost.
   105   // Bigger area lowers score, encourages spilling this live range.
   106   // Bigger cost raise score, prevents spilling this live range.
   107   // (Note: 1/65536 is the magic constant below; I dont trust the C optimizer
   108   // to turn a divide by a constant into a multiply by the reciprical).
   109   double score = raw_score( _cost, _area);
   111   // Account for area.  Basically, LRGs covering large areas are better
   112   // to spill because more other LRGs get freed up.
   113   if( _area == 0.0 )            // No area?  Then no progress to spill
   114     return 1e35;
   116   if( _was_spilled2 )           // If spilled once before, we are unlikely
   117     return score + 1e30;        // to make progress again.
   119   if( _cost >= _area*3.0 )      // Tiny area relative to cost
   120     return score + 1e17;        // Probably no progress to spill
   122   if( (_cost+_cost) >= _area*3.0 ) // Small area relative to cost
   123     return score + 1e10;        // Likely no progress to spill
   125   return score;
   126 }
   128 //------------------------------LRG_List---------------------------------------
   129 LRG_List::LRG_List( uint max ) : _cnt(max), _max(max), _lidxs(NEW_RESOURCE_ARRAY(uint,max)) {
   130   memset( _lidxs, 0, sizeof(uint)*max );
   131 }
   133 void LRG_List::extend( uint nidx, uint lidx ) {
   134   _nesting.check();
   135   if( nidx >= _max ) {
   136     uint size = 16;
   137     while( size <= nidx ) size <<=1;
   138     _lidxs = REALLOC_RESOURCE_ARRAY( uint, _lidxs, _max, size );
   139     _max = size;
   140   }
   141   while( _cnt <= nidx )
   142     _lidxs[_cnt++] = 0;
   143   _lidxs[nidx] = lidx;
   144 }
   146 #define NUMBUCKS 3
   148 //------------------------------Chaitin----------------------------------------
   149 PhaseChaitin::PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher)
   150   : PhaseRegAlloc(unique, cfg, matcher,
   151 #ifndef PRODUCT
   152        print_chaitin_statistics
   153 #else
   154        NULL
   155 #endif
   156        ),
   157     _names(unique), _uf_map(unique),
   158     _maxlrg(0), _live(0),
   159     _spilled_once(Thread::current()->resource_area()),
   160     _spilled_twice(Thread::current()->resource_area()),
   161     _lo_degree(0), _lo_stk_degree(0), _hi_degree(0), _simplified(0),
   162     _oldphi(unique)
   163 #ifndef PRODUCT
   164   , _trace_spilling(TraceSpilling || C->method_has_option("TraceSpilling"))
   165 #endif
   166 {
   167   NOT_PRODUCT( Compile::TracePhase t3("ctorChaitin", &_t_ctorChaitin, TimeCompiler); )
   169   _high_frequency_lrg = MIN2(float(OPTO_LRG_HIGH_FREQ), _cfg._outer_loop_freq);
   171   uint i,j;
   172   // Build a list of basic blocks, sorted by frequency
   173   _blks = NEW_RESOURCE_ARRAY( Block *, _cfg._num_blocks );
   174   // Experiment with sorting strategies to speed compilation
   175   double  cutoff = BLOCK_FREQUENCY(1.0); // Cutoff for high frequency bucket
   176   Block **buckets[NUMBUCKS];             // Array of buckets
   177   uint    buckcnt[NUMBUCKS];             // Array of bucket counters
   178   double  buckval[NUMBUCKS];             // Array of bucket value cutoffs
   179   for( i = 0; i < NUMBUCKS; i++ ) {
   180     buckets[i] = NEW_RESOURCE_ARRAY( Block *, _cfg._num_blocks );
   181     buckcnt[i] = 0;
   182     // Bump by three orders of magnitude each time
   183     cutoff *= 0.001;
   184     buckval[i] = cutoff;
   185     for( j = 0; j < _cfg._num_blocks; j++ ) {
   186       buckets[i][j] = NULL;
   187     }
   188   }
   189   // Sort blocks into buckets
   190   for( i = 0; i < _cfg._num_blocks; i++ ) {
   191     for( j = 0; j < NUMBUCKS; j++ ) {
   192       if( (j == NUMBUCKS-1) || (_cfg._blocks[i]->_freq > buckval[j]) ) {
   193         // Assign block to end of list for appropriate bucket
   194         buckets[j][buckcnt[j]++] = _cfg._blocks[i];
   195         break;                      // kick out of inner loop
   196       }
   197     }
   198   }
   199   // Dump buckets into final block array
   200   uint blkcnt = 0;
   201   for( i = 0; i < NUMBUCKS; i++ ) {
   202     for( j = 0; j < buckcnt[i]; j++ ) {
   203       _blks[blkcnt++] = buckets[i][j];
   204     }
   205   }
   207   assert(blkcnt == _cfg._num_blocks, "Block array not totally filled");
   208 }
   210 void PhaseChaitin::Register_Allocate() {
   212   // Above the OLD FP (and in registers) are the incoming arguments.  Stack
   213   // slots in this area are called "arg_slots".  Above the NEW FP (and in
   214   // registers) is the outgoing argument area; above that is the spill/temp
   215   // area.  These are all "frame_slots".  Arg_slots start at the zero
   216   // stack_slots and count up to the known arg_size.  Frame_slots start at
   217   // the stack_slot #arg_size and go up.  After allocation I map stack
   218   // slots to actual offsets.  Stack-slots in the arg_slot area are biased
   219   // by the frame_size; stack-slots in the frame_slot area are biased by 0.
   221   _trip_cnt = 0;
   222   _alternate = 0;
   223   _matcher._allocation_started = true;
   225   ResourceArea split_arena;     // Arena for Split local resources
   226   ResourceArea live_arena;      // Arena for liveness & IFG info
   227   ResourceMark rm(&live_arena);
   229   // Need live-ness for the IFG; need the IFG for coalescing.  If the
   230   // liveness is JUST for coalescing, then I can get some mileage by renaming
   231   // all copy-related live ranges low and then using the max copy-related
   232   // live range as a cut-off for LIVE and the IFG.  In other words, I can
   233   // build a subset of LIVE and IFG just for copies.
   234   PhaseLive live(_cfg,_names,&live_arena);
   236   // Need IFG for coalescing and coloring
   237   PhaseIFG ifg( &live_arena );
   238   _ifg = &ifg;
   240   if (C->unique() > _names.Size())  _names.extend(C->unique()-1, 0);
   242   // Come out of SSA world to the Named world.  Assign (virtual) registers to
   243   // Nodes.  Use the same register for all inputs and the output of PhiNodes
   244   // - effectively ending SSA form.  This requires either coalescing live
   245   // ranges or inserting copies.  For the moment, we insert "virtual copies"
   246   // - we pretend there is a copy prior to each Phi in predecessor blocks.
   247   // We will attempt to coalesce such "virtual copies" before we manifest
   248   // them for real.
   249   de_ssa();
   251 #ifdef ASSERT
   252   // Veify the graph before RA.
   253   verify(&live_arena);
   254 #endif
   256   {
   257     NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
   258     _live = NULL;                 // Mark live as being not available
   259     rm.reset_to_mark();           // Reclaim working storage
   260     IndexSet::reset_memory(C, &live_arena);
   261     ifg.init(_maxlrg);            // Empty IFG
   262     gather_lrg_masks( false );    // Collect LRG masks
   263     live.compute( _maxlrg );      // Compute liveness
   264     _live = &live;                // Mark LIVE as being available
   265   }
   267   // Base pointers are currently "used" by instructions which define new
   268   // derived pointers.  This makes base pointers live up to the where the
   269   // derived pointer is made, but not beyond.  Really, they need to be live
   270   // across any GC point where the derived value is live.  So this code looks
   271   // at all the GC points, and "stretches" the live range of any base pointer
   272   // to the GC point.
   273   if( stretch_base_pointer_live_ranges(&live_arena) ) {
   274     NOT_PRODUCT( Compile::TracePhase t3("computeLive (sbplr)", &_t_computeLive, TimeCompiler); )
   275     // Since some live range stretched, I need to recompute live
   276     _live = NULL;
   277     rm.reset_to_mark();         // Reclaim working storage
   278     IndexSet::reset_memory(C, &live_arena);
   279     ifg.init(_maxlrg);
   280     gather_lrg_masks( false );
   281     live.compute( _maxlrg );
   282     _live = &live;
   283   }
   284   // Create the interference graph using virtual copies
   285   build_ifg_virtual( );  // Include stack slots this time
   287   // Aggressive (but pessimistic) copy coalescing.
   288   // This pass works on virtual copies.  Any virtual copies which are not
   289   // coalesced get manifested as actual copies
   290   {
   291     // The IFG is/was triangular.  I am 'squaring it up' so Union can run
   292     // faster.  Union requires a 'for all' operation which is slow on the
   293     // triangular adjacency matrix (quick reminder: the IFG is 'sparse' -
   294     // meaning I can visit all the Nodes neighbors less than a Node in time
   295     // O(# of neighbors), but I have to visit all the Nodes greater than a
   296     // given Node and search them for an instance, i.e., time O(#MaxLRG)).
   297     _ifg->SquareUp();
   299     PhaseAggressiveCoalesce coalesce( *this );
   300     coalesce.coalesce_driver( );
   301     // Insert un-coalesced copies.  Visit all Phis.  Where inputs to a Phi do
   302     // not match the Phi itself, insert a copy.
   303     coalesce.insert_copies(_matcher);
   304   }
   306   // After aggressive coalesce, attempt a first cut at coloring.
   307   // To color, we need the IFG and for that we need LIVE.
   308   {
   309     NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
   310     _live = NULL;
   311     rm.reset_to_mark();           // Reclaim working storage
   312     IndexSet::reset_memory(C, &live_arena);
   313     ifg.init(_maxlrg);
   314     gather_lrg_masks( true );
   315     live.compute( _maxlrg );
   316     _live = &live;
   317   }
   319   // Build physical interference graph
   320   uint must_spill = 0;
   321   must_spill = build_ifg_physical( &live_arena );
   322   // If we have a guaranteed spill, might as well spill now
   323   if( must_spill ) {
   324     if( !_maxlrg ) return;
   325     // Bail out if unique gets too large (ie - unique > MaxNodeLimit)
   326     C->check_node_count(10*must_spill, "out of nodes before split");
   327     if (C->failing())  return;
   328     _maxlrg = Split(_maxlrg, &split_arena);  // Split spilling LRG everywhere
   329     // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
   330     // or we failed to split
   331     C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after physical split");
   332     if (C->failing())  return;
   334     NOT_PRODUCT( C->verify_graph_edges(); )
   336     compact();                  // Compact LRGs; return new lower max lrg
   338     {
   339       NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
   340       _live = NULL;
   341       rm.reset_to_mark();         // Reclaim working storage
   342       IndexSet::reset_memory(C, &live_arena);
   343       ifg.init(_maxlrg);          // Build a new interference graph
   344       gather_lrg_masks( true );   // Collect intersect mask
   345       live.compute( _maxlrg );    // Compute LIVE
   346       _live = &live;
   347     }
   348     build_ifg_physical( &live_arena );
   349     _ifg->SquareUp();
   350     _ifg->Compute_Effective_Degree();
   351     // Only do conservative coalescing if requested
   352     if( OptoCoalesce ) {
   353       // Conservative (and pessimistic) copy coalescing of those spills
   354       PhaseConservativeCoalesce coalesce( *this );
   355       // If max live ranges greater than cutoff, don't color the stack.
   356       // This cutoff can be larger than below since it is only done once.
   357       coalesce.coalesce_driver( );
   358     }
   359     compress_uf_map_for_nodes();
   361 #ifdef ASSERT
   362     verify(&live_arena, true);
   363 #endif
   364   } else {
   365     ifg.SquareUp();
   366     ifg.Compute_Effective_Degree();
   367 #ifdef ASSERT
   368     set_was_low();
   369 #endif
   370   }
   372   // Prepare for Simplify & Select
   373   cache_lrg_info();           // Count degree of LRGs
   375   // Simplify the InterFerence Graph by removing LRGs of low degree.
   376   // LRGs of low degree are trivially colorable.
   377   Simplify();
   379   // Select colors by re-inserting LRGs back into the IFG in reverse order.
   380   // Return whether or not something spills.
   381   uint spills = Select( );
   383   // If we spill, split and recycle the entire thing
   384   while( spills ) {
   385     if( _trip_cnt++ > 24 ) {
   386       DEBUG_ONLY( dump_for_spill_split_recycle(); )
   387       if( _trip_cnt > 27 ) {
   388         C->record_method_not_compilable("failed spill-split-recycle sanity check");
   389         return;
   390       }
   391     }
   393     if( !_maxlrg ) return;
   394     _maxlrg = Split(_maxlrg, &split_arena);  // Split spilling LRG everywhere
   395     // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
   396     C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after split");
   397     if (C->failing())  return;
   399     compact();                  // Compact LRGs; return new lower max lrg
   401     // Nuke the live-ness and interference graph and LiveRanGe info
   402     {
   403       NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
   404       _live = NULL;
   405       rm.reset_to_mark();         // Reclaim working storage
   406       IndexSet::reset_memory(C, &live_arena);
   407       ifg.init(_maxlrg);
   409       // Create LiveRanGe array.
   410       // Intersect register masks for all USEs and DEFs
   411       gather_lrg_masks( true );
   412       live.compute( _maxlrg );
   413       _live = &live;
   414     }
   415     must_spill = build_ifg_physical( &live_arena );
   416     _ifg->SquareUp();
   417     _ifg->Compute_Effective_Degree();
   419     // Only do conservative coalescing if requested
   420     if( OptoCoalesce ) {
   421       // Conservative (and pessimistic) copy coalescing
   422       PhaseConservativeCoalesce coalesce( *this );
   423       // Check for few live ranges determines how aggressive coalesce is.
   424       coalesce.coalesce_driver( );
   425     }
   426     compress_uf_map_for_nodes();
   427 #ifdef ASSERT
   428     verify(&live_arena, true);
   429 #endif
   430     cache_lrg_info();           // Count degree of LRGs
   432     // Simplify the InterFerence Graph by removing LRGs of low degree.
   433     // LRGs of low degree are trivially colorable.
   434     Simplify();
   436     // Select colors by re-inserting LRGs back into the IFG in reverse order.
   437     // Return whether or not something spills.
   438     spills = Select( );
   439   }
   441   // Count number of Simplify-Select trips per coloring success.
   442   _allocator_attempts += _trip_cnt + 1;
   443   _allocator_successes += 1;
   445   // Peephole remove copies
   446   post_allocate_copy_removal();
   448 #ifdef ASSERT
   449   // Veify the graph after RA.
   450   verify(&live_arena);
   451 #endif
   453   // max_reg is past the largest *register* used.
   454   // Convert that to a frame_slot number.
   455   if( _max_reg <= _matcher._new_SP )
   456     _framesize = C->out_preserve_stack_slots();
   457   else _framesize = _max_reg -_matcher._new_SP;
   458   assert((int)(_matcher._new_SP+_framesize) >= (int)_matcher._out_arg_limit, "framesize must be large enough");
   460   // This frame must preserve the required fp alignment
   461   _framesize = round_to(_framesize, Matcher::stack_alignment_in_slots());
   462   assert( _framesize >= 0 && _framesize <= 1000000, "sanity check" );
   463 #ifndef PRODUCT
   464   _total_framesize += _framesize;
   465   if( (int)_framesize > _max_framesize )
   466     _max_framesize = _framesize;
   467 #endif
   469   // Convert CISC spills
   470   fixup_spills();
   472   // Log regalloc results
   473   CompileLog* log = Compile::current()->log();
   474   if (log != NULL) {
   475     log->elem("regalloc attempts='%d' success='%d'", _trip_cnt, !C->failing());
   476   }
   478   if (C->failing())  return;
   480   NOT_PRODUCT( C->verify_graph_edges(); )
   482   // Move important info out of the live_arena to longer lasting storage.
   483   alloc_node_regs(_names.Size());
   484   for (uint i=0; i < _names.Size(); i++) {
   485     if (_names[i]) {           // Live range associated with Node?
   486       LRG &lrg = lrgs(_names[i]);
   487       if (!lrg.alive()) {
   488         set_bad(i);
   489       } else if (lrg.num_regs() == 1) {
   490         set1(i, lrg.reg());
   491       } else {                  // Must be a register-set
   492         if (!lrg._fat_proj) {   // Must be aligned adjacent register set
   493           // Live ranges record the highest register in their mask.
   494           // We want the low register for the AD file writer's convenience.
   495           OptoReg::Name hi = lrg.reg(); // Get hi register
   496           OptoReg::Name lo = OptoReg::add(hi, (1-lrg.num_regs())); // Find lo
   497           // We have to use pair [lo,lo+1] even for wide vectors because
   498           // the rest of code generation works only with pairs. It is safe
   499           // since for registers encoding only 'lo' is used.
   500           // Second reg from pair is used in ScheduleAndBundle on SPARC where
   501           // vector max size is 8 which corresponds to registers pair.
   502           // It is also used in BuildOopMaps but oop operations are not
   503           // vectorized.
   504           set2(i, lo);
   505         } else {                // Misaligned; extract 2 bits
   506           OptoReg::Name hi = lrg.reg(); // Get hi register
   507           lrg.Remove(hi);       // Yank from mask
   508           int lo = lrg.mask().find_first_elem(); // Find lo
   509           set_pair(i, hi, lo);
   510         }
   511       }
   512       if( lrg._is_oop ) _node_oops.set(i);
   513     } else {
   514       set_bad(i);
   515     }
   516   }
   518   // Done!
   519   _live = NULL;
   520   _ifg = NULL;
   521   C->set_indexSet_arena(NULL);  // ResourceArea is at end of scope
   522 }
   524 //------------------------------de_ssa-----------------------------------------
   525 void PhaseChaitin::de_ssa() {
   526   // Set initial Names for all Nodes.  Most Nodes get the virtual register
   527   // number.  A few get the ZERO live range number.  These do not
   528   // get allocated, but instead rely on correct scheduling to ensure that
   529   // only one instance is simultaneously live at a time.
   530   uint lr_counter = 1;
   531   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
   532     Block *b = _cfg._blocks[i];
   533     uint cnt = b->_nodes.size();
   535     // Handle all the normal Nodes in the block
   536     for( uint j = 0; j < cnt; j++ ) {
   537       Node *n = b->_nodes[j];
   538       // Pre-color to the zero live range, or pick virtual register
   539       const RegMask &rm = n->out_RegMask();
   540       _names.map( n->_idx, rm.is_NotEmpty() ? lr_counter++ : 0 );
   541     }
   542   }
   543   // Reset the Union-Find mapping to be identity
   544   reset_uf_map(lr_counter);
   545 }
   548 //------------------------------gather_lrg_masks-------------------------------
   549 // Gather LiveRanGe information, including register masks.  Modification of
   550 // cisc spillable in_RegMasks should not be done before AggressiveCoalesce.
   551 void PhaseChaitin::gather_lrg_masks( bool after_aggressive ) {
   553   // Nail down the frame pointer live range
   554   uint fp_lrg = n2lidx(_cfg._root->in(1)->in(TypeFunc::FramePtr));
   555   lrgs(fp_lrg)._cost += 1e12;   // Cost is infinite
   557   // For all blocks
   558   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
   559     Block *b = _cfg._blocks[i];
   561     // For all instructions
   562     for( uint j = 1; j < b->_nodes.size(); j++ ) {
   563       Node *n = b->_nodes[j];
   564       uint input_edge_start =1; // Skip control most nodes
   565       if( n->is_Mach() ) input_edge_start = n->as_Mach()->oper_input_base();
   566       uint idx = n->is_Copy();
   568       // Get virtual register number, same as LiveRanGe index
   569       uint vreg = n2lidx(n);
   570       LRG &lrg = lrgs(vreg);
   571       if( vreg ) {              // No vreg means un-allocable (e.g. memory)
   573         // Collect has-copy bit
   574         if( idx ) {
   575           lrg._has_copy = 1;
   576           uint clidx = n2lidx(n->in(idx));
   577           LRG &copy_src = lrgs(clidx);
   578           copy_src._has_copy = 1;
   579         }
   581         // Check for float-vs-int live range (used in register-pressure
   582         // calculations)
   583         const Type *n_type = n->bottom_type();
   584         if (n_type->is_floatingpoint())
   585           lrg._is_float = 1;
   587         // Check for twice prior spilling.  Once prior spilling might have
   588         // spilled 'soft', 2nd prior spill should have spilled 'hard' and
   589         // further spilling is unlikely to make progress.
   590         if( _spilled_once.test(n->_idx) ) {
   591           lrg._was_spilled1 = 1;
   592           if( _spilled_twice.test(n->_idx) )
   593             lrg._was_spilled2 = 1;
   594         }
   596 #ifndef PRODUCT
   597         if (trace_spilling() && lrg._def != NULL) {
   598           // collect defs for MultiDef printing
   599           if (lrg._defs == NULL) {
   600             lrg._defs = new (_ifg->_arena) GrowableArray<Node*>(_ifg->_arena, 2, 0, NULL);
   601             lrg._defs->append(lrg._def);
   602           }
   603           lrg._defs->append(n);
   604         }
   605 #endif
   607         // Check for a single def LRG; these can spill nicely
   608         // via rematerialization.  Flag as NULL for no def found
   609         // yet, or 'n' for single def or -1 for many defs.
   610         lrg._def = lrg._def ? NodeSentinel : n;
   612         // Limit result register mask to acceptable registers
   613         const RegMask &rm = n->out_RegMask();
   614         lrg.AND( rm );
   616         int ireg = n->ideal_reg();
   617         assert( !n->bottom_type()->isa_oop_ptr() || ireg == Op_RegP,
   618                 "oops must be in Op_RegP's" );
   620         // Check for vector live range (only if vector register is used).
   621         // On SPARC vector uses RegD which could be misaligned so it is not
   622         // processes as vector in RA.
   623         if (RegMask::is_vector(ireg))
   624           lrg._is_vector = 1;
   625         assert(n_type->isa_vect() == NULL || lrg._is_vector || ireg == Op_RegD,
   626                "vector must be in vector registers");
   628         // Check for bound register masks
   629         const RegMask &lrgmask = lrg.mask();
   630         if (lrgmask.is_bound(ireg))
   631           lrg._is_bound = 1;
   633         // Check for maximum frequency value
   634         if (lrg._maxfreq < b->_freq)
   635           lrg._maxfreq = b->_freq;
   637         // Check for oop-iness, or long/double
   638         // Check for multi-kill projection
   639         switch( ireg ) {
   640         case MachProjNode::fat_proj:
   641           // Fat projections have size equal to number of registers killed
   642           lrg.set_num_regs(rm.Size());
   643           lrg.set_reg_pressure(lrg.num_regs());
   644           lrg._fat_proj = 1;
   645           lrg._is_bound = 1;
   646           break;
   647         case Op_RegP:
   648 #ifdef _LP64
   649           lrg.set_num_regs(2);  // Size is 2 stack words
   650 #else
   651           lrg.set_num_regs(1);  // Size is 1 stack word
   652 #endif
   653           // Register pressure is tracked relative to the maximum values
   654           // suggested for that platform, INTPRESSURE and FLOATPRESSURE,
   655           // and relative to other types which compete for the same regs.
   656           //
   657           // The following table contains suggested values based on the
   658           // architectures as defined in each .ad file.
   659           // INTPRESSURE and FLOATPRESSURE may be tuned differently for
   660           // compile-speed or performance.
   661           // Note1:
   662           // SPARC and SPARCV9 reg_pressures are at 2 instead of 1
   663           // since .ad registers are defined as high and low halves.
   664           // These reg_pressure values remain compatible with the code
   665           // in is_high_pressure() which relates get_invalid_mask_size(),
   666           // Block::_reg_pressure and INTPRESSURE, FLOATPRESSURE.
   667           // Note2:
   668           // SPARC -d32 has 24 registers available for integral values,
   669           // but only 10 of these are safe for 64-bit longs.
   670           // Using set_reg_pressure(2) for both int and long means
   671           // the allocator will believe it can fit 26 longs into
   672           // registers.  Using 2 for longs and 1 for ints means the
   673           // allocator will attempt to put 52 integers into registers.
   674           // The settings below limit this problem to methods with
   675           // many long values which are being run on 32-bit SPARC.
   676           //
   677           // ------------------- reg_pressure --------------------
   678           // Each entry is reg_pressure_per_value,number_of_regs
   679           //         RegL  RegI  RegFlags   RegF RegD    INTPRESSURE  FLOATPRESSURE
   680           // IA32     2     1     1          1    1          6           6
   681           // IA64     1     1     1          1    1         50          41
   682           // SPARC    2     2     2          2    2         48 (24)     52 (26)
   683           // SPARCV9  2     2     2          2    2         48 (24)     52 (26)
   684           // AMD64    1     1     1          1    1         14          15
   685           // -----------------------------------------------------
   686 #if defined(SPARC)
   687           lrg.set_reg_pressure(2);  // use for v9 as well
   688 #else
   689           lrg.set_reg_pressure(1);  // normally one value per register
   690 #endif
   691           if( n_type->isa_oop_ptr() ) {
   692             lrg._is_oop = 1;
   693           }
   694           break;
   695         case Op_RegL:           // Check for long or double
   696         case Op_RegD:
   697           lrg.set_num_regs(2);
   698           // Define platform specific register pressure
   699 #if defined(SPARC) || defined(ARM)
   700           lrg.set_reg_pressure(2);
   701 #elif defined(IA32)
   702           if( ireg == Op_RegL ) {
   703             lrg.set_reg_pressure(2);
   704           } else {
   705             lrg.set_reg_pressure(1);
   706           }
   707 #else
   708           lrg.set_reg_pressure(1);  // normally one value per register
   709 #endif
   710           // If this def of a double forces a mis-aligned double,
   711           // flag as '_fat_proj' - really flag as allowing misalignment
   712           // AND changes how we count interferences.  A mis-aligned
   713           // double can interfere with TWO aligned pairs, or effectively
   714           // FOUR registers!
   715           if (rm.is_misaligned_pair()) {
   716             lrg._fat_proj = 1;
   717             lrg._is_bound = 1;
   718           }
   719           break;
   720         case Op_RegF:
   721         case Op_RegI:
   722         case Op_RegN:
   723         case Op_RegFlags:
   724         case 0:                 // not an ideal register
   725           lrg.set_num_regs(1);
   726 #ifdef SPARC
   727           lrg.set_reg_pressure(2);
   728 #else
   729           lrg.set_reg_pressure(1);
   730 #endif
   731           break;
   732         case Op_VecS:
   733           assert(Matcher::vector_size_supported(T_BYTE,4), "sanity");
   734           assert(RegMask::num_registers(Op_VecS) == RegMask::SlotsPerVecS, "sanity");
   735           lrg.set_num_regs(RegMask::SlotsPerVecS);
   736           lrg.set_reg_pressure(1);
   737           break;
   738         case Op_VecD:
   739           assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecD), "sanity");
   740           assert(RegMask::num_registers(Op_VecD) == RegMask::SlotsPerVecD, "sanity");
   741           assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecD), "vector should be aligned");
   742           lrg.set_num_regs(RegMask::SlotsPerVecD);
   743           lrg.set_reg_pressure(1);
   744           break;
   745         case Op_VecX:
   746           assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecX), "sanity");
   747           assert(RegMask::num_registers(Op_VecX) == RegMask::SlotsPerVecX, "sanity");
   748           assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecX), "vector should be aligned");
   749           lrg.set_num_regs(RegMask::SlotsPerVecX);
   750           lrg.set_reg_pressure(1);
   751           break;
   752         case Op_VecY:
   753           assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecY), "sanity");
   754           assert(RegMask::num_registers(Op_VecY) == RegMask::SlotsPerVecY, "sanity");
   755           assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecY), "vector should be aligned");
   756           lrg.set_num_regs(RegMask::SlotsPerVecY);
   757           lrg.set_reg_pressure(1);
   758           break;
   759         default:
   760           ShouldNotReachHere();
   761         }
   762       }
   764       // Now do the same for inputs
   765       uint cnt = n->req();
   766       // Setup for CISC SPILLING
   767       uint inp = (uint)AdlcVMDeps::Not_cisc_spillable;
   768       if( UseCISCSpill && after_aggressive ) {
   769         inp = n->cisc_operand();
   770         if( inp != (uint)AdlcVMDeps::Not_cisc_spillable )
   771           // Convert operand number to edge index number
   772           inp = n->as_Mach()->operand_index(inp);
   773       }
   774       // Prepare register mask for each input
   775       for( uint k = input_edge_start; k < cnt; k++ ) {
   776         uint vreg = n2lidx(n->in(k));
   777         if( !vreg ) continue;
   779         // If this instruction is CISC Spillable, add the flags
   780         // bit to its appropriate input
   781         if( UseCISCSpill && after_aggressive && inp == k ) {
   782 #ifndef PRODUCT
   783           if( TraceCISCSpill ) {
   784             tty->print("  use_cisc_RegMask: ");
   785             n->dump();
   786           }
   787 #endif
   788           n->as_Mach()->use_cisc_RegMask();
   789         }
   791         LRG &lrg = lrgs(vreg);
   792         // // Testing for floating point code shape
   793         // Node *test = n->in(k);
   794         // if( test->is_Mach() ) {
   795         //   MachNode *m = test->as_Mach();
   796         //   int  op = m->ideal_Opcode();
   797         //   if (n->is_Call() && (op == Op_AddF || op == Op_MulF) ) {
   798         //     int zzz = 1;
   799         //   }
   800         // }
   802         // Limit result register mask to acceptable registers.
   803         // Do not limit registers from uncommon uses before
   804         // AggressiveCoalesce.  This effectively pre-virtual-splits
   805         // around uncommon uses of common defs.
   806         const RegMask &rm = n->in_RegMask(k);
   807         if( !after_aggressive &&
   808           _cfg._bbs[n->in(k)->_idx]->_freq > 1000*b->_freq ) {
   809           // Since we are BEFORE aggressive coalesce, leave the register
   810           // mask untrimmed by the call.  This encourages more coalescing.
   811           // Later, AFTER aggressive, this live range will have to spill
   812           // but the spiller handles slow-path calls very nicely.
   813         } else {
   814           lrg.AND( rm );
   815         }
   817         // Check for bound register masks
   818         const RegMask &lrgmask = lrg.mask();
   819         int kreg = n->in(k)->ideal_reg();
   820         bool is_vect = RegMask::is_vector(kreg);
   821         assert(n->in(k)->bottom_type()->isa_vect() == NULL ||
   822                is_vect || kreg == Op_RegD,
   823                "vector must be in vector registers");
   824         if (lrgmask.is_bound(kreg))
   825           lrg._is_bound = 1;
   827         // If this use of a double forces a mis-aligned double,
   828         // flag as '_fat_proj' - really flag as allowing misalignment
   829         // AND changes how we count interferences.  A mis-aligned
   830         // double can interfere with TWO aligned pairs, or effectively
   831         // FOUR registers!
   832 #ifdef ASSERT
   833         if (is_vect) {
   834           assert(lrgmask.is_aligned_sets(lrg.num_regs()), "vector should be aligned");
   835           assert(!lrg._fat_proj, "sanity");
   836           assert(RegMask::num_registers(kreg) == lrg.num_regs(), "sanity");
   837         }
   838 #endif
   839         if (!is_vect && lrg.num_regs() == 2 && !lrg._fat_proj && rm.is_misaligned_pair()) {
   840           lrg._fat_proj = 1;
   841           lrg._is_bound = 1;
   842         }
   843         // if the LRG is an unaligned pair, we will have to spill
   844         // so clear the LRG's register mask if it is not already spilled
   845         if (!is_vect && !n->is_SpillCopy() &&
   846             (lrg._def == NULL || lrg.is_multidef() || !lrg._def->is_SpillCopy()) &&
   847             lrgmask.is_misaligned_pair()) {
   848           lrg.Clear();
   849         }
   851         // Check for maximum frequency value
   852         if( lrg._maxfreq < b->_freq )
   853           lrg._maxfreq = b->_freq;
   855       } // End for all allocated inputs
   856     } // end for all instructions
   857   } // end for all blocks
   859   // Final per-liverange setup
   860   for (uint i2=0; i2<_maxlrg; i2++) {
   861     LRG &lrg = lrgs(i2);
   862     assert(!lrg._is_vector || !lrg._fat_proj, "sanity");
   863     if (lrg.num_regs() > 1 && !lrg._fat_proj) {
   864       lrg.clear_to_sets();
   865     }
   866     lrg.compute_set_mask_size();
   867     if (lrg.not_free()) {      // Handle case where we lose from the start
   868       lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
   869       lrg._direct_conflict = 1;
   870     }
   871     lrg.set_degree(0);          // no neighbors in IFG yet
   872   }
   873 }
   875 //------------------------------set_was_low------------------------------------
   876 // Set the was-lo-degree bit.  Conservative coalescing should not change the
   877 // colorability of the graph.  If any live range was of low-degree before
   878 // coalescing, it should Simplify.  This call sets the was-lo-degree bit.
   879 // The bit is checked in Simplify.
   880 void PhaseChaitin::set_was_low() {
   881 #ifdef ASSERT
   882   for( uint i = 1; i < _maxlrg; i++ ) {
   883     int size = lrgs(i).num_regs();
   884     uint old_was_lo = lrgs(i)._was_lo;
   885     lrgs(i)._was_lo = 0;
   886     if( lrgs(i).lo_degree() ) {
   887       lrgs(i)._was_lo = 1;      // Trivially of low degree
   888     } else {                    // Else check the Brigg's assertion
   889       // Brigg's observation is that the lo-degree neighbors of a
   890       // hi-degree live range will not interfere with the color choices
   891       // of said hi-degree live range.  The Simplify reverse-stack-coloring
   892       // order takes care of the details.  Hence you do not have to count
   893       // low-degree neighbors when determining if this guy colors.
   894       int briggs_degree = 0;
   895       IndexSet *s = _ifg->neighbors(i);
   896       IndexSetIterator elements(s);
   897       uint lidx;
   898       while((lidx = elements.next()) != 0) {
   899         if( !lrgs(lidx).lo_degree() )
   900           briggs_degree += MAX2(size,lrgs(lidx).num_regs());
   901       }
   902       if( briggs_degree < lrgs(i).degrees_of_freedom() )
   903         lrgs(i)._was_lo = 1;    // Low degree via the briggs assertion
   904     }
   905     assert(old_was_lo <= lrgs(i)._was_lo, "_was_lo may not decrease");
   906   }
   907 #endif
   908 }
   910 #define REGISTER_CONSTRAINED 16
   912 //------------------------------cache_lrg_info---------------------------------
   913 // Compute cost/area ratio, in case we spill.  Build the lo-degree list.
   914 void PhaseChaitin::cache_lrg_info( ) {
   916   for( uint i = 1; i < _maxlrg; i++ ) {
   917     LRG &lrg = lrgs(i);
   919     // Check for being of low degree: means we can be trivially colored.
   920     // Low degree, dead or must-spill guys just get to simplify right away
   921     if( lrg.lo_degree() ||
   922        !lrg.alive() ||
   923         lrg._must_spill ) {
   924       // Split low degree list into those guys that must get a
   925       // register and those that can go to register or stack.
   926       // The idea is LRGs that can go register or stack color first when
   927       // they have a good chance of getting a register.  The register-only
   928       // lo-degree live ranges always get a register.
   929       OptoReg::Name hi_reg = lrg.mask().find_last_elem();
   930       if( OptoReg::is_stack(hi_reg)) { // Can go to stack?
   931         lrg._next = _lo_stk_degree;
   932         _lo_stk_degree = i;
   933       } else {
   934         lrg._next = _lo_degree;
   935         _lo_degree = i;
   936       }
   937     } else {                    // Else high degree
   938       lrgs(_hi_degree)._prev = i;
   939       lrg._next = _hi_degree;
   940       lrg._prev = 0;
   941       _hi_degree = i;
   942     }
   943   }
   944 }
   946 //------------------------------Pre-Simplify-----------------------------------
   947 // Simplify the IFG by removing LRGs of low degree that have NO copies
   948 void PhaseChaitin::Pre_Simplify( ) {
   950   // Warm up the lo-degree no-copy list
   951   int lo_no_copy = 0;
   952   for( uint i = 1; i < _maxlrg; i++ ) {
   953     if( (lrgs(i).lo_degree() && !lrgs(i)._has_copy) ||
   954         !lrgs(i).alive() ||
   955         lrgs(i)._must_spill ) {
   956       lrgs(i)._next = lo_no_copy;
   957       lo_no_copy = i;
   958     }
   959   }
   961   while( lo_no_copy ) {
   962     uint lo = lo_no_copy;
   963     lo_no_copy = lrgs(lo)._next;
   964     int size = lrgs(lo).num_regs();
   966     // Put the simplified guy on the simplified list.
   967     lrgs(lo)._next = _simplified;
   968     _simplified = lo;
   970     // Yank this guy from the IFG.
   971     IndexSet *adj = _ifg->remove_node( lo );
   973     // If any neighbors' degrees fall below their number of
   974     // allowed registers, then put that neighbor on the low degree
   975     // list.  Note that 'degree' can only fall and 'numregs' is
   976     // unchanged by this action.  Thus the two are equal at most once,
   977     // so LRGs hit the lo-degree worklists at most once.
   978     IndexSetIterator elements(adj);
   979     uint neighbor;
   980     while ((neighbor = elements.next()) != 0) {
   981       LRG *n = &lrgs(neighbor);
   982       assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
   984       // Check for just becoming of-low-degree
   985       if( n->just_lo_degree() && !n->_has_copy ) {
   986         assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
   987         // Put on lo-degree list
   988         n->_next = lo_no_copy;
   989         lo_no_copy = neighbor;
   990       }
   991     }
   992   } // End of while lo-degree no_copy worklist not empty
   994   // No more lo-degree no-copy live ranges to simplify
   995 }
   997 //------------------------------Simplify---------------------------------------
   998 // Simplify the IFG by removing LRGs of low degree.
   999 void PhaseChaitin::Simplify( ) {
  1001   while( 1 ) {                  // Repeat till simplified it all
  1002     // May want to explore simplifying lo_degree before _lo_stk_degree.
  1003     // This might result in more spills coloring into registers during
  1004     // Select().
  1005     while( _lo_degree || _lo_stk_degree ) {
  1006       // If possible, pull from lo_stk first
  1007       uint lo;
  1008       if( _lo_degree ) {
  1009         lo = _lo_degree;
  1010         _lo_degree = lrgs(lo)._next;
  1011       } else {
  1012         lo = _lo_stk_degree;
  1013         _lo_stk_degree = lrgs(lo)._next;
  1016       // Put the simplified guy on the simplified list.
  1017       lrgs(lo)._next = _simplified;
  1018       _simplified = lo;
  1019       // If this guy is "at risk" then mark his current neighbors
  1020       if( lrgs(lo)._at_risk ) {
  1021         IndexSetIterator elements(_ifg->neighbors(lo));
  1022         uint datum;
  1023         while ((datum = elements.next()) != 0) {
  1024           lrgs(datum)._risk_bias = lo;
  1028       // Yank this guy from the IFG.
  1029       IndexSet *adj = _ifg->remove_node( lo );
  1031       // If any neighbors' degrees fall below their number of
  1032       // allowed registers, then put that neighbor on the low degree
  1033       // list.  Note that 'degree' can only fall and 'numregs' is
  1034       // unchanged by this action.  Thus the two are equal at most once,
  1035       // so LRGs hit the lo-degree worklist at most once.
  1036       IndexSetIterator elements(adj);
  1037       uint neighbor;
  1038       while ((neighbor = elements.next()) != 0) {
  1039         LRG *n = &lrgs(neighbor);
  1040 #ifdef ASSERT
  1041         if( VerifyOpto || VerifyRegisterAllocator ) {
  1042           assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
  1044 #endif
  1046         // Check for just becoming of-low-degree just counting registers.
  1047         // _must_spill live ranges are already on the low degree list.
  1048         if( n->just_lo_degree() && !n->_must_spill ) {
  1049           assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
  1050           // Pull from hi-degree list
  1051           uint prev = n->_prev;
  1052           uint next = n->_next;
  1053           if( prev ) lrgs(prev)._next = next;
  1054           else _hi_degree = next;
  1055           lrgs(next)._prev = prev;
  1056           n->_next = _lo_degree;
  1057           _lo_degree = neighbor;
  1060     } // End of while lo-degree/lo_stk_degree worklist not empty
  1062     // Check for got everything: is hi-degree list empty?
  1063     if( !_hi_degree ) break;
  1065     // Time to pick a potential spill guy
  1066     uint lo_score = _hi_degree;
  1067     double score = lrgs(lo_score).score();
  1068     double area = lrgs(lo_score)._area;
  1069     double cost = lrgs(lo_score)._cost;
  1070     bool bound = lrgs(lo_score)._is_bound;
  1072     // Find cheapest guy
  1073     debug_only( int lo_no_simplify=0; );
  1074     for( uint i = _hi_degree; i; i = lrgs(i)._next ) {
  1075       assert( !(*_ifg->_yanked)[i], "" );
  1076       // It's just vaguely possible to move hi-degree to lo-degree without
  1077       // going through a just-lo-degree stage: If you remove a double from
  1078       // a float live range it's degree will drop by 2 and you can skip the
  1079       // just-lo-degree stage.  It's very rare (shows up after 5000+ methods
  1080       // in -Xcomp of Java2Demo).  So just choose this guy to simplify next.
  1081       if( lrgs(i).lo_degree() ) {
  1082         lo_score = i;
  1083         break;
  1085       debug_only( if( lrgs(i)._was_lo ) lo_no_simplify=i; );
  1086       double iscore = lrgs(i).score();
  1087       double iarea = lrgs(i)._area;
  1088       double icost = lrgs(i)._cost;
  1089       bool ibound = lrgs(i)._is_bound;
  1091       // Compare cost/area of i vs cost/area of lo_score.  Smaller cost/area
  1092       // wins.  Ties happen because all live ranges in question have spilled
  1093       // a few times before and the spill-score adds a huge number which
  1094       // washes out the low order bits.  We are choosing the lesser of 2
  1095       // evils; in this case pick largest area to spill.
  1096       // Ties also happen when live ranges are defined and used only inside
  1097       // one block. In which case their area is 0 and score set to max.
  1098       // In such case choose bound live range over unbound to free registers
  1099       // or with smaller cost to spill.
  1100       if( iscore < score ||
  1101           (iscore == score && iarea > area && lrgs(lo_score)._was_spilled2) ||
  1102           (iscore == score && iarea == area &&
  1103            ( (ibound && !bound) || ibound == bound && (icost < cost) )) ) {
  1104         lo_score = i;
  1105         score = iscore;
  1106         area = iarea;
  1107         cost = icost;
  1108         bound = ibound;
  1111     LRG *lo_lrg = &lrgs(lo_score);
  1112     // The live range we choose for spilling is either hi-degree, or very
  1113     // rarely it can be low-degree.  If we choose a hi-degree live range
  1114     // there better not be any lo-degree choices.
  1115     assert( lo_lrg->lo_degree() || !lo_no_simplify, "Live range was lo-degree before coalesce; should simplify" );
  1117     // Pull from hi-degree list
  1118     uint prev = lo_lrg->_prev;
  1119     uint next = lo_lrg->_next;
  1120     if( prev ) lrgs(prev)._next = next;
  1121     else _hi_degree = next;
  1122     lrgs(next)._prev = prev;
  1123     // Jam him on the lo-degree list, despite his high degree.
  1124     // Maybe he'll get a color, and maybe he'll spill.
  1125     // Only Select() will know.
  1126     lrgs(lo_score)._at_risk = true;
  1127     _lo_degree = lo_score;
  1128     lo_lrg->_next = 0;
  1130   } // End of while not simplified everything
  1134 //------------------------------is_legal_reg-----------------------------------
  1135 // Is 'reg' register legal for 'lrg'?
  1136 static bool is_legal_reg(LRG &lrg, OptoReg::Name reg, int chunk) {
  1137   if (reg >= chunk && reg < (chunk + RegMask::CHUNK_SIZE) &&
  1138       lrg.mask().Member(OptoReg::add(reg,-chunk))) {
  1139     // RA uses OptoReg which represent the highest element of a registers set.
  1140     // For example, vectorX (128bit) on x86 uses [XMM,XMMb,XMMc,XMMd] set
  1141     // in which XMMd is used by RA to represent such vectors. A double value
  1142     // uses [XMM,XMMb] pairs and XMMb is used by RA for it.
  1143     // The register mask uses largest bits set of overlapping register sets.
  1144     // On x86 with AVX it uses 8 bits for each XMM registers set.
  1145     //
  1146     // The 'lrg' already has cleared-to-set register mask (done in Select()
  1147     // before calling choose_color()). Passing mask.Member(reg) check above
  1148     // indicates that the size (num_regs) of 'reg' set is less or equal to
  1149     // 'lrg' set size.
  1150     // For set size 1 any register which is member of 'lrg' mask is legal.
  1151     if (lrg.num_regs()==1)
  1152       return true;
  1153     // For larger sets only an aligned register with the same set size is legal.
  1154     int mask = lrg.num_regs()-1;
  1155     if ((reg&mask) == mask)
  1156       return true;
  1158   return false;
  1161 //------------------------------bias_color-------------------------------------
  1162 // Choose a color using the biasing heuristic
  1163 OptoReg::Name PhaseChaitin::bias_color( LRG &lrg, int chunk ) {
  1165   // Check for "at_risk" LRG's
  1166   uint risk_lrg = Find(lrg._risk_bias);
  1167   if( risk_lrg != 0 ) {
  1168     // Walk the colored neighbors of the "at_risk" candidate
  1169     // Choose a color which is both legal and already taken by a neighbor
  1170     // of the "at_risk" candidate in order to improve the chances of the
  1171     // "at_risk" candidate of coloring
  1172     IndexSetIterator elements(_ifg->neighbors(risk_lrg));
  1173     uint datum;
  1174     while ((datum = elements.next()) != 0) {
  1175       OptoReg::Name reg = lrgs(datum).reg();
  1176       // If this LRG's register is legal for us, choose it
  1177       if (is_legal_reg(lrg, reg, chunk))
  1178         return reg;
  1182   uint copy_lrg = Find(lrg._copy_bias);
  1183   if( copy_lrg != 0 ) {
  1184     // If he has a color,
  1185     if( !(*(_ifg->_yanked))[copy_lrg] ) {
  1186       OptoReg::Name reg = lrgs(copy_lrg).reg();
  1187       //  And it is legal for you,
  1188       if (is_legal_reg(lrg, reg, chunk))
  1189         return reg;
  1190     } else if( chunk == 0 ) {
  1191       // Choose a color which is legal for him
  1192       RegMask tempmask = lrg.mask();
  1193       tempmask.AND(lrgs(copy_lrg).mask());
  1194       tempmask.clear_to_sets(lrg.num_regs());
  1195       OptoReg::Name reg = tempmask.find_first_set(lrg.num_regs());
  1196       if (OptoReg::is_valid(reg))
  1197         return reg;
  1201   // If no bias info exists, just go with the register selection ordering
  1202   if (lrg._is_vector || lrg.num_regs() == 2) {
  1203     // Find an aligned set
  1204     return OptoReg::add(lrg.mask().find_first_set(lrg.num_regs()),chunk);
  1207   // CNC - Fun hack.  Alternate 1st and 2nd selection.  Enables post-allocate
  1208   // copy removal to remove many more copies, by preventing a just-assigned
  1209   // register from being repeatedly assigned.
  1210   OptoReg::Name reg = lrg.mask().find_first_elem();
  1211   if( (++_alternate & 1) && OptoReg::is_valid(reg) ) {
  1212     // This 'Remove; find; Insert' idiom is an expensive way to find the
  1213     // SECOND element in the mask.
  1214     lrg.Remove(reg);
  1215     OptoReg::Name reg2 = lrg.mask().find_first_elem();
  1216     lrg.Insert(reg);
  1217     if( OptoReg::is_reg(reg2))
  1218       reg = reg2;
  1220   return OptoReg::add( reg, chunk );
  1223 //------------------------------choose_color-----------------------------------
  1224 // Choose a color in the current chunk
  1225 OptoReg::Name PhaseChaitin::choose_color( LRG &lrg, int chunk ) {
  1226   assert( C->in_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP-1)), "must not allocate stack0 (inside preserve area)");
  1227   assert(C->out_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP+0)), "must not allocate stack0 (inside preserve area)");
  1229   if( lrg.num_regs() == 1 ||    // Common Case
  1230       !lrg._fat_proj )          // Aligned+adjacent pairs ok
  1231     // Use a heuristic to "bias" the color choice
  1232     return bias_color(lrg, chunk);
  1234   assert(!lrg._is_vector, "should be not vector here" );
  1235   assert( lrg.num_regs() >= 2, "dead live ranges do not color" );
  1237   // Fat-proj case or misaligned double argument.
  1238   assert(lrg.compute_mask_size() == lrg.num_regs() ||
  1239          lrg.num_regs() == 2,"fat projs exactly color" );
  1240   assert( !chunk, "always color in 1st chunk" );
  1241   // Return the highest element in the set.
  1242   return lrg.mask().find_last_elem();
  1245 //------------------------------Select-----------------------------------------
  1246 // Select colors by re-inserting LRGs back into the IFG.  LRGs are re-inserted
  1247 // in reverse order of removal.  As long as nothing of hi-degree was yanked,
  1248 // everything going back is guaranteed a color.  Select that color.  If some
  1249 // hi-degree LRG cannot get a color then we record that we must spill.
  1250 uint PhaseChaitin::Select( ) {
  1251   uint spill_reg = LRG::SPILL_REG;
  1252   _max_reg = OptoReg::Name(0);  // Past max register used
  1253   while( _simplified ) {
  1254     // Pull next LRG from the simplified list - in reverse order of removal
  1255     uint lidx = _simplified;
  1256     LRG *lrg = &lrgs(lidx);
  1257     _simplified = lrg->_next;
  1260 #ifndef PRODUCT
  1261     if (trace_spilling()) {
  1262       ttyLocker ttyl;
  1263       tty->print_cr("L%d selecting degree %d degrees_of_freedom %d", lidx, lrg->degree(),
  1264                     lrg->degrees_of_freedom());
  1265       lrg->dump();
  1267 #endif
  1269     // Re-insert into the IFG
  1270     _ifg->re_insert(lidx);
  1271     if( !lrg->alive() ) continue;
  1272     // capture allstackedness flag before mask is hacked
  1273     const int is_allstack = lrg->mask().is_AllStack();
  1275     // Yeah, yeah, yeah, I know, I know.  I can refactor this
  1276     // to avoid the GOTO, although the refactored code will not
  1277     // be much clearer.  We arrive here IFF we have a stack-based
  1278     // live range that cannot color in the current chunk, and it
  1279     // has to move into the next free stack chunk.
  1280     int chunk = 0;              // Current chunk is first chunk
  1281     retry_next_chunk:
  1283     // Remove neighbor colors
  1284     IndexSet *s = _ifg->neighbors(lidx);
  1286     debug_only(RegMask orig_mask = lrg->mask();)
  1287     IndexSetIterator elements(s);
  1288     uint neighbor;
  1289     while ((neighbor = elements.next()) != 0) {
  1290       // Note that neighbor might be a spill_reg.  In this case, exclusion
  1291       // of its color will be a no-op, since the spill_reg chunk is in outer
  1292       // space.  Also, if neighbor is in a different chunk, this exclusion
  1293       // will be a no-op.  (Later on, if lrg runs out of possible colors in
  1294       // its chunk, a new chunk of color may be tried, in which case
  1295       // examination of neighbors is started again, at retry_next_chunk.)
  1296       LRG &nlrg = lrgs(neighbor);
  1297       OptoReg::Name nreg = nlrg.reg();
  1298       // Only subtract masks in the same chunk
  1299       if( nreg >= chunk && nreg < chunk + RegMask::CHUNK_SIZE ) {
  1300 #ifndef PRODUCT
  1301         uint size = lrg->mask().Size();
  1302         RegMask rm = lrg->mask();
  1303 #endif
  1304         lrg->SUBTRACT(nlrg.mask());
  1305 #ifndef PRODUCT
  1306         if (trace_spilling() && lrg->mask().Size() != size) {
  1307           ttyLocker ttyl;
  1308           tty->print("L%d ", lidx);
  1309           rm.dump();
  1310           tty->print(" intersected L%d ", neighbor);
  1311           nlrg.mask().dump();
  1312           tty->print(" removed ");
  1313           rm.SUBTRACT(lrg->mask());
  1314           rm.dump();
  1315           tty->print(" leaving ");
  1316           lrg->mask().dump();
  1317           tty->cr();
  1319 #endif
  1322     //assert(is_allstack == lrg->mask().is_AllStack(), "nbrs must not change AllStackedness");
  1323     // Aligned pairs need aligned masks
  1324     assert(!lrg->_is_vector || !lrg->_fat_proj, "sanity");
  1325     if (lrg->num_regs() > 1 && !lrg->_fat_proj) {
  1326       lrg->clear_to_sets();
  1329     // Check if a color is available and if so pick the color
  1330     OptoReg::Name reg = choose_color( *lrg, chunk );
  1331 #ifdef SPARC
  1332     debug_only(lrg->compute_set_mask_size());
  1333     assert(lrg->num_regs() < 2 || lrg->is_bound() || is_even(reg-1), "allocate all doubles aligned");
  1334 #endif
  1336     //---------------
  1337     // If we fail to color and the AllStack flag is set, trigger
  1338     // a chunk-rollover event
  1339     if(!OptoReg::is_valid(OptoReg::add(reg,-chunk)) && is_allstack) {
  1340       // Bump register mask up to next stack chunk
  1341       chunk += RegMask::CHUNK_SIZE;
  1342       lrg->Set_All();
  1344       goto retry_next_chunk;
  1347     //---------------
  1348     // Did we get a color?
  1349     else if( OptoReg::is_valid(reg)) {
  1350 #ifndef PRODUCT
  1351       RegMask avail_rm = lrg->mask();
  1352 #endif
  1354       // Record selected register
  1355       lrg->set_reg(reg);
  1357       if( reg >= _max_reg )     // Compute max register limit
  1358         _max_reg = OptoReg::add(reg,1);
  1359       // Fold reg back into normal space
  1360       reg = OptoReg::add(reg,-chunk);
  1362       // If the live range is not bound, then we actually had some choices
  1363       // to make.  In this case, the mask has more bits in it than the colors
  1364       // chosen.  Restrict the mask to just what was picked.
  1365       int n_regs = lrg->num_regs();
  1366       assert(!lrg->_is_vector || !lrg->_fat_proj, "sanity");
  1367       if (n_regs == 1 || !lrg->_fat_proj) {
  1368         assert(!lrg->_is_vector || n_regs <= RegMask::SlotsPerVecY, "sanity");
  1369         lrg->Clear();           // Clear the mask
  1370         lrg->Insert(reg);       // Set regmask to match selected reg
  1371         // For vectors and pairs, also insert the low bit of the pair
  1372         for (int i = 1; i < n_regs; i++)
  1373           lrg->Insert(OptoReg::add(reg,-i));
  1374         lrg->set_mask_size(n_regs);
  1375       } else {                  // Else fatproj
  1376         // mask must be equal to fatproj bits, by definition
  1378 #ifndef PRODUCT
  1379       if (trace_spilling()) {
  1380         ttyLocker ttyl;
  1381         tty->print("L%d selected ", lidx);
  1382         lrg->mask().dump();
  1383         tty->print(" from ");
  1384         avail_rm.dump();
  1385         tty->cr();
  1387 #endif
  1388       // Note that reg is the highest-numbered register in the newly-bound mask.
  1389     } // end color available case
  1391     //---------------
  1392     // Live range is live and no colors available
  1393     else {
  1394       assert( lrg->alive(), "" );
  1395       assert( !lrg->_fat_proj || lrg->is_multidef() ||
  1396               lrg->_def->outcnt() > 0, "fat_proj cannot spill");
  1397       assert( !orig_mask.is_AllStack(), "All Stack does not spill" );
  1399       // Assign the special spillreg register
  1400       lrg->set_reg(OptoReg::Name(spill_reg++));
  1401       // Do not empty the regmask; leave mask_size lying around
  1402       // for use during Spilling
  1403 #ifndef PRODUCT
  1404       if( trace_spilling() ) {
  1405         ttyLocker ttyl;
  1406         tty->print("L%d spilling with neighbors: ", lidx);
  1407         s->dump();
  1408         debug_only(tty->print(" original mask: "));
  1409         debug_only(orig_mask.dump());
  1410         dump_lrg(lidx);
  1412 #endif
  1413     } // end spill case
  1417   return spill_reg-LRG::SPILL_REG;      // Return number of spills
  1421 //------------------------------copy_was_spilled-------------------------------
  1422 // Copy 'was_spilled'-edness from the source Node to the dst Node.
  1423 void PhaseChaitin::copy_was_spilled( Node *src, Node *dst ) {
  1424   if( _spilled_once.test(src->_idx) ) {
  1425     _spilled_once.set(dst->_idx);
  1426     lrgs(Find(dst))._was_spilled1 = 1;
  1427     if( _spilled_twice.test(src->_idx) ) {
  1428       _spilled_twice.set(dst->_idx);
  1429       lrgs(Find(dst))._was_spilled2 = 1;
  1434 //------------------------------set_was_spilled--------------------------------
  1435 // Set the 'spilled_once' or 'spilled_twice' flag on a node.
  1436 void PhaseChaitin::set_was_spilled( Node *n ) {
  1437   if( _spilled_once.test_set(n->_idx) )
  1438     _spilled_twice.set(n->_idx);
  1441 //------------------------------fixup_spills-----------------------------------
  1442 // Convert Ideal spill instructions into proper FramePtr + offset Loads and
  1443 // Stores.  Use-def chains are NOT preserved, but Node->LRG->reg maps are.
  1444 void PhaseChaitin::fixup_spills() {
  1445   // This function does only cisc spill work.
  1446   if( !UseCISCSpill ) return;
  1448   NOT_PRODUCT( Compile::TracePhase t3("fixupSpills", &_t_fixupSpills, TimeCompiler); )
  1450   // Grab the Frame Pointer
  1451   Node *fp = _cfg._broot->head()->in(1)->in(TypeFunc::FramePtr);
  1453   // For all blocks
  1454   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
  1455     Block *b = _cfg._blocks[i];
  1457     // For all instructions in block
  1458     uint last_inst = b->end_idx();
  1459     for( uint j = 1; j <= last_inst; j++ ) {
  1460       Node *n = b->_nodes[j];
  1462       // Dead instruction???
  1463       assert( n->outcnt() != 0 ||// Nothing dead after post alloc
  1464               C->top() == n ||  // Or the random TOP node
  1465               n->is_Proj(),     // Or a fat-proj kill node
  1466               "No dead instructions after post-alloc" );
  1468       int inp = n->cisc_operand();
  1469       if( inp != AdlcVMDeps::Not_cisc_spillable ) {
  1470         // Convert operand number to edge index number
  1471         MachNode *mach = n->as_Mach();
  1472         inp = mach->operand_index(inp);
  1473         Node *src = n->in(inp);   // Value to load or store
  1474         LRG &lrg_cisc = lrgs( Find_const(src) );
  1475         OptoReg::Name src_reg = lrg_cisc.reg();
  1476         // Doubles record the HIGH register of an adjacent pair.
  1477         src_reg = OptoReg::add(src_reg,1-lrg_cisc.num_regs());
  1478         if( OptoReg::is_stack(src_reg) ) { // If input is on stack
  1479           // This is a CISC Spill, get stack offset and construct new node
  1480 #ifndef PRODUCT
  1481           if( TraceCISCSpill ) {
  1482             tty->print("    reg-instr:  ");
  1483             n->dump();
  1485 #endif
  1486           int stk_offset = reg2offset(src_reg);
  1487           // Bailout if we might exceed node limit when spilling this instruction
  1488           C->check_node_count(0, "out of nodes fixing spills");
  1489           if (C->failing())  return;
  1490           // Transform node
  1491           MachNode *cisc = mach->cisc_version(stk_offset, C)->as_Mach();
  1492           cisc->set_req(inp,fp);          // Base register is frame pointer
  1493           if( cisc->oper_input_base() > 1 && mach->oper_input_base() <= 1 ) {
  1494             assert( cisc->oper_input_base() == 2, "Only adding one edge");
  1495             cisc->ins_req(1,src);         // Requires a memory edge
  1497           b->_nodes.map(j,cisc);          // Insert into basic block
  1498           n->subsume_by(cisc); // Correct graph
  1499           //
  1500           ++_used_cisc_instructions;
  1501 #ifndef PRODUCT
  1502           if( TraceCISCSpill ) {
  1503             tty->print("    cisc-instr: ");
  1504             cisc->dump();
  1506 #endif
  1507         } else {
  1508 #ifndef PRODUCT
  1509           if( TraceCISCSpill ) {
  1510             tty->print("    using reg-instr: ");
  1511             n->dump();
  1513 #endif
  1514           ++_unused_cisc_instructions;    // input can be on stack
  1518     } // End of for all instructions
  1520   } // End of for all blocks
  1523 //------------------------------find_base_for_derived--------------------------
  1524 // Helper to stretch above; recursively discover the base Node for a
  1525 // given derived Node.  Easy for AddP-related machine nodes, but needs
  1526 // to be recursive for derived Phis.
  1527 Node *PhaseChaitin::find_base_for_derived( Node **derived_base_map, Node *derived, uint &maxlrg ) {
  1528   // See if already computed; if so return it
  1529   if( derived_base_map[derived->_idx] )
  1530     return derived_base_map[derived->_idx];
  1532   // See if this happens to be a base.
  1533   // NOTE: we use TypePtr instead of TypeOopPtr because we can have
  1534   // pointers derived from NULL!  These are always along paths that
  1535   // can't happen at run-time but the optimizer cannot deduce it so
  1536   // we have to handle it gracefully.
  1537   assert(!derived->bottom_type()->isa_narrowoop() ||
  1538           derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
  1539   const TypePtr *tj = derived->bottom_type()->isa_ptr();
  1540   // If its an OOP with a non-zero offset, then it is derived.
  1541   if( tj == NULL || tj->_offset == 0 ) {
  1542     derived_base_map[derived->_idx] = derived;
  1543     return derived;
  1545   // Derived is NULL+offset?  Base is NULL!
  1546   if( derived->is_Con() ) {
  1547     Node *base = _matcher.mach_null();
  1548     assert(base != NULL, "sanity");
  1549     if (base->in(0) == NULL) {
  1550       // Initialize it once and make it shared:
  1551       // set control to _root and place it into Start block
  1552       // (where top() node is placed).
  1553       base->init_req(0, _cfg._root);
  1554       Block *startb = _cfg._bbs[C->top()->_idx];
  1555       startb->_nodes.insert(startb->find_node(C->top()), base );
  1556       _cfg._bbs.map( base->_idx, startb );
  1557       assert (n2lidx(base) == 0, "should not have LRG yet");
  1559     if (n2lidx(base) == 0) {
  1560       new_lrg(base, maxlrg++);
  1562     assert(base->in(0) == _cfg._root &&
  1563            _cfg._bbs[base->_idx] == _cfg._bbs[C->top()->_idx], "base NULL should be shared");
  1564     derived_base_map[derived->_idx] = base;
  1565     return base;
  1568   // Check for AddP-related opcodes
  1569   if( !derived->is_Phi() ) {
  1570     assert(derived->as_Mach()->ideal_Opcode() == Op_AddP, err_msg_res("but is: %s", derived->Name()));
  1571     Node *base = derived->in(AddPNode::Base);
  1572     derived_base_map[derived->_idx] = base;
  1573     return base;
  1576   // Recursively find bases for Phis.
  1577   // First check to see if we can avoid a base Phi here.
  1578   Node *base = find_base_for_derived( derived_base_map, derived->in(1),maxlrg);
  1579   uint i;
  1580   for( i = 2; i < derived->req(); i++ )
  1581     if( base != find_base_for_derived( derived_base_map,derived->in(i),maxlrg))
  1582       break;
  1583   // Went to the end without finding any different bases?
  1584   if( i == derived->req() ) {   // No need for a base Phi here
  1585     derived_base_map[derived->_idx] = base;
  1586     return base;
  1589   // Now we see we need a base-Phi here to merge the bases
  1590   const Type *t = base->bottom_type();
  1591   base = new (C) PhiNode( derived->in(0), t );
  1592   for( i = 1; i < derived->req(); i++ ) {
  1593     base->init_req(i, find_base_for_derived(derived_base_map, derived->in(i), maxlrg));
  1594     t = t->meet(base->in(i)->bottom_type());
  1596   base->as_Phi()->set_type(t);
  1598   // Search the current block for an existing base-Phi
  1599   Block *b = _cfg._bbs[derived->_idx];
  1600   for( i = 1; i <= b->end_idx(); i++ ) {// Search for matching Phi
  1601     Node *phi = b->_nodes[i];
  1602     if( !phi->is_Phi() ) {      // Found end of Phis with no match?
  1603       b->_nodes.insert( i, base ); // Must insert created Phi here as base
  1604       _cfg._bbs.map( base->_idx, b );
  1605       new_lrg(base,maxlrg++);
  1606       break;
  1608     // See if Phi matches.
  1609     uint j;
  1610     for( j = 1; j < base->req(); j++ )
  1611       if( phi->in(j) != base->in(j) &&
  1612           !(phi->in(j)->is_Con() && base->in(j)->is_Con()) ) // allow different NULLs
  1613         break;
  1614     if( j == base->req() ) {    // All inputs match?
  1615       base = phi;               // Then use existing 'phi' and drop 'base'
  1616       break;
  1621   // Cache info for later passes
  1622   derived_base_map[derived->_idx] = base;
  1623   return base;
  1627 //------------------------------stretch_base_pointer_live_ranges---------------
  1628 // At each Safepoint, insert extra debug edges for each pair of derived value/
  1629 // base pointer that is live across the Safepoint for oopmap building.  The
  1630 // edge pairs get added in after sfpt->jvmtail()->oopoff(), but are in the
  1631 // required edge set.
  1632 bool PhaseChaitin::stretch_base_pointer_live_ranges( ResourceArea *a ) {
  1633   int must_recompute_live = false;
  1634   uint maxlrg = _maxlrg;
  1635   Node **derived_base_map = (Node**)a->Amalloc(sizeof(Node*)*C->unique());
  1636   memset( derived_base_map, 0, sizeof(Node*)*C->unique() );
  1638   // For all blocks in RPO do...
  1639   for( uint i=0; i<_cfg._num_blocks; i++ ) {
  1640     Block *b = _cfg._blocks[i];
  1641     // Note use of deep-copy constructor.  I cannot hammer the original
  1642     // liveout bits, because they are needed by the following coalesce pass.
  1643     IndexSet liveout(_live->live(b));
  1645     for( uint j = b->end_idx() + 1; j > 1; j-- ) {
  1646       Node *n = b->_nodes[j-1];
  1648       // Pre-split compares of loop-phis.  Loop-phis form a cycle we would
  1649       // like to see in the same register.  Compare uses the loop-phi and so
  1650       // extends its live range BUT cannot be part of the cycle.  If this
  1651       // extended live range overlaps with the update of the loop-phi value
  1652       // we need both alive at the same time -- which requires at least 1
  1653       // copy.  But because Intel has only 2-address registers we end up with
  1654       // at least 2 copies, one before the loop-phi update instruction and
  1655       // one after.  Instead we split the input to the compare just after the
  1656       // phi.
  1657       if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CmpI ) {
  1658         Node *phi = n->in(1);
  1659         if( phi->is_Phi() && phi->as_Phi()->region()->is_Loop() ) {
  1660           Block *phi_block = _cfg._bbs[phi->_idx];
  1661           if( _cfg._bbs[phi_block->pred(2)->_idx] == b ) {
  1662             const RegMask *mask = C->matcher()->idealreg2spillmask[Op_RegI];
  1663             Node *spill = new (C) MachSpillCopyNode( phi, *mask, *mask );
  1664             insert_proj( phi_block, 1, spill, maxlrg++ );
  1665             n->set_req(1,spill);
  1666             must_recompute_live = true;
  1671       // Get value being defined
  1672       uint lidx = n2lidx(n);
  1673       if( lidx && lidx < _maxlrg /* Ignore the occasional brand-new live range */) {
  1674         // Remove from live-out set
  1675         liveout.remove(lidx);
  1677         // Copies do not define a new value and so do not interfere.
  1678         // Remove the copies source from the liveout set before interfering.
  1679         uint idx = n->is_Copy();
  1680         if( idx ) liveout.remove( n2lidx(n->in(idx)) );
  1683       // Found a safepoint?
  1684       JVMState *jvms = n->jvms();
  1685       if( jvms ) {
  1686         // Now scan for a live derived pointer
  1687         IndexSetIterator elements(&liveout);
  1688         uint neighbor;
  1689         while ((neighbor = elements.next()) != 0) {
  1690           // Find reaching DEF for base and derived values
  1691           // This works because we are still in SSA during this call.
  1692           Node *derived = lrgs(neighbor)._def;
  1693           const TypePtr *tj = derived->bottom_type()->isa_ptr();
  1694           assert(!derived->bottom_type()->isa_narrowoop() ||
  1695                   derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
  1696           // If its an OOP with a non-zero offset, then it is derived.
  1697           if( tj && tj->_offset != 0 && tj->isa_oop_ptr() ) {
  1698             Node *base = find_base_for_derived( derived_base_map, derived, maxlrg );
  1699             assert( base->_idx < _names.Size(), "" );
  1700             // Add reaching DEFs of derived pointer and base pointer as a
  1701             // pair of inputs
  1702             n->add_req( derived );
  1703             n->add_req( base );
  1705             // See if the base pointer is already live to this point.
  1706             // Since I'm working on the SSA form, live-ness amounts to
  1707             // reaching def's.  So if I find the base's live range then
  1708             // I know the base's def reaches here.
  1709             if( (n2lidx(base) >= _maxlrg ||// (Brand new base (hence not live) or
  1710                  !liveout.member( n2lidx(base) ) ) && // not live) AND
  1711                  (n2lidx(base) > 0)                && // not a constant
  1712                  _cfg._bbs[base->_idx] != b ) {     //  base not def'd in blk)
  1713               // Base pointer is not currently live.  Since I stretched
  1714               // the base pointer to here and it crosses basic-block
  1715               // boundaries, the global live info is now incorrect.
  1716               // Recompute live.
  1717               must_recompute_live = true;
  1718             } // End of if base pointer is not live to debug info
  1720         } // End of scan all live data for derived ptrs crossing GC point
  1721       } // End of if found a GC point
  1723       // Make all inputs live
  1724       if( !n->is_Phi() ) {      // Phi function uses come from prior block
  1725         for( uint k = 1; k < n->req(); k++ ) {
  1726           uint lidx = n2lidx(n->in(k));
  1727           if( lidx < _maxlrg )
  1728             liveout.insert( lidx );
  1732     } // End of forall instructions in block
  1733     liveout.clear();  // Free the memory used by liveout.
  1735   } // End of forall blocks
  1736   _maxlrg = maxlrg;
  1738   // If I created a new live range I need to recompute live
  1739   if( maxlrg != _ifg->_maxlrg )
  1740     must_recompute_live = true;
  1742   return must_recompute_live != 0;
  1746 //------------------------------add_reference----------------------------------
  1747 // Extend the node to LRG mapping
  1748 void PhaseChaitin::add_reference( const Node *node, const Node *old_node ) {
  1749   _names.extend( node->_idx, n2lidx(old_node) );
  1752 //------------------------------dump-------------------------------------------
  1753 #ifndef PRODUCT
  1754 void PhaseChaitin::dump( const Node *n ) const {
  1755   uint r = (n->_idx < _names.Size() ) ? Find_const(n) : 0;
  1756   tty->print("L%d",r);
  1757   if( r && n->Opcode() != Op_Phi ) {
  1758     if( _node_regs ) {          // Got a post-allocation copy of allocation?
  1759       tty->print("[");
  1760       OptoReg::Name second = get_reg_second(n);
  1761       if( OptoReg::is_valid(second) ) {
  1762         if( OptoReg::is_reg(second) )
  1763           tty->print("%s:",Matcher::regName[second]);
  1764         else
  1765           tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(second));
  1767       OptoReg::Name first = get_reg_first(n);
  1768       if( OptoReg::is_reg(first) )
  1769         tty->print("%s]",Matcher::regName[first]);
  1770       else
  1771          tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(first));
  1772     } else
  1773     n->out_RegMask().dump();
  1775   tty->print("/N%d\t",n->_idx);
  1776   tty->print("%s === ", n->Name());
  1777   uint k;
  1778   for( k = 0; k < n->req(); k++) {
  1779     Node *m = n->in(k);
  1780     if( !m ) tty->print("_ ");
  1781     else {
  1782       uint r = (m->_idx < _names.Size() ) ? Find_const(m) : 0;
  1783       tty->print("L%d",r);
  1784       // Data MultiNode's can have projections with no real registers.
  1785       // Don't die while dumping them.
  1786       int op = n->Opcode();
  1787       if( r && op != Op_Phi && op != Op_Proj && op != Op_SCMemProj) {
  1788         if( _node_regs ) {
  1789           tty->print("[");
  1790           OptoReg::Name second = get_reg_second(n->in(k));
  1791           if( OptoReg::is_valid(second) ) {
  1792             if( OptoReg::is_reg(second) )
  1793               tty->print("%s:",Matcher::regName[second]);
  1794             else
  1795               tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer),
  1796                          reg2offset_unchecked(second));
  1798           OptoReg::Name first = get_reg_first(n->in(k));
  1799           if( OptoReg::is_reg(first) )
  1800             tty->print("%s]",Matcher::regName[first]);
  1801           else
  1802             tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer),
  1803                        reg2offset_unchecked(first));
  1804         } else
  1805           n->in_RegMask(k).dump();
  1807       tty->print("/N%d ",m->_idx);
  1810   if( k < n->len() && n->in(k) ) tty->print("| ");
  1811   for( ; k < n->len(); k++ ) {
  1812     Node *m = n->in(k);
  1813     if( !m ) break;
  1814     uint r = (m->_idx < _names.Size() ) ? Find_const(m) : 0;
  1815     tty->print("L%d",r);
  1816     tty->print("/N%d ",m->_idx);
  1818   if( n->is_Mach() ) n->as_Mach()->dump_spec(tty);
  1819   else n->dump_spec(tty);
  1820   if( _spilled_once.test(n->_idx ) ) {
  1821     tty->print(" Spill_1");
  1822     if( _spilled_twice.test(n->_idx ) )
  1823       tty->print(" Spill_2");
  1825   tty->print("\n");
  1828 void PhaseChaitin::dump( const Block * b ) const {
  1829   b->dump_head( &_cfg._bbs );
  1831   // For all instructions
  1832   for( uint j = 0; j < b->_nodes.size(); j++ )
  1833     dump(b->_nodes[j]);
  1834   // Print live-out info at end of block
  1835   if( _live ) {
  1836     tty->print("Liveout: ");
  1837     IndexSet *live = _live->live(b);
  1838     IndexSetIterator elements(live);
  1839     tty->print("{");
  1840     uint i;
  1841     while ((i = elements.next()) != 0) {
  1842       tty->print("L%d ", Find_const(i));
  1844     tty->print_cr("}");
  1846   tty->print("\n");
  1849 void PhaseChaitin::dump() const {
  1850   tty->print( "--- Chaitin -- argsize: %d  framesize: %d ---\n",
  1851               _matcher._new_SP, _framesize );
  1853   // For all blocks
  1854   for( uint i = 0; i < _cfg._num_blocks; i++ )
  1855     dump(_cfg._blocks[i]);
  1856   // End of per-block dump
  1857   tty->print("\n");
  1859   if (!_ifg) {
  1860     tty->print("(No IFG.)\n");
  1861     return;
  1864   // Dump LRG array
  1865   tty->print("--- Live RanGe Array ---\n");
  1866   for(uint i2 = 1; i2 < _maxlrg; i2++ ) {
  1867     tty->print("L%d: ",i2);
  1868     if( i2 < _ifg->_maxlrg ) lrgs(i2).dump( );
  1869     else tty->print_cr("new LRG");
  1871   tty->print_cr("");
  1873   // Dump lo-degree list
  1874   tty->print("Lo degree: ");
  1875   for(uint i3 = _lo_degree; i3; i3 = lrgs(i3)._next )
  1876     tty->print("L%d ",i3);
  1877   tty->print_cr("");
  1879   // Dump lo-stk-degree list
  1880   tty->print("Lo stk degree: ");
  1881   for(uint i4 = _lo_stk_degree; i4; i4 = lrgs(i4)._next )
  1882     tty->print("L%d ",i4);
  1883   tty->print_cr("");
  1885   // Dump lo-degree list
  1886   tty->print("Hi degree: ");
  1887   for(uint i5 = _hi_degree; i5; i5 = lrgs(i5)._next )
  1888     tty->print("L%d ",i5);
  1889   tty->print_cr("");
  1892 //------------------------------dump_degree_lists------------------------------
  1893 void PhaseChaitin::dump_degree_lists() const {
  1894   // Dump lo-degree list
  1895   tty->print("Lo degree: ");
  1896   for( uint i = _lo_degree; i; i = lrgs(i)._next )
  1897     tty->print("L%d ",i);
  1898   tty->print_cr("");
  1900   // Dump lo-stk-degree list
  1901   tty->print("Lo stk degree: ");
  1902   for(uint i2 = _lo_stk_degree; i2; i2 = lrgs(i2)._next )
  1903     tty->print("L%d ",i2);
  1904   tty->print_cr("");
  1906   // Dump lo-degree list
  1907   tty->print("Hi degree: ");
  1908   for(uint i3 = _hi_degree; i3; i3 = lrgs(i3)._next )
  1909     tty->print("L%d ",i3);
  1910   tty->print_cr("");
  1913 //------------------------------dump_simplified--------------------------------
  1914 void PhaseChaitin::dump_simplified() const {
  1915   tty->print("Simplified: ");
  1916   for( uint i = _simplified; i; i = lrgs(i)._next )
  1917     tty->print("L%d ",i);
  1918   tty->print_cr("");
  1921 static char *print_reg( OptoReg::Name reg, const PhaseChaitin *pc, char *buf ) {
  1922   if ((int)reg < 0)
  1923     sprintf(buf, "<OptoReg::%d>", (int)reg);
  1924   else if (OptoReg::is_reg(reg))
  1925     strcpy(buf, Matcher::regName[reg]);
  1926   else
  1927     sprintf(buf,"%s + #%d",OptoReg::regname(OptoReg::c_frame_pointer),
  1928             pc->reg2offset(reg));
  1929   return buf+strlen(buf);
  1932 //------------------------------dump_register----------------------------------
  1933 // Dump a register name into a buffer.  Be intelligent if we get called
  1934 // before allocation is complete.
  1935 char *PhaseChaitin::dump_register( const Node *n, char *buf  ) const {
  1936   if( !this ) {                 // Not got anything?
  1937     sprintf(buf,"N%d",n->_idx); // Then use Node index
  1938   } else if( _node_regs ) {
  1939     // Post allocation, use direct mappings, no LRG info available
  1940     print_reg( get_reg_first(n), this, buf );
  1941   } else {
  1942     uint lidx = Find_const(n); // Grab LRG number
  1943     if( !_ifg ) {
  1944       sprintf(buf,"L%d",lidx);  // No register binding yet
  1945     } else if( !lidx ) {        // Special, not allocated value
  1946       strcpy(buf,"Special");
  1947     } else {
  1948       if (lrgs(lidx)._is_vector) {
  1949         if (lrgs(lidx).mask().is_bound_set(lrgs(lidx).num_regs()))
  1950           print_reg( lrgs(lidx).reg(), this, buf ); // a bound machine register
  1951         else
  1952           sprintf(buf,"L%d",lidx); // No register binding yet
  1953       } else if( (lrgs(lidx).num_regs() == 1)
  1954                  ? lrgs(lidx).mask().is_bound1()
  1955                  : lrgs(lidx).mask().is_bound_pair() ) {
  1956         // Hah!  We have a bound machine register
  1957         print_reg( lrgs(lidx).reg(), this, buf );
  1958       } else {
  1959         sprintf(buf,"L%d",lidx); // No register binding yet
  1963   return buf+strlen(buf);
  1966 //----------------------dump_for_spill_split_recycle--------------------------
  1967 void PhaseChaitin::dump_for_spill_split_recycle() const {
  1968   if( WizardMode && (PrintCompilation || PrintOpto) ) {
  1969     // Display which live ranges need to be split and the allocator's state
  1970     tty->print_cr("Graph-Coloring Iteration %d will split the following live ranges", _trip_cnt);
  1971     for( uint bidx = 1; bidx < _maxlrg; bidx++ ) {
  1972       if( lrgs(bidx).alive() && lrgs(bidx).reg() >= LRG::SPILL_REG ) {
  1973         tty->print("L%d: ", bidx);
  1974         lrgs(bidx).dump();
  1977     tty->cr();
  1978     dump();
  1982 //------------------------------dump_frame------------------------------------
  1983 void PhaseChaitin::dump_frame() const {
  1984   const char *fp = OptoReg::regname(OptoReg::c_frame_pointer);
  1985   const TypeTuple *domain = C->tf()->domain();
  1986   const int        argcnt = domain->cnt() - TypeFunc::Parms;
  1988   // Incoming arguments in registers dump
  1989   for( int k = 0; k < argcnt; k++ ) {
  1990     OptoReg::Name parmreg = _matcher._parm_regs[k].first();
  1991     if( OptoReg::is_reg(parmreg))  {
  1992       const char *reg_name = OptoReg::regname(parmreg);
  1993       tty->print("#r%3.3d %s", parmreg, reg_name);
  1994       parmreg = _matcher._parm_regs[k].second();
  1995       if( OptoReg::is_reg(parmreg))  {
  1996         tty->print(":%s", OptoReg::regname(parmreg));
  1998       tty->print("   : parm %d: ", k);
  1999       domain->field_at(k + TypeFunc::Parms)->dump();
  2000       tty->print_cr("");
  2004   // Check for un-owned padding above incoming args
  2005   OptoReg::Name reg = _matcher._new_SP;
  2006   if( reg > _matcher._in_arg_limit ) {
  2007     reg = OptoReg::add(reg, -1);
  2008     tty->print_cr("#r%3.3d %s+%2d: pad0, owned by CALLER", reg, fp, reg2offset_unchecked(reg));
  2011   // Incoming argument area dump
  2012   OptoReg::Name begin_in_arg = OptoReg::add(_matcher._old_SP,C->out_preserve_stack_slots());
  2013   while( reg > begin_in_arg ) {
  2014     reg = OptoReg::add(reg, -1);
  2015     tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
  2016     int j;
  2017     for( j = 0; j < argcnt; j++) {
  2018       if( _matcher._parm_regs[j].first() == reg ||
  2019           _matcher._parm_regs[j].second() == reg ) {
  2020         tty->print("parm %d: ",j);
  2021         domain->field_at(j + TypeFunc::Parms)->dump();
  2022         tty->print_cr("");
  2023         break;
  2026     if( j >= argcnt )
  2027       tty->print_cr("HOLE, owned by SELF");
  2030   // Old outgoing preserve area
  2031   while( reg > _matcher._old_SP ) {
  2032     reg = OptoReg::add(reg, -1);
  2033     tty->print_cr("#r%3.3d %s+%2d: old out preserve",reg,fp,reg2offset_unchecked(reg));
  2036   // Old SP
  2037   tty->print_cr("# -- Old %s -- Framesize: %d --",fp,
  2038     reg2offset_unchecked(OptoReg::add(_matcher._old_SP,-1)) - reg2offset_unchecked(_matcher._new_SP)+jintSize);
  2040   // Preserve area dump
  2041   int fixed_slots = C->fixed_slots();
  2042   OptoReg::Name begin_in_preserve = OptoReg::add(_matcher._old_SP, -(int)C->in_preserve_stack_slots());
  2043   OptoReg::Name return_addr = _matcher.return_addr();
  2045   reg = OptoReg::add(reg, -1);
  2046   while (OptoReg::is_stack(reg)) {
  2047     tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
  2048     if (return_addr == reg) {
  2049       tty->print_cr("return address");
  2050     } else if (reg >= begin_in_preserve) {
  2051       // Preserved slots are present on x86
  2052       if (return_addr == OptoReg::add(reg, VMRegImpl::slots_per_word))
  2053         tty->print_cr("saved fp register");
  2054       else if (return_addr == OptoReg::add(reg, 2*VMRegImpl::slots_per_word) &&
  2055                VerifyStackAtCalls)
  2056         tty->print_cr("0xBADB100D   +VerifyStackAtCalls");
  2057       else
  2058         tty->print_cr("in_preserve");
  2059     } else if ((int)OptoReg::reg2stack(reg) < fixed_slots) {
  2060       tty->print_cr("Fixed slot %d", OptoReg::reg2stack(reg));
  2061     } else {
  2062       tty->print_cr("pad2, stack alignment");
  2064     reg = OptoReg::add(reg, -1);
  2067   // Spill area dump
  2068   reg = OptoReg::add(_matcher._new_SP, _framesize );
  2069   while( reg > _matcher._out_arg_limit ) {
  2070     reg = OptoReg::add(reg, -1);
  2071     tty->print_cr("#r%3.3d %s+%2d: spill",reg,fp,reg2offset_unchecked(reg));
  2074   // Outgoing argument area dump
  2075   while( reg > OptoReg::add(_matcher._new_SP, C->out_preserve_stack_slots()) ) {
  2076     reg = OptoReg::add(reg, -1);
  2077     tty->print_cr("#r%3.3d %s+%2d: outgoing argument",reg,fp,reg2offset_unchecked(reg));
  2080   // Outgoing new preserve area
  2081   while( reg > _matcher._new_SP ) {
  2082     reg = OptoReg::add(reg, -1);
  2083     tty->print_cr("#r%3.3d %s+%2d: new out preserve",reg,fp,reg2offset_unchecked(reg));
  2085   tty->print_cr("#");
  2088 //------------------------------dump_bb----------------------------------------
  2089 void PhaseChaitin::dump_bb( uint pre_order ) const {
  2090   tty->print_cr("---dump of B%d---",pre_order);
  2091   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
  2092     Block *b = _cfg._blocks[i];
  2093     if( b->_pre_order == pre_order )
  2094       dump(b);
  2098 //------------------------------dump_lrg---------------------------------------
  2099 void PhaseChaitin::dump_lrg( uint lidx, bool defs_only ) const {
  2100   tty->print_cr("---dump of L%d---",lidx);
  2102   if( _ifg ) {
  2103     if( lidx >= _maxlrg ) {
  2104       tty->print("Attempt to print live range index beyond max live range.\n");
  2105       return;
  2107     tty->print("L%d: ",lidx);
  2108     if( lidx < _ifg->_maxlrg ) lrgs(lidx).dump( );
  2109     else tty->print_cr("new LRG");
  2111   if( _ifg && lidx < _ifg->_maxlrg) {
  2112     tty->print("Neighbors: %d - ", _ifg->neighbor_cnt(lidx));
  2113     _ifg->neighbors(lidx)->dump();
  2114     tty->cr();
  2116   // For all blocks
  2117   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
  2118     Block *b = _cfg._blocks[i];
  2119     int dump_once = 0;
  2121     // For all instructions
  2122     for( uint j = 0; j < b->_nodes.size(); j++ ) {
  2123       Node *n = b->_nodes[j];
  2124       if( Find_const(n) == lidx ) {
  2125         if( !dump_once++ ) {
  2126           tty->cr();
  2127           b->dump_head( &_cfg._bbs );
  2129         dump(n);
  2130         continue;
  2132       if (!defs_only) {
  2133         uint cnt = n->req();
  2134         for( uint k = 1; k < cnt; k++ ) {
  2135           Node *m = n->in(k);
  2136           if (!m)  continue;  // be robust in the dumper
  2137           if( Find_const(m) == lidx ) {
  2138             if( !dump_once++ ) {
  2139               tty->cr();
  2140               b->dump_head( &_cfg._bbs );
  2142             dump(n);
  2147   } // End of per-block dump
  2148   tty->cr();
  2150 #endif // not PRODUCT
  2152 //------------------------------print_chaitin_statistics-------------------------------
  2153 int PhaseChaitin::_final_loads  = 0;
  2154 int PhaseChaitin::_final_stores = 0;
  2155 int PhaseChaitin::_final_memoves= 0;
  2156 int PhaseChaitin::_final_copies = 0;
  2157 double PhaseChaitin::_final_load_cost  = 0;
  2158 double PhaseChaitin::_final_store_cost = 0;
  2159 double PhaseChaitin::_final_memove_cost= 0;
  2160 double PhaseChaitin::_final_copy_cost  = 0;
  2161 int PhaseChaitin::_conserv_coalesce = 0;
  2162 int PhaseChaitin::_conserv_coalesce_pair = 0;
  2163 int PhaseChaitin::_conserv_coalesce_trie = 0;
  2164 int PhaseChaitin::_conserv_coalesce_quad = 0;
  2165 int PhaseChaitin::_post_alloc = 0;
  2166 int PhaseChaitin::_lost_opp_pp_coalesce = 0;
  2167 int PhaseChaitin::_lost_opp_cflow_coalesce = 0;
  2168 int PhaseChaitin::_used_cisc_instructions   = 0;
  2169 int PhaseChaitin::_unused_cisc_instructions = 0;
  2170 int PhaseChaitin::_allocator_attempts       = 0;
  2171 int PhaseChaitin::_allocator_successes      = 0;
  2173 #ifndef PRODUCT
  2174 uint PhaseChaitin::_high_pressure           = 0;
  2175 uint PhaseChaitin::_low_pressure            = 0;
  2177 void PhaseChaitin::print_chaitin_statistics() {
  2178   tty->print_cr("Inserted %d spill loads, %d spill stores, %d mem-mem moves and %d copies.", _final_loads, _final_stores, _final_memoves, _final_copies);
  2179   tty->print_cr("Total load cost= %6.0f, store cost = %6.0f, mem-mem cost = %5.2f, copy cost = %5.0f.", _final_load_cost, _final_store_cost, _final_memove_cost, _final_copy_cost);
  2180   tty->print_cr("Adjusted spill cost = %7.0f.",
  2181                 _final_load_cost*4.0 + _final_store_cost  * 2.0 +
  2182                 _final_copy_cost*1.0 + _final_memove_cost*12.0);
  2183   tty->print("Conservatively coalesced %d copies, %d pairs",
  2184                 _conserv_coalesce, _conserv_coalesce_pair);
  2185   if( _conserv_coalesce_trie || _conserv_coalesce_quad )
  2186     tty->print(", %d tries, %d quads", _conserv_coalesce_trie, _conserv_coalesce_quad);
  2187   tty->print_cr(", %d post alloc.", _post_alloc);
  2188   if( _lost_opp_pp_coalesce || _lost_opp_cflow_coalesce )
  2189     tty->print_cr("Lost coalesce opportunity, %d private-private, and %d cflow interfered.",
  2190                   _lost_opp_pp_coalesce, _lost_opp_cflow_coalesce );
  2191   if( _used_cisc_instructions || _unused_cisc_instructions )
  2192     tty->print_cr("Used cisc instruction  %d,  remained in register %d",
  2193                    _used_cisc_instructions, _unused_cisc_instructions);
  2194   if( _allocator_successes != 0 )
  2195     tty->print_cr("Average allocation trips %f", (float)_allocator_attempts/(float)_allocator_successes);
  2196   tty->print_cr("High Pressure Blocks = %d, Low Pressure Blocks = %d", _high_pressure, _low_pressure);
  2198 #endif // not PRODUCT

mercurial